RyArxiv
Robotics 7
Robust Robot Walker: Learning Agile Locomotion over Tiny Traps
Quadruped robots must exhibit robust walking capabilities in practical applications. In this work, we propose a novel approach that enables quadruped robots to pass various small obstacles, or "tiny traps". Existing methods often rely on exteroceptive sensors, which can be unreliable for detecting such tiny traps. To overcome this limitation, our approach focuses solely on proprioceptive inputs. We introduce a two-stage training framework incorporating a contact encoder and a classification head to learn implicit representations of different traps. Additionally, we design a set of tailored reward functions to improve both the stability of training and the ease of deployment for goal-tracking tasks. To benefit further research, we design a new benchmark for tiny trap task. Extensive experiments in both simulation and real-world settings demonstrate the effectiveness and robustness of our method. Project Page: https://robust-robot-walker.github.io/
comment: 10 pages, 17 figures
♻ ☆ Auto-Multilift: Distributed Learning and Control for Cooperative Load Transportation With Quadrotors
Designing motion control and planning algorithms for multilift systems remains challenging due to the complexities of dynamics, collision avoidance, actuator limits, and scalability. Existing methods that use optimization and distributed techniques effectively address these constraints and scalability issues. However, they often require substantial manual tuning, leading to suboptimal performance. This paper proposes Auto-Multilift, a novel framework that automates the tuning of model predictive controllers (MPCs) for multilift systems. We model the MPC cost functions with deep neural networks (DNNs), enabling fast online adaptation to various scenarios. We develop a distributed policy gradient algorithm to train these DNNs efficiently in a closed-loop manner. Central to our algorithm is distributed sensitivity propagation, which is built on fully exploiting the unique dynamic couplings within the multilift system. It parallelizes gradient computation across quadrotors and focuses on actual system state sensitivities relative to key MPC parameters. Extensive simulations demonstrate favorable scalability to a large number of quadrotors. Our method outperforms a state-of-the-art open-loop MPC tuning approach by effectively learning adaptive MPCs from trajectory tracking errors. It also excels in learning an adaptive reference for reconfiguring the system when traversing multiple narrow slots.
♻ ☆ SIS: Seam-Informed Strategy for T-shirt Unfolding
Seams are information-rich components of garments. The presence of different types of seams and their combinations helps to select grasping points for garment handling. In this paper, we propose a new Seam-Informed Strategy (SIS) for finding actions for handling a garment, such as grasping and unfolding a T-shirt. Candidates for a pair of grasping points for a dual-arm manipulator system are extracted using the proposed Seam Feature Extraction Method (SFEM). A pair of grasping points for the robot system is selected by the proposed Decision Matrix Iteration Method (DMIM). The decision matrix is first computed by multiple human demonstrations and updated by the robot execution results to improve the grasping and unfolding performance of the robot. Note that the proposed scheme is trained on real data without relying on simulation. Experimental results demonstrate the effectiveness of the proposed strategy. The project video is available at https://github.com/lancexz/sis.
comment: 8 pages, 8 figures
♻ ☆ GOPT: Generalizable Online 3D Bin Packing via Transformer-based Deep Reinforcement Learning
Robotic object packing has broad practical applications in the logistics and automation industry, often formulated by researchers as the online 3D Bin Packing Problem (3D-BPP). However, existing DRL-based methods primarily focus on enhancing performance in limited packing environments while neglecting the ability to generalize across multiple environments characterized by different bin dimensions. To this end, we propose GOPT, a generalizable online 3D Bin Packing approach via Transformer-based deep reinforcement learning (DRL). First, we design a Placement Generator module to yield finite subspaces as placement candidates and the representation of the bin. Second, we propose a Packing Transformer, which fuses the features of the items and bin, to identify the spatial correlation between the item to be packed and available sub-spaces within the bin. Coupling these two components enables GOPT's ability to perform inference on bins of varying dimensions. We conduct extensive experiments and demonstrate that GOPT not only achieves superior performance against the baselines, but also exhibits excellent generalization capabilities. Furthermore, the deployment with a robot showcases the practical applicability of our method in the real world. The source code will be publicly available at https://github.com/Xiong5Heng/GOPT.
comment: 8 pages, 6 figures. This paper has been accepted by IEEE Robotics and Automation Letters
♻ ☆ Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective ECCV
The increasing accuracy reports of metric monocular depth estimation models lead to a growing interest from the automotive domain. Current model evaluations do not provide deeper insights into the models' performance, also in relation to safety-critical or unseen classes. Within this paper, we present a novel approach for the evaluation of depth estimation models. Our proposed metric leverages three components, a class-wise component, an edge and corner image feature component, and a global consistency retaining component. Classes are further weighted on their distance in the scene and on criticality for automotive applications. In the evaluation, we present the benefits of our metric through comparison to classical metrics, class-wise analytics, and the retrieval of critical situations. The results show that our metric provides deeper insights into model results while fulfilling safety-critical requirements. We release the code and weights on the following repository: https://github.com/leisemann/ca_mmde
comment: Accepted at the European Conference on Computer Vision (ECCV) 2024 Workshop on Out Of Distribution Generalization in Computer Vision
♻ ☆ Tightly-Coupled LiDAR-IMU-Wheel Odometry with Online Calibration of a Kinematic Model for Skid-Steering Robots
Tunnels and long corridors are challenging environments for mobile robots because a LiDAR point cloud should degenerate in these environments. To tackle point cloud degeneration, this study presents a tightly-coupled LiDAR-IMU-wheel odometry algorithm with an online calibration for skid-steering robots. We propose a full linear wheel odometry factor, which not only serves as a motion constraint but also performs the online calibration of kinematic models for skid-steering robots. Despite the dynamically changing kinematic model (e.g., wheel radii changes caused by tire pressures) and terrain conditions, our method can address the model error via online calibration. Moreover, our method enables an accurate localization in cases of degenerated environments, such as long and straight corridors, by calibration while the LiDAR-IMU fusion sufficiently operates. Furthermore, we estimate the uncertainty (i.e., covariance matrix) of the wheel odometry online for creating a reasonable constraint. The proposed method is validated through three experiments. The first indoor experiment shows that the proposed method is robust in severe degeneracy cases (long corridors) and changes in the wheel radii. The second outdoor experiment demonstrates that our method accurately estimates the sensor trajectory despite being in rough outdoor terrain owing to online uncertainty estimation of wheel odometry. The third experiment shows the proposed online calibration enables robust odometry estimation in changing terrains.
comment: Accepted by IEEE Access journal (12 September) open-source: https://github.com/TakuOkawara/full_linear_wheel_odometry_factor
♻ ☆ BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autonomous Driving
Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications. The code for this paper available at https://github.com/manueldiaz96/beval .
Computer Vision 6
♻ ☆ DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
comment: 15 pages, 14 figures
♻ ☆ Explicit Mutual Information Maximization for Self-Supervised Learning
Recently, self-supervised learning (SSL) has been extensively studied. Theoretically, mutual information maximization (MIM) is an optimal criterion for SSL, with a strong theoretical foundation in information theory. However, it is difficult to directly apply MIM in SSL since the data distribution is not analytically available in applications. In practice, many existing methods can be viewed as approximate implementations of the MIM criterion. This work shows that, based on the invariance property of MI, explicit MI maximization can be applied to SSL under a generic distribution assumption, i.e., a relaxed condition of the data distribution. We further illustrate this by analyzing the generalized Gaussian distribution. Based on this result, we derive a loss function based on the MIM criterion using only second-order statistics. We implement the new loss for SSL and demonstrate its effectiveness via extensive experiments.
♻ ☆ Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions, generating outputs that may not match text prompts or possess desired properties. Inspired by the success of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
comment: 35 pages, 5 figures, 3 tables
♻ ☆ 3DGCQA: A Quality Assessment Database for 3D AI-Generated Contents
Although 3D generated content (3DGC) offers advantages in reducing production costs and accelerating design timelines, its quality often falls short when compared to 3D professionally generated content. Common quality issues frequently affect 3DGC, highlighting the importance of timely and effective quality assessment. Such evaluations not only ensure a higher standard of 3DGCs for end-users but also provide critical insights for advancing generative technologies. To address existing gaps in this domain, this paper introduces a novel 3DGC quality assessment dataset, 3DGCQA, built using 7 representative Text-to-3D generation methods. During the dataset's construction, 50 fixed prompts are utilized to generate contents across all methods, resulting in the creation of 313 textured meshes that constitute the 3DGCQA dataset. The visualization intuitively reveals the presence of 6 common distortion categories in the generated 3DGCs. To further explore the quality of the 3DGCs, subjective quality assessment is conducted by evaluators, whose ratings reveal significant variation in quality across different generation methods. Additionally, several objective quality assessment algorithms are tested on the 3DGCQA dataset. The results expose limitations in the performance of existing algorithms and underscore the need for developing more specialized quality assessment methods. To provide a valuable resource for future research and development in 3D content generation and quality assessment, the dataset has been open-sourced in https://github.com/zyj-2000/3DGCQA.
Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical Report
♻ ☆ DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation
Recent advancements in generative models have provided promising solutions for synthesizing realistic driving videos, which are crucial for training autonomous driving perception models. However, existing approaches often struggle with multi-view video generation due to the challenges of integrating 3D information while maintaining spatial-temporal consistency and effectively learning from a unified model. We propose DriveScape, an end-to-end framework for multi-view, 3D condition-guided video generation, capable of producing 1024 x 576 high-resolution videos at 10Hz. Unlike other methods limited to 2Hz due to the 3D box annotation frame rate, DriveScape overcomes this with its ability to operate under sparse conditions. Our Bi-Directional Modulated Transformer (BiMot) ensures precise alignment of 3D structural information, maintaining spatial-temporal consistency. DriveScape excels in video generation performance, achieving state-of-the-art results on the nuScenes dataset with an FID score of 8.34 and an FVD score of 76.39. Our project homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
comment: Homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
Artificial Intelligence 4
Robust Robot Walker: Learning Agile Locomotion over Tiny Traps
Quadruped robots must exhibit robust walking capabilities in practical applications. In this work, we propose a novel approach that enables quadruped robots to pass various small obstacles, or "tiny traps". Existing methods often rely on exteroceptive sensors, which can be unreliable for detecting such tiny traps. To overcome this limitation, our approach focuses solely on proprioceptive inputs. We introduce a two-stage training framework incorporating a contact encoder and a classification head to learn implicit representations of different traps. Additionally, we design a set of tailored reward functions to improve both the stability of training and the ease of deployment for goal-tracking tasks. To benefit further research, we design a new benchmark for tiny trap task. Extensive experiments in both simulation and real-world settings demonstrate the effectiveness and robustness of our method. Project Page: https://robust-robot-walker.github.io/
comment: 10 pages, 17 figures
♻ ☆ Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (\textit{e.g.}, classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (\textit{e.g.}, classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at \href{https://github.com/masa-ue/SVDD}{https://github.com/masa-ue/SVDD}.
comment: The code is available at https://github.com/masa-ue/SVDD
♻ ☆ Symmetry Breaking in Neural Network Optimization: Insights from Input Dimension Expansion
Understanding the mechanisms behind neural network optimization is crucial for improving network design and performance. While various optimization techniques have been developed, a comprehensive understanding of the underlying principles that govern these techniques remains elusive. Specifically, the role of symmetry breaking, a fundamental concept in physics, has not been fully explored in neural network optimization. This gap in knowledge limits our ability to design networks that are both efficient and effective. Here, we propose the symmetry breaking hypothesis to elucidate the significance of symmetry breaking in enhancing neural network optimization. We demonstrate that a simple input expansion can significantly improve network performance across various tasks, and we show that this improvement can be attributed to the underlying symmetry breaking mechanism. We further develop a metric to quantify the degree of symmetry breaking in neural networks, providing a practical approach to evaluate and guide network design. Our findings confirm that symmetry breaking is a fundamental principle that underpins various optimization techniques, including dropout, batch normalization, and equivariance. By quantifying the degree of symmetry breaking, our work offers a practical technique for performance enhancement and a metric to guide network design without the need for complete datasets and extensive training processes.
comment: 29 pages, 8 figures
♻ ☆ Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation ECCV2024
Audio-Visual Segmentation (AVS) aims to achieve pixel-level localization of sound sources in videos, while Audio-Visual Semantic Segmentation (AVSS), as an extension of AVS, further pursues semantic understanding of audio-visual scenes. However, since the AVSS task requires the establishment of audio-visual correspondence and semantic understanding simultaneously, we observe that previous methods have struggled to handle this mashup of objectives in end-to-end training, resulting in insufficient learning and sub-optimization. Therefore, we propose a two-stage training strategy called \textit{Stepping Stones}, which decomposes the AVSS task into two simple subtasks from localization to semantic understanding, which are fully optimized in each stage to achieve step-by-step global optimization. This training strategy has also proved its generalization and effectiveness on existing methods. To further improve the performance of AVS tasks, we propose a novel framework Adaptive Audio Visual Segmentation, in which we incorporate an adaptive audio query generator and integrate masked attention into the transformer decoder, facilitating the adaptive fusion of visual and audio features. Extensive experiments demonstrate that our methods achieve state-of-the-art results on all three AVS benchmarks. The project homepage can be accessed at https://gewu-lab.github.io/stepping_stones/.
comment: ECCV2024 poster. Project url: https://gewu-lab.github.io/stepping_stones
Graphics 2
♻ ☆ DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
comment: 15 pages, 14 figures
♻ ☆ Jump Restore Light Transport
Markov chain Monte Carlo (MCMC) algorithms come to rescue when sampling from a complex, high-dimensional distribution by a conventional method is intractable. Even though MCMC is a powerful tool, it is also hard to control and tune in practice. Simultaneously achieving both \emph{local exploration} of the state space and \emph{global discovery} of the target distribution is a challenging task. In this work, we present a MCMC formulation that subsumes all existing MCMC samplers employed in rendering. We then present a novel framework for \emph{adjusting} an arbitrary Markov chain, making it exhibit invariance with respect to a specified target distribution. To showcase the potential of the proposed framework, we focus on a first simple application in light transport simulation. As a by-product, we introduce continuous-time MCMC sampling to the computer graphics community. We show how any existing MCMC-based light transport algorithm can be embedded into our framework. We empirically and theoretically prove that this embedding is superior to running the standalone algorithm. In fact, our approach will convert any existing algorithm into a highly parallelizable variant with shorter running time, smaller error and less variance.
Robotics 38
☆ Autonomous loading of ore piles with Load-Haul-Dump machines using Deep Reinforcement Learning
This work presents a deep reinforcement learning-based approach to train controllers for the autonomous loading of ore piles with a Load-Haul-Dump (LHD) machine. These controllers must perform a complete loading maneuver, filling the LHD's bucket with material while avoiding wheel drift, dumping material, or getting stuck in the pile. The training process is conducted entirely in simulation, using a simple environment that leverages the Fundamental Equation of Earth-Moving Mechanics so as to achieve a low computational cost. Two different types of policies are trained: one with a hybrid action space and another with a continuous action space. The RL-based policies are evaluated both in simulation and in the real world using a scaled LHD and a scaled muck pile, and their performance is compared to that of a heuristics-based controller and human teleoperation. Additional real-world experiments are performed to assess the robustness of the RL-based policies to measurement errors in the characterization of the piles. Overall, the RL-based controllers show good performance in the real world, achieving fill factors between 71-94%, and less wheel drift than the other baselines during the loading maneuvers. A video showing the training environment and the learned behavior in simulation, as well as some of the performed experiments in the real world, can be found in https://youtu.be/jOpA1rkwhDY.
comment: 19 pages, 19 figures
☆ Event-based Mosaicing Bundle Adjustment
We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous refinement of camera orientations and scene map) for a purely rotating event camera. We formulate the problem as a regularized non-linear least squares optimization. The objective function is defined using the linearized event generation model in the camera orientations and the panoramic gradient map of the scene. We show that this BA optimization has an exploitable block-diagonal sparsity structure, so that the problem can be solved efficiently. To the best of our knowledge, this is the first work to leverage such sparsity to speed up the optimization in the context of event-based cameras, without the need to convert events into image-like representations. We evaluate our method, called EMBA, on both synthetic and real-world datasets to show its effectiveness (50% photometric error decrease), yielding results of unprecedented quality. In addition, we demonstrate EMBA using high spatial resolution event cameras, yielding delicate panoramas in the wild, even without an initial map. Project page: https://github.com/tub-rip/emba
comment: 14+11 pages, 11 figures, 10 tables, https://github.com/tub-rip/emba
☆ Learning Robotic Manipulation Policies from Point Clouds with Conditional Flow Matching
Learning from expert demonstrations is a promising approach for training robotic manipulation policies from limited data. However, imitation learning algorithms require a number of design choices ranging from the input modality, training objective, and 6-DoF end-effector pose representation. Diffusion-based methods have gained popularity as they enable predicting long-horizon trajectories and handle multimodal action distributions. Recently, Conditional Flow Matching (CFM) (or Rectified Flow) has been proposed as a more flexible generalization of diffusion models. In this paper, we investigate the application of CFM in the context of robotic policy learning and specifically study the interplay with the other design choices required to build an imitation learning algorithm. We show that CFM gives the best performance when combined with point cloud input observations. Additionally, we study the feasibility of a CFM formulation on the SO(3) manifold and evaluate its suitability with a simplified example. We perform extensive experiments on RLBench which demonstrate that our proposed PointFlowMatch approach achieves a state-of-the-art average success rate of 67.8% over eight tasks, double the performance of the next best method.
comment: Presented at CoRL 2024. Project website at http://pointflowmatch.cs.uni-freiburg.de/
☆ Online Decision MetaMorphFormer: A Casual Transformer-Based Reinforcement Learning Framework of Universal Embodied Intelligence
Interactive artificial intelligence in the motion control field is an interesting topic, especially when universal knowledge is adaptive to multiple tasks and universal environments. Despite there being increasing efforts in the field of Reinforcement Learning (RL) with the aid of transformers, most of them might be limited by the offline training pipeline, which prohibits exploration and generalization abilities. To address this limitation, we propose the framework of Online Decision MetaMorphFormer (ODM) which aims to achieve self-awareness, environment recognition, and action planning through a unified model architecture. Motivated by cognitive and behavioral psychology, an ODM agent is able to learn from others, recognize the world, and practice itself based on its own experience. ODM can also be applied to any arbitrary agent with a multi-joint body, located in different environments, and trained with different types of tasks using large-scale pre-trained datasets. Through the use of pre-trained datasets, ODM can quickly warm up and learn the necessary knowledge to perform the desired task, while the target environment continues to reinforce the universal policy. Extensive online experiments as well as few-shot and zero-shot environmental tests are used to verify ODM's performance and generalization ability. The results of our study contribute to the study of general artificial intelligence in embodied and cognitive fields. Code, results, and video examples can be found on the website \url{https://rlodm.github.io/odm/}.
comment: 12 pages, 6 figures
☆ Electrokinetic Propulsion for Electronically Integrated Microscopic Robots
Robots too small to see by eye have rapidly evolved in recent years thanks to the incorporation of on-board microelectronics. Semiconductor circuits have been used in microrobots capable of executing controlled wireless steering, prescribed legged gait patterns, and user-triggered transitions between digital states. Yet these promising new capabilities have come at the steep price of complicated fabrication. Even though circuit components can be reliably built by semiconductor foundries, currently available actuators for electronically integrated microrobots are built with intricate multi-step cleanroom protocols and use mechanisms like articulated legs or bubble generators that are hard to design and control. Here, we present a propulsion system for electronically integrated microrobots that can be built with a single step of lithographic processing, readily integrates with microelectronics thanks to low current/low voltage operation (1V, 10nA), and yields robots that swim at speeds over one body length per second. Inspired by work on micromotors, these robots generate electric fields in a surrounding fluid, and by extension propulsive electrokinetic flows. The underlying physics is captured by a model in which robot speed is proportional to applied current, making design and control straightforward. As proof, we build basic robots that use on-board circuits and a closed-loop optical control scheme to navigate waypoints and move in coordinated swarms. Broadly, solid-state propulsion clears the way for robust, easy to manufacture, electronically controlled microrobots that operate reliably over months to years.
☆ General Methods for Evaluating Collision Probability of Different Types of Theta-phi Positioners
In many modern astronomical facilities, multi-object telescopes are crucial instruments. Most of these telescopes have thousands of robotic fiber positioners(RFPs) installed on their focal plane, sharing an overlapping workspace. Collisions between RFPs during their movement can result in some targets becoming unreachable and cause structural damage. Therefore, it is necessary to reasonably assess and evaluate the collision probability of the RFPs. In this study, we propose a mathematical models of collision probability and validate its results using Monte Carlo simulations. In addition, a new collision calculation method is proposed for faster calculation(nearly 0.15% of original time). Simulation experiments have verified that our method can evaluate the collision probability between RFPs with both equal and unequal arm lengths. Additionally, we found that adopting a target distribution based on a Poisson distribution can reduce the collision probability by approximately 2.6% on average.
comment: 20pages,11figures
☆ Single-View 3D Reconstruction via SO(2)-Equivariant Gaussian Sculpting Networks RSS 2024
This paper introduces SO(2)-Equivariant Gaussian Sculpting Networks (GSNs) as an approach for SO(2)-Equivariant 3D object reconstruction from single-view image observations. GSNs take a single observation as input to generate a Gaussian splat representation describing the observed object's geometry and texture. By using a shared feature extractor before decoding Gaussian colors, covariances, positions, and opacities, GSNs achieve extremely high throughput (>150FPS). Experiments demonstrate that GSNs can be trained efficiently using a multi-view rendering loss and are competitive, in quality, with expensive diffusion-based reconstruction algorithms. The GSN model is validated on multiple benchmark experiments. Moreover, we demonstrate the potential for GSNs to be used within a robotic manipulation pipeline for object-centric grasping.
comment: Accepted to RSS 2024 Workshop on Geometric and Algebraic Structure in Robot Learning
☆ Reusability and Modifiability in Robotics Software (Extended Version)
We show the design of the software of the microcontroller unit of a weeding robot based on the Process Control architectural style and design patterns. The design consists of 133 modules resulting from using 8 design patterns for a total of 30 problems. As a result the design yields more reusable components and an easily modifiable and extensible program. Design documentation is also presented. Finally, the implementation (12 KLOC of C++ code) is empirically evaluated to prove that the design does not produce an inefficient implementation.
☆ Behavioral Cloning Models Reality Check for Autonomous Driving
How effective are recent advancements in autonomous vehicle perception systems when applied to real-world autonomous vehicle control? While numerous vision-based autonomous vehicle systems have been trained and evaluated in simulated environments, there is a notable lack of real-world validation for these systems. This paper addresses this gap by presenting the real-world validation of state-of-the-art perception systems that utilize Behavior Cloning (BC) for lateral control, processing raw image data to predict steering commands. The dataset was collected using a scaled research vehicle and tested on various track setups. Experimental results demonstrate that these methods predict steering angles with low error margins in real-time, indicating promising potential for real-world applications.
☆ Perceptive Pedipulation with Local Obstacle Avoidance
Pedipulation leverages the feet of legged robots for mobile manipulation, eliminating the need for dedicated robotic arms. While previous works have showcased blind and task-specific pedipulation skills, they fail to account for static and dynamic obstacles in the environment. To address this limitation, we introduce a reinforcement learning-based approach to train a whole-body obstacle-aware policy that tracks foot position commands while simultaneously avoiding obstacles. Despite training the policy in only five different static scenarios in simulation, we show that it generalizes to unknown environments with different numbers and types of obstacles. We analyze the performance of our method through a set of simulation experiments and successfully deploy the learned policy on the ANYmal quadruped, demonstrating its capability to follow foot commands while navigating around static and dynamic obstacles.
comment: Accepted to IEEE International Conference on Humanoid Robots 2024
☆ Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models
Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Our project page is in https://andycao1125.github.io/mamba_policy/.
comment: 7 pages, 5 figures
☆ Distance Measurement for UAVs in Deep Hazardous Tunnels
The localization of Unmanned aerial vehicles (UAVs) in deep tunnels is extremely challenging due to their inaccessibility and hazardous environment. Conventional outdoor localization techniques (such as using GPS) and indoor localization techniques (such as those based on WiFi, Infrared (IR), Ultra-Wideband, etc.) do not work in deep tunnels. We are developing a UAV-based system for the inspection of defects in the Deep Tunnel Sewerage System (DTSS) in Singapore. To enable the UAV localization in the DTSS, we have developed a distance measurement module based on the optical flow technique. However, the standard optical flow technique does not work well in tunnels with poor lighting and a lack of features. Thus, we have developed an enhanced optical flow algorithm with prediction, to improve the distance measurement for UAVs in deep hazardous tunnels.
☆ Collaborative Conversation in Safe Multimodal Human-Robot Collaboration
In the context of Human-Robot Collaboration (HRC), it is crucial that the two actors are able to communicate with each other in a natural and efficient manner. The absence of a communication interface is often a cause of undesired slowdowns. On one hand, this is because unforeseen events may occur, leading to errors. On the other hand, due to the close contact between humans and robots, the speed must be reduced significantly to comply with safety standard ISO/TS 15066. In this paper, we propose a novel architecture that enables operators and robots to communicate efficiently, emulating human-to-human dialogue, while addressing safety concerns. This approach aims to establish a communication framework that not only facilitates collaboration but also reduces undesired speed reduction. Through the use of a predictive simulator, we can anticipate safety-related limitations, ensuring smoother workflows, minimizing risks, and optimizing efficiency. The overall architecture has been validated with a UR10e and compared with a state of the art technique. The results show a significant improvement in user experience, with a corresponding 23% reduction in execution times and a 50% decrease in robot downtime.
☆ Compliant Blind Handover Control for Human-Robot Collaboration
This paper presents a Human-Robot Blind Handover architecture within the context of Human-Robot Collaboration (HRC). The focus lies on a blind handover scenario where the operator is intentionally faced away, focused in a task, and requires an object from the robot. In this context, it is imperative for the robot to autonomously manage the entire handover process. Key considerations include ensuring safety while handing the object to the operator's hand, and detect the proper timing to release the object. The article explores strategies to navigate these challenges, emphasizing the need for a robot to operate safely and independently in facilitating blind handovers, thereby contributing to the advancement of HRC protocols and fostering a natural and efficient collaboration between humans and robots.
☆ The Critical Role of Effective Communication in Human-Robot Collaborative Assembly
In the rapidly evolving landscape of Human-Robot Collaboration (HRC), effective communication between humans and robots is crucial for complex task execution. Traditional request-response systems often lack naturalness and may hinder efficiency. This study emphasizes the importance of adopting human-like communication interactions to enable fluent vocal communication between human operators and robots simulating a collaborative human-robot industrial assembly. We propose a novel approach that employs human-like interactions through natural dialogue, enabling human operators to engage in vocal conversations with robots. Through a comparative experiment, we demonstrate the efficacy of our approach in enhancing task performance and collaboration efficiency. The robot's ability to engage in meaningful vocal conversations enables it to seek clarification, provide status updates, and ask for assistance when required, leading to improved coordination and a smoother workflow. The results indicate that the adoption of human-like conversational interactions positively influences the human-robot collaborative dynamic. Human operators find it easier to convey complex instructions and preferences, resulting in a more productive and satisfying collaboration experience.
☆ iKalibr-RGBD: Partially-Specialized Target-Free Visual-Inertial Spatiotemporal Calibration For RGBDs via Continuous-Time Velocity Estimation
Visual-inertial systems have been widely studied and applied in the last two decades, mainly due to their low cost and power consumption, small footprint, and high availability. Such a trend simultaneously leads to a large amount of visual-inertial calibration methods being presented, as accurate spatiotemporal parameters between sensors are a prerequisite for visual-inertial fusion. In our previous work, i.e., iKalibr, a continuous-time-based visual-inertial calibration method was proposed as a part of one-shot multi-sensor resilient spatiotemporal calibration. While requiring no artificial target brings considerable convenience, computationally expensive pose estimation is demanded in initialization and batch optimization, limiting its availability. Fortunately, this could be vastly improved for the RGBDs with additional depth information, by employing mapping-free ego-velocity estimation instead of mapping-based pose estimation. In this paper, we present the continuous-time ego-velocity estimation-based RGBD-inertial spatiotemporal calibration, termed as iKalibr-RGBD, which is also targetless but computationally efficient. The general pipeline of iKalibr-RGBD is inherited from iKalibr, composed of a rigorous initialization procedure and several continuous-time batch optimizations. The implementation of iKalibr-RGBD is open-sourced at (https://github.com/Unsigned-Long/iKalibr) to benefit the research community.
☆ End-to-End and Highly-Efficient Differentiable Simulation for Robotics
Over the past few years, robotics simulators have largely improved in efficiency and scalability, enabling them to generate years of simulated data in a few hours. Yet, efficiently and accurately computing the simulation derivatives remains an open challenge, with potentially high gains on the convergence speed of reinforcement learning and trajectory optimization algorithms, especially for problems involving physical contact interactions. This paper contributes to this objective by introducing a unified and efficient algorithmic solution for computing the analytical derivatives of robotic simulators. The approach considers both the collision and frictional stages, accounting for their intrinsic nonsmoothness and also exploiting the sparsity induced by the underlying multibody systems. These derivatives have been implemented in C++, and the code will be open-sourced in the Simple simulator. They depict state-of-the-art timings ranging from 5 microseconds for a 7-dof manipulator up to 95 microseconds for 36-dof humanoid, outperforming alternative solutions by a factor of at least 100.
☆ Learning Task Specifications from Demonstrations as Probabilistic Automata
Specifying tasks for robotic systems traditionally requires coding expertise, deep domain knowledge, and significant time investment. While learning from demonstration offers a promising alternative, existing methods often struggle with tasks of longer horizons. To address this limitation, we introduce a computationally efficient approach for learning probabilistic deterministic finite automata (PDFA) that capture task structures and expert preferences directly from demonstrations. Our approach infers sub-goals and their temporal dependencies, producing an interpretable task specification that domain experts can easily understand and adjust. We validate our method through experiments involving object manipulation tasks, showcasing how our method enables a robot arm to effectively replicate diverse expert strategies while adapting to changing conditions.
☆ Scenario Execution for Robotics: A generic, backend-agnostic library for running reproducible robotics experiments and tests
Testing and evaluation of robotics systems is a difficult and oftentimes tedious task due to the systems' complexity and a lack of tools to conduct reproducible robotics experiments. Additionally, almost all available tools are either tailored towards a specific application domain, simulator or middleware. Particularly scenario-based testing, a common practice in the domain of automated driving, is not sufficiently covered in the robotics domain. In this paper, we propose a novel backend- and middleware-agnostic approach for conducting systematic, reproducible and automatable robotics experiments called Scenario Execution for Robotics. Our approach is implemented as a Python library built on top of the generic scenario description language OpenSCENARIO 2 and Behavior Trees and is made publicly available on GitHub. In extensive experiments, we demonstrate that our approach supports multiple simulators as backend and can be used as a standalone Python-library or as part of the ROS2 ecosystem. Furthermore, we demonstrate how our approach enables testing over ranges of varying values. Finally, we show how Scenario Execution for Robotics allows to move from simulation-based to real-world experiments with minimal adaptations to the scenario description file.
comment: 6 pages
☆ Invariant filtering for wheeled vehicle localization with unknown wheel radius and unknown GNSS lever arm
We consider the problem of observer design for a nonholonomic car (more generally a wheeled robot) equipped with wheel speeds with unknown wheel radius, and whose position is measured via a GNSS antenna placed at an unknown position in the car. In a tutorial and unified exposition, we recall the recent theory of two-frame systems within the field of invariant Kalman filtering. We then show how to adapt it geometrically to address the considered problem, although it seems at first sight out of its scope. This yields an invariant extended Kalman filter having autonomous error equations, and state-independent Jacobians, which is shown to work remarkably well in simulations. The proposed novel construction thus extends the application scope of invariant filtering.
☆ Enabling Shared-Control for A Riding Ballbot System ICRA
This study introduces a shared-control approach for collision avoidance in a self-balancing riding ballbot, called PURE, marked by its dynamic stability, omnidirectional movement, and hands-free interface. Integrated with a sensor array and a novel Passive Artificial Potential Field (PAPF) method, PURE provides intuitive navigation with deceleration assistance and haptic/audio feedback, effectively mitigating collision risks. This approach addresses the limitations of traditional APF methods, such as control oscillations and unnecessary speed reduction in challenging scenarios. A human-robot interaction experiment, with 20 manual wheelchair users and able-bodied individuals, was conducted to evaluate the performance of indoor navigation and obstacle avoidance with the proposed shared-control algorithm. Results indicated that shared-control significantly reduced collisions and cognitive load without affecting travel speed, offering intuitive and safe operation. These findings highlight the shared-control system's suitability for enhancing collision avoidance in self-balancing mobility devices, a relatively unexplored area in assistive mobility research.
comment: 7 pages and 7 figures, IEEE ICRA format
☆ Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion
Animals achieve robust locomotion by offloading regulation from the brain to physical couplings within the body. Contrarily, locomotion in artificial systems often depends on centralized processors. Here, we introduce a rapid and autonomous locomotion strategy with synchronized gaits emerging through physical interactions between self-oscillating limbs and the environment, without control signals. Each limb is a single soft tube that only requires constant flow of air to perform cyclic stepping motions at frequencies reaching 300 hertz. By combining several of these self-oscillating limbs, their physical synchronization enables tethered and untethered locomotion speeds that are orders of magnitude faster than comparable state-of-the-art. We demonstrate that these seemingly simple devices exhibit autonomy, including obstacle avoidance and phototaxis, opening up avenues for robust and functional robots at all scales.
☆ ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics
Oysters are a keystone species in coastal ecosystems, offering significant economic, environmental, and cultural benefits. However, current monitoring systems are often destructive, typically involving dredging to physically collect and count oysters. A nondestructive alternative is manual identification from video footage collected by divers, which is time-consuming and labor-intensive with expert input. An alternative to human monitoring is the deployment of a system with trained object detection models that performs real-time, on edge oyster detection in the field. One such platform is the Aqua2 robot. Effective training of these models requires extensive high-quality data, which is difficult to obtain in marine settings. To address these complications, we introduce a novel method that leverages stable diffusion to generate high-quality synthetic data for the marine domain. We exploit diffusion models to create photorealistic marine imagery, using ControlNet inputs to ensure consistency with the segmentation ground-truth mask, the geometry of the scene, and the target domain of real underwater images for oysters. The resulting dataset is used to train a YOLOv10-based vision model, achieving a state-of-the-art 0.657 mAP@50 for oyster detection on the Aqua2 platform. The system we introduce not only improves oyster habitat monitoring, but also paves the way to autonomous surveillance for various tasks in marine contexts, improving aquaculture and conservation efforts.
Control Pneumatic Soft Bending Actuator with Feedforward Hysteresis Compensation by Pneumatic Physical Reservoir Computing
The nonlinearities of soft robots bring control challenges like hysteresis but also provide them with computational capacities. This paper introduces a fuzzy pneumatic physical reservoir computing (FPRC) model for feedforward hysteresis compensation in motion tracking control of soft actuators. Our method utilizes a pneumatic bending actuator as a physical reservoir with nonlinear computing capacities to control another pneumatic bending actuator. The FPRC model employs a Takagi-Sugeno (T-S) fuzzy model to process outputs from the physical reservoir. In comparative evaluations, the FPRC model shows equivalent training performance to an Echo State Network (ESN) model, whereas it exhibits better test accuracies with significantly reduced execution time. Experiments validate the proposed FPRC model's effectiveness in controlling the bending motion of the pneumatic soft actuator with open and closed-loop control systems. The proposed FPRC model's robustness against environmental disturbances has also been experimentally verified. To the authors' knowledge, this is the first implementation of a physical system in the feedforward hysteresis compensation model for controlling soft actuators. This study is expected to advance physical reservoir computing in nonlinear control applications and extend the feedforward hysteresis compensation methods for controlling soft actuators.
comment: 8 pages, 17 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Pyramid-Monozone Synergistic Grasping Policy in Dense Clutter
Grasping a diverse range of novel objects from dense clutter poses a great challenge to robots because of the occlusion among these objects. In this work, we propose the Pyramid-Monozone Synergistic Grasping Policy (PMSGP) that enables robots to cleverly avoid most occlusions during grasping. Specifically, we initially construct the Pyramid Se quencing Policy (PSP) to sequence each object in the scene into a pyramid structure. By isolating objects layer-by-layer, the grasp candidates will focus on a single layer during each grasp. Then, we devise the Monozone Sampling Policy (MSP) to sample the grasp candidates in the top layer. Through this manner, each grasp will target the topmost object, thereby effectively avoiding most occlusions. We perform more than 7000 real world grasping among 300 novel objects in dense clutter scenes, demonstrating that PMSGP significantly outperforms seven competitive grasping methods. All grasping videos are available at: https://www.youtube.com/@chenghaoli4532/playlists.
☆ Flow-Inspired Lightweight Multi-Robot Real-Time Scheduling Planner
Collision avoidance and trajectory planning are crucial in multi-robot systems, particularly in environments with numerous obstacles. Although extensive research has been conducted in this field, the challenge of rapid traversal through such environments has not been fully addressed. This paper addresses this problem by proposing a novel real-time scheduling scheme designed to optimize the passage of multi-robot systems through complex, obstacle-rich maps. Inspired from network flow optimization, our scheme decomposes the environment into a network structure, enabling the efficient allocation of robots to paths based on real-time congestion data. The proposed scheduling planner operates on top of existing collision avoidance algorithms, focusing on minimizing traversal time by balancing robot detours and waiting times. Our simulation results demonstrate the efficiency of the proposed scheme. Additionally, we validated its effectiveness through real world flight tests using ten quadrotors. This work contributes a lightweight, effective scheduling planner capable of meeting the real-time demands of multi-robot systems in obstacle-rich environments.
☆ Equivariant Filter for Tightly Coupled LiDAR-Inertial Odometry
Pose estimation is a crucial problem in simultaneous localization and mapping (SLAM). However, developing a robust and consistent state estimator remains a significant challenge, as the traditional extended Kalman filter (EKF) struggles to handle the model nonlinearity, especially for inertial measurement unit (IMU) and light detection and ranging (LiDAR). To provide a consistent and efficient solution of pose estimation, we propose Eq-LIO, a robust state estimator for tightly coupled LIO systems based on an equivariant filter (EqF). Compared with the invariant Kalman filter based on the $\SE_2(3)$ group structure, the EqF uses the symmetry of the semi-direct product group to couple the system state including IMU bias, navigation state and LiDAR extrinsic calibration state, thereby suppressing linearization error and improving the behavior of the estimator in the event of unexpected state changes. The proposed Eq-LIO owns natural consistency and higher robustness, which is theoretically proven with mathematical derivation and experimentally verified through a series of tests on both public and private datasets.
♻ ☆ PO-VINS: An Efficient and Robust Pose-Only Visual-Inertial State Estimator With LiDAR Enhancement
The pose adjustment (PA) with a pose-only visual representation has been proven equivalent to the bundle adjustment (BA), while significantly improving the computational efficiency. However, the pose-only solution has not yet been properly considered in a tightly-coupled visual-inertial state estimator (VISE) with a normal configuration for real-time navigation. In this study, we propose a tightly-coupled LiDAR-enhanced VISE, named PO-VINS, with a full pose-only form for visual and LiDAR-depth measurements. Based on the pose-only visual representation, we derive the analytical depth uncertainty, which is then employed for rejecting LiDAR depth outliers. Besides, we propose a multi-state constraint (MSC)-based LiDAR-depth measurement model with a pose-only form, to balance efficiency and robustness. The pose-only visual and LiDAR-depth measurements and the IMU-preintegration measurements are tightly integrated under the factor graph optimization framework to perform efficient and accurate state estimation. Exhaustive experimental results on private and public datasets indicate that the proposed PO-VINS yields improved or comparable accuracy to sate-of-the-art methods. Compared to the baseline method LE-VINS, the state-estimation efficiency of PO-VINS is improved by 33% and 56% on the laptop PC and the onboard ARM computer, respectively. Besides, PO-VINS yields higher accuracy and robustness than LE-VINS by employing the proposed uncertainty-based outlier-culling method and the MSC-based measurement model for LiDAR depth.
comment: 17 pages, 13 figures, 8 tables
♻ ☆ Surgical Task Automation Using Actor-Critic Frameworks and Self-Supervised Imitation Learning
Surgical robot task automation has recently attracted great attention due to its potential to benefit both surgeons and patients. Reinforcement learning (RL) based approaches have demonstrated promising ability to provide solutions to automated surgical manipulations on various tasks. To address the exploration challenge, expert demonstrations can be utilized to enhance the learning efficiency via imitation learning (IL) approaches. However, the successes of such methods normally rely on both states and action labels. Unfortunately action labels can be hard to capture or their manual annotation is prohibitively expensive owing to the requirement for expert knowledge. It therefore remains an appealing and open problem to leverage expert demonstrations composed of pure states in RL. In this work, we present an actor-critic RL framework, termed AC-SSIL, to overcome this challenge of learning with state-only demonstrations collected by following an unknown expert policy. It adopts a self-supervised IL method, dubbed SSIL, to effectively incorporate demonstrated states into RL paradigms by retrieving from demonstrates the nearest neighbours of the query state and utilizing the bootstrapping of actor networks. We showcase through experiments on an open-source surgical simulation platform that our method delivers remarkable improvements over the RL baseline and exhibits comparable performance against action based IL methods, which implies the efficacy and potential of our method for expert demonstration-guided learning scenarios.
comment: 8 pages,7 figures, 62 conferences
♻ ☆ Automatic Derivation of an Optimal Task Frame for Learning and Controlling Contact-Rich Tasks
In previous work on learning and controlling contact-rich tasks, the procedure for choosing a proper reference frame to express learned signals for the motion and the interaction wrench is often implicit, requires expert insight, or starts from proposed frame candidates. This article presents an automatic method to derive the optimal reference frame, referred to as optimal task frame, directly from the recorded motion and wrench data of the demonstration. Using screw theory, several origin and orientation candidates are generated that maximize decoupling in the data. These candidates are then processed probabilistically, without needing hyperparameters, to obtain the optimal task frame. Its origin and orientation are independently fixed to either the world or the robot tool. The method works regardless of whether the task involves translation, rotation, force, or moment, or any combination thereof. The method was validated for various tasks, including surface following and manipulation of articulated objects, showing good agreement between derived and assumed expert task frames. To validate the robot's performance, a constraint-based controller was designed based on the data expressed in the derived task frames. These experiments demonstrated the approach's effectiveness and versatility. The automatic task frame derivation approach supports learning methods to design controllers for a wide range of contact-rich tasks.
♻ ☆ QueST: Self-Supervised Skill Abstractions for Learning Continuous Control
Generalization capabilities, or rather a lack thereof, is one of the most important unsolved problems in the field of robot learning, and while several large scale efforts have set out to tackle this problem, unsolved it remains. In this paper, we hypothesize that learning temporal action abstractions using latent variable models (LVMs), which learn to map data to a compressed latent space and back, is a promising direction towards low-level skills that can readily be used for new tasks. Although several works have attempted to show this, they have generally been limited by architectures that do not faithfully capture shareable representations. To address this we present Quantized Skill Transformer (QueST), which learns a larger and more flexible latent encoding that is more capable of modeling the breadth of low-level skills necessary for a variety of tasks. To make use of this extra flexibility, QueST imparts causal inductive bias from the action sequence data into the latent space, leading to more semantically useful and transferable representations. We compare to state-of-the-art imitation learning and LVM baselines and see that QueST's architecture leads to strong performance on several multitask and few-shot learning benchmarks. Further results and videos are available at https://quest-model.github.io/
comment: Keywords: Behavior Clonning, Action Quantization, Self Supervised Skill Abstraction, Few-shot Imitation Learning
♻ ☆ The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review
Automated driving has the potential to revolutionize personal, public, and freight mobility. Beside accurately perceiving the environment, automated vehicles must plan a safe, comfortable, and efficient motion trajectory. To promote safety and progress, many works rely on modules that predict the future motion of surrounding traffic. Modular automated driving systems commonly handle prediction and planning as sequential, separate tasks. While this accounts for the influence of surrounding traffic on the ego vehicle, it fails to anticipate the reactions of traffic participants to the ego vehicle's behavior. Recent methods increasingly integrate prediction and planning in a joint or interdependent step to model bidirectional interactions. To date, a comprehensive overview of different integration principles is lacking. We systematically review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction. Different facets of the integration ranging from system architecture to high-level behavioral aspects are considered and related to each other. Moreover, we discuss the implications, strengths, and limitations of different integration principles. By pointing out research gaps, describing relevant future challenges, and highlighting trends in the research field, we identify promising directions for future research.
♻ ☆ AdaFold: Adapting Folding Trajectories of Cloths via Feedback-loop Manipulation
We present AdaFold, a model-based feedback-loop framework for optimizing folding trajectories. AdaFold extracts a particle-based representation of cloth from RGB-D images and feeds back the representation to a model predictive control to replan folding trajectory at every time step. A key component of AdaFold that enables feedback-loop manipulation is the use of semantic descriptors extracted from geometric features. These descriptors enhance the particle representation of the cloth to distinguish between ambiguous point clouds of differently folded cloths. Our experiments demonstrate AdaFold's ability to adapt folding trajectories of cloths with varying physical properties and generalize from simulated training to real-world execution.
comment: 8 pages, 6 figures, 5 tables
♻ ☆ Gesture-Controlled Aerial Robot Formation for Human-Swarm Interaction in Safety Monitoring Applications
This paper presents a formation control approach for contactless gesture-based Human-Swarm Interaction (HSI) between a team of multi-rotor Unmanned Aerial Vehicles (UAVs) and a human worker. The approach is designed to monitor the safety of human workers, particularly those operating at heights. In the proposed dynamic formation scheme, one UAV acts as the formation leader, equipped with sensors for detecting human workers and recognizing gestures. The follower UAVs maintain a predetermined formation relative to the worker's position, providing additional perspectives of the monitored scene. Hand gestures enable the human worker to specify movement and action commands for the UAV team and to initiate other mission-related tasks without requiring additional communication channels or specific markers. Combined with a novel unified human detection and tracking algorithm, a human position estimation method, and a gesture detection pipeline, the proposed approach represents the first instance of an HSI system incorporating all these modules onboard real-world UAVs. Simulations and field experiments involving three UAVs and a human worker in a mock-up scenario demonstrate the effectiveness and responsiveness of the proposed approach.
comment: 8 pages, 8 figures
♻ ☆ DIABLO: A 6-DoF Wheeled Bipedal Robot Composed Entirely of Direct-Drive Joints IROS 2024
Wheeled bipedal robots offer the advantages of both wheeled and legged robots, combining the ability to traverse a wide range of terrains and environments with high efficiency. However, the conventional approach in existing wheeled bipedal robots involves motor-driven joints with high-ratio gearboxes. While this approach provides specific benefits, it also presents several challenges, including increased mechanical complexity, efficiency losses, noise, vibrations, and higher maintenance and lubrication requirements. Addressing the aforementioned concerns, we developed a direct-drive wheeled bipedal robot called DIABLO, which eliminates the use of gearboxes entirely. Our robotic system is simplified as a second-order inverted pendulum, and we have designed an LQR-based balance controller to ensure stability. Additionally, we implemented comprehensive motion controller, including yaw, split-angle, height, and roll controllers. Through expriments in simulations and real-world prototype, we have demonstrated that our platform achieves satisfactory performance.
comment: This paper has already been accepted by IROS 2024
♻ ☆ A New Framework for Nonlinear Kalman Filters
The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF, which, according to what we found in this paper, tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework for nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance matrix more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce the estimation errors by several orders of magnitude in low-measurement-noise conditions, with only about a 10 to 90% increase in computational time. All types of nonlinear KFs can benefit from the new framework, and the benefit will increase as the sensors become more and more accurate in the future. As an example, EKF, the simplest nonlinear KF that was previously believed to work poorly for strongly nonlinear systems, can now provide fast and fairly accurate state estimations with the help of the new framework. The codes are available at https://github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters.
comment: Some figures and texts are slightly modified for better clarity
♻ ☆ Skip-SCAR: A Modular Approach to ObjectGoal Navigation with Sparsity and Adaptive Skips
In ObjectGoal navigation (ObjectNav), agents must locate specific objects within unseen environments, requiring effective observation, prediction, and navigation capabilities. This study found that traditional methods looking only for prediction accuracy often compromise on computational efficiency. To address this, we introduce "Skip-SCAR," a modular framework that enhances efficiency by leveraging sparsity and adaptive skips. The SparseConv-Augmented ResNet (SCAR) at the core of our approach uses sparse and dense feature processing in parallel, optimizing both the computation and memory footprint. Our adaptive skip technique further reduces computational demands by selectively bypassing unnecessary semantic segmentation steps based on environmental constancy. Tested on the HM3D ObjectNav datasets, Skip-SCAR not only minimizes resource use but also sets new performance benchmarks, demonstrating a robust method for improving efficiency and accuracy in robotic navigation tasks.
comment: 13 pages, 6 figures
♻ ☆ Continual Skill and Task Learning via Dialogue
Continual and interactive robot learning is a challenging problem as the robot is present with human users who expect the robot to learn novel skills to solve novel tasks perpetually with sample efficiency. In this work we present a framework for robots to query and learn visuo-motor robot skills and task relevant information via natural language dialog interactions with human users. Previous approaches either focus on improving the performance of instruction following agents, or passively learn novel skills or concepts. Instead, we used dialog combined with a language-skill grounding embedding to query or confirm skills and/or tasks requested by a user. To achieve this goal, we developed and integrated three different components for our agent. Firstly, we propose a novel visual-motor control policy ACT with Low Rank Adaptation (ACT-LoRA), which enables the existing SoTA ACT model to perform few-shot continual learning. Secondly, we develop an alignment model that projects demonstrations across skill embodiments into a shared embedding allowing us to know when to ask questions and/or demonstrations from users. Finally, we integrated an existing LLM to interact with a human user to perform grounded interactive continual skill learning to solve a task. Our ACT-LoRA model learns novel fine-tuned skills with a 100% accuracy when trained with only five demonstrations for a novel skill while still maintaining a 74.75% accuracy on pre-trained skills in the RLBench dataset where other models fall significantly short. We also performed a human-subjects study with 8 subjects to demonstrate the continual learning capabilities of our combined framework. We achieve a success rate of 75% in the task of sandwich making with the real robot learning from participant data demonstrating that robots can learn novel skills or task knowledge from dialogue with non-expert users using our approach.
Computer Vision 130
☆ Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs BMVC 2024
3D Gaussian Splatting (GS) significantly struggles to accurately represent the underlying 3D scene geometry, resulting in inaccuracies and floating artifacts when rendering depth maps. In this paper, we address this limitation, undertaking a comprehensive analysis of the integration of depth priors throughout the optimization process of Gaussian primitives, and present a novel strategy for this purpose. This latter dynamically exploits depth cues from a readily available stereo network, processing virtual stereo pairs rendered by the GS model itself during training and achieving consistent self-improvement of the scene representation. Experimental results on three popular datasets, breaking ground as the first to assess depth accuracy for these models, validate our findings.
comment: BMVC 2024. Project page: https://kuis-ai.github.io/StereoGS/
☆ DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation ECCV 2024
Learning radiance fields (NeRF) with powerful 2D diffusion models has garnered popularity for text-to-3D generation. Nevertheless, the implicit 3D representations of NeRF lack explicit modeling of meshes and textures over surfaces, and such surface-undefined way may suffer from the issues, e.g., noisy surfaces with ambiguous texture details or cross-view inconsistency. To alleviate this, we present DreamMesh, a novel text-to-3D architecture that pivots on well-defined surfaces (triangle meshes) to generate high-fidelity explicit 3D model. Technically, DreamMesh capitalizes on a distinctive coarse-to-fine scheme. In the coarse stage, the mesh is first deformed by text-guided Jacobians and then DreamMesh textures the mesh with an interlaced use of 2D diffusion models in a tuning free manner from multiple viewpoints. In the fine stage, DreamMesh jointly manipulates the mesh and refines the texture map, leading to high-quality triangle meshes with high-fidelity textured materials. Extensive experiments demonstrate that DreamMesh significantly outperforms state-of-the-art text-to-3D methods in faithfully generating 3D content with richer textual details and enhanced geometry. Our project page is available at https://dreammesh.github.io.
comment: ECCV 2024. Project page is available at \url{https://dreammesh.github.io}
☆ Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
Despite having tremendous progress in image-to-3D generation, existing methods still struggle to produce multi-view consistent images with high-resolution textures in detail, especially in the paradigm of 2D diffusion that lacks 3D awareness. In this work, we present High-resolution Image-to-3D model (Hi3D), a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation (i.e., orbital video generation). This methodology delves into the underlying temporal consistency knowledge in video diffusion model that generalizes well to geometry consistency across multiple views in 3D generation. Technically, Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior (camera pose condition), yielding multi-view images with low-resolution texture details. A 3D-aware video-to-video refiner is learnt to further scale up the multi-view images with high-resolution texture details. Such high-resolution multi-view images are further augmented with novel views through 3D Gaussian Splatting, which are finally leveraged to obtain high-fidelity meshes via 3D reconstruction. Extensive experiments on both novel view synthesis and single view reconstruction demonstrate that our Hi3D manages to produce superior multi-view consistency images with highly-detailed textures. Source code and data are available at \url{https://github.com/yanghb22-fdu/Hi3D-Official}.
comment: ACM Multimedia 2024. Source code is available at \url{https://github.com/yanghb22-fdu/Hi3D-Official}
☆ FreeEnhance: Tuning-Free Image Enhancement via Content-Consistent Noising-and-Denoising Process
The emergence of text-to-image generation models has led to the recognition that image enhancement, performed as post-processing, would significantly improve the visual quality of the generated images. Exploring diffusion models to enhance the generated images nevertheless is not trivial and necessitates to delicately enrich plentiful details while preserving the visual appearance of key content in the original image. In this paper, we propose a novel framework, namely FreeEnhance, for content-consistent image enhancement using the off-the-shelf image diffusion models. Technically, FreeEnhance is a two-stage process that firstly adds random noise to the input image and then capitalizes on a pre-trained image diffusion model (i.e., Latent Diffusion Models) to denoise and enhance the image details. In the noising stage, FreeEnhance is devised to add lighter noise to the region with higher frequency to preserve the high-frequent patterns (e.g., edge, corner) in the original image. In the denoising stage, we present three target properties as constraints to regularize the predicted noise, enhancing images with high acutance and high visual quality. Extensive experiments conducted on the HPDv2 dataset demonstrate that our FreeEnhance outperforms the state-of-the-art image enhancement models in terms of quantitative metrics and human preference. More remarkably, FreeEnhance also shows higher human preference compared to the commercial image enhancement solution of Magnific AI.
comment: ACM Multimedia 2024
☆ VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos
We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html
comment: Project Page: https://genjib.github.io/project_page/VMAs/index.html
☆ StereoCrafter: Diffusion-based Generation of Long and High-fidelity Stereoscopic 3D from Monocular Videos
This paper presents a novel framework for converting 2D videos to immersive stereoscopic 3D, addressing the growing demand for 3D content in immersive experience. Leveraging foundation models as priors, our approach overcomes the limitations of traditional methods and boosts the performance to ensure the high-fidelity generation required by the display devices. The proposed system consists of two main steps: depth-based video splatting for warping and extracting occlusion mask, and stereo video inpainting. We utilize pre-trained stable video diffusion as the backbone and introduce a fine-tuning protocol for the stereo video inpainting task. To handle input video with varying lengths and resolutions, we explore auto-regressive strategies and tiled processing. Finally, a sophisticated data processing pipeline has been developed to reconstruct a large-scale and high-quality dataset to support our training. Our framework demonstrates significant improvements in 2D-to-3D video conversion, offering a practical solution for creating immersive content for 3D devices like Apple Vision Pro and 3D displays. In summary, this work contributes to the field by presenting an effective method for generating high-quality stereoscopic videos from monocular input, potentially transforming how we experience digital media.
comment: 11 pages, 10 figures
☆ Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning
In our ever-evolving world, new data exhibits a long-tailed distribution, such as e-commerce platform reviews. This necessitates continuous model learning imbalanced data without forgetting, addressing the challenge of long-tailed class-incremental learning (LTCIL). Existing methods often rely on retraining linear classifiers with former data, which is impractical in real-world settings. In this paper, we harness the potent representation capabilities of pre-trained models and introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL. To counteract forgetting, we train inserted adapters with frozen pre-trained weights for deeper adaptation and maintain a pool of adapters for selection during sequential model updates. Additionally, we present an auxiliary adapter pool designed for effective generalization, especially on minority classes. Adaptive instance routing across these pools captures crucial correlations, facilitating a comprehensive representation of all classes. Consequently, APART tackles the imbalance problem as well as catastrophic forgetting in a unified framework. Extensive benchmark experiments validate the effectiveness of APART. Code is available at: https://github.com/vita-qzh/APART
comment: Accepted to Machine Learning Journal. Code is available at: https://github.com/vita-qzh/APART
☆ Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability
To promote inclusion and ensuring effective communication for those who rely on sign language as their main form of communication, sign language recognition (SLR) is crucial. Sign language recognition (SLR) seamlessly incorporates with diverse technology, enhancing accessibility for the deaf community by facilitating their use of digital platforms, video calls, and communication devices. To effectively solve this problem, we suggest a novel solution that uses a deep neural network to fully automate sign language recognition. This methodology integrates sophisticated preprocessing methodologies to optimise the overall performance. The architectures resnet, inception, xception, and vgg are utilised to selectively categorise images of sign language. We prepared a DNN architecture and merged it with the pre-processing architectures. In the post-processing phase, we utilised the SHAP deep explainer, which is based on cooperative game theory, to quantify the influence of specific features on the output of a machine learning model. Bhutanese-Sign-Language (BSL) dataset was used for training and testing the suggested technique. While training on Bhutanese-Sign-Language (BSL) dataset, overall ResNet50 with the DNN model performed better accuracy which is 98.90%. Our model's ability to provide informational clarity was assessed using the SHAP (SHapley Additive exPlanations) method. In part to its considerable robustness and reliability, the proposed methodological approach can be used to develop a fully automated system for sign language recognition.
Controllable retinal image synthesis using conditional StyleGAN and latent space manipulation for improved diagnosis and grading of diabetic retinopathy
Diabetic retinopathy (DR) is a consequence of diabetes mellitus characterized by vascular damage within the retinal tissue. Timely detection is paramount to mitigate the risk of vision loss. However, training robust grading models is hindered by a shortage of annotated data, particularly for severe cases. This paper proposes a framework for controllably generating high-fidelity and diverse DR fundus images, thereby improving classifier performance in DR grading and detection. We achieve comprehensive control over DR severity and visual features (optic disc, vessel structure, lesion areas) within generated images solely through a conditional StyleGAN, eliminating the need for feature masks or auxiliary networks. Specifically, leveraging the SeFa algorithm to identify meaningful semantics within the latent space, we manipulate the DR images generated conditionally on grades, further enhancing the dataset diversity. Additionally, we propose a novel, effective SeFa-based data augmentation strategy, helping the classifier focus on discriminative regions while ignoring redundant features. Using this approach, a ResNet50 model trained for DR detection achieves 98.09% accuracy, 99.44% specificity, 99.45% precision, and an F1-score of 98.09%. Moreover, incorporating synthetic images generated by conditional StyleGAN into ResNet50 training for DR grading yields 83.33% accuracy, a quadratic kappa score of 87.64%, 95.67% specificity, and 72.24% precision. Extensive experiments conducted on the APTOS 2019 dataset demonstrate the exceptional realism of the generated images and the superior performance of our classifier compared to recent studies.
comment: 30 pages, 17 figures
☆ Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging
Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs) through the complex inverse task of reconstructing these images from coded two-dimensional measurements. Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details and often rely on constrained datasets like KAIST and CAVE, resulting in models with poor generalizability. In response to these challenges, this paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging (SCI). Our approach leverages a pretrained SCI reconstruction network to generate initial predictions from two-dimensional measurements. Subsequently, a one-step diffusion model produces high-frequency residuals to enhance these initial predictions. Additionally, acknowledging the high costs associated with collecting MSIs, we develop a self-supervised paradigm based on the Equivariant Imaging (EI) framework. Experimental results validate the superiority of our model compared to previous methods, showcasing its simplicity and adaptability to various end-to-end or unfolding techniques.
☆ NVRC: Neural Video Representation Compression
Recent advances in implicit neural representation (INR)-based video coding have demonstrated its potential to compete with both conventional and other learning-based approaches. With INR methods, a neural network is trained to overfit a video sequence, with its parameters compressed to obtain a compact representation of the video content. However, although promising results have been achieved, the best INR-based methods are still out-performed by the latest standard codecs, such as VVC VTM, partially due to the simple model compression techniques employed. In this paper, rather than focusing on representation architectures as in many existing works, we propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC), targeting compression of the representation. Based on the novel entropy coding and quantization models proposed, NVRC, for the first time, is able to optimize an INR-based video codec in a fully end-to-end manner. To further minimize the additional bitrate overhead introduced by the entropy models, we have also proposed a new model compression framework for coding all the network, quantization and entropy model parameters hierarchically. Our experiments show that NVRC outperforms many conventional and learning-based benchmark codecs, with a 24% average coding gain over VVC VTM (Random Access) on the UVG dataset, measured in PSNR. As far as we are aware, this is the first time an INR-based video codec achieving such performance. The implementation of NVRC will be released at www.github.com.
☆ What to align in multimodal contrastive learning?
Humans perceive the world through multisensory integration, blending the information of different modalities to adapt their behavior. Contrastive learning offers an appealing solution for multimodal self-supervised learning. Indeed, by considering each modality as a different view of the same entity, it learns to align features of different modalities in a shared representation space. However, this approach is intrinsically limited as it only learns shared or redundant information between modalities, while multimodal interactions can arise in other ways. In this work, we introduce CoMM, a Contrastive MultiModal learning strategy that enables the communication between modalities in a single multimodal space. Instead of imposing cross- or intra- modality constraints, we propose to align multimodal representations by maximizing the mutual information between augmented versions of these multimodal features. Our theoretical analysis shows that shared, synergistic and unique terms of information naturally emerge from this formulation, allowing us to estimate multimodal interactions beyond redundancy. We test CoMM both in a controlled and in a series of real-world settings: in the former, we demonstrate that CoMM effectively captures redundant, unique and synergistic information between modalities. In the latter, CoMM learns complex multimodal interactions and achieves state-of-the-art results on the six multimodal benchmarks.
comment: 22 pages
☆ FIRAL: An Active Learning Algorithm for Multinomial Logistic Regression NeurIPS 2023
We investigate theory and algorithms for pool-based active learning for multiclass classification using multinomial logistic regression. Using finite sample analysis, we prove that the Fisher Information Ratio (FIR) lower and upper bounds the excess risk. Based on our theoretical analysis, we propose an active learning algorithm that employs regret minimization to minimize the FIR. To verify our derived excess risk bounds, we conduct experiments on synthetic datasets. Furthermore, we compare FIRAL with five other methods and found that our scheme outperforms them: it consistently produces the smallest classification error in the multiclass logistic regression setting, as demonstrated through experiments on MNIST, CIFAR-10, and 50-class ImageNet.
comment: Accepted at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
☆ Event-based Mosaicing Bundle Adjustment
We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous refinement of camera orientations and scene map) for a purely rotating event camera. We formulate the problem as a regularized non-linear least squares optimization. The objective function is defined using the linearized event generation model in the camera orientations and the panoramic gradient map of the scene. We show that this BA optimization has an exploitable block-diagonal sparsity structure, so that the problem can be solved efficiently. To the best of our knowledge, this is the first work to leverage such sparsity to speed up the optimization in the context of event-based cameras, without the need to convert events into image-like representations. We evaluate our method, called EMBA, on both synthetic and real-world datasets to show its effectiveness (50% photometric error decrease), yielding results of unprecedented quality. In addition, we demonstrate EMBA using high spatial resolution event cameras, yielding delicate panoramas in the wild, even without an initial map. Project page: https://github.com/tub-rip/emba
comment: 14+11 pages, 11 figures, 10 tables, https://github.com/tub-rip/emba
☆ Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics
Imaging features of knee articular cartilage have been shown to be potential imaging biomarkers for knee osteoarthritis. Despite recent methodological advancements in image analysis techniques like image segmentation, registration, and domain-specific image computing algorithms, only a few works focus on building fully automated pipelines for imaging feature extraction. In this study, we developed a deep-learning-based medical image analysis application for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We proposed a 2-stage joint template learning and registration network, CMT-reg. We trained the model using the OAI-ZIB dataset and assessed its performance in template-to-image registration. The CMT-reg demonstrated competitive results compared to other state-of-the-art models. We integrated the proposed model into an automated pipeline for the quantification of cartilage shape and lesion (full-thickness cartilage loss, specifically). The toolbox provides a comprehensive, user-friendly solution for medical image analysis and data visualization. The software and models are available at https://github.com/YongchengYAO/CMT-AMAI24paper .
comment: The paper will be in the conference proceedings of AMAI 2024. See the conference website: https://sites.google.com/view/amai2024/home
☆ Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks
Large Vision-Language Models (LVLMs), trained on multimodal big datasets, have significantly advanced AI by excelling in vision-language tasks. However, these models remain vulnerable to adversarial attacks, particularly jailbreak attacks, which bypass safety protocols and cause the model to generate misleading or harmful responses. This vulnerability stems from both the inherent susceptibilities of LLMs and the expanded attack surface introduced by the visual modality. We propose Sim-CLIP+, a novel defense mechanism that adversarially fine-tunes the CLIP vision encoder by leveraging a Siamese architecture. This approach maximizes cosine similarity between perturbed and clean samples, facilitating resilience against adversarial manipulations. Sim-CLIP+ offers a plug-and-play solution, allowing seamless integration into existing LVLM architectures as a robust vision encoder. Unlike previous defenses, our method requires no structural modifications to the LVLM and incurs minimal computational overhead. Sim-CLIP+ demonstrates effectiveness against both gradient-based adversarial attacks and various jailbreak techniques. We evaluate Sim-CLIP+ against three distinct jailbreak attack strategies and perform clean evaluations using standard downstream datasets, including COCO for image captioning and OKVQA for visual question answering. Extensive experiments demonstrate that Sim-CLIP+ maintains high clean accuracy while substantially improving robustness against both gradient-based adversarial attacks and jailbreak techniques. Our code and robust vision encoders are available at https://github.com/speedlab-git/Robust-Encoder-against-Jailbreak-attack.git.
☆ Federated Impression for Learning with Distributed Heterogeneous Data
Standard deep learning-based classification approaches may not always be practical in real-world clinical applications, as they require a centralized collection of all samples. Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data, which can help mitigate privacy and data ownership issues. In FL, sub-optimal convergence caused by data heterogeneity is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers. Through experimentation in this study, we show that data heterogeneity leads to the phenomenon of catastrophic forgetting during local training. We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression. To achieve this, we distill the global model resulting from each communication round. Subsequently, we use the synthetic data alongside the local data to enhance the generalization of local training. Extensive experiments show that the proposed method achieves state-of-the-art performance on both the BloodMNIST and Retina datasets, which contain label imbalance and domain shift, with an improvement in classification accuracy of up to 20%.
☆ Benchmarking 2D Egocentric Hand Pose Datasets
Hand pose estimation from egocentric video has broad implications across various domains, including human-computer interaction, assistive technologies, activity recognition, and robotics, making it a topic of significant research interest. The efficacy of modern machine learning models depends on the quality of data used for their training. Thus, this work is devoted to the analysis of state-of-the-art egocentric datasets suitable for 2D hand pose estimation. We propose a novel protocol for dataset evaluation, which encompasses not only the analysis of stated dataset characteristics and assessment of data quality, but also the identification of dataset shortcomings through the evaluation of state-of-the-art hand pose estimation models. Our study reveals that despite the availability of numerous egocentric databases intended for 2D hand pose estimation, the majority are tailored for specific use cases. There is no ideal benchmark dataset yet; however, H2O and GANerated Hands datasets emerge as the most promising real and synthetic datasets, respectively.
☆ Learning to Compress Contexts for Efficient Knowledge-based Visual Question Answering
Multimodal Large Language Models (MLLMs) have demonstrated great zero-shot performance on visual question answering (VQA). However, when it comes to knowledge-based VQA (KB-VQA), MLLMs may lack human commonsense or specialized domain knowledge to answer such questions and require obtaining necessary information from external knowledge sources. Previous works like Retrival-Augmented VQA-v2 (RAVQA-v2) focus on utilizing as much input information, such as image-based textual descriptions and retrieved knowledge, as possible to improve performance, but they all overlook the issue that with the number of input tokens increasing, inference efficiency significantly decreases, which contradicts the demands of practical applications. To address this issue, we propose Retrieval-Augmented MLLM with Compressed Contexts (RACC). RACC learns to compress and aggregate retrieved contexts, from which it generates a compact modulation in the form of Key-Value (KV) cache. This modulation is then used to adapt the downstream frozen MLLM, thereby achieving effective and efficient inference. RACC achieves a state-of-the-art (SOTA) performance of 62.9% on OK-VQA. Moreover, it significantly reduces inference latency by 22.0%-59.7% compared to the prominent RAVQA-v2. Abundant experiments show RACC's broad applicability. It is compatible with various off-the-shelf MLLMs and can also handle different knowledge sources including textual and multimodal documents.
☆ Current Symmetry Group Equivariant Convolution Frameworks for Representation Learning
Euclidean deep learning is often inadequate for addressing real-world signals where the representation space is irregular and curved with complex topologies. Interpreting the geometric properties of such feature spaces has become paramount in obtaining robust and compact feature representations that remain unaffected by nontrivial geometric transformations, which vanilla CNNs cannot effectively handle. Recognizing rotation, translation, permutation, or scale symmetries can lead to equivariance properties in the learned representations. This has led to notable advancements in computer vision and machine learning tasks under the framework of geometric deep learning, as compared to their invariant counterparts. In this report, we emphasize the importance of symmetry group equivariant deep learning models and their realization of convolution-like operations on graphs, 3D shapes, and non-Euclidean spaces by leveraging group theory and symmetry. We categorize them as regular, steerable, and PDE-based convolutions and thoroughly examine the inherent symmetries of their input spaces and ensuing representations. We also outline the mathematical link between group convolutions or message aggregation operations and the concept of equivariance. The report also highlights various datasets, their application scopes, limitations, and insightful observations on future directions to serve as a valuable reference and stimulate further research in this emerging discipline.
comment: 31 pages, 4 figures
☆ Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving
Recent advances in deep learning have markedly improved autonomous driving (AD) models, particularly end-to-end systems that integrate perception, prediction, and planning stages, achieving state-of-the-art performance. However, these models remain vulnerable to adversarial attacks, where human-imperceptible perturbations can disrupt decision-making processes. While adversarial training is an effective method for enhancing model robustness against such attacks, no prior studies have focused on its application to end-to-end AD models. In this paper, we take the first step in adversarial training for end-to-end AD models and present a novel Module-wise Adaptive Adversarial Training (MA2T). However, extending conventional adversarial training to this context is highly non-trivial, as different stages within the model have distinct objectives and are strongly interconnected. To address these challenges, MA2T first introduces Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives rather than each independent module loss. Additionally, we introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module based on their contributions (accumulated reduction rates) for better balance and robust training. To demonstrate the efficacy of our defense, we conduct extensive experiments on the widely-used nuScenes dataset across several end-to-end AD models under both white-box and black-box attacks, where our method outperforms other baselines by large margins (+5-10%). Moreover, we validate the robustness of our defense through closed-loop evaluation in the CARLA simulation environment, showing improved resilience even against natural corruption.
comment: 14 pages
☆ Data Augmentation via Latent Diffusion for Saliency Prediction ECCV 2024
Saliency prediction models are constrained by the limited diversity and quantity of labeled data. Standard data augmentation techniques such as rotating and cropping alter scene composition, affecting saliency. We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and variability of real-world scenes. Since saliency depends on high-level and low-level features, our approach involves learning both by incorporating photometric and semantic attributes such as color, contrast, brightness, and class. To that end, we introduce a saliency-guided cross-attention mechanism that enables targeted edits on the photometric properties, thereby enhancing saliency within specific image regions. Experimental results show that our data augmentation method consistently improves the performance of various saliency models. Moreover, leveraging the augmentation features for saliency prediction yields superior performance on publicly available saliency benchmarks. Our predictions align closely with human visual attention patterns in the edited images, as validated by a user study.
comment: 18 pages, published in ECCV 2024
☆ BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs
Conventional radiography is the widely used imaging technology in diagnosing, monitoring, and prognosticating musculoskeletal (MSK) diseases because of its easy availability, versatility, and cost-effectiveness. In conventional radiographs, bone overlaps are prevalent, and can impede the accurate assessment of bone characteristics by radiologists or algorithms, posing significant challenges to conventional and computer-aided diagnoses. This work initiated the study of a challenging scenario - bone layer separation in conventional radiographs, in which separate overlapped bone regions enable the independent assessment of the bone characteristics of each bone layer and lay the groundwork for MSK disease diagnosis and its automation. This work proposed a Bone Layer Separation GAN (BLS-GAN) framework that can produce high-quality bone layer images with reasonable bone characteristics and texture. This framework introduced a reconstructor based on conventional radiography imaging principles, which achieved efficient reconstruction and mitigates the recurrent calculations and training instability issues caused by soft tissue in the overlapped regions. Additionally, pre-training with synthetic images was implemented to enhance the stability of both the training process and the results. The generated images passed the visual Turing test, and improved performance in downstream tasks. This work affirms the feasibility of extracting bone layer images from conventional radiographs, which holds promise for leveraging bone layer separation technology to facilitate more comprehensive analytical research in MSK diagnosis, monitoring, and prognosis. Code and dataset will be made available.
☆ PaveSAM Segment Anything for Pavement Distress
Automated pavement monitoring using computer vision can analyze pavement conditions more efficiently and accurately than manual methods. Accurate segmentation is essential for quantifying the severity and extent of pavement defects and consequently, the overall condition index used for prioritizing rehabilitation and maintenance activities. Deep learning-based segmentation models are however, often supervised and require pixel-level annotations, which can be costly and time-consuming. While the recent evolution of zero-shot segmentation models can generate pixel-wise labels for unseen classes without any training data, they struggle with irregularities of cracks and textured pavement backgrounds. This research proposes a zero-shot segmentation model, PaveSAM, that can segment pavement distresses using bounding box prompts. By retraining SAM's mask decoder with just 180 images, pavement distress segmentation is revolutionized, enabling efficient distress segmentation using bounding box prompts, a capability not found in current segmentation models. This not only drastically reduces labeling efforts and costs but also showcases our model's high performance with minimal input, establishing the pioneering use of SAM in pavement distress segmentation. Furthermore, researchers can use existing open-source pavement distress images annotated with bounding boxes to create segmentation masks, which increases the availability and diversity of segmentation pavement distress datasets.
☆ A Unified Contrastive Loss for Self-Training
Self-training methods have proven to be effective in exploiting abundant unlabeled data in semi-supervised learning, particularly when labeled data is scarce. While many of these approaches rely on a cross-entropy loss function (CE), recent advances have shown that the supervised contrastive loss function (SupCon) can be more effective. Additionally, unsupervised contrastive learning approaches have also been shown to capture high quality data representations in the unsupervised setting. To benefit from these advantages in a semi-supervised setting, we propose a general framework to enhance self-training methods, which replaces all instances of CE losses with a unique contrastive loss. By using class prototypes, which are a set of class-wise trainable parameters, we recover the probability distributions of the CE setting and show a theoretical equivalence with it. Our framework, when applied to popular self-training methods, results in significant performance improvements across three different datasets with a limited number of labeled data. Additionally, we demonstrate further improvements in convergence speed, transfer ability, and hyperparameter stability. The code is available at \url{https://github.com/AurelienGauffre/semisupcon/}.
☆ Exploring User-level Gradient Inversion with a Diffusion Prior NeurIPS 2023
We explore user-level gradient inversion as a new attack surface in distributed learning. We first investigate existing attacks on their ability to make inferences about private information beyond training data reconstruction. Motivated by the low reconstruction quality of existing methods, we propose a novel gradient inversion attack that applies a denoising diffusion model as a strong image prior in order to enhance recovery in the large batch setting. Unlike traditional attacks, which aim to reconstruct individual samples and suffer at large batch and image sizes, our approach instead aims to recover a representative image that captures the sensitive shared semantic information corresponding to the underlying user. Our experiments with face images demonstrate the ability of our methods to recover realistic facial images along with private user attributes.
comment: Presented at the International Workshop on Federated Learning in the Age of Foundation Models in conjunction with NeurIPS 2023
☆ TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis
Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work. Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios. Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models. For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection.
☆ Tuning-Free Online Robust Principal Component Analysis through Implicit Regularization
The performance of the standard Online Robust Principal Component Analysis (OR-PCA) technique depends on the optimum tuning of the explicit regularizers and this tuning is dataset sensitive. We aim to remove the dependency on these tuning parameters by using implicit regularization. We propose to use the implicit regularization effect of various modified gradient descents to make OR-PCA tuning free. Our method incorporates three different versions of modified gradient descent that separately but naturally encourage sparsity and low-rank structures in the data. The proposed method performs comparable or better than the tuned OR-PCA for both simulated and real-world datasets. Tuning-free ORPCA makes it more scalable for large datasets since we do not require dataset-dependent parameter tuning.
☆ CCFExp: Facial Image Synthesis with Cycle Cross-Fusion Diffusion Model for Facial Paralysis Individuals
Facial paralysis is a debilitating condition that affects the movement of facial muscles, leading to a significant loss of facial expressions. Currently, the diagnosis of facial paralysis remains a challenging task, often relying heavily on the subjective judgment and experience of clinicians, which can introduce variability and uncertainty in the assessment process. One promising application in real-life situations is the automatic estimation of facial paralysis. However, the scarcity of facial paralysis datasets limits the development of robust machine learning models for automated diagnosis and therapeutic interventions. To this end, this study aims to synthesize a high-quality facial paralysis dataset to address this gap, enabling more accurate and efficient algorithm training. Specifically, a novel Cycle Cross-Fusion Expression Generative Model (CCFExp) based on the diffusion model is proposed to combine different features of facial information and enhance the visual details of facial appearance and texture in facial regions, thus creating synthetic facial images that accurately represent various degrees and types of facial paralysis. We have qualitatively and quantitatively evaluated the proposed method on the commonly used public clinical datasets of facial paralysis to demonstrate its effectiveness. Experimental results indicate that the proposed method surpasses state-of-the-art methods, generating more realistic facial images and maintaining identity consistency.
☆ Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models WACV 2025
Despite promising progress in face swapping task, realistic swapped images remain elusive, often marred by artifacts, particularly in scenarios involving high pose variation, color differences, and occlusion. To address these issues, we propose a novel approach that better harnesses diffusion models for face-swapping by making following core contributions. (a) We propose to re-frame the face-swapping task as a self-supervised, train-time inpainting problem, enhancing the identity transfer while blending with the target image. (b) We introduce a multi-step Denoising Diffusion Implicit Model (DDIM) sampling during training, reinforcing identity and perceptual similarities. (c) Third, we introduce CLIP feature disentanglement to extract pose, expression, and lighting information from the target image, improving fidelity. (d) Further, we introduce a mask shuffling technique during inpainting training, which allows us to create a so-called universal model for swapping, with an additional feature of head swapping. Ours can swap hair and even accessories, beyond traditional face swapping. Unlike prior works reliant on multiple off-the-shelf models, ours is a relatively unified approach and so it is resilient to errors in other off-the-shelf models. Extensive experiments on FFHQ and CelebA datasets validate the efficacy and robustness of our approach, showcasing high-fidelity, realistic face-swapping with minimal inference time. Our code is available at https://github.com/Sanoojan/REFace.
comment: Accepted as a conference paper at WACV 2025
☆ MiniDrive: More Efficient Vision-Language Models with Multi-Level 2D Features as Text Tokens for Autonomous Driving
Vision-language models (VLMs) serve as general-purpose end-to-end models in autonomous driving, performing subtasks such as prediction, planning, and perception through question-and-answer interactions. However, most existing methods rely on computationally expensive visual encoders and large language models (LLMs), making them difficult to deploy in real-world scenarios and real-time applications. Meanwhile, most existing VLMs lack the ability to process multiple images, making it difficult to adapt to multi-camera perception in autonomous driving. To address these issues, we propose a novel framework called MiniDrive, which incorporates our proposed Feature Engineering Mixture of Experts (FE-MoE) module and Dynamic Instruction Adapter (DI-Adapter). The FE-MoE effectively maps 2D features into visual token embeddings before being input into the language model. The DI-Adapter enables the visual token embeddings to dynamically change with the instruction text embeddings, resolving the issue of static visual token embeddings for the same image in previous approaches. Compared to previous works, MiniDrive achieves state-of-the-art performance in terms of parameter size, floating point operations, and response efficiency, with the smallest version containing only 83M parameters.
☆ TopoMap++: A faster and more space efficient technique to compute projections with topological guarantees
High-dimensional data, characterized by many features, can be difficult to visualize effectively. Dimensionality reduction techniques, such as PCA, UMAP, and t-SNE, address this challenge by projecting the data into a lower-dimensional space while preserving important relationships. TopoMap is another technique that excels at preserving the underlying structure of the data, leading to interpretable visualizations. In particular, TopoMap maps the high-dimensional data into a visual space, guaranteeing that the 0-dimensional persistence diagram of the Rips filtration of the visual space matches the one from the high-dimensional data. However, the original TopoMap algorithm can be slow and its layout can be too sparse for large and complex datasets. In this paper, we propose three improvements to TopoMap: 1) a more space-efficient layout, 2) a significantly faster implementation, and 3) a novel TreeMap-based representation that makes use of the topological hierarchy to aid the exploration of the projections. These advancements make TopoMap, now referred to as TopoMap++, a more powerful tool for visualizing high-dimensional data which we demonstrate through different use case scenarios.
comment: This is the author's version of the article that has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics (TVCG)
☆ MRAC Track 1: 2nd Workshop on Multimodal, Generative and Responsible Affective Computing ACM MM
With the rapid advancements in multimodal generative technology, Affective Computing research has provoked discussion about the potential consequences of AI systems equipped with emotional intelligence. Affective Computing involves the design, evaluation, and implementation of Emotion AI and related technologies aimed at improving people's lives. Designing a computational model in affective computing requires vast amounts of multimodal data, including RGB images, video, audio, text, and physiological signals. Moreover, Affective Computing research is deeply engaged with ethical considerations at various stages-from training emotionally intelligent models on large-scale human data to deploying these models in specific applications. Fundamentally, the development of any AI system must prioritize its impact on humans, aiming to augment and enhance human abilities rather than replace them, while drawing inspiration from human intelligence in a safe and responsible manner. The MRAC 2024 Track 1 workshop seeks to extend these principles from controlled, small-scale lab environments to real-world, large-scale contexts, emphasizing responsible development. The workshop also aims to highlight the potential implications of generative technology, along with the ethical consequences of its use, to researchers and industry professionals. To the best of our knowledge, this is the first workshop series to comprehensively address the full spectrum of multimodal, generative affective computing from a responsible AI perspective, and this is the second iteration of this workshop. Webpage: https://react-ws.github.io/2024/
comment: ACM MM Workshop 2024. Workshop webpage: https://react-ws.github.io/2024/
☆ EMOdiffhead: Continuously Emotional Control in Talking Head Generation via Diffusion
The task of audio-driven portrait animation involves generating a talking head video using an identity image and an audio track of speech. While many existing approaches focus on lip synchronization and video quality, few tackle the challenge of generating emotion-driven talking head videos. The ability to control and edit emotions is essential for producing expressive and realistic animations. In response to this challenge, we propose EMOdiffhead, a novel method for emotional talking head video generation that not only enables fine-grained control of emotion categories and intensities but also enables one-shot generation. Given the FLAME 3D model's linearity in expression modeling, we utilize the DECA method to extract expression vectors, that are combined with audio to guide a diffusion model in generating videos with precise lip synchronization and rich emotional expressiveness. This approach not only enables the learning of rich facial information from emotion-irrelevant data but also facilitates the generation of emotional videos. It effectively overcomes the limitations of emotional data, such as the lack of diversity in facial and background information, and addresses the absence of emotional details in emotion-irrelevant data. Extensive experiments and user studies demonstrate that our approach achieves state-of-the-art performance compared to other emotion portrait animation methods.
comment: 12 pages, 7 figures
☆ Single-View 3D Reconstruction via SO(2)-Equivariant Gaussian Sculpting Networks RSS 2024
This paper introduces SO(2)-Equivariant Gaussian Sculpting Networks (GSNs) as an approach for SO(2)-Equivariant 3D object reconstruction from single-view image observations. GSNs take a single observation as input to generate a Gaussian splat representation describing the observed object's geometry and texture. By using a shared feature extractor before decoding Gaussian colors, covariances, positions, and opacities, GSNs achieve extremely high throughput (>150FPS). Experiments demonstrate that GSNs can be trained efficiently using a multi-view rendering loss and are competitive, in quality, with expensive diffusion-based reconstruction algorithms. The GSN model is validated on multiple benchmark experiments. Moreover, we demonstrate the potential for GSNs to be used within a robotic manipulation pipeline for object-centric grasping.
comment: Accepted to RSS 2024 Workshop on Geometric and Algebraic Structure in Robot Learning
☆ PiTe: Pixel-Temporal Alignment for Large Video-Language Model
Fueled by the Large Language Models (LLMs) wave, Large Visual-Language Models (LVLMs) have emerged as a pivotal advancement, bridging the gap between image and text. However, video making it challenging for LVLMs to perform adequately due to the complexity of the relationship between language and spatial-temporal data structure. Recent Large Video-Language Models (LVidLMs) align feature of static visual data like image into latent space of language feature, by general multi-modal tasks to leverage abilities of LLMs sufficiently. In this paper, we explore fine-grained alignment approach via object trajectory for different modalities across both spatial and temporal dimensions simultaneously. Thus, we propose a novel LVidLM by trajectory-guided Pixel-Temporal Alignment, dubbed PiTe, that exhibits promising applicable model property. To achieve fine-grained video-language alignment, we curate a multi-modal pre-training dataset PiTe-143k, the dataset provision of moving trajectories in pixel level for all individual objects, that appear and mention in the video and caption both, by our automatic annotation pipeline. Meanwhile, PiTe demonstrates astounding capabilities on myriad video-related multi-modal tasks through beat the state-of-the-art methods by a large margin.
☆ Diff-VPS: Video Polyp Segmentation via a Multi-task Diffusion Network with Adversarial Temporal Reasoning
Diffusion Probabilistic Models have recently attracted significant attention in the community of computer vision due to their outstanding performance. However, while a substantial amount of diffusion-based research has focused on generative tasks, no work introduces diffusion models to advance the results of polyp segmentation in videos, which is frequently challenged by polyps' high camouflage and redundant temporal cues.In this paper, we present a novel diffusion-based network for video polyp segmentation task, dubbed as Diff-VPS. We incorporate multi-task supervision into diffusion models to promote the discrimination of diffusion models on pixel-by-pixel segmentation. This integrates the contextual high-level information achieved by the joint classification and detection tasks. To explore the temporal dependency, Temporal Reasoning Module (TRM) is devised via reasoning and reconstructing the target frame from the previous frames. We further equip TRM with a generative adversarial self-supervised strategy to produce more realistic frames and thus capture better dynamic cues. Extensive experiments are conducted on SUN-SEG, and the results indicate that our proposed Diff-VPS significantly achieves state-of-the-art performance. Code is available at https://github.com/lydia-yllu/Diff-VPS.
☆ Watchlist Challenge: 3rd Open-set Face Detection and Identification
In the current landscape of biometrics and surveillance, the ability to accurately recognize faces in uncontrolled settings is paramount. The Watchlist Challenge addresses this critical need by focusing on face detection and open-set identification in real-world surveillance scenarios. This paper presents a comprehensive evaluation of participating algorithms, using the enhanced UnConstrained College Students (UCCS) dataset with new evaluation protocols. In total, four participants submitted four face detection and nine open-set face recognition systems. The evaluation demonstrates that while detection capabilities are generally robust, closed-set identification performance varies significantly, with models pre-trained on large-scale datasets showing superior performance. However, open-set scenarios require further improvement, especially at higher true positive identification rates, i.e., lower thresholds.
comment: Accepted for presentation at IJCB 2024
☆ Behavioral Cloning Models Reality Check for Autonomous Driving
How effective are recent advancements in autonomous vehicle perception systems when applied to real-world autonomous vehicle control? While numerous vision-based autonomous vehicle systems have been trained and evaluated in simulated environments, there is a notable lack of real-world validation for these systems. This paper addresses this gap by presenting the real-world validation of state-of-the-art perception systems that utilize Behavior Cloning (BC) for lateral control, processing raw image data to predict steering commands. The dataset was collected using a scaled research vehicle and tested on various track setups. Experimental results demonstrate that these methods predict steering angles with low error margins in real-time, indicating promising potential for real-world applications.
☆ Enhancing CTC-Based Visual Speech Recognition
This paper presents LiteVSR2, an enhanced version of our previously introduced efficient approach to Visual Speech Recognition (VSR). Building upon our knowledge distillation framework from a pre-trained Automatic Speech Recognition (ASR) model, we introduce two key improvements: a stabilized video preprocessing technique and feature normalization in the distillation process. These improvements yield substantial performance gains on the LRS2 and LRS3 benchmarks, positioning LiteVSR2 as the current best CTC-based VSR model without increasing the volume of training data or computational resources utilized. Furthermore, we explore the scalability of our approach by examining performance metrics across varying model complexities and training data volumes. LiteVSR2 maintains the efficiency of its predecessor while significantly enhancing accuracy, thereby demonstrating the potential for resource-efficient advancements in VSR technology.
☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90\%. The code and dataset will be released.
comment: 10 pages, 7 figures
☆ Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging ICONIP2024
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules, offering the capability to inspect tissue microstructures and is the only in-vivo method to reconstruct white matter fiber tracts non-invasively. The DWI signal can be analysed with the diffusion tensor imaging (DTI) model to estimate the directionality of water diffusion within voxels. Several scalar metrics, including axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), can be further derived from DTI to quantitatively summarise the microstructural integrity of brain tissue. These scalar metrics have played an important role in understanding the organisation and health of brain tissue at a microscopic level in clinical studies. However, reliable DTI metrics rely on DWI acquisitions with high gradient directions, which often go beyond the commonly used clinical protocols. To enhance the utility of clinically acquired DWI and save scanning time for robust DTI analysis, this work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions. DirGeo-DTI leverages directional encoding and geometric constraints to facilitate the training process. Two public DWI datasets were used for evaluation, demonstrating the effectiveness of the proposed method. Extensive experimental results show that the proposed method achieves the best performance compared to existing DTI enhancement methods and potentially reveals further clinical insights with routine clinical DWI scans.
comment: Accepted to ICONIP2024, Diffusion Weighted Imaging, Diffusion Tensor Imaging, Angular Resolution Enhancement, Fractional Anisotropy
☆ Phy124: Fast Physics-Driven 4D Content Generation from a Single Image
4D content generation focuses on creating dynamic 3D objects that change over time. Existing methods primarily rely on pre-trained video diffusion models, utilizing sampling processes or reference videos. However, these approaches face significant challenges. Firstly, the generated 4D content often fails to adhere to real-world physics since video diffusion models do not incorporate physical priors. Secondly, the extensive sampling process and the large number of parameters in diffusion models result in exceedingly time-consuming generation processes. To address these issues, we introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image. Phy124 integrates physical simulation directly into the 4D generation process, ensuring that the resulting 4D content adheres to natural physical laws. Phy124 also eliminates the use of diffusion models during the 4D dynamics generation phase, significantly speeding up the process. Phy124 allows for the control of 4D dynamics, including movement speed and direction, by manipulating external forces. Extensive experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times, achieving stateof-the-art performance. The code and generated 4D content are available at the provided link: https://anonymous.4open.science/r/BBF2/.
☆ Swin-LiteMedSAM: A Lightweight Box-Based Segment Anything Model for Large-Scale Medical Image Datasets
Medical imaging is essential for the diagnosis and treatment of diseases, with medical image segmentation as a subtask receiving high attention. However, automatic medical image segmentation models are typically task-specific and struggle to handle multiple scenarios, such as different imaging modalities and regions of interest. With the introduction of the Segment Anything Model (SAM), training a universal model for various clinical scenarios has become feasible. Recently, several Medical SAM (MedSAM) methods have been proposed, but these models often rely on heavy image encoders to achieve high performance, which may not be practical for real-world applications due to their high computational demands and slow inference speed. To address this issue, a lightweight version of the MedSAM (LiteMedSAM) can provide a viable solution, achieving high performance while requiring fewer resources and less time. In this work, we introduce Swin-LiteMedSAM, a new variant of LiteMedSAM. This model integrates the tiny Swin Transformer as the image encoder, incorporates multiple types of prompts, including box-based points and scribble generated from a given bounding box, and establishes skip connections between the image encoder and the mask decoder. In the \textit{Segment Anything in Medical Images on Laptop} challenge (CVPR 2024), our approach strikes a good balance between segmentation performance and speed, demonstrating significantly improved overall results across multiple modalities compared to the LiteMedSAM baseline provided by the challenge organizers. Our proposed model achieved a DSC score of \textbf{0.8678} and an NSD score of \textbf{0.8844} on the validation set. On the final test set, it attained a DSC score of \textbf{0.8193} and an NSD score of \textbf{0.8461}, securing fourth place in the challenge.
comment: 13 pages
☆ AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution
Computed tomography (CT) reconstruction plays a crucial role in industrial nondestructive testing and medical diagnosis. Sparse view CT reconstruction aims to reconstruct high-quality CT images while only using a small number of projections, which helps to improve the detection speed of industrial assembly lines and is also meaningful for reducing radiation in medical scenarios. Sparse CT reconstruction methods based on implicit neural representations (INRs) have recently shown promising performance, but still produce artifacts because of the difficulty of obtaining useful prior information. In this work, we incorporate a powerful prior: the total number of material categories of objects. To utilize the prior, we design AC-IND, a self-supervised method based on Attenuation Coefficient Estimation and Implicit Neural Distribution. Specifically, our method first transforms the traditional INR from scalar mapping to probability distribution mapping. Then we design a compact attenuation coefficient estimator initialized with values from a rough reconstruction and fast segmentation. Finally, our algorithm finishes the CT reconstruction by jointly optimizing the estimator and the generated distribution. Through experiments, we find that our method not only outperforms the comparative methods in sparse CT reconstruction but also can automatically generate semantic segmentation maps.
comment: 12 pages
☆ Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models
Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Our project page is in https://andycao1125.github.io/mamba_policy/.
comment: 7 pages, 5 figures
☆ MVLLaVA: An Intelligent Agent for Unified and Flexible Novel View Synthesis
This paper introduces MVLLaVA, an intelligent agent designed for novel view synthesis tasks. MVLLaVA integrates multiple multi-view diffusion models with a large multimodal model, LLaVA, enabling it to handle a wide range of tasks efficiently. MVLLaVA represents a versatile and unified platform that adapts to diverse input types, including a single image, a descriptive caption, or a specific change in viewing azimuth, guided by language instructions for viewpoint generation. We carefully craft task-specific instruction templates, which are subsequently used to fine-tune LLaVA. As a result, MVLLaVA acquires the capability to generate novel view images based on user instructions, demonstrating its flexibility across diverse tasks. Experiments are conducted to validate the effectiveness of MVLLaVA, demonstrating its robust performance and versatility in tackling diverse novel view synthesis challenges.
comment: project page: https://jamesjg.github.io/MVLLaVA_homepage/
☆ Deep Learning Techniques for Hand Vein Biometrics: A Comprehensive Review
Biometric authentication has garnered significant attention as a secure and efficient method of identity verification. Among the various modalities, hand vein biometrics, including finger vein, palm vein, and dorsal hand vein recognition, offer unique advantages due to their high accuracy, low susceptibility to forgery, and non-intrusiveness. The vein patterns within the hand are highly complex and distinct for each individual, making them an ideal biometric identifier. Additionally, hand vein recognition is contactless, enhancing user convenience and hygiene compared to other modalities such as fingerprint or iris recognition. Furthermore, the veins are internally located, rendering them less susceptible to damage or alteration, thus enhancing the security and reliability of the biometric system. The combination of these factors makes hand vein biometrics a highly effective and secure method for identity verification. This review paper delves into the latest advancements in deep learning techniques applied to finger vein, palm vein, and dorsal hand vein recognition. It encompasses all essential fundamentals of hand vein biometrics, summarizes publicly available datasets, and discusses state-of-the-art metrics used for evaluating the three modes. Moreover, it provides a comprehensive overview of suggested approaches for finger, palm, dorsal, and multimodal vein techniques, offering insights into the best performance achieved, data augmentation techniques, and effective transfer learning methods, along with associated pretrained deep learning models. Additionally, the review addresses research challenges faced and outlines future directions and perspectives, encouraging researchers to enhance existing methods and propose innovative techniques.
☆ Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment ICIP
The no-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference. We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs. The utilization of Transformer encoders aims to mitigate locality bias and generate a non-local representation by sequentially processing CNN features, which inherently capture local visual structures. Establishing a stronger connection between subjective and objective assessments is achieved through sorting within batches of images based on relative distance information. A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models under equivariant transformations. Our approach ensures model robustness by maintaining consistency between an image and its horizontally flipped equivalent. Through empirical evaluation of five popular image quality assessment datasets, the proposed model outperforms alternative algorithms in the context of no-reference image quality assessment datasets, especially on smaller datasets. Codes are available at \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS}
comment: Accepted in International Conference on Image Processing (ICIP)
☆ Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations
Efficient and fast reconstruction of anatomical structures plays a crucial role in clinical practice. Minimizing retrieval and processing times not only potentially enhances swift response and decision-making in critical scenarios but also supports interactive surgical planning and navigation. Recent methods attempt to solve the medical shape reconstruction problem by utilizing implicit neural functions. However, their performance suffers in terms of generalization and computation time, a critical metric for real-time applications. To address these challenges, we propose to leverage meta-learning to improve the network parameters initialization, reducing inference time by an order of magnitude while maintaining high accuracy. We evaluate our approach on three public datasets covering different anatomical shapes and modalities, namely CT and MRI. Our experimental results show that our model can handle various input configurations, such as sparse slices with different orientations and spacings. Additionally, we demonstrate that our method exhibits strong transferable capabilities in generalizing to shape domains unobserved at training time.
☆ Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering
Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. In this work, we tackle this challenge from the perspective of camera selection. We begin by constructing a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images. Based on this matrix, we use the Intra-List Diversity (ILD) metric to assess camera redundancy, formulating the camera selection task as an optimization problem. Then we apply a diversity-based sampling algorithm to optimize the camera selection. We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments, closely mimicking real-world scenarios. Experimental results demonstrate that our strategy outperforms other approaches under time and memory constraints. Remarkably, our method achieves performance comparable to models trained on the full dataset, while using only an average of 15% of the frames and 75% of the allotted time.
☆ Deep intra-operative illumination calibration of hyperspectral cameras MICCAI 2024
Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications. Currently available cameras, however, suffer from poor integration into the clinical workflow because they require the lights to be switched off, or the camera to be manually recalibrated as soon as lighting conditions change. Given this critical bottleneck, the contribution of this paper is threefold: (1) We demonstrate that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications, namely physiological parameter estimation, and surgical scene segmentation. (2) We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery and show that it is sufficiently accurate to replace the tedious process of white reference-based recalibration. (3) Based on a total of 742 HSI cubes from a phantom, porcine models, and rats we show that our recalibration method not only outperforms previously proposed methods, but also generalizes across species, lighting conditions, and image processing tasks. Due to its simple workflow integration as well as high accuracy, speed, and generalization capabilities, our method could evolve as a central component in clinical surgical HSI.
comment: Oral at MICCAI 2024
☆ CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer
Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging. We found that the design principles of most existing methods are influenced by SR tasks based on real-world images and do not take into account the significance of the multi-level structure in pathological images, even if they can achieve respectable objective metric evaluations. In this work, we delve into two super-resolution working paradigms and propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture. Our network consists of two branches: one dedicated to learning super-resolution and the other to high-frequency wavelet features. To generate high-resolution histopathology images, the Transformer module shares and fuses features from both branches at various stages. Notably, we have designed a specialized wavelet reconstruction module to effectively enhance the wavelet domain features and enable the network to operate in different modes, allowing for the introduction of additional relevant information from cross-scale images. Our experimental results demonstrate that our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations and can substantially boost the accuracy of image diagnostic networks.
☆ Multimodal Emotion Recognition with Vision-language Prompting and Modality Dropout
In this paper, we present our solution for the Second Multimodal Emotion Recognition Challenge Track 1(MER2024-SEMI). To enhance the accuracy and generalization performance of emotion recognition, we propose several methods for Multimodal Emotion Recognition. Firstly, we introduce EmoVCLIP, a model fine-tuned based on CLIP using vision-language prompt learning, designed for video-based emotion recognition tasks. By leveraging prompt learning on CLIP, EmoVCLIP improves the performance of pre-trained CLIP on emotional videos. Additionally, to address the issue of modality dependence in multimodal fusion, we employ modality dropout for robust information fusion. Furthermore, to aid Baichuan in better extracting emotional information, we suggest using GPT-4 as the prompt for Baichuan. Lastly, we utilize a self-training strategy to leverage unlabeled videos. In this process, we use unlabeled videos with high-confidence pseudo-labels generated by our model and incorporate them into the training set. Experimental results demonstrate that our model ranks 1st in the MER2024-SEMI track, achieving an accuracy of 90.15% on the test set.
☆ Edge Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial basic technology closely related to aerospace research. However, the existing deep learning-based image denoising methods lack deep consideration of the characteristics of spacecraft image. To address the aforementioned shortcomings, we analyses spacecraft noise image and identifies two main characteristics. One is that there are a large number of low-light images in the obtained spacecraft noise image dataset. Another is there are a lot of repetitive periodic features in spacecraft image. According to the above mentioned characteristics, we propose a Edge modeling Activation Free Fourier Network (EAFFN), which is an efficient spacecraft image denoising method including Edge Modeling Block (EMB) and Activation Free Fourier Block (AFFB). We present EMB to effectively model edge and extract structural information and better identify the spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved fast fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. In addition, Simple Gate is designed in our AFFB to reduce the computational complexity. Extensive experimental results demonstrate our EAFFN performs competitively to the state-of-the-art on spacecraft noise image datasets.
☆ Pushing the Limits of Vision-Language Models in Remote Sensing without Human Annotations
The prominence of generalized foundation models in vision-language integration has witnessed a surge, given their multifarious applications. Within the natural domain, the procurement of vision-language datasets to construct these foundation models is facilitated by their abundant availability and the ease of web crawling. Conversely, in the remote sensing domain, although vision-language datasets exist, their volume is suboptimal for constructing robust foundation models. This study introduces an approach to curate vision-language datasets by employing an image decoding machine learning model, negating the need for human-annotated labels. Utilizing this methodology, we amassed approximately 9.6 million vision-language paired datasets in VHR imagery. The resultant model outperformed counterparts that did not leverage publicly available vision-language datasets, particularly in downstream tasks such as zero-shot classification, semantic localization, and image-text retrieval. Moreover, in tasks exclusively employing vision encoders, such as linear probing and k-NN classification, our model demonstrated superior efficacy compared to those relying on domain-specific vision-language datasets.
comment: This study was primarily conducted during the latter half of 2023
☆ SoftShadow: Leveraging Penumbra-Aware Soft Masks for Shadow Removal
Recent advancements in deep learning have yielded promising results for the image shadow removal task. However, most existing methods rely on binary pre-generated shadow masks. The binary nature of such masks could potentially lead to artifacts near the boundary between shadow and non-shadow areas. In view of this, inspired by the physical model of shadow formation, we introduce novel soft shadow masks specifically designed for shadow removal. To achieve such soft masks, we propose a \textit{SoftShadow} framework by leveraging the prior knowledge of pretrained SAM and integrating physical constraints. Specifically, we jointly tune the SAM and the subsequent shadow removal network using penumbra formation constraint loss and shadow removal loss. This framework enables accurate predictions of penumbra (partially shaded regions) and umbra (fully shaded regions) areas while simultaneously facilitating end-to-end shadow removal. Through extensive experiments on popular datasets, we found that our SoftShadow framework, which generates soft masks, can better restore boundary artifacts, achieve state-of-the-art performance, and demonstrate superior generalizability.
☆ Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge. Many deep learning-based methods have been developed to address this issue and have shown promising results in recent years. However, single-stage methods, which attempt to unify the complex mapping across both domains, leading to limited denoising performance. In contrast, two-stage approaches typically decompose a raw image with color filter arrays (CFA) into a four-channel RGGB format before feeding it into a neural network. However, this strategy overlooks the critical role of demosaicing within the Image Signal Processing (ISP) pipeline, leading to color distortions under varying lighting conditions, especially in low-light scenarios. To address these issues, we design a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs. Furthermore, we present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction. By bridging demosaicing and denoising, better raw image enhancement is achieved. Experimental evaluations conducted on public datasets SID and MCR demonstrate that our proposed RAWMamba achieves state-of-the-art performance on cross-domain mapping.
☆ SCLNet: A Scale-Robust Complementary Learning Network for Object Detection in UAV Images
Most recent UAV (Unmanned Aerial Vehicle) detectors focus primarily on general challenge such as uneven distribution and occlusion. However, the neglect of scale challenges, which encompass scale variation and small objects, continues to hinder object detection in UAV images. Although existing works propose solutions, they are implicitly modeled and have redundant steps, so detection performance remains limited. And one specific work addressing the above scale challenges can help improve the performance of UAV image detectors. Compared to natural scenes, scale challenges in UAV images happen with problems of limited perception in comprehensive scales and poor robustness to small objects. We found that complementary learning is beneficial for the detection model to address the scale challenges. Therefore, the paper introduces it to form our scale-robust complementary learning network (SCLNet) in conjunction with the object detection model. The SCLNet consists of two implementations and a cooperation method. In detail, one implementation is based on our proposed scale-complementary decoder and scale-complementary loss function to explicitly extract complementary information as complement, named comprehensive-scale complementary learning (CSCL). Another implementation is based on our proposed contrastive complement network and contrastive complement loss function to explicitly guide the learning of small objects with the rich texture detail information of the large objects, named inter-scale contrastive complementary learning (ICCL). In addition, an end-to-end cooperation (ECoop) between two implementations and with the detection model is proposed to exploit each potential.
☆ Insight Any Instance: Promptable Instance Segmentation for Remote Sensing Images
Instance segmentation of remote sensing images (RSIs) is an essential task for a wide range of applications such as land planning and intelligent transport. Instance segmentation of RSIs is constantly plagued by the unbalanced ratio of foreground and background and limited instance size. And most of the instance segmentation models are based on deep feature learning and contain operations such as multiple downsampling, which is harmful to instance segmentation of RSIs, and thus the performance is still limited. Inspired by the recent superior performance of prompt learning in visual tasks, we propose a new prompt paradigm to address the above issues. Based on the existing instance segmentation model, firstly, a local prompt module is designed to mine local prompt information from original local tokens for specific instances; secondly, a global-to-local prompt module is designed to model the contextual information from the global tokens to the local tokens where the instances are located for specific instances. Finally, a proposal's area loss function is designed to add a decoupling dimension for proposals on the scale to better exploit the potential of the above two prompt modules. It is worth mentioning that our proposed approach can extend the instance segmentation model to a promptable instance segmentation model, i.e., to segment the instances with the specific boxes prompt. The time consumption for each promptable instance segmentation process is only 40 ms. The paper evaluates the effectiveness of our proposed approach based on several existing models in four instance segmentation datasets of RSIs, and thorough experiments prove that our proposed approach is effective for addressing the above issues and is a competitive model for instance segmentation of RSIs.
EVENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI
In this study, we developed an Evidence-based Ensemble Neural Network, namely EVENet, for anatomical brain parcellation using diffusion MRI. The key innovation of EVENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. Using EVENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions, enhancing the interpretability and reliability of the segmentation results.
comment: 15 pages, 5 figures
☆ Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray imaging (CXR) is an important diagnostic tool used in hospitals to assess patient conditions and monitor changes over time. Generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic X-rays. However, these models mainly focus on conditional generation using single-time-point data, i.e., typically CXRs taken at a specific time with their corresponding reports, limiting their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes, suggesting its potential for further development as a clinical simulation tool. This could offer valuable insights for patient monitoring and treatment planning in the medical field.
☆ Performance Assessment of Feature Detection Methods for 2-D FS Sonar Imagery
Underwater robot perception is crucial in scientific subsea exploration and commercial operations. The key challenges include non-uniform lighting and poor visibility in turbid environments. High-frequency forward-look sonar cameras address these issues, by providing high-resolution imagery at maximum range of tens of meters, despite complexities posed by high degree of speckle noise, and lack of color and texture. In particular, robust feature detection is an essential initial step for automated object recognition, localization, navigation, and 3-D mapping. Various local feature detectors developed for RGB images are not well-suited for sonar data. To assess their performances, we evaluate a number of feature detectors using real sonar images from five different sonar devices. Performance metrics such as detection accuracy, false positives, and robustness to variations in target characteristics and sonar devices are applied to analyze the experimental results. The study would provide a deeper insight into the bottlenecks of feature detection for sonar data, and developing more effective methods
☆ ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics
Oysters are a keystone species in coastal ecosystems, offering significant economic, environmental, and cultural benefits. However, current monitoring systems are often destructive, typically involving dredging to physically collect and count oysters. A nondestructive alternative is manual identification from video footage collected by divers, which is time-consuming and labor-intensive with expert input. An alternative to human monitoring is the deployment of a system with trained object detection models that performs real-time, on edge oyster detection in the field. One such platform is the Aqua2 robot. Effective training of these models requires extensive high-quality data, which is difficult to obtain in marine settings. To address these complications, we introduce a novel method that leverages stable diffusion to generate high-quality synthetic data for the marine domain. We exploit diffusion models to create photorealistic marine imagery, using ControlNet inputs to ensure consistency with the segmentation ground-truth mask, the geometry of the scene, and the target domain of real underwater images for oysters. The resulting dataset is used to train a YOLOv10-based vision model, achieving a state-of-the-art 0.657 mAP@50 for oyster detection on the Aqua2 platform. The system we introduce not only improves oyster habitat monitoring, but also paves the way to autonomous surveillance for various tasks in marine contexts, improving aquaculture and conservation efforts.
☆ AdvLogo: Adversarial Patch Attack against Object Detectors based on Diffusion Models
With the rapid development of deep learning, object detectors have demonstrated impressive performance; however, vulnerabilities still exist in certain scenarios. Current research exploring the vulnerabilities using adversarial patches often struggles to balance the trade-off between attack effectiveness and visual quality. To address this problem, we propose a novel framework of patch attack from semantic perspective, which we refer to as AdvLogo. Based on the hypothesis that every semantic space contains an adversarial subspace where images can cause detectors to fail in recognizing objects, we leverage the semantic understanding of the diffusion denoising process and drive the process to adversarial subareas by perturbing the latent and unconditional embeddings at the last timestep. To mitigate the distribution shift that exposes a negative impact on image quality, we apply perturbation to the latent in frequency domain with the Fourier Transform. Experimental results demonstrate that AdvLogo achieves strong attack performance while maintaining high visual quality.
☆ RICAU-Net: Residual-block Inspired Coordinate Attention U-Net for Segmentation of Small and Sparse Calcium Lesions in Cardiac CT
The Agatston score, which is the sum of the calcification in the four main coronary arteries, has been widely used in the diagnosis of coronary artery disease (CAD). However, many studies have emphasized the importance of the vessel-specific Agatston score, as calcification in a specific vessel is significantly correlated with the occurrence of coronary heart disease (CHD). In this paper, we propose the Residual-block Inspired Coordinate Attention U-Net (RICAU-Net), which incorporates coordinate attention in two distinct manners and a customized combo loss function for lesion-specific coronary artery calcium (CAC) segmentation. This approach aims to tackle the high class-imbalance issue associated with small and sparse lesions, particularly for CAC in the left main coronary artery (LM) which is generally small and the scarcest in the dataset due to its anatomical structure. The proposed method was compared with six different methods using Dice score, precision, and recall. Our approach achieved the highest per-lesion Dice scores for all four lesions, especially for CAC in LM compared to other methods. The ablation studies demonstrated the significance of positional information from the coordinate attention and the customized loss function in segmenting small and sparse lesions with a high class-imbalance problem.
comment: 18 pages, 4 figures, 3 tables
☆ 1M-Deepfakes Detection Challenge ACM MM 2024
The detection and localization of deepfake content, particularly when small fake segments are seamlessly mixed with real videos, remains a significant challenge in the field of digital media security. Based on the recently released AV-Deepfake1M dataset, which contains more than 1 million manipulated videos across more than 2,000 subjects, we introduce the 1M-Deepfakes Detection Challenge. This challenge is designed to engage the research community in developing advanced methods for detecting and localizing deepfake manipulations within the large-scale high-realistic audio-visual dataset. The participants can access the AV-Deepfake1M dataset and are required to submit their inference results for evaluation across the metrics for detection or localization tasks. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection and localization systems. Evaluation scripts, baseline models, and accompanying code will be available on https://github.com/ControlNet/AV-Deepfake1M.
comment: ACM MM 2024. Challenge webpage: https://deepfakes1m.github.io/
☆ PanAdapter: Two-Stage Fine-Tuning with Spatial-Spectral Priors Injecting for Pansharpening
Pansharpening is a challenging image fusion task that involves restoring images using two different modalities: low-resolution multispectral images (LRMS) and high-resolution panchromatic (PAN). Many end-to-end specialized models based on deep learning (DL) have been proposed, yet the scale and performance of these models are limited by the size of dataset. Given the superior parameter scales and feature representations of pre-trained models, they exhibit outstanding performance when transferred to downstream tasks with small datasets. Therefore, we propose an efficient fine-tuning method, namely PanAdapter, which utilizes additional advanced semantic information from pre-trained models to alleviate the issue of small-scale datasets in pansharpening tasks. Specifically, targeting the large domain discrepancy between image restoration and pansharpening tasks, the PanAdapter adopts a two-stage training strategy for progressively adapting to the downstream task. In the first stage, we fine-tune the pre-trained CNN model and extract task-specific priors at two scales by proposed Local Prior Extraction (LPE) module. In the second stage, we feed the extracted two-scale priors into two branches of cascaded adapters respectively. At each adapter, we design two parameter-efficient modules for allowing the two branches to interact and be injected into the frozen pre-trained VisionTransformer (ViT) blocks. We demonstrate that by only training the proposed LPE modules and adapters with a small number of parameters, our approach can benefit from pre-trained image restoration models and achieve state-of-the-art performance in several benchmark pansharpening datasets. The code will be available soon.
☆ Brain-Inspired Stepwise Patch Merging for Vision Transformers
The hierarchical architecture has become a mainstream design paradigm for Vision Transformers (ViTs), with Patch Merging serving as the pivotal component that transforms a columnar architecture into a hierarchical one. Drawing inspiration from the brain's ability to integrate global and local information for comprehensive visual understanding, we propose a novel technique called Stepwise Patch Merging (SPM), which enhances the subsequent attention mechanism's ability to 'see' better. SPM comprises two critical modules: Multi-Scale Aggregation (MSA) and Guided Local Enhancement (GLE). The MSA module integrates multi-scale features to enrich feature representation, while the GLE module focuses on refining local detail extraction, thus achieving an optimal balance between long-range dependency modeling and local feature enhancement. Extensive experiments conducted on benchmark datasets, including ImageNet-1K, COCO, and ADE20K, demonstrate that SPM significantly improves the performance of various models, particularly in dense prediction tasks such as object detection and semantic segmentation. These results underscore the efficacy of SPM in enhancing model accuracy and robustness across a wide range of computer vision tasks.
☆ Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation
Recent progress of semantic point clouds analysis is largely driven by synthetic data (e.g., the ModelNet and the ShapeNet), which are typically complete, well-aligned and noisy free. Therefore, representations of those ideal synthetic point clouds have limited variations in the geometric perspective and can gain good performance on a number of 3D vision tasks such as point cloud classification. In the context of unsupervised domain adaptation (UDA), representation learning designed for synthetic point clouds can hardly capture domain invariant geometric patterns from incomplete and noisy point clouds. To address such a problem, we introduce a novel scheme for induced geometric invariance of point cloud representations across domains, via regularizing representation learning with two self-supervised geometric augmentation tasks. On one hand, a novel pretext task of predicting translation distances of augmented samples is proposed to alleviate centroid shift of point clouds due to occlusion and noises. On the other hand, we pioneer an integration of the relational self-supervised learning on geometrically-augmented point clouds in a cascade manner, utilizing the intrinsic relationship of augmented variants and other samples as extra constraints of cross-domain geometric features. Experiments on the PointDA-10 dataset demonstrate the effectiveness of the proposed method, achieving the state-of-the-art performance.
comment: 10 pages, 6 figures, 5 tables
☆ FSMDet: Vision-guided feature diffusion for fully sparse 3D detector ECCV
Fully sparse 3D detection has attracted an increasing interest in the recent years. However, the sparsity of the features in these frameworks challenges the generation of proposals because of the limited diffusion process. In addition, the quest for efficiency has led to only few work on vision-assisted fully sparse models. In this paper, we propose FSMDet (Fully Sparse Multi-modal Detection), which use visual information to guide the LiDAR feature diffusion process while still maintaining the efficiency of the pipeline. Specifically, most of fully sparse works focus on complex customized center fusion diffusion/regression operators. However, we observed that if the adequate object completion is performed, even the simplest interpolation operator leads to satisfactory results. Inspired by this observation, we split the vision-guided diffusion process into two modules: a Shape Recover Layer (SRLayer) and a Self Diffusion Layer (SDLayer). The former uses RGB information to recover the shape of the visible part of an object, and the latter uses a visual prior to further spread the features to the center region. Experiments demonstrate that our approach successfully improves the performance of previous fully sparse models that use LiDAR only and reaches SOTA performance in multimodal models. At the same time, thanks to the sparse architecture, our method can be up to 5 times more efficient than previous SOTA methods in the inference process.
comment: Accepted by European Conference on Computer Vision (ECCV) 2024 workshop on VCAD
☆ Automated Body Composition Analysis Using DAFS Express on 2D MRI Slices at L3 Vertebral Level
Body composition analysis is vital in assessing health conditions such as obesity, sarcopenia, and metabolic syndromes. MRI provides detailed images of skeletal muscle (SKM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), but their manual segmentation is labor-intensive and limits clinical applicability. This study validates an automated tool for MRI-based 2D body composition analysis- (Data Analysis Facilitation Suite (DAFS) Express), comparing its automated measurements with expert manual segmentations using UK Biobank data. A cohort of 399 participants from the UK Biobank dataset was selected, yielding 423 single L3 slices for analysis. DAFS Express performed automated segmentations of SKM, VAT, and SAT, which were then manually corrected by expert raters for validation. Evaluation metrics included Jaccard coefficients, Dice scores, Intraclass Correlation Coefficients (ICCs), and Bland-Altman Plots to assess segmentation agreement and reliability. High agreements were observed between automated and manual segmentations with mean Jaccard scores: SKM 99.03%, VAT 95.25%, and SAT 99.57%; and mean Dice scores: SKM 99.51%, VAT 97.41%, and SAT 99.78%. Cross-sectional area comparisons showed consistent measurements with automated methods closely matching manual measurements for SKM and SAT, and slightly higher values for VAT (SKM: Auto 132.51 cm^2, Manual 132.36 cm^2; VAT: Auto 137.07 cm^2, Manual 134.46 cm^2; SAT: Auto 203.39 cm^2, Manual 202.85 cm^2). ICCs confirmed strong reliability (SKM: 0.998, VAT: 0.994, SAT: 0.994). Bland-Altman plots revealed minimal biases, and boxplots illustrated distribution similarities across SKM, VAT, and SAT areas. On average DAFS Express took 18 seconds per DICOM. This underscores its potential to streamline image analysis processes in research and clinical settings, enhancing diagnostic accuracy and efficiency.
☆ Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning
The segmentation of the pubic symphysis and fetal head (PSFH) constitutes a pivotal step in monitoring labor progression and identifying potential delivery complications. Despite the advances in deep learning, the lack of annotated medical images hinders the training of segmentation. Traditional semi-supervised learning approaches primarily utilize a unified network model based on Convolutional Neural Networks (CNNs) and apply consistency regularization to mitigate the reliance on extensive annotated data. However, these methods often fall short in capturing the discriminative features of unlabeled data and in delineating the long-range dependencies inherent in the ambiguous boundaries of PSFH within ultrasound images. To address these limitations, we introduce a novel framework, the Dual-Student and Teacher Combining CNN and Transformer (DSTCT), which synergistically integrates the capabilities of CNNs and Transformers. Our framework comprises a Vision Transformer (ViT) as the teacher and two student mod ls one ViT and one CNN. This dual-student setup enables mutual supervision through the generation of both hard and soft pseudo-labels, with the consistency in their predictions being refined by minimizing the classifier determinacy discrepancy. The teacher model further reinforces learning within this architecture through the imposition of consistency regularization constraints. To augment the generalization abilities of our approach, we employ a blend of data and model perturbation techniques. Comprehensive evaluations on the benchmark dataset of the PSFH Segmentation Grand Challenge at MICCAI 2023 demonstrate our DSTCT framework outperformed ten contemporary semi-supervised segmentation methods. Code available at https://github.com/jjm1589/DSTCT.
☆ Rethinking Directional Parameterization in Neural Implicit Surface Reconstruction ECCV 2024
Multi-view 3D surface reconstruction using neural implicit representations has made notable progress by modeling the geometry and view-dependent radiance fields within a unified framework. However, their effectiveness in reconstructing objects with specular or complex surfaces is typically biased by the directional parameterization used in their view-dependent radiance network. {\it Viewing direction} and {\it reflection direction} are the two most commonly used directional parameterizations but have their own limitations. Typically, utilizing the viewing direction usually struggles to correctly decouple the geometry and appearance of objects with highly specular surfaces, while using the reflection direction tends to yield overly smooth reconstructions for concave or complex structures. In this paper, we analyze their failed cases in detail and propose a novel hybrid directional parameterization to address their limitations in a unified form. Extensive experiments demonstrate the proposed hybrid directional parameterization consistently delivered satisfactory results in reconstructing objects with a wide variety of materials, geometry and appearance, whereas using other directional parameterizations faces challenges in reconstructing certain objects. Moreover, the proposed hybrid directional parameterization is nearly parameter-free and can be effortlessly applied in any existing neural surface reconstruction method.
comment: Accepted to ECCV 2024
♻ ☆ Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences ECCV 2024
Object pose distribution estimation is crucial in robotics for better path planning and handling of symmetric objects. Recent distribution estimation approaches employ contrastive learning-based approaches by maximizing the likelihood of a single pose estimate in the absence of a CAD model. We propose a pose distribution estimation method leveraging symmetry respecting correspondence distributions and shape information obtained using a CAD model. Contrastive learning-based approaches require an exhaustive amount of training images from different viewpoints to learn the distribution properly, which is not possible in realistic scenarios. Instead, we propose a pipeline that can leverage correspondence distributions and shape information from the CAD model, which are later used to learn pose distributions. Besides, having access to pose distribution based on correspondences before learning pose distributions conditioned on images, can help formulate the loss between distributions. The prior knowledge of distribution also helps the network to focus on getting sharper modes instead. With the CAD prior, our approach converges much faster and learns distribution better by focusing on learning sharper distribution near all the valid modes, unlike contrastive approaches, which focus on a single mode at a time. We achieve benchmark results on SYMSOL-I and T-Less datasets.
comment: Accepted to ECCV 2024
EyeCLIP: A visual-language foundation model for multi-modal ophthalmic image analysis
Early detection of eye diseases like glaucoma, macular degeneration, and diabetic retinopathy is crucial for preventing vision loss. While artificial intelligence (AI) foundation models hold significant promise for addressing these challenges, existing ophthalmic foundation models primarily focus on a single modality, whereas diagnosing eye diseases requires multiple modalities. A critical yet often overlooked aspect is harnessing the multi-view information across various modalities for the same patient. Additionally, due to the long-tail nature of ophthalmic diseases, standard fully supervised or unsupervised learning approaches often struggle. Therefore, it is essential to integrate clinical text to capture a broader spectrum of diseases. We propose EyeCLIP, a visual-language foundation model developed using over 2.77 million multi-modal ophthalmology images with partial text data. To fully leverage the large multi-modal unlabeled and labeled data, we introduced a pretraining strategy that combines self-supervised reconstructions, multi-modal image contrastive learning, and image-text contrastive learning to learn a shared representation of multiple modalities. Through evaluation using 14 benchmark datasets, EyeCLIP can be transferred to a wide range of downstream tasks involving ocular and systemic diseases, achieving state-of-the-art performance in disease classification, visual question answering, and cross-modal retrieval. EyeCLIP represents a significant advancement over previous methods, especially showcasing few-shot, even zero-shot capabilities in real-world long-tail scenarios.
♻ ☆ AMNS: Attention-Weighted Selective Mask and Noise Label Suppression for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to retrieve images of person given textual descriptions, and most methods implicitly assume that the training image-text pairs are correctly aligned, but in practice, under-correlated and false-correlated problems arise for image-text pairs due to poor image quality and mislabeling. Meanwhile, the random masking augmentation strategy may incorrectly discard semantic content resulting in the problem of generating noisy pairings between image lexical elements and text descriptions. To solve these two problems, we propose a new noise label suppression method and alleviate the problem generated by random mask through an attention-weighted selective mask strategy. In the proposed noise label suppression method, the effect of noise labels is suppressed by preventing the model from being overconfident by considering the inverse KL scatter loss, which is combined with the weight adjustment focus loss to further improve the model's recognition ability on difficult samples. On the other hand, Attention-Weighted Selective Mask processes the raw image through the EMA version of the image encoder, retaining some of the tokens with strong semantic associations with the corresponding text descriptions in order to extract better features. Numerous experiments validate the effectiveness of our approach in terms of dealing with noisy problems. The code will be available soon at https://github.com/RunQing715/AMNS.git.
♻ ☆ Human-Free Automated Prompting for Vision-Language Anomaly Detection: Prompt Optimization with Meta-guiding Prompt Scheme
Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning, making prompt-based anomaly detection a promising approach. Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types. Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods, eliminating the need for human intervention. The primary challenge in this approach is the lack of anomalous samples during the training phase. Additionally, the Vision Transformer (ViT)-based image encoder in VLMs is not ideal for pixel-wise anomaly segmentation due to a locality feature mismatch between the original image and the output feature map. To tackle the first challenge, we have developed the Object-Attention Anomaly Generation Module (OAGM) to synthesize anomaly samples for training. Furthermore, our Meta-Guiding Prompt-Tuning Scheme (MPTS) iteratively adjusts the gradient-based optimization direction of learnable prompts to avoid overfitting to the synthesized anomalies. For the second challenge, we propose Locality-Aware Attention, which ensures that each local patch feature attends only to nearby patch features, preserving the locality features corresponding to their original locations. This framework allows for the optimal prompt embeddings by searching in the continuous latent space via backpropagation, free from human semantic constraints. Additionally, the modified locality-aware attention improves the precision of pixel-wise anomaly segmentation.
♻ ☆ Training-Free Point Cloud Recognition Based on Geometric and Semantic Information Fusion
The trend of employing training-free methods for point cloud recognition is becoming increasingly popular due to its significant reduction in computational resources and time costs. However, existing approaches are limited as they typically extract either geometric or semantic features. To address this limitation, we are the first to propose a novel training-free method that integrates both geometric and semantic features. For the geometric branch, we adopt a non-parametric strategy to extract geometric features. In the semantic branch, we leverage a model aligned with text features to obtain semantic features. Additionally, we introduce the GFE module to complement the geometric information of point clouds and the MFF module to improve performance in few-shot settings. Experimental results demonstrate that our method outperforms existing state-of-the-art training-free approaches on mainstream benchmark datasets, including ModelNet and ScanObiectNN.
♻ ☆ DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation
Recent advancements in generative models have provided promising solutions for synthesizing realistic driving videos, which are crucial for training autonomous driving perception models. However, existing approaches often struggle with multi-view video generation due to the challenges of integrating 3D information while maintaining spatial-temporal consistency and effectively learning from a unified model. In this paper, we propose an end-to-end framework named DriveScape for multi-view, 3D condition-guided video generation. DriveScape not only streamlines the process by integrating camera data to ensure comprehensive spatial-temporal coverage, but also introduces a Bi-Directional Modulated Transformer module to effectively align 3D road structural information. As a result, our approach enables precise control over video generation, significantly enhancing realism and providing a robust solution for generating multi-view driving videos. Our framework achieves state-of-the-art results on the nuScenes dataset, demonstrating impressive generative quality metrics with an FID score of 8.34 and an FVD score of 76.39, as well as superior performance across various perception tasks. This paves the way for more accurate environmental simulations in autonomous driving. Our project homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
comment: Homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
♻ ☆ MyGo: Consistent and Controllable Multi-View Driving Video Generation with Camera Control
High-quality driving video generation is crucial for providing training data for autonomous driving models. However, current generative models rarely focus on enhancing camera motion control under multi-view tasks, which is essential for driving video generation. Therefore, we propose MyGo, an end-to-end framework for video generation, introducing motion of onboard cameras as conditions to make progress in camera controllability and multi-view consistency. MyGo employs additional plug-in modules to inject camera parameters into the pre-trained video diffusion model, which retains the extensive knowledge of the pre-trained model as much as possible. Furthermore, we use epipolar constraints and neighbor view information during the generation process of each view to enhance spatial-temporal consistency. Experimental results show that MyGo has achieved state-of-the-art results in both general camera-controlled video generation and multi-view driving video generation tasks, which lays the foundation for more accurate environment simulation in autonomous driving. Project page: https://metadrivescape.github.io/papers_project/MyGo/page.html
comment: Project Page: https://metadrivescape.github.io/papers_project/MyGo/page.html
♻ ☆ RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining
The outdoor vision systems are frequently contaminated by rain streaks and raindrops, which significantly degenerate the performance of visual tasks and multimedia applications. The nature of videos exhibits redundant temporal cues for rain removal with higher stability. Traditional video deraining methods heavily rely on optical flow estimation and kernel-based manners, which have a limited receptive field. Yet, transformer architectures, while enabling long-term dependencies, bring about a significant increase in computational complexity. Recently, the linear-complexity operator of the state space models (SSMs) has contrarily facilitated efficient long-term temporal modeling, which is crucial for rain streaks and raindrops removal in videos. Unexpectedly, its uni-dimensional sequential process on videos destroys the local correlations across the spatio-temporal dimension by distancing adjacent pixels. To address this, we present an improved SSMs-based video deraining network (RainMamba) with a novel Hilbert scanning mechanism to better capture sequence-level local information. We also introduce a difference-guided dynamic contrastive locality learning strategy to enhance the patch-level self-similarity learning ability of the proposed network. Extensive experiments on four synthesized video deraining datasets and real-world rainy videos demonstrate the effectiveness and efficiency of our network in the removal of rain streaks and raindrops. Our code and results are available at https://github.com/TonyHongtaoWu/RainMamba.
comment: ACM Multimedia 2024 Oral
♻ ☆ Physically Feasible Semantic Segmentation
State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label ``road'' to a segment which is located above a segment that is respectively labeled as ``sky'', although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), extracts explicit physical constraints that govern spatial class relations from the training sets of semantic segmentation datasets and enforces a differentiable loss function that penalizes violations of these constraints to promote prediction feasibility. PhyFea yields significant performance improvements in mIoU over each state-of-the-art network we use as baseline across ADE20K, Cityscapes and ACDC, notably a $1.5\%$ improvement on ADE20K and a $2.1\%$ improvement on ACDC.
♻ ☆ VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models
We present VLMEvalKit: an open-source toolkit for evaluating large multi-modality models based on PyTorch. The toolkit aims to provide a user-friendly and comprehensive framework for researchers and developers to evaluate existing multi-modality models and publish reproducible evaluation results. In VLMEvalKit, we implement over 70 different large multi-modality models, including both proprietary APIs and open-source models, as well as more than 20 different multi-modal benchmarks. By implementing a single interface, new models can be easily added to the toolkit, while the toolkit automatically handles the remaining workloads, including data preparation, distributed inference, prediction post-processing, and metric calculation. Although the toolkit is currently mainly used for evaluating large vision-language models, its design is compatible with future updates that incorporate additional modalities, such as audio and video. Based on the evaluation results obtained with the toolkit, we host OpenVLM Leaderboard, a comprehensive leaderboard to track the progress of multi-modality learning research. The toolkit is released at https://github.com/open-compass/VLMEvalKit and is actively maintained.
comment: Updated on 2024.09.12
♻ ☆ Using ResNet to Utilize 4-class T2-FLAIR Slice Classification Based on the Cholinergic Pathways Hyperintensities Scale for Pathological Aging
The Cholinergic Pathways Hyperintensities Scale (CHIPS) is a visual rating scale used to assess the extent of cholinergic white matter hyperintensities in T2-FLAIR images, serving as an indicator of dementia severity. However, the manual selection of four specific slices for rating throughout the entire brain is a time-consuming process. Our goal was to develop a deep learning-based model capable of automatically identifying the four slices relevant to CHIPS. To achieve this, we trained a 4-class slice classification model (BSCA) using the ADNI T2-FLAIR dataset (N=150) with the assistance of ResNet. Subsequently, we tested the model's performance on a local dataset (N=30). The results demonstrated the efficacy of our model, with an accuracy of 99.82% and an F1-score of 99.83%. This achievement highlights the potential impact of BSCA as an automatic screening tool, streamlining the selection of four specific T2-FLAIR slices that encompass white matter landmarks along the cholinergic pathways. Clinicians can leverage this tool to assess the risk of clinical dementia development efficiently.
comment: 8 pages, 2 figures, 2 tables
♻ ☆ MCTR: Multi Camera Tracking Transformer
Multi-camera tracking plays a pivotal role in various real-world applications. While end-to-end methods have gained significant interest in single-camera tracking, multi-camera tracking remains predominantly reliant on heuristic techniques. In response to this gap, this paper introduces Multi-Camera Tracking tRansformer (MCTR), a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras with overlapping fields of view. MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view. The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating the local information from the view-specific detection embeddings. The track embeddings are probabilistically associated with detections in every camera view and frame to generate consistent object tracks. The soft probabilistic association facilitates the design of differentiable losses that enable end-to-end training of the entire system. To validate our approach, we conduct experiments on MMPTrack and AI City Challenge, two recently introduced large-scale multi-camera multi-object tracking datasets.
♻ ☆ Error-Driven Uncertainty Aware Training
Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Uncertainty Aware Training (EUAT), which aims to enhance the ability of neural classifiers to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted by the model. This allows for pursuing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted inputs, while preserving the model's misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware training techniques, calibration, ensembles, and DEUP) by providing uncertainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model's output can be trusted or not and under distributional data shifts.
♻ ☆ BeNeRF: Neural Radiance Fields from a Single Blurry Image and Event Stream ECCV 2024
Neural implicit representation of visual scenes has attracted a lot of attention in recent research of computer vision and graphics. Most prior methods focus on how to reconstruct 3D scene representation from a set of images. In this work, we demonstrate the possibility to recover the neural radiance fields (NeRF) from a single blurry image and its corresponding event stream. We model the camera motion with a cubic B-Spline in SE(3) space. Both the blurry image and the brightness change within a time interval, can then be synthesized from the 3D scene representation given the 6-DoF poses interpolated from the cubic B-Spline. Our method can jointly learn both the implicit neural scene representation and recover the camera motion by minimizing the differences between the synthesized data and the real measurements without pre-computed camera poses from COLMAP. We evaluate the proposed method with both synthetic and real datasets. The experimental results demonstrate that we are able to render view-consistent latent sharp images from the learned NeRF and bring a blurry image alive in high quality. Code and data are available at https://github.com/wu-cvgl/BeNeRF.
comment: Accepted to ECCV 2024
♻ ☆ Medical diffusion on a budget: Textual Inversion for medical image generation
Diffusion models for text-to-image generation, known for their efficiency, accessibility, and quality, have gained popularity. While inference with these systems on consumer-grade GPUs is increasingly feasible, training from scratch requires large captioned datasets and significant computational resources. In medical image generation, the limited availability of large, publicly accessible datasets with text reports poses challenges due to legal and ethical concerns. This work shows that adapting pre-trained Stable Diffusion models to medical imaging modalities is achievable by training text embeddings using Textual Inversion. In this study, we experimented with small medical datasets (100 samples each from three modalities) and trained within hours to generate diagnostically accurate images, as judged by an expert radiologist. Experiments with Textual Inversion training and inference parameters reveal the necessity of larger embeddings and more examples in the medical domain. Classification experiments show an increase in diagnostic accuracy (AUC) for detecting prostate cancer on MRI, from 0.78 to 0.80. Further experiments demonstrate embedding flexibility through disease interpolation, combining pathologies, and inpainting for precise disease appearance control. The trained embeddings are compact (less than 1 MB), enabling easy data sharing with reduced privacy concerns.
comment: Accepted for publication at MIDL 2024
♻ ☆ LHU-Net: A Light Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Medical Image Segmentation
The rise of Transformer architectures has revolutionized medical image segmentation, leading to hybrid models that combine Convolutional Neural Networks (CNNs) and Transformers for enhanced accuracy. However, these models often suffer from increased complexity and overlook the interplay between spatial and channel features, which is vital for segmentation precision. We introduce LHU-Net, a streamlined Hybrid U-Net for volumetric medical image segmentation, designed to first analyze spatial and then channel features for effective feature extraction. Tested on five benchmark datasets (Synapse, LA, Pancreas, ACDC, BRaTS 2018), LHU-Net demonstrated superior efficiency and accuracy, notably achieving a 92.66 Dice score on ACDC with 85\% fewer parameters and a quarter of the computational demand compared to leading models. This performance, achieved without pre-training, extra data, or model ensembles, sets new benchmarks for computational efficiency and accuracy in segmentation, using under 11 million parameters. This achievement highlights that balancing computational efficiency with high accuracy in medical image segmentation is feasible. Our implementation of LHU-Net is freely accessible to the research community on GitHub (https://github.com/xmindflow/LHUNet).
♻ ☆ Lossless Image Compression Using Multi-level Dictionaries: Binary Images
Lossless image compression is required in various applications to reduce storage or transmission costs of images, while requiring the reconstructed images to have zero information loss compared to the original. Existing lossless image compression methods either have simple design but poor compression performance, or complex design, better performance, but with no performance guarantees. In our endeavor to develop a lossless image compression method with low complexity and guaranteed performance, we argue that compressibility of a color image is essentially derived from the patterns in its spatial structure, intensity variations, and color variations. Thus, we divide the overall design of a lossless image compression scheme into three parts that exploit corresponding redundancies. We further argue that the binarized version of an image captures its fundamental spatial structure. In this first part of our work, we propose a scheme for lossless compression of binary images. The proposed scheme first learns dictionaries of $16\times16$, $8\times8$, $4\times4$, and $2\times 2$ square pixel patterns from various datasets of binary images. It then uses these dictionaries to encode binary images. These dictionaries have various interesting properties that are further exploited to construct an efficient and scalable scheme. Our preliminary results show that the proposed scheme consistently outperforms existing conventional and learning based lossless compression approaches, and provides, on average, as much as $1.5\times$ better performance than a common general purpose lossless compression scheme (WebP), more than $3\times$ better performance than a state of the art learning based scheme, and better performance than a specialized scheme for binary image compression (JBIG2).
comment: Corrected axes labels on Figs 8-11, slightly reorganized content with 13 pages, 11 figures, and 5 tables
♻ ☆ GMT: Guided Mask Transformer for Leaf Instance Segmentation
Leaf instance segmentation is a challenging multi-instance segmentation task, aiming to separate and delineate each leaf in an image of a plant. Accurate segmentation of each leaf is crucial for plant-related applications such as the fine-grained monitoring of plant growth and crop yield estimation. This task is challenging because of the high similarity (in shape and colour), great size variation, and heavy occlusions among leaf instances. Furthermore, the typically small size of annotated leaf datasets makes it more difficult to learn the distinctive features needed for precise segmentation. We hypothesise that the key to overcoming the these challenges lies in the specific spatial patterns of leaf distribution. In this paper, we propose the Guided Mask Transformer (GMT), which leverages and integrates leaf spatial distribution priors into a Transformer-based segmentor. These spatial priors are embedded in a set of guide functions that map leaves at different positions into a more separable embedding space. Our GMT consistently outperforms the state-of-the-art on three public plant datasets.
♻ ☆ EmoVOCA: Speech-Driven Emotional 3D Talking Heads
The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available.
♻ ☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD in cross domain setting with the necessary condition that style information must be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the seen labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed module.
♻ ☆ $\textit{sweet}$- An Open Source Modular Platform for Contactless Hand Vascular Biometric Experiments
Current finger-vein or palm-vein recognition systems usually require direct contact of the subject with the apparatus. This can be problematic in environments where hygiene is of primary importance. In this work we present a contactless vascular biometrics sensor platform named \sweet which can be used for hand vascular biometrics studies (wrist, palm, and finger-vein) and surface features such as palmprint. It supports several acquisition modalities such as multi-spectral Near-Infrared (NIR), RGB-color, Stereo Vision (SV) and Photometric Stereo (PS). Using this platform we collect a dataset consisting of the fingers, palm and wrist vascular data of 120 subjects and develop a powerful 3D pipeline for the pre-processing of this data. We then present biometric experimental results, focusing on Finger-Vein Recognition (FVR). Finally, we discuss fusion of multiple modalities, such palm-vein combined with palm-print biometrics. The acquisition software, parts of the hardware design, the new FV dataset, as well as source-code for our experiments are publicly available for research purposes.
♻ ☆ Real-Time Human Action Recognition on Embedded Platforms
With advancements in computer vision and deep learning, video-based human action recognition (HAR) has become practical. However, due to the complexity of the computation pipeline, running HAR on live video streams incurs excessive delays on embedded platforms. This work tackles the real-time performance challenges of HAR with four contributions: 1) an experimental study identifying a standard Optical Flow (OF) extraction technique as the latency bottleneck in a state-of-the-art HAR pipeline, 2) an exploration of the latency-accuracy tradeoff between the standard and deep learning approaches to OF extraction, which highlights the need for a novel, efficient motion feature extractor, 3) the design of Integrated Motion Feature Extractor (IMFE), a novel single-shot neural network architecture for motion feature extraction with drastic improvement in latency, 4) the development of RT-HARE, a real-time HAR system tailored for embedded platforms. Experimental results on an Nvidia Jetson Xavier NX platform demonstrated that RT-HARE realizes real-time HAR at a video frame rate of 30 frames per second while delivering high levels of recognition accuracy.
♻ ☆ Segment Anything Model for Brain Tumor Segmentation
Glioma is a prevalent brain tumor that poses a significant health risk to individuals. Accurate segmentation of brain tumor is essential for clinical diagnosis and treatment. The Segment Anything Model(SAM), released by Meta AI, is a fundamental model in image segmentation and has excellent zero-sample generalization capabilities. Thus, it is interesting to apply SAM to the task of brain tumor segmentation. In this study, we evaluated the performance of SAM on brain tumor segmentation and found that without any model fine-tuning, there is still a gap between SAM and the current state-of-the-art(SOTA) model.
comment: 9 pages, 60 figures
♻ ☆ MV-CLIP: Multi-View CLIP for Zero-shot 3D Shape Recognition
Large-scale pre-trained models have demonstrated impressive performance in vision and language tasks within open-world scenarios. Due to the lack of comparable pre-trained models for 3D shapes, recent methods utilize language-image pre-training to realize zero-shot 3D shape recognition. However, due to the modality gap, pretrained language-image models are not confident enough in the generalization to 3D shape recognition. Consequently, this paper aims to improve the confidence with view selection and hierarchical prompts. Leveraging the CLIP model as an example, we employ view selection on the vision side by identifying views with high prediction confidence from multiple rendered views of a 3D shape. On the textual side, the strategy of hierarchical prompts is proposed for the first time. The first layer prompts several classification candidates with traditional class-level descriptions, while the second layer refines the prediction based on function-level descriptions or further distinctions between the candidates. Remarkably, without the need for additional training, our proposed method achieves impressive zero-shot 3D classification accuracies of 84.44%, 91.51%, and 66.17% on ModelNet40, ModelNet10, and ShapeNet Core55, respectively. Furthermore, we will make the code publicly available to facilitate reproducibility and further research in this area.
♻ ☆ The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review
Automated driving has the potential to revolutionize personal, public, and freight mobility. Beside accurately perceiving the environment, automated vehicles must plan a safe, comfortable, and efficient motion trajectory. To promote safety and progress, many works rely on modules that predict the future motion of surrounding traffic. Modular automated driving systems commonly handle prediction and planning as sequential, separate tasks. While this accounts for the influence of surrounding traffic on the ego vehicle, it fails to anticipate the reactions of traffic participants to the ego vehicle's behavior. Recent methods increasingly integrate prediction and planning in a joint or interdependent step to model bidirectional interactions. To date, a comprehensive overview of different integration principles is lacking. We systematically review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction. Different facets of the integration ranging from system architecture to high-level behavioral aspects are considered and related to each other. Moreover, we discuss the implications, strengths, and limitations of different integration principles. By pointing out research gaps, describing relevant future challenges, and highlighting trends in the research field, we identify promising directions for future research.
♻ ☆ CustomContrast: A Multilevel Contrastive Perspective For Subject-Driven Text-to-Image Customization
Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.
♻ ☆ Adversarial Doodles: Interpretable and Human-drawable Attacks Provide Describable Insights
DNN-based image classifiers are susceptible to adversarial attacks. Most previous adversarial attacks do not have clear patterns, making it difficult to interpret attacks' results and gain insights into classifiers' mechanisms. Therefore, we propose Adversarial Doodles, which have interpretable shapes. We optimize black bezier curves to fool the classifier by overlaying them onto the input image. By introducing random affine transformation and regularizing the doodled area, we obtain small-sized attacks that cause misclassification even when humans replicate them by hand. Adversarial doodles provide describable insights into the relationship between the human-drawn doodle's shape and the classifier's output, such as "When we add three small circles on a helicopter image, the ResNet-50 classifier mistakenly classifies it as an airplane."
♻ ☆ One-Shot Diffusion Mimicker for Handwritten Text Generation ECCV 2024
Existing handwritten text generation methods often require more than ten handwriting samples as style references. However, in practical applications, users tend to prefer a handwriting generation model that operates with just a single reference sample for its convenience and efficiency. This approach, known as "one-shot generation", significantly simplifies the process but poses a significant challenge due to the difficulty of accurately capturing a writer's style from a single sample, especially when extracting fine details from the characters' edges amidst sparse foreground and undesired background noise. To address this problem, we propose a One-shot Diffusion Mimicker (One-DM) to generate handwritten text that can mimic any calligraphic style with only one reference sample. Inspired by the fact that high-frequency information of the individual sample often contains distinct style patterns (e.g., character slant and letter joining), we develop a novel style-enhanced module to improve the style extraction by incorporating high-frequency components from a single sample. We then fuse the style features with the text content as a merged condition for guiding the diffusion model to produce high-quality handwritten text images. Extensive experiments demonstrate that our method can successfully generate handwriting scripts with just one sample reference in multiple languages, even outperforming previous methods using over ten samples. Our source code is available at https://github.com/dailenson/One-DM.
comment: To appear in ECCV 2024
♻ ☆ DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models
Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
comment: Homepage of DocGenome: https://unimodal4reasoning.github.io/DocGenome_page 22 pages, 11 figures
♻ ☆ Thinking Outside the BBox: Unconstrained Generative Object Compositing
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
♻ ☆ [Citation needed] Data usage and citation practices in medical imaging conferences
Medical imaging papers often focus on methodology, but the quality of the algorithms and the validity of the conclusions are highly dependent on the datasets used. As creating datasets requires a lot of effort, researchers often use publicly available datasets, there is however no adopted standard for citing the datasets used in scientific papers, leading to difficulty in tracking dataset usage. In this work, we present two open-source tools we created that could help with the detection of dataset usage, a pipeline \url{https://github.com/TheoSourget/Public_Medical_Datasets_References} using OpenAlex and full-text analysis, and a PDF annotation software \url{https://github.com/TheoSourget/pdf_annotator} used in our study to manually label the presence of datasets. We applied both tools on a study of the usage of 20 publicly available medical datasets in papers from MICCAI and MIDL. We compute the proportion and the evolution between 2013 and 2023 of 3 types of presence in a paper: cited, mentioned in the full text, cited and mentioned. Our findings demonstrate the concentration of the usage of a limited set of datasets. We also highlight different citing practices, making the automation of tracking difficult.
comment: Accepted at MIDL conference Updated with the revised version after MIDL rebuttal
♻ ☆ HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects ECCV 2024
Generating human-object interactions (HOIs) is critical with the tremendous advances of digital avatars. Existing datasets are typically limited to humans interacting with a single object while neglecting the ubiquitous manipulation of multiple objects. Thus, we propose HIMO, a large-scale MoCap dataset of full-body human interacting with multiple objects, containing 3.3K 4D HOI sequences and 4.08M 3D HOI frames. We also annotate HIMO with detailed textual descriptions and temporal segments, benchmarking two novel tasks of HOI synthesis conditioned on either the whole text prompt or the segmented text prompts as fine-grained timeline control. To address these novel tasks, we propose a dual-branch conditional diffusion model with a mutual interaction module for HOI synthesis. Besides, an auto-regressive generation pipeline is also designed to obtain smooth transitions between HOI segments. Experimental results demonstrate the generalization ability to unseen object geometries and temporal compositions.
comment: Project page: https://lvxintao.github.io/himo, accepted by ECCV 2024
♻ ☆ MoPE: Parameter-Efficient and Scalable Multimodal Fusion via Mixture of Prompt Experts
Despite the demonstrated parameter efficiency of prompt-based multimodal fusion methods, their limited adaptivity and expressiveness often result in suboptimal performance compared to other tuning approaches. In this paper, we address these limitations by decomposing the vanilla prompts to adaptively capture instance-level features. Building upon this decomposition, we introduce the mixture of prompt experts (MoPE) technique to enhance the expressiveness of prompt tuning. MoPE leverages multimodal pairing priors to route the most effective prompt on a per-instance basis. Compared to vanilla prompting, our MoPE-based fusion method exhibits greater expressiveness, scaling more effectively with the training data and the overall number of trainable parameters. We also investigate regularization terms for expert routing, which lead to emergent expert specialization during training, paving the way for interpretable soft prompting. Extensive experiments across six multimodal datasets spanning four modalities demonstrate that our method achieves state-of-the-art results for prompt fusion, matching or even surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code will be released: https://github.com/songrise/MoPE.
comment: Under Review, Extended version of arxiv:2312.03734
♻ ☆ Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes
Recently, 3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results, while allowing the rendering of high-resolution images in real-time. However, leveraging 3D Gaussians for surface reconstruction poses significant challenges due to the explicit and disconnected nature of 3D Gaussians. In this work, we present Gaussian Opacity Fields (GOF), a novel approach for efficient, high-quality, and adaptive surface reconstruction in unbounded scenes. Our GOF is derived from ray-tracing-based volume rendering of 3D Gaussians, enabling direct geometry extraction from 3D Gaussians by identifying its levelset, without resorting to Poisson reconstruction or TSDF fusion as in previous work. We approximate the surface normal of Gaussians as the normal of the ray-Gaussian intersection plane, enabling the application of regularization that significantly enhances geometry. Furthermore, we develop an efficient geometry extraction method utilizing Marching Tetrahedra, where the tetrahedral grids are induced from 3D Gaussians and thus adapt to the scene's complexity. Our evaluations reveal that GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis. Further, it compares favorably to or even outperforms, neural implicit methods in both quality and speed.
comment: Project page: https://niujinshuchong.github.io/gaussian-opacity-fields
♻ ☆ Distribution Discrepancy and Feature Heterogeneity for Active 3D Object Detection
LiDAR-based 3D object detection is a critical technology for the development of autonomous driving and robotics. However, the high cost of data annotation limits its advancement. We propose a novel and effective active learning (AL) method called Distribution Discrepancy and Feature Heterogeneity (DDFH), which simultaneously considers geometric features and model embeddings, assessing information from both the instance-level and frame-level perspectives. Distribution Discrepancy evaluates the difference and novelty of instances within the unlabeled and labeled distributions, enabling the model to learn efficiently with limited data. Feature Heterogeneity ensures the heterogeneity of intra-frame instance features, maintaining feature diversity while avoiding redundant or similar instances, thus minimizing annotation costs. Finally, multiple indicators are efficiently aggregated using Quantile Transform, providing a unified measure of informativeness. Extensive experiments demonstrate that DDFH outperforms the current state-of-the-art (SOTA) methods on the KITTI and Waymo datasets, effectively reducing the bounding box annotation cost by 56.3% and showing robustness when working with both one-stage and two-stage models.
comment: Accepted to CoRL 2024
♻ ☆ In-Loop Filtering via Trained Look-Up Tables
In-loop filtering (ILF) is a key technology for removing the artifacts in image/video coding standards. Recently, neural network-based in-loop filtering methods achieve remarkable coding gains beyond the capability of advanced video coding standards, which becomes a powerful coding tool candidate for future video coding standards. However, the utilization of deep neural networks brings heavy time and computational complexity, and high demands of high-performance hardware, which is challenging to apply to the general uses of coding scene. To address this limitation, inspired by explorations in image restoration, we propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table (LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache the output values of the DNN into a LUT via traversing all possible inputs. At testing time in the coding process, the filtered pixel is generated by locating input pixels (to-be-filtered pixel with reference pixels) and interpolating cached filtered pixel values. To further enable the large filtering reference range with the limited storage cost of LUT, we introduce the enhanced indexing mechanism in the filtering process, and clipping/finetuning mechanism in the training. The proposed method is implemented into the Versatile Video Coding (VVC) reference software, VTM-11.0. Experimental results show that the ultrafast, very fast, and fast mode of the proposed method achieves on average 0.13%/0.34%/0.51%, and 0.10%/0.27%/0.39% BD-rate reduction, under the all intra (AI) and random access (RA) configurations. Especially, our method has friendly time and computational complexity, only 101%/102%-104%/108% time increase with 0.13-0.93 kMACs/pixel, and only 164-1148 KB storage cost for a single model. Our solution may shed light on the journey of practical neural network-based coding tool evolution.
comment: 11 pages, 6 figures
♻ ☆ Image Quality Assessment With Compressed Sampling
No-Reference Image Quality Assessment (NR-IQA) aims at estimating image quality in accordance with subjective human perception. However, most methods focus on exploring increasingly complex networks to improve the final performance,accompanied by limitations on input images. Especially when applied to high-resolution (HR) images, these methods offen have to adjust the size of original image to meet model input.To further alleviate the aforementioned issue, we propose two networks for NR-IQA with Compressive Sampling (dubbed CL-IQA and CS-IQA). They consist of four components: (1) The Compressed Sampling Module (CSM) to sample the image (2)The Adaptive Embedding Module (AEM). The measurements are embedded by AEM to extract high-level features. (3) The Vision Transformer and Scale Swin TranBlocksformer Moudle(SSTM) to extract deep features. (4) The Dual Branch (DB) to get final quality score. Experiments show that our proposed methods outperform other methods on various datasets with less data usage.
♻ ☆ FedCCL: Federated Dual-Clustered Feature Contrast Under Domain Heterogeneity
Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server. One significant challenge is that the distributed data is not independently and identically distributed (non-IID), typically including both intra-domain and inter-domain heterogeneity. However, recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges. Given these limitations, this paper clarifies these two non-IID challenges and attempts to introduce cluster representation to address them from both local and global perspectives. Specifically, we propose a dual-clustered feature contrast-based FL framework with dual focuses. First, we employ clustering on the local representations of each client, aiming to capture intra-class information based on these local clusters at a high level of granularity. Then, we facilitate cross-client knowledge sharing by pulling the local representation closer to clusters shared by clients with similar semantics while pushing them away from clusters with dissimilar semantics. Second, since the sizes of local clusters belonging to the same class may differ for each client, we further utilize clustering on the global side and conduct averaging to create a consistent global signal for guiding each local training in a contrastive manner. Experimental results on multiple datasets demonstrate that our proposal achieves comparable or superior performance gain under intra-domain and inter-domain heterogeneity.
comment: This work was accepted by Information Fusion Journal
♻ ☆ Breast Cancer Image Classification Method Based on Deep Transfer Learning
To address the issues of limited samples, time-consuming feature design, and low accuracy in detection and classification of breast cancer pathological images, a breast cancer image classification model algorithm combining deep learning and transfer learning is proposed. This algorithm is based on the DenseNet structure of deep neural networks, and constructs a network model by introducing attention mechanisms, and trains the enhanced dataset using multi-level transfer learning. Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0\% in the test set, with a significantly improved classification accuracy compared to previous models, making it applicable to medical breast cancer detection tasks.
comment: 12 pages, 8 figures, 2024 International Conference on Image Processing, Machine Learning and Pattern Recognition
♻ ☆ MME-RealWorld: Could Your Multimodal LLM Challenge High-Resolution Real-World Scenarios that are Difficult for Humans?
Comprehensive evaluation of Multimodal Large Language Models (MLLMs) has recently garnered widespread attention in the research community. However, we observe that existing benchmarks present several common barriers that make it difficult to measure the significant challenges that models face in the real world, including: 1) small data scale leads to a large performance variance; 2) reliance on model-based annotations results in restricted data quality; 3) insufficient task difficulty, especially caused by the limited image resolution. To tackle these issues, we introduce MME-RealWorld. Specifically, we collect more than $300$K images from public datasets and the Internet, filtering $13,366$ high-quality images for annotation. This involves the efforts of professional $25$ annotators and $7$ experts in MLLMs, contributing to $29,429$ question-answer pairs that cover $43$ subtasks across $5$ real-world scenarios, extremely challenging even for humans. As far as we know, MME-RealWorld is the largest manually annotated benchmark to date, featuring the highest resolution and a targeted focus on real-world applications. We further conduct a thorough evaluation involving $28$ prominent MLLMs, such as GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet. Our results show that even the most advanced models struggle with our benchmarks, where none of them reach $60\%$ accuracy. The challenges of perceiving high-resolution images and understanding complex real-world scenarios remain urgent issues to be addressed. The data and evaluation code are released at https://mme-realworld.github.io/ .
comment: Project Page: https://mme-realworld.github.io/
♻ ☆ Fisheye-GS: Lightweight and Extensible Gaussian Splatting Module for Fisheye Cameras
Recently, 3D Gaussian Splatting (3DGS) has garnered attention for its high fidelity and real-time rendering. However, adapting 3DGS to different camera models, particularly fisheye lenses, poses challenges due to the unique 3D to 2D projection calculation. Additionally, there are inefficiencies in the tile-based splatting, especially for the extreme curvature and wide field of view of fisheye lenses, which are crucial for its broader real-life applications. To tackle these challenges, we introduce Fisheye-GS.This innovative method recalculates the projection transformation and its gradients for fisheye cameras. Our approach can be seamlessly integrated as a module into other efficient 3D rendering methods, emphasizing its extensibility, lightweight nature, and modular design. Since we only modified the projection component, it can also be easily adapted for use with different camera models. Compared to methods that train after undistortion, our approach demonstrates a clear improvement in visual quality.
♻ ☆ Classification Matters: Improving Video Action Detection with Class-Specific Attention ECCV 2024
Video action detection (VAD) aims to detect actors and classify their actions in a video. We figure that VAD suffers more from classification rather than localization of actors. Hence, we analyze how prevailing methods form features for classification and find that they prioritize actor regions, yet often overlooking the essential contextual information necessary for accurate classification. Accordingly, we propose to reduce the bias toward actor and encourage paying attention to the context that is relevant to each action class. By assigning a class-dedicated query to each action class, our model can dynamically determine where to focus for effective classification. The proposed model demonstrates superior performance on three challenging benchmarks with significantly fewer parameters and less computation.
comment: 31 pages, accepted to ECCV 2024 (oral)
♻ ☆ Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles, yet their creation and upkeep present significant cost and timeliness challenges. The online construction of HD maps using on-board sensors has emerged as a promising solution; however, these methods can be impeded by incomplete data due to occlusions and inclement weather. This paper proposes the PriorDrive framework to addresses these limitations by harnessing the power of prior maps, significantly enhancing the robustness and accuracy of online HD map construction. Our approach integrates a variety of prior maps, such as OpenStreetMap's Standard Definition Maps (SD maps), outdated HD maps from vendors, and locally constructed maps from historical vehicle data. To effectively encode this prior information into online mapping models, we introduce a Hybrid Prior Representation (HPQuery) that standardizes the representation of diverse map elements. At the core of PriorDrive is the Unified Vector Encoder (UVE), which employs a dual encoding mechanism to process vector data. The intra-vector encoder captures fine-grained local features, while the inter-vector encoder integrates global context. Furthermore, we propose a segment-level and point-level pre-training strategy that enables the UVE to learn the prior distribution of vector data, thereby improving the encoder's generalizability and performance. Through extensive testing on the nuScenes dataset, we demonstrate that PriorDrive is highly compatible with various online mapping models and substantially improves map prediction capabilities. The integration of prior maps through the PriorDrive framework offers a robust solution to the challenges of single-perception data, paving the way for more reliable autonomous vehicle navigation.
♻ ☆ Attack on Scene Flow using Point Clouds
Deep neural networks have made significant advancements in accurately estimating scene flow using point clouds, which is vital for many applications like video analysis, action recognition, and navigation. The robustness of these techniques, however, remains a concern, particularly in the face of adversarial attacks that have been proven to deceive state-of-the-art deep neural networks in many domains. Surprisingly, the robustness of scene flow networks against such attacks has not been thoroughly investigated. To address this problem, the proposed approach aims to bridge this gap by introducing adversarial white-box attacks specifically tailored for scene flow networks. Experimental results show that the generated adversarial examples obtain up to 33.7 relative degradation in average end-point error on the KITTI and FlyingThings3D datasets. The study also reveals the significant impact that attacks targeting point clouds in only one dimension or color channel have on average end-point error. Analyzing the success and failure of these attacks on the scene flow networks and their 2D optical flow network variants shows a higher vulnerability for the optical flow networks. Code is available at https://github.com/aheldis/Attack-on-Scene-Flow-using-Point-Clouds.git.
♻ ☆ Open-World Distributed Robot Self-Localization with Transferable Visual Vocabulary and Both Absolute and Relative Features
Visual robot self-localization is a fundamental problem in visual robot navigation and has been studied across various problem settings, including monocular and sequential localization. However, many existing studies focus primarily on single-robot scenarios, with limited exploration into general settings involving diverse robots connected through wireless networks with constrained communication capacities, such as open-world distributed robot systems. In particular, issues related to the transfer and sharing of key knowledge, such as visual descriptions and visual vocabulary, between robots have been largely neglected. This work introduces a new self-localization framework designed for open-world distributed robot systems that maintains state-of-the-art performance while offering two key advantages: (1) it employs an unsupervised visual vocabulary model that maps to multimodal, lightweight, and transferable visual features, and (2) the visual vocabulary itself is a lightweight and communication-friendly model. Although the primary focus is on encoding monocular view images, the framework can be easily extended to sequential localization applications. By utilizing complementary similarity-preserving features -- both absolute and relative -- the framework meets the requirements for being unsupervised, multimodal, lightweight, and transferable. All features are learned and recognized using a lightweight graph neural network and scene graph. The effectiveness of the proposed method is validated in both passive and active self-localization scenarios.
comment: 8 pages, 5 figures, Supplementary Material for International Conference Papers
♻ ☆ Robust Long-Range Perception Against Sensor Misalignment in Autonomous Vehicles
Advances in machine learning algorithms for sensor fusion have significantly improved the detection and prediction of other road users, thereby enhancing safety. However, even a small angular displacement in the sensor's placement can cause significant degradation in output, especially at long range. In this paper, we demonstrate a simple yet generic and efficient multi-task learning approach that not only detects misalignment between different sensor modalities but is also robust against them for long-range perception. Along with the amount of misalignment, our method also predicts calibrated uncertainty, which can be useful for filtering and fusing predicted misalignment values over time. In addition, we show that the predicted misalignment parameters can be used for self-correcting input sensor data, further improving the perception performance under sensor misalignment.
♻ ☆ Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning
Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions. However, existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise. To address this issue, we propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics, thus enhancing the quality of the representations and the robustness of the model. To fully exploit the rich semantic information in textual knowledge, we propose a semantic-guided fusion module. By evaluating the correlations between different modalities, this module facilitates cross-modal interactions gated by modality-invariant representations. Furthermore, we introduce a modality discriminator to disentangle modality-invariant and modality-specific subspaces. Experimental results on two public datasets demonstrate the superiority of our model. Our code is available at https://github.com/X-G-Y/SATI.
comment: change Title, Authors, Abstract
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ Looking Backward: Streaming Video-to-Video Translation with Feature Banks
This paper introduces StreamV2V, a diffusion model that achieves real-time streaming video-to-video (V2V) translation with user prompts. Unlike prior V2V methods using batches to process limited frames, we opt to process frames in a streaming fashion, to support unlimited frames. At the heart of StreamV2V lies a backward-looking principle that relates the present to the past. This is realized by maintaining a feature bank, which archives information from past frames. For incoming frames, StreamV2V extends self-attention to include banked keys and values and directly fuses similar past features into the output. The feature bank is continually updated by merging stored and new features, making it compact but informative. StreamV2V stands out for its adaptability and efficiency, seamlessly integrating with image diffusion models without fine-tuning. It can run 20 FPS on one A100 GPU, being 15x, 46x, 108x, and 158x faster than FlowVid, CoDeF, Rerender, and TokenFlow, respectively. Quantitative metrics and user studies confirm StreamV2V's exceptional ability to maintain temporal consistency.
comment: Project page: https://jeff-liangf.github.io/projects/streamv2v
♻ ☆ ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: https://github.com/UniModal4Reasoning/ChartVLM
comment: Code and dataset are available for downloading at: https://github.com/UniModal4Reasoning/ChartVLM 22 pages, 15 figures
♻ ☆ A Survey of Multimodal Composite Editing and Retrieval
In the real world, where information is abundant and diverse across different modalities, understanding and utilizing various data types to improve retrieval systems is a key focus of research. Multimodal composite retrieval integrates diverse modalities such as text, image and audio, etc. to provide more accurate, personalized, and contextually relevant results. To facilitate a deeper understanding of this promising direction, this survey explores multimodal composite editing and retrieval in depth, covering image-text composite editing, image-text composite retrieval, and other multimodal composite retrieval. In this survey, we systematically organize the application scenarios, methods, benchmarks, experiments, and future directions. Multimodal learning is a hot topic in large model era, and have also witnessed some surveys in multimodal learning and vision-language models with transformers published in the PAMI journal. To the best of our knowledge, this survey is the first comprehensive review of the literature on multimodal composite retrieval, which is a timely complement of multimodal fusion to existing reviews. To help readers' quickly track this field, we build the project page for this survey, which can be found at https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.
comment: 20 pages, 3 figures, and 11 tables
♻ ☆ The Principle of Uncertain Maximum Entropy
The principle of maximum entropy is a well-established technique for choosing a distribution that matches available information while minimizing bias. It finds broad use across scientific disciplines and in machine learning. However, the principle as defined by is susceptible to noise and error in observations. This forces real-world practitioners to use relaxed versions of the principle in an ad hoc way, negatively impacting interpretation. To address this situation, we present a new principle we call uncertain maximum entropy that generalizes the classic principle and provides interpretable solutions irrespective of the observational methods in use. We introduce a convex approximation and expectation-maximization based algorithm for finding solutions to our new principle. Finally, we contrast this new technique with two simpler generally applicable solutions theoretically and experimentally show our technique provides superior accuracy.
♻ ☆ EndoOmni: Zero-Shot Cross-Dataset Depth Estimation in Endoscopy by Robust Self-Learning from Noisy Labels
Single-image depth estimation is essential for endoscopy tasks such as localization, reconstruction, and augmented reality. Most existing methods in surgical scenes focus on in-domain depth estimation, limiting their real-world applicability. This constraint stems from the scarcity and inferior labeling quality of medical data for training. In this work, we present EndoOmni, the first foundation model for zero-shot cross-domain depth estimation for endoscopy. To harness the potential of diverse training data, we refine the advanced self-learning paradigm that employs a teacher model to generate pseudo-labels, guiding a student model trained on large-scale labeled and unlabeled data. To address training disturbance caused by inherent noise in depth labels, we propose a robust training framework that leverages both depth labels and estimated confidence from the teacher model to jointly guide the student model training. Moreover, we propose a weighted scale-and-shift invariant loss to adaptively adjust learning weights based on label confidence, thus imposing learning bias towards cleaner label pixels while reducing the influence of highly noisy pixels. Experiments on zero-shot relative depth estimation show that our EndoOmni improves state-of-the-art methods in medical imaging for 41\% and existing foundation models for 25\% in terms of absolute relative error on specific dataset. Furthermore, our model provides strong initialization for fine-tuning to metric depth estimation, maintaining superior performance in both in-domain and out-of-domain scenarios. The source code will be publicly available.
♻ ☆ Privacy Leakage on DNNs: A Survey of Model Inversion Attacks and Defenses
Deep Neural Networks (DNNs) have revolutionized various domains with their exceptional performance across numerous applications. However, Model Inversion (MI) attacks, which disclose private information about the training dataset by abusing access to the trained models, have emerged as a formidable privacy threat. Given a trained network, these attacks enable adversaries to reconstruct high-fidelity data that closely aligns with the private training samples, posing significant privacy concerns. Despite the rapid advances in the field, we lack a comprehensive and systematic overview of existing MI attacks and defenses. To fill this gap, this paper thoroughly investigates this realm and presents a holistic survey. Firstly, our work briefly reviews early MI studies on traditional machine learning scenarios. We then elaborately analyze and compare numerous recent attacks and defenses on Deep Neural Networks (DNNs) across multiple modalities and learning tasks. By meticulously analyzing their distinctive features, we summarize and classify these methods into different categories and provide a novel taxonomy. Finally, this paper discusses promising research directions and presents potential solutions to open issues. To facilitate further study on MI attacks and defenses, we have implemented an open-source model inversion toolbox on GitHub (https://github.com/ffhibnese/Model-Inversion-Attack-ToolBox).
♻ ☆ Text-guided Controllable Mesh Refinement for Interactive 3D Modeling SIGGRAPH
We propose a novel technique for adding geometric details to an input coarse 3D mesh guided by a text prompt. Our method is composed of three stages. First, we generate a single-view RGB image conditioned on the input coarse geometry and the input text prompt. This single-view image generation step allows the user to pre-visualize the result and offers stronger conditioning for subsequent multi-view generation. Second, we use our novel multi-view normal generation architecture to jointly generate six different views of the normal images. The joint view generation reduces inconsistencies and leads to sharper details. Third, we optimize our mesh with respect to all views and generate a fine, detailed geometry as output. The resulting method produces an output within seconds and offers explicit user control over the coarse structure, pose, and desired details of the resulting 3D mesh.
comment: SIGGRAPH Asia 2024
♻ ☆ RetinaRegNet: A Zero-Shot Approach for Retinal Image Registration
We introduce RetinaRegNet, a zero-shot image registration model designed to register retinal images with minimal overlap, large deformations, and varying image quality. RetinaRegNet addresses these challenges and achieves robust and accurate registration through the following steps. First, we extract features from the moving and fixed images using latent diffusion models. We then sample feature points from the fixed image using a combination of the SIFT algorithm and random point sampling. For each sampled point, we identify its corresponding point in the moving image using a 2D correlation map, which computes the cosine similarity between the diffusion feature vectors of the point in the fixed image and all pixels in the moving image. Second, we eliminate most incorrectly detected point correspondences (outliers) by enforcing an inverse consistency constraint, ensuring that correspondences are consistent in both forward and backward directions. We further remove outliers with large distances between corresponding points using a global transformation based outlier detector. Finally, we implement a two-stage registration framework to handle large deformations. The first stage estimates a homography transformation to achieve global alignment between the images, while the second stage uses a third-order polynomial transformation to estimate local deformations. We evaluated RetinaRegNet on three retinal image registration datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. Our model consistently outperformed state-of-the-art methods across all datasets. The accurate registration achieved by RetinaRegNet enables the tracking of eye disease progression, enhances surgical planning, and facilitates the evaluation of treatment efficacy. Our code is publicly available at: https://github.com/mirthAI/RetinaRegNet.
Artificial Intelligence 103
☆ "My Grade is Wrong!": A Contestable AI Framework for Interactive Feedback in Evaluating Student Essays
Interactive feedback, where feedback flows in both directions between teacher and student, is more effective than traditional one-way feedback. However, it is often too time-consuming for widespread use in educational practice. While Large Language Models (LLMs) have potential for automating feedback, they struggle with reasoning and interaction in an interactive setting. This paper introduces CAELF, a Contestable AI Empowered LLM Framework for automating interactive feedback. CAELF allows students to query, challenge, and clarify their feedback by integrating a multi-agent system with computational argumentation. Essays are first assessed by multiple Teaching-Assistant Agents (TA Agents), and then a Teacher Agent aggregates the evaluations through formal reasoning to generate feedback and grades. Students can further engage with the feedback to refine their understanding. A case study on 500 critical thinking essays with user studies demonstrates that CAELF significantly improves interactive feedback, enhancing the reasoning and interaction capabilities of LLMs. This approach offers a promising solution to overcoming the time and resource barriers that have limited the adoption of interactive feedback in educational settings.
☆ Introducing Perturb-ability Score (PS) to Enhance Robustness Against Evasion Adversarial Attacks on ML-NIDS
This paper proposes a novel Perturb-ability Score (PS) that can be used to identify Network Intrusion Detection Systems (NIDS) features that can be easily manipulated by attackers in the problem-space. We demonstrate that using PS to select only non-perturb-able features for ML-based NIDS maintains detection performance while enhancing robustness against adversarial attacks.
☆ SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories
Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be a boon to the research community, helping researchers validate, understand, and extend prior work. To advance towards this goal, we introduce SUPER, the first benchmark designed to evaluate the capability of LLMs in setting up and executing tasks from research repositories. SUPERaims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories. Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub problems derived from the expert set that focus on specific challenges (e.g., configuring a trainer), and 602 automatically generated problems for larger-scale development. We introduce various evaluation measures to assess both task success and progress, utilizing gold solutions when available or approximations otherwise. We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios. This illustrates the challenge of this task, and suggests that SUPER can serve as a valuable resource for the community to make and measure progress.
☆ Synthetic continued pretraining
Pretraining on large-scale, unstructured internet text has enabled language models to acquire a significant amount of world knowledge. However, this knowledge acquisition is data-inefficient -- to learn a given fact, models must be trained on hundreds to thousands of diverse representations of it. This poses a challenge when adapting a pretrained model to a small corpus of domain-specific documents, where each fact may appear rarely or only once. We propose to bridge this gap with synthetic continued pretraining: using the small domain-specific corpus to synthesize a large corpus more amenable to learning, and then performing continued pretraining on the synthesized corpus. We instantiate this proposal with EntiGraph, a synthetic data augmentation algorithm that extracts salient entities from the source documents and then generates diverse text by drawing connections between the sampled entities. Synthetic continued pretraining using EntiGraph enables a language model to answer questions and follow generic instructions related to the source documents without access to them. If instead, the source documents are available at inference time, we show that the knowledge acquired through our approach compounds with retrieval-augmented generation. To better understand these results, we build a simple mathematical model of EntiGraph, and show how synthetic data augmentation can "rearrange" knowledge to enable more data-efficient learning.
☆ Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation
Modern listwise recommendation systems need to consider both long-term user perceptions and short-term interest shifts. Reinforcement learning can be applied on recommendation to study such a problem but is also subject to large search space, sparse user feedback and long interactive latency. Motivated by recent progress in hierarchical reinforcement learning, we propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation. Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy by modeling the process as a sequential decision-making problem. We argue that such framework has a well-defined decomposition of the outra-session context and the intra-session context, which are encoded by the high-level and low-level agents, respectively. To verify this argument, we implement both a simulator-based environment and an industrial dataset-based experiment. Results observe significant performance improvement by our method, compared with several well-known baselines. Data and codes have been made public.
comment: 18 pages, 4 figures
☆ SoK: Security and Privacy Risks of Medical AI
The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services. While these advancements hold great promise for enhancing patient care and healthcare delivery efficiency, they also expose sensitive medical data and system integrity to potential cyberattacks. This paper explores the security and privacy threats posed by AI/ML applications in healthcare. Through a thorough examination of existing research across a range of medical domains, we have identified significant gaps in understanding the adversarial attacks targeting medical AI systems. By outlining specific adversarial threat models for medical settings and identifying vulnerable application domains, we lay the groundwork for future research that investigates the security and resilience of AI-driven medical systems. Through our analysis of different threat models and feasibility studies on adversarial attacks in different medical domains, we provide compelling insights into the pressing need for cybersecurity research in the rapidly evolving field of AI healthcare technology.
☆ CLNX: Bridging Code and Natural Language for C/C++ Vulnerability-Contributing Commits Identification
Large Language Models (LLMs) have shown great promise in vulnerability identification. As C/C++ comprises half of the Open-Source Software (OSS) vulnerabilities over the past decade and updates in OSS mainly occur through commits, enhancing LLMs' ability to identify C/C++ Vulnerability-Contributing Commits (VCCs) is essential. However, current studies primarily focus on further pre-training LLMs on massive code datasets, which is resource-intensive and poses efficiency challenges. In this paper, we enhance the ability of BERT-based LLMs to identify C/C++ VCCs in a lightweight manner. We propose CodeLinguaNexus (CLNX) as a bridge facilitating communication between C/C++ programs and LLMs. Based on commits, CLNX efficiently converts the source code into a more natural representation while preserving key details. Specifically, CLNX first applies structure-level naturalization to decompose complex programs, followed by token-level naturalization to interpret complex symbols. We evaluate CLNX on public datasets of 25,872 C/C++ functions with their commits. The results show that CLNX significantly enhances the performance of LLMs on identifying C/C++ VCCs. Moreover, CLNX-equipped CodeBERT achieves new state-of-the-art and identifies 38 OSS vulnerabilities in the real world.
comment: 8 pages, 2 figures, conference
☆ What to align in multimodal contrastive learning?
Humans perceive the world through multisensory integration, blending the information of different modalities to adapt their behavior. Contrastive learning offers an appealing solution for multimodal self-supervised learning. Indeed, by considering each modality as a different view of the same entity, it learns to align features of different modalities in a shared representation space. However, this approach is intrinsically limited as it only learns shared or redundant information between modalities, while multimodal interactions can arise in other ways. In this work, we introduce CoMM, a Contrastive MultiModal learning strategy that enables the communication between modalities in a single multimodal space. Instead of imposing cross- or intra- modality constraints, we propose to align multimodal representations by maximizing the mutual information between augmented versions of these multimodal features. Our theoretical analysis shows that shared, synergistic and unique terms of information naturally emerge from this formulation, allowing us to estimate multimodal interactions beyond redundancy. We test CoMM both in a controlled and in a series of real-world settings: in the former, we demonstrate that CoMM effectively captures redundant, unique and synergistic information between modalities. In the latter, CoMM learns complex multimodal interactions and achieves state-of-the-art results on the six multimodal benchmarks.
comment: 22 pages
☆ Awaking the Slides: A Tuning-free and Knowledge-regulated AI Tutoring System via Language Model Coordination
The vast pre-existing slides serve as rich and important materials to carry lecture knowledge. However, effectively leveraging lecture slides to serve students is difficult due to the multi-modal nature of slide content and the heterogeneous teaching actions. We study the problem of discovering effective designs that convert a slide into an interactive lecture. We develop Slide2Lecture, a tuning-free and knowledge-regulated intelligent tutoring system that can (1) effectively convert an input lecture slide into a structured teaching agenda consisting of a set of heterogeneous teaching actions; (2) create and manage an interactive lecture that generates responsive interactions catering to student learning demands while regulating the interactions to follow teaching actions. Slide2Lecture contains a complete pipeline for learners to obtain an interactive classroom experience to learn the slide. For teachers and developers, Slide2Lecture enables customization to cater to personalized demands. The evaluation rated by annotators and students shows that Slide2Lecture is effective in outperforming the remaining implementation. Slide2Lecture's online deployment has made more than 200K interaction with students in the 3K lecture sessions. We open source Slide2Lecture's implementation in https://anonymous.4open.science/r/slide2lecture-4210/.
☆ Demo: SGCode: A Flexible Prompt-Optimizing System for Secure Generation of Code
This paper introduces SGCode, a flexible prompt-optimizing system to generate secure code with large language models (LLMs). SGCode integrates recent prompt-optimization approaches with LLMs in a unified system accessible through front-end and back-end APIs, enabling users to 1) generate secure code, which is free of vulnerabilities, 2) review and share security analysis, and 3) easily switch from one prompt optimization approach to another, while providing insights on model and system performance. We populated SGCode on an AWS server with PromSec, an approach that optimizes prompts by combining an LLM and security tools with a lightweight generative adversarial graph neural network to detect and fix security vulnerabilities in the generated code. Extensive experiments show that SGCode is practical as a public tool to gain insights into the trade-offs between model utility, secure code generation, and system cost. SGCode has only a marginal cost compared with prompting LLMs. SGCode is available at: http://3.131.141.63:8501/.
☆ Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks
Large Vision-Language Models (LVLMs), trained on multimodal big datasets, have significantly advanced AI by excelling in vision-language tasks. However, these models remain vulnerable to adversarial attacks, particularly jailbreak attacks, which bypass safety protocols and cause the model to generate misleading or harmful responses. This vulnerability stems from both the inherent susceptibilities of LLMs and the expanded attack surface introduced by the visual modality. We propose Sim-CLIP+, a novel defense mechanism that adversarially fine-tunes the CLIP vision encoder by leveraging a Siamese architecture. This approach maximizes cosine similarity between perturbed and clean samples, facilitating resilience against adversarial manipulations. Sim-CLIP+ offers a plug-and-play solution, allowing seamless integration into existing LVLM architectures as a robust vision encoder. Unlike previous defenses, our method requires no structural modifications to the LVLM and incurs minimal computational overhead. Sim-CLIP+ demonstrates effectiveness against both gradient-based adversarial attacks and various jailbreak techniques. We evaluate Sim-CLIP+ against three distinct jailbreak attack strategies and perform clean evaluations using standard downstream datasets, including COCO for image captioning and OKVQA for visual question answering. Extensive experiments demonstrate that Sim-CLIP+ maintains high clean accuracy while substantially improving robustness against both gradient-based adversarial attacks and jailbreak techniques. Our code and robust vision encoders are available at https://github.com/speedlab-git/Robust-Encoder-against-Jailbreak-attack.git.
☆ Federated Impression for Learning with Distributed Heterogeneous Data
Standard deep learning-based classification approaches may not always be practical in real-world clinical applications, as they require a centralized collection of all samples. Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data, which can help mitigate privacy and data ownership issues. In FL, sub-optimal convergence caused by data heterogeneity is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers. Through experimentation in this study, we show that data heterogeneity leads to the phenomenon of catastrophic forgetting during local training. We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression. To achieve this, we distill the global model resulting from each communication round. Subsequently, we use the synthetic data alongside the local data to enhance the generalization of local training. Extensive experiments show that the proposed method achieves state-of-the-art performance on both the BloodMNIST and Retina datasets, which contain label imbalance and domain shift, with an improvement in classification accuracy of up to 20%.
☆ Online Decision MetaMorphFormer: A Casual Transformer-Based Reinforcement Learning Framework of Universal Embodied Intelligence
Interactive artificial intelligence in the motion control field is an interesting topic, especially when universal knowledge is adaptive to multiple tasks and universal environments. Despite there being increasing efforts in the field of Reinforcement Learning (RL) with the aid of transformers, most of them might be limited by the offline training pipeline, which prohibits exploration and generalization abilities. To address this limitation, we propose the framework of Online Decision MetaMorphFormer (ODM) which aims to achieve self-awareness, environment recognition, and action planning through a unified model architecture. Motivated by cognitive and behavioral psychology, an ODM agent is able to learn from others, recognize the world, and practice itself based on its own experience. ODM can also be applied to any arbitrary agent with a multi-joint body, located in different environments, and trained with different types of tasks using large-scale pre-trained datasets. Through the use of pre-trained datasets, ODM can quickly warm up and learn the necessary knowledge to perform the desired task, while the target environment continues to reinforce the universal policy. Extensive online experiments as well as few-shot and zero-shot environmental tests are used to verify ODM's performance and generalization ability. The results of our study contribute to the study of general artificial intelligence in embodied and cognitive fields. Code, results, and video examples can be found on the website \url{https://rlodm.github.io/odm/}.
comment: 12 pages, 6 figures
☆ A Framework for Predicting the Impact of Game Balance Changes through Meta Discovery
A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games like Pok\'emon or League of Legends, it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this paper we present such a Meta Discovery framework, leveraging Reinforcement Learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in Pok\'emon Showdown, a collection of competitive Pok\'emon tiers, with high accuracy.
comment: 11 pages, 1 figure, IEEE Transactions on Games
☆ Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization
The rapid advancement of artificial intelligence systems has brought the challenge of AI alignment to the forefront of research, particularly in complex decision-making and task execution. As these systems surpass human-level performance in sophisticated problems, ensuring their alignment with human values, intentions, and ethical guidelines becomes crucial. Building on previous work in explanation generation for human-agent alignment, we address the more complex dynamics of multi-agent systems and human-AI teams. This paper introduces a novel approach to model alignment through weak-to-strong generalization in the context of language models. We present a framework where a strong model facilitates the improvement of a weaker model, bridging the gap between explanation generation and model alignment. Our method, formalized as a facilitation function, allows for the transfer of capabilities from advanced models to less capable ones without direct access to extensive training data. Our results suggest that this facilitation-based approach not only enhances model performance but also provides insights into the nature of model alignment and the potential for scalable oversight of AI systems.
☆ Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving
Recent advances in deep learning have markedly improved autonomous driving (AD) models, particularly end-to-end systems that integrate perception, prediction, and planning stages, achieving state-of-the-art performance. However, these models remain vulnerable to adversarial attacks, where human-imperceptible perturbations can disrupt decision-making processes. While adversarial training is an effective method for enhancing model robustness against such attacks, no prior studies have focused on its application to end-to-end AD models. In this paper, we take the first step in adversarial training for end-to-end AD models and present a novel Module-wise Adaptive Adversarial Training (MA2T). However, extending conventional adversarial training to this context is highly non-trivial, as different stages within the model have distinct objectives and are strongly interconnected. To address these challenges, MA2T first introduces Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives rather than each independent module loss. Additionally, we introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module based on their contributions (accumulated reduction rates) for better balance and robust training. To demonstrate the efficacy of our defense, we conduct extensive experiments on the widely-used nuScenes dataset across several end-to-end AD models under both white-box and black-box attacks, where our method outperforms other baselines by large margins (+5-10%). Moreover, we validate the robustness of our defense through closed-loop evaluation in the CARLA simulation environment, showing improved resilience even against natural corruption.
comment: 14 pages
☆ MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications
The rapid development of Large Language Models (LLMs) for healthcare applications has spurred calls for holistic evaluation beyond frequently-cited benchmarks like USMLE, to better reflect real-world performance. While real-world assessments are valuable indicators of utility, they often lag behind the pace of LLM evolution, likely rendering findings obsolete upon deployment. This temporal disconnect necessitates a comprehensive upfront evaluation that can guide model selection for specific clinical applications. We introduce MEDIC, a framework assessing LLMs across five critical dimensions of clinical competence: medical reasoning, ethics and bias, data and language understanding, in-context learning, and clinical safety. MEDIC features a novel cross-examination framework quantifying LLM performance across areas like coverage and hallucination detection, without requiring reference outputs. We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks. Our results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths, such as low hallucination or lower cost of inference. MEDIC's multifaceted evaluation reveals these performance trade-offs, bridging the gap between theoretical capabilities and practical implementation in healthcare settings, ensuring that the most promising models are identified and adapted for diverse healthcare applications.
comment: Technical report
☆ Exploring User-level Gradient Inversion with a Diffusion Prior NeurIPS 2023
We explore user-level gradient inversion as a new attack surface in distributed learning. We first investigate existing attacks on their ability to make inferences about private information beyond training data reconstruction. Motivated by the low reconstruction quality of existing methods, we propose a novel gradient inversion attack that applies a denoising diffusion model as a strong image prior in order to enhance recovery in the large batch setting. Unlike traditional attacks, which aim to reconstruct individual samples and suffer at large batch and image sizes, our approach instead aims to recover a representative image that captures the sensitive shared semantic information corresponding to the underlying user. Our experiments with face images demonstrate the ability of our methods to recover realistic facial images along with private user attributes.
comment: Presented at the International Workshop on Federated Learning in the Age of Foundation Models in conjunction with NeurIPS 2023
☆ Using Generative Agents to Create Tip Sheets for Investigative Data Reporting
This paper introduces a system using generative AI agents to create tip sheets for investigative data reporting. Our system employs three specialized agents--an analyst, a reporter, and an editor--to collaboratively generate and refine tips from datasets. We validate this approach using real-world investigative stories, demonstrating that our agent-based system generally generates more newsworthy and accurate insights compared to a baseline model without agents, although some variability was noted between different stories. Our findings highlight the potential of generative AI to provide leads for investigative data reporting.
comment: Short paper to be presented at Computation + Journalism 2024
☆ Propaganda to Hate: A Multimodal Analysis of Arabic Memes with Multi-Agent LLMs
In the past decade, social media platforms have been used for information dissemination and consumption. While a major portion of the content is posted to promote citizen journalism and public awareness, some content is posted to mislead users. Among different content types such as text, images, and videos, memes (text overlaid on images) are particularly prevalent and can serve as powerful vehicles for propaganda, hate, and humor. In the current literature, there have been efforts to individually detect such content in memes. However, the study of their intersection is very limited. In this study, we explore the intersection between propaganda and hate in memes using a multi-agent LLM-based approach. We extend the propagandistic meme dataset with coarse and fine-grained hate labels. Our finding suggests that there is an association between propaganda and hate in memes. We provide detailed experimental results that can serve as a baseline for future studies. We will make the experimental resources publicly available to the community.
comment: propaganda, hate-speech, disinformation, misinformation, fake news, LLMs, GPT-4, multimodality, multimodal LLMs
☆ Behavioral Cloning Models Reality Check for Autonomous Driving
How effective are recent advancements in autonomous vehicle perception systems when applied to real-world autonomous vehicle control? While numerous vision-based autonomous vehicle systems have been trained and evaluated in simulated environments, there is a notable lack of real-world validation for these systems. This paper addresses this gap by presenting the real-world validation of state-of-the-art perception systems that utilize Behavior Cloning (BC) for lateral control, processing raw image data to predict steering commands. The dataset was collected using a scaled research vehicle and tested on various track setups. Experimental results demonstrate that these methods predict steering angles with low error margins in real-time, indicating promising potential for real-world applications.
☆ Heterogeneity-Aware Coordination for Federated Learning via Stitching Pre-trained blocks
Federated learning (FL) coordinates multiple devices to collaboratively train a shared model while preserving data privacy. However, large memory footprint and high energy consumption during the training process excludes the low-end devices from contributing to the global model with their own data, which severely deteriorates the model performance in real-world scenarios. In this paper, we propose FedStitch, a hierarchical coordination framework for heterogeneous federated learning with pre-trained blocks. Unlike the traditional approaches that train the global model from scratch, for a new task, FedStitch composes the global model via stitching pre-trained blocks. Specifically, each participating client selects the most suitable block based on their local data from the candidate pool composed of blocks from pre-trained models. The server then aggregates the optimal block for stitching. This process iterates until a new stitched network is generated. Except for the new training paradigm, FedStitch consists of the following three core components: 1) an RL-weighted aggregator, 2) a search space optimizer deployed on the server side, and 3) a local energy optimizer deployed on each participating client. The RL-weighted aggregator helps to select the right block in the non-IID scenario, while the search space optimizer continuously reduces the size of the candidate block pool during stitching. Meanwhile, the local energy optimizer is designed to minimize energy consumption of each client while guaranteeing the overall training progress. The results demonstrate that compared to existing approaches, FedStitch improves the model accuracy up to 20.93%. At the same time, it achieves up to 8.12% speedup, reduces the memory footprint up to 79.5%, and achieves 89.41% energy saving at most during the learning procedure.
☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90\%. The code and dataset will be released.
comment: 10 pages, 7 figures
☆ Cyber Deception: State of the art, Trends and Open challenges
The growing interest in cybersecurity has significantly increased articles designing and implementing various Cyber Deception (CYDEC) mechanisms. This trend reflects the urgent need for new strategies to address cyber threats effectively. Since its emergence, CYDEC has established itself as an innovative defense against attackers, thanks to its proactive and reactive capabilities, finding applications in numerous real-life scenarios. Despite the considerable work devoted to CYDEC, the literature still presents significant gaps. In particular, there has not been (i) a comprehensive analysis of the main components characterizing CYDEC, (ii) a generic classification covering all types of solutions, nor (iii) a survey of the current state of the literature in various contexts. This article aims to fill these gaps through a detailed review of the main features that comprise CYDEC, developing a comprehensive classification taxonomy. In addition, the different frameworks used to generate CYDEC are reviewed, presenting a more comprehensive one. Existing solutions in the literature using CYDEC, both without Artificial Intelligence (AI) and with AI, are studied and compared. Finally, the most salient trends of the current state of the art are discussed, offering a list of pending challenges for future research.
comment: 38 pages
☆ How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions
Artificial intelligence (AI) permeates all fields of life, which resulted in new challenges in requirements engineering for artificial intelligence (RE4AI), e.g., the difficulty in specifying and validating requirements for AI or considering new quality requirements due to emerging ethical implications. It is currently unclear if existing RE methods are sufficient or if new ones are needed to address these challenges. Therefore, our goal is to provide a comprehensive overview of RE4AI to researchers and practitioners. What has been achieved so far, i.e., what practices are available, and what research gaps and challenges still need to be addressed? To achieve this, we conducted a systematic mapping study combining query string search and extensive snowballing. The extracted data was aggregated, and results were synthesized using thematic analysis. Our selection process led to the inclusion of 126 primary studies. Existing RE4AI research focuses mainly on requirements analysis and elicitation, with most practices applied in these areas. Furthermore, we identified requirements specification, explainability, and the gap between machine learning engineers and end-users as the most prevalent challenges, along with a few others. Additionally, we proposed seven potential research directions to address these challenges. Practitioners can use our results to identify and select suitable RE methods for working on their AI-based systems, while researchers can build on the identified gaps and research directions to push the field forward.
comment: Accepted in Requirements Engineering Journal, 2024
☆ A Perspective on AI-Guided Molecular Simulations in VR: Exploring Strategies for Imitation Learning in Hyperdimensional Molecular Systems
Molecular dynamics simulations are a crucial computational tool for researchers to understand and engineer molecular structure and function in areas such as drug discovery, protein engineering, and material design. Despite their utility, MD simulations are expensive, owing to the high dimensionality of molecular systems. Interactive molecular dynamics in virtual reality (iMD-VR) has recently been developed as a 'human-in-the-loop' strategy, which leverages high-performance computing to accelerate the researcher's ability to solve the hyperdimensional sampling problem. By providing an immersive 3D environment that enables visualization and manipulation of real-time molecular motion, iMD-VR enables researchers and students to efficiently and intuitively explore and navigate these complex, high-dimensional systems. iMD-VR platforms offer a unique opportunity to quickly generate rich datasets that capture human experts' spatial insight regarding molecular structure and function. This paper explores the possibility of employing user-generated iMD-VR datasets to train AI agents via imitation learning (IL). IL is an important technique in robotics that enables agents to mimic complex behaviors from expert demonstrations, thus circumventing the need for explicit programming or intricate reward design. We review the utilization of IL for manipulation tasks in robotics and discuss how iMD-VR recordings could be used to train IL models for solving specific molecular 'tasks'. We then investigate how such approaches could be applied to the data captured from iMD-VR recordings. Finally, we outline the future research directions and potential challenges of using AI agents to augment human expertise to efficiently navigate conformational spaces, highlighting how this approach could provide valuable insight across domains such as materials science, protein engineering, and computer-aided drug design.
comment: (Accepted for presentation at the First Workshop on "eXtended Reality \& Intelligent Agents" (XRIA24) @ ECAI24, Santiago De Compostela (Spain), 20 October 2024)
☆ Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging ICONIP2024
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules, offering the capability to inspect tissue microstructures and is the only in-vivo method to reconstruct white matter fiber tracts non-invasively. The DWI signal can be analysed with the diffusion tensor imaging (DTI) model to estimate the directionality of water diffusion within voxels. Several scalar metrics, including axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), can be further derived from DTI to quantitatively summarise the microstructural integrity of brain tissue. These scalar metrics have played an important role in understanding the organisation and health of brain tissue at a microscopic level in clinical studies. However, reliable DTI metrics rely on DWI acquisitions with high gradient directions, which often go beyond the commonly used clinical protocols. To enhance the utility of clinically acquired DWI and save scanning time for robust DTI analysis, this work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions. DirGeo-DTI leverages directional encoding and geometric constraints to facilitate the training process. Two public DWI datasets were used for evaluation, demonstrating the effectiveness of the proposed method. Extensive experimental results show that the proposed method achieves the best performance compared to existing DTI enhancement methods and potentially reveals further clinical insights with routine clinical DWI scans.
comment: Accepted to ICONIP2024, Diffusion Weighted Imaging, Diffusion Tensor Imaging, Angular Resolution Enhancement, Fractional Anisotropy
☆ Linear Time Complexity Conformers with SummaryMixing for Streaming Speech Recognition
Automatic speech recognition (ASR) with an encoder equipped with self-attention, whether streaming or non-streaming, takes quadratic time in the length of the speech utterance. This slows down training and decoding, increase their cost, and limit the deployment of the ASR in constrained devices. SummaryMixing is a promising linear-time complexity alternative to self-attention for non-streaming speech recognition that, for the first time, preserves or outperforms the accuracy of self-attention models. Unfortunately, the original definition of SummaryMixing is not suited to streaming speech recognition. Hence, this work extends SummaryMixing to a Conformer Transducer that works in both a streaming and an offline mode. It shows that this new linear-time complexity speech encoder outperforms self-attention in both scenarios while requiring less compute and memory during training and decoding.
☆ Recurrent Aggregators in Neural Algorithmic Reasoning
Neural algorithmic reasoning (NAR) is an emerging field that seeks to design neural networks that mimic classical algorithmic computations. Today, graph neural networks (GNNs) are widely used in neural algorithmic reasoners due to their message passing framework and permutation equivariance. In this extended abstract, we challenge this design choice, and replace the equivariant aggregation function with a recurrent neural network. While seemingly counter-intuitive, this approach has appropriate grounding when nodes have a natural ordering -- and this is the case frequently in established reasoning benchmarks like CLRS-30. Indeed, our recurrent NAR (RNAR) model performs very strongly on such tasks, while handling many others gracefully. A notable achievement of RNAR is its decisive state-of-the-art result on the Heapsort and Quickselect tasks, both deemed as a significant challenge for contemporary neural algorithmic reasoners -- especially the latter, where RNAR achieves a mean micro-F1 score of 87%.
☆ Zero-Shot Text-to-Speech as Golden Speech Generator: A Systematic Framework and its Applicability in Automatic Pronunciation Assessment
Second language (L2) learners can improve their pronunciation by imitating golden speech, especially when the speech that aligns with their respective speech characteristics. This study explores the hypothesis that learner-specific golden speech generated with zero-shot text-to-speech (ZS-TTS) techniques can be harnessed as an effective metric for measuring the pronunciation proficiency of L2 learners. Building on this exploration, the contributions of this study are at least two-fold: 1) design and development of a systematic framework for assessing the ability of a synthesis model to generate golden speech, and 2) in-depth investigations of the effectiveness of using golden speech in automatic pronunciation assessment (APA). Comprehensive experiments conducted on the L2-ARCTIC and Speechocean762 benchmark datasets suggest that our proposed modeling can yield significant performance improvements with respect to various assessment metrics in relation to some prior arts. To our knowledge, this study is the first to explore the role of golden speech in both ZS-TTS and APA, offering a promising regime for computer-assisted pronunciation training (CAPT).
comment: 11 pages, 4 figures, 4 tables
☆ Leveraging Unstructured Text Data for Federated Instruction Tuning of Large Language Models
Federated instruction tuning enables multiple clients to collaboratively fine-tune a shared large language model (LLM) that can follow humans' instructions without directly sharing raw data. However, existing literature impractically requires that all the clients readily hold instruction-tuning data (i.e., structured instruction-response pairs), which necessitates massive human annotations since clients' data is usually unstructured text instead. Addressing this, we propose a novel and flexible framework FedIT-U2S, which can automatically transform unstructured corpus into structured data for federated instruction tuning. FedIT-U2S consists two key steps: (1) few-shot instruction-tuning data generation, where each unstructured data piece together with several examples is combined to prompt an LLM in generating an instruction-response pair. To further enhance the flexibility, a retrieval-based example selection technique is proposed, where the examples are automatically selected based on the relatedness between the client's data piece and example pool, bypassing the need of determining examples in advance. (2) A typical federated instruction tuning process based on the generated data. Overall, FedIT-U2S can be applied to diverse scenarios as long as the client holds valuable text corpus, broadening the application scope of federated instruction tuning. We conduct a series of experiments on three domains (medicine, knowledge, and math), showing that our proposed FedIT-U2S can consistently and significantly brings improvement over the base LLM.
comment: 11 pages, work in progress
☆ Deep Learning Techniques for Hand Vein Biometrics: A Comprehensive Review
Biometric authentication has garnered significant attention as a secure and efficient method of identity verification. Among the various modalities, hand vein biometrics, including finger vein, palm vein, and dorsal hand vein recognition, offer unique advantages due to their high accuracy, low susceptibility to forgery, and non-intrusiveness. The vein patterns within the hand are highly complex and distinct for each individual, making them an ideal biometric identifier. Additionally, hand vein recognition is contactless, enhancing user convenience and hygiene compared to other modalities such as fingerprint or iris recognition. Furthermore, the veins are internally located, rendering them less susceptible to damage or alteration, thus enhancing the security and reliability of the biometric system. The combination of these factors makes hand vein biometrics a highly effective and secure method for identity verification. This review paper delves into the latest advancements in deep learning techniques applied to finger vein, palm vein, and dorsal hand vein recognition. It encompasses all essential fundamentals of hand vein biometrics, summarizes publicly available datasets, and discusses state-of-the-art metrics used for evaluating the three modes. Moreover, it provides a comprehensive overview of suggested approaches for finger, palm, dorsal, and multimodal vein techniques, offering insights into the best performance achieved, data augmentation techniques, and effective transfer learning methods, along with associated pretrained deep learning models. Additionally, the review addresses research challenges faced and outlines future directions and perspectives, encouraging researchers to enhance existing methods and propose innovative techniques.
☆ DCMAC: Demand-aware Customized Multi-Agent Communication via Upper Bound Training
Efficient communication can enhance the overall performance of collaborative multi-agent reinforcement learning. A common approach is to share observations through full communication, leading to significant communication overhead. Existing work attempts to perceive the global state by conducting teammate model based on local information. However, they ignore that the uncertainty generated by prediction may lead to difficult training. To address this problem, we propose a Demand-aware Customized Multi-Agent Communication (DCMAC) protocol, which use an upper bound training to obtain the ideal policy. By utilizing the demand parsing module, agent can interpret the gain of sending local message on teammate, and generate customized messages via compute the correlation between demands and local observation using cross-attention mechanism. Moreover, our method can adapt to the communication resources of agents and accelerate the training progress by appropriating the ideal policy which is trained with joint observation. Experimental results reveal that DCMAC significantly outperforms the baseline algorithms in both unconstrained and communication constrained scenarios.
☆ Credibility-Limited Revision for Epistemic Spaces
We consider credibility-limited revision in the framework of belief change for epistemic spaces, permitting inconsistent belief sets and inconsistent beliefs. In this unrestricted setting, the class of credibility-limited revision operators does not include any AGM revision operators. We extend the class of credibility-limited revision operators in a way that all AGM revision operators are included while keeping the original spirit of credibility-limited revision. Extended credibility-limited revision operators are defined axiomatically. A semantic characterization of extended credibility-limited revision operators that employ total preorders on possible worlds is presented.
☆ Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment ICIP
The no-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference. We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs. The utilization of Transformer encoders aims to mitigate locality bias and generate a non-local representation by sequentially processing CNN features, which inherently capture local visual structures. Establishing a stronger connection between subjective and objective assessments is achieved through sorting within batches of images based on relative distance information. A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models under equivariant transformations. Our approach ensures model robustness by maintaining consistency between an image and its horizontally flipped equivalent. Through empirical evaluation of five popular image quality assessment datasets, the proposed model outperforms alternative algorithms in the context of no-reference image quality assessment datasets, especially on smaller datasets. Codes are available at \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS}
comment: Accepted in International Conference on Image Processing (ICIP)
☆ A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption
A new algorithm for incremental learning in the context of Tiny Machine learning (TinyML) is presented, which is optimized for low-performance and energy efficient embedded devices. TinyML is an emerging field that deploys machine learning models on resource-constrained devices such as microcontrollers, enabling intelligent applications like voice recognition, anomaly detection, predictive maintenance, and sensor data processing in environments where traditional machine learning models are not feasible. The algorithm solve the challenge of catastrophic forgetting through the use of knowledge distillation to create a small, distilled dataset. The novelty of the method is that the size of the model can be adjusted dynamically, so that the complexity of the model can be adapted to the requirements of the task. This offers a solution for incremental learning in resource-constrained environments, where both model size and computational efficiency are critical factors. Results show that the proposed algorithm offers a promising approach for TinyML incremental learning on embedded devices. The algorithm was tested on five datasets including: CIFAR10, MNIST, CORE50, HAR, Speech Commands. The findings indicated that, despite using only 43% of Floating Point Operations (FLOPs) compared to a larger fixed model, the algorithm experienced a negligible accuracy loss of just 1%. In addition, the presented method is memory efficient. While state-of-the-art incremental learning is usually very memory intensive, the method requires only 1% of the original data set.
☆ Advancing On-Device Neural Network Training with TinyPropv2: Dynamic, Sparse, and Efficient Backpropagation IJCNN
This study introduces TinyPropv2, an innovative algorithm optimized for on-device learning in deep neural networks, specifically designed for low-power microcontroller units. TinyPropv2 refines sparse backpropagation by dynamically adjusting the level of sparsity, including the ability to selectively skip training steps. This feature significantly lowers computational effort without substantially compromising accuracy. Our comprehensive evaluation across diverse datasets CIFAR 10, CIFAR100, Flower, Food, Speech Command, MNIST, HAR, and DCASE2020 reveals that TinyPropv2 achieves near-parity with full training methods, with an average accuracy drop of only around 1 percent in most cases. For instance, against full training, TinyPropv2's accuracy drop is minimal, for example, only 0.82 percent on CIFAR 10 and 1.07 percent on CIFAR100. In terms of computational effort, TinyPropv2 shows a marked reduction, requiring as little as 10 percent of the computational effort needed for full training in some scenarios, and consistently outperforms other sparse training methodologies. These findings underscore TinyPropv2's capacity to efficiently manage computational resources while maintaining high accuracy, positioning it as an advantageous solution for advanced embedded device applications in the IoT ecosystem.
comment: 2024 International Joint Conference on Neural Networks (IJCNN)
☆ Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering
Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. In this work, we tackle this challenge from the perspective of camera selection. We begin by constructing a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images. Based on this matrix, we use the Intra-List Diversity (ILD) metric to assess camera redundancy, formulating the camera selection task as an optimization problem. Then we apply a diversity-based sampling algorithm to optimize the camera selection. We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments, closely mimicking real-world scenarios. Experimental results demonstrate that our strategy outperforms other approaches under time and memory constraints. Remarkably, our method achieves performance comparable to models trained on the full dataset, while using only an average of 15% of the frames and 75% of the allotted time.
☆ CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer
Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging. We found that the design principles of most existing methods are influenced by SR tasks based on real-world images and do not take into account the significance of the multi-level structure in pathological images, even if they can achieve respectable objective metric evaluations. In this work, we delve into two super-resolution working paradigms and propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture. Our network consists of two branches: one dedicated to learning super-resolution and the other to high-frequency wavelet features. To generate high-resolution histopathology images, the Transformer module shares and fuses features from both branches at various stages. Notably, we have designed a specialized wavelet reconstruction module to effectively enhance the wavelet domain features and enable the network to operate in different modes, allowing for the introduction of additional relevant information from cross-scale images. Our experimental results demonstrate that our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations and can substantially boost the accuracy of image diagnostic networks.
☆ Ontology-Free General-Domain Knowledge Graph-to-Text Generation Dataset Synthesis using Large Language Model
Knowledge Graph-to-Text (G2T) generation involves verbalizing structured knowledge graphs into natural language text. Recent advancements in Pretrained Language Models (PLMs) have improved G2T performance, but their effectiveness depends on datasets with precise graph-text alignment. However, the scarcity of high-quality, general-domain G2T generation datasets restricts progress in the general-domain G2T generation research. To address this issue, we introduce Wikipedia Ontology-Free Graph-text dataset (WikiOFGraph), a new large-scale G2T dataset generated using a novel method that leverages Large Language Model (LLM) and Data-QuestEval. Our new dataset, which contains 5.85M general-domain graph-text pairs, offers high graph-text consistency without relying on external ontologies. Experimental results demonstrate that PLM fine-tuned on WikiOFGraph outperforms those trained on other datasets across various evaluation metrics. Our method proves to be a scalable and effective solution for generating high-quality G2T data, significantly advancing the field of G2T generation.
comment: 18 pages, 9 figures
☆ Multimodal Emotion Recognition with Vision-language Prompting and Modality Dropout
In this paper, we present our solution for the Second Multimodal Emotion Recognition Challenge Track 1(MER2024-SEMI). To enhance the accuracy and generalization performance of emotion recognition, we propose several methods for Multimodal Emotion Recognition. Firstly, we introduce EmoVCLIP, a model fine-tuned based on CLIP using vision-language prompt learning, designed for video-based emotion recognition tasks. By leveraging prompt learning on CLIP, EmoVCLIP improves the performance of pre-trained CLIP on emotional videos. Additionally, to address the issue of modality dependence in multimodal fusion, we employ modality dropout for robust information fusion. Furthermore, to aid Baichuan in better extracting emotional information, we suggest using GPT-4 as the prompt for Baichuan. Lastly, we utilize a self-training strategy to leverage unlabeled videos. In this process, we use unlabeled videos with high-confidence pseudo-labels generated by our model and incorporate them into the training set. Experimental results demonstrate that our model ranks 1st in the MER2024-SEMI track, achieving an accuracy of 90.15% on the test set.
☆ Legal Fact Prediction: Task Definition and Dataset Construction
Legal facts refer to the facts that can be proven by acknowledged evidence in a trial. They form the basis for the determination of court judgments. This paper introduces a novel NLP task: legal fact prediction, which aims to predict the legal fact based on a list of evidence. The predicted facts can instruct the parties and their lawyers involved in a trial to strengthen their submissions and optimize their strategies during the trial. Moreover, since real legal facts are difficult to obtain before the final judgment, the predicted facts also serve as an important basis for legal judgment prediction. We construct a benchmark dataset consisting of evidence lists and ground-truth legal facts for real civil loan cases, LFPLoan. Our experiments on this dataset show that this task is non-trivial and requires further considerable research efforts.
☆ Native vs Non-Native Language Prompting: A Comparative Analysis
Large language models (LLMs) have shown remarkable abilities in different fields, including standard Natural Language Processing (NLP) tasks. To elicit knowledge from LLMs, prompts play a key role, consisting of natural language instructions. Most open and closed source LLMs are trained on available labeled and unlabeled resources--digital content such as text, images, audio, and videos. Hence, these models have better knowledge for high-resourced languages but struggle with low-resourced languages. Since prompts play a crucial role in understanding their capabilities, the language used for prompts remains an important research question. Although there has been significant research in this area, it is still limited, and less has been explored for medium to low-resourced languages. In this study, we investigate different prompting strategies (native vs. non-native) on 11 different NLP tasks associated with 12 different Arabic datasets (9.7K data points). In total, we conducted 197 experiments involving 3 LLMs, 12 datasets, and 3 prompting strategies. Our findings suggest that, on average, the non-native prompt performs the best, followed by mixed and native prompts.
comment: Foundation Models, Large Language Models, Arabic NLP, LLMs, Native, Contextual Understanding, Arabic LLM
☆ Beyond IID: Optimizing Instruction Learning from the Perspective of Instruction Interaction and Dependency
With the availability of various instruction datasets, a pivotal challenge is how to effectively select and integrate these instructions to fine-tune large language models (LLMs). Previous research mainly focuses on selecting individual high-quality instructions. However, these works overlooked the joint interactions and dependencies between different categories of instructions, leading to suboptimal selection strategies. Moreover, the nature of these interaction patterns remains largely unexplored, let alone optimize the instruction set with regard to them. To fill these gaps, in this paper, we: (1) systemically investigate interaction and dependency patterns between different categories of instructions, (2) manage to optimize the instruction set concerning the interaction patterns using a linear programming-based method, and optimize the learning schema of SFT using an instruction dependency taxonomy guided curriculum learning. Experimental results across different LLMs demonstrate improved performance over strong baselines on widely adopted benchmarks.
☆ E-commerce Webpage Recommendation Scheme Base on Semantic Mining and Neural Networks
In e-commerce websites, web mining web page recommendation technology has been widely used. However, recommendation solutions often cannot meet the actual application needs of online shopping users. To address this problem, this paper proposes an e-commerce web page recommendation solution that combines semantic web mining and BP neural networks. First, the web logs of user searches are processed, and 5 features are extracted: content priority, time consumption priority, online shopping users' explicit/implicit feedback on the website, recommendation semantics and input deviation amount. Then, these features are used as input features of the BP neural network to classify and identify the priority of the final output web page. Finally, the web pages are sorted according to priority and recommended to users. This project uses book sales webpages as samples for experiments. The results show that this solution can quickly and accurately identify the webpages required by users.
comment: arXiv admin note: text overlap with arXiv:2409.01137
☆ Improving Anomalous Sound Detection via Low-Rank Adaptation Fine-Tuning of Pre-Trained Audio Models
Anomalous Sound Detection (ASD) has gained significant interest through the application of various Artificial Intelligence (AI) technologies in industrial settings. Though possessing great potential, ASD systems can hardly be readily deployed in real production sites due to the generalization problem, which is primarily caused by the difficulty of data collection and the complexity of environmental factors. This paper introduces a robust ASD model that leverages audio pre-trained models. Specifically, we fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy. Additionally, we investigate the impact of utilizing Low-Rank Adaptation (LoRA) tuning instead of full fine-tuning to address the problem of limited data for fine-tuning. Our experiments on the DCASE2023 Task 2 dataset establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models, including top-tier traditional convolutional networks and speech pre-trained models, which demonstrates the effectiveness of audio pre-trained models with LoRA tuning. Ablation studies are also conducted to showcase the efficacy of the proposed scheme.
☆ Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray imaging (CXR) is an important diagnostic tool used in hospitals to assess patient conditions and monitor changes over time. Generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic X-rays. However, these models mainly focus on conditional generation using single-time-point data, i.e., typically CXRs taken at a specific time with their corresponding reports, limiting their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes, suggesting its potential for further development as a clinical simulation tool. This could offer valuable insights for patient monitoring and treatment planning in the medical field.
☆ What is the Right Notion of Distance between Predict-then-Optimize Tasks?
Comparing datasets is a fundamental task in machine learning, essential for various learning paradigms; from evaluating train and test datasets for model generalization to using dataset similarity for detecting data drift. While traditional notions of dataset distances offer principled measures of similarity, their utility has largely been assessed through prediction error minimization. However, in Predict-then-Optimize (PtO) frameworks, where predictions serve as inputs for downstream optimization tasks, model performance is measured through decision regret minimization rather than prediction error minimization. In this work, we (i) show that traditional dataset distances, which rely solely on feature and label dimensions, lack informativeness in the PtO context, and (ii) propose a new dataset distance that incorporates the impacts of downstream decisions. Our results show that this decision-aware dataset distance effectively captures adaptation success in PtO contexts, providing a PtO adaptation bound in terms of dataset distance. Empirically, we show that our proposed distance measure accurately predicts transferability across three different PtO tasks from the literature.
☆ Large Language Models and the Extended Church-Turing Thesis
The Extended Church-Turing Thesis (ECTT) posits that all effective information processing, including unbounded and non-uniform interactive computations, can be described in terms of interactive Turing machines with advice. Does this assertion also apply to the abilities of contemporary large language models (LLMs)? From a broader perspective, this question calls for an investigation of the computational power of LLMs by the classical means of computability and computational complexity theory, especially the theory of automata. Along these lines, we establish a number of fundamental results. Firstly, we argue that any fixed (non-adaptive) LLM is computationally equivalent to a, possibly very large, deterministic finite-state transducer. This characterizes the base level of LLMs. We extend this to a key result concerning the simulation of space-bounded Turing machines by LLMs. Secondly, we show that lineages of evolving LLMs are computationally equivalent to interactive Turing machines with advice. The latter finding confirms the validity of the ECTT for lineages of LLMs. From a computability viewpoint, it also suggests that lineages of LLMs possess super-Turing computational power. Consequently, in our computational model knowledge generation is in general a non-algorithmic process realized by lineages of LLMs. Finally, we discuss the merits of our findings in the broader context of several related disciplines and philosophies.
comment: In Proceedings NCMA 2024, arXiv:2409.06120
☆ Policy Filtration in RLHF to Fine-Tune LLM for Code Generation
Reinforcement learning from human feedback (RLHF) is one of the key techniques that helps large language models (LLMs) to follow instructions and provide helpful and harmless responses. While direct policy optimization methods exist, state-of-the-art LLMs adopt RL-based methods (usually PPO) in RLHF to train the policy to generate good responses guided by a reward model learned from preference data. The main challenge of these methods is the inaccuracy of the intermediate reward model, especially in code generation tasks that require long and complex reasoning to score a response. We find that the reliability of the reward model varies across responses assigned with different rewards. This motivates us to filter the samples whose rewards may be unreliable to improve signal-to-noise ratio during policy learning, resulting in Policy Filtration for Proximal Policy Optimization (PF-PPO). To choose a proper policy filtration strategy for a given reward model, the coefficient of determination ($R^2$) between rewards and actual scores on filtered samples serves as a good metrics and helps us find several promising strategies. We provide extensive experiments to validate the effectiveness of PF-PPO in code generation tasks, and find that some variants of PF-PPO are highly effective and achieve new state-of-the-art performance across 7-billion-parameter models on HumanEval, MBPP, and a new and more challenging LeetCode Contest benchmark.
☆ Neural Algorithmic Reasoning with Multiple Correct Solutions
Neural Algorithmic Reasoning (NAR) aims to optimize classical algorithms. However, canonical implementations of NAR train neural networks to return only a single solution, even when there are multiple correct solutions to a problem, such as single-source shortest paths. For some applications, it is desirable to recover more than one correct solution. To that end, we give the first method for NAR with multiple solutions. We demonstrate our method on two classical algorithms: Bellman-Ford (BF) and Depth-First Search (DFS), favouring deeper insight into two algorithms over a broader survey of algorithms. This method involves generating appropriate training data as well as sampling and validating solutions from model output. Each step of our method, which can serve as a framework for neural algorithmic reasoning beyond the tasks presented in this paper, might be of independent interest to the field and our results represent the first attempt at this task in the NAR literature.
☆ You Have Thirteen Hours in Which to Solve the Labyrinth: Enhancing AI Game Masters with Function Calling ACL 2024
Developing a consistent and reliable AI game master for text-based games is a challenging task due to the limitations of large language models (LLMs) and the complexity of the game master's role. This paper presents a novel approach to enhance AI game masters by leveraging function calling in the context of the table-top role-playing game "Jim Henson's Labyrinth: The Adventure Game." Our methodology involves integrating game-specific controls through functions, which we show improves the narrative quality and state update consistency of the AI game master. The experimental results, based on human evaluations and unit tests, demonstrate the effectiveness of our approach in enhancing gameplay experience and maintaining coherence with the game state. This work contributes to the advancement of game AI and interactive storytelling, offering insights into the design of more engaging and consistent AI-driven game masters.
comment: Wordplay Workshop @ ACL 2024
☆ FSMDet: Vision-guided feature diffusion for fully sparse 3D detector ECCV
Fully sparse 3D detection has attracted an increasing interest in the recent years. However, the sparsity of the features in these frameworks challenges the generation of proposals because of the limited diffusion process. In addition, the quest for efficiency has led to only few work on vision-assisted fully sparse models. In this paper, we propose FSMDet (Fully Sparse Multi-modal Detection), which use visual information to guide the LiDAR feature diffusion process while still maintaining the efficiency of the pipeline. Specifically, most of fully sparse works focus on complex customized center fusion diffusion/regression operators. However, we observed that if the adequate object completion is performed, even the simplest interpolation operator leads to satisfactory results. Inspired by this observation, we split the vision-guided diffusion process into two modules: a Shape Recover Layer (SRLayer) and a Self Diffusion Layer (SDLayer). The former uses RGB information to recover the shape of the visible part of an object, and the latter uses a visual prior to further spread the features to the center region. Experiments demonstrate that our approach successfully improves the performance of previous fully sparse models that use LiDAR only and reaches SOTA performance in multimodal models. At the same time, thanks to the sparse architecture, our method can be up to 5 times more efficient than previous SOTA methods in the inference process.
comment: Accepted by European Conference on Computer Vision (ECCV) 2024 workshop on VCAD
☆ FreeRide: Harvesting Bubbles in Pipeline Parallelism
The occurrence of bubbles in pipeline parallelism is an inherent limitation that can account for more than 40% of the large language model (LLM) training time and is one of the main reasons for the underutilization of GPU resources in LLM training. Harvesting these bubbles for GPU side tasks can increase resource utilization and reduce training costs but comes with challenges. First, because bubbles are discontinuous with various shapes, programming side tasks becomes difficult while requiring excessive engineering effort. Second, a side task can compete with pipeline training for GPU resources and incur significant overhead. To address these challenges, we propose FreeRide, a system designed to harvest bubbles in pipeline parallelism for side tasks. FreeRide provides programmers with interfaces to implement side tasks easily, manages bubbles and side tasks during pipeline training, and controls access to GPU resources by side tasks to reduce overhead. We demonstrate that FreeRide achieves 7.8% average cost savings with a negligible overhead of about 1% in training LLMs while serving model training, graph analytics, and image processing side tasks.
☆ Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning
The segmentation of the pubic symphysis and fetal head (PSFH) constitutes a pivotal step in monitoring labor progression and identifying potential delivery complications. Despite the advances in deep learning, the lack of annotated medical images hinders the training of segmentation. Traditional semi-supervised learning approaches primarily utilize a unified network model based on Convolutional Neural Networks (CNNs) and apply consistency regularization to mitigate the reliance on extensive annotated data. However, these methods often fall short in capturing the discriminative features of unlabeled data and in delineating the long-range dependencies inherent in the ambiguous boundaries of PSFH within ultrasound images. To address these limitations, we introduce a novel framework, the Dual-Student and Teacher Combining CNN and Transformer (DSTCT), which synergistically integrates the capabilities of CNNs and Transformers. Our framework comprises a Vision Transformer (ViT) as the teacher and two student mod ls one ViT and one CNN. This dual-student setup enables mutual supervision through the generation of both hard and soft pseudo-labels, with the consistency in their predictions being refined by minimizing the classifier determinacy discrepancy. The teacher model further reinforces learning within this architecture through the imposition of consistency regularization constraints. To augment the generalization abilities of our approach, we employ a blend of data and model perturbation techniques. Comprehensive evaluations on the benchmark dataset of the PSFH Segmentation Grand Challenge at MICCAI 2023 demonstrate our DSTCT framework outperformed ten contemporary semi-supervised segmentation methods. Code available at https://github.com/jjm1589/DSTCT.
EyeCLIP: A visual-language foundation model for multi-modal ophthalmic image analysis
Early detection of eye diseases like glaucoma, macular degeneration, and diabetic retinopathy is crucial for preventing vision loss. While artificial intelligence (AI) foundation models hold significant promise for addressing these challenges, existing ophthalmic foundation models primarily focus on a single modality, whereas diagnosing eye diseases requires multiple modalities. A critical yet often overlooked aspect is harnessing the multi-view information across various modalities for the same patient. Additionally, due to the long-tail nature of ophthalmic diseases, standard fully supervised or unsupervised learning approaches often struggle. Therefore, it is essential to integrate clinical text to capture a broader spectrum of diseases. We propose EyeCLIP, a visual-language foundation model developed using over 2.77 million multi-modal ophthalmology images with partial text data. To fully leverage the large multi-modal unlabeled and labeled data, we introduced a pretraining strategy that combines self-supervised reconstructions, multi-modal image contrastive learning, and image-text contrastive learning to learn a shared representation of multiple modalities. Through evaluation using 14 benchmark datasets, EyeCLIP can be transferred to a wide range of downstream tasks involving ocular and systemic diseases, achieving state-of-the-art performance in disease classification, visual question answering, and cross-modal retrieval. EyeCLIP represents a significant advancement over previous methods, especially showcasing few-shot, even zero-shot capabilities in real-world long-tail scenarios.
♻ ☆ Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models
Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.
♻ ☆ Evaluation of real-time transcriptions using end-to-end ASR models
Automatic Speech Recognition (ASR) or Speech-to-text (STT) has greatly evolved in the last few years. Traditional architectures based on pipelines have been replaced by joint end-to-end (E2E) architectures that simplify and streamline the model training process. In addition, new AI training methods, such as weak-supervised learning have reduced the need for high-quality audio datasets for model training. However, despite all these advancements, little to no research has been done on real-time transcription. In real-time scenarios, the audio is not pre-recorded, and the input audio must be fragmented to be processed by the ASR systems. To achieve real-time requirements, these fragments must be as short as possible to reduce latency. However, audio cannot be split at any point as dividing an utterance into two separate fragments will generate an incorrect transcription. Also, shorter fragments provide less context for the ASR model. For this reason, it is necessary to design and test different splitting algorithms to optimize the quality and delay of the resulting transcription. In this paper, three audio splitting algorithms are evaluated with different ASR models to determine their impact on both the quality of the transcription and the end-to-end delay. The algorithms are fragmentation at fixed intervals, voice activity detection (VAD), and fragmentation with feedback. The results are compared to the performance of the same model, without audio fragmentation, to determine the effects of this division. The results show that VAD fragmentation provides the best quality with the highest delay, whereas fragmentation at fixed intervals provides the lowest quality and the lowest delay. The newly proposed feedback algorithm exchanges a 2-4% increase in WER for a reduction of 1.5-2s delay, respectively, to the VAD splitting.
comment: 15 pages, 4 figures
♻ ☆ Real-Time Human Action Recognition on Embedded Platforms
With advancements in computer vision and deep learning, video-based human action recognition (HAR) has become practical. However, due to the complexity of the computation pipeline, running HAR on live video streams incurs excessive delays on embedded platforms. This work tackles the real-time performance challenges of HAR with four contributions: 1) an experimental study identifying a standard Optical Flow (OF) extraction technique as the latency bottleneck in a state-of-the-art HAR pipeline, 2) an exploration of the latency-accuracy tradeoff between the standard and deep learning approaches to OF extraction, which highlights the need for a novel, efficient motion feature extractor, 3) the design of Integrated Motion Feature Extractor (IMFE), a novel single-shot neural network architecture for motion feature extraction with drastic improvement in latency, 4) the development of RT-HARE, a real-time HAR system tailored for embedded platforms. Experimental results on an Nvidia Jetson Xavier NX platform demonstrated that RT-HARE realizes real-time HAR at a video frame rate of 30 frames per second while delivering high levels of recognition accuracy.
♻ ☆ Explaining Learned Reward Functions with Counterfactual Trajectories
Learning rewards from human behaviour or feedback is a promising approach to aligning AI systems with human values but fails to consistently extract correct reward functions. Interpretability tools could enable users to understand and evaluate possible flaws in learned reward functions. We propose Counterfactual Trajectory Explanations (CTEs) to interpret reward functions in reinforcement learning by contrasting an original with a counterfactual partial trajectory and the rewards they each receive. We derive six quality criteria for CTEs and propose a novel Monte-Carlo-based algorithm for generating CTEs that optimises these quality criteria. Finally, we measure how informative the generated explanations are to a proxy-human model by training it on CTEs. CTEs are demonstrably informative for the proxy-human model, increasing the similarity between its predictions and the reward function on unseen trajectories. Further, it learns to accurately judge differences in rewards between trajectories and generalises to out-of-distribution examples. Although CTEs do not lead to a perfect understanding of the reward, our method, and more generally the adaptation of XAI methods, are presented as a fruitful approach for interpreting learned reward functions.
♻ ☆ A Survey of Multimodal Composite Editing and Retrieval
In the real world, where information is abundant and diverse across different modalities, understanding and utilizing various data types to improve retrieval systems is a key focus of research. Multimodal composite retrieval integrates diverse modalities such as text, image and audio, etc. to provide more accurate, personalized, and contextually relevant results. To facilitate a deeper understanding of this promising direction, this survey explores multimodal composite editing and retrieval in depth, covering image-text composite editing, image-text composite retrieval, and other multimodal composite retrieval. In this survey, we systematically organize the application scenarios, methods, benchmarks, experiments, and future directions. Multimodal learning is a hot topic in large model era, and have also witnessed some surveys in multimodal learning and vision-language models with transformers published in the PAMI journal. To the best of our knowledge, this survey is the first comprehensive review of the literature on multimodal composite retrieval, which is a timely complement of multimodal fusion to existing reviews. To help readers' quickly track this field, we build the project page for this survey, which can be found at https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.
comment: 20 pages, 3 figures, and 11 tables
♻ ☆ BernGraph: Probabilistic Graph Neural Networks for EHR-based Medication Recommendations
The medical community believes binary medical event outcomes in EHR data contain sufficient information for making a sensible recommendation. However, there are two challenges to effectively utilizing such data: (1) modeling the relationship between massive 0,1 event outcomes is difficult, even with expert knowledge; (2) in practice, learning can be stalled by the binary values since the equally important 0 entries propagate no learning signals. Currently, there is a large gap between the assumed sufficient information and the reality that no promising results have been shown by utilizing solely the binary data: visiting or secondary information is often necessary to reach acceptable performance. In this paper, we attempt to build the first successful binary EHR data-oriented drug recommendation system by tackling the two difficulties, making sensible drug recommendations solely using the binary EHR medical records. To this end, we take a statistical perspective to view the EHR data as a sample from its cohorts and transform them into continuous Bernoulli probabilities. The transformed entries not only model a deterministic binary event with a distribution but also allow reflecting \emph{event-event} relationship by conditional probability. A graph neural network is learned on top of the transformation. It captures event-event correlations while emphasizing \emph{event-to-patient} features. Extensive results demonstrate that the proposed method achieves state-of-the-art performance on large-scale databases, outperforming baseline methods that use secondary information by a large margin. The source code is available at \url{https://github.com/chenzRG/BEHRMecom}
♻ ☆ Latent-EnSF: A Latent Ensemble Score Filter for High-Dimensional Data Assimilation with Sparse Observation Data
Accurate modeling and prediction of complex physical systems often rely on data assimilation techniques to correct errors inherent in model simulations. Traditional methods like the Ensemble Kalman Filter (EnKF) and its variants as well as the recently developed Ensemble Score Filters (EnSF) face significant challenges when dealing with high-dimensional and nonlinear Bayesian filtering problems with sparse observations, which are ubiquitous in real-world applications. In this paper, we propose a novel data assimilation method, Latent-EnSF, which leverages EnSF with efficient and consistent latent representations of the full states and sparse observations to address the joint challenges of high dimensionlity in states and high sparsity in observations for nonlinear Bayesian filtering. We introduce a coupled Variational Autoencoder (VAE) with two encoders to encode the full states and sparse observations in a consistent way guaranteed by a latent distribution matching and regularization as well as a consistent state reconstruction. With comparison to several methods, we demonstrate the higher accuracy, faster convergence, and higher efficiency of Latent-EnSF for two challenging applications with complex models in shallow water wave propagation and medium-range weather forecasting, for highly sparse observations in both space and time.
comment: 13 pages, 10 figures, 1 table
♻ ☆ Engineering software 2.0 by Interpolating Neural Networks: Unifying Training, Solving, and Calibration
The evolution of artificial intelligence (AI) and neural network theories has revolutionized the way software is programmed, shifting from a hard-coded series of codes, Software 1.0, to a vast neural network, Software 2.0. However, this transition in engineering software has faced challenges such as data scarcity, multi-modality of data, low model accuracy, and slow inference. Here, we propose a new network based on interpolation theories and tensor decomposition, the interpolating neural network (INN) to open the new era of Engineering Software 2.0 that unifies training, solving, and calibration. Instead of interpolating training data, a common notion in computer science, INN interpolates grid points in the physical space whose coordinates and values are trainable. INN features orders of magnitude fewer trainable parameters (or degrees of freedom for solving), faster training/solving, less inference cost, smaller memory footprint, and higher model accuracy compared to multi-layer perceptron (MLP) or physics-informed neural networks (PINN). Various numerical experiments that cover computer science and engineering domains demonstrate that INN can solve over Zetta scale (10^{21}) partial differential equations and train/calibrate a dataset with extraordinary accuracy but fewer parameters using only a single graphics processing unit (GPU).
comment: 9 pages, 2 figures
♻ ☆ Moderating Model Marketplaces: Platform Governance Puzzles for AI Intermediaries
The AI development community is increasingly making use of hosting intermediaries such as Hugging Face provide easy access to user-uploaded models and training data. These model marketplaces lower technical deployment barriers for hundreds of thousands of users, yet can be used in numerous potentially harmful and illegal ways. In this article, we explain ways in which AI systems, which can both `contain' content and be open-ended tools, present one of the trickiest platform governance challenges seen to date. We provide case studies of several incidents across three illustrative platforms -- Hugging Face, GitHub and Civitai -- to examine how model marketplaces moderate models. Building on this analysis, we outline important (and yet nevertheless limited) practices that industry has been developing to respond to moderation demands: licensing, access and use restrictions, automated content moderation, and open policy development. While the policy challenge at hand is a considerable one, we conclude with some ideas as to how platforms could better mobilize resources to act as a careful, fair, and proportionate regulatory access point.
♻ ☆ On the Improvement of Generalization and Stability of Forward-Only Learning via Neural Polarization
Forward-only learning algorithms have recently gained attention as alternatives to gradient backpropagation, replacing the backward step of this latter solver with an additional contrastive forward pass. Among these approaches, the so-called Forward-Forward Algorithm (FFA) has been shown to achieve competitive levels of performance in terms of generalization and complexity. Networks trained using FFA learn to contrastively maximize a layer-wise defined goodness score when presented with real data (denoted as positive samples) and to minimize it when processing synthetic data (corr. negative samples). However, this algorithm still faces weaknesses that negatively affect the model accuracy and training stability, primarily due to a gradient imbalance between positive and negative samples. To overcome this issue, in this work we propose a novel implementation of the FFA algorithm, denoted as Polar-FFA, which extends the original formulation by introducing a neural division (\emph{polarization}) between positive and negative instances. Neurons in each of these groups aim to maximize their goodness when presented with their respective data type, thereby creating a symmetric gradient behavior. To empirically gauge the improved learning capabilities of our proposed Polar-FFA, we perform several systematic experiments using different activation and goodness functions over image classification datasets. Our results demonstrate that Polar-FFA outperforms FFA in terms of accuracy and convergence speed. Furthermore, its lower reliance on hyperparameters reduces the need for hyperparameter tuning to guarantee optimal generalization capabilities, thereby allowing for a broader range of neural network configurations.
comment: Accepted in European Conference on Artificial Intelligence (ECAI), 2024
♻ ☆ The Human Factor in AI Red Teaming: Perspectives from Social and Collaborative Computing
Rapid progress in general-purpose AI has sparked significant interest in "red teaming," a practice of adversarial testing originating in military and cybersecurity applications. AI red teaming raises many questions about the human factor, such as how red teamers are selected, biases and blindspots in how tests are conducted, and harmful content's psychological effects on red teamers. A growing body of HCI and CSCW literature examines related practices-including data labeling, content moderation, and algorithmic auditing. However, few, if any have investigated red teaming itself. Future studies may explore topics ranging from fairness to mental health and other areas of potential harm. We aim to facilitate a community of researchers and practitioners who can begin to meet these challenges with creativity, innovation, and thoughtful reflection.
comment: Updated with camera-ready version
♻ ☆ CriticEval: Evaluating Large Language Model as Critic
Critique ability, i.e., the capability of Large Language Models (LLMs) to identify and rectify flaws in responses, is crucial for their applications in self-improvement and scalable oversight. While numerous studies have been proposed to evaluate critique ability of LLMs, their comprehensiveness and reliability are still limited. To overcome this problem, we introduce CriticEval, a novel benchmark designed to comprehensively and reliably evaluate critique ability of LLMs. Specifically, to ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios. It evaluates both scalar-valued and textual critiques, targeting responses of varying quality. To ensure the reliability, a large number of critiques are annotated to serve as references, enabling GPT-4 to evaluate textual critiques reliably. Extensive evaluations of open-source and closed-source LLMs first validate the reliability of evaluation in CriticEval. Then, experimental results demonstrate the promising potential of open-source LLMs, the effectiveness of critique datasets and several intriguing relationships between the critique ability and some critical factors, including task types, response qualities and critique dimensions. Datasets and evaluation toolkit for CriticEval will be publicly released.
♻ ☆ Explainable Identification of Hate Speech towards Islam using Graph Neural Networks NeurIPS 2023
Islamophobic language on online platforms fosters intolerance, making detection and elimination crucial for promoting harmony. Traditional hate speech detection models rely on NLP techniques like tokenization, part-of-speech tagging, and encoder-decoder models. However, Graph Neural Networks (GNNs), with their ability to utilize relationships between data points, offer more effective detection and greater explainability. In this work, we represent speeches as nodes and connect them with edges based on their context and similarity to develop the graph. This study introduces a novel paradigm using GNNs to identify and explain hate speech towards Islam. Our model leverages GNNs to understand the context and patterns of hate speech by connecting texts via pretrained NLP-generated word embeddings, achieving state-of-the-art performance and enhancing detection accuracy while providing valuable explanations. This highlights the potential of GNNs in combating online hate speech and fostering a safer, more inclusive online environment.
comment: Accepted in: (i) NeurIPS 2023 : Muslims in ML Workshop (non-archival) (https://www.musiml.org/schedule/#:~:text=Azmine%20Toushik%20Wasi) (ii) EMNLP 2024 : NLP for Positive Impact Workshop (archival)
♻ ☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD in cross domain setting with the necessary condition that style information must be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the seen labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed module.
♻ ☆ Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made so far in applying this promising scheme to more abstract entities. A prominent example of these could be the concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.. We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good performance on baseline experiments, where the distributions of the training and testing stages are equal. Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions differ, CL boasts more robust and much better error performance.
♻ ☆ MA-CDMR: An Intelligent Cross-domain Multicast Routing Method based on Multiagent Deep Reinforcement Learning in Multi-domain SDWN
The cross-domain multicast routing problem in a software-defined wireless network with multiple controllers is a classic NP-hard optimization problem. As the network size increases, designing and implementing cross-domain multicast routing paths in the network requires not only designing efficient solution algorithms to obtain the optimal cross-domain multicast tree but also ensuring the timely and flexible acquisition and maintenance of global network state information. However, existing solutions have a limited ability to sense the network traffic state, affecting the quality of service of multicast services. In addition, these methods have difficulty adapting to the highly dynamically changing network states and have slow convergence speeds. To this end, this paper aims to design and implement a multiagent deep reinforcement learning based cross-domain multicast routing method for SDWN with multicontroller domains. First, a multicontroller communication mechanism and a multicast group management module are designed to transfer and synchronize network information between different control domains of the SDWN, thus effectively managing the joining and classification of members in the cross-domain multicast group. Second, a theoretical analysis and proof show that the optimal cross-domain multicast tree includes an interdomain multicast tree and an intradomain multicast tree. An agent is established for each controller, and a cooperation mechanism between multiple agents is designed to effectively optimize cross-domain multicast routing and ensure consistency and validity in the representation of network state information for cross-domain multicast routing decisions. Third, a multiagent reinforcement learning-based method that combines online and offline training is designed to reduce the dependence on the real-time environment and increase the convergence speed of multiple agents.
♻ ☆ SECURE: Benchmarking Large Language Models for Cybersecurity Advisory
Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness. Existing benchmarks provide general evaluations but do not sufficiently address the practical and applied aspects of LLM performance in cybersecurity-specific tasks. To address this gap, we introduce the SECURE (Security Extraction, Understanding \& Reasoning Evaluation), a benchmark designed to assess LLMs performance in realistic cybersecurity scenarios. SECURE includes six datasets focussed on the Industrial Control System sector to evaluate knowledge extraction, understanding, and reasoning based on industry-standard sources. Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts, and offer recommendations for improving LLMs reliability as cyber advisory tools.
♻ ☆ Counting Solutions to Conjunctive Queries: Structural and Hybrid Tractability
Counting the number of answers to conjunctive queries is a fundamental problem in databases that, under standard assumptions, does not have an efficient solution. The issue is inherently #P-hard, extending even to classes of acyclic instances. To address this, we pinpoint tractable classes by examining the structural properties of instances and introducing the novel concept of #-hypertree decomposition. We establish the feasibility of counting answers in polynomial time for classes of queries featuring bounded #-hypertree width. Additionally, employing novel techniques from the realm of fixed-parameter computational complexity, we prove that, for bounded arity queries, the bounded #-hypertree width property precisely delineates the frontier of tractability for the counting problem. This result closes an important gap in our understanding of the complexity of such a basic problem for conjunctive queries and, equivalently, for constraint satisfaction problems (CSPs). Drawing upon #-hypertree decompositions, a ''hybrid'' decomposition method emerges. This approach leverages both the structural characteristics of the query and properties intrinsic to the input database, including keys or other (weaker) degree constraints that limit the permissible combinations of values. Intuitively, these features may introduce distinct structural properties that elude identification through the ''worst-possible database'' perspective inherent in purely structural methods.
♻ ☆ BiLD: Bi-directional Logits Difference Loss for Large Language Model Distillation COLING 2025
In recent years, large language models (LLMs) have shown exceptional capabilities across various natural language processing (NLP) tasks. However, such impressive performance often comes with the trade-off of an increased parameter size, posing significant challenges for widespread deployment. Knowledge distillation (KD) provides a solution by transferring knowledge from a large teacher model to a smaller student model. In this paper, we explore the task-specific distillation of LLMs at the logit level. Our investigation reveals that the logits of fine-tuned LLMs exhibit a more extreme long-tail distribution than those from vision models, with hidden "noise" in the long tail affecting distillation performance. Furthermore, existing logits distillation methods often struggle to effectively utilize the internal ranking information from the logits. To address these, we propose the Bi-directional Logits Difference (BiLD) loss. The BiLD loss filters out the long-tail noise by utilizing only top-$k$ teacher and student logits, and leverages the internal logits ranking information by constructing logits differences. To evaluate BiLD loss, we conduct comprehensive experiments on 13 datasets using two types of LLMs. Our results show that the BiLD loss, with only the top-8 logits, outperforms supervised fine-tuning (SFT), vanilla KL loss, and five other distillation methods from both NLP and CV fields.
comment: Submitted to COLING 2025
♻ ☆ The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review
Automated driving has the potential to revolutionize personal, public, and freight mobility. Beside accurately perceiving the environment, automated vehicles must plan a safe, comfortable, and efficient motion trajectory. To promote safety and progress, many works rely on modules that predict the future motion of surrounding traffic. Modular automated driving systems commonly handle prediction and planning as sequential, separate tasks. While this accounts for the influence of surrounding traffic on the ego vehicle, it fails to anticipate the reactions of traffic participants to the ego vehicle's behavior. Recent methods increasingly integrate prediction and planning in a joint or interdependent step to model bidirectional interactions. To date, a comprehensive overview of different integration principles is lacking. We systematically review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction. Different facets of the integration ranging from system architecture to high-level behavioral aspects are considered and related to each other. Moreover, we discuss the implications, strengths, and limitations of different integration principles. By pointing out research gaps, describing relevant future challenges, and highlighting trends in the research field, we identify promising directions for future research.
♻ ☆ FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks
Modern machine learning models are sensitive to the manipulation of both the training data (poisoning attacks) and inference data (adversarial examples). Recognizing this issue, the community has developed many empirical defenses against both attacks and, more recently, certification methods with provable guarantees against inference-time attacks. However, such guarantees are still largely lacking for training-time attacks. In this work, we present FullCert, the first end-to-end certifier with sound, deterministic bounds, which proves robustness against both training-time and inference-time attacks. We first bound all possible perturbations an adversary can make to the training data under the considered threat model. Using these constraints, we bound the perturbations' influence on the model's parameters. Finally, we bound the impact of these parameter changes on the model's prediction, resulting in joint robustness guarantees against poisoning and adversarial examples. To facilitate this novel certification paradigm, we combine our theoretical work with a new open-source library BoundFlow, which enables model training on bounded datasets. We experimentally demonstrate FullCert's feasibility on two datasets.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in DAGM GCPR 2024
♻ ☆ Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach
Optimizing the deployment of large language models (LLMs) in edge computing environments is critical for enhancing privacy and computational efficiency. Toward efficient wireless LLM inference in edge computing, this study comprehensively analyzes the impact of different splitting points in mainstream open-source LLMs. On this basis, this study introduces a framework taking inspiration from model-based reinforcement learning (MBRL) to determine the optimal splitting point across the edge and user equipment (UE). By incorporating a reward surrogate model, our approach significantly reduces the computational cost of frequent performance evaluations. Extensive simulations demonstrate that this method effectively balances inference performance and computational load under varying network conditions, providing a robust solution for LLM deployment in decentralized settings.
♻ ☆ EventTrojan: Manipulating Non-Intrusive Speech Quality Assessment via Imperceptible Events ICME2024
Non-Intrusive speech quality assessment (NISQA) has gained significant attention for predicting speech's mean opinion score (MOS) without requiring the reference speech. Researchers have gradually started to apply NISQA to various practical scenarios. However, little attention has been paid to the security of NISQA models. Backdoor attacks represent the most serious threat to deep neural networks (DNNs) due to the fact that backdoors possess a very high attack success rate once embedded. However, existing backdoor attacks assume that the attacker actively feeds samples containing triggers into the model during the inference phase. This is not adapted to the specific scenario of NISQA. And current backdoor attacks on regression tasks lack an objective metric to measure the attack performance. To address these issues, we propose a novel backdoor triggering approach (EventTrojan) that utilizes an event during the usage of the NISQA model as a trigger. Moreover, we innovatively provide an objective metric for backdoor attacks on regression tasks. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the EventTrojan attack. Besides, it also has good resistance to several defense methods.
comment: Accepted by ICME2024
♻ ☆ A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems
Quantum many-body systems are of great interest for many research areas, including physics, biology and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with the system size, making it exceedingly difficult to parameterize the wave functions of large systems by using exact methods. Neural networks and machine learning in general are a way to face this challenge. For instance, methods like Tensor networks and Neural Quantum States are being investigated as promising tools to obtain the wave function of a quantum mechanical system. In this tutorial, we focus on a particularly promising class of deep learning algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve the Schr\"odinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This technique is unsupervised, and utilizes a novel computational method in a manner that is barely explored. PINNs are a deep learning method that exploits Automatic Differentiation to solve Integro-Differential Equations in a mesh-free way. We show how to find both the ground and the excited states. The method discovers the states progressively by starting from the ground state. We explain how to introduce inductive biases in the loss to exploit further knowledge of the physical system. Such additional constraints allow for a faster and more accurate convergence. This technique can then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free nature of the PINN. The methods are made explicit by applying them to the infinite potential well and the particle in a ring, a challenging problem to be learned by an Artificial Intelligence agent due to the presence of complex-valued eigenfunctions and degenerate states.
comment: 18 pages, 4 figures
♻ ☆ Thinking Outside the BBox: Unconstrained Generative Object Compositing
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
♻ ☆ HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects ECCV 2024
Generating human-object interactions (HOIs) is critical with the tremendous advances of digital avatars. Existing datasets are typically limited to humans interacting with a single object while neglecting the ubiquitous manipulation of multiple objects. Thus, we propose HIMO, a large-scale MoCap dataset of full-body human interacting with multiple objects, containing 3.3K 4D HOI sequences and 4.08M 3D HOI frames. We also annotate HIMO with detailed textual descriptions and temporal segments, benchmarking two novel tasks of HOI synthesis conditioned on either the whole text prompt or the segmented text prompts as fine-grained timeline control. To address these novel tasks, we propose a dual-branch conditional diffusion model with a mutual interaction module for HOI synthesis. Besides, an auto-regressive generation pipeline is also designed to obtain smooth transitions between HOI segments. Experimental results demonstrate the generalization ability to unseen object geometries and temporal compositions.
comment: Project page: https://lvxintao.github.io/himo, accepted by ECCV 2024
♻ ☆ MoPE: Parameter-Efficient and Scalable Multimodal Fusion via Mixture of Prompt Experts
Despite the demonstrated parameter efficiency of prompt-based multimodal fusion methods, their limited adaptivity and expressiveness often result in suboptimal performance compared to other tuning approaches. In this paper, we address these limitations by decomposing the vanilla prompts to adaptively capture instance-level features. Building upon this decomposition, we introduce the mixture of prompt experts (MoPE) technique to enhance the expressiveness of prompt tuning. MoPE leverages multimodal pairing priors to route the most effective prompt on a per-instance basis. Compared to vanilla prompting, our MoPE-based fusion method exhibits greater expressiveness, scaling more effectively with the training data and the overall number of trainable parameters. We also investigate regularization terms for expert routing, which lead to emergent expert specialization during training, paving the way for interpretable soft prompting. Extensive experiments across six multimodal datasets spanning four modalities demonstrate that our method achieves state-of-the-art results for prompt fusion, matching or even surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code will be released: https://github.com/songrise/MoPE.
comment: Under Review, Extended version of arxiv:2312.03734
♻ ☆ MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs ACL 2024
Large language models (LLMs) have exhibited great potential in mathematical reasoning. However, there remains a performance gap in this area between existing open-source models and closed-source models such as GPT-4. In this paper, we introduce MathGenie, a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset (denoted as seed data). We augment the ground-truth solutions of our seed data and train a back-translation model to translate the augmented solutions back into new questions. Subsequently, we generate code-integrated solutions for the new questions. To ensure the correctness of the code-integrated solutions, we employ rationale-based strategy for solution verification. Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique, resulting in a family of models known as MathGenieLM. These models consistently outperform previous open-source models across five representative mathematical reasoning datasets, achieving state-of-the-art performance. In particular, MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
comment: ACL 2024 camera ready
♻ ☆ TinyChirp: Bird Song Recognition Using TinyML Models on Low-power Wireless Acoustic Sensors
Monitoring biodiversity at scale is challenging. Detecting and identifying species in fine grained taxonomies requires highly accurate machine learning (ML) methods. Training such models requires large high quality data sets. And deploying these models to low power devices requires novel compression techniques and model architectures. While species classification methods have profited from novel data sets and advances in ML methods, in particular neural networks, deploying these state of the art models to low power devices remains difficult. Here we present a comprehensive empirical comparison of various tinyML neural network architectures and compression techniques for species classification. We focus on the example of bird song detection, more concretely a data set curated for studying the corn bunting bird species. The data set is released along with all code and experiments of this study. In our experiments we compare predictive performance, memory and time complexity of classical spectrogram based methods and recent approaches operating on raw audio signal. Our results indicate that individual bird species can be robustly detected with relatively simple architectures that can be readily deployed to low power devices.
♻ ☆ FedCCL: Federated Dual-Clustered Feature Contrast Under Domain Heterogeneity
Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server. One significant challenge is that the distributed data is not independently and identically distributed (non-IID), typically including both intra-domain and inter-domain heterogeneity. However, recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges. Given these limitations, this paper clarifies these two non-IID challenges and attempts to introduce cluster representation to address them from both local and global perspectives. Specifically, we propose a dual-clustered feature contrast-based FL framework with dual focuses. First, we employ clustering on the local representations of each client, aiming to capture intra-class information based on these local clusters at a high level of granularity. Then, we facilitate cross-client knowledge sharing by pulling the local representation closer to clusters shared by clients with similar semantics while pushing them away from clusters with dissimilar semantics. Second, since the sizes of local clusters belonging to the same class may differ for each client, we further utilize clustering on the global side and conduct averaging to create a consistent global signal for guiding each local training in a contrastive manner. Experimental results on multiple datasets demonstrate that our proposal achieves comparable or superior performance gain under intra-domain and inter-domain heterogeneity.
comment: This work was accepted by Information Fusion Journal
♻ ☆ A Survey of Large Language Models for Graphs KDD'24
Graphs are an essential data structure utilized to represent relationships in real-world scenarios. Prior research has established that Graph Neural Networks (GNNs) deliver impressive outcomes in graph-centric tasks, such as link prediction and node classification. Despite these advancements, challenges like data sparsity and limited generalization capabilities continue to persist. Recently, Large Language Models (LLMs) have gained attention in natural language processing. They excel in language comprehension and summarization. Integrating LLMs with graph learning techniques has attracted interest as a way to enhance performance in graph learning tasks. In this survey, we conduct an in-depth review of the latest state-of-the-art LLMs applied in graph learning and introduce a novel taxonomy to categorize existing methods based on their framework design. We detail four unique designs: i) GNNs as Prefix, ii) LLMs as Prefix, iii) LLMs-Graphs Integration, and iv) LLMs-Only, highlighting key methodologies within each category. We explore the strengths and limitations of each framework, and emphasize potential avenues for future research, including overcoming current integration challenges between LLMs and graph learning techniques, and venturing into new application areas. This survey aims to serve as a valuable resource for researchers and practitioners eager to leverage large language models in graph learning, and to inspire continued progress in this dynamic field. We consistently maintain the related open-source materials at \url{https://github.com/HKUDS/Awesome-LLM4Graph-Papers}.
comment: Published as a KDD'24 survey paper
♻ ☆ A Normative Framework for Benchmarking Consumer Fairness in Large Language Model Recommender System
The rapid adoption of large language models (LLMs) in recommender systems (RS) presents new challenges in understanding and evaluating their biases, which can result in unfairness or the amplification of stereotypes. Traditional fairness evaluations in RS primarily focus on collaborative filtering (CF) settings, which may not fully capture the complexities of LLMs, as these models often inherit biases from large, unregulated data. This paper proposes a normative framework to benchmark consumer fairness in LLM-powered recommender systems (RecLLMs). We critically examine how fairness norms in classical RS fall short in addressing the challenges posed by LLMs. We argue that this gap can lead to arbitrary conclusions about fairness, and we propose a more structured, formal approach to evaluate fairness in such systems. Our experiments on the MovieLens dataset on consumer fairness, using in-context learning (zero-shot vs. few-shot) reveal fairness deviations in age-based recommendations, particularly when additional contextual examples are introduced (ICL-2). Statistical significance tests confirm that these deviations are not random, highlighting the need for robust evaluation methods. While this work offers a preliminary discussion on a proposed normative framework, our hope is that it could provide a formal, principled approach for auditing and mitigating bias in RecLLMs. The code and dataset used for this work will be shared at "gihub-anonymized".
♻ ☆ RRWKV: Capturing Long-range Dependencies in RWKV
Owing to the impressive dot-product attention, the Transformers have been the dominant architectures in various natural language processing (NLP) tasks. Recently, the Receptance Weighted Key Value (RWKV) architecture follows a non-transformer architecture to eliminate the drawbacks of dot-product attention, where memory and computational complexity exhibits quadratic scaling with sequence length. Although RWKV has exploited a linearly tensor-product attention mechanism and achieved parallelized computations by deploying the time-sequential mode, it fails to capture long-range dependencies because of its limitation on looking back at previous information, compared with full information obtained by direct interactions in the standard transformer. Therefore, the paper devises the Retrospected Receptance Weighted Key Value (RRWKV) architecture via incorporating the retrospecting ability into the RWKV to effectively absorb information, which maintains memory and computational efficiency as well.
comment: The paper has not been finished and I have decided to continue this paper
♻ ☆ Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis
Kolmogorov-Arnold Networks (KAN) has recently attracted significant attention as a promising alternative to traditional Multi-Layer Perceptrons (MLP). Despite their theoretical appeal, KAN require validation on large-scale benchmark datasets. Time series data, which has become increasingly prevalent in recent years, especially univariate time series are naturally suited for validating KAN. Therefore, we conducted a fair comparison among KAN, MLP, and mixed structures. The results indicate that KAN can achieve performance comparable to, or even slightly better than, MLP across 128 time series datasets. We also performed an ablation study on KAN, revealing that the output is primarily determined by the base component instead of b-spline function. Furthermore, we assessed the robustness of these models and found that KAN and the hybrid structure MLP\_KAN exhibit significant robustness advantages, attributed to their lower Lipschitz constants. This suggests that KAN and KAN layers hold strong potential to be robust models or to improve the adversarial robustness of other models.
comment: 14 pages, 8 figs
♻ ☆ Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning
Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions. However, existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise. To address this issue, we propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics, thus enhancing the quality of the representations and the robustness of the model. To fully exploit the rich semantic information in textual knowledge, we propose a semantic-guided fusion module. By evaluating the correlations between different modalities, this module facilitates cross-modal interactions gated by modality-invariant representations. Furthermore, we introduce a modality discriminator to disentangle modality-invariant and modality-specific subspaces. Experimental results on two public datasets demonstrate the superiority of our model. Our code is available at https://github.com/X-G-Y/SATI.
comment: change Title, Authors, Abstract
♻ ☆ Divide And Conquer: Learning Chaotic Dynamical Systems With Multistep Penalty Neural Ordinary Differential Equations
Forecasting high-dimensional dynamical systems is a fundamental challenge in various fields, such as geosciences and engineering. Neural Ordinary Differential Equations (NODEs), which combine the power of neural networks and numerical solvers, have emerged as a promising algorithm for forecasting complex nonlinear dynamical systems. However, classical techniques used for NODE training are ineffective for learning chaotic dynamical systems. In this work, we propose a novel NODE-training approach that allows for robust learning of chaotic dynamical systems. Our method addresses the challenges of non-convexity and exploding gradients associated with underlying chaotic dynamics. Training data trajectories from such systems are split into multiple, non-overlapping time windows. In addition to the deviation from the training data, the optimization loss term further penalizes the discontinuities of the predicted trajectory between the time windows. The window size is selected based on the fastest Lyapunov time scale of the system. Multi-step penalty(MP) method is first demonstrated on Lorenz equation, to illustrate how it improves the loss landscape and thereby accelerates the optimization convergence. MP method can optimize chaotic systems in a manner similar to least-squares shadowing with significantly lower computational costs. Our proposed algorithm, denoted the Multistep Penalty NODE, is applied to chaotic systems such as the Kuramoto-Sivashinsky equation, the two-dimensional Kolmogorov flow, and ERA5 reanalysis data for the atmosphere. It is observed that MP-NODE provide viable performance for such chaotic systems, not only for short-term trajectory predictions but also for invariant statistics that are hallmarks of the chaotic nature of these dynamics.
comment: 25 pages, 17 Figures, submitted to Computer Methods in Applied Mechanics and Engineering
♻ ☆ vec2wav 2.0: Advancing Voice Conversion via Discrete Token Vocoders ICASSP 2025
We propose a new speech discrete token vocoder, vec2wav 2.0, which advances voice conversion (VC). We use discrete tokens from speech self-supervised models as the content features of source speech, and treat VC as a prompted vocoding task. To amend the loss of speaker timbre in the content tokens, vec2wav 2.0 utilizes the WavLM features to provide strong timbre-dependent information. A novel adaptive Snake activation function is proposed to better incorporate timbre into the waveform reconstruction process. In this way, vec2wav 2.0 learns to alter the speaker timbre appropriately given different reference prompts. Also, no supervised data is required for vec2wav 2.0 to be effectively trained. Experimental results demonstrate that vec2wav 2.0 outperforms all other baselines to a considerable margin in terms of audio quality and speaker similarity in any-to-any VC. Ablation studies verify the effects made by the proposed techniques. Moreover, vec2wav 2.0 achieves competitive cross-lingual VC even only trained on monolingual corpus. Thus, vec2wav 2.0 shows timbre can potentially be manipulated only by speech token vocoders, pushing the frontiers of VC and speech synthesis.
comment: 5 pages, 4 figures. Submitted to ICASSP 2025. Demo page: https://cantabile-kwok.github.io/vec2wav2/
♻ ☆ Distributed Noncoherent Joint Transmission Based on Multi-Agent Reinforcement Learning for Dense Small Cell MISO Systems
We consider a dense small cell (DSC) network where multi-antenna small cell base stations (SBSs) transmit data to single-antenna users over a shared frequency band. To enhance capacity, a state-of-the-art technique known as noncoherent joint transmission (JT) is applied, enabling users to receive data from multiple coordinated SBSs. However, the sum rate maximization problem with noncoherent JT is inherently nonconvex and NP-hard. While existing optimization-based noncoherent JT algorithms can provide near-optimal performance, they require global channel state information (CSI) and multiple iterations, which makes them difficult to be implemeted in DSC networks.To overcome these challenges, we first prove that the optimal beamforming structure is the same for both the power minimization problem and the sum rate maximization problem, and then mathematically derive the optimal beamforming structure for both problems by solving the power minimization problem.The optimal beamforming structure can effectively reduces the variable dimensions.By exploiting the optimal beamforming structure, we propose a deep deterministic policy gradient-based distributed noncoherent JT scheme to maximize the system sum rate.In the proposed scheme, each SBS utilizes global information for training and uses local CSI to determine beamforming vectors. Simulation results demonstrate that the proposed scheme achieves comparable performance with considerably lower computational complexity and information overhead compared to centralized iterative optimization-based techniques, making it more attractive for practical deployment.
comment: After thorough discussions with my co-authors, we have identified certain issues with the paper that cannot be resolved through revisions. As a result, we have collectively decided to complete withdraw the paper from arXiv
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ Flexible and Effective Mixing of Large Language Models into a Mixture of Domain Experts
We present a toolkit for creating low-cost Mixture-of-Domain-Experts (MOE) from trained models. The toolkit can be used for creating a mixture from models or from adapters. We perform extensive tests and offer guidance on defining the architecture of the resulting MOE using the toolkit. A public repository is available.
♻ ☆ Serialized Speech Information Guidance with Overlapped Encoding Separation for Multi-Speaker Automatic Speech Recognition
Serialized output training (SOT) attracts increasing attention due to its convenience and flexibility for multi-speaker automatic speech recognition (ASR). However, it is not easy to train with attention loss only. In this paper, we propose the overlapped encoding separation (EncSep) to fully utilize the benefits of the connectionist temporal classification (CTC) and attention hybrid loss. This additional separator is inserted after the encoder to extract the multi-speaker information with CTC losses. Furthermore, we propose the serialized speech information guidance SOT (GEncSep) to further utilize the separated encodings. The separated streams are concatenated to provide single-speaker information to guide attention during decoding. The experimental results on LibriMix show that the single-speaker encoding can be separated from the overlapped encoding. The CTC loss helps to improve the encoder representation under complex scenarios. GEncSep further improved performance.
♻ ☆ Exploiting Deep Reinforcement Learning for Edge Caching in Cell-Free Massive MIMO Systems
Cell-free massive multiple-input-multiple-output is promising to meet the stringent quality-of-experience (QoE) requirements of railway wireless communications by coordinating many successional access points (APs) to serve the onboard users coherently. A key challenge is how to deliver the desired contents timely due to the radical changing propagation environment caused by the growing train speed. In this paper, we propose to proactively cache the likely-requesting contents at the upcoming APs which perform the coherent transmission to reduce end-to-end delay. A long-term QoE-maximization problem is formulated and two cache placement algorithms are proposed. One is based on heuristic convex optimization (HCO) and the other exploits deep reinforcement learning (DRL) with soft actor-critic (SAC). Compared to the conventional benchmark, numerical results show the advantage of our proposed algorithms on QoE and hit probability. With the advanced DRL model, SAC outperforms HCO on QoE by predicting the user requests accurately.
comment: The focus of the research has shifted, and the current submission is no longer aligned with our objectives
♻ ☆ With Greater Text Comes Greater Necessity: Inference-Time Training Helps Long Text Generation
Long text generation, such as novel writing and discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, we embeds this information directly into a temporary Lora module. In the process of long text generation, this module is progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long text, as indicated by a 13.2% decrease in perplexity (PPL) on a subset of PG19, and a 29.3% decrease in PPL along with a 113.2% increase in BLEU score on a subset of GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. For example, we can ensure a moderate improvement in generation quality (a decrease of 3.8% in PPL) while enabling a 51.5% memory usage reduction and a 60.0% decrease in latency for inference.
comment: COLM 2024
♻ ☆ Reward Generalization in RLHF: A Topological Perspective
Existing alignment methods share a common topology of information flow, where reward information is collected from humans, modeled with preference learning, and used to tune language models. However, this shared topology has not been systematically characterized, nor have its alternatives been thoroughly explored, leaving the problems of low data efficiency and unreliable generalization unaddressed. As a solution, we introduce a theoretical framework for investigating reward generalization in reinforcement learning from human feedback (RLHF), focusing on the topology of information flow at both macro and micro levels. At the macro level, we portray the RLHF information flow as an autoencoding process over behavior distributions, formalizing the RLHF objective of distributional consistency between human preference and model behavior. At the micro level, we present induced Bayesian networks as a theory of reward generalization in RLHF, introducing fine-grained dataset topologies into generalization bounds. Combining analysis on both levels, we propose reward modeling from tree-structured preference information. It is shown to reduce reward uncertainty by up to $\Theta(\log n/\log\log n)$ times compared to baselines, where $n$ is the dataset size. Validation on three NLP tasks shows that our tree-based reward model achieves an average win rate of 65% against baseline methods, thus improving reward generalization for free via topology design.
♻ ☆ Text-guided Controllable Mesh Refinement for Interactive 3D Modeling SIGGRAPH
We propose a novel technique for adding geometric details to an input coarse 3D mesh guided by a text prompt. Our method is composed of three stages. First, we generate a single-view RGB image conditioned on the input coarse geometry and the input text prompt. This single-view image generation step allows the user to pre-visualize the result and offers stronger conditioning for subsequent multi-view generation. Second, we use our novel multi-view normal generation architecture to jointly generate six different views of the normal images. The joint view generation reduces inconsistencies and leads to sharper details. Third, we optimize our mesh with respect to all views and generate a fine, detailed geometry as output. The resulting method produces an output within seconds and offers explicit user control over the coarse structure, pose, and desired details of the resulting 3D mesh.
comment: SIGGRAPH Asia 2024
♻ ☆ RetinaRegNet: A Zero-Shot Approach for Retinal Image Registration
We introduce RetinaRegNet, a zero-shot image registration model designed to register retinal images with minimal overlap, large deformations, and varying image quality. RetinaRegNet addresses these challenges and achieves robust and accurate registration through the following steps. First, we extract features from the moving and fixed images using latent diffusion models. We then sample feature points from the fixed image using a combination of the SIFT algorithm and random point sampling. For each sampled point, we identify its corresponding point in the moving image using a 2D correlation map, which computes the cosine similarity between the diffusion feature vectors of the point in the fixed image and all pixels in the moving image. Second, we eliminate most incorrectly detected point correspondences (outliers) by enforcing an inverse consistency constraint, ensuring that correspondences are consistent in both forward and backward directions. We further remove outliers with large distances between corresponding points using a global transformation based outlier detector. Finally, we implement a two-stage registration framework to handle large deformations. The first stage estimates a homography transformation to achieve global alignment between the images, while the second stage uses a third-order polynomial transformation to estimate local deformations. We evaluated RetinaRegNet on three retinal image registration datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. Our model consistently outperformed state-of-the-art methods across all datasets. The accurate registration achieved by RetinaRegNet enables the tracking of eye disease progression, enhances surgical planning, and facilitates the evaluation of treatment efficacy. Our code is publicly available at: https://github.com/mirthAI/RetinaRegNet.
♻ ☆ Element-wise Multiplication Based Deeper Physics-Informed Neural Networks
As a promising framework for resolving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have received widespread attention from industrial and scientific fields. However, lack of expressive ability and initialization pathology issues are found to prevent the application of PINNs in complex PDEs. In this work, we propose Deeper Physics-Informed Neural Network (Deeper-PINN) to resolve these issues. The element-wise multiplication operation is adopted to transform features into high-dimensional, non-linear spaces. Benefiting from element-wise multiplication operation, Deeper-PINNs can alleviate the initialization pathologies of PINNs and enhance the expressive capability of PINNs. The proposed structure is verified on various benchmarks. The results show that Deeper-PINNs can effectively resolve the initialization pathology and exhibit strong expressive ability.
Graphics 7
☆ StereoCrafter: Diffusion-based Generation of Long and High-fidelity Stereoscopic 3D from Monocular Videos
This paper presents a novel framework for converting 2D videos to immersive stereoscopic 3D, addressing the growing demand for 3D content in immersive experience. Leveraging foundation models as priors, our approach overcomes the limitations of traditional methods and boosts the performance to ensure the high-fidelity generation required by the display devices. The proposed system consists of two main steps: depth-based video splatting for warping and extracting occlusion mask, and stereo video inpainting. We utilize pre-trained stable video diffusion as the backbone and introduce a fine-tuning protocol for the stereo video inpainting task. To handle input video with varying lengths and resolutions, we explore auto-regressive strategies and tiled processing. Finally, a sophisticated data processing pipeline has been developed to reconstruct a large-scale and high-quality dataset to support our training. Our framework demonstrates significant improvements in 2D-to-3D video conversion, offering a practical solution for creating immersive content for 3D devices like Apple Vision Pro and 3D displays. In summary, this work contributes to the field by presenting an effective method for generating high-quality stereoscopic videos from monocular input, potentially transforming how we experience digital media.
comment: 11 pages, 10 figures
☆ Instant Facial Gaussians Translator for Relightable and Interactable Facial Rendering
We propose GauFace, a novel Gaussian Splatting representation, tailored for efficient animation and rendering of physically-based facial assets. Leveraging strong geometric priors and constrained optimization, GauFace ensures a neat and structured Gaussian representation, delivering high fidelity and real-time facial interaction of 30fps@1440p on a Snapdragon 8 Gen 2 mobile platform. Then, we introduce TransGS, a diffusion transformer that instantly translates physically-based facial assets into the corresponding GauFace representations. Specifically, we adopt a patch-based pipeline to handle the vast number of Gaussians effectively. We also introduce a novel pixel-aligned sampling scheme with UV positional encoding to ensure the throughput and rendering quality of GauFace assets generated by our TransGS. Once trained, TransGS can instantly translate facial assets with lighting conditions to GauFace representation, With the rich conditioning modalities, it also enables editing and animation capabilities reminiscent of traditional CG pipelines. We conduct extensive evaluations and user studies, compared to traditional offline and online renderers, as well as recent neural rendering methods, which demonstrate the superior performance of our approach for facial asset rendering. We also showcase diverse immersive applications of facial assets using our TransGS approach and GauFace representation, across various platforms like PCs, phones and even VR headsets.
comment: Project Page: https://dafei-qin.github.io/TransGS.github.io/
☆ TopoMap++: A faster and more space efficient technique to compute projections with topological guarantees
High-dimensional data, characterized by many features, can be difficult to visualize effectively. Dimensionality reduction techniques, such as PCA, UMAP, and t-SNE, address this challenge by projecting the data into a lower-dimensional space while preserving important relationships. TopoMap is another technique that excels at preserving the underlying structure of the data, leading to interpretable visualizations. In particular, TopoMap maps the high-dimensional data into a visual space, guaranteeing that the 0-dimensional persistence diagram of the Rips filtration of the visual space matches the one from the high-dimensional data. However, the original TopoMap algorithm can be slow and its layout can be too sparse for large and complex datasets. In this paper, we propose three improvements to TopoMap: 1) a more space-efficient layout, 2) a significantly faster implementation, and 3) a novel TreeMap-based representation that makes use of the topological hierarchy to aid the exploration of the projections. These advancements make TopoMap, now referred to as TopoMap++, a more powerful tool for visualizing high-dimensional data which we demonstrate through different use case scenarios.
comment: This is the author's version of the article that has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics (TVCG)
☆ RSVP for VPSA : A Meta Design Study on Rapid Suggestive Visualization Prototyping for Visual Parameter Space Analysis
Visual Parameter Space Analysis (VPSA) enables domain scientists to explore input-output relationships of computational models. Existing VPSA applications often feature multi-view visualizations designed by visualization experts for a specific scenario, making it hard for domain scientists to adapt them to their problems without professional help. We present RSVP, the Rapid Suggestive Visualization Prototyping system encoding VPSA knowledge to enable domain scientists to prototype custom visualization dashboards tailored to their specific needs. The system implements a task-oriented, multi-view visualization recommendation strategy over a visualization design space optimized for VPSA to guide users in meeting their analytical demands. We derived the VPSA knowledge implemented in the system by conducting an extensive meta design study over the body of work on VPSA. We show how this process can be used to perform a data and task abstraction, extract a common visualization design space, and derive a task-oriented VisRec strategy. User studies indicate that the system is user-friendly and can uncover novel insights.
comment: 16 pages, 16 figures, 3 tables, accepted for publishing at TVCG Journal
♻ ☆ DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
comment: 15 pages, 14 figures
♻ ☆ Fisheye-GS: Lightweight and Extensible Gaussian Splatting Module for Fisheye Cameras
Recently, 3D Gaussian Splatting (3DGS) has garnered attention for its high fidelity and real-time rendering. However, adapting 3DGS to different camera models, particularly fisheye lenses, poses challenges due to the unique 3D to 2D projection calculation. Additionally, there are inefficiencies in the tile-based splatting, especially for the extreme curvature and wide field of view of fisheye lenses, which are crucial for its broader real-life applications. To tackle these challenges, we introduce Fisheye-GS.This innovative method recalculates the projection transformation and its gradients for fisheye cameras. Our approach can be seamlessly integrated as a module into other efficient 3D rendering methods, emphasizing its extensibility, lightweight nature, and modular design. Since we only modified the projection component, it can also be easily adapted for use with different camera models. Compared to methods that train after undistortion, our approach demonstrates a clear improvement in visual quality.
♻ ☆ Text-guided Controllable Mesh Refinement for Interactive 3D Modeling SIGGRAPH
We propose a novel technique for adding geometric details to an input coarse 3D mesh guided by a text prompt. Our method is composed of three stages. First, we generate a single-view RGB image conditioned on the input coarse geometry and the input text prompt. This single-view image generation step allows the user to pre-visualize the result and offers stronger conditioning for subsequent multi-view generation. Second, we use our novel multi-view normal generation architecture to jointly generate six different views of the normal images. The joint view generation reduces inconsistencies and leads to sharper details. Third, we optimize our mesh with respect to all views and generate a fine, detailed geometry as output. The resulting method produces an output within seconds and offers explicit user control over the coarse structure, pose, and desired details of the resulting 3D mesh.
comment: SIGGRAPH Asia 2024
Robotics 55
☆ Cooptimizing Safety and Performance with a Control-Constrained Formulation
Autonomous systems have witnessed a rapid increase in their capabilities, but it remains a challenge for them to perform tasks both effectively and safely. The fact that performance and safety can sometimes be competing objectives renders the cooptimization between them difficult. One school of thought is to treat this cooptimization as a constrained optimal control problem with a performance-oriented objective function and safety as a constraint. However, solving this constrained optimal control problem for general nonlinear systems remains challenging. In this work, we use the general framework of constrained optimal control, but given the safety state constraint, we convert it into an equivalent control constraint, resulting in a state and time-dependent control-constrained optimal control problem. This equivalent optimal control problem can readily be solved using the dynamic programming principle. We show the corresponding value function is a viscosity solution of a certain Hamilton-Jacobi-Bellman Partial Differential Equation (HJB-PDE). Furthermore, we demonstrate the effectiveness of our method with a two-dimensional case study, and the experiment shows that the controller synthesized using our method consistently outperforms the baselines, both in safety and performance.
comment: Submitted to ACC with L-CSS option
☆ Technical Report of Mobile Manipulator Robot for Industrial Environments
This paper presents the development of the Auriga @Work robot, designed by the Robotics and Intelligent Automation Lab at Shahid Beheshti University, Department of Electrical Engineering, for the RoboCup 2024 competition. The robot is tailored for industrial applications, focusing on enhancing efficiency in repetitive or hazardous environments. It is equipped with a 4-wheel Mecanum drive system for omnidirectional mobility and a 5-degree-of-freedom manipulator arm with a custom 3D-printed gripper for object manipulation and navigation tasks. The robot's electronics are powered by custom-designed boards utilizing ESP32 microcontrollers and an Nvidia Jetson Nano for real-time control and decision-making. The key software stack integrates Hector SLAM for mapping, the A* algorithm for path planning, and YOLO for object detection, along with advanced sensor fusion for improved navigation and collision avoidance.
☆ Towards Localizing Structural Elements: Merging Geometrical Detection with Semantic Verification in RGB-D Data
RGB-D cameras supply rich and dense visual and spatial information for various robotics tasks such as scene understanding, map reconstruction, and localization. Integrating depth and visual information can aid robots in localization and element mapping, advancing applications like 3D scene graph generation and Visual Simultaneous Localization and Mapping (VSLAM). While point cloud data containing such information is primarily used for enhanced scene understanding, exploiting their potential to capture and represent rich semantic information has yet to be adequately targeted. This paper presents a real-time pipeline for localizing building components, including wall and ground surfaces, by integrating geometric calculations for pure 3D plane detection followed by validating their semantic category using point cloud data from RGB-D cameras. It has a parallel multi-thread architecture to precisely estimate poses and equations of all the planes detected in the environment, filters the ones forming the map structure using a panoptic segmentation validation, and keeps only the validated building components. Incorporating the proposed method into a VSLAM framework confirmed that constraining the map with the detected environment-driven semantic elements can improve scene understanding and map reconstruction accuracy. It can also ensure (re-)association of these detected components into a unified 3D scene graph, bridging the gap between geometric accuracy and semantic understanding. Additionally, the pipeline allows for the detection of potential higher-level structural entities, such as rooms, by identifying the relationships between building components based on their layout.
comment: 6 pages, 5 figures. 3 tables
☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, directly translating such demonstrations into robot-executable actions poses significant challenges due to execution mismatches, such as different movement styles and physical capabilities. Existing methods either rely on robot-demonstrator paired data, which is infeasible to scale, or overly rely on frame-level visual similarities, which fail to hold. To address these challenges, we propose RHyME, a novel framework that automatically establishes task execution correspondences between the robot and the demonstrator by using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human demonstrations by retrieving and composing similar short-horizon human clips, facilitating effective policy training without the need for paired data. We show that RHyME outperforms a range of baselines across various cross-embodiment datasets on all degrees of mismatches. Through detailed analysis, we uncover insights for learning and leveraging cross-embodiment visual representations.
☆ DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots
We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart.
comment: 15 pages total with 7 pages of appendix. 9 Figures, 4 in the main text and 5 in the appendix
☆ Simulation-based Scenario Generation for Robust Hybrid AI for Autonomy
Application of Unmanned Aerial Vehicles (UAVs) in search and rescue, emergency management, and law enforcement has gained traction with the advent of low-cost platforms and sensor payloads. The emergence of hybrid neural and symbolic AI approaches for complex reasoning is expected to further push the boundaries of these applications with decreasing levels of human intervention. However, current UAV simulation environments lack semantic context suited to this hybrid approach. To address this gap, HAMERITT (Hybrid Ai Mission Environment for RapId Training and Testing) provides a simulation-based autonomy software framework that supports the training, testing and assurance of neuro-symbolic algorithms for autonomous maneuver and perception reasoning. HAMERITT includes scenario generation capabilities that offer mission-relevant contextual symbolic information in addition to raw sensor data. Scenarios include symbolic descriptions for entities of interest and their relations to scene elements, as well as spatial-temporal constraints in the form of time-bounded areas of interest with prior probabilities and restricted zones within those areas. HAMERITT also features support for training distinct algorithm threads for maneuver vs. perception within an end-to-end mission run. Future work includes improving scenario realism and scaling symbolic context generation through automated workflow.
comment: 6 pages, 5 figures, 1 table
☆ MAPS: Energy-Reliability Tradeoff Management in Autonomous Vehicles Through LLMs Penetrated Science
As autonomous vehicles become more prevalent, highly accurate and efficient systems are increasingly critical to improve safety, performance, and energy consumption. Efficient management of energy-reliability tradeoffs in these systems demands the ability to predict various conditions during vehicle operations. With the promising improvement of Large Language Models (LLMs) and the emergence of well-known models like ChatGPT, unique opportunities for autonomous vehicle-related predictions have been provided in recent years. This paper proposed MAPS using LLMs as map reader co-drivers to predict the vital parameters to set during the autonomous vehicle operation to balance the energy-reliability tradeoff. The MAPS method demonstrates a 20% improvement in navigation accuracy compared to the best baseline method. MAPS also shows 11% energy savings in computational units and up to 54% in both mechanical and computational units.
☆ Social Mediation through Robots -- A Scoping Review on Improving Group Interactions through Directed Robot Action using an Extended Group Process Model
Group processes refer to the dynamics that occur within a group and are critical for understanding how groups function. With robots being increasingly placed within small groups, improving these processes has emerged as an important application of social robotics. Social Mediation Robots elicit behavioral change within groups by deliberately influencing the processes of groups. While research in this field has demonstrated that robots can effectively affect interpersonal dynamics, there is a notable gap in integrating these insights to develop coherent understanding and theory. We present a scoping review of literature targeting changes in social interactions between multiple humans through intentional action from robotic agents. To guide our review, we adapt the classical Input-Process-Output (I-P-O) models that we call "Mediation I-P-O model". We evaluated 1633 publications, which yielded 89 distinct social mediation concepts. We construct 11 mediation approaches robots can use to shape processes in small groups and teams. This work strives to produce generalizable insights and evaluate the extent to which the potential of social mediation through robots has been realized thus far. We hope that the proposed framework encourages a holistic approach to the study of social mediation and provides a foundation to standardize future reporting in the domain.
☆ Multi-robot Task Allocation and Path Planning with Maximum Range Constraints
This letter presents a novel multi-robot task allocation and path planning method that considers robots' maximum range constraints in large-sized workspaces, enabling robots to complete the assigned tasks within their range limits. Firstly, we developed a fast path planner to solve global paths efficiently. Subsequently, we propose an innovative auction-based approach that integrates our path planner into the auction phase for reward computation while considering the robots' range limits. This method accounts for extra obstacle-avoiding travel distances rather than ideal straight-line distances, resolving the coupling between task allocation and path planning. Additionally, to avoid redundant computations during iterations, we implemented a lazy auction strategy to speed up the convergence of the task allocation. Finally, we validated the proposed method's effectiveness and application potential through extensive simulation and real-world experiments. The implementation code for our method will be available at https://github.com/wuuya1/RangeTAP.
☆ Asymptotically Optimal Lazy Lifelong Sampling-based Algorithm for Efficient Motion Planning in Dynamic Environments
The paper introduces an asymptotically optimal lifelong sampling-based path planning algorithm that combines the merits of lifelong planning algorithms and lazy search algorithms for rapid replanning in dynamic environments where edge evaluation is expensive. By evaluating only sub-path candidates for the optimal solution, the algorithm saves considerable evaluation time and thereby reduces the overall planning cost. It employs a novel informed rewiring cascade to efficiently repair the search tree when the underlying search graph changes. Simulation results demonstrate that the algorithm outperforms various state-of-the-art sampling-based planners in addressing both static and dynamic motion planning problems.
☆ Advancements in Gesture Recognition Techniques and Machine Learning for Enhanced Human-Robot Interaction: A Comprehensive Review
In recent years robots have become an important part of our day-to-day lives with various applications. Human-robot interaction creates a positive impact in the field of robotics to interact and communicate with the robots. Gesture recognition techniques combined with machine learning algorithms have shown remarkable progress in recent years, particularly in human-robot interaction (HRI). This paper comprehensively reviews the latest advancements in gesture recognition methods and their integration with machine learning approaches to enhance HRI. Furthermore, this paper represents the vision-based gesture recognition for safe and reliable human-robot-interaction with a depth-sensing system, analyses the role of machine learning algorithms such as deep learning, reinforcement learning, and transfer learning in improving the accuracy and robustness of gesture recognition systems for effective communication between humans and robots.
comment: 19 pages,1 Figure
☆ A Novel Ternary Evolving Estimator for Positioning Unmanned Aerial Vehicle in Harsh Environments
Obtaining reliable position estimation is fundamental for unmanned aerial vehicles during mission execution, especially in harsh environments. But environmental interference and abrupt changes usually degrade measurement reliability, leading to estimation divergence. To address this, existing works explore adaptive adjustment of sensor confidence. Unfortunately, existing methods typically lack synchronous evaluation of estimation precision, thereby rendering adjustments sensitive to abnormal data and susceptible to divergence. To tackle this issue, we propose a novel ternary-channel adaptive evolving estimator equipped with an online error monitor, where the ternary channels, states, noise covariance matrices and especially aerial drag, evolve simultaneously with environment. Firstly, an augmented filter is employed to pre-processes multidimensional data, followed by an inverse-Wishart smoother utilized to obtain posterior states and covariance matrices. Error propagation relation during estimation is analysed and hence an indicator is devised for online monitoring estimation errors. Under this premise, several restrictions are applied to suppress potential divergence led by interference. Additionally, considering motion dynamics, aerial drag matrix is reformulated based on updated states and covariance matrices. Finally, the observability, numerical sensitivity and arithmetic complexity of the proposed estimator are mathematically analyzed. Extensive experiments are conducted in both common and harsh environments (with average RMSE 0.17m and 0.39m respectively) to verify adaptability of algorithm and effectiveness of restriction design, which shows our method significantly outperforms the state-of-the-art.
comment: 14 pages, 13 figures
☆ Multimodal Large Language Model Driven Scenario Testing for Autonomous Vehicles
The generation of corner cases has become increasingly crucial for efficiently testing autonomous vehicles prior to road deployment. However, existing methods struggle to accommodate diverse testing requirements and often lack the ability to generalize to unseen situations, thereby reducing the convenience and usability of the generated scenarios. A method that facilitates easily controllable scenario generation for efficient autonomous vehicles (AV) testing with realistic and challenging situations is greatly needed. To address this, we proposed OmniTester: a multimodal Large Language Model (LLM) based framework that fully leverages the extensive world knowledge and reasoning capabilities of LLMs. OmniTester is designed to generate realistic and diverse scenarios within a simulation environment, offering a robust solution for testing and evaluating AVs. In addition to prompt engineering, we employ tools from Simulation of Urban Mobility to simplify the complexity of codes generated by LLMs. Furthermore, we incorporate Retrieval-Augmented Generation and a self-improvement mechanism to enhance the LLM's understanding of scenarios, thereby increasing its ability to produce more realistic scenes. In the experiments, we demonstrated the controllability and realism of our approaches in generating three types of challenging and complex scenarios. Additionally, we showcased its effectiveness in reconstructing new scenarios described in crash report, driven by the generalization capability of LLMs.
☆ Human-mimetic binaural ear design and sound source direction estimation for task realization of musculoskeletal humanoids
Human-like environment recognition by musculoskeletal humanoids is important for task realization in real complex environments and for use as dummies for test subjects. Humans integrate various sensory information to perceive their surroundings, and hearing is particularly useful for recognizing objects out of view or out of touch. In this research, we aim to realize human-like auditory environmental recognition and task realization for musculoskeletal humanoids by equipping them with a human-like auditory processing system. Humans realize sound-based environmental recognition by estimating directions of the sound sources and detecting environmental sounds based on changes in the time and frequency domain of incoming sounds and the integration of auditory information in the central nervous system. We propose a human mimetic auditory information processing system, which consists of three components: the human mimetic binaural ear unit, which mimics human ear structure and characteristics, the sound source direction estimation system, and the environmental sound detection system, which mimics processing in the central nervous system. We apply it to Musashi, a human mimetic musculoskeletal humanoid, and have it perform tasks that require sound information outside of view in real noisy environments to confirm the usefulness of the proposed methods.
comment: Accepted at ROBOMECH Journal
☆ GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning
Humans can autonomously learn the relationship between sensation and motion in their own bodies, estimate and control their own body states, and move while continuously adapting to the current environment. On the other hand, current robots control their bodies by learning the network structure described by humans from their experiences, making certain assumptions on the relationship between sensors and actuators. In addition, the network model does not adapt to changes in the robot's body, the tools that are grasped, or the environment, and there is no unified theory, not only for control but also for state estimation, anomaly detection, simulation, and so on. In this study, we propose a Generalized Multisensory Correlational Model (GeMuCo), in which the robot itself acquires a body schema describing the correlation between sensors and actuators from its own experience, including model structures such as network input/output. The robot adapts to the current environment by updating this body schema model online, estimates and controls its body state, and even performs anomaly detection and simulation. We demonstrate the effectiveness of this method by applying it to tool-use considering changes in grasping state for an axis-driven robot, to joint-muscle mapping learning for a musculoskeletal robot, and to full-body tool manipulation for a low-rigidity plastic-made humanoid.
comment: Accepted at IEEE Robotics and Automation Magazine
☆ Mathematical Modeling Of Four Finger Robotic Grippers
Robotic grippers are the end effector in the robot system of handling any task which used for performing various operations for the purpose of industrial application and hazardous tasks.In this paper, we developed the mathematical model for multi fingers robotics grippers. we are concerned with Jamia'shand which is developed in Robotics Lab, Mechanical Engineering Deptt, Faculty of Engg & Technolgy, Jamia Millia Islamia, India. This is a tendon-driven gripper each finger having three DOF having a total of 11 DOF. The term tendon is widely used to imply belts, cables, or similar types of applications. It is made up of three fingers and a thumb. Every finger and thumb has one degree of freedom. The power transmission mechanism is a rope and pulley system. Both hands have similar structures. Aluminum from the 5083 families was used to make this product. The gripping force can be adjusted we have done the kinematics, force, and dynamic analysis by developing a Mathematical model for the four-finger robotics grippers and their thumb. we focused it control motions in X and Y Displacements with the angular positions movements and we make the force analysis of the four fingers and thumb calculate the maximum weight, force, and torque required to move it with mass. Draw the force -displacements graph which shows the linear behavior up to 250 N and shows nonlinear behavior beyond this. and required Dmin of wire is 0.86 mm for grasping the maximum 1 kg load also developed the dynamic model (using energy )approach lagrangian method to find it torque required to move the fingers.
comment: 8 pages,7 Figures
☆ Soft Acoustic Curvature Sensor: Design and Development
This paper introduces a novel Soft Acoustic Curvature (SAC) sensor. SAC incorporates integrated audio components and features an acoustic channel within a flexible structure. A reference acoustic wave, generated by a speaker at one end of the channel, propagates and is received by a microphone at the other channel's end. Our previous study revealed that acoustic wave energy dissipation varies with acoustic channel deformation, leading us to design a novel channel capable of large deformation due to bending. We then use Machine Learning (ML) models to establish a complex mapping between channel deformations and sound modulation. Various sound frequencies and ML models were evaluated to enhance curvature detection accuracy. The sensor, constructed using soft material and 3D printing, was validated experimentally, with curvature measurement errors remaining within 3.5 m-1 for a range of 0 to 60 m-1 curvatures. These results demonstrate the effectiveness of the proposed method for estimating curvatures. With its flexible structure, the SAC sensor holds potential for applications in soft robotics, including shape measurement for continuum manipulators, soft grippers, and wearable devices.
comment: To appear in Robotics and Automation Letter
☆ Offline Task Assistance Planning on a Graph:Theoretic and Algorithmic Foundations
In this work we introduce the problem of task assistance planning where we are given two robots Rtask and Rassist. The first robot, Rtask, is in charge of performing a given task by executing a precomputed path. The second robot, Rassist, is in charge of assisting the task performed by Rtask using on-board sensors. The ability of Rassist to provide assistance to Rtask depends on the locations of both robots. Since Rtask is moving along its path, Rassist may also need to move to provide as much assistance as possible. The problem we study is how to compute a path for Rassist so as to maximize the portion of Rtask's path for which assistance is provided. We limit the problem to the setting where Rassist moves on a roadmap which is a graph embedded in its configuration space and show that this problem is NP-hard. Fortunately, we show that when Rassist moves on a given path, and all we have to do is compute the times at which Rassist should move from one configuration to the following one, we can solve the problem optimally in polynomial time. Together with carefully-crafted upper bounds, this polynomial-time algorithm is integrated into a Branch and Bound-based algorithm that can compute optimal solutions to the problem outperforming baselines by several orders of magnitude. We demonstrate our work empirically in simulated scenarios containing both planar manipulators and UR robots as well as in the lab on real robots.
☆ Adaptive Electronic Skin Sensitivity for Safe Human-Robot Interaction
Artificial electronic skins covering complete robot bodies can make physical human-robot collaboration safe and hence possible. Standards for collaborative robots (e.g., ISO/TS 15066) prescribe permissible forces and pressures during contacts with the human body. These characteristics of the collision depend on the speed of the colliding robot link but also on its effective mass. Thus, to warrant contacts complying with the Power and Force Limiting (PFL) collaborative regime but at the same time maximizing productivity, protective skin thresholds should be set individually for different parts of the robot bodies and dynamically on the run. Here we present and empirically evaluate four scenarios: (a) static and uniform - fixed thresholds for the whole skin, (b) static but different settings for robot body parts, (c) dynamically set based on every link velocity, (d) dynamically set based on effective mass of every robot link. We perform experiments in simulation and on a real 6-axis collaborative robot arm (UR10e) completely covered with sensitive skin (AIRSKIN) comprising eleven individual pads. On a mock pick-and-place scenario with transient collisions with the robot body parts and two collision reactions (stop and avoid), we demonstrate the boost in productivity in going from the most conservative setting of the skin thresholds (a) to the most adaptive setting (d). The threshold settings for every skin pad are adapted with a frequency of 25 Hz. This work can be easily extended for platforms with more degrees of freedom and larger skin coverage (humanoids) and to social human-robot interaction scenarios where contacts with the robot will be used for communication.
☆ One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
☆ Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection
Stem cell therapy is a promising approach to treat heart insufficiency and benefits from automated myocardial injection which requires highly precise motion of a robotic manipulator that is equipped with a syringe. This work investigates whether sufficiently precise motion can be achieved by combining a SCARA robot and learning control methods. For this purpose, the method Autonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to multi-input/multi-output systems. The proposed learning method solves reference tracking tasks in systems with unknown, nonlinear, multi-input/multi-output dynamics by iteratively updating an input trajectory in a plug-and-play fashion and without requiring manual parameter tuning. The proposed learning method is validated in a preliminary simulation study of a simplified SCARA robot that has to perform three desired motions. The results demonstrate that the proposed learning method achieves highly precise reference tracking without requiring any a priori model information or manual parameter tuning in as little as 15 trials per motion. The results further indicate that the combination of a SCARA robot and learning method achieves sufficiently precise motion to potentially enable automatic myocardial injection if similar results can be obtained in a real-world setting.
comment: 6 pages, 4 figures
☆ Spectral oversubtraction? An approach for speech enhancement after robot ego speech filtering in semi-real-time ICASSP
Spectral subtraction, widely used for its simplicity, has been employed to address the Robot Ego Speech Filtering (RESF) problem for detecting speech contents of human interruption from robot's single-channel microphone recordings when it is speaking. However, this approach suffers from oversubtraction in the fundamental frequency range (FFR), leading to degraded speech content recognition. To address this, we propose a Two-Mask Conformer-based Metric Generative Adversarial Network (CMGAN) to enhance the detected speech and improve recognition results. Our model compensates for oversubtracted FFR values with high-frequency information and long-term features and then de-noises the new spectrogram. In addition, we introduce an incremental processing method that allows semi-real-time audio processing with streaming input on a network trained on long fixed-length input. Evaluations of two datasets, including one with unseen noise, demonstrate significant improvements in recognition accuracy and the effectiveness of the proposed two-mask approach and incremental processing, enhancing the robustness of the proposed RESF pipeline in real-world HRI scenarios.
comment: 6 pages, 2 figures, submitted to 2025 IEEE ICASSP
☆ Restoration of Reduced Self-Efficacy Caused by Chronic Pain through Manipulated Sensory Discrepancy
Human physical function is governed by self-efficacy, the belief in one's motor capacity. In chronic pain patients, this capacity may remain reduced long after the damage causing the pain has been cured. Chronic pain alters body schema, affecting how patients perceive the dimension and pose of their bodies. We exploit this deficit using robotic manipulation technology and augmented sensory stimuli through virtual reality technology. We propose a sensory stimuli manipulation method aimed at modifying body schema to restore lost self-efficacy.
Test-Time Certifiable Self-Supervision to Bridge the Sim2Real Gap in Event-Based Satellite Pose Estimation IROS 2024
Deep learning plays a critical role in vision-based satellite pose estimation. However, the scarcity of real data from the space environment means that deep models need to be trained using synthetic data, which raises the Sim2Real domain gap problem. A major cause of the Sim2Real gap are novel lighting conditions encountered during test time. Event sensors have been shown to provide some robustness against lighting variations in vision-based pose estimation. However, challenging lighting conditions due to strong directional light can still cause undesirable effects in the output of commercial off-the-shelf event sensors, such as noisy/spurious events and inhomogeneous event densities on the object. Such effects are non-trivial to simulate in software, thus leading to Sim2Real gap in the event domain. To close the Sim2Real gap in event-based satellite pose estimation, the paper proposes a test-time self-supervision scheme with a certifier module. Self-supervision is enabled by an optimisation routine that aligns a dense point cloud of the predicted satellite pose with the event data to attempt to rectify the inaccurately estimated pose. The certifier attempts to verify the corrected pose, and only certified test-time inputs are backpropagated via implicit differentiation to refine the predicted landmarks, thus improving the pose estimates and closing the Sim2Real gap. Results show that the our method outperforms established test-time adaptation schemes.
comment: This work has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Loss Distillation via Gradient Matching for Point Cloud Completion with Weighted Chamfer Distance IROS
3D point clouds enhanced the robot's ability to perceive the geometrical information of the environments, making it possible for many downstream tasks such as grasp pose detection and scene understanding. The performance of these tasks, though, heavily relies on the quality of data input, as incomplete can lead to poor results and failure cases. Recent training loss functions designed for deep learning-based point cloud completion, such as Chamfer distance (CD) and its variants (\eg HyperCD ), imply a good gradient weighting scheme can significantly boost performance. However, these CD-based loss functions usually require data-related parameter tuning, which can be time-consuming for data-extensive tasks. To address this issue, we aim to find a family of weighted training losses ({\em weighted CD}) that requires no parameter tuning. To this end, we propose a search scheme, {\em Loss Distillation via Gradient Matching}, to find good candidate loss functions by mimicking the learning behavior in backpropagation between HyperCD and weighted CD. Once this is done, we propose a novel bilevel optimization formula to train the backbone network based on the weighted CD loss. We observe that: (1) with proper weighted functions, the weighted CD can always achieve similar performance to HyperCD, and (2) the Landau weighted CD, namely {\em Landau CD}, can outperform HyperCD for point cloud completion and lead to new state-of-the-art results on several benchmark datasets. {\it Our demo code is available at \url{https://github.com/Zhang-VISLab/IROS2024-LossDistillationWeightedCD}.}
comment: 10 pages, 7 figures, 7 tables, this paper was accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
☆ Robust Agility via Learned Zero Dynamics Policies IROS '24
We study the design of robust and agile controllers for hybrid underactuated systems. Our approach breaks down the task of creating a stabilizing controller into: 1) learning a mapping that is invariant under optimal control, and 2) driving the actuated coordinates to the output of that mapping. This approach, termed Zero Dynamics Policies, exploits the structure of underactuation by restricting the inputs of the target mapping to the subset of degrees of freedom that cannot be directly actuated, thereby achieving significant dimension reduction. Furthermore, we retain the stability and constraint satisfaction of optimal control while reducing the online computational overhead. We prove that controllers of this type stabilize hybrid underactuated systems and experimentally validate our approach on the 3D hopping platform, ARCHER. Over the course of 3000 hops the proposed framework demonstrates robust agility, maintaining stable hopping while rejecting disturbances on rough terrain.
comment: 8 pages, 6 figures, IROS '24
☆ A Bayesian framework for active object recognition, pose estimation and shape transfer learning through touch
As humans can explore and understand the world through the sense of touch, tactile sensing is also an important aspect of robotic perception. In unstructured environments, robots can encounter both known and novel objects, this calls for a method to address both known and novel objects. In this study, we combine a particle filter (PF) and Gaussian process implicit surface (GPIS) in a unified Bayesian framework. The framework can differentiate between known and novel objects, perform object recognition, estimate pose for known objects, and reconstruct shapes for unknown objects, in an active learning fashion. By grounding the selection of the GPIS prior with the maximum-likelihood-estimation (MLE) shape from the PF, the knowledge about known objects' shapes can be transferred to learn novel shapes. An exploration procedure with global shape estimation is proposed to guide active data acquisition and conclude the exploration when sufficient information is obtained. The performance of the proposed Bayesian framework is evaluated through simulations on known and novel objects, initialized with random poses and is compared with a rapidly explore random tree (RRT).The results show that the proposed exploration procedure, utilizing global shape estimation, achieves faster exploration than the RRT-based local exploration procedure. Overall, results indicate that the proposed framework is effective and efficient in object recognition, pose estimation and shape reconstruction. Moreover, we show that a learned shape can be included as a new prior and used effectively for future object recognition and pose estimation of novel objects.
☆ PRO-MIND: Proximity and Reactivity Optimisation of robot Motion to tune safety limits, human stress, and productivity in INDustrial settings
Despite impressive advancements of industrial collaborative robots, their potential remains largely untapped due to the difficulty in balancing human safety and comfort with fast production constraints. To help address this challenge, we present PRO-MIND, a novel human-in-the-loop framework that leverages valuable data about the human co-worker to optimise robot trajectories. By estimating human attention and mental effort, our method dynamically adjusts safety zones and enables on-the-fly alterations of the robot path to enhance human comfort and optimal stopping conditions. Moreover, we formulate a multi-objective optimisation to adapt the robot's trajectory execution time and smoothness based on the current human psycho-physical stress, estimated from heart rate variability and frantic movements. These adaptations exploit the properties of B-spline curves to preserve continuity and smoothness, which are crucial factors in improving motion predictability and comfort. Evaluation in two realistic case studies showcases the framework's ability to restrain the operators' workload and stress and to ensure their safety while enhancing human-robot productivity. Further strengths of PRO-MIND include its adaptability to each individual's specific needs and sensitivity to variations in attention, mental effort, and stress during task execution.
comment: 17 pages, 15 figures
☆ Bifurcation Identification for Ultrasound-driven Robotic Cannulation
In trauma and critical care settings, rapid and precise intravascular access is key to patients' survival. Our research aims at ensuring this access, even when skilled medical personnel are not readily available. Vessel bifurcations are anatomical landmarks that can guide the safe placement of catheters or needles during medical procedures. Although ultrasound is advantageous in navigating anatomical landmarks in emergency scenarios due to its portability and safety, to our knowledge no existing algorithm can autonomously extract vessel bifurcations using ultrasound images. This is primarily due to the limited availability of ground truth data, in particular, data from live subjects, needed for training and validating reliable models. Researchers often resort to using data from anatomical phantoms or simulations. We introduce BIFURC, Bifurcation Identification for Ultrasound-driven Robot Cannulation, a novel algorithm that identifies vessel bifurcations and provides optimal needle insertion sites for an autonomous robotic cannulation system. BIFURC integrates expert knowledge with deep learning techniques to efficiently detect vessel bifurcations within the femoral region and can be trained on a limited amount of in-vivo data. We evaluated our algorithm using a medical phantom as well as real-world experiments involving live pigs. In all cases, BIFURC consistently identified bifurcation points and needle insertion locations in alignment with those identified by expert clinicians.
☆ Kino-PAX: Highly Parallel Kinodynamic Sampling-based Planner
Sampling-based motion planners (SBMPs) are effective for planning with complex kinodynamic constraints in high-dimensional spaces, but they still struggle to achieve real-time performance, which is mainly due to their serial computation design. We present Kinodynamic Parallel Accelerated eXpansion (Kino-PAX), a novel highly parallel kinodynamic SBMP designed for parallel devices such as GPUs. Kino-PAX grows a tree of trajectory segments directly in parallel. Our key insight is how to decompose the iterative tree growth process into three massively parallel subroutines. Kino-PAX is designed to align with the parallel device execution hierarchies, through ensuring that threads are largely independent, share equal workloads, and take advantage of low-latency resources while minimizing high-latency data transfers and process synchronization. This design results in a very efficient GPU implementation. We prove that Kino-PAX is probabilistically complete and analyze its scalability with compute hardware improvements. Empirical evaluations demonstrate solutions in the order of 10 ms on a desktop GPU and in the order of 100 ms on an embedded GPU, representing up to 1000 times improvement compared to coarse-grained CPU parallelization of state-of-the-art sequential algorithms over a range of complex environments and systems.
comment: Preprint Under Review
☆ Modeling Image Tone Dichotomy with the Power Function
The primary purpose of this paper is to present the concept of dichotomy in image illumination modeling based on the power function. In particular, we review several mathematical properties of the power function to identify the limitations and propose a new mathematical model capable of abstracting illumination dichotomy. The simplicity of the equation opens new avenues for classical and modern image analysis and processing. The article provides practical and illustrative image examples to explain how the new model manages dichotomy in image perception. The article shows dichotomy image space as a viable way to extract rich information from images despite poor contrast linked to tone, lightness, and color perception. Moreover, a comparison with state-of-the-art methods in image enhancement provides evidence of the method's value.
comment: 49 pages, 11 figures and 36 references
♻ ☆ Heterogeneous LiDAR Dataset for Benchmarking Robust Localization in Diverse Degenerate Scenarios IJRR
The ability to estimate pose and generate maps using 3D LiDAR significantly enhances robotic system autonomy. However, existing open-source datasets lack representation of geometrically degenerate environments, limiting the development and benchmarking of robust LiDAR SLAM algorithms. To address this gap, we introduce GEODE, a comprehensive multi-LiDAR, multi-scenario dataset specifically designed to include real-world geometrically degenerate environments. GEODE comprises 64 trajectories spanning over 64 kilometers across seven diverse settings with varying degrees of degeneracy. The data was meticulously collected to promote the development of versatile algorithms by incorporating various LiDAR sensors, stereo cameras, IMUs, and diverse motion conditions. We evaluate state-of-the-art SLAM approaches using the GEODE dataset to highlight current limitations in LiDAR SLAM techniques. This extensive dataset will be publicly available at https://geode.github.io, supporting further advancements in LiDAR-based SLAM.
comment: 15 pages, 9 figures, 6 tables. Submitted for IJRR dataset paper
♻ ☆ Leveraging LLMs, Graphs and Object Hierarchies for Task Planning in Large-Scale Environments
Planning methods struggle with computational intractability in solving task-level problems in large-scale environments. This work explores leveraging the commonsense knowledge encoded in LLMs to empower planning techniques to deal with these complex scenarios. We achieve this by efficiently using LLMs to prune irrelevant components from the planning problem's state space, substantially simplifying its complexity. We demonstrate the efficacy of this system through extensive experiments within a household simulation environment, alongside real-world validation using a 7-DoF manipulator (video https://youtu.be/6ro2UOtOQS4).
comment: 8 pages, 6 figures
♻ ☆ Robust Single Rotation Averaging Revisited ECCV 2024
In this work, we propose a novel method for robust single rotation averaging that can efficiently handle an extremely large fraction of outliers. Our approach is to minimize the total truncated least unsquared deviations (TLUD) cost of geodesic distances. The proposed algorithm consists of three steps: First, we consider each input rotation as a potential initial solution and choose the one that yields the least sum of truncated chordal deviations. Next, we obtain the inlier set using the initial solution and compute its chordal $L_2$-mean. Finally, starting from this estimate, we iteratively compute the geodesic $L_1$-mean of the inliers using the Weiszfeld algorithm on $SO(3)$. An extensive evaluation shows that our method is robust against up to 99% outliers given a sufficient number of accurate inliers, outperforming the current state of the art.
comment: Accepted to ECCV 2024 Workshop on Recovering 6D Object Pose (R6D)
♻ ☆ System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning
Evolutionary science provides evidence that diversity confers resilience in natural systems. Yet, traditional multi-agent reinforcement learning techniques commonly enforce homogeneity to increase training sample efficiency. When a system of learning agents is not constrained to homogeneous policies, individuals may develop diverse behaviors, resulting in emergent complementarity that benefits the system. Despite this, there is a surprising lack of tools that quantify behavioral diversity. Such techniques would pave the way towards understanding the impact of diversity in collective artificial intelligence and enabling its control. In this paper, we introduce System Neural Diversity (SND): a measure of behavioral heterogeneity in multi-agent systems. We discuss and prove its theoretical properties, and compare it with alternate, state-of-the-art behavioral diversity metrics used in the robotics domain. Through simulations of a variety of cooperative multi-robot tasks, we show how our metric constitutes an important tool that enables measurement and control of behavioral heterogeneity. In dynamic tasks, where the problem is affected by repeated disturbances during training, we show that SND allows us to measure latent resilience skills acquired by the agents, while other proxies, such as task performance (reward), fail to. Finally, we show how the metric can be employed to control diversity, allowing us to enforce a desired heterogeneity set-point or range. We demonstrate how this paradigm can be used to bootstrap the exploration phase, finding optimal policies faster, thus enabling novel and more efficient MARL paradigms.
♻ ☆ Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures
Robot decision-making increasingly relies on data-driven human prediction models when operating around people. While these models are known to mispredict in out-of-distribution interactions, only a subset of prediction errors impact downstream robot performance. We propose characterizing such "system-level" prediction failures via the mathematical notion of regret: high-regret interactions are precisely those in which mispredictions degraded closed-loop robot performance. We further introduce a probabilistic generalization of regret that calibrates failure detection across disparate deployment contexts and renders regret compatible with reward-based and reward-free (e.g., generative) planners. In simulated autonomous driving interactions and social navigation interactions deployed on hardware, we showcase that our system-level failure metric can be used offline to automatically extract closed-loop human-robot interactions that state-of-the-art generative human predictors and robot planners previously struggled with. We further find that the very presence of high-regret data during human predictor fine-tuning is highly predictive of robot re-deployment performance improvements. Fine-tuning with the informative but significantly smaller high-regret data (23% of deployment data) is competitive with fine-tuning on the full deployment dataset, indicating a promising avenue for efficiently mitigating system-level human-robot interaction failures. Project website: https://cmu-intentlab.github.io/not-all-errors/
comment: 6 figures, 3 tables, Accepted to CoRL 2024
♻ ☆ RISE: 3D Perception Makes Real-World Robot Imitation Simple and Effective IROS 2024
Precise robot manipulations require rich spatial information in imitation learning. Image-based policies model object positions from fixed cameras, which are sensitive to camera view changes. Policies utilizing 3D point clouds usually predict keyframes rather than continuous actions, posing difficulty in dynamic and contact-rich scenarios. To utilize 3D perception efficiently, we present RISE, an end-to-end baseline for real-world imitation learning, which predicts continuous actions directly from single-view point clouds. It compresses the point cloud to tokens with a sparse 3D encoder. After adding sparse positional encoding, the tokens are featurized using a transformer. Finally, the features are decoded into robot actions by a diffusion head. Trained with 50 demonstrations for each real-world task, RISE surpasses currently representative 2D and 3D policies by a large margin, showcasing significant advantages in both accuracy and efficiency. Experiments also demonstrate that RISE is more general and robust to environmental change compared with previous baselines. Project website: rise-policy.github.io.
comment: IROS 2024
FC-Planner: A Skeleton-guided Planning Framework for Fast Aerial Coverage of Complex 3D Scenes ICRA2024
3D coverage path planning for UAVs is a crucial problem in diverse practical applications. However, existing methods have shown unsatisfactory system simplicity, computation efficiency, and path quality in large and complex scenes. To address these challenges, we propose FC-Planner, a skeleton-guided planning framework that can achieve fast aerial coverage of complex 3D scenes without pre-processing. We decompose the scene into several simple subspaces by a skeleton-based space decomposition (SSD). Additionally, the skeleton guides us to effortlessly determine free space. We utilize the skeleton to efficiently generate a minimal set of specialized and informative viewpoints for complete coverage. Based on SSD, a hierarchical planner effectively divides the large planning problem into independent sub-problems, enabling parallel planning for each subspace. The carefully designed global and local planning strategies are then incorporated to guarantee both high quality and efficiency in path generation. We conduct extensive benchmark and real-world tests, where FC-Planner computes over 10 times faster compared to state-of-the-art methods with shorter path and more complete coverage. The source code will be made publicly available to benefit the community. Project page: https://hkust-aerial-robotics.github.io/FC-Planner.
comment: Accepted to ICRA2024. Code: https://github.com/HKUST-Aerial-Robotics/FC-Planner. Video: https://www.bilibili.com/video/BV1h84y1D7u5/?spm_id_from=333.999.0.0&vd_source=0af61c122e5e37c944053b57e313025a. Project page: https://hkust-aerial-robotics.github.io/FC-Planner
♻ ☆ Enhancing Sliding Performance with Aerial Robots: Analysis and Solutions for Non-Actuated Multi-Wheel Configurations
Sliding tasks performed by aerial robots are valuable for inspection and simple maintenance tasks at height, such as non-destructive testing and painting. Although various end-effector designs have been used for such tasks, non-actuated wheel configurations are more frequently applied thanks to their rolling capability for sliding motion, mechanical simplicity, and lightweight design. Moreover, a non-actuated multi-wheel (more than one wheel) configuration in the end-effector design allows the placement of additional equipment e.g., sensors and tools in the center of the end-effector tip for applications. However, there is still a lack of studies on crucial contact conditions during sliding using aerial robots with such an end-effector design. In this article, we investigate the key challenges associated with sliding operations using aerial robots equipped with multiple non-actuated wheels through in-depth analysis grounded in physical experiments. The experimental data is used to create a simulator that closely captures real-world conditions. We propose solutions from both mechanical design and control perspectives to improve the sliding performance of aerial robots. From a mechanical standpoint, design guidelines are derived from experimental data. From a control perspective, we introduce a novel pressure-sensing-based control framework that ensures reliable task execution, even during sliding maneuvers. The effectiveness and robustness of the proposed approaches are then validated and compared using the built simulator, particularly in high-risk scenarios.
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ Valeo4Cast: A Modular Approach to End-to-End Forecasting ECCV
Motion forecasting is crucial in autonomous driving systems to anticipate the future trajectories of surrounding agents such as pedestrians, vehicles, and traffic signals. In end-to-end forecasting, the model must jointly detect and track from sensor data (cameras or LiDARs) the past trajectories of the different elements of the scene and predict their future locations. We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach. We individually build and train detection, tracking and forecasting modules. We then only use consecutive finetuning steps to integrate the modules better and alleviate compounding errors. We conduct an in-depth study on the finetuning strategies and it reveals that our simple yet effective approach significantly improves performance on the end-to-end forecasting benchmark. Consequently, our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf. We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up. This remarkable performance in forecasting can be explained by our modular paradigm, which integrates finetuning strategies and significantly outperforms the end-to-end-trained counterparts.
comment: Winning solution of the Argoverse 2 "Unified Detection, Tracking, and Forecasting" challenge; work accepted at Road++ ECCVW 2024
LiDAR-based 4D Occupancy Completion and Forecasting IROS 2024
Scene completion and forecasting are two popular perception problems in research for mobile agents like autonomous vehicles. Existing approaches treat the two problems in isolation, resulting in a separate perception of the two aspects. In this paper, we introduce a novel LiDAR perception task of Occupancy Completion and Forecasting (OCF) in the context of autonomous driving to unify these aspects into a cohesive framework. This task requires new algorithms to address three challenges altogether: (1) sparse-to-dense reconstruction, (2) partial-to-complete hallucination, and (3) 3D-to-4D prediction. To enable supervision and evaluation, we curate a large-scale dataset termed OCFBench from public autonomous driving datasets. We analyze the performance of closely related existing baseline models and our own ones on our dataset. We envision that this research will inspire and call for further investigation in this evolving and crucial area of 4D perception. Our code for data curation and baseline implementation is available at https://github.com/ai4ce/Occ4cast.
comment: IROS 2024
♻ ☆ Efficient Visuo-Haptic Object Shape Completion for Robot Manipulation
For robot manipulation, a complete and accurate object shape is desirable. Here, we present a method that combines visual and haptic reconstruction in a closed-loop pipeline. From an initial viewpoint, the object shape is reconstructed using an implicit surface deep neural network. The location with highest uncertainty is selected for haptic exploration, the object is touched, the new information from touch and a new point cloud from the camera are added, object position is re-estimated and the cycle is repeated. We extend Rustler et al. (2022) by using a new theoretically grounded method to determine the points with highest uncertainty, and we increase the yield of every haptic exploration by adding not only the contact points to the point cloud but also incorporating the empty space established through the robot movement to the object. Additionally, the solution is compact in that the jaws of a closed two-finger gripper are directly used for exploration. The object position is re-estimated after every robot action and multiple objects can be present simultaneously on the table. We achieve a steady improvement with every touch using three different metrics and demonstrate the utility of the better shape reconstruction in grasping experiments on the real robot. On average, grasp success rate increases from 63.3% to 70.4% after a single exploratory touch and to 82.7% after five touches. The collected data and code are publicly available (https://osf.io/j6rkd/, https://github.com/ctu-vras/vishac)
♻ ☆ Multimodal Active Measurement for Human Mesh Recovery in Close Proximity
For physical human-robot interactions (pHRI), a robot needs to estimate the accurate body pose of a target person. However, in these pHRI scenarios, the robot cannot fully observe the target person's body with equipped cameras because the target person must be close to the robot for physical interaction. This close distance leads to severe truncation and occlusions and thus results in poor accuracy of human pose estimation. For better accuracy in this challenging environment, we propose an active measurement and sensor fusion framework of the equipped cameras with touch and ranging sensors such as 2D LiDAR. Touch and ranging sensor measurements are sparse but reliable and informative cues for localizing human body parts. In our active measurement process, camera viewpoints and sensor placements are dynamically optimized to measure body parts with higher estimation uncertainty, which is closely related to truncation or occlusion. In our sensor fusion process, assuming that the measurements of touch and ranging sensors are more reliable than the camera-based estimations, we fuse the sensor measurements to the camera-based estimated pose by aligning the estimated pose towards the measured points. Our proposed method outperformed previous methods on the standard occlusion benchmark with simulated active measurement. Furthermore, our method reliably estimated human poses using a real robot, even with practical constraints such as occlusion by blankets.
comment: Accepted at Robotics and Automation Letters (RA-L)
♻ ☆ Pseudo-rigid body networks: learning interpretable deformable object dynamics from partial observations
Accurately predicting deformable linear object (DLO) dynamics is challenging, especially when the task requires a model that is both human-interpretable and computationally efficient. In this work, we draw inspiration from the pseudo-rigid body method (PRB) and model a DLO as a serial chain of rigid bodies whose internal state is unrolled through time by a dynamics network. This dynamics network is trained jointly with a physics-informed encoder that maps observed motion variables to the DLO's hidden state. To encourage the state to acquire a physically meaningful representation, we leverage the forward kinematics of the PRB model as a decoder. We demonstrate in robot experiments that the proposed DLO dynamics model provides physically interpretable predictions from partial observations while being on par with black-box models regarding prediction accuracy. The project code is available at: http://tinyurl.com/prb-networks
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Imitation Learning-Based Online Time-Optimal Control with Multiple-Waypoint Constraints for Quadrotors
Over the past decade, there has been a remarkable surge in utilizing quadrotors for various purposes due to their simple structure and aggressive maneuverability, such as search and rescue, delivery and autonomous drone racing, etc. One of the key challenges preventing quadrotors from being widely used in these scenarios is online waypoint-constrained time-optimal trajectory generation and control technique. This letter proposes an imitation learning-based online solution to efficiently navigate the quadrotor through multiple waypoints with time-optimal performance. The neural networks (WN&CNets) are trained to learn the control law from the dataset generated by the time-consuming CPC algorithm and then deployed to generate the optimal control commands online to guide the quadrotors. To address the challenge of limited training data and the hover maneuver at the final waypoint, we propose a transition phase strategy that utilizes MINCO trajectories to help the quadrotor 'jump over' the stop-and-go maneuver when switching waypoints. Our method is demonstrated in both simulation and real-world experiments, achieving a maximum speed of 5.6m/s while navigating through 7 waypoints in a confined space of 5.5m*5.5m*2.0m. The results show that with a slight loss in optimality, the WN&CNets significantly reduce the processing time and enable online optimal control for multiple-waypoint constrained flight tasks.
♻ ☆ ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Training robots to perform complex control tasks from high-dimensional pixel input using reinforcement learning (RL) is sample-inefficient, because image observations are comprised primarily of task-irrelevant information. By contrast, humans are able to visually attend to task-relevant objects and areas. Based on this insight, we introduce Visual Saliency-Guided Reinforcement Learning (ViSaRL). Using ViSaRL to learn visual representations significantly improves the success rate, sample efficiency, and generalization of an RL agent on diverse tasks including DeepMind Control benchmark, robot manipulation in simulation and on a real robot. We present approaches for incorporating saliency into both CNN and Transformer-based encoders. We show that visual representations learned using ViSaRL are robust to various sources of visual perturbations including perceptual noise and scene variations. ViSaRL nearly doubles success rate on the real-robot tasks compared to the baseline which does not use saliency.
♻ ☆ Greedy Perspectives: Multi-Drone View Planning for Collaborative Perception in Cluttered Environments IROS'24
Deployment of teams of aerial robots could enable large-scale filming of dynamic groups of people (actors) in complex environments for applications in areas such as team sports and cinematography. Toward this end, methods for submodular maximization via sequential greedy planning can enable scalable optimization of camera views across teams of robots but face challenges with efficient coordination in cluttered environments. Obstacles can produce occlusions and increase chances of inter-robot collision which can violate requirements for near-optimality guarantees. To coordinate teams of aerial robots in filming groups of people in dense environments, a more general view-planning approach is required. We explore how collision and occlusion impact performance in filming applications through the development of a multi-robot multi-actor view planner with an occlusion-aware objective for filming groups of people and compare with a formation planner and a greedy planner that ignores inter-robot collisions. We evaluate our approach based on five test environments and complex multi-actor behaviors. Compared with a formation planner, our sequential planner generates 14% greater view reward for filming the actors in three scenarios and comparable performance to formation planning on two others. We also observe near identical view rewards for sequential planning both with and without inter-robot collision constraints which indicates that robots are able to avoid collisions without impairing performance in the perception task. Overall, we demonstrate effective coordination of teams of aerial robots in environments cluttered with obstacles that may cause collisions or occlusions and for filming groups that may split, merge, or spread apart.
comment: IROS'24; 8 pages, 8 figures, 2 tables
♻ ☆ GET-Zero: Graph Embodiment Transformer for Zero-shot Embodiment Generalization
This paper introduces GET-Zero, a model architecture and training procedure for learning an embodiment-aware control policy that can immediately adapt to new hardware changes without retraining. To do so, we present Graph Embodiment Transformer (GET), a transformer model that leverages the embodiment graph connectivity as a learned structural bias in the attention mechanism. We use behavior cloning to distill demonstration data from embodiment-specific expert policies into an embodiment-aware GET model that conditions on the hardware configuration of the robot to make control decisions. We conduct a case study on a dexterous in-hand object rotation task using different configurations of a four-fingered robot hand with joints removed and with link length extensions. Using the GET model along with a self-modeling loss enables GET-Zero to zero-shot generalize to unseen variation in graph structure and link length, yielding a 20% improvement over baseline methods. All code and qualitative video results are on https://get-zero-paper.github.io
comment: 8 pages, 5 figures, 3 tables, website https://get-zero-paper.github.io
♻ ☆ MGS-SLAM: Monocular Sparse Tracking and Gaussian Mapping with Depth Smooth Regularization
This letter introduces a novel framework for dense Visual Simultaneous Localization and Mapping (VSLAM) based on Gaussian Splatting. Recently, SLAM based on Gaussian Splatting has shown promising results. However, in monocular scenarios, the Gaussian maps reconstructed lack geometric accuracy and exhibit weaker tracking capability. To address these limitations, we jointly optimize sparse visual odometry tracking and 3D Gaussian Splatting scene representation for the first time. We obtain depth maps on visual odometry keyframe windows using a fast Multi-View Stereo (MVS) network for the geometric supervision of Gaussian maps. Furthermore, we propose a depth smooth loss and Sparse-Dense Adjustment Ring (SDAR) to reduce the negative effect of estimated depth maps and preserve the consistency in scale between the visual odometry and Gaussian maps. We have evaluated our system across various synthetic and real-world datasets. The accuracy of our pose estimation surpasses existing methods and achieves state-of-the-art. Additionally, it outperforms previous monocular methods in terms of novel view synthesis and geometric reconstruction fidelities.
comment: Accepted by IEEE Robotics and Automation Letters
♻ ☆ Multi-Agent Clarity-Aware Dynamic Coverage with Gaussian Processes
This paper presents two algorithms for multi-agent dynamic coverage in spatiotemporal environments, where the coverage algorithms are informed by the method of data assimilation. In particular, we show that by explicitly modeling the environment using a Gaussian Process (GP) model, and considering the sensing capabilities and the dynamics of a team of robots, we can design an estimation algorithm and multi-agent coverage controller that explores and estimates the state of the spatiotemporal environment. The uncertainty of the estimate is quantified using clarity, an information-theoretic metric, where higher clarity corresponds to lower uncertainty. By exploiting the relationship between GPs and Stochastic Differential Equations (SDEs) we quantify the increase in clarity of the estimated state at any position due to a measurement taken from any other position. We use this relationship to design two new coverage controllers, both of which scale well with the number of agents exploring the domain, assuming the robots can share the map of the clarity over the spatial domain via communication. We demonstrate the algorithms through a realistic simulation of a team of robots collecting wind data over a region in Austria.
comment: 8 pages, 2 figures, accepted in IEEE CDC 2024
♻ ☆ Sim2Real Transfer for Audio-Visual Navigation with Frequency-Adaptive Acoustic Field Prediction IROS 2024
Sim2real transfer has received increasing attention lately due to the success of learning robotic tasks in simulation end-to-end. While there has been a lot of progress in transferring vision-based navigation policies, the existing sim2real strategy for audio-visual navigation performs data augmentation empirically without measuring the acoustic gap. The sound differs from light in that it spans across much wider frequencies and thus requires a different solution for sim2real. We propose the first treatment of sim2real for audio-visual navigation by disentangling it into acoustic field prediction (AFP) and waypoint navigation. We first validate our design choice in the SoundSpaces simulator and show improvement on the Continuous AudioGoal navigation benchmark. We then collect real-world data to measure the spectral difference between the simulation and the real world by training AFP models that only take a specific frequency subband as input. We further propose a frequency-adaptive strategy that intelligently selects the best frequency band for prediction based on both the measured spectral difference and the energy distribution of the received audio, which improves the performance on the real data. Lastly, we build a real robot platform and show that the transferred policy can successfully navigate to sounding objects. This work demonstrates the potential of building intelligent agents that can see, hear, and act entirely from simulation, and transferring them to the real world.
comment: Camera ready version for IROS 2024. Project page: https://vision.cs.utexas.edu/projects/sim2real/
♻ ☆ An introduction to using dual quaternions to study kinematics
We explain the use of dual quaternions to represent poses, twists, and wrenches.
comment: Correction to formula for normalization. arXiv admin note: substantial text overlap with arXiv:2202.09268
♻ ☆ EXTRACT: Efficient Policy Learning by Extracting Transferable Robot Skills from Offline Data
Most reinforcement learning (RL) methods focus on learning optimal policies over low-level action spaces. While these methods can perform well in their training environments, they lack the flexibility to transfer to new tasks. Instead, RL agents that can act over useful, temporally extended skills rather than low-level actions can learn new tasks more easily. Prior work in skill-based RL either requires expert supervision to define useful skills, which is hard to scale, or learns a skill-space from offline data with heuristics that limit the adaptability of the skills, making them difficult to transfer during downstream RL. Our approach, EXTRACT, instead utilizes pre-trained vision language models to extract a discrete set of semantically meaningful skills from offline data, each of which is parameterized by continuous arguments, without human supervision. This skill parameterization allows robots to learn new tasks by only needing to learn when to select a specific skill and how to modify its arguments for the specific task. We demonstrate through experiments in sparse-reward, image-based, robot manipulation environments that EXTRACT can more quickly learn new tasks than prior works, with major gains in sample efficiency and performance over prior skill-based RL. Website at https://www.jessezhang.net/projects/extract/.
comment: 25 pages, 16 figures
♻ ☆ Efficient Extrinsic Self-Calibration of Multiple IMUs using Measurement Subset Selection IROS2024
This paper addresses the problem of choosing a sparse subset of measurements for quick calibration parameter estimation. A standard solution to this is selecting a measurement only if its utility -- the difference between posterior (with the measurement) and prior information (without the measurement) -- exceeds some threshold. Theoretically, utility, a function of the parameter estimate, should be evaluated at the estimate obtained with all measurements selected so far, hence necessitating a recalibration with each new measurement. However, we hypothesize that utility is insensitive to changes in the parameter estimate for many systems of interest, suggesting that evaluating utility at some initial parameter guess would yield equivalent results in practice. We provide evidence supporting this hypothesis for extrinsic calibration of multiple inertial measurement units (IMUs), showing the reduction in calibration time by two orders of magnitude by forgoing recalibration for each measurement.
comment: Accepted at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2024)
Computer Vision 143
GeoCalib: Learning Single-image Calibration with Geometric Optimization ECCV 2024
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.
comment: Presented at ECCV 2024
☆ LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation ECCV 2024
Neural Radiance Fields (NeRFs) have revolutionized the reconstruction of static scenes and objects in 3D, offering unprecedented quality. However, extending NeRFs to model dynamic objects or object articulations remains a challenging problem. Previous works have tackled this issue by focusing on part-level reconstruction and motion estimation for objects, but they often rely on heuristics regarding the number of moving parts or object categories, which can limit their practical use. In this work, we introduce LEIA, a novel approach for representing dynamic 3D objects. Our method involves observing the object at distinct time steps or "states" and conditioning a hypernetwork on the current state, using this to parameterize our NeRF. This approach allows us to learn a view-invariant latent representation for each state. We further demonstrate that by interpolating between these states, we can generate novel articulation configurations in 3D space that were previously unseen. Our experimental results highlight the effectiveness of our method in articulating objects in a manner that is independent of the viewing angle and joint configuration. Notably, our approach outperforms previous methods that rely on motion information for articulation registration.
comment: Accepted to ECCV 2024. Project Website at https://archana1998.github.io/leia/
☆ Hint-AD: Holistically Aligned Interpretability in End-to-End Autonomous Driving
End-to-end architectures in autonomous driving (AD) face a significant challenge in interpretability, impeding human-AI trust. Human-friendly natural language has been explored for tasks such as driving explanation and 3D captioning. However, previous works primarily focused on the paradigm of declarative interpretability, where the natural language interpretations are not grounded in the intermediate outputs of AD systems, making the interpretations only declarative. In contrast, aligned interpretability establishes a connection between language and the intermediate outputs of AD systems. Here we introduce Hint-AD, an integrated AD-language system that generates language aligned with the holistic perception-prediction-planning outputs of the AD model. By incorporating the intermediate outputs and a holistic token mixer sub-network for effective feature adaptation, Hint-AD achieves desirable accuracy, achieving state-of-the-art results in driving language tasks including driving explanation, 3D dense captioning, and command prediction. To facilitate further study on driving explanation task on nuScenes, we also introduce a human-labeled dataset, Nu-X. Codes, dataset, and models will be publicly available.
comment: CoRL 2024, Project Page: https://air-discover.github.io/Hint-AD/
☆ A study on Deep Convolutional Neural Networks, Transfer Learning and Ensemble Model for Breast Cancer Detection
In deep learning, transfer learning and ensemble models have shown promise in improving computer-aided disease diagnosis. However, applying the transfer learning and ensemble model is still relatively limited. Moreover, the ensemble model's development is ad-hoc, overlooks redundant layers, and suffers from imbalanced datasets and inadequate augmentation. Lastly, significant Deep Convolutional Neural Networks (D-CNNs) have been introduced to detect and classify breast cancer. Still, very few comparative studies were conducted to investigate the accuracy and efficiency of existing CNN architectures. Realising the gaps, this study compares the performance of D-CNN, which includes the original CNN, transfer learning, and an ensemble model, in detecting breast cancer. The comparison study of this paper consists of comparison using six CNN-based deep learning architectures (SE-ResNet152, MobileNetV2, VGG19, ResNet18, InceptionV3, and DenseNet-121), a transfer learning, and an ensemble model on breast cancer detection. Among the comparison of these models, the ensemble model provides the highest detection and classification accuracy of 99.94% for breast cancer detection and classification. However, this study also provides a negative result in the case of transfer learning, as the transfer learning did not increase the accuracy of the original SE-ResNet152, MobileNetV2, VGG19, ResNet18, InceptionV3, and DenseNet-121 model. The high accuracy in detecting and categorising breast cancer detection using CNN suggests that the CNN model is promising in breast cancer disease detection. This research is significant in biomedical engineering, computer-aided disease diagnosis, and ML-based disease detection.
☆ A comprehensive study on Blood Cancer detection and classification using Convolutional Neural Network
Over the years in object detection several efficient Convolutional Neural Networks (CNN) networks, such as DenseNet201, InceptionV3, ResNet152v2, SEresNet152, VGG19, Xception gained significant attention due to their performance. Moreover, CNN paradigms have expanded to transfer learning and ensemble models from original CNN architectures. Research studies suggest that transfer learning and ensemble models are capable of increasing the accuracy of deep learning (DL) models. However, very few studies have conducted comprehensive experiments utilizing these techniques in detecting and localizing blood malignancies. Realizing the gap, this study conducted three experiments; in the first experiment -- six original CNNs were used, in the second experiment -- transfer learning and, in the third experiment a novel ensemble model DIX (DenseNet201, InceptionV3, and Xception) was developed to detect and classify blood cancer. The statistical result suggests that DIX outperformed the original and transfer learning performance, providing an accuracy of 99.12%. However, this study also provides a negative result in the case of transfer learning, as the transfer learning did not increase the accuracy of the original CNNs. Like many other cancers, blood cancer diseases require timely identification for effective treatment plans and increased survival possibilities. The high accuracy in detecting and categorization blood cancer detection using CNN suggests that the CNN model is promising in blood cancer disease detection. This research is significant in the fields of biomedical engineering, computer-aided disease diagnosis, and ML-based disease detection.
☆ A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL)
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children. This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs), for the detection and classification of ALL. Conventional techniques for ALL diagnosis, such bone marrow biopsy, are costly and prone to mistakes made by hand. By utilising automated technologies, the research seeks to improve diagnostic accuracy. The research uses a variety of pre-trained CNN models, such as InceptionV3, ResNet101, VGG19, DenseNet121, MobileNetV2, and DenseNet121, to extract characteristics from pictures of blood smears. ANOVA, Recursive Feature Elimination (RFE), Random Forest, Lasso, and Principal Component Analysis (PCA) are a few of the selection approaches used to find the most relevant features after feature extraction. Following that, machine learning methods like Na\"ive Bayes, Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbours (KNN) are used to classify these features. With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19. According to the study, CNN-based models have the potential to decrease the need for medical specialists by increasing the speed and accuracy of ALL diagnosis. To improve model performance, the study also recommends expanding and diversifying datasets and investigating more sophisticated designs such as transformers. This study highlights how well automated deep learning systems do medical diagnosis.
☆ GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction
3D Gaussian Splatting (3DGS) has shown promising performance in novel view synthesis. Previous methods adapt it to obtaining surfaces of either individual 3D objects or within limited scenes. In this paper, we make the first attempt to tackle the challenging task of large-scale scene surface reconstruction. This task is particularly difficult due to the high GPU memory consumption, different levels of details for geometric representation, and noticeable inconsistencies in appearance. To this end, we propose GigaGS, the first work for high-quality surface reconstruction for large-scale scenes using 3DGS. GigaGS first applies a partitioning strategy based on the mutual visibility of spatial regions, which effectively grouping cameras for parallel processing. To enhance the quality of the surface, we also propose novel multi-view photometric and geometric consistency constraints based on Level-of-Detail representation. In doing so, our method can reconstruct detailed surface structures. Comprehensive experiments are conducted on various datasets. The consistent improvement demonstrates the superiority of GigaGS.
☆ Constructing an Interpretable Deep Denoiser by Unrolling Graph Laplacian Regularizer
An image denoiser can be used for a wide range of restoration problems via the Plug-and-Play (PnP) architecture. In this paper, we propose a general framework to build an interpretable graph-based deep denoiser (GDD) by unrolling a solution to a maximum a posteriori (MAP) problem equipped with a graph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem showing that any (pseudo-)linear denoiser $\boldsymbol \Psi$, under mild conditions, can be mapped to a solution of a MAP denoising problem regularized using GLR, we first initialize a graph Laplacian matrix $\mathbf L$ via truncated Taylor Series Expansion (TSE) of $\boldsymbol \Psi^{-1}$. Then, we compute the MAP linear system solution by unrolling iterations of the conjugate gradient (CG) algorithm into a sequence of neural layers as a feed-forward network -- one that is amenable to parameter tuning. The resulting GDD network is "graph-interpretable", low in parameter count, and easy to initialize thanks to $\mathbf L$ derived from a known well-performing denoiser $\boldsymbol \Psi$. Experimental results show that GDD achieves competitive image denoising performance compared to competitors, but employing far fewer parameters, and is more robust to covariate shift.
☆ A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO
This research introduces an advanced method for diagnosing diseases in sweet orange leaves by utilising advanced artificial intelligence models like YOLOv8 . Due to their significance as a vital agricultural product, sweet oranges encounter significant threats from a variety of diseases that harmfully affect both their yield and quality. Conventional methods for disease detection primarily depend on manual inspection which is ineffective and frequently leads to errors, resulting in delayed treatment and increased financial losses. In response to this challenge, the research utilized YOLOv8 , harnessing their proficiencies in detecting objects and analyzing images. YOLOv8 is recognized for its rapid and precise performance, while VIT is acknowledged for its detailed feature extraction abilities. Impressively, during both the training and validation stages, YOLOv8 exhibited a perfect accuracy of 80.4%, while VIT achieved an accuracy of 99.12%, showcasing their potential to transform disease detection in agriculture. The study comprehensively examined the practical challenges related to the implementation of AI technologies in agriculture, encompassing the computational demands and user accessibility, and offering viable solutions for broader usage. Moreover, it underscores the environmental considerations, particularly the potential for reduced pesticide usage, thereby promoting sustainable farming and environmental conservation. These findings provide encouraging insights into the application of AI in agriculture, suggesting a transition towards more effective, sustainable, and technologically advanced farming methods. This research not only highlights the efficacy of YOLOv8 within a specific agricultural domain but also lays the foundation for further studies that encompass a broader application in crop management and sustainable agricultural practices.
☆ Data Collection-free Masked Video Modeling ECCV 2024
Pre-training video transformers generally requires a large amount of data, presenting significant challenges in terms of data collection costs and concerns related to privacy, licensing, and inherent biases. Synthesizing data is one of the promising ways to solve these issues, yet pre-training solely on synthetic data has its own challenges. In this paper, we introduce an effective self-supervised learning framework for videos that leverages readily available and less costly static images. Specifically, we define the Pseudo Motion Generator (PMG) module that recursively applies image transformations to generate pseudo-motion videos from images. These pseudo-motion videos are then leveraged in masked video modeling. Our approach is applicable to synthetic images as well, thus entirely freeing video pre-training from data collection costs and other concerns in real data. Through experiments in action recognition tasks, we demonstrate that this framework allows effective learning of spatio-temporal features through pseudo-motion videos, significantly improving over existing methods which also use static images and partially outperforming those using both real and synthetic videos. These results uncover fragments of what video transformers learn through masked video modeling.
comment: ECCV 2024
☆ World-Grounded Human Motion Recovery via Gravity-View Coordinates SIGGRAPH
We present a novel method for recovering world-grounded human motion from monocular video. The main challenge lies in the ambiguity of defining the world coordinate system, which varies between sequences. Previous approaches attempt to alleviate this issue by predicting relative motion in an autoregressive manner, but are prone to accumulating errors. Instead, we propose estimating human poses in a novel Gravity-View (GV) coordinate system, which is defined by the world gravity and the camera view direction. The proposed GV system is naturally gravity-aligned and uniquely defined for each video frame, largely reducing the ambiguity of learning image-pose mapping. The estimated poses can be transformed back to the world coordinate system using camera rotations, forming a global motion sequence. Additionally, the per-frame estimation avoids error accumulation in the autoregressive methods. Experiments on in-the-wild benchmarks demonstrate that our method recovers more realistic motion in both the camera space and world-grounded settings, outperforming state-of-the-art methods in both accuracy and speed. The code is available at https://zju3dv.github.io/gvhmr/.
comment: Accepted at SIGGRAPH Asia 2024 (Conference Track). Project page: https://zju3dv.github.io/gvhmr/
☆ Image Vectorization with Depth: convexified shape layers with depth ordering
Image vectorization is a process to convert a raster image into a scalable vector graphic format. Objective is to effectively remove the pixelization effect while representing boundaries of image by scaleable parameterized curves. We propose new image vectorization with depth which considers depth ordering among shapes and use curvature-based inpainting for convexifying shapes in vectorization process.From a given color quantized raster image, we first define each connected component of the same color as a shape layer, and construct depth ordering among them using a newly proposed depth ordering energy. Global depth ordering among all shapes is described by a directed graph, and we propose an energy to remove cycle within the graph. After constructing depth ordering of shapes, we convexify occluded regions by Euler's elastica curvature-based variational inpainting, and leverage on the stability of Modica-Mortola double-well potential energy to inpaint large regions. This is following human vision perception that boundaries of shapes extend smoothly, and we assume shapes are likely to be convex. Finally, we fit B\'{e}zier curves to the boundaries and save vectorization as a SVG file which allows superposition of curvature-based inpainted shapes following the depth ordering. This is a new way to vectorize images, by decomposing an image into scalable shape layers with computed depth ordering. This approach makes editing shapes and images more natural and intuitive. We also consider grouping shape layers for semantic vectorization. We present various numerical results and comparisons against recent layer-based vectorization methods to validate the proposed model.
☆ SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
comment: Parameter efficient finetuning method
☆ Towards Localizing Structural Elements: Merging Geometrical Detection with Semantic Verification in RGB-D Data
RGB-D cameras supply rich and dense visual and spatial information for various robotics tasks such as scene understanding, map reconstruction, and localization. Integrating depth and visual information can aid robots in localization and element mapping, advancing applications like 3D scene graph generation and Visual Simultaneous Localization and Mapping (VSLAM). While point cloud data containing such information is primarily used for enhanced scene understanding, exploiting their potential to capture and represent rich semantic information has yet to be adequately targeted. This paper presents a real-time pipeline for localizing building components, including wall and ground surfaces, by integrating geometric calculations for pure 3D plane detection followed by validating their semantic category using point cloud data from RGB-D cameras. It has a parallel multi-thread architecture to precisely estimate poses and equations of all the planes detected in the environment, filters the ones forming the map structure using a panoptic segmentation validation, and keeps only the validated building components. Incorporating the proposed method into a VSLAM framework confirmed that constraining the map with the detected environment-driven semantic elements can improve scene understanding and map reconstruction accuracy. It can also ensure (re-)association of these detected components into a unified 3D scene graph, bridging the gap between geometric accuracy and semantic understanding. Additionally, the pipeline allows for the detection of potential higher-level structural entities, such as rooms, by identifying the relationships between building components based on their layout.
comment: 6 pages, 5 figures. 3 tables
☆ MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification
The field of text-to-3D content generation has made significant progress in generating realistic 3D objects, with existing methodologies like Score Distillation Sampling (SDS) offering promising guidance. However, these methods often encounter the "Janus" problem-multi-face ambiguities due to imprecise guidance. Additionally, while recent advancements in 3D gaussian splitting have shown its efficacy in representing 3D volumes, optimization of this representation remains largely unexplored. This paper introduces a unified framework for text-to-3D content generation that addresses these critical gaps. Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model, progressively enhancing detail and accuracy. We also introduce a novel densification algorithm that aligns gaussians close to the surface, optimizing the structural integrity and fidelity of the generated models. Extensive experiments validate our approach, demonstrating that it produces high-quality visual outputs with minimal time cost. Notably, our method achieves high-quality results within half an hour of training, offering a substantial efficiency gain over most existing methods, which require hours of training time to achieve comparable results.
comment: 13 pages, 10 figures
☆ Hierarchical Multi-Label Classification with Missing Information for Benthic Habitat Imagery
In this work, we apply state-of-the-art self-supervised learning techniques on a large dataset of seafloor imagery, \textit{BenthicNet}, and study their performance for a complex hierarchical multi-label (HML) classification downstream task. In particular, we demonstrate the capacity to conduct HML training in scenarios where there exist multiple levels of missing annotation information, an important scenario for handling heterogeneous real-world data collected by multiple research groups with differing data collection protocols. We find that, when using smaller one-hot image label datasets typical of local or regional scale benthic science projects, models pre-trained with self-supervision on a larger collection of in-domain benthic data outperform models pre-trained on ImageNet. In the HML setting, we find the model can attain a deeper and more precise classification if it is pre-trained with self-supervision on in-domain data. We hope this work can establish a benchmark for future models in the field of automated underwater image annotation tasks and can guide work in other domains with hierarchical annotations of mixed resolution.
☆ When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking
Extracting and matching Re-Identification (ReID) features is used by many state-of-the-art (SOTA) Multiple Object Tracking (MOT) methods, particularly effective against frequent and long-term occlusions. While end-to-end object detection and tracking have been the main focus of recent research, they have yet to outperform traditional methods in benchmarks like MOT17 and MOT20. Thus, from an application standpoint, methods with separate detection and embedding remain the best option for accuracy, modularity, and ease of implementation, though they are impractical for edge devices due to the overhead involved. In this paper, we investigate a selective approach to minimize the overhead of feature extraction while preserving accuracy, modularity, and ease of implementation. This approach can be integrated into various SOTA methods. We demonstrate its effectiveness by applying it to StrongSORT and Deep OC-SORT. Experiments on MOT17, MOT20, and DanceTrack datasets show that our mechanism retains the advantages of feature extraction during occlusions while significantly reducing runtime. Additionally, it improves accuracy by preventing confusion in the feature-matching stage, particularly in cases of deformation and appearance similarity, which are common in DanceTrack. https://github.com/emirhanbayar/Fast-StrongSORT, https://github.com/emirhanbayar/Fast-Deep-OC-SORT
comment: 8 pages, 5 figures. Presents a selective approach for ReID feature extraction in Multiple Object Tracking, reducing computational overhead while maintaining accuracy. Tested on StrongSORT and Deep OC-SORT using MOT17, MOT20, and DanceTrack datasets. Code: https://github.com/emirhanbayar/Fast-StrongSORT, https://github.com/emirhanbayar/Fast-Deep-OC-SORT
☆ Improving the Precision of CNNs for Magnetic Resonance Spectral Modeling
Magnetic resonance spectroscopic imaging is a widely available imaging modality that can non-invasively provide a metabolic profile of the tissue of interest, yet is challenging to integrate clinically. One major reason is the expensive, expert data processing and analysis that is required. Using machine learning to predict MRS-related quantities offers avenues around this problem, but deep learning models bring their own challenges, especially model trust. Current research trends focus primarily on mean error metrics, but comprehensive precision metrics are also needed, e.g. standard deviations, confidence intervals, etc.. This work highlights why more comprehensive error characterization is important and how to improve the precision of CNNs for spectral modeling, a quantitative task. The results highlight advantages and trade-offs of these techniques that should be considered when addressing such regression tasks with CNNs. Detailed insights into the underlying mechanisms of each technique, and how they interact with other techniques, are discussed in depth.
comment: 11 pages, 1 figure, 2 tables
☆ Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer
The main treatment modality for oropharyngeal cancer (OPC) is radiotherapy, where accurate segmentation of the primary gross tumor volume (GTVp) is essential. However, accurate GTVp segmentation is challenging due to significant interobserver variability and the time-consuming nature of manual annotation, while fully automated methods can occasionally fail. An interactive deep learning (DL) model offers the advantage of automatic high-performance segmentation with the flexibility for user correction when necessary. In this study, we examine interactive DL for GTVp segmentation in OPC. We implement state-of-the-art algorithms and propose a novel two-stage Interactive Click Refinement (2S-ICR) framework. Using the 2021 HEad and neCK TumOR (HECKTOR) dataset for development and an external dataset from The University of Texas MD Anderson Cancer Center for evaluation, the 2S-ICR framework achieves a Dice similarity coefficient of 0.713 $\pm$ 0.152 without user interaction and 0.824 $\pm$ 0.099 after five interactions, outperforming existing methods in both cases.
☆ A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising
State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.
comment: 5 pages, 5 figures
☆ Lightweight Multiscale Feature Fusion Super-Resolution Network Based on Two-branch Convolution and Transformer
The single image super-resolution(SISR) algorithms under deep learning currently have two main models, one based on convolutional neural networks and the other based on Transformer. The former uses the stacking of convolutional layers with different convolutional kernel sizes to design the model, which enables the model to better extract the local features of the image; the latter uses the self-attention mechanism to design the model, which allows the model to establish long-distance dependencies between image pixel points through the self-attention mechanism and then better extract the global features of the image. However, both of the above methods face their problems. Based on this, this paper proposes a new lightweight multi-scale feature fusion network model based on two-way complementary convolutional and Transformer, which integrates the respective features of Transformer and convolutional neural networks through a two-branch network architecture, to realize the mutual fusion of global and local information. Meanwhile, considering the partial loss of information caused by the low-pixel images trained by the deep neural network, this paper designs a modular connection method of multi-stage feature supplementation to fuse the feature maps extracted from the shallow stage of the model with those extracted from the deep stage of the model, to minimize the loss of the information in the feature images that is beneficial to the image restoration as much as possible, to facilitate the obtaining of a higher-quality restored image. The practical results finally show that the model proposed in this paper is optimal in image recovery performance when compared with other lightweight models with the same amount of parameters.
comment: 11 pages,12 figures
☆ Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks BMVC 2024
Image analysis in the euclidean space through linear hyperspaces is well studied. However, in the quest for more effective image representations, we turn to hyperbolic manifolds. They provide a compelling alternative to capture complex hierarchical relationships in images with remarkably small dimensionality. To demonstrate hyperbolic embeddings' competence, we introduce a light-weight hyperbolic graph neural network for image segmentation, encompassing patch-level features in a very small embedding size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5\%, 4\% on VOC-07, VOC-12 for localization, and by 0.8\%, 1.3\% on CUB-200, ECSSD for segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN delivers effective and fast ($\approx 2$ images/second) results on very standard GPUs like the GTX1650. This empirical evaluation presents compelling evidence of the efficacy and potential of hyperbolic representations for vision tasks.
comment: BMVC 2024
☆ Transtreaming: Adaptive Delay-aware Transformer for Real-time Streaming Perception AAAI 2025
Real-time object detection is critical for the decision-making process for many real-world applications, such as collision avoidance and path planning in autonomous driving. This work presents an innovative real-time streaming perception method, Transtreaming, which addresses the challenge of real-time object detection with dynamic computational delay. The core innovation of Transtreaming lies in its adaptive delay-aware transformer, which can concurrently predict multiple future frames and select the output that best matches the real-world present time, compensating for any system-induced computation delays. The proposed model outperforms the existing state-of-the-art methods, even in single-frame detection scenarios, by leveraging a transformer-based methodology. It demonstrates robust performance across a range of devices, from powerful V100 to modest 2080Ti, achieving the highest level of perceptual accuracy on all platforms. Unlike most state-of-the-art methods that struggle to complete computation within a single frame on less powerful devices, Transtreaming meets the stringent real-time processing requirements on all kinds of devices. The experimental results emphasize the system's adaptability and its potential to significantly improve the safety and reliability for many real-world systems, such as autonomous driving.
comment: Submitted to AAAI 2025
☆ Semi-Supervised 3D Object Detection with Chanel Augmentation using Transformation Equivariance ICIP
Accurate 3D object detection is crucial for autonomous vehicles and robots to navigate and interact with the environment safely and effectively. Meanwhile, the performance of 3D detector relies on the data size and annotation which is expensive. Consequently, the demand of training with limited labeled data is growing. We explore a novel teacher-student framework employing channel augmentation for 3D semi-supervised object detection. The teacher-student SSL typically adopts a weak augmentation and strong augmentation to teacher and student, respectively. In this work, we apply multiple channel augmentations to both networks using the transformation equivariance detector (TED). The TED allows us to explore different combinations of augmentation on point clouds and efficiently aggregates multi-channel transformation equivariance features. In principle, by adopting fixed channel augmentations for the teacher network, the student can train stably on reliable pseudo-labels. Adopting strong channel augmentations can enrich the diversity of data, fostering robustness to transformations and enhancing generalization performance of the student network. We use SOTA hierarchical supervision as a baseline and adapt its dual-threshold to TED, which is called channel IoU consistency. We evaluate our method with KITTI dataset, and achieved a significant performance leap, surpassing SOTA 3D semi-supervised object detection models.
comment: Accepted to 2024 IEEE International Conference on Image Processing (ICIP)
☆ Quantifying and Enabling the Interpretability of CLIP-like Models
CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. To bridge this gap we propose a study to quantify the interpretability in CLIP like models. We conduct this study on six different CLIP models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. Our approach begins with using the TEXTSPAN algorithm and in-context learning to break down individual attention heads into specific properties. We then evaluate how easily these heads can be interpreted using new metrics which measure property consistency within heads and property disentanglement across heads. Our findings reveal that larger CLIP models are generally more interpretable than their smaller counterparts. To further assist users in understanding the inner workings of CLIP models, we introduce CLIP-InterpreT, a tool designed for interpretability analysis. CLIP-InterpreT offers five types of analyses: property-based nearest neighbor search, per-head topic segmentation, contrastive segmentation, per-head nearest neighbors of an image, and per-head nearest neighbors of text.
☆ PoseEmbroider: Towards a 3D, Visual, Semantic-aware Human Pose Representation ECCV 2024
Aligning multiple modalities in a latent space, such as images and texts, has shown to produce powerful semantic visual representations, fueling tasks like image captioning, text-to-image generation, or image grounding. In the context of human-centric vision, albeit CLIP-like representations encode most standard human poses relatively well (such as standing or sitting), they lack sufficient acuteness to discern detailed or uncommon ones. Actually, while 3D human poses have been often associated with images (e.g. to perform pose estimation or pose-conditioned image generation), or more recently with text (e.g. for text-to-pose generation), they have seldom been paired with both. In this work, we combine 3D poses, person's pictures and textual pose descriptions to produce an enhanced 3D-, visual- and semantic-aware human pose representation. We introduce a new transformer-based model, trained in a retrieval fashion, which can take as input any combination of the aforementioned modalities. When composing modalities, it outperforms a standard multi-modal alignment retrieval model, making it possible to sort out partial information (e.g. image with the lower body occluded). We showcase the potential of such an embroidered pose representation for (1) SMPL regression from image with optional text cue; and (2) on the task of fine-grained instruction generation, which consists in generating a text that describes how to move from one 3D pose to another (as a fitness coach). Unlike prior works, our model can take any kind of input (image and/or pose) without retraining.
comment: Published in ECCV 2024
☆ In Flight Boresight Rectification for Lightweight Airborne Pushbroom Imaging Spectrometry
Hyperspectral cameras have recently been miniaturized for operation on lightweight airborne platforms such as UAV or small aircraft. Unlike frame cameras (RGB or Multispectral), many hyperspectral sensors use a linear array or 'push-broom' scanning design. This design presents significant challenges for image rectification and the calibration of the intrinsic and extrinsic camera parameters. Typically, methods employed to address such tasks rely on a precise GPS/INS estimate of the airborne platform trajectory and a detailed terrain model. However, inaccuracies in the trajectory or surface model information can introduce systematic errors and complicate geometric modeling which ultimately degrade the quality of the rectification. To overcome these challenges, we propose a method for tie point extraction and camera calibration for 'push-broom' hyperspectral sensors using only the raw spectral imagery and raw, possibly low quality, GPS/INS trajectory. We demonstrate that our approach allows for the automatic calibration of airborne systems with hyperspectral cameras, outperforms other state-of-the-art automatic rectification methods and reaches an accuracy on par with manual calibration methods.
comment: 10 pages, 6 figures
☆ Aligning Machine and Human Visual Representations across Abstraction Levels
Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks. However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do, raising questions regarding the similarity of their underlying representations. What is missing for modern learning systems to exhibit more human-like behavior? We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction. To address this misalignment, we first train a teacher model to imitate human judgments, then transfer human-like structure from its representations into pretrained state-of-the-art vision foundation models. These human-aligned models more accurately approximate human behavior and uncertainty across a wide range of similarity tasks, including a new dataset of human judgments spanning multiple levels of semantic abstractions. They also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognition and more practically useful, thus paving the way toward more robust, interpretable, and human-like artificial intelligence systems.
comment: 51 pages
☆ Neural Laplacian Operator for 3D Point Clouds SIGGRAPH
The discrete Laplacian operator holds a crucial role in 3D geometry processing, yet it is still challenging to define it on point clouds. Previous works mainly focused on constructing a local triangulation around each point to approximate the underlying manifold for defining the Laplacian operator, which may not be robust or accurate. In contrast, we simply use the K-nearest neighbors (KNN) graph constructed from the input point cloud and learn the Laplacian operator on the KNN graph with graph neural networks (GNNs). However, the ground-truth Laplacian operator is defined on a manifold mesh with a different connectivity from the KNN graph and thus cannot be directly used for training. To train the GNN, we propose a novel training scheme by imitating the behavior of the ground-truth Laplacian operator on a set of probe functions so that the learned Laplacian operator behaves similarly to the ground-truth Laplacian operator. We train our network on a subset of ShapeNet and evaluate it across a variety of point clouds. Compared with previous methods, our method reduces the error by an order of magnitude and excels in handling sparse point clouds with thin structures or sharp features. Our method also demonstrates a strong generalization ability to unseen shapes. With our learned Laplacian operator, we further apply a series of Laplacian-based geometry processing algorithms directly to point clouds and achieve accurate results, enabling many exciting possibilities for geometry processing on point clouds. The code and trained models are available at https://github.com/IntelligentGeometry/NeLo.
comment: SIGGRAPH Asia 2024 (Journal Track)
☆ Mitigating Hallucination in Visual-Language Models via Re-Balancing Contrastive Decoding
Although Visual-Language Models (VLMs) have shown impressive capabilities in tasks like visual question answering and image captioning, they still struggle with hallucinations. Analysis of attention distribution in these models shows that VLMs tend to processing textual tokens rather than visual tokens. This imbalance of attention distribution causes VLMs to favor textual knowledge in the case of multimodal knowledge conflicts, resulting in differences from the image information. In this paper, we propose Re-Balancing Contrastive Decoding (RBD) method, which employs textual and visual branches to recalibrate attention distribution in VLMs. Specifically, the textual branch injects image noise to stimulate the model's dependency on text, thereby reducing textual bias. Concurrently, the visual branch focuses on the selection of significant tokens, refining the attention mechanism to highlight the primary subject. This dual-branch strategy enables the RBD method to diminish textual bias while enhancing visual information. Experimental results demonstrate that our method, RBD, outperforms the existing methods by the CHAIR and POPE metrics, mitigate hallucinations without reducing the model's general capabilities.
comment: PRCV
☆ Multi-scale Cycle Tracking in Dynamic Planar Graphs
This paper presents a nested tracking framework for analyzing cycles in 2D force networks within granular materials. These materials are composed of interacting particles, whose interactions are described by a force network. Understanding the cycles within these networks at various scales and their evolution under external loads is crucial, as they significantly contribute to the mechanical and kinematic properties of the system. Our approach involves computing a cycle hierarchy by partitioning the 2D domain into segments bounded by cycles in the force network. We can adapt concepts from nested tracking graphs originally developed for merge trees by leveraging the duality between this partitioning and the cycles. We demonstrate the effectiveness of our method on two force networks derived from experiments with photoelastic disks.
comment: TopoInVis 2024, 11 pages
☆ Weakly-supervised Camera Localization by Ground-to-satellite Image Registration ECCV 2024
The ground-to-satellite image matching/retrieval was initially proposed for city-scale ground camera localization. This work addresses the problem of improving camera pose accuracy by ground-to-satellite image matching after a coarse location and orientation have been obtained, either from the city-scale retrieval or from consumer-level GPS and compass sensors. Existing learning-based methods for solving this task require accurate GPS labels of ground images for network training. However, obtaining such accurate GPS labels is difficult, often requiring an expensive {\color{black}Real Time Kinematics (RTK)} setup and suffering from signal occlusion, multi-path signal disruptions, \etc. To alleviate this issue, this paper proposes a weakly supervised learning strategy for ground-to-satellite image registration when only noisy pose labels for ground images are available for network training. It derives positive and negative satellite images for each ground image and leverages contrastive learning to learn feature representations for ground and satellite images useful for translation estimation. We also propose a self-supervision strategy for cross-view image relative rotation estimation, which trains the network by creating pseudo query and reference image pairs. Experimental results show that our weakly supervised learning strategy achieves the best performance on cross-area evaluation compared to recent state-of-the-art methods that are reliant on accurate pose labels for supervision.
comment: Accepted by ECCV 2024
☆ Continual Domain Incremental Learning for Privacy-aware Digital Pathology MICCAI 2024
In recent years, there has been remarkable progress in the field of digital pathology, driven by the ability to model complex tissue patterns using advanced deep-learning algorithms. However, the robustness of these models is often severely compromised in the presence of data shifts (e.g., different stains, organs, centers, etc.). Alternatively, continual learning (CL) techniques aim to reduce the forgetting of past data when learning new data with distributional shift conditions. Specifically, rehearsal-based CL techniques, which store some past data in a buffer and then replay it with new data, have proven effective in medical image analysis tasks. However, privacy concerns arise as these approaches store past data, prompting the development of our novel Generative Latent Replay-based CL (GLRCL) approach. GLRCL captures the previous distribution through Gaussian Mixture Models instead of storing past samples, which are then utilized to generate features and perform latent replay with new data. We systematically evaluate our proposed framework under different shift conditions in histopathology data, including stain and organ shift. Our approach significantly outperforms popular buffer-free CL approaches and performs similarly to rehearsal-based CL approaches that require large buffers causing serious privacy violations.
comment: Accepted in MICCAI 2024
☆ Learning Generative Interactive Environments By Trained Agent Exploration
World models are increasingly pivotal in interpreting and simulating the rules and actions of complex environments. Genie, a recent model, excels at learning from visually diverse environments but relies on costly human-collected data. We observe that their alternative method of using random agents is too limited to explore the environment. We propose to improve the model by employing reinforcement learning based agents for data generation. This approach produces diverse datasets that enhance the model's ability to adapt and perform well across various scenarios and realistic actions within the environment. In this paper, we first release the model GenieRedux - an implementation based on Genie. Additionally, we introduce GenieRedux-G, a variant that uses the agent's readily available actions to factor out action prediction uncertainty during validation. Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability using the trained agent exploration. The proposed approach is reproducable, scalable and adaptable to new types of environments. Our codebase is available at https://github.com/insait-institute/GenieRedux .
☆ Knowledge Distillation via Query Selection for Detection Transformer
Transformers have revolutionized the object detection landscape by introducing DETRs, acclaimed for their simplicity and efficacy. Despite their advantages, the substantial size of these models poses significant challenges for practical deployment, particularly in resource-constrained environments. This paper addresses the challenge of compressing DETR by leveraging knowledge distillation, a technique that holds promise for maintaining model performance while reducing size. A critical aspect of DETRs' performance is their reliance on queries to interpret object representations accurately. Traditional distillation methods often focus exclusively on positive queries, identified through bipartite matching, neglecting the rich information present in hard-negative queries. Our visual analysis indicates that hard-negative queries, focusing on foreground elements, are crucial for enhancing distillation outcomes. To this end, we introduce a novel Group Query Selection strategy, which diverges from traditional query selection in DETR distillation by segmenting queries based on their Generalized Intersection over Union (GIoU) with ground truth objects, thereby uncovering valuable hard-negative queries for distillation. Furthermore, we present the Knowledge Distillation via Query Selection for DETR (QSKD) framework, which incorporates Attention-Guided Feature Distillation (AGFD) and Local Alignment Prediction Distillation (LAPD). These components optimize the distillation process by focusing on the most informative aspects of the teacher model's intermediate features and output. Our comprehensive experimental evaluation of the MS-COCO dataset demonstrates the effectiveness of our approach, significantly improving average precision (AP) across various DETR architectures without incurring substantial computational costs. Specifically, the AP of Conditional DETR ResNet-18 increased from 35.8 to 39.9.
☆ Prompt2Fashion: An automatically generated fashion dataset
Despite the rapid evolution and increasing efficacy of language and vision generative models, there remains a lack of comprehensive datasets that bridge the gap between personalized fashion needs and AI-driven design, limiting the potential for truly inclusive and customized fashion solutions. In this work, we leverage generative models to automatically construct a fashion image dataset tailored to various occasions, styles, and body types as instructed by users. We use different Large Language Models (LLMs) and prompting strategies to offer personalized outfits of high aesthetic quality, detail, and relevance to both expert and non-expert users' requirements, as demonstrated by qualitative analysis. Up until now the evaluation of the generated outfits has been conducted by non-expert human subjects. Despite the provided fine-grained insights on the quality and relevance of generation, we extend the discussion on the importance of expert knowledge for the evaluation of artistic AI-generated datasets such as this one. Our dataset is publicly available on GitHub at https://github.com/georgiarg/Prompt2Fashion.
☆ A Likelihood Ratio-Based Approach to Segmenting Unknown Objects
Addressing the Out-of-Distribution (OoD) segmentation task is a prerequisite for perception systems operating in an open-world environment. Large foundational models are frequently used in downstream tasks, however, their potential for OoD remains mostly unexplored. We seek to leverage a large foundational model to achieve robust representation. Outlier supervision is a widely used strategy for improving OoD detection of the existing segmentation networks. However, current approaches for outlier supervision involve retraining parts of the original network, which is typically disruptive to the model's learned feature representation. Furthermore, retraining becomes infeasible in the case of large foundational models. Our goal is to retrain for outlier segmentation without compromising the strong representation space of the foundational model. To this end, we propose an adaptive, lightweight unknown estimation module (UEM) for outlier supervision that significantly enhances the OoD segmentation performance without affecting the learned feature representation of the original network. UEM learns a distribution for outliers and a generic distribution for known classes. Using the learned distributions, we propose a likelihood-ratio-based outlier scoring function that fuses the confidence of UEM with that of the pixel-wise segmentation inlier network to detect unknown objects. We also propose an objective to optimize this score directly. Our approach achieves a new state-of-the-art across multiple datasets, outperforming the previous best method by 5.74% average precision points while having a lower false-positive rate. Importantly, strong inlier performance remains unaffected.
comment: 13 pages, 2 figures, and 4 tables
☆ Unrevealed Threats: A Comprehensive Study of the Adversarial Robustness of Underwater Image Enhancement Models
Learning-based methods for underwater image enhancement (UWIE) have undergone extensive exploration. However, learning-based models are usually vulnerable to adversarial examples so as the UWIE models. To the best of our knowledge, there is no comprehensive study on the adversarial robustness of UWIE models, which indicates that UWIE models are potentially under the threat of adversarial attacks. In this paper, we propose a general adversarial attack protocol. We make a first attempt to conduct adversarial attacks on five well-designed UWIE models on three common underwater image benchmark datasets. Considering the scattering and absorption of light in the underwater environment, there exists a strong correlation between color correction and underwater image enhancement. On the basis of that, we also design two effective UWIE-oriented adversarial attack methods Pixel Attack and Color Shift Attack targeting different color spaces. The results show that five models exhibit varying degrees of vulnerability to adversarial attacks and well-designed small perturbations on degraded images are capable of preventing UWIE models from generating enhanced results. Further, we conduct adversarial training on these models and successfully mitigated the effectiveness of adversarial attacks. In summary, we reveal the adversarial vulnerability of UWIE models and propose a new evaluation dimension of UWIE models.
☆ Sources of Uncertainty in 3D Scene Reconstruction ECCV 2024
The process of 3D scene reconstruction can be affected by numerous uncertainty sources in real-world scenes. While Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (GS) achieve high-fidelity rendering, they lack built-in mechanisms to directly address or quantify uncertainties arising from the presence of noise, occlusions, confounding outliers, and imprecise camera pose inputs. In this paper, we introduce a taxonomy that categorizes different sources of uncertainty inherent in these methods. Moreover, we extend NeRF- and GS-based methods with uncertainty estimation techniques, including learning uncertainty outputs and ensembles, and perform an empirical study to assess their ability to capture the sensitivity of the reconstruction. Our study highlights the need for addressing various uncertainty aspects when designing NeRF/GS-based methods for uncertainty-aware 3D reconstruction.
comment: To appear in ECCV 2024 Workshop Proceedings. Project page at https://aaltoml.github.io/uncertainty-nerf-gs/
☆ A Cross-Font Image Retrieval Network for Recognizing Undeciphered Oracle Bone Inscriptions
Oracle Bone Inscription (OBI) is the earliest mature writing system known in China to date, which represents a crucial stage in the development of hieroglyphs. Nevertheless, the substantial quantity of undeciphered OBI characters continues to pose a persistent challenge for scholars, while conventional methods of ancient script research are both time-consuming and labor-intensive. In this paper, we propose a cross-font image retrieval network (CFIRN) to decipher OBI characters by establishing associations between OBI characters and other script forms, simulating the interpretive behavior of paleography scholars. Concretely, our network employs a siamese framework to extract deep features from character images of various fonts, fully exploring structure clues with different resolution by designed multiscale feature integration (MFI) module and multiscale refinement classifier (MRC). Extensive experiments on three challenging cross-font image retrieval datasets demonstrate that, given undeciphered OBI characters, our CFIRN can effectively achieve accurate matches with characters from other gallery fonts.
☆ Distilling Generative-Discriminative Representations for Very Low-Resolution Face Recognition
Very low-resolution face recognition is challenging due to the serious loss of informative facial details in resolution degradation. In this paper, we propose a generative-discriminative representation distillation approach that combines generative representation with cross-resolution aligned knowledge distillation. This approach facilitates very low-resolution face recognition by jointly distilling generative and discriminative models via two distillation modules. Firstly, the generative representation distillation takes the encoder of a diffusion model pretrained for face super-resolution as the generative teacher to supervise the learning of the student backbone via feature regression, and then freezes the student backbone. After that, the discriminative representation distillation further considers a pretrained face recognizer as the discriminative teacher to supervise the learning of the student head via cross-resolution relational contrastive distillation. In this way, the general backbone representation can be transformed into discriminative head representation, leading to a robust and discriminative student model for very low-resolution face recognition. Our approach improves the recovery of the missing details in very low-resolution faces and achieves better knowledge transfer. Extensive experiments on face datasets demonstrate that our approach enhances the recognition accuracy of very low-resolution faces, showcasing its effectiveness and adaptability.
☆ Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
☆ DiffQRCoder: Diffusion-based Aesthetic QR Code Generation with Scanning Robustness Guided Iterative Refinement
With the success of Diffusion Models for image generation, the technologies also have revolutionized the aesthetic Quick Response (QR) code generation. Despite significant improvements in visual attractiveness for the beautified codes, their scannabilities are usually sacrificed and thus hinder their practical uses in real-world scenarios. To address this issue, we propose a novel Diffusion-based QR Code generator (DiffQRCoder) to effectively craft both scannable and visually pleasing QR codes. The proposed approach introduces Scanning-Robust Perceptual Guidance (SRPG), a new diffusion guidance for Diffusion Models to guarantee the generated aesthetic codes to obey the ground-truth QR codes while maintaining their attractiveness during the denoising process. Additionally, we present another post-processing technique, Scanning Robust Manifold Projected Gradient Descent (SR-MPGD), to further enhance their scanning robustness through iterative latent space optimization. With extensive experiments, the results demonstrate that our approach not only outperforms other compared methods in Scanning Success Rate (SSR) with better or comparable CLIP aesthetic score (CLIP-aes.) but also significantly improves the SSR of the ControlNet-only approach from 60% to 99%. The subjective evaluation indicates that our approach achieves promising visual attractiveness to users as well. Finally, even with different scanning angles and the most rigorous error tolerance settings, our approach robustly achieves over 95% SSR, demonstrating its capability for real-world applications.
☆ Multi-Weather Image Restoration via Histogram-Based Transformer Feature Enhancement
Currently, the mainstream restoration tasks under adverse weather conditions have predominantly focused on single-weather scenarios. However, in reality, multiple weather conditions always coexist and their degree of mixing is usually unknown. Under such complex and diverse weather conditions, single-weather restoration models struggle to meet practical demands. This is particularly critical in fields such as autonomous driving, where there is an urgent need for a model capable of effectively handling mixed weather conditions and enhancing image quality in an automated manner. In this paper, we propose a Task Sequence Generator module that, in conjunction with the Task Intra-patch Block, effectively extracts task-specific features embedded in degraded images. The Task Intra-patch Block introduces an external learnable sequence that aids the network in capturing task-specific information. Additionally, we employ a histogram-based transformer module as the backbone of our network, enabling the capture of both global and local dynamic range features. Our proposed model achieves state-of-the-art performance on public datasets.
comment: arXiv admin note: text overlap with arXiv:2409.03249
☆ SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.
comment: 10 pages, 4 figures
☆ G3PT: Unleash the power of Autoregressive Modeling in 3D Generation via Cross-scale Querying Transformer
Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
comment: 9 pages, 5 figures
☆ Seam Carving as Feature Pooling in CNN
This work investigates the potential of seam carving as a feature pooling technique within Convolutional Neural Networks (CNNs) for image classification tasks. We propose replacing the traditional max pooling layer with a seam carving operation. Our experiments on the Caltech-UCSD Birds 200-2011 dataset demonstrate that the seam carving-based CNN achieves better performance compared to the model utilizing max pooling, based on metrics such as accuracy, precision, recall, and F1-score. We further analyze the behavior of both approaches through feature map visualizations, suggesting that seam carving might preserve more structural information during the pooling process. Additionally, we discuss the limitations of our approach and propose potential future directions for research.
☆ PPMamba: A Pyramid Pooling Local Auxiliary SSM-Based Model for Remote Sensing Image Semantic Segmentation
Semantic segmentation is a vital task in the field of remote sensing (RS). However, conventional convolutional neural network (CNN) and transformer-based models face limitations in capturing long-range dependencies or are often computationally intensive. Recently, an advanced state space model (SSM), namely Mamba, was introduced, offering linear computational complexity while effectively establishing long-distance dependencies. Despite their advantages, Mamba-based methods encounter challenges in preserving local semantic information. To cope with these challenges, this paper proposes a novel network called Pyramid Pooling Mamba (PPMamba), which integrates CNN and Mamba for RS semantic segmentation tasks. The core structure of PPMamba, the Pyramid Pooling-State Space Model (PP-SSM) block, combines a local auxiliary mechanism with an omnidirectional state space model (OSS) that selectively scans feature maps from eight directions, capturing comprehensive feature information. Additionally, the auxiliary mechanism includes pyramid-shaped convolutional branches designed to extract features at multiple scales. Extensive experiments on two widely-used datasets, ISPRS Vaihingen and LoveDA Urban, demonstrate that PPMamba achieves competitive performance compared to state-of-the-art models.
☆ High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study
Existing few-shot segmentation (FSS) methods mainly focus on designing novel support-query matching and self-matching mechanisms to exploit implicit knowledge in pre-trained backbones. However, the performance of these methods is often constrained by models pre-trained on classification tasks. The exploration of what types of pre-trained models can provide more beneficial implicit knowledge for FSS remains limited. In this paper, inspired by the representation consistency of foundational computer vision models, we develop a FSS framework based on foundation models. To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence and introduce a lightweight decoder to refine coarse correspondence for fine-grained segmentation. We systematically summarize the performance of various foundation models on FSS and discover that the implicit knowledge within some of these models is more beneficial for FSS than models pre-trained on classification tasks. Extensive experiments on two widely used datasets demonstrate the effectiveness of our approach in leveraging the implicit knowledge of foundation models. Notably, the combination of DINOv2 and DFN exceeds previous state-of-the-art methods by 17.5% on COCO-20i. Code is available at https://github.com/DUT-CSJ/FoundationFSS.
comment: under review
☆ An Attribute-Enriched Dataset and Auto-Annotated Pipeline for Open Detection
Detecting objects of interest through language often presents challenges, particularly with objects that are uncommon or complex to describe, due to perceptual discrepancies between automated models and human annotators. These challenges highlight the need for comprehensive datasets that go beyond standard object labels by incorporating detailed attribute descriptions. To address this need, we introduce the Objects365-Attr dataset, an extension of the existing Objects365 dataset, distinguished by its attribute annotations. This dataset reduces inconsistencies in object detection by integrating a broad spectrum of attributes, including color, material, state, texture and tone. It contains an extensive collection of 5.6M object-level attribute descriptions, meticulously annotated across 1.4M bounding boxes. Additionally, to validate the dataset's effectiveness, we conduct a rigorous evaluation of YOLO-World at different scales, measuring their detection performance and demonstrating the dataset's contribution to advancing object detection.
☆ Enhancing Long Video Understanding via Hierarchical Event-Based Memory
Recently, integrating visual foundation models into large language models (LLMs) to form video understanding systems has attracted widespread attention. Most of the existing models compress diverse semantic information within the whole video and feed it into LLMs for content comprehension. While this method excels in short video understanding, it may result in a blend of multiple event information in long videos due to coarse compression, which causes information redundancy. Consequently, the semantics of key events might be obscured within the vast information that hinders the model's understanding capabilities. To address this issue, we propose a Hierarchical Event-based Memory-enhanced LLM (HEM-LLM) for better understanding of long videos. Firstly, we design a novel adaptive sequence segmentation scheme to divide multiple events within long videos. In this way, we can perform individual memory modeling for each event to establish intra-event contextual connections, thereby reducing information redundancy. Secondly, while modeling current event, we compress and inject the information of the previous event to enhance the long-term inter-event dependencies in videos. Finally, we perform extensive experiments on various video understanding tasks and the results show that our model achieves state-of-the-art performances.
☆ EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification ECCV 2024
Data augmentation (DA) has been widely used to improve the generalization of deep neural networks. While existing DA methods have proven effective, they often rely on augmentation operations with random magnitudes to each sample. However, this approach can inadvertently introduce noise, induce distribution shifts, and increase the risk of overfitting. In this paper, we propose EntAugment, a tuning-free and adaptive DA framework. Unlike previous work, EntAugment dynamically assesses and adjusts the augmentation magnitudes for each sample during training, leveraging insights into both the inherent complexities of training samples and the evolving status of deep models. Specifically, in EntAugment, the magnitudes are determined by the information entropy derived from the probability distribution obtained by applying the softmax function to the model's output. In addition, to further enhance the efficacy of EntAugment, we introduce a novel entropy regularization term, EntLoss, which complements the EntAugment approach. Theoretical analysis further demonstrates that EntLoss, compared to traditional cross-entropy loss, achieves closer alignment between the model distributions and underlying dataset distributions. Moreover, EntAugment and EntLoss can be utilized separately or jointly. We conduct extensive experiments across multiple image classification tasks and network architectures with thorough comparisons of existing DA methods. Importantly, the proposed methods outperform others without introducing any auxiliary models or noticeable extra computational costs, highlighting both effectiveness and efficiency. Code is available at https://github.com/Jackbrocp/EntAugment.
comment: Accepted by ECCV 2024
☆ Context Enhancement with Reconstruction as Sequence for Unified Unsupervised Anomaly Detection
Unsupervised anomaly detection (AD) aims to train robust detection models using only normal samples, while can generalize well to unseen anomalies. Recent research focuses on a unified unsupervised AD setting in which only one model is trained for all classes, i.e., n-class-one-model paradigm. Feature-reconstruction-based methods achieve state-of-the-art performance in this scenario. However, existing methods often suffer from a lack of sufficient contextual awareness, thereby compromising the quality of the reconstruction. To address this issue, we introduce a novel Reconstruction as Sequence (RAS) method, which enhances the contextual correspondence during feature reconstruction from a sequence modeling perspective. In particular, based on the transformer technique, we integrate a specialized RASFormer block into RAS. This block enables the capture of spatial relationships among different image regions and enhances sequential dependencies throughout the reconstruction process. By incorporating the RASFormer block, our RAS method achieves superior contextual awareness capabilities, leading to remarkable performance. Experimental results show that our RAS significantly outperforms competing methods, well demonstrating the effectiveness and superiority of our method. Our code is available at https://github.com/Nothingtolose9979/RAS.
☆ Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Handling incomplete data in multi-view classification is challenging, especially when traditional imputation methods introduce biases that compromise uncertainty estimation. Existing Evidential Deep Learning (EDL) based approaches attempt to address these issues, but they often struggle with conflicting evidence due to the limitations of the Dempster-Shafer combination rule, leading to unreliable decisions. To address these challenges, we propose the Alternating Progressive Learning Network (APLN), specifically designed to enhance EDL-based methods in incomplete MVC scenarios. Our approach mitigates bias from corrupted observed data by first applying coarse imputation, followed by mapping the data to a latent space. In this latent space, we progressively learn an evidence distribution aligned with the target domain, incorporating uncertainty considerations through EDL. Additionally, we introduce a conflict-aware Dempster-Shafer combination rule (DSCR) to better handle conflicting evidence. By sampling from the learned distribution, we optimize the latent representations of missing views, reducing bias and enhancing decision-making robustness. Extensive experiments demonstrate that APLN, combined with DSCR, significantly outperforms traditional methods, particularly in environments characterized by high uncertainty and conflicting evidence, establishing it as a promising solution for incomplete multi-view classification.
comment: Ongoing work: 9 pages, 6 figures, 2 tables
☆ Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
In this paper, we discuss Mahalanobis k-NN: a statistical lens designed to address the challenges of feature matching in learning-based point cloud registration when confronted with an arbitrary density of point clouds, either in the source or target point cloud. We tackle this by adopting Mahalanobis k-NN's inherent property to capture the distribution of the local neighborhood and surficial geometry. Our method can be seamlessly integrated into any local-graph-based point cloud analysis method. In this paper, we focus on two distinct methodologies: Deep Closest Point (DCP) and Deep Universal Manifold Embedding (DeepUME). Our extensive benchmarking on the ModelNet40 and Faust datasets highlights the efficacy of the proposed method in point cloud registration tasks. Moreover, we establish for the first time that the features acquired through point cloud registration inherently can possess discriminative capabilities. This is evident by a substantial improvement of about 20\% in the average accuracy observed in the point cloud few-shot classification task benchmarked on ModelNet40 and ScanObjectNN. The code is publicly available at https://github.com/TejasAnvekar/Mahalanobis-k-NN
☆ ALSS-YOLO: An Adaptive Lightweight Channel Split and Shuffling Network for TIR Wildlife Detection in UAV Imagery
Unmanned aerial vehicles (UAVs) equipped with thermal infrared (TIR) cameras play a crucial role in combating nocturnal wildlife poaching. However, TIR images often face challenges such as jitter, and wildlife overlap, necessitating UAVs to possess the capability to identify blurred and overlapping small targets. Current traditional lightweight networks deployed on UAVs struggle to extract features from blurry small targets. To address this issue, we developed ALSS-YOLO, an efficient and lightweight detector optimized for TIR aerial images. Firstly, we propose a novel Adaptive Lightweight Channel Split and Shuffling (ALSS) module. This module employs an adaptive channel split strategy to optimize feature extraction and integrates a channel shuffling mechanism to enhance information exchange between channels. This improves the extraction of blurry features, crucial for handling jitter-induced blur and overlapping targets. Secondly, we developed a Lightweight Coordinate Attention (LCA) module that employs adaptive pooling and grouped convolution to integrate feature information across dimensions. This module ensures lightweight operation while maintaining high detection precision and robustness against jitter and target overlap. Additionally, we developed a single-channel focus module to aggregate the width and height information of each channel into four-dimensional channel fusion, which improves the feature representation efficiency of infrared images. Finally, we modify the localization loss function to emphasize the loss value associated with small objects to improve localization accuracy. Extensive experiments on the BIRDSAI and ISOD TIR UAV wildlife datasets show that ALSS-YOLO achieves state-of-the-art performance, Our code is openly available at https://github.com/helloworlder8/computer_vision.
Test-Time Certifiable Self-Supervision to Bridge the Sim2Real Gap in Event-Based Satellite Pose Estimation IROS 2024
Deep learning plays a critical role in vision-based satellite pose estimation. However, the scarcity of real data from the space environment means that deep models need to be trained using synthetic data, which raises the Sim2Real domain gap problem. A major cause of the Sim2Real gap are novel lighting conditions encountered during test time. Event sensors have been shown to provide some robustness against lighting variations in vision-based pose estimation. However, challenging lighting conditions due to strong directional light can still cause undesirable effects in the output of commercial off-the-shelf event sensors, such as noisy/spurious events and inhomogeneous event densities on the object. Such effects are non-trivial to simulate in software, thus leading to Sim2Real gap in the event domain. To close the Sim2Real gap in event-based satellite pose estimation, the paper proposes a test-time self-supervision scheme with a certifier module. Self-supervision is enabled by an optimisation routine that aligns a dense point cloud of the predicted satellite pose with the event data to attempt to rectify the inaccurately estimated pose. The certifier attempts to verify the corrected pose, and only certified test-time inputs are backpropagated via implicit differentiation to refine the predicted landmarks, thus improving the pose estimates and closing the Sim2Real gap. Results show that the our method outperforms established test-time adaptation schemes.
comment: This work has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Recurrent Neural Networks for Still Images
In this paper, we explore the application of Recurrent Neural Network (RNN) for still images. Typically, Convolutional Neural Networks (CNNs) are the prevalent method applied for this type of data, and more recently, transformers have gained popularity, although they often require large models. Unlike these methods, RNNs are generally associated with processing sequences over time rather than single images. We argue that RNNs can effectively handle still images by interpreting the pixels as a sequence. This approach could be particularly advantageous for compact models designed for embedded systems, where resources are limited. Additionally, we introduce a novel RNN design tailored for two-dimensional inputs, such as images, and a custom version of BiDirectional RNN (BiRNN) that is more memory-efficient than traditional implementations. In our research, we have tested these layers in Convolutional Recurrent Neural Networks (CRNNs), predominantly composed of Conv2D layers, with RNN layers at or close to the end. Experiments on the COCO and CIFAR100 datasets show better results, particularly for small networks.
☆ A Latent Implicit 3D Shape Model for Multiple Levels of Detail
Implicit neural representations map a shape-specific latent code and a 3D coordinate to its corresponding signed distance (SDF) value. However, this approach only offers a single level of detail. Emulating low levels of detail can be achieved with shallow networks, but the generated shapes are typically not smooth. Alternatively, some network designs offer multiple levels of detail, but are limited to overfitting a single object. To address this, we propose a new shape modeling approach, which enables multiple levels of detail and guarantees a smooth surface at each level. At the core, we introduce a novel latent conditioning for a multiscale and bandwith-limited neural architecture. This results in a deep parameterization of multiple shapes, where early layers quickly output approximated SDF values. This allows to balance speed and accuracy within a single network and enhance the efficiency of implicit scene rendering. We demonstrate that by limiting the bandwidth of the network, we can maintain smooth surfaces across all levels of detail. At finer levels, reconstruction quality is on par with the state of the art models, which are limited to a single level of detail.
comment: Published in GCPR 2024 proceedings
☆ MIP-GAF: A MLLM-annotated Benchmark for Most Important Person Localization and Group Context Understanding WACV 2025
Estimating the Most Important Person (MIP) in any social event setup is a challenging problem mainly due to contextual complexity and scarcity of labeled data. Moreover, the causality aspects of MIP estimation are quite subjective and diverse. To this end, we aim to address the problem by annotating a large-scale `in-the-wild' dataset for identifying human perceptions about the `Most Important Person (MIP)' in an image. The paper provides a thorough description of our proposed Multimodal Large Language Model (MLLM) based data annotation strategy, and a thorough data quality analysis. Further, we perform a comprehensive benchmarking of the proposed dataset utilizing state-of-the-art MIP localization methods, indicating a significant drop in performance compared to existing datasets. The performance drop shows that the existing MIP localization algorithms must be more robust with respect to `in-the-wild' situations. We believe the proposed dataset will play a vital role in building the next-generation social situation understanding methods. The code and data is available at https://github.com/surbhimadan92/MIP-GAF.
comment: Accepted for publication at WACV 2025
☆ CerviXpert: A Multi-Structural Convolutional Neural Network for Predicting Cervix Type and Cervical Cell Abnormalities
Cervical cancer affects millions of women worldwide and has a significantly higher survival rate when diagnosed early. Pap smears and cervical biopsies are vital screening tools for detecting such cancer. However, the success of these screening processes depends on the skills of cytologists. A recent trend in diagnostic cytology is to apply machine-learning-based models to classify cancer using cell images. These automated models have been shown to perform just as well as, or even better than, expert cytologists. Some notable methods for classifying cervix cancers include ResNet50, VGG16, MobileNetV2, and InceptionV3, based on deep convolutional neural networks (CNN). However, these methods are computationally expensive. We present CerviXpert, a multi-structural Convolutional Neural Network, to identify cervix cancer. We perform extensive experiments on a publicly available dataset, SiPaKMeD, to show the efficacy of our method. CerviXpert presents a promising solution for efficient cervical cancer screening and diagnosis by striking a balance between accuracy and practical feasibility.
☆ Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning
Denoising, the process of reducing random fluctuations in a signal to emphasize essential patterns, has been a fundamental problem of interest since the dawn of modern scientific inquiry. Recent denoising techniques, particularly in imaging, have achieved remarkable success, nearing theoretical limits by some measures. Yet, despite tens of thousands of research papers, the wide-ranging applications of denoising beyond noise removal have not been fully recognized. This is partly due to the vast and diverse literature, making a clear overview challenging. This paper aims to address this gap. We present a comprehensive perspective on denoisers, their structure, and desired properties. We emphasize the increasing importance of denoising and showcase its evolution into an essential building block for complex tasks in imaging, inverse problems, and machine learning. Despite its long history, the community continues to uncover unexpected and groundbreaking uses for denoising, further solidifying its place as a cornerstone of scientific and engineering practice.
☆ DACAT: Dual-stream Adaptive Clip-aware Time Modeling for Robust Online Surgical Phase Recognition
Surgical phase recognition has become a crucial requirement in laparoscopic surgery, enabling various clinical applications like surgical risk forecasting. Current methods typically identify the surgical phase using individual frame-wise embeddings as the fundamental unit for time modeling. However, this approach is overly sensitive to current observations, often resulting in discontinuous and erroneous predictions within a complete surgical phase. In this paper, we propose DACAT, a novel dual-stream model that adaptively learns clip-aware context information to enhance the temporal relationship. In one stream, DACAT pretrains a frame encoder, caching all historical frame-wise features. In the other stream, DACAT fine-tunes a new frame encoder to extract the frame-wise feature at the current moment. Additionally, a max clip-response read-out (Max-R) module is introduced to bridge the two streams by using the current frame-wise feature to adaptively fetch the most relevant past clip from the feature cache. The clip-aware context feature is then encoded via cross-attention between the current frame and its fetched adaptive clip, and further utilized to enhance the time modeling for accurate online surgical phase recognition. The benchmark results on three public datasets, i.e., Cholec80, M2CAI16, and AutoLaparo, demonstrate the superiority of our proposed DACAT over existing state-of-the-art methods, with improvements in Jaccard scores of at least 4.5%, 4.6%, and 2.7%, respectively. Our code and models have been released at https://github.com/kk42yy/DACAT.
comment: 5 pages, 4 figures
☆ Towards Generalizable Scene Change Detection
Scene Change Detection (SCD) is vital for applications such as visual surveillance and mobile robotics. However, current SCD methods exhibit a bias to the temporal order of training datasets and limited performance on unseen domains; coventional SCD benchmarks are not able to evaluate generalization or temporal consistency. To tackle these limitations, we introduce a Generalizable Scene Change Detection Framework (GeSCF) in this work. The proposed GeSCF leverages localized semantics of a foundation model without any re-training or fine-tuning -- for generalization over unseen domains. Specifically, we design an adaptive thresholding of the similarity distribution derived from facets of the pre-trained foundation model to generate initial pseudo-change mask. We further utilize Segment Anything Model's (SAM) class-agnostic masks to refine pseudo-masks. Moreover, our proposed framework maintains commutative operations in all settings to ensure complete temporal consistency. Finally, we define new metrics, evaluation dataset, and evaluation protocol for Generalizable Scene Change Detection (GeSCD). Extensive experiments demonstrate that GeSCF excels across diverse and challenging environments -- establishing a new benchmark for SCD performance.
comment: 7 pages, 5 figures
☆ INTRA: Interaction Relationship-aware Weakly Supervised Affordance Grounding
Affordance denotes the potential interactions inherent in objects. The perception of affordance can enable intelligent agents to navigate and interact with new environments efficiently. Weakly supervised affordance grounding teaches agents the concept of affordance without costly pixel-level annotations, but with exocentric images. Although recent advances in weakly supervised affordance grounding yielded promising results, there remain challenges including the requirement for paired exocentric and egocentric image dataset, and the complexity in grounding diverse affordances for a single object. To address them, we propose INTeraction Relationship-aware weakly supervised Affordance grounding (INTRA). Unlike prior arts, INTRA recasts this problem as representation learning to identify unique features of interactions through contrastive learning with exocentric images only, eliminating the need for paired datasets. Moreover, we leverage vision-language model embeddings for performing affordance grounding flexibly with any text, designing text-conditioned affordance map generation to reflect interaction relationship for contrastive learning and enhancing robustness with our text synonym augmentation. Our method outperformed prior arts on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Additionally, experimental results demonstrate that our method has remarkable domain scalability for synthesized images / illustrations and is capable of performing affordance grounding for novel interactions and objects.
☆ AgileIR: Memory-Efficient Group Shifted Windows Attention for Agile Image Restoration
Image Transformers show a magnificent success in Image Restoration tasks. Nevertheless, most of transformer-based models are strictly bounded by exorbitant memory occupancy. Our goal is to reduce the memory consumption of Swin Transformer and at the same time speed up the model during training process. Thus, we introduce AgileIR, group shifted attention mechanism along with window attention, which sparsely simplifies the model in architecture. We propose Group Shifted Window Attention (GSWA) to decompose Shift Window Multi-head Self Attention (SW-MSA) and Window Multi-head Self Attention (W-MSA) into groups across their attention heads, contributing to shrinking memory usage in back propagation. In addition to that, we keep shifted window masking and its shifted learnable biases during training, in order to induce the model interacting across windows within the channel. We also re-allocate projection parameters to accelerate attention matrix calculation, which we found a negligible decrease in performance. As a result of experiment, compared with our baseline SwinIR and other efficient quantization models, AgileIR keeps the performance still at 32.20 dB on Set5 evaluation dataset, exceeding other methods with tailor-made efficient methods and saves over 50% memory while a large batch size is employed.
☆ RealisDance: Equip controllable character animation with realistic hands
Controllable character animation is an emerging task that generates character videos controlled by pose sequences from given character images. Although character consistency has made significant progress via reference UNet, another crucial factor, pose control, has not been well studied by existing methods yet, resulting in several issues: 1) The generation may fail when the input pose sequence is corrupted. 2) The hands generated using the DWPose sequence are blurry and unrealistic. 3) The generated video will be shaky if the pose sequence is not smooth enough. In this paper, we present RealisDance to handle all the above issues. RealisDance adaptively leverages three types of poses, avoiding failed generation caused by corrupted pose sequences. Among these pose types, HaMeR provides accurate 3D and depth information of hands, enabling RealisDance to generate realistic hands even for complex gestures. Besides using temporal attention in the main UNet, RealisDance also inserts temporal attention into the pose guidance network, smoothing the video from the pose condition aspect. Moreover, we introduce pose shuffle augmentation during training to further improve generation robustness and video smoothness. Qualitative experiments demonstrate the superiority of RealisDance over other existing methods, especially in hand quality.
comment: Technical Report
☆ Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction
Low-dose positron emission tomography (PET) image reconstruction methods have potential to significantly improve PET as an imaging modality. Deep learning provides a promising means of incorporating prior information into the image reconstruction problem to produce quantitatively accurate images from compromised signal. Deep learning-based methods for low-dose PET are generally poorly conditioned and perform unreliably on images with features not present in the training distribution. We present a method which explicitly models deep latent space features using a robust kernel representation, providing robust performance on previously unseen dose reduction factors. Additional constraints on the information content of deep latent features allow for tuning in-distribution accuracy and generalisability. Tests with out-of-distribution dose reduction factors ranging from $\times 10$ to $\times 1000$ and with both paired and unpaired MR, demonstrate significantly improved performance relative to conventional deep-learning methods trained using the same data. Code:https://github.com/cameronPain
comment: 19 pages, 15 figures, 4 tables, Submitted to IEEE Transactions on Medical Imaging
☆ UdeerLID+: Integrating LiDAR, Image, and Relative Depth with Semi-Supervised
Road segmentation is a critical task for autonomous driving systems, requiring accurate and robust methods to classify road surfaces from various environmental data. Our work introduces an innovative approach that integrates LiDAR point cloud data, visual image, and relative depth maps derived from images. The integration of multiple data sources in road segmentation presents both opportunities and challenges. One of the primary challenges is the scarcity of large-scale, accurately labeled datasets that are necessary for training robust deep learning models. To address this, we have developed the [UdeerLID+] framework under a semi-supervised learning paradigm. Experiments results on KITTI datasets validate the superior performance.
☆ Bottleneck-based Encoder-decoder ARchitecture (BEAR) for Learning Unbiased Consumer-to-Consumer Image Representations ICML
Unbiased representation learning is still an object of study under specific applications and contexts. Novel architectures are usually crafted to resolve particular problems using mixtures of fundamental pieces. This paper presents different image feature extraction mechanisms that work together with residual connections to encode perceptual image information in an autoencoder configuration. We use image data that aims to support a larger research agenda dealing with issues regarding criminal activity in consumer-to-consumer online platforms. Preliminary results suggest that the proposed architecture can learn rich spaces using ours and other image datasets resolving important challenges that are identified.
comment: 2022 LXAI Workshop at the 39th International Conference on Machine Learning (ICML), Baltimore, Maryland
☆ EDADepth: Enhanced Data Augmentation for Monocular Depth Estimation
Due to their text-to-image synthesis feature, diffusion models have recently seen a rise in visual perception tasks, such as depth estimation. The lack of good-quality datasets makes the extraction of a fine-grain semantic context challenging for the diffusion models. The semantic context with fewer details further worsens the process of creating effective text embeddings that will be used as input for diffusion models. In this paper, we propose a novel EDADepth, an enhanced data augmentation method to estimate monocular depth without using additional training data. We use Swin2SR, a super-resolution model, to enhance the quality of input images. We employ the BEiT pre-trained semantic segmentation model for better extraction of text embeddings. We introduce BLIP-2 tokenizer to generate tokens from these text embeddings. The novelty of our approach is the introduction of Swin2SR, the BEiT model, and the BLIP-2 tokenizer in the diffusion-based pipeline for the monocular depth estimation. Our model achieves state-of-the-art results (SOTA) on the {\delta}3 metric on NYUv2 and KITTI datasets. It also achieves results comparable to those of the SOTA models in the RMSE and REL metrics. Finally, we also show improvements in the visualization of the estimated depth compared to the SOTA diffusion-based monocular depth estimation models. Code: https://github.com/edadepthmde/EDADepth_ICMLA.
☆ Loss Distillation via Gradient Matching for Point Cloud Completion with Weighted Chamfer Distance IROS
3D point clouds enhanced the robot's ability to perceive the geometrical information of the environments, making it possible for many downstream tasks such as grasp pose detection and scene understanding. The performance of these tasks, though, heavily relies on the quality of data input, as incomplete can lead to poor results and failure cases. Recent training loss functions designed for deep learning-based point cloud completion, such as Chamfer distance (CD) and its variants (\eg HyperCD ), imply a good gradient weighting scheme can significantly boost performance. However, these CD-based loss functions usually require data-related parameter tuning, which can be time-consuming for data-extensive tasks. To address this issue, we aim to find a family of weighted training losses ({\em weighted CD}) that requires no parameter tuning. To this end, we propose a search scheme, {\em Loss Distillation via Gradient Matching}, to find good candidate loss functions by mimicking the learning behavior in backpropagation between HyperCD and weighted CD. Once this is done, we propose a novel bilevel optimization formula to train the backbone network based on the weighted CD loss. We observe that: (1) with proper weighted functions, the weighted CD can always achieve similar performance to HyperCD, and (2) the Landau weighted CD, namely {\em Landau CD}, can outperform HyperCD for point cloud completion and lead to new state-of-the-art results on several benchmark datasets. {\it Our demo code is available at \url{https://github.com/Zhang-VISLab/IROS2024-LossDistillationWeightedCD}.}
comment: 10 pages, 7 figures, 7 tables, this paper was accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
☆ Revisiting Prompt Pretraining of Vision-Language Models
Prompt learning is an effective method to customize Vision-Language Models (VLMs) for various downstream tasks, involving tuning very few parameters of input prompt tokens. Recently, prompt pretraining in large-scale dataset (e.g., ImageNet-21K) has played a crucial role in prompt learning for universal visual discrimination. However, we revisit and observe that the limited learnable prompts could face underfitting risks given the extensive images during prompt pretraining, simultaneously leading to poor generalization. To address the above issues, in this paper, we propose a general framework termed Revisiting Prompt Pretraining (RPP), which targets at improving the fitting and generalization ability from two aspects: prompt structure and prompt supervision. For prompt structure, we break the restriction in common practice where query, key, and value vectors are derived from the shared learnable prompt token. Instead, we introduce unshared individual query, key, and value learnable prompts, thereby enhancing the model's fitting capacity through increased parameter diversity. For prompt supervision, we additionally utilize soft labels derived from zero-shot probability predictions provided by a pretrained Contrastive Language Image Pretraining (CLIP) teacher model. These soft labels yield more nuanced and general insights into the inter-class relationships, thereby endowing the pretraining process with better generalization ability. RPP produces a more resilient prompt initialization, enhancing its robust transferability across diverse visual recognition tasks. Experiments across various benchmarks consistently confirm the state-of-the-art (SOTA) performance of our pretrained prompts. Codes and models will be made available soon.
☆ UniLearn: Enhancing Dynamic Facial Expression Recognition through Unified Pre-Training and Fine-Tuning on Images and Videos
Dynamic facial expression recognition (DFER) is essential for understanding human emotions and behavior. However, conventional DFER methods, which primarily use dynamic facial data, often underutilize static expression images and their labels, limiting their performance and robustness. To overcome this, we introduce UniLearn, a novel unified learning paradigm that integrates static facial expression recognition (SFER) data to enhance DFER task. UniLearn employs a dual-modal self-supervised pre-training method, leveraging both facial expression images and videos to enhance a ViT model's spatiotemporal representation capability. Then, the pre-trained model is fine-tuned on both static and dynamic expression datasets using a joint fine-tuning strategy. To prevent negative transfer during joint fine-tuning, we introduce an innovative Mixture of Adapter Experts (MoAE) module that enables task-specific knowledge acquisition and effectively integrates information from both static and dynamic expression data. Extensive experiments demonstrate UniLearn's effectiveness in leveraging complementary information from static and dynamic facial data, leading to more accurate and robust DFER. UniLearn consistently achieves state-of-the-art performance on FERV39K, MAFW, and DFEW benchmarks, with weighted average recall (WAR) of 53.65\%, 58.44\%, and 76.68\%, respectively. The source code and model weights will be publicly available at \url{https://github.com/MSA-LMC/UniLearn}.
Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience. Video-to-Audio (V2A), as a particular type of automatic foley task, presents inherent challenges related to audio-visual synchronization. These challenges encompass maintaining the content consistency between the input video and the generated audio, as well as the alignment of temporal and loudness properties within the video. To address these issues, we construct a controllable video-to-audio synthesis model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals. To ensure content consistency between the synthesized audio and target video, we introduce the Mask-Attention Module (MAM), which employs masked video instruction to enable the model to focus on regions of interest. Additionally, we implement the Time-Loudness Module (TLM), which uses an auxiliary loudness signal to ensure the synthesis of sound that aligns with the video in both loudness and temporal dimensions. Furthermore, we have extended a large-scale V2A dataset, named VGGSound-Caption, by annotating caption prompts. Extensive experiments on challenging benchmarks across two large-scale V2A datasets verify Draw an Audio achieves the state-of-the-art. Project page: https://yannqi.github.io/Draw-an-Audio/.
comment: 14 pages, 11 figures
☆ DECOLLAGE: 3D Detailization by Controllable, Localized, and Learned Geometry Enhancement ECCV 2024
We present a 3D modeling method which enables end-users to refine or detailize 3D shapes using machine learning, expanding the capabilities of AI-assisted 3D content creation. Given a coarse voxel shape (e.g., one produced with a simple box extrusion tool or via generative modeling), a user can directly "paint" desired target styles representing compelling geometric details, from input exemplar shapes, over different regions of the coarse shape. These regions are then up-sampled into high-resolution geometries which adhere with the painted styles. To achieve such controllable and localized 3D detailization, we build on top of a Pyramid GAN by making it masking-aware. We devise novel structural losses and priors to ensure that our method preserves both desired coarse structures and fine-grained features even if the painted styles are borrowed from diverse sources, e.g., different semantic parts and even different shape categories. Through extensive experiments, we show that our ability to localize details enables novel interactive creative workflows and applications. Our experiments further demonstrate that in comparison to prior techniques built on global detailization, our method generates structure-preserving, high-resolution stylized geometries with more coherent shape details and style transitions.
comment: ECCV 2024 (poster). Code: https://qiminchen.github.io/decollage/
☆ Enhanced Pix2Pix GAN for Visual Defect Removal in UAV-Captured Images
This paper presents a neural network that effectively removes visual defects from UAV-captured images. It features an enhanced Pix2Pix GAN, specifically engineered to address visual defects in UAV imagery. The method incorporates advanced modifications to the Pix2Pix architecture, targeting prevalent issues such as mode collapse. The suggested method facilitates significant improvements in the quality of defected UAV images, yielding cleaner and more precise visual results. The effectiveness of the proposed approach is demonstrated through evaluation on a custom dataset of aerial photographs, highlighting its capability to refine and restore UAV imagery effectively.
comment: Prepared for IEEE APUAVD 2024 conference
☆ Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
Precision breast cancer (BC) risk assessment is crucial for developing individualized screening and prevention. Despite the promising potential of recent mammogram (MG) based deep learning models in predicting BC risk, they mostly overlook the 'time-to-future-event' ordering among patients and exhibit limited explorations into how they track history changes in breast tissue, thereby limiting their clinical application. In this work, we propose a novel method, named OA-BreaCR, to precisely model the ordinal relationship of the time to and between BC events while incorporating longitudinal breast tissue changes in a more explainable manner. We validate our method on public EMBED and inhouse datasets, comparing with existing BC risk prediction and time prediction methods. Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks. Additionally, ordinal heatmap visualizations show the model's attention over time. Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts. The code will be accessible to the public.
☆ AssistTaxi: A Comprehensive Dataset for Taxiway Analysis and Autonomous Operations
The availability of high-quality datasets play a crucial role in advancing research and development especially, for safety critical and autonomous systems. In this paper, we present AssistTaxi, a comprehensive novel dataset which is a collection of images for runway and taxiway analysis. The dataset comprises of more than 300,000 frames of diverse and carefully collected data, gathered from Melbourne (MLB) and Grant-Valkaria (X59) general aviation airports. The importance of AssistTaxi lies in its potential to advance autonomous operations, enabling researchers and developers to train and evaluate algorithms for efficient and safe taxiing. Researchers can utilize AssistTaxi to benchmark their algorithms, assess performance, and explore novel approaches for runway and taxiway analysis. Addition-ally, the dataset serves as a valuable resource for validating and enhancing existing algorithms, facilitating innovation in autonomous operations for aviation. We also propose an initial approach to label the dataset using a contour based detection and line extraction technique.
☆ ExIQA: Explainable Image Quality Assessment Using Distortion Attributes
Blind Image Quality Assessment (BIQA) aims to develop methods that estimate the quality scores of images in the absence of a reference image. In this paper, we approach BIQA from a distortion identification perspective, where our primary goal is to predict distortion types and strengths using Vision-Language Models (VLMs), such as CLIP, due to their extensive knowledge and generalizability. Based on these predicted distortions, we then estimate the quality score of the image. To achieve this, we propose an explainable approach for distortion identification based on attribute learning. Instead of prompting VLMs with the names of distortions, we prompt them with the attributes or effects of distortions and aggregate this information to infer the distortion strength. Additionally, we consider multiple distortions per image, making our method more scalable. To support this, we generate a dataset consisting of 100,000 images for efficient training. Finally, attribute probabilities are retrieved and fed into a regressor to predict the image quality score. The results show that our approach, besides its explainability and transparency, achieves state-of-the-art (SOTA) performance across multiple datasets in both PLCC and SRCC metrics. Moreover, the zero-shot results demonstrate the generalizability of the proposed approach.
☆ LIME-M: Less Is More for Evaluation of MLLMs
With the remarkable success achieved by Multimodal Large Language Models (MLLMs), numerous benchmarks have been designed to assess MLLMs' ability to guide their development in image perception tasks (e.g., image captioning and visual question answering). However, the existence of numerous benchmarks results in a substantial computational burden when evaluating model performance across all of them. Moreover, these benchmarks contain many overly simple problems or challenging samples, which do not effectively differentiate the capabilities among various MLLMs. To address these challenges, we propose a pipeline to process the existing benchmarks, which consists of two modules: (1) Semi-Automated Screening Process and (2) Eliminating Answer Leakage. The Semi-Automated Screening Process filters out samples that cannot distinguish the model's capabilities by synthesizing various MLLMs and manually evaluating them. The Eliminate Answer Leakage module filters samples whose answers can be inferred without images. Finally, we curate the LIME-M: Less Is More for Evaluation of Multimodal LLMs, a lightweight Multimodal benchmark that can more effectively evaluate the performance of different models. Our experiments demonstrate that: LIME-M can better distinguish the performance of different MLLMs with fewer samples (24% of the original) and reduced time (23% of the original); LIME-M eliminates answer leakage, focusing mainly on the information within images; The current automatic metric (i.e., CIDEr) is insufficient for evaluating MLLMs' capabilities in captioning. Moreover, removing the caption task score when calculating the overall score provides a more accurate reflection of model performance differences. All our codes and data are released at https://github.com/kangreen0210/LIME-M.
☆ Shadow Removal Refinement via Material-Consistent Shadow Edges
Shadow boundaries can be confused with material boundaries as both exhibit sharp changes in luminance or contrast within a scene. However, shadows do not modify the intrinsic color or texture of surfaces. Therefore, on both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly. These shadow/shadow-free pairs are very useful but hard-to-collect supervision signals. The crucial contribution of this paper is to learn how to identify those shadow edges that traverse material-consistent regions and how to use them as self-supervision for shadow removal refinement during test time. To achieve this, we fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges by comparing the SAM segmentation with the shadow mask. Utilizing these shadow edges, we introduce color and texture-consistency losses to enhance the shadow removal process. We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images, outperforming the state-of-the-art shadow removal methods. Additionally, we propose a new metric and an annotated dataset for evaluating the performance of shadow removal methods without the need for paired shadow/shadow-free data.
☆ Face Mask Removal with Region-attentive Face Inpainting
During the COVID-19 pandemic, face masks have become ubiquitous in our lives. Face masks can cause some face recognition models to fail since they cover significant portion of a face. In addition, removing face masks from captured images or videos can be desirable, e.g., for better social interaction and for image/video editing and enhancement purposes. Hence, we propose a generative face inpainting method to effectively recover/reconstruct the masked part of a face. Face inpainting is more challenging compared to traditional inpainting, since it requires high fidelity while maintaining the identity at the same time. Our proposed method includes a Multi-scale Channel-Spatial Attention Module (M-CSAM) to mitigate the spatial information loss and learn the inter- and intra-channel correlation. In addition, we introduce an approach enforcing the supervised signal to focus on masked regions instead of the whole image. We also synthesize our own Masked-Faces dataset from the CelebA dataset by incorporating five different types of face masks, including surgical mask, regular mask and scarves, which also cover the neck area. The experimental results show that our proposed method outperforms different baselines in terms of structural similarity index measure, peak signal-to-noise ratio and l1 loss, while also providing better outputs qualitatively. The code will be made publicly available. Code is available at GitHub.
☆ Few-Shot Learning: Expanding ID Cards Presentation Attack Detection to Unknown ID Countries
This paper proposes a Few-shot Learning (FSL) approach for detecting Presentation Attacks on ID Cards deployed in a remote verification system and its extension to new countries. Our research analyses the performance of Prototypical Networks across documents from Spain and Chile as a baseline and measures the extension of generalisation capabilities of new ID Card countries such as Argentina and Costa Rica. Specifically targeting the challenge of screen display presentation attacks. By leveraging convolutional architectures and meta-learning principles embodied in Prototypical Networks, we have crafted a model that demonstrates high efficacy with Few-shot examples. This research reveals that competitive performance can be achieved with as Few-shots as five unique identities and with under 100 images per new country added. This opens a new insight for novel generalised Presentation Attack Detection on ID cards to unknown attacks.
♻ ☆ Evaluating Multiview Object Consistency in Humans and Image Models
We introduce a benchmark to directly evaluate the alignment between human observers and vision models on a 3D shape inference task. We leverage an experimental design from the cognitive sciences which requires zero-shot visual inferences about object shape: given a set of images, participants identify which contain the same/different objects, despite considerable viewpoint variation. We draw from a diverse range of images that include common objects (e.g., chairs) as well as abstract shapes (i.e., procedurally generated `nonsense' objects). After constructing over 2000 unique image sets, we administer these tasks to human participants, collecting 35K trials of behavioral data from over 500 participants. This includes explicit choice behaviors as well as intermediate measures, such as reaction time and gaze data. We then evaluate the performance of common vision models (e.g., DINOv2, MAE, CLIP). We find that humans outperform all models by a wide margin. Using a multi-scale evaluation approach, we identify underlying similarities and differences between models and humans: while human-model performance is correlated, humans allocate more time/processing on challenging trials. All images, data, and code can be accessed via our project page.
comment: Project page: https://tzler.github.io/MOCHI/ Code: https://github.com/tzler/mochi_code Huggingface dataset: https://huggingface.co/datasets/tzler/MOCHI
♻ ☆ Question-Answering Dense Video Events
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
♻ ☆ An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery
The integration of fine-scale multispectral imagery with deep learning models has revolutionized land use and land cover (LULC) classification. However, the atmospheric effects present in Top-of-Atmosphere sensor measured Digital Number values must be corrected to retrieve accurate Bottom-of-Atmosphere surface reflectance for reliable analysis. This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance for atmospherically correcting high-resolution CARTOSAT-3 Multispectral (MX) imagery for several Indian cities. The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models, demonstrating stability in multi-class (buildings, roads, trees and water bodies) LULC segmentation accuracy, particularly in scenarios with sparsely labelled data.
♻ ☆ DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation
Recent advancements in generative models have provided promising solutions for synthesizing realistic driving videos, which are crucial for training autonomous driving perception models. However, existing approaches often struggle with multi-view video generation due to the challenges of integrating 3D information while maintaining spatial-temporal consistency and effectively learning from a unified model. In this paper, we propose an end-to-end framework named DriveScape for multi-view, 3D condition-guided video generation. DriveScape not only streamlines the process by integrating camera data to ensure comprehensive spatial-temporal coverage, but also introduces a Bi-Directional Modulated Transformer module to effectively align 3D road structural information. As a result, our approach enables precise control over video generation, significantly enhancing realism and providing a robust solution for generating multi-view driving videos. Our framework achieves state-of-the-art results on the nuScenes dataset, demonstrating impressive generative quality metrics with an FID score of 8.34 and an FVD score of 76.39, as well as superior performance across various perception tasks. This paves the way for more accurate environmental simulations in autonomous driving. Code will be available at \href{https://metadrivescape.github.io/papers_project/drivescapev1/index.html}{our project homepage}.
♻ ☆ WonderWorld: Interactive 3D Scene Generation from a Single Image
We present WonderWorld, a novel framework for interactive 3D scene generation that enables users to interactively specify scene contents and layout and see the created scenes in low latency. The major challenge lies in achieving fast generation of 3D scenes. Existing scene generation approaches fall short of speed as they often require (1) progressively generating many views and depth maps, and (2) time-consuming optimization of the scene geometry representations. We introduce the Fast Layered Gaussian Surfels (FLAGS) as our scene representation and an algorithm to generate it from a single view. Our approach does not need multiple views, and it leverages a geometry-based initialization that significantly reduces optimization time. Another challenge is generating coherent geometry that allows all scenes to be connected. We introduce the guided depth diffusion that allows partial conditioning of depth estimation. WonderWorld generates connected and diverse 3D scenes in less than 10 seconds on a single A6000 GPU, enabling real-time user interaction and exploration. We demonstrate the potential of WonderWorld for user-driven content creation and exploration in virtual environments. We will release full code and software for reproducibility. Project website: https://kovenyu.com/WonderWorld/.
comment: Project website: https://kovenyu.com/WonderWorld/
♻ ☆ CAMS: Convolution and Attention-Free Mamba-based Cardiac Image Segmentation
Convolutional Neural Networks (CNNs) and Transformer-based self-attention models have become the standard for medical image segmentation. This paper demonstrates that convolution and self-attention, while widely used, are not the only effective methods for segmentation. Breaking with convention, we present a Convolution and self-Attention-free Mamba-based semantic Segmentation Network named CAMS-Net. Specifically, we design Mamba-based Channel Aggregator and Spatial Aggregator, which are applied independently in each encoder-decoder stage. The Channel Aggregator extracts information across different channels, and the Spatial Aggregator learns features across different spatial locations. We also propose a Linearly Interconnected Factorized Mamba (LIFM) block to reduce the computational complexity of a Mamba block and to enhance its decision function by introducing a non-linearity between two factorized Mamba blocks. Our model outperforms the existing state-of-the-art CNN, self-attention, and Mamba-based methods on CMR and M&Ms-2 Cardiac segmentation datasets, showing how this innovative, convolution, and self-attention-free method can inspire further research beyond CNN and Transformer paradigms, achieving linear complexity and reducing the number of parameters. Source code and pre-trained models will be publicly available upon acceptance.
Deep Visual Odometry with Events and Frames IROS
Visual Odometry (VO) is crucial for autonomous robotic navigation, especially in GPS-denied environments like planetary terrains. To improve robustness, recent model-based VO systems have begun combining standard and event-based cameras. While event cameras excel in low-light and high-speed motion, standard cameras provide dense and easier-to-track features. However, the field of image- and event-based VO still predominantly relies on model-based methods and is yet to fully integrate recent image-only advancements leveraging end-to-end learning-based architectures. Seamlessly integrating the two modalities remains challenging due to their different nature, one asynchronous, the other not, limiting the potential for a more effective image- and event-based VO. We introduce RAMP-VO, the first end-to-end learned image- and event-based VO system. It leverages novel Recurrent, Asynchronous, and Massively Parallel (RAMP) encoders capable of fusing asynchronous events with image data, providing 8x faster inference and 33% more accurate predictions than existing solutions. Despite being trained only in simulation, RAMP-VO outperforms previous methods on the newly introduced Apollo and Malapert datasets, and on existing benchmarks, where it improves image- and event-based methods by 58.8% and 30.6%, paving the way for robust and asynchronous VO in space.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
♻ ☆ Robust Single Rotation Averaging Revisited ECCV 2024
In this work, we propose a novel method for robust single rotation averaging that can efficiently handle an extremely large fraction of outliers. Our approach is to minimize the total truncated least unsquared deviations (TLUD) cost of geodesic distances. The proposed algorithm consists of three steps: First, we consider each input rotation as a potential initial solution and choose the one that yields the least sum of truncated chordal deviations. Next, we obtain the inlier set using the initial solution and compute its chordal $L_2$-mean. Finally, starting from this estimate, we iteratively compute the geodesic $L_1$-mean of the inliers using the Weiszfeld algorithm on $SO(3)$. An extensive evaluation shows that our method is robust against up to 99% outliers given a sufficient number of accurate inliers, outperforming the current state of the art.
comment: Accepted to ECCV 2024 Workshop on Recovering 6D Object Pose (R6D)
♻ ☆ Caterpillar: A Pure-MLP Architecture with Shifted-Pillars-Concatenation
Modeling in Computer Vision has evolved to MLPs. Vision MLPs naturally lack local modeling capability, to which the simplest treatment is combined with convolutional layers. Convolution, famous for its sliding window scheme, also suffers from this scheme of redundancy and lower parallel computation. In this paper, we seek to dispense with the windowing scheme and introduce a more elaborate and parallelizable method to exploit locality. To this end, we propose a new MLP module, namely Shifted-Pillars-Concatenation (SPC), that consists of two steps of processes: (1) Pillars-Shift, which generates four neighboring maps by shifting the input image along four directions, and (2) Pillars-Concatenation, which applies linear transformations and concatenation on the maps to aggregate local features. SPC module offers superior local modeling power and performance gains, making it a promising alternative to the convolutional layer. Then, we build a pure-MLP architecture called Caterpillar by replacing the convolutional layer with the SPC module in a hybrid model of sMLPNet. Extensive experiments show Caterpillar's excellent performance on both small-scale and ImageNet-1k classification benchmarks, with remarkable scalability and transfer capability possessed as well. The code is available at https://github.com/sunjin19126/Caterpillar.
♻ ☆ Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence
Nowadays, there is growing interest in applying Artificial Intelligence (AI) on board Earth Observation (EO) satellites for time-critical applications, such as natural disaster response. However, the unavailability of raw satellite data currently hinders research on lightweight pre-processing techniques and limits the exploration of end-to-end pipelines, which could offer more efficient and accurate extraction of insights directly from the source data. To fill this gap, this work presents a novel methodology to automate the creation of datasets for the detection of target events (e.g., warm thermal hotspots) or objects (e.g., vessels) from Sentinel-2 raw data and other multispectral EO pushbroom raw imagery. The presented approach first processes the raw data by applying a pipeline consisting of spatial band registration and georeferencing of the raw data pixels. Then, it detects the target events by leveraging event-specific state-of-the-art algorithms on the Level-1C products, which are mosaicked and cropped on the georeferenced correspondent raw granule area. The detected events are finally re-projected back onto the corresponding raw images. We apply the proposed methodology to realize THRawS (Thermal Hotspots in Raw Sentinel-2 data), the first dataset of Sentinel-2 raw data containing warm thermal hotspots. THRawS includes 1090 samples containing wildfires, volcanic eruptions, and 33,335 event-free acquisitions to enable thermal hotspot detection and general classification applications. This dataset and associated toolkits provide the community with both an immediately useful resource as well as a framework and methodology acting as a template for future additions. With this work, we hope to pave the way for research on energy-efficient pre-processing algorithms and AI-based end-to-end processing systems on board EO satellites.
comment: 17 Pages
♻ ☆ Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring
We are interested in developing an automated system for detection of organized movements in human crowds. Computer vision algorithms can extract information from videos of crowded scenes and automatically detect and track groups of individuals undergoing organized motion that represents an anomalous behavior in the context of conflict aversion. Our system can detect organized cohorts against the background of randomly moving objects and we can estimate the number of participants in an organized cohort, the speed and direction of motion in real time, within three to four video frames, which is less than one second from the onset of motion captured on a CCTV. We have performed preliminary analysis in this context in biological cell data containing up to four thousand objects per frame and will extend this numerically to a hundred-fold for public safety applications. We envisage using the existing infrastructure of video cameras for acquiring image datasets on-the-fly and deploying an easy-to-use data-driven software system for parsing of significant events by analyzing image sequences taken inside and outside of sports stadiums or other public venues. Other prospective users are organizers of political rallies, civic and wildlife organizations, security firms, and the military. We will optimize the performance of the software by implementing a classification method able to distinguish between activities posing a threat and those not posing a threat.
♻ ☆ Implicit Filtering for Learning Neural Signed Distance Functions from 3D Point Clouds ECCV 2024
Neural signed distance functions (SDFs) have shown powerful ability in fitting the shape geometry. However, inferring continuous signed distance fields from discrete unoriented point clouds still remains a challenge. The neural network typically fits the shape with a rough surface and omits fine-grained geometric details such as shape edges and corners. In this paper, we propose a novel non-linear implicit filter to smooth the implicit field while preserving high-frequency geometry details. Our novelty lies in that we can filter the surface (zero level set) by the neighbor input points with gradients of the signed distance field. By moving the input raw point clouds along the gradient, our proposed implicit filtering can be extended to non-zero level sets to keep the promise consistency between different level sets, which consequently results in a better regularization of the zero level set. We conduct comprehensive experiments in surface reconstruction from objects and complex scene point clouds, the numerical and visual comparisons demonstrate our improvements over the state-of-the-art methods under the widely used benchmarks.
comment: Accepted by ECCV 2024. Project page: https://list17.github.io/ImplicitFilter
♻ ☆ SUMix: Mixup with Semantic and Uncertain Information ECCV2024
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio $\lambda$ by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
comment: Accepted by ECCV2024 [Camera Ready] (19 pages, 7 figures) with the source code at https://github.com/JinXins/SUMix
♻ ☆ Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity
In this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions.
comment: 9 pages
♻ ☆ CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers
In minimally invasive endovascular procedures, contrast-enhanced angiography remains the most robust imaging technique. However, it is at the expense of the patient and clinician's health due to prolonged radiation exposure. As an alternative, interventional ultrasound has notable benefits such as being radiation-free, fast to deploy, and having a small footprint in the operating room. Yet, ultrasound is hard to interpret, and highly prone to artifacts and noise. Additionally, interventional radiologists must undergo extensive training before they become qualified to diagnose and treat patients effectively, leading to a shortage of staff, and a lack of open-source datasets. In this work, we seek to address both problems by introducing a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images, without demanding any labeled data. The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism, and is capable of learning feature changes across time and space. To facilitate training, we used synthetic ultrasound data based on physics-driven catheter insertion simulations, and translated the data into a unique CT-Ultrasound common domain, CACTUSS, to improve the segmentation performance. We generated ground truth segmentation masks by computing the optical flow between adjacent frames using FlowNet2, and performed thresholding to obtain a binary map estimate. Finally, we validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms, thus demonstrating its potential for applications to clinical data in the future.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Extending 6D Object Pose Estimators for Stereo Vision ICPR
Estimating the 6D pose of objects accurately, quickly, and robustly remains a difficult task. However, recent methods for directly regressing poses from RGB images using dense features have achieved state-of-the-art results. Stereo vision, which provides an additional perspective on the object, can help reduce pose ambiguity and occlusion. Moreover, stereo can directly infer the distance of an object, while mono-vision requires internalized knowledge of the object's size. To extend the state-of-the-art in 6D object pose estimation to stereo, we created a BOP compatible stereo version of the YCB-V dataset. Our method outperforms state-of-the-art 6D pose estimation algorithms by utilizing stereo vision and can easily be adopted for other dense feature-based algorithms.
comment: 4th International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI)
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ Valeo4Cast: A Modular Approach to End-to-End Forecasting ECCV
Motion forecasting is crucial in autonomous driving systems to anticipate the future trajectories of surrounding agents such as pedestrians, vehicles, and traffic signals. In end-to-end forecasting, the model must jointly detect and track from sensor data (cameras or LiDARs) the past trajectories of the different elements of the scene and predict their future locations. We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach. We individually build and train detection, tracking and forecasting modules. We then only use consecutive finetuning steps to integrate the modules better and alleviate compounding errors. We conduct an in-depth study on the finetuning strategies and it reveals that our simple yet effective approach significantly improves performance on the end-to-end forecasting benchmark. Consequently, our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf. We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up. This remarkable performance in forecasting can be explained by our modular paradigm, which integrates finetuning strategies and significantly outperforms the end-to-end-trained counterparts.
comment: Winning solution of the Argoverse 2 "Unified Detection, Tracking, and Forecasting" challenge; work accepted at Road++ ECCVW 2024
♻ ☆ Image Similarity using An Ensemble of Context-Sensitive Models
Image similarity has been extensively studied in computer vision. In recent years, machine-learned models have shown their ability to encode more semantics than traditional multivariate metrics. However, in labelling semantic similarity, assigning a numerical score to a pair of images is impractical, making the improvement and comparisons on the task difficult. In this work, we present a more intuitive approach to build and compare image similarity models based on labelled data in the form of A:R vs B:R, i.e., determining if an image A is closer to a reference image R than another image B. We address the challenges of sparse sampling in the image space (R, A, B) and biases in the models trained with context-based data by using an ensemble model. Our testing results show that the ensemble model constructed performs ~5% better than the best individual context-sensitive models. They also performed better than the models that were directly fine-tuned using mixed imagery data as well as existing deep embeddings, e.g., CLIP and DINO. This work demonstrates that context-based labelling and model training can be effective when an appropriate ensemble approach is used to alleviate the limitation due to sparse sampling.
LiDAR-based 4D Occupancy Completion and Forecasting IROS 2024
Scene completion and forecasting are two popular perception problems in research for mobile agents like autonomous vehicles. Existing approaches treat the two problems in isolation, resulting in a separate perception of the two aspects. In this paper, we introduce a novel LiDAR perception task of Occupancy Completion and Forecasting (OCF) in the context of autonomous driving to unify these aspects into a cohesive framework. This task requires new algorithms to address three challenges altogether: (1) sparse-to-dense reconstruction, (2) partial-to-complete hallucination, and (3) 3D-to-4D prediction. To enable supervision and evaluation, we curate a large-scale dataset termed OCFBench from public autonomous driving datasets. We analyze the performance of closely related existing baseline models and our own ones on our dataset. We envision that this research will inspire and call for further investigation in this evolving and crucial area of 4D perception. Our code for data curation and baseline implementation is available at https://github.com/ai4ce/Occ4cast.
comment: IROS 2024
♻ ☆ EMCNet : Graph-Nets for Electron Micrographs Classification KDD 2022
Characterization of materials via electron micrographs is an important and challenging task in several materials processing industries. Classification of electron micrographs is complex due to the high intra-class dissimilarity, high inter-class similarity, and multi-spatial scales of patterns. However, existing methods are ineffective in learning complex image patterns. We propose an effective end-to-end electron micrograph representation learning-based framework for nanomaterial identification to overcome the challenges. We demonstrate that our framework outperforms the popular baselines on the open-source datasets in nanomaterials-based identification tasks. The ablation studies are reported in great detail to support the efficacy of our approach.
comment: 12 pages, 10 figures, Accepted in a ACM SIGKDD 2022 Workshop on Machine Learning for Materials
♻ ☆ VITA: Towards Open-Source Interactive Omni Multimodal LLM
The remarkable multimodal capabilities and interactive experience of GPT-4o underscore their necessity in practical applications, yet open-source models rarely excel in both areas. In this paper, we introduce VITA, the first-ever open-source Multimodal Large Language Model (MLLM) adept at simultaneous processing and analysis of Video, Image, Text, and Audio modalities, and meanwhile has an advanced multimodal interactive experience. Starting from Mixtral 8x7B as a language foundation, we expand its Chinese vocabulary followed by bilingual instruction tuning. We further endow the language model with visual and audio capabilities through two-stage multi-task learning of multimodal alignment and instruction tuning. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. Beyond foundational capabilities, we have made considerable progress in enhancing the natural multimodal human-computer interaction experience. VITA is the first step for the open-source community to explore the seamless integration of multimodal understanding and interaction. While there is still lots of work to be done on VITA to get close to close-source counterparts, we hope that its role as a pioneer can serve as a cornerstone for subsequent research. Project Page: https://vita-home.github.io.
comment: Project Page: https://vita-home.github.io
♻ ☆ PoseScript: Linking 3D Human Poses and Natural Language ECCV 2022
Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. To address this issue, we have introduced the PoseScript dataset. This dataset pairs more than six thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. Additionally, to increase the size of the dataset to a scale that is compatible with data-hungry learning algorithms, we have proposed an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information, known as "posecodes", using a set of simple but generic rules on the 3D keypoints. These posecodes are then combined into higher level textual descriptions using syntactic rules. With automatic annotations, the amount of available data significantly scales up (100k), making it possible to effectively pretrain deep models for finetuning on human captions. To showcase the potential of annotated poses, we present three multi-modal learning tasks that utilize the PoseScript dataset. Firstly, we develop a pipeline that maps 3D poses and textual descriptions into a joint embedding space, allowing for cross-modal retrieval of relevant poses from large-scale datasets. Secondly, we establish a baseline for a text-conditioned model generating 3D poses. Thirdly, we present a learned process for generating pose descriptions. These applications demonstrate the versatility and usefulness of annotated poses in various tasks and pave the way for future research in the field.
comment: TPAMI 2024, extended version of the ECCV 2022 paper
♻ ☆ Shedding More Light on Robust Classifiers under the lens of Energy-based Models ECCV
By reinterpreting a robust discriminative classifier as Energy-based Model (EBM), we offer a new take on the dynamics of adversarial training (AT). Our analysis of the energy landscape during AT reveals that untargeted attacks generate adversarial images much more in-distribution (lower energy) than the original data from the point of view of the model. Conversely, we observe the opposite for targeted attacks. On the ground of our thorough analysis, we present new theoretical and practical results that show how interpreting AT energy dynamics unlocks a better understanding: (1) AT dynamic is governed by three phases and robust overfitting occurs in the third phase with a drastic divergence between natural and adversarial energies (2) by rewriting the loss of TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization (TRADES) in terms of energies, we show that TRADES implicitly alleviates overfitting by means of aligning the natural energy with the adversarial one (3) we empirically show that all recent state-of-the-art robust classifiers are smoothing the energy landscape and we reconcile a variety of studies about understanding AT and weighting the loss function under the umbrella of EBMs. Motivated by rigorous evidence, we propose Weighted Energy Adversarial Training (WEAT), a novel sample weighting scheme that yields robust accuracy matching the state-of-the-art on multiple benchmarks such as CIFAR-10 and SVHN and going beyond in CIFAR-100 and Tiny-ImageNet. We further show that robust classifiers vary in the intensity and quality of their generative capabilities, and offer a simple method to push this capability, reaching a remarkable Inception Score (IS) and FID using a robust classifier without training for generative modeling. The code to reproduce our results is available at http://github.com/OmnAI-Lab/Robust-Classifiers-under-the-lens-of-EBM/ .
comment: Accepted at European Conference on Computer Vision (ECCV) 2024
♻ ☆ MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding Benchmark
This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models' true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly "see" and "read" simultaneously, testing a fundamental human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future research in multimodal AI.
♻ ☆ Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection
Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec and 8.9% on VisA compared to state-of-the-art approaches.
comment: Accepted by MM'24 (Oral)
♻ ☆ TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction CVPR 2023
Deep saliency prediction algorithms complement the object recognition features, they typically rely on additional information, such as scene context, semantic relationships, gaze direction, and object dissimilarity. However, none of these models consider the temporal nature of gaze shifts during image observation. We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals by exploiting human temporal attention patterns. Our approach locally modulates the saliency predictions by combining the learned temporal maps. Our experiments show that our method outperforms the state-of-the-art models, including a multi-duration saliency model, on the SALICON benchmark. Our code will be publicly available on GitHub.
comment: 10 pages, 7 figures, published in CVPR 2023
Space3D-Bench: Spatial 3D Question Answering Benchmark
Answering questions about the spatial properties of the environment poses challenges for existing language and vision foundation models due to a lack of understanding of the 3D world notably in terms of relationships between objects. To push the field forward, multiple 3D Q&A datasets were proposed which, overall, provide a variety of questions, but they individually focus on particular aspects of 3D reasoning or are limited in terms of data modalities. To address this, we present Space3D-Bench - a collection of 1000 general spatial questions and answers related to scenes of the Replica dataset which offers a variety of data modalities: point clouds, posed RGB-D images, navigation meshes and 3D object detections. To ensure that the questions cover a wide range of 3D objectives, we propose an indoor spatial questions taxonomy inspired by geographic information systems and use it to balance the dataset accordingly. Moreover, we provide an assessment system that grades natural language responses based on predefined ground-truth answers by leveraging a Vision Language Model's comprehension of both text and images to compare the responses with ground-truth textual information or relevant visual data. Finally, we introduce a baseline called RAG3D-Chat integrating the world understanding of foundation models with rich context retrieval, achieving an accuracy of 67% on the proposed dataset.
♻ ☆ Nonlinear Unknown Input Observability and Unknown Input Reconstruction: The General Analytical Solution
Observability is a fundamental structural property of any dynamic system and describes the possibility of reconstructing the state that characterizes the system from observing its inputs and outputs. Despite the huge effort made to study this property and to introduce analytical criteria able to check whether a dynamic system satisfies this property or not, there is no general analytical criterion to automatically check the state observability when the dynamics are also driven by unknown inputs. Here, we introduce the general analytical solution of this fundamental problem, often called the unknown input observability problem. This paper provides the general analytical solution of this problem, namely, it provides the systematic procedure, based on automatic computation (differentiation and matrix rank determination), that allows us to automatically check the state observability even in the presence of unknown inputs (Algorithm 6.1). A first solution of this problem was presented in the second part of the book: "Observability: A New Theory Based on the Group of Invariance" [45]. The solution presented by this paper completes the previous solution in [45]. In particular, the new solution exhaustively accounts for the systems that do not belong to the category of the systems that are "canonic with respect to their unknown inputs". The analytical derivations largely exploit several new concepts and analytical results introduced in [45]. Finally, as a simple consequence of the results here obtained, we also provide the answer to the problem of unknown input reconstruction which is intimately related to the problem of state observability. We illustrate the implementation of the new algorithm by studying the observability properties of a nonlinear system in the framework of visual-inertial sensor fusion, whose dynamics are driven by two unknown inputs and one known input.
comment: This paper was published by the journal of Information Fusion
♻ ☆ Neural Architecture Search based Global-local Vision Mamba for Palm-Vein Recognition
Due to the advantages such as high security, high privacy, and liveness recognition, vein recognition has been received more and more attention in past years. Recently, deep learning models, e.g., Mamba has shown robust feature representation with linear computational complexity and successfully applied for visual tasks. However, vision Manba can capture long-distance feature dependencies but unfortunately deteriorate local feature details. Besides, manually designing a Mamba architecture based on human priori knowledge is very time-consuming and error-prone. In this paper, first, we propose a hybrid network structure named Global-local Vision Mamba (GLVM), to learn the local correlations in images explicitly and global dependencies among tokens for vein feature representation. Secondly, we design a Multi-head Mamba to learn the dependencies along different directions, so as to improve the feature representation ability of vision Mamba. Thirdly, to learn the complementary features, we propose a ConvMamba block consisting of three branches, named Multi-head Mamba branch (MHMamba), Feature Iteration Unit branch (FIU), and Convolutional Neural Network (CNN) branch, where the Feature Iteration Unit branch aims to fuse convolutional local features with Mamba-based global representations. Finally, a Globallocal Alternate Neural Architecture Search (GLNAS) method is proposed to search the optimal architecture of GLVM alternately with the evolutionary algorithm, thereby improving the recognition performance for vein recognition tasks. We conduct rigorous experiments on three public palm-vein databases to estimate the performance. The experimental results demonstrate that the proposed method outperforms the representative approaches and achieves state-of-the-art recognition accuracy.
♻ ☆ Multimodal Active Measurement for Human Mesh Recovery in Close Proximity
For physical human-robot interactions (pHRI), a robot needs to estimate the accurate body pose of a target person. However, in these pHRI scenarios, the robot cannot fully observe the target person's body with equipped cameras because the target person must be close to the robot for physical interaction. This close distance leads to severe truncation and occlusions and thus results in poor accuracy of human pose estimation. For better accuracy in this challenging environment, we propose an active measurement and sensor fusion framework of the equipped cameras with touch and ranging sensors such as 2D LiDAR. Touch and ranging sensor measurements are sparse but reliable and informative cues for localizing human body parts. In our active measurement process, camera viewpoints and sensor placements are dynamically optimized to measure body parts with higher estimation uncertainty, which is closely related to truncation or occlusion. In our sensor fusion process, assuming that the measurements of touch and ranging sensors are more reliable than the camera-based estimations, we fuse the sensor measurements to the camera-based estimated pose by aligning the estimated pose towards the measured points. Our proposed method outperformed previous methods on the standard occlusion benchmark with simulated active measurement. Furthermore, our method reliably estimated human poses using a real robot, even with practical constraints such as occlusion by blankets.
comment: Accepted at Robotics and Automation Letters (RA-L)
♻ ☆ Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation
Instance segmentation for low-light imagery remains largely unexplored due to the challenges imposed by such conditions, for example shot noise due to low photon count, color distortions and reduced contrast. In this paper, we propose an end-to-end solution to address this challenging task. Our proposed method implements weighted non-local blocks (wNLB) in the feature extractor. This integration enables an inherent denoising process at the feature level. As a result, our method eliminates the need for aligned ground truth images during training, thus supporting training on real-world low-light datasets. We introduce additional learnable weights at each layer in order to enhance the network's adaptability to real-world noise characteristics, which affect different feature scales in different ways. Experimental results on several object detectors show that the proposed method outperforms the pretrained networks with an Average Precision (AP) improvement of at least +7.6, with the introduction of wNLB further enhancing AP by upto +1.3.
♻ ☆ FrameCorr: Adaptive, Autoencoder-based Neural Compression for Video Reconstruction in Resource and Timing Constrained Network Settings
Despite the growing adoption of video processing via Internet of Things (IoT) devices due to their cost-effectiveness, transmitting captured data to nearby servers poses challenges due to varying timing constraints and scarcity of network bandwidth. Existing video compression methods face difficulties in recovering compressed data when incomplete data is provided. Here, we introduce FrameCorr, a deep-learning based solution that utilizes previously received data to predict the missing segments of a frame, enabling the reconstruction of a frame from partially received data.
♻ ☆ TrackSSM: A General Motion Predictor by State-Space Model
Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S$^2$L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at \url{https://github.com/Xavier-Lin/TrackSSM}.
♻ ☆ Diff-INR: Generative Regularization for Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) is a non-invasive imaging technique that reconstructs conductivity distributions within a body from boundary measurements. However, EIT reconstruction is hindered by its ill-posed nonlinear inverse problem, which complicates accurate results. To tackle this, we propose Diff-INR, a novel method that combines generative regularization with Implicit Neural Representations (INR) through a diffusion model. Diff-INR introduces geometric priors to guide the reconstruction, effectively addressing the shortcomings of traditional regularization methods. By integrating a pre-trained diffusion regularizer with INR, our approach achieves state-of-the-art reconstruction accuracy in both simulation and experimental data. The method demonstrates robust performance across various mesh densities and hyperparameter settings, highlighting its flexibility and efficiency. This advancement represents a significant improvement in managing the ill-posed nature of EIT. Furthermore, the method's principles are applicable to other imaging modalities facing similar challenges with ill-posed inverse problems.
♻ ☆ OT-VP: Optimal Transport-guided Visual Prompting for Test-Time Adaptation WACV2025
Vision Transformers (ViTs) have demonstrated remarkable capabilities in learning representations, but their performance is compromised when applied to unseen domains. Previous methods either engage in prompt learning during the training phase or modify model parameters at test time through entropy minimization. The former often overlooks unlabeled target data, while the latter doesn't fully address domain shifts. In this work, our approach, Optimal Transport-guided Test-Time Visual Prompting (OT-VP), handles these problems by leveraging prompt learning at test time to align the target and source domains without accessing the training process or altering pre-trained model parameters. This method involves learning a universal visual prompt for the target domain by optimizing the Optimal Transport distance.OT-VP, with only four learned prompt tokens, exceeds state-of-the-art performance across three stylistic datasets-PACS, VLCS, OfficeHome, and one corrupted dataset ImageNet-C. Additionally, OT-VP operates efficiently, both in terms of memory and computation, and is adaptable for extension to online settings.
comment: WACV2025
♻ ☆ Perceptual Assessment and Optimization of HDR Image Rendering
High dynamic range (HDR) rendering has the ability to faithfully reproduce the wide luminance ranges in natural scenes, but how to accurately assess the rendering quality is relatively underexplored. Existing quality models are mostly designed for low dynamic range (LDR) images, and do not align well with human perception of HDR image quality. To fill this gap, we propose a family of HDR quality metrics, in which the key step is employing a simple inverse display model to decompose an HDR image into a stack of LDR images with varying exposures. Subsequently, these decomposed images are assessed through well-established LDR quality metrics. Our HDR quality models present three distinct benefits. First, they directly inherit the recent advancements of LDR quality metrics. Second, they do not rely on human perceptual data of HDR image quality for re-calibration. Third, they facilitate the alignment and prioritization of specific luminance ranges for more accurate and detailed quality assessment. Experimental results show that our HDR quality metrics consistently outperform existing models in terms of quality assessment on four HDR image quality datasets and perceptual optimization of HDR novel view synthesis.
♻ ☆ SpikeCLIP: A Contrastive Language-Image Pretrained Spiking Neural Network
Spiking Neural Networks (SNNs) have emerged as a promising alternative to conventional Artificial Neural Networks (ANNs), demonstrating comparable performance in both visual and linguistic tasks while offering the advantage of improved energy efficiency. Despite these advancements, the integration of linguistic and visual features into a unified representation through spike trains poses a significant challenge, and the application of SNNs to multimodal scenarios remains largely unexplored. This paper presents SpikeCLIP, a novel framework designed to bridge the modality gap in spike-based computation. Our approach employs a two-step recipe: an ``alignment pre-training'' to align features across modalities, followed by a ``dual-loss fine-tuning'' to refine the model's performance. Extensive experiments reveal that SNNs achieve results on par with ANNs while substantially reducing energy consumption across various datasets commonly used for multimodal model evaluation. Furthermore, SpikeCLIP maintains robust image classification capabilities, even when dealing with classes that fall outside predefined categories. This study marks a significant advancement in the development of energy-efficient and biologically plausible multimodal learning systems.
♻ ☆ Learned Image Transmission with Hierarchical Variational Autoencoder
In this paper, we introduce an innovative hierarchical joint source-channel coding (HJSCC) framework for image transmission, utilizing a hierarchical variational autoencoder (VAE). Our approach leverages a combination of bottom-up and top-down paths at the transmitter to autoregressively generate multiple hierarchical representations of the original image. These representations are then directly mapped to channel symbols for transmission by the JSCC encoder. We extend this framework to scenarios with a feedback link, modeling transmission over a noisy channel as a probabilistic sampling process and deriving a novel generative formulation for JSCC with feedback. Compared with existing approaches, our proposed HJSCC provides enhanced adaptability by dynamically adjusting transmission bandwidth, encoding these representations into varying amounts of channel symbols. Extensive experiments on images of varying resolutions demonstrate that our proposed model outperforms existing baselines in rate-distortion performance and maintains robustness against channel noise. The source code will be made available upon acceptance.
♻ ☆ Disentangling Hippocampal Shape Variations: A Study of Neurological Disorders Using Mesh Variational Autoencoder with Contrastive Learning
This paper presents a comprehensive study focused on disentangling hippocampal shape variations from diffusion tensor imaging (DTI) datasets within the context of neurological disorders. Leveraging a Graph Variational Autoencoder (VAE) enhanced with Supervised Contrastive Learning, our approach aims to improve interpretability by disentangling two distinct latent variables corresponding to age and the presence of diseases. In our ablation study, we investigate a range of VAE architectures and contrastive loss functions, showcasing the enhanced disentanglement capabilities of our approach. This evaluation uses synthetic 3D torus mesh data and real 3D hippocampal mesh datasets derived from the DTI hippocampal dataset. Our supervised disentanglement model outperforms several state-of-the-art (SOTA) methods like attribute and guided VAEs in terms of disentanglement scores. Our model distinguishes between age groups and disease status in patients with Multiple Sclerosis (MS) using the hippocampus data. Our Graph VAE with Supervised Contrastive Learning shows the volume changes of the hippocampus of MS populations at different ages, and the result is consistent with the current neuroimaging literature. This research provides valuable insights into the relationship between neurological disorder and hippocampal shape changes in different age groups of MS populations using a Graph VAE with Supervised Contrastive loss.
comment: Length: 25 pages and submitted to the journal: MELBA (Machine Learning for Biomedical Imaging)
♻ ☆ Learning a Cross-modality Anomaly Detector for Remote Sensing Imagery
Remote sensing anomaly detector can find the objects deviating from the background as potential targets for Earth monitoring. Given the diversity in earth anomaly types, designing a transferring model with cross-modality detection ability should be cost-effective and flexible to new earth observation sources and anomaly types. However, the current anomaly detectors aim to learn the certain background distribution, the trained model cannot be transferred to unseen images. Inspired by the fact that the deviation metric for score ranking is consistent and independent from the image distribution, this study exploits the learning target conversion from the varying background distribution to the consistent deviation metric. We theoretically prove that the large-margin condition in labeled samples ensures the transferring ability of learned deviation metric. To satisfy this condition, two large margin losses for pixel-level and feature-level deviation ranking are proposed respectively. Since the real anomalies are difficult to acquire, anomaly simulation strategies are designed to compute the model loss. With the large-margin learning for deviation metric, the trained model achieves cross-modality detection ability in five modalities including hyperspectral, visible light, synthetic aperture radar (SAR), infrared and low-light in zero-shot manner.
comment: Journal paper
♻ ☆ SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation CVPR 2024
Despite their ability to generate high-resolution and diverse images from text prompts, text-to-image diffusion models often suffer from slow iterative sampling processes. Model distillation is one of the most effective directions to accelerate these models. However, previous distillation methods fail to retain the generation quality while requiring a significant amount of images for training, either from real data or synthetically generated by the teacher model. In response to this limitation, we present a novel image-free distillation scheme named $\textbf{SwiftBrush}$. Drawing inspiration from text-to-3D synthesis, in which a 3D neural radiance field that aligns with the input prompt can be obtained from a 2D text-to-image diffusion prior via a specialized loss without the use of any 3D data ground-truth, our approach re-purposes that same loss for distilling a pretrained multi-step text-to-image model to a student network that can generate high-fidelity images with just a single inference step. In spite of its simplicity, our model stands as one of the first one-step text-to-image generators that can produce images of comparable quality to Stable Diffusion without reliance on any training image data. Remarkably, SwiftBrush achieves an FID score of $\textbf{16.67}$ and a CLIP score of $\textbf{0.29}$ on the COCO-30K benchmark, achieving competitive results or even substantially surpassing existing state-of-the-art distillation techniques.
comment: Accepted to CVPR 2024; Github: https://github.com/VinAIResearch/SwiftBrush
♻ ☆ RangeLDM: Fast Realistic LiDAR Point Cloud Generation
Autonomous driving demands high-quality LiDAR data, yet the cost of physical LiDAR sensors presents a significant scaling-up challenge. While recent efforts have explored deep generative models to address this issue, they often consume substantial computational resources with slow generation speeds while suffering from a lack of realism. To address these limitations, we introduce RangeLDM, a novel approach for rapidly generating high-quality range-view LiDAR point clouds via latent diffusion models. We achieve this by correcting range-view data distribution for accurate projection from point clouds to range images via Hough voting, which has a critical impact on generative learning. We then compress the range images into a latent space with a variational autoencoder, and leverage a diffusion model to enhance expressivity. Additionally, we instruct the model to preserve 3D structural fidelity by devising a range-guided discriminator. Experimental results on KITTI-360 and nuScenes datasets demonstrate both the robust expressiveness and fast speed of our LiDAR point cloud generation.
♻ ☆ Make-A-Shape: a Ten-Million-scale 3D Shape Model
Significant progress has been made in training large generative models for natural language and images. Yet, the advancement of 3D generative models is hindered by their substantial resource demands for training, along with inefficient, non-compact, and less expressive representations. This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale, capable of utilizing 10 millions publicly-available shapes. Technical-wise, we first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme to efficiently exploit coefficient relations. We then make the representation generatable by a diffusion model by devising the subband coefficients packing scheme to layout the representation in a low-resolution grid. Further, we derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients. Last, we extend our framework to be controlled by additional input conditions to enable it to generate shapes from assorted modalities, e.g., single/multi-view images, point clouds, and low-resolution voxels. In our extensive set of experiments, we demonstrate various applications, such as unconditional generation, shape completion, and conditional generation on a wide range of modalities. Our approach not only surpasses the state of the art in delivering high-quality results but also efficiently generates shapes within a few seconds, often achieving this in just 2 seconds for most conditions. Our source code is available at https://github.com/AutodeskAILab/Make-a-Shape.
♻ ☆ MGS-SLAM: Monocular Sparse Tracking and Gaussian Mapping with Depth Smooth Regularization
This letter introduces a novel framework for dense Visual Simultaneous Localization and Mapping (VSLAM) based on Gaussian Splatting. Recently, SLAM based on Gaussian Splatting has shown promising results. However, in monocular scenarios, the Gaussian maps reconstructed lack geometric accuracy and exhibit weaker tracking capability. To address these limitations, we jointly optimize sparse visual odometry tracking and 3D Gaussian Splatting scene representation for the first time. We obtain depth maps on visual odometry keyframe windows using a fast Multi-View Stereo (MVS) network for the geometric supervision of Gaussian maps. Furthermore, we propose a depth smooth loss and Sparse-Dense Adjustment Ring (SDAR) to reduce the negative effect of estimated depth maps and preserve the consistency in scale between the visual odometry and Gaussian maps. We have evaluated our system across various synthetic and real-world datasets. The accuracy of our pose estimation surpasses existing methods and achieves state-of-the-art. Additionally, it outperforms previous monocular methods in terms of novel view synthesis and geometric reconstruction fidelities.
comment: Accepted by IEEE Robotics and Automation Letters
♻ ☆ Deep Bayesian Active Learning-to-Rank with Relative Annotation for Estimation of Ulcerative Colitis Severity
Automatic image-based severity estimation is an important task in computer-aided diagnosis. Severity estimation by deep learning requires a large amount of training data to achieve a high performance. In general, severity estimation uses training data annotated with discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult in images with ambiguous severity, and the annotation cost is high. In contrast, relative annotation, in which the severity between a pair of images is compared, can avoid quantizing severity and thus makes it easier. We can estimate relative disease severity using a learning-to-rank framework with relative annotations, but relative annotation has the problem of the enormous number of pairs that can be annotated. Therefore, the selection of appropriate pairs is essential for relative annotation. In this paper, we propose a deep Bayesian active learning-to-rank that automatically selects appropriate pairs for relative annotation. Our method preferentially annotates unlabeled pairs with high learning efficiency from the model uncertainty of the samples. We prove the theoretical basis for adapting Bayesian neural networks to pairwise learning-to-rank and demonstrate the efficiency of our method through experiments on endoscopic images of ulcerative colitis on both private and public datasets. We also show that our method achieves a high performance under conditions of significant class imbalance because it automatically selects samples from the minority classes.
comment: 14 pages, 8 figures, accepted in Medical Image Analysis 2024
♻ ☆ Towards Patronizing and Condescending Language in Chinese Videos: A Multimodal Dataset and Detector ICASSP 2025
Patronizing and Condescending Language (PCL) is a form of discriminatory toxic speech targeting vulnerable groups, threatening both online and offline safety. While toxic speech research has mainly focused on overt toxicity, such as hate speech, microaggressions in the form of PCL remain underexplored. Additionally, dominant groups' discriminatory facial expressions and attitudes toward vulnerable communities can be more impactful than verbal cues, yet these frame features are often overlooked. In this paper, we introduce the PCLMM dataset, the first Chinese multimodal dataset for PCL, consisting of 715 annotated videos from Bilibili, with high-quality PCL facial frame spans. We also propose the MultiPCL detector, featuring a facial expression detection module for PCL recognition, demonstrating the effectiveness of modality complementarity in this challenging task. Our work makes an important contribution to advancing microaggression detection within the domain of toxic speech.
comment: Under review in ICASSP 2025
♻ ☆ Dreaming is All You Need
In classification tasks, achieving a harmonious balance between exploration and precision is of paramount importance. To this end, this research introduces two novel deep learning models, SleepNet and DreamNet, to strike this balance. SleepNet seamlessly integrates supervised learning with unsupervised ``sleep" stages using pre-trained encoder models. Dedicated neurons within SleepNet are embedded in these unsupervised features, forming intermittent ``sleep" blocks that facilitate exploratory learning. Building upon the foundation of SleepNet, DreamNet employs full encoder-decoder frameworks to reconstruct the hidden states, mimicking the human "dreaming" process. This reconstruction process enables further exploration and refinement of the learned representations. Moreover, the principle ideas of our SleepNet and DreamNet are generic and can be applied to both computer vision and natural language processing downstream tasks. Through extensive empirical evaluations on diverse image and text datasets, SleepNet and DreanNet have demonstrated superior performance compared to state-of-the-art models, showcasing the strengths of unsupervised exploration and supervised precision afforded by our innovative approaches.
♻ ☆ Adversarial Score Distillation: When score distillation meets GAN CVPR 2024
Existing score distillation methods are sensitive to classifier-free guidance (CFG) scale: manifested as over-smoothness or instability at small CFG scales, while over-saturation at large ones. To explain and analyze these issues, we revisit the derivation of Score Distillation Sampling (SDS) and decipher existing score distillation with the Wasserstein Generative Adversarial Network (WGAN) paradigm. With the WGAN paradigm, we find that existing score distillation either employs a fixed sub-optimal discriminator or conducts incomplete discriminator optimization, resulting in the scale-sensitive issue. We propose the Adversarial Score Distillation (ASD), which maintains an optimizable discriminator and updates it using the complete optimization objective. Experiments show that the proposed ASD performs favorably in 2D distillation and text-to-3D tasks against existing methods. Furthermore, to explore the generalization ability of our WGAN paradigm, we extend ASD to the image editing task, which achieves competitive results. The project page and code are at https://github.com/2y7c3/ASD.
comment: CVPR 2024
♻ ☆ Inhomogeneous illumination image enhancement under ex-tremely low visibility condition
Imaging through dense fog presents unique challenges, with essential visual information crucial for applications like object detection and recognition obscured, thereby hindering conventional image processing methods. Despite improvements through neural network-based approaches, these techniques falter under extremely low visibility conditions exacerbated by inhomogeneous illumination, which degrades deep learning performance due to inconsistent signal intensities. We introduce in this paper a novel method that adaptively filters background illumination based on Structural Differential and Integral Filtering (SDIF) to enhance only vital signal information. The grayscale banding is eliminated by incorporating a visual optimization strategy based on image gradients. Maximum Histogram Equalization (MHE) is used to achieve high contrast while maintaining fidelity to the original content. We evaluated our algorithm using data collected from both a fog chamber and outdoor environments, and performed comparative analyses with existing methods. Our findings demonstrate that our proposed method significantly enhances signal clarity under extremely low visibility conditions and out-performs existing techniques, offering substantial improvements for deep fog imaging applications.
♻ ☆ Look Hear: Gaze Prediction for Speech-directed Human Attention ECCV 2024
For computer systems to effectively interact with humans using spoken language, they need to understand how the words being generated affect the users' moment-by-moment attention. Our study focuses on the incremental prediction of attention as a person is seeing an image and hearing a referring expression defining the object in the scene that should be fixated by gaze. To predict the gaze scanpaths in this incremental object referral task, we developed the Attention in Referral Transformer model or ART, which predicts the human fixations spurred by each word in a referring expression. ART uses a multimodal transformer encoder to jointly learn gaze behavior and its underlying grounding tasks, and an autoregressive transformer decoder to predict, for each word, a variable number of fixations based on fixation history. To train ART, we created RefCOCO-Gaze, a large-scale dataset of 19,738 human gaze scanpaths, corresponding to 2,094 unique image-expression pairs, from 220 participants performing our referral task. In our quantitative and qualitative analyses, ART not only outperforms existing methods in scanpath prediction, but also appears to capture several human attention patterns, such as waiting, scanning, and verification.
comment: Accepted for ECCV 2024
♻ ☆ HFGS: 4D Gaussian Splatting with Emphasis on Spatial and Temporal High-Frequency Components for Endoscopic Scene Reconstruction BMVC2024
Robot-assisted minimally invasive surgery benefits from enhancing dynamic scene reconstruction, as it improves surgical outcomes. While Neural Radiance Fields (NeRF) have been effective in scene reconstruction, their slow inference speeds and lengthy training durations limit their applicability. To overcome these limitations, 3D Gaussian Splatting (3D-GS) based methods have emerged as a recent trend, offering rapid inference capabilities and superior 3D quality. However, these methods still struggle with under-reconstruction in both static and dynamic scenes. In this paper, we propose HFGS, a novel approach for deformable endoscopic reconstruction that addresses these challenges from spatial and temporal frequency perspectives. Our approach incorporates deformation fields to better handle dynamic scenes and introduces Spatial High-Frequency Emphasis Reconstruction (SHF) to minimize discrepancies in spatial frequency spectra between the rendered image and its ground truth. Additionally, we introduce Temporal High-Frequency Emphasis Reconstruction (THF) to enhance dynamic awareness in neural rendering by leveraging flow priors, focusing optimization on motion-intensive parts. Extensive experiments on two widely used benchmarks demonstrate that HFGS achieves superior rendering quality.
comment: BMVC2024
♻ ☆ Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors
This paper studies how to synthesize face images of non-existent persons, to create a dataset that allows effective training of face recognition (FR) models. Two important goals are (1) the ability to generate a large number of distinct identities (inter-class separation) with (2) a wide variation in appearance of each identity (intra-class variation). However, existing works 1) are typically limited in how many well-separated identities can be generated and 2) either neglect or use a separate editing model for attribute augmentation. We propose Vec2Face, a holistic model that uses only a sampled vector as input and can flexibly generate and control face images and their attributes. Composed of a feature masked autoencoder and a decoder, Vec2Face is supervised by face image reconstruction and can be conveniently used in inference. Using vectors with low similarity among themselves as inputs, Vec2Face generates well-separated identities. Randomly perturbing an input identity vector within a small range allows Vec2Face to generate faces of the same identity with robust variation in face attributes. It is also possible to generate images with designated attributes by adjusting vector values with a gradient descent method. Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images, whereas 60K is the largest number of identities created in the previous works. FR models trained with the generated HSFace datasets, from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%, on five real-world test sets. For the first time, our model created using a synthetic training set achieves higher accuracy than the model created using a same-scale training set of real face images (on the CALFW test set).
♻ ☆ WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
♻ ☆ Organized Grouped Discrete Representation for Object-Centric Learning
Object-Centric Learning (OCL) represents dense image or video pixels as sparse object features. Representative methods utilize discrete representation composed of Variational Autoencoder (VAE) template features to suppress pixel-level information redundancy and guide object-level feature aggregation. The most recent advancement, Grouped Discrete Representation (GDR), further decomposes these template features into attributes. However, its naive channel grouping as decomposition may erroneously group channels belonging to different attributes together and discretize them as sub-optimal template attributes, which losses information and harms expressivity. We propose Organized GDR (OGDR) to organize channels belonging to the same attributes together for correct decomposition from features into attributes. In unsupervised segmentation experiments, OGDR is fully superior to GDR in augmentating classical transformer-based OCL methods; it even improves state-of-the-art diffusion-based ones. Codebook PCA and representation similarity analyses show that compared with GDR, our OGDR eliminates redundancy and preserves information better for guiding object representation learning. The source code is available in the supplementary material.
♻ ☆ Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos
Gaussian splatting has become a popular representation for novel-view synthesis, exhibiting clear strengths in efficiency, photometric quality, and compositional edibility. Following its success, many works have extended Gaussians to 4D, showing that dynamic Gaussians maintain these benefits while also tracking scene geometry far better than alternative representations. Yet, these methods assume dense multi-view videos as supervision. In this work, we are interested in extending the capability of Gaussian scene representations to casually captured monocular videos. We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained. Building off this finding, we propose a method we call Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting. First, we use isotropic Gaussian "marbles'', reducing the degrees of freedom of each Gaussian. Second, we employ a hierarchical divide and-conquer learning strategy to efficiently guide the optimization towards solutions with globally coherent motion. Finally, we add image-level and geometry-level priors into the optimization, including a tracking loss that takes advantage of recent progress in point tracking. By constraining the optimization, Dynamic Gaussian Marbles learns Gaussian trajectories that enable novel-view rendering and accurately capture the 3D motion of the scene elements. We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality, and is on-par with non-Gaussian representations, all while maintaining the efficiency, compositionality, editability, and tracking benefits of Gaussians. Our project page can be found here https://geometry.stanford.edu/projects/dynamic-gaussian-marbles.github.io/.
♻ ☆ Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing
Recently, diffusion models have emerged as a powerful class of generative models. Despite their success, there is still limited understanding of their semantic spaces. This makes it challenging to achieve precise and disentangled image generation without additional training, especially in an unsupervised way. In this work, we improve the understanding of their semantic spaces from intriguing observations: among a certain range of noise levels, (1) the learned posterior mean predictor (PMP) in the diffusion model is locally linear, and (2) the singular vectors of its Jacobian lie in low-dimensional semantic subspaces. We provide a solid theoretical basis to justify the linearity and low-rankness in the PMP. These insights allow us to propose an unsupervised, single-step, training-free LOw-rank COntrollable image editing (LOCO Edit) method for precise local editing in diffusion models. LOCO Edit identified editing directions with nice properties: homogeneity, transferability, composability, and linearity. These properties of LOCO Edit benefit greatly from the low-dimensional semantic subspace. Our method can further be extended to unsupervised or text-supervised editing in various text-to-image diffusion models (T-LOCO Edit). Finally, extensive empirical experiments demonstrate the effectiveness and efficiency of LOCO Edit. The codes will be released at https://github.com/ChicyChen/LOCO-Edit.
♻ ☆ Towards Efficient Vision-Language Tuning: More Information Density, More Generalizability
With the advancement of large pre-trained vision-language models, effectively transferring the knowledge embedded within these foundational models to downstream tasks has become a pivotal topic, particularly in data-scarce environments. Recently, parameter-efficient fine-tuning approaches, especially prompt tuning, have garnered considerable attention. To better understand the nature of prompt tuning, we propose the concept of ``Information Density'' (ID) to indicate whether a matrix strongly belongs to certain feature spaces rather than being evenly distributed across various feature spaces. We suppose a higher ID with strong bias across some feature spaces naturally leads to excellent robustness and stability. Our research, inspired by the observation that generalizability is closely linked to the information density of the prompt matrix, introduces the Dense Information Prompt (DIP). DIP aims to enhance information density to improve generalization. Furthermore, DIP significantly reduces the number of tunable parameters and the requisite storage space, making it particularly advantageous in resource-constrained settings. Comprehensive experiments substantiate the superiority of DIP. Notably, DIP surpasses the latest state-of-the-art methods by a substantial margin with an exceptionally small parameter count. Across a range of tasks spanning 11 datasets, DIP improves the average downstream accuracy of classic prompt tuning by up to 5.76% using merely 0.5K parameters.
♻ ☆ HandNeRF: Learning to Reconstruct Hand-Object Interaction Scene from a Single RGB Image ICRA 2024
This paper presents a method to learn hand-object interaction prior for reconstructing a 3D hand-object scene from a single RGB image. The inference as well as training-data generation for 3D hand-object scene reconstruction is challenging due to the depth ambiguity of a single image and occlusions by the hand and object. We turn this challenge into an opportunity by utilizing the hand shape to constrain the possible relative configuration of the hand and object geometry. We design a generalizable implicit function, HandNeRF, that explicitly encodes the correlation of the 3D hand shape features and 2D object features to predict the hand and object scene geometry. With experiments on real-world datasets, we show that HandNeRF is able to reconstruct hand-object scenes of novel grasp configurations more accurately than comparable methods. Moreover, we demonstrate that object reconstruction from HandNeRF ensures more accurate execution of downstream tasks, such as grasping and motion planning for robotic hand-over and manipulation. Homepage: https://samsunglabs.github.io/HandNeRF-project-page/
comment: In ICRA 2024; 13 pages including the supplementary material, 8 tables, 12 figures
Artificial Intelligence 129
☆ Hint-AD: Holistically Aligned Interpretability in End-to-End Autonomous Driving
End-to-end architectures in autonomous driving (AD) face a significant challenge in interpretability, impeding human-AI trust. Human-friendly natural language has been explored for tasks such as driving explanation and 3D captioning. However, previous works primarily focused on the paradigm of declarative interpretability, where the natural language interpretations are not grounded in the intermediate outputs of AD systems, making the interpretations only declarative. In contrast, aligned interpretability establishes a connection between language and the intermediate outputs of AD systems. Here we introduce Hint-AD, an integrated AD-language system that generates language aligned with the holistic perception-prediction-planning outputs of the AD model. By incorporating the intermediate outputs and a holistic token mixer sub-network for effective feature adaptation, Hint-AD achieves desirable accuracy, achieving state-of-the-art results in driving language tasks including driving explanation, 3D dense captioning, and command prediction. To facilitate further study on driving explanation task on nuScenes, we also introduce a human-labeled dataset, Nu-X. Codes, dataset, and models will be publicly available.
comment: CoRL 2024, Project Page: https://air-discover.github.io/Hint-AD/
☆ HybridFC: A Hybrid Fact-Checking Approach for Knowledge Graphs
We consider fact-checking approaches that aim to predict the veracity of assertions in knowledge graphs. Five main categories of fact-checking approaches for knowledge graphs have been proposed in the recent literature, of which each is subject to partially overlapping limitations. In particular, current text-based approaches are limited by manual feature engineering. Path-based and rule-based approaches are limited by their exclusive use of knowledge graphs as background knowledge, and embedding-based approaches suffer from low accuracy scores on current fact-checking tasks. We propose a hybrid approach -- dubbed HybridFC -- that exploits the diversity of existing categories of fact-checking approaches within an ensemble learning setting to achieve a significantly better prediction performance. In particular, our approach outperforms the state of the art by 0.14 to 0.27 in terms of Area Under the Receiver Operating Characteristic curve on the FactBench dataset. Our code is open-source and can be found at https://github.com/dice-group/HybridFC.
☆ Geometric-Averaged Preference Optimization for Soft Preference Labels
Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic. However, it is reasonable to think that they can vary with different individuals, and thus should be distributional to reflect the fine-grained relationship between the responses. In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function. In doing so, the scale of learning loss is adjusted based on the soft labels, and the loss with equally preferred responses would be close to zero. This simple modification can be easily applied to any DPO family and helps the models escape from the over-optimization and objective mismatch prior works suffer from. In our experiments, we simulate the soft preference labels with AI feedback from LLMs and demonstrate that geometric averaging consistently improves performance on standard benchmarks for alignment research. In particular, we observe more preferable responses than binary labels and significant improvements with data where modestly-confident labels are in the majority.
☆ Benchmarking Sub-Genre Classification For Mainstage Dance Music ICASSP 2025
Music classification, with a wide range of applications, is one of the most prominent tasks in music information retrieval. To address the absence of comprehensive datasets and high-performing methods in the classification of mainstage dance music, this work introduces a novel benchmark comprising a new dataset and a baseline. Our dataset extends the number of sub-genres to cover most recent mainstage live sets by top DJs worldwide in music festivals. A continuous soft labeling approach is employed to account for tracks that span multiple sub-genres, preserving the inherent sophistication. For the baseline, we developed deep learning models that outperform current state-of-the-art multimodel language models, which struggle to identify house music sub-genres, emphasizing the need for specialized models trained on fine-grained datasets. Our benchmark is applicable to serve for application scenarios such as music recommendation, DJ set curation, and interactive multimedia, where we also provide video demos. Our code is on \url{https://anonymous.4open.science/r/Mainstage-EDM-Benchmark/}.
comment: Submitted to ICASSP 2025
☆ Liability and Insurance for Catastrophic Losses: the Nuclear Power Precedent and Lessons for AI ICML 2024
As AI systems become more autonomous and capable, experts warn of them potentially causing catastrophic losses. Drawing on the successful precedent set by the nuclear power industry, this paper argues that developers of frontier AI models should be assigned limited, strict, and exclusive third party liability for harms resulting from Critical AI Occurrences (CAIOs) - events that cause or easily could have caused catastrophic losses. Mandatory insurance for CAIO liability is recommended to overcome developers' judgment-proofness, mitigate winner's curse dynamics, and leverage insurers' quasi-regulatory abilities. Based on theoretical arguments and observations from the analogous nuclear power context, insurers are expected to engage in a mix of causal risk-modeling, monitoring, lobbying for stricter regulation, and providing loss prevention guidance in the context of insuring against heavy-tail risks from AI. While not a substitute for regulation, clear liability assignment and mandatory insurance can help efficiently allocate resources to risk-modeling and safe design, facilitating future regulatory efforts.
comment: Accepted to Generative AI and Law Workshop at the International Conference on Machine Learning (ICML 2024)
☆ Insuring Uninsurable Risks from AI: The State as Insurer of Last Resort ICML 2024
Many experts believe that AI systems will sooner or later pose uninsurable risks, including existential risks. This creates an extreme judgment-proof problem: few if any parties can be held accountable ex post in the event of such a catastrophe. This paper proposes a novel solution: a government-provided, mandatory indemnification program for AI developers. The program uses risk-priced indemnity fees to induce socially optimal levels of care. Risk-estimates are determined by surveying experts, including indemnified developers. The Bayesian Truth Serum mechanism is employed to incent honest and effortful responses. Compared to alternatives, this approach arguably better leverages all private information, and provides a clearer signal to indemnified developers regarding what risks they must mitigate to lower their fees. It's recommended that collected fees be used to help fund the safety research developers need, employing a fund matching mechanism (Quadratic Financing) to induce an optimal supply of this public good. Under Quadratic Financing, safety research projects would compete for private contributions from developers, signaling how much each is to be supplemented with public funds.
comment: Accepted to Generative AI and Law Workshop at the International Conference on Machine Learning (ICML 2024)
☆ LLaMA-Omni: Seamless Speech Interaction with Large Language Models
Models like GPT-4o enable real-time interaction with large language models (LLMs) through speech, significantly enhancing user experience compared to traditional text-based interaction. However, there is still a lack of exploration on how to build speech interaction models based on open-source LLMs. To address this, we propose LLaMA-Omni, a novel model architecture designed for low-latency and high-quality speech interaction with LLMs. LLaMA-Omni integrates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming speech decoder. It eliminates the need for speech transcription, and can simultaneously generate text and speech responses directly from speech instructions with extremely low latency. We build our model based on the latest Llama-3.1-8B-Instruct model. To align the model with speech interaction scenarios, we construct a dataset named InstructS2S-200K, which includes 200K speech instructions and corresponding speech responses. Experimental results show that compared to previous speech-language models, LLaMA-Omni provides better responses in both content and style, with a response latency as low as 226ms. Additionally, training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for the efficient development of speech-language models in the future.
comment: Preprint. Project: https://github.com/ictnlp/LLaMA-Omni
☆ World-Grounded Human Motion Recovery via Gravity-View Coordinates SIGGRAPH
We present a novel method for recovering world-grounded human motion from monocular video. The main challenge lies in the ambiguity of defining the world coordinate system, which varies between sequences. Previous approaches attempt to alleviate this issue by predicting relative motion in an autoregressive manner, but are prone to accumulating errors. Instead, we propose estimating human poses in a novel Gravity-View (GV) coordinate system, which is defined by the world gravity and the camera view direction. The proposed GV system is naturally gravity-aligned and uniquely defined for each video frame, largely reducing the ambiguity of learning image-pose mapping. The estimated poses can be transformed back to the world coordinate system using camera rotations, forming a global motion sequence. Additionally, the per-frame estimation avoids error accumulation in the autoregressive methods. Experiments on in-the-wild benchmarks demonstrate that our method recovers more realistic motion in both the camera space and world-grounded settings, outperforming state-of-the-art methods in both accuracy and speed. The code is available at https://zju3dv.github.io/gvhmr/.
comment: Accepted at SIGGRAPH Asia 2024 (Conference Track). Project page: https://zju3dv.github.io/gvhmr/
☆ MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
☆ A Practice of Post-Training on Llama-3 70B with Optimal Selection of Additional Language Mixture Ratio
Large Language Models (LLM) often needs to be Continual Pre-Trained (CPT) to obtain the unfamiliar language skill or adapt into new domains. The huge training cost of CPT often asks for cautious choice of key hyper-parameters such as the mixture ratio of extra language or domain corpus. However, there is no systematic study which bridge the gap between the optimal mixture ratio and the actual model performance, and the gap between experimental scaling law and the actual deployment in the full model size. In this paper, we perform CPT on Llama-3 8B and 70B to enhance its Chinese ability. We study the optimal correlation between the Additional Language Mixture Ratio (ALMR) and the Learning Rate (LR) on the 8B size which directly indicate the optimal experimental set up. By thorough choice of hyper-parameter, and subsequent fine-tuning, the model capability is improved not only on the Chinese-related benchmark, but also some specific domains including math, coding and emotional intelligence. We deploy the final 70B version of LLM on an real-life chat system which obtain satisfying performance.
comment: 11 pages, 4 figures
☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, directly translating such demonstrations into robot-executable actions poses significant challenges due to execution mismatches, such as different movement styles and physical capabilities. Existing methods either rely on robot-demonstrator paired data, which is infeasible to scale, or overly rely on frame-level visual similarities, which fail to hold. To address these challenges, we propose RHyME, a novel framework that automatically establishes task execution correspondences between the robot and the demonstrator by using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human demonstrations by retrieving and composing similar short-horizon human clips, facilitating effective policy training without the need for paired data. We show that RHyME outperforms a range of baselines across various cross-embodiment datasets on all degrees of mismatches. Through detailed analysis, we uncover insights for learning and leveraging cross-embodiment visual representations.
☆ Label-free Monitoring of Self-Supervised Learning Progress
Self-supervised learning (SSL) is an effective method for exploiting unlabelled data to learn a high-level embedding space that can be used for various downstream tasks. However, existing methods to monitor the quality of the encoder -- either during training for one model or to compare several trained models -- still rely on access to annotated data. When SSL methodologies are applied to new data domains, a sufficiently large labelled dataset may not always be available. In this study, we propose several evaluation metrics which can be applied on the embeddings of unlabelled data and investigate their viability by comparing them to linear probe accuracy (a common metric which utilizes an annotated dataset). In particular, we apply $k$-means clustering and measure the clustering quality with the silhouette score and clustering agreement. We also measure the entropy of the embedding distribution. We find that while the clusters did correspond better to the ground truth annotations as training of the network progressed, label-free clustering metrics correlated with the linear probe accuracy only when training with SSL methods SimCLR and MoCo-v2, but not with SimSiam. Additionally, although entropy did not always have strong correlations with LP accuracy, this appears to be due to instability arising from early training, with the metric stabilizing and becoming more reliable at later stages of learning. Furthermore, while entropy generally decreases as learning progresses, this trend reverses for SimSiam. More research is required to establish the cause for this unexpected behaviour. Lastly, we find that while clustering based approaches are likely only viable for same-architecture comparisons, entropy may be architecture-independent.
☆ Simulation-based Scenario Generation for Robust Hybrid AI for Autonomy
Application of Unmanned Aerial Vehicles (UAVs) in search and rescue, emergency management, and law enforcement has gained traction with the advent of low-cost platforms and sensor payloads. The emergence of hybrid neural and symbolic AI approaches for complex reasoning is expected to further push the boundaries of these applications with decreasing levels of human intervention. However, current UAV simulation environments lack semantic context suited to this hybrid approach. To address this gap, HAMERITT (Hybrid Ai Mission Environment for RapId Training and Testing) provides a simulation-based autonomy software framework that supports the training, testing and assurance of neuro-symbolic algorithms for autonomous maneuver and perception reasoning. HAMERITT includes scenario generation capabilities that offer mission-relevant contextual symbolic information in addition to raw sensor data. Scenarios include symbolic descriptions for entities of interest and their relations to scene elements, as well as spatial-temporal constraints in the form of time-bounded areas of interest with prior probabilities and restricted zones within those areas. HAMERITT also features support for training distinct algorithm threads for maneuver vs. perception within an end-to-end mission run. Future work includes improving scenario realism and scaling symbolic context generation through automated workflow.
comment: 6 pages, 5 figures, 1 table
☆ An Ontology-based Approach Towards Traceable Behavior Specifications in Automated Driving
Vehicles in public traffic that are equipped with Automated Driving Systems are subject to a number of expectations: Among other aspects, their behavior should be safe, conforming to the rules of the road and provide mobility to their users. This poses challenges for the developers of such systems: Developers are responsible for specifying this behavior, for example, in terms of requirements at system design time. As we will discuss in the article, this specification always involves the need for assumptions and trade-offs. As a result, insufficiencies in such a behavior specification can occur that can potentially lead to unsafe system behavior. In order to support the identification of specification insufficiencies, requirements and respective assumptions need to be made explicit. In this article, we propose the Semantic Norm Behavior Analysis as an ontology-based approach to specify the behavior for an Automated Driving System equipped vehicle. We use ontologies to formally represent specified behavior for a targeted operational environment, and to establish traceability between specified behavior and the addressed stakeholder needs. Furthermore, we illustrate the application of the Semantic Norm Behavior Analysis in two example scenarios and evaluate our results.
comment: 22 pages, 12 figures, submitted for publication
☆ Developing the Temporal Graph Convolutional Neural Network Model to Predict Hip Replacement using Electronic Health Records ICML
Background: Hip replacement procedures improve patient lives by relieving pain and restoring mobility. Predicting hip replacement in advance could reduce pain by enabling timely interventions, prioritising individuals for surgery or rehabilitation, and utilising physiotherapy to potentially delay the need for joint replacement. This study predicts hip replacement a year in advance to enhance quality of life and health service efficiency. Methods: Adapting previous work using Temporal Graph Convolutional Neural Network (TG-CNN) models, we construct temporal graphs from primary care medical event codes, sourced from ResearchOne EHRs of 40-75-year-old patients, to predict hip replacement risk. We match hip replacement cases to controls by age, sex, and Index of Multiple Deprivation. The model, trained on 9,187 cases and 9,187 controls, predicts hip replacement one year in advance. We validate the model on two unseen datasets, recalibrating for class imbalance. Additionally, we conduct an ablation study and compare against four baseline models. Results: Our best model predicts hip replacement risk one year in advance with an AUROC of 0.724 (95% CI: 0.715-0.733) and an AUPRC of 0.185 (95% CI: 0.160-0.209), achieving a calibration slope of 1.107 (95% CI: 1.074-1.139) after recalibration. Conclusions: The TG-CNN model effectively predicts hip replacement risk by identifying patterns in patient trajectories, potentially improving understanding and management of hip-related conditions.
comment: Accepted to the 2024 International Conference on Machine Learning and Applications (ICMLA). 8 pages, 3 figures, 7 tables
☆ Quantifying and Enabling the Interpretability of CLIP-like Models
CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. To bridge this gap we propose a study to quantify the interpretability in CLIP like models. We conduct this study on six different CLIP models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. Our approach begins with using the TEXTSPAN algorithm and in-context learning to break down individual attention heads into specific properties. We then evaluate how easily these heads can be interpreted using new metrics which measure property consistency within heads and property disentanglement across heads. Our findings reveal that larger CLIP models are generally more interpretable than their smaller counterparts. To further assist users in understanding the inner workings of CLIP models, we introduce CLIP-InterpreT, a tool designed for interpretability analysis. CLIP-InterpreT offers five types of analyses: property-based nearest neighbor search, per-head topic segmentation, contrastive segmentation, per-head nearest neighbors of an image, and per-head nearest neighbors of text.
☆ Indirect Dynamic Negotiation in the Nash Demand Game
The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.
comment: Appears in IEEE Access
☆ ChatGPT's Potential in Cryptography Misuse Detection: A Comparative Analysis with Static Analysis Tools
The correct adoption of cryptography APIs is challenging for mainstream developers, often resulting in widespread API misuse. Meanwhile, cryptography misuse detectors have demonstrated inconsistent performance and remain largely inaccessible to most developers. We investigated the extent to which ChatGPT can detect cryptography misuses and compared its performance with that of the state-of-the-art static analysis tools. Our investigation, mainly based on the CryptoAPI-Bench benchmark, demonstrated that ChatGPT is effective in identifying cryptography API misuses, and with the use of prompt engineering, it can even outperform leading static cryptography misuse detectors.
comment: ESEM 2024
☆ Questioning Internal Knowledge Structure of Large Language Models Through the Lens of the Olympic Games
Large language models (LLMs) have become a dominant approach in natural language processing, yet their internal knowledge structures remain largely unexplored. In this paper, we analyze the internal knowledge structures of LLMs using historical medal tallies from the Olympic Games. We task the models with providing the medal counts for each team and identifying which teams achieved specific rankings. Our results reveal that while state-of-the-art LLMs perform remarkably well in reporting medal counts for individual teams, they struggle significantly with questions about specific rankings. This suggests that the internal knowledge structures of LLMs are fundamentally different from those of humans, who can easily infer rankings from known medal counts. To support further research, we publicly release our code, dataset, and model outputs.
☆ Sine, Transient, Noise Neural Modeling of Piano Notes
This paper introduces a novel method for emulating piano sounds. We propose to exploit the sine, transient, and noise decomposition to design a differentiable spectral modeling synthesizer replicating piano notes. Three sub-modules learn these components from piano recordings and generate the corresponding harmonic, transient, and noise signals. Splitting the emulation into three independently trainable models reduces the modeling tasks' complexity. The quasi-harmonic content is produced using a differentiable sinusoidal model guided by physics-derived formulas, whose parameters are automatically estimated from audio recordings. The noise sub-module uses a learnable time-varying filter, and the transients are generated using a deep convolutional network. From singular notes, we emulate the coupling between different keys in trichords with a convolutional-based network. Results show the model matches the partial distribution of the target while predicting the energy in the higher part of the spectrum presents more challenges. The energy distribution in the spectra of the transient and noise components is accurate overall. While the model is more computationally and memory efficient, perceptual tests reveal limitations in accurately modeling the attack phase of notes. Despite this, it generally achieves perceptual accuracy in emulating single notes and trichords.
☆ Aligning Machine and Human Visual Representations across Abstraction Levels
Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks. However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do, raising questions regarding the similarity of their underlying representations. What is missing for modern learning systems to exhibit more human-like behavior? We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction. To address this misalignment, we first train a teacher model to imitate human judgments, then transfer human-like structure from its representations into pretrained state-of-the-art vision foundation models. These human-aligned models more accurately approximate human behavior and uncertainty across a wide range of similarity tasks, including a new dataset of human judgments spanning multiple levels of semantic abstractions. They also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognition and more practically useful, thus paving the way toward more robust, interpretable, and human-like artificial intelligence systems.
comment: 51 pages
☆ Superior Computer Chess with Model Predictive Control, Reinforcement Learning, and Rollout
In this paper we apply model predictive control (MPC), rollout, and reinforcement learning (RL) methodologies to computer chess. We introduce a new architecture for move selection, within which available chess engines are used as components. One engine is used to provide position evaluations in an approximation in value space MPC/RL scheme, while a second engine is used as nominal opponent, to emulate or approximate the moves of the true opponent player. We show that our architecture improves substantially the performance of the position evaluation engine. In other words our architecture provides an additional layer of intelligence, on top of the intelligence of the engines on which it is based. This is true for any engine, regardless of its strength: top engines such as Stockfish and Komodo Dragon (of varying strengths), as well as weaker engines. Structurally, our basic architecture selects moves by a one-move lookahead search, with an intermediate move generated by a nominal opponent engine, and followed by a position evaluation by another chess engine. Simpler schemes that forego the use of the nominal opponent, also perform better than the position evaluator, but not quite by as much. More complex schemes, involving multistep lookahead, may also be used and generally tend to perform better as the length of the lookahead increases. Theoretically, our methodology relies on generic cost improvement properties and the superlinear convergence framework of Newton's method, which fundamentally underlies approximation in value space, and related MPC/RL and rollout/policy iteration schemes. A critical requirement of this framework is that the first lookahead step should be executed exactly. This fact has guided our architectural choices, and is apparently an important factor in improving the performance of even the best available chess engines.
☆ An Effective Context-Balanced Adaptation Approach for Long-Tailed Speech Recognition
End-to-end (E2E) automatic speech recognition (ASR) models have become standard practice for various commercial applications. However, in real-world scenarios, the long-tailed nature of word distribution often leads E2E ASR models to perform well on common words but fall short in recognizing uncommon ones. Recently, the notion of a contextual adapter (CA) was proposed to infuse external knowledge represented by a context word list into E2E ASR models. Although CA can improve recognition performance on rare words, two crucial data imbalance problems remain. First, when using low-frequency words as context words during training, since these words rarely occur in the utterance, CA becomes prone to overfit on attending to the token due to higher-frequency words not being present in the context list. Second, the long-tailed distribution within the context list itself still causes the model to perform poorly on low-frequency context words. In light of this, we explore in-depth the impact of altering the context list to have words with different frequency distributions on model performance, and meanwhile extend CA with a simple yet effective context-balanced learning objective. A series of experiments conducted on the AISHELL-1 benchmark dataset suggests that using all vocabulary words from the training corpus as the context list and pairing them with our balanced objective yields the best performance, demonstrating a significant reduction in character error rate (CER) by up to 1.21% and a more pronounced 9.44% reduction in the error rate of zero-shot words.
comment: Accepted by SLT 2024
☆ Multimodal Large Language Model Driven Scenario Testing for Autonomous Vehicles
The generation of corner cases has become increasingly crucial for efficiently testing autonomous vehicles prior to road deployment. However, existing methods struggle to accommodate diverse testing requirements and often lack the ability to generalize to unseen situations, thereby reducing the convenience and usability of the generated scenarios. A method that facilitates easily controllable scenario generation for efficient autonomous vehicles (AV) testing with realistic and challenging situations is greatly needed. To address this, we proposed OmniTester: a multimodal Large Language Model (LLM) based framework that fully leverages the extensive world knowledge and reasoning capabilities of LLMs. OmniTester is designed to generate realistic and diverse scenarios within a simulation environment, offering a robust solution for testing and evaluating AVs. In addition to prompt engineering, we employ tools from Simulation of Urban Mobility to simplify the complexity of codes generated by LLMs. Furthermore, we incorporate Retrieval-Augmented Generation and a self-improvement mechanism to enhance the LLM's understanding of scenarios, thereby increasing its ability to produce more realistic scenes. In the experiments, we demonstrated the controllability and realism of our approaches in generating three types of challenging and complex scenarios. Additionally, we showcased its effectiveness in reconstructing new scenarios described in crash report, driven by the generalization capability of LLMs.
☆ HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data
Large language models (LLMs) have shown great potential for automatic code generation and form the basis for various tools such as GitHub Copilot. However, recent studies highlight that many LLM-generated code contains serious security vulnerabilities. While previous work tries to address this by training models that generate secure code, these attempts remain constrained by limited access to training data and labor-intensive data preparation. In this paper, we introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes by automatically synthesizing secure codes, which reduces the effort of finding suitable training data. HexaCoder comprises two key components: an oracle-guided data synthesis pipeline and a two-step process for secure code generation. The data synthesis pipeline generates pairs of vulnerable and fixed codes for specific Common Weakness Enumeration (CWE) types by utilizing a state-of-the-art LLM for repairing vulnerable code. A security oracle identifies vulnerabilities, and a state-of-the-art LLM repairs them by extending and/or editing the codes, creating data pairs for fine-tuning using the Low-Rank Adaptation (LoRA) method. Each example of our fine-tuning dataset includes the necessary security-related libraries and code that form the basis of our novel two-step generation approach. This allows the model to integrate security-relevant libraries before generating the main code, significantly reducing the number of generated vulnerable codes by up to 85% compared to the baseline methods. We perform extensive evaluations on three different benchmarks for four LLMs, demonstrating that HexaCoder not only improves the security of the generated code but also maintains a high level of functional correctness.
comment: 24 pages, 16 tables, 8 figures
☆ Learning Generative Interactive Environments By Trained Agent Exploration
World models are increasingly pivotal in interpreting and simulating the rules and actions of complex environments. Genie, a recent model, excels at learning from visually diverse environments but relies on costly human-collected data. We observe that their alternative method of using random agents is too limited to explore the environment. We propose to improve the model by employing reinforcement learning based agents for data generation. This approach produces diverse datasets that enhance the model's ability to adapt and perform well across various scenarios and realistic actions within the environment. In this paper, we first release the model GenieRedux - an implementation based on Genie. Additionally, we introduce GenieRedux-G, a variant that uses the agent's readily available actions to factor out action prediction uncertainty during validation. Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability using the trained agent exploration. The proposed approach is reproducable, scalable and adaptable to new types of environments. Our codebase is available at https://github.com/insait-institute/GenieRedux .
☆ GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning
Humans can autonomously learn the relationship between sensation and motion in their own bodies, estimate and control their own body states, and move while continuously adapting to the current environment. On the other hand, current robots control their bodies by learning the network structure described by humans from their experiences, making certain assumptions on the relationship between sensors and actuators. In addition, the network model does not adapt to changes in the robot's body, the tools that are grasped, or the environment, and there is no unified theory, not only for control but also for state estimation, anomaly detection, simulation, and so on. In this study, we propose a Generalized Multisensory Correlational Model (GeMuCo), in which the robot itself acquires a body schema describing the correlation between sensors and actuators from its own experience, including model structures such as network input/output. The robot adapts to the current environment by updating this body schema model online, estimates and controls its body state, and even performs anomaly detection and simulation. We demonstrate the effectiveness of this method by applying it to tool-use considering changes in grasping state for an axis-driven robot, to joint-muscle mapping learning for a musculoskeletal robot, and to full-body tool manipulation for a low-rigidity plastic-made humanoid.
comment: Accepted at IEEE Robotics and Automation Magazine
☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explored the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also proposed and demonstrated implementations of two multi-agent architectures that can predict which test cases require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to ACM TOSEM
☆ Symmetry Breaking in Neural Network Optimization: Insights from Input Dimension Expansion
Understanding the mechanisms behind neural network optimization is crucial for improving network design and performance. While various optimization techniques have been developed, a comprehensive understanding of the underlying principles that govern these techniques remains elusive. Specifically, the role of symmetry breaking, a fundamental concept in physics, has not been fully explored in neural network optimization. This gap in knowledge limits our ability to design networks that are both efficient and effective. Here, we propose the symmetry breaking hypothesis to elucidate the significance of symmetry breaking in enhancing neural network optimization. We demonstrate that a simple input expansion can significantly improve network performance across various tasks, and we show that this improvement can be attributed to the underlying symmetry breaking mechanism. We further develop a metric to quantify the degree of symmetry breaking in neural networks, providing a practical approach to evaluate and guide network design. Our findings confirm that symmetry breaking is a fundamental principle that underpins various optimization techniques, including dropout, batch normalization, and equivariance. By quantifying the degree of symmetry breaking, our work offers a practical technique for performance enhancement and a metric to guide network design without the need for complete datasets and extensive training processes.
comment: 29 pages, 8 figures
☆ Distilling Generative-Discriminative Representations for Very Low-Resolution Face Recognition
Very low-resolution face recognition is challenging due to the serious loss of informative facial details in resolution degradation. In this paper, we propose a generative-discriminative representation distillation approach that combines generative representation with cross-resolution aligned knowledge distillation. This approach facilitates very low-resolution face recognition by jointly distilling generative and discriminative models via two distillation modules. Firstly, the generative representation distillation takes the encoder of a diffusion model pretrained for face super-resolution as the generative teacher to supervise the learning of the student backbone via feature regression, and then freezes the student backbone. After that, the discriminative representation distillation further considers a pretrained face recognizer as the discriminative teacher to supervise the learning of the student head via cross-resolution relational contrastive distillation. In this way, the general backbone representation can be transformed into discriminative head representation, leading to a robust and discriminative student model for very low-resolution face recognition. Our approach improves the recovery of the missing details in very low-resolution faces and achieves better knowledge transfer. Extensive experiments on face datasets demonstrate that our approach enhances the recognition accuracy of very low-resolution faces, showcasing its effectiveness and adaptability.
☆ Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
☆ Connecting Concept Convexity and Human-Machine Alignment in Deep Neural Networks
Understanding how neural networks align with human cognitive processes is a crucial step toward developing more interpretable and reliable AI systems. Motivated by theories of human cognition, this study examines the relationship between \emph{convexity} in neural network representations and \emph{human-machine alignment} based on behavioral data. We identify a correlation between these two dimensions in pretrained and fine-tuned vision transformer models. Our findings suggest that the convex regions formed in latent spaces of neural networks to some extent align with human-defined categories and reflect the similarity relations humans use in cognitive tasks. While optimizing for alignment generally enhances convexity, increasing convexity through fine-tuning yields inconsistent effects on alignment, which suggests a complex relationship between the two. This study presents a first step toward understanding the relationship between the convexity of latent representations and human-machine alignment.
comment: First two authors contributed equally
☆ MAGDA: Multi-agent guideline-driven diagnostic assistance
In emergency departments, rural hospitals, or clinics in less developed regions, clinicians often lack fast image analysis by trained radiologists, which can have a detrimental effect on patients' healthcare. Large Language Models (LLMs) have the potential to alleviate some pressure from these clinicians by providing insights that can help them in their decision-making. While these LLMs achieve high test results on medical exams showcasing their great theoretical medical knowledge, they tend not to follow medical guidelines. In this work, we introduce a new approach for zero-shot guideline-driven decision support. We model a system of multiple LLM agents augmented with a contrastive vision-language model that collaborate to reach a patient diagnosis. After providing the agents with simple diagnostic guidelines, they will synthesize prompts and screen the image for findings following these guidelines. Finally, they provide understandable chain-of-thought reasoning for their diagnosis, which is then self-refined to consider inter-dependencies between diseases. As our method is zero-shot, it is adaptable to settings with rare diseases, where training data is limited, but expert-crafted disease descriptions are available. We evaluate our method on two chest X-ray datasets, CheXpert and ChestX-ray 14 Longtail, showcasing performance improvement over existing zero-shot methods and generalizability to rare diseases.
☆ VoiceWukong: Benchmarking Deepfake Voice Detection
With the rapid advancement of technologies like text-to-speech (TTS) and voice conversion (VC), detecting deepfake voices has become increasingly crucial. However, both academia and industry lack a comprehensive and intuitive benchmark for evaluating detectors. Existing datasets are limited in language diversity and lack many manipulations encountered in real-world production environments. To fill this gap, we propose VoiceWukong, a benchmark designed to evaluate the performance of deepfake voice detectors. To build the dataset, we first collected deepfake voices generated by 19 advanced and widely recognized commercial tools and 15 open-source tools. We then created 38 data variants covering six types of manipulations, constructing the evaluation dataset for deepfake voice detection. VoiceWukong thus includes 265,200 English and 148,200 Chinese deepfake voice samples. Using VoiceWukong, we evaluated 12 state-of-the-art detectors. AASIST2 achieved the best equal error rate (EER) of 13.50%, while all others exceeded 20%. Our findings reveal that these detectors face significant challenges in real-world applications, with dramatically declining performance. In addition, we conducted a user study with more than 300 participants. The results are compared with the performance of the 12 detectors and a multimodel large language model (MLLM), i.e., Qwen2-Audio, where different detectors and humans exhibit varying identification capabilities for deepfake voices at different deception levels, while the LALM demonstrates no detection ability at all. Furthermore, we provide a leaderboard for deepfake voice detection, publicly available at {https://voicewukong.github.io}.
☆ Compute-Update Federated Learning: A Lattice Coding Approach
This paper introduces a federated learning framework that enables over-the-air computation via digital communications, using a new joint source-channel coding scheme. Without relying on channel state information at devices, this scheme employs lattice codes to both quantize model parameters and exploit interference from the devices. We propose a novel receiver structure at the server, designed to reliably decode an integer combination of the quantized model parameters as a lattice point for the purpose of aggregation. We present a mathematical approach to derive a convergence bound for the proposed scheme and offer design remarks. In this context, we suggest an aggregation metric and a corresponding algorithm to determine effective integer coefficients for the aggregation in each communication round. Our results illustrate that, regardless of channel dynamics and data heterogeneity, our scheme consistently delivers superior learning accuracy across various parameters and markedly surpasses other over-the-air methodologies.
comment: Extended version of the preprint available at arXiv:2403.01023
☆ Towards Agentic AI on Particle Accelerators NeurIPS
As particle accelerators grow in complexity, traditional control methods face increasing challenges in achieving optimal performance. This paper envisions a paradigm shift: a decentralized multi-agent framework for accelerator control, powered by Large Language Models (LLMs) and distributed among autonomous agents. We present a proposition of a self-improving decentralized system where intelligent agents handle high-level tasks and communication and each agent is specialized control individual accelerator components. This approach raises some questions: What are the future applications of AI in particle accelerators? How can we implement an autonomous complex system such as a particle accelerator where agents gradually improve through experience and human feedback? What are the implications of integrating a human-in-the-loop component for labeling operational data and providing expert guidance? We show two examples, where we demonstrate viability of such architecture.
comment: 4 pages, 3 figures, Machine Learning and the Physical Sciences at Workshop at the 38th conference on Neural Information Processing Systems (NeurIPS)
☆ LAMP: Learnable Meta-Path Guided Adversarial Contrastive Learning for Heterogeneous Graphs
Heterogeneous graph neural networks (HGNNs) have significantly propelled the information retrieval (IR) field. Still, the effectiveness of HGNNs heavily relies on high-quality labels, which are often expensive to acquire. This challenge has shifted attention towards Heterogeneous Graph Contrastive Learning (HGCL), which usually requires pre-defined meta-paths. However, our findings reveal that meta-path combinations significantly affect performance in unsupervised settings, an aspect often overlooked in current literature. Existing HGCL methods have considerable variability in outcomes across different meta-path combinations, thereby challenging the optimization process to achieve consistent and high performance. In response, we introduce \textsf{LAMP} (\underline{\textbf{L}}earn\underline{\textbf{A}}ble \underline{\textbf{M}}eta-\underline{\textbf{P}}ath), a novel adversarial contrastive learning approach that integrates various meta-path sub-graphs into a unified and stable structure, leveraging the overlap among these sub-graphs. To address the denseness of this integrated sub-graph, we propose an adversarial training strategy for edge pruning, maintaining sparsity to enhance model performance and robustness. \textsf{LAMP} aims to maximize the difference between meta-path and network schema views for guiding contrastive learning to capture the most meaningful information. Our extensive experimental study conducted on four diverse datasets from the Heterogeneous Graph Benchmark (HGB) demonstrates that \textsf{LAMP} significantly outperforms existing state-of-the-art unsupervised models in terms of accuracy and robustness.
comment: 19 pages, 7 figures
☆ PharmacoMatch: Efficient 3D Pharmacophore Screening through Neural Subgraph Matching
The increasing size of screening libraries poses a significant challenge for the development of virtual screening methods for drug discovery, necessitating a re-evaluation of traditional approaches in the era of big data. Although 3D pharmacophore screening remains a prevalent technique, its application to very large datasets is limited by the computational cost associated with matching query pharmacophores to database ligands. In this study, we introduce PharmacoMatch, a novel contrastive learning approach based on neural subgraph matching. Our method reinterprets pharmacophore screening as an approximate subgraph matching problem and enables efficient querying of conformational databases by encoding query-target relationships in the embedding space. We conduct comprehensive evaluations of the learned representations and benchmark our method on virtual screening datasets in a zero-shot setting. Our findings demonstrate significantly shorter runtimes for pharmacophore matching, offering a promising speed-up for screening very large datasets.
☆ An End-to-End Approach for Chord-Conditioned Song Generation
The Song Generation task aims to synthesize music composed of vocals and accompaniment from given lyrics. While the existing method, Jukebox, has explored this task, its constrained control over the generations often leads to deficiency in music performance. To mitigate the issue, we introduce an important concept from music composition, namely chords, to song generation networks. Chords form the foundation of accompaniment and provide vocal melody with associated harmony. Given the inaccuracy of automatic chord extractors, we devise a robust cross-attention mechanism augmented with dynamic weight sequence to integrate extracted chord information into song generations and reduce frame-level flaws, and propose a novel model termed Chord-Conditioned Song Generator (CSG) based on it. Experimental evidence demonstrates our proposed method outperforms other approaches in terms of musical performance and control precision of generated songs.
☆ Enhancing Long Video Understanding via Hierarchical Event-Based Memory
Recently, integrating visual foundation models into large language models (LLMs) to form video understanding systems has attracted widespread attention. Most of the existing models compress diverse semantic information within the whole video and feed it into LLMs for content comprehension. While this method excels in short video understanding, it may result in a blend of multiple event information in long videos due to coarse compression, which causes information redundancy. Consequently, the semantics of key events might be obscured within the vast information that hinders the model's understanding capabilities. To address this issue, we propose a Hierarchical Event-based Memory-enhanced LLM (HEM-LLM) for better understanding of long videos. Firstly, we design a novel adaptive sequence segmentation scheme to divide multiple events within long videos. In this way, we can perform individual memory modeling for each event to establish intra-event contextual connections, thereby reducing information redundancy. Secondly, while modeling current event, we compress and inject the information of the previous event to enhance the long-term inter-event dependencies in videos. Finally, we perform extensive experiments on various video understanding tasks and the results show that our model achieves state-of-the-art performances.
☆ User Preferences for Large Language Model versus Template-Based Explanations of Movie Recommendations: A Pilot Study
Recommender systems have become integral to our digital experiences, from online shopping to streaming platforms. Still, the rationale behind their suggestions often remains opaque to users. While some systems employ a graph-based approach, offering inherent explainability through paths associating recommended items and seed items, non-experts could not easily understand these explanations. A popular alternative is to convert graph-based explanations into textual ones using a template and an algorithm, which we denote here as ''template-based'' explanations. Yet, these can sometimes come across as impersonal or uninspiring. A novel method would be to employ large language models (LLMs) for this purpose, which we denote as ''LLM-based''. To assess the effectiveness of LLMs in generating more resonant explanations, we conducted a pilot study with 25 participants. They were presented with three explanations: (1) traditional template-based, (2) LLM-based rephrasing of the template output, and (3) purely LLM-based explanations derived from the graph-based explanations. Although subject to high variance, preliminary findings suggest that LLM-based explanations may provide a richer and more engaging user experience, further aligning with user expectations. This study sheds light on the potential limitations of current explanation methods and offers promising directions for leveraging large language models to improve user satisfaction and trust in recommender systems.
comment: Presented to the Dutch-Belgian Workshop on Recommender Systems 2023 (14-15 December, 2023 - Antwerp, Belgium)
☆ Catch Me if You Can: Detecting Unauthorized Data Use in Deep Learning Models
The rise of deep learning (DL) has led to a surging demand for training data, which incentivizes the creators of DL models to trawl through the Internet for training materials. Meanwhile, users often have limited control over whether their data (e.g., facial images) are used to train DL models without their consent, which has engendered pressing concerns. This work proposes MembershipTracker, a practical data provenance tool that can empower ordinary users to take agency in detecting the unauthorized use of their data in training DL models. We view tracing data provenance through the lens of membership inference (MI). MembershipTracker consists of a lightweight data marking component to mark the target data with small and targeted changes, which can be strongly memorized by the model trained on them; and a specialized MI-based verification process to audit whether the model exhibits strong memorization on the target samples. Overall, MembershipTracker only requires the users to mark a small fraction of data (0.005% to 0.1% in proportion to the training set), and it enables the users to reliably detect the unauthorized use of their data (average 0% FPR@100% TPR). We show that MembershipTracker is highly effective across various settings, including industry-scale training on the full-size ImageNet-1k dataset. We finally evaluate MembershipTracker under multiple classes of countermeasures.
☆ Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Handling incomplete data in multi-view classification is challenging, especially when traditional imputation methods introduce biases that compromise uncertainty estimation. Existing Evidential Deep Learning (EDL) based approaches attempt to address these issues, but they often struggle with conflicting evidence due to the limitations of the Dempster-Shafer combination rule, leading to unreliable decisions. To address these challenges, we propose the Alternating Progressive Learning Network (APLN), specifically designed to enhance EDL-based methods in incomplete MVC scenarios. Our approach mitigates bias from corrupted observed data by first applying coarse imputation, followed by mapping the data to a latent space. In this latent space, we progressively learn an evidence distribution aligned with the target domain, incorporating uncertainty considerations through EDL. Additionally, we introduce a conflict-aware Dempster-Shafer combination rule (DSCR) to better handle conflicting evidence. By sampling from the learned distribution, we optimize the latent representations of missing views, reducing bias and enhancing decision-making robustness. Extensive experiments demonstrate that APLN, combined with DSCR, significantly outperforms traditional methods, particularly in environments characterized by high uncertainty and conflicting evidence, establishing it as a promising solution for incomplete multi-view classification.
comment: Ongoing work: 9 pages, 6 figures, 2 tables
☆ Keyword-Aware ASR Error Augmentation for Robust Dialogue State Tracking
Dialogue State Tracking (DST) is a key part of task-oriented dialogue systems, identifying important information in conversations. However, its accuracy drops significantly in spoken dialogue environments due to named entity errors from Automatic Speech Recognition (ASR) systems. We introduce a simple yet effective data augmentation method that targets those entities to improve the robustness of DST model. Our novel method can control the placement of errors using keyword-highlighted prompts while introducing phonetically similar errors. As a result, our method generated sufficient error patterns on keywords, leading to improved accuracy in noised and low-accuracy ASR environments.
☆ DiPT: Enhancing LLM reasoning through diversified perspective-taking
Existing work on improving language model reasoning typically explores a single solution path, which can be prone to errors. Inspired by perspective-taking in social studies, this paper introduces DiPT, a novel approach that complements current reasoning methods by explicitly incorporating diversified viewpoints. This approach allows the model to gain a deeper understanding of the problem's context and identify the most effective solution path during the inference stage. Additionally, it provides a general data-centric AI recipe for augmenting existing data to improve their quality for fine-tuning. Our empirical results demonstrate that DiPT can be flexibly integrated into existing methods that focus on a single reasoning approach, enhancing their reasoning performance and stability when presented with paraphrased problems. Furthermore, we illustrate improved context understanding by maintaining the model's safe outputs against "jailbreaking" prompts intentionally designed to bypass safeguards built into deployed models. Lastly, we show that fine-tuning with data enriched with diverse perspectives can boost the reasoning capabilities of the model compared to fine-tuning with raw data alone.
comment: LLM Reasoning with Perspectives, Preprint
☆ CerviXpert: A Multi-Structural Convolutional Neural Network for Predicting Cervix Type and Cervical Cell Abnormalities
Cervical cancer affects millions of women worldwide and has a significantly higher survival rate when diagnosed early. Pap smears and cervical biopsies are vital screening tools for detecting such cancer. However, the success of these screening processes depends on the skills of cytologists. A recent trend in diagnostic cytology is to apply machine-learning-based models to classify cancer using cell images. These automated models have been shown to perform just as well as, or even better than, expert cytologists. Some notable methods for classifying cervix cancers include ResNet50, VGG16, MobileNetV2, and InceptionV3, based on deep convolutional neural networks (CNN). However, these methods are computationally expensive. We present CerviXpert, a multi-structural Convolutional Neural Network, to identify cervix cancer. We perform extensive experiments on a publicly available dataset, SiPaKMeD, to show the efficacy of our method. CerviXpert presents a promising solution for efficient cervical cancer screening and diagnosis by striking a balance between accuracy and practical feasibility.
☆ Towards Generalizable Scene Change Detection
Scene Change Detection (SCD) is vital for applications such as visual surveillance and mobile robotics. However, current SCD methods exhibit a bias to the temporal order of training datasets and limited performance on unseen domains; coventional SCD benchmarks are not able to evaluate generalization or temporal consistency. To tackle these limitations, we introduce a Generalizable Scene Change Detection Framework (GeSCF) in this work. The proposed GeSCF leverages localized semantics of a foundation model without any re-training or fine-tuning -- for generalization over unseen domains. Specifically, we design an adaptive thresholding of the similarity distribution derived from facets of the pre-trained foundation model to generate initial pseudo-change mask. We further utilize Segment Anything Model's (SAM) class-agnostic masks to refine pseudo-masks. Moreover, our proposed framework maintains commutative operations in all settings to ensure complete temporal consistency. Finally, we define new metrics, evaluation dataset, and evaluation protocol for Generalizable Scene Change Detection (GeSCD). Extensive experiments demonstrate that GeSCF excels across diverse and challenging environments -- establishing a new benchmark for SCD performance.
comment: 7 pages, 5 figures
☆ Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis
Survival analysis holds a crucial role across diverse disciplines, such as economics, engineering and healthcare. It empowers researchers to analyze both time-invariant and time-varying data, encompassing phenomena like customer churn, material degradation and various medical outcomes. Given the complexity and heterogeneity of such data, recent endeavors have demonstrated successful integration of deep learning methodologies to address limitations in conventional statistical approaches. However, current methods typically involve cluttered probability distribution function (PDF), have lower sensitivity in censoring prediction, only model static datasets, or only rely on recurrent neural networks for dynamic modelling. In this paper, we propose a novel survival regression method capable of producing high-quality unimodal PDFs without any prior distribution assumption, by optimizing novel Margin-Mean-Variance loss and leveraging the flexibility of Transformer to handle both temporal and non-temporal data, coined UniSurv. Extensive experiments on several datasets demonstrate that UniSurv places a significantly higher emphasis on censoring compared to other methods.
☆ NOVI : Chatbot System for University Novice with BERT and LLMs
To mitigate the difficulties of university freshmen in adapting to university life, we developed NOVI, a chatbot system based on GPT-4o. This system utilizes post and comment data from SKKU 'Everytime', a university community site. Developed using LangChain, NOVI's performance has been evaluated with a BLEU score, Perplexity score, ROUGE-1 score, ROUGE-2 score, ROUGE-L score and METEOR score. This approach is not only limited to help university freshmen but is also expected to help various people adapting to new environments with different data. This research explores the development and potential application of new educational technology tools, contributing to easier social adaptation for beginners and settling a foundation for future advancement in LLM studies.
☆ Can Large Language Models Unlock Novel Scientific Research Ideas?
"An idea is nothing more nor less than a new combination of old elements" (Young, J.W.). The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study explores the capability of LLMs in generating novel research ideas based on information from research papers. We conduct a thorough examination of 4 LLMs in five domains (e.g., Chemistry, Computer, Economics, Medical, and Physics). We found that the future research ideas generated by Claude-2 and GPT-4 are more aligned with the author's perspective than GPT-3.5 and Gemini. We also found that Claude-2 generates more diverse future research ideas than GPT-4, GPT-3.5, and Gemini 1.0. We further performed a human evaluation of the novelty, relevancy, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available.
comment: 24 pages, 12 figures, 6 tables
☆ Larger Language Models Don't Care How You Think: Why Chain-of-Thought Prompting Fails in Subjective Tasks
In-Context Learning (ICL) in Large Language Models (LLM) has emerged as the dominant technique for performing natural language tasks, as it does not require updating the model parameters with gradient-based methods. ICL promises to "adapt" the LLM to perform the present task at a competitive or state-of-the-art level at a fraction of the computational cost. ICL can be augmented by incorporating the reasoning process to arrive at the final label explicitly in the prompt, a technique called Chain-of-Thought (CoT) prompting. However, recent work has found that ICL relies mostly on the retrieval of task priors and less so on "learning" to perform tasks, especially for complex subjective domains like emotion and morality, where priors ossify posterior predictions. In this work, we examine whether "enabling" reasoning also creates the same behavior in LLMs, wherein the format of CoT retrieves reasoning priors that remain relatively unchanged despite the evidence in the prompt. We find that, surprisingly, CoT indeed suffers from the same posterior collapse as ICL for larger language models. Code is avalaible at https://github.com/gchochla/cot-priors.
comment: 5 pages, 2 figures, 1 table
☆ MCDGLN: Masked Connection-based Dynamic Graph Learning Network for Autism Spectrum Disorder
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by complex physiological processes. Previous research has predominantly focused on static cerebral interactions, often neglecting the brain's dynamic nature and the challenges posed by network noise. To address these gaps, we introduce the Masked Connection-based Dynamic Graph Learning Network (MCDGLN). Our approach first segments BOLD signals using sliding temporal windows to capture dynamic brain characteristics. We then employ a specialized weighted edge aggregation (WEA) module, which uses the cross convolution with channel-wise element-wise convolutional kernel, to integrate dynamic functional connectivity and to isolating task-relevant connections. This is followed by topological feature extraction via a hierarchical graph convolutional network (HGCN), with key attributes highlighted by a self-attention module. Crucially, we refine static functional connections using a customized task-specific mask, reducing noise and pruning irrelevant links. The attention-based connection encoder (ACE) then enhances critical connections and compresses static features. The combined features are subsequently used for classification. Applied to the Autism Brain Imaging Data Exchange I (ABIDE I) dataset, our framework achieves a 73.3\% classification accuracy between ASD and Typical Control (TC) groups among 1,035 subjects. The pivotal roles of WEA and ACE in refining connectivity and enhancing classification accuracy underscore their importance in capturing ASD-specific features, offering new insights into the disorder.
comment: 8 pages, 7 figures
☆ Multiclass Arrhythmia Classification using Smartwatch Photoplethysmography Signals Collected in Real-life Settings
Most deep learning models of multiclass arrhythmia classification are tested on fingertip photoplethysmographic (PPG) data, which has higher signal-to-noise ratios compared to smartwatch-derived PPG, and the best reported sensitivity value for premature atrial/ventricular contraction (PAC/PVC) detection is only 75%. To improve upon PAC/PVC detection sensitivity while maintaining high AF detection, we use multi-modal data which incorporates 1D PPG, accelerometers, and heart rate data as the inputs to a computationally efficient 1D bi-directional Gated Recurrent Unit (1D-Bi-GRU) model to detect three arrhythmia classes. We used motion-artifact prone smartwatch PPG data from the NIH-funded Pulsewatch clinical trial. Our multimodal model tested on 72 subjects achieved an unprecedented 83% sensitivity for PAC/PVC detection while maintaining a high accuracy of 97.31% for AF detection. These results outperformed the best state-of-the-art model by 20.81% for PAC/PVC and 2.55% for AF detection even while our model was computationally more efficient (14 times lighter and 2.7 faster).
Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience. Video-to-Audio (V2A), as a particular type of automatic foley task, presents inherent challenges related to audio-visual synchronization. These challenges encompass maintaining the content consistency between the input video and the generated audio, as well as the alignment of temporal and loudness properties within the video. To address these issues, we construct a controllable video-to-audio synthesis model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals. To ensure content consistency between the synthesized audio and target video, we introduce the Mask-Attention Module (MAM), which employs masked video instruction to enable the model to focus on regions of interest. Additionally, we implement the Time-Loudness Module (TLM), which uses an auxiliary loudness signal to ensure the synthesis of sound that aligns with the video in both loudness and temporal dimensions. Furthermore, we have extended a large-scale V2A dataset, named VGGSound-Caption, by annotating caption prompts. Extensive experiments on challenging benchmarks across two large-scale V2A datasets verify Draw an Audio achieves the state-of-the-art. Project page: https://yannqi.github.io/Draw-an-Audio/.
comment: 14 pages, 11 figures
☆ Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
Large Language Model (LLM) pretraining traditionally relies on autoregressive language modeling on randomly sampled data blocks from web-scale datasets. We take inspiration from human learning techniques like spaced repetition to hypothesize that random data sampling for LLMs leads to high training cost and low quality models which tend to forget data. In order to effectively commit web-scale information to long-term memory, we propose the LFR (Learn, Focus, and Review) pedagogy, a new dynamic training paradigm which focuses and repeatedly reviews complex data blocks at systematic intervals based on the model's learning pace and progress. LFR records the model perplexities for different data blocks and frequently revisits blocks with higher perplexity which are more likely to be forgotten. We pretrain the GPT-2 models (124M - 1.5B) from scratch on the OpenWebText dataset using LFR. We test on downstream tasks from the language modeling, question answering, translation, and problem solving domains to achieve consistently lower perplexity and higher accuracy than the baseline OpenAI models, while obtaining a 20x pretraining speed-up.
☆ On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security. Model watermarking is a powerful technique for protecting ownership of machine learning models, yet its reliability has been recently challenged by recent watermark removal attacks. In this work, we investigate why existing watermark embedding techniques particularly those based on backdooring are vulnerable. Through an information-theoretic analysis, we show that the resilience of watermarking against erasure attacks hinges on the choice of trigger-set samples, where current uses of out-distribution trigger-set are inherently vulnerable to white-box adversaries. Based on this discovery, we propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method. To further minimise the gap to clean models, we analyze the role of logits as watermark information carriers and propose a new approach to better conceal watermark information within the logits. Experiments on real-world datasets including CIFAR-100 and Caltech-101 demonstrate that our method robustly defends against various adversaries with negligible accuracy loss (< 0.1%).
☆ Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio Frequency Heating in Fusion Energy Science
This work presents a detailed case study on using Generative AI (GenAI) to develop AI surrogates for simulation models in fusion energy research. The scope includes the methodology, implementation, and results of using GenAI to assist in model development and optimization, comparing these results with previous manually developed models.
☆ Interactive Counterfactual Exploration of Algorithmic Harms in Recommender Systems
Recommender systems have become integral to digital experiences, shaping user interactions and preferences across various platforms. Despite their widespread use, these systems often suffer from algorithmic biases that can lead to unfair and unsatisfactory user experiences. This study introduces an interactive tool designed to help users comprehend and explore the impacts of algorithmic harms in recommender systems. By leveraging visualizations, counterfactual explanations, and interactive modules, the tool allows users to investigate how biases such as miscalibration, stereotypes, and filter bubbles affect their recommendations. Informed by in-depth user interviews, this tool benefits both general users and researchers by increasing transparency and offering personalized impact assessments, ultimately fostering a better understanding of algorithmic biases and contributing to more equitable recommendation outcomes. This work provides valuable insights for future research and practical applications in mitigating bias and enhancing fairness in machine learning algorithms.
☆ A Bayesian framework for active object recognition, pose estimation and shape transfer learning through touch
As humans can explore and understand the world through the sense of touch, tactile sensing is also an important aspect of robotic perception. In unstructured environments, robots can encounter both known and novel objects, this calls for a method to address both known and novel objects. In this study, we combine a particle filter (PF) and Gaussian process implicit surface (GPIS) in a unified Bayesian framework. The framework can differentiate between known and novel objects, perform object recognition, estimate pose for known objects, and reconstruct shapes for unknown objects, in an active learning fashion. By grounding the selection of the GPIS prior with the maximum-likelihood-estimation (MLE) shape from the PF, the knowledge about known objects' shapes can be transferred to learn novel shapes. An exploration procedure with global shape estimation is proposed to guide active data acquisition and conclude the exploration when sufficient information is obtained. The performance of the proposed Bayesian framework is evaluated through simulations on known and novel objects, initialized with random poses and is compared with a rapidly explore random tree (RRT).The results show that the proposed exploration procedure, utilizing global shape estimation, achieves faster exploration than the RRT-based local exploration procedure. Overall, results indicate that the proposed framework is effective and efficient in object recognition, pose estimation and shape reconstruction. Moreover, we show that a learned shape can be included as a new prior and used effectively for future object recognition and pose estimation of novel objects.
☆ Applied Federated Model Personalisation in the Industrial Domain: A Comparative Study
The time-consuming nature of training and deploying complicated Machine and Deep Learning (DL) models for a variety of applications continues to pose significant challenges in the field of Machine Learning (ML). These challenges are particularly pronounced in the federated domain, where optimizing models for individual nodes poses significant difficulty. Many methods have been developed to tackle this problem, aiming to reduce training expenses and time while maintaining efficient optimisation. Three suggested strategies to tackle this challenge include Active Learning, Knowledge Distillation, and Local Memorization. These methods enable the adoption of smaller models that require fewer computational resources and allow for model personalization with local insights, thereby improving the effectiveness of current models. The present study delves into the fundamental principles of these three approaches and proposes an advanced Federated Learning System that utilises different Personalisation methods towards improving the accuracy of AI models and enhancing user experience in real-time NG-IoT applications, investigating the efficacy of these techniques in the local and federated domain. The results of the original and optimised models are then compared in both local and federated contexts using a comparison analysis. The post-analysis shows encouraging outcomes when it comes to optimising and personalising the models with the suggested techniques.
☆ Formative Study for AI-assisted Data Visualization
This formative study investigates the impact of data quality on AI-assisted data visualizations, focusing on how uncleaned datasets influence the outcomes of these tools. By generating visualizations from datasets with inherent quality issues, the research aims to identify and categorize the specific visualization problems that arise. The study further explores potential methods and tools to address these visualization challenges efficiently and effectively. Although tool development has not yet been undertaken, the findings emphasize enhancing AI visualization tools to handle flawed data better. This research underscores the critical need for more robust, user-friendly solutions that facilitate quicker and easier correction of data and visualization errors, thereby improving the overall reliability and usability of AI-assisted data visualization processes.
☆ A Dataset for Evaluating LLM-based Evaluation Functions for Research Question Extraction Task
The progress in text summarization techniques has been remarkable. However the task of accurately extracting and summarizing necessary information from highly specialized documents such as research papers has not been sufficiently investigated. We are focusing on the task of extracting research questions (RQ) from research papers and construct a new dataset consisting of machine learning papers, RQ extracted from these papers by GPT-4, and human evaluations of the extracted RQ from multiple perspectives. Using this dataset, we systematically compared recently proposed LLM-based evaluation functions for summarizations, and found that none of the functions showed sufficiently high correlations with human evaluations. We expect our dataset provides a foundation for further research on developing better evaluation functions tailored to the RQ extraction task, and contribute to enhance the performance of the task. The dataset is available at https://github.com/auto-res/PaperRQ-HumanAnno-Dataset.
☆ NSP: A Neuro-Symbolic Natural Language Navigational Planner
Path planners that can interpret free-form natural language instructions hold promise to automate a wide range of robotics applications. These planners simplify user interactions and enable intuitive control over complex semi-autonomous systems. While existing symbolic approaches offer guarantees on the correctness and efficiency, they struggle to parse free-form natural language inputs. Conversely, neural approaches based on pre-trained Large Language Models (LLMs) can manage natural language inputs but lack performance guarantees. In this paper, we propose a neuro-symbolic framework for path planning from natural language inputs called NSP. The framework leverages the neural reasoning abilities of LLMs to i) craft symbolic representations of the environment and ii) a symbolic path planning algorithm. Next, a solution to the path planning problem is obtained by executing the algorithm on the environment representation. The framework uses a feedback loop from the symbolic execution environment to the neural generation process to self-correct syntax errors and satisfy execution time constraints. We evaluate our neuro-symbolic approach using a benchmark suite with 1500 path-planning problems. The experimental evaluation shows that our neuro-symbolic approach produces 90.1% valid paths that are on average 19-77% shorter than state-of-the-art neural approaches.
comment: 8 pages
☆ LIME-M: Less Is More for Evaluation of MLLMs
With the remarkable success achieved by Multimodal Large Language Models (MLLMs), numerous benchmarks have been designed to assess MLLMs' ability to guide their development in image perception tasks (e.g., image captioning and visual question answering). However, the existence of numerous benchmarks results in a substantial computational burden when evaluating model performance across all of them. Moreover, these benchmarks contain many overly simple problems or challenging samples, which do not effectively differentiate the capabilities among various MLLMs. To address these challenges, we propose a pipeline to process the existing benchmarks, which consists of two modules: (1) Semi-Automated Screening Process and (2) Eliminating Answer Leakage. The Semi-Automated Screening Process filters out samples that cannot distinguish the model's capabilities by synthesizing various MLLMs and manually evaluating them. The Eliminate Answer Leakage module filters samples whose answers can be inferred without images. Finally, we curate the LIME-M: Less Is More for Evaluation of Multimodal LLMs, a lightweight Multimodal benchmark that can more effectively evaluate the performance of different models. Our experiments demonstrate that: LIME-M can better distinguish the performance of different MLLMs with fewer samples (24% of the original) and reduced time (23% of the original); LIME-M eliminates answer leakage, focusing mainly on the information within images; The current automatic metric (i.e., CIDEr) is insufficient for evaluating MLLMs' capabilities in captioning. Moreover, removing the caption task score when calculating the overall score provides a more accurate reflection of model performance differences. All our codes and data are released at https://github.com/kangreen0210/LIME-M.
☆ Bifurcation Identification for Ultrasound-driven Robotic Cannulation
In trauma and critical care settings, rapid and precise intravascular access is key to patients' survival. Our research aims at ensuring this access, even when skilled medical personnel are not readily available. Vessel bifurcations are anatomical landmarks that can guide the safe placement of catheters or needles during medical procedures. Although ultrasound is advantageous in navigating anatomical landmarks in emergency scenarios due to its portability and safety, to our knowledge no existing algorithm can autonomously extract vessel bifurcations using ultrasound images. This is primarily due to the limited availability of ground truth data, in particular, data from live subjects, needed for training and validating reliable models. Researchers often resort to using data from anatomical phantoms or simulations. We introduce BIFURC, Bifurcation Identification for Ultrasound-driven Robot Cannulation, a novel algorithm that identifies vessel bifurcations and provides optimal needle insertion sites for an autonomous robotic cannulation system. BIFURC integrates expert knowledge with deep learning techniques to efficiently detect vessel bifurcations within the femoral region and can be trained on a limited amount of in-vivo data. We evaluated our algorithm using a medical phantom as well as real-world experiments involving live pigs. In all cases, BIFURC consistently identified bifurcation points and needle insertion locations in alignment with those identified by expert clinicians.
☆ Personalized Federated Learning Techniques: Empirical Analysis
Personalized Federated Learning (pFL) holds immense promise for tailoring machine learning models to individual users while preserving data privacy. However, achieving optimal performance in pFL often requires a careful balancing act between memory overhead costs and model accuracy. This paper delves into the trade-offs inherent in pFL, offering valuable insights for selecting the right algorithms for diverse real-world scenarios. We empirically evaluate ten prominent pFL techniques across various datasets and data splits, uncovering significant differences in their performance. Our study reveals interesting insights into how pFL methods that utilize personalized (local) aggregation exhibit the fastest convergence due to their efficiency in communication and computation. Conversely, fine-tuning methods face limitations in handling data heterogeneity and potential adversarial attacks while multi-objective learning methods achieve higher accuracy at the cost of additional training and resource consumption. Our study emphasizes the critical role of communication efficiency in scaling pFL, demonstrating how it can significantly affect resource usage in real-world deployments.
☆ Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI
This paper presents Adaptive Meta-Domain Transfer Learning (AMDTL), a novel methodology that combines principles of meta-learning with domain-specific adaptations to enhance the transferability of artificial intelligence models across diverse and unknown domains. AMDTL aims to address the main challenges of transfer learning, such as domain misalignment, negative transfer, and catastrophic forgetting, through a hybrid framework that emphasizes both generalization and contextual specialization. The framework integrates a meta-learner trained on a diverse distribution of tasks, adversarial training techniques for aligning domain feature distributions, and dynamic feature regulation mechanisms based on contextual domain embeddings. Experimental results on benchmark datasets demonstrate that AMDTL outperforms existing transfer learning methodologies in terms of accuracy, adaptation efficiency, and robustness. This research provides a solid theoretical and practical foundation for the application of AMDTL in various fields, opening new perspectives for the development of more adaptable and inclusive AI systems.
☆ Modeling Image Tone Dichotomy with the Power Function
The primary purpose of this paper is to present the concept of dichotomy in image illumination modeling based on the power function. In particular, we review several mathematical properties of the power function to identify the limitations and propose a new mathematical model capable of abstracting illumination dichotomy. The simplicity of the equation opens new avenues for classical and modern image analysis and processing. The article provides practical and illustrative image examples to explain how the new model manages dichotomy in image perception. The article shows dichotomy image space as a viable way to extract rich information from images despite poor contrast linked to tone, lightness, and color perception. Moreover, a comparison with state-of-the-art methods in image enhancement provides evidence of the method's value.
comment: 49 pages, 11 figures and 36 references
☆ Generative Hierarchical Materials Search
Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.
comment: https://generative-materials.github.io/
☆ Beyond designer's knowledge: Generating materials design hypotheses via large language models
Materials design often relies on human-generated hypotheses, a process inherently limited by cognitive constraints such as knowledge gaps and limited ability to integrate and extract knowledge implications, particularly when multidisciplinary expertise is required. This work demonstrates that large language models (LLMs), coupled with prompt engineering, can effectively generate non-trivial materials hypotheses by integrating scientific principles from diverse sources without explicit design guidance by human experts. These include design ideas for high-entropy alloys with superior cryogenic properties and halide solid electrolytes with enhanced ionic conductivity and formability. These design ideas have been experimentally validated in high-impact publications in 2023 not available in the LLM training data, demonstrating the LLM's ability to generate highly valuable and realizable innovative ideas not established in the literature. Our approach primarily leverages materials system charts encoding processing-structure-property relationships, enabling more effective data integration by condensing key information from numerous papers, and evaluation and categorization of numerous hypotheses for human cognition, both through the LLM. This LLM-driven approach opens the door to new avenues of artificial intelligence-driven materials discovery by accelerating design, democratizing innovation, and expanding capabilities beyond the designer's direct knowledge.
☆ Scaling Law Hypothesis for Multimodal Model
We propose a scaling law hypothesis for multimodal models processing text, audio, images, and video within a shared token and embedding space. Our framework predicts model performance based on modality-specific compression and tokenization efficiency, extending established scaling laws from text-based decoder models to mixed-modality systems. We explore whether leveraging more training data in multiple modalities can reduce the size of the multimodal model, enabling efficient deployment on resource-constrained devices.
☆ Can Agents Spontaneously Form a Society? Introducing a Novel Architecture for Generative Multi-Agents to Elicit Social Emergence
Generative agents have demonstrated impressive capabilities in specific tasks, but most of these frameworks focus on independent tasks and lack attention to social interactions. We introduce a generative agent architecture called ITCMA-S, which includes a basic framework for individual agents and a framework called LTRHA that supports social interactions among multi-agents. This architecture enables agents to identify and filter out behaviors that are detrimental to social interactions, guiding them to choose more favorable actions. We designed a sandbox environment to simulate the natural evolution of social relationships among multiple identity-less agents for experimental evaluation. The results showed that ITCMA-S performed well on multiple evaluation indicators, demonstrating its ability to actively explore the environment, recognize new agents, and acquire new information through continuous actions and dialogue. Observations show that as agents establish connections with each other, they spontaneously form cliques with internal hierarchies around a selected leader and organize collective activities.
comment: 13 pages, 8 figures
☆ EasyST: A Simple Framework for Spatio-Temporal Prediction CIKM'2024
Spatio-temporal prediction is a crucial research area in data-driven urban computing, with implications for transportation, public safety, and environmental monitoring. However, scalability and generalization challenges remain significant obstacles. Advanced models often rely on Graph Neural Networks to encode spatial and temporal correlations, but struggle with the increased complexity of large-scale datasets. The recursive GNN-based message passing schemes used in these models hinder their training and deployment in real-life urban sensing scenarios. Moreover, long-spanning large-scale spatio-temporal data introduce distribution shifts, necessitating improved generalization performance. To address these challenges, we propose a simple framework for spatio-temporal prediction - EasyST paradigm. It learns lightweight and robust Multi-Layer Perceptrons (MLPs) by effectively distilling knowledge from complex spatio-temporal GNNs. We ensure robust knowledge distillation by integrating the spatio-temporal information bottleneck with teacher-bounded regression loss, filtering out task-irrelevant noise and avoiding erroneous guidance. We further enhance the generalization ability of the student model by incorporating spatial and temporal prompts to provide downstream task contexts. Evaluation on three spatio-temporal datasets for urban computing tasks demonstrates that EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy. The implementation code is available at: https://github.com/HKUDS/EasyST.
comment: Accepted by CIKM'2024, full paper
☆ Double Successive Over-Relaxation Q-Learning with an Extension to Deep Reinforcement Learning
Q-learning is a widely used algorithm in reinforcement learning (RL), but its convergence can be slow, especially when the discount factor is close to one. Successive Over-Relaxation (SOR) Q-learning, which introduces a relaxation factor to speed up convergence, addresses this issue but has two major limitations: In the tabular setting, the relaxation parameter depends on transition probability, making it not entirely model-free, and it suffers from overestimation bias. To overcome these limitations, we propose a sample-based, model-free double SOR Q-learning algorithm. Theoretically and empirically, this algorithm is shown to be less biased than SOR Q-learning. Further, in the tabular setting, the convergence analysis under boundedness assumptions on iterates is discussed. The proposed algorithm is extended to large-scale problems using deep RL. Finally, the tabular version of the proposed algorithm is compared using roulette and grid world environments, while the deep RL version is tested on a maximization bias example and OpenAI Gym environments.
☆ Personalized Knowledge Tracing through Student Representation Reconstruction and Class Imbalance Mitigation
Knowledge tracing is a technique that predicts students' future performance by analyzing their learning process through historical interactions with intelligent educational platforms, enabling a precise evaluation of their knowledge mastery. Recent studies have achieved significant progress by leveraging powerful deep neural networks. These models construct complex input representations using questions, skills, and other auxiliary information but overlook individual student characteristics, which limits the capability for personalized assessment. Additionally, the available datasets in the field exhibit class imbalance issues. The models that simply predict all responses as correct without substantial effort can yield impressive accuracy. In this paper, we propose PKT, a novel approach for personalized knowledge tracing. PKT reconstructs representations from sequences of interactions with a tutoring platform to capture latent information about the students. Moreover, PKT incorporates focal loss to improve prioritize minority classes, thereby achieving more balanced predictions. Extensive experimental results on four publicly available educational datasets demonstrate the advanced predictive performance of PKT in comparison with 16 state-of-the-art models. To ensure the reproducibility of our research, the code is publicly available at https://anonymous.4open.science/r/PKT.
☆ ProteinBench: A Holistic Evaluation of Protein Foundation Models
Recent years have witnessed a surge in the development of protein foundation models, significantly improving performance in protein prediction and generative tasks ranging from 3D structure prediction and protein design to conformational dynamics. However, the capabilities and limitations associated with these models remain poorly understood due to the absence of a unified evaluation framework. To fill this gap, we introduce ProteinBench, a holistic evaluation framework designed to enhance the transparency of protein foundation models. Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance. Our comprehensive evaluation of protein foundation models reveals several key findings that shed light on their current capabilities and limitations. To promote transparency and facilitate further research, we release the evaluation dataset, code, and a public leaderboard publicly for further analysis and a general modular toolkit. We intend for ProteinBench to be a living benchmark for establishing a standardized, in-depth evaluation framework for protein foundation models, driving their development and application while fostering collaboration within the field.
comment: 29 pages, 1 figure and 11 tables
☆ Generative AI for Requirements Engineering: A Systematic Literature Review
Context: Generative AI (GenAI) has emerged as a transformative tool in software engineering, with requirements engineering (RE) actively exploring its potential to revolutionize processes and outcomes. The integration of GenAI into RE presents both promising opportunities and significant challenges that necessitate systematic analysis and evaluation. Objective: This paper presents a comprehensive systematic literature review (SLR) analyzing state-of-the-art applications and innovative proposals leveraging GenAI in RE. It surveys studies focusing on the utilization of GenAI to enhance RE processes while identifying key challenges and opportunities in this rapidly evolving field. Method: A rigorous SLR methodology was used to analyze 27 carefully selected primary studies in-depth. The review examined research questions pertaining to the application of GenAI across various RE phases, the models and techniques used, and the challenges encountered in implementation and adoption. Results: The most salient findings include i) a predominant focus on the early stages of RE, particularly the elicitation and analysis of requirements, indicating potential for expansion into later phases; ii) the dominance of large language models, especially the GPT series, highlighting the need for diverse AI approaches; and iii) persistent challenges in domain-specific applications and the interpretability of AI-generated outputs, underscoring areas requiring further research and development. Conclusions: The results highlight the critical need for comprehensive evaluation frameworks, improved human-AI collaboration models, and thorough consideration of ethical implications in GenAI-assisted RE. Future research should prioritize extending GenAI applications across the entire RE lifecycle, enhancing domain-specific capabilities, and developing strategies for responsible AI integration in RE practices.
♻ ☆ NeurLZ: On Enhancing Lossy Compression Performance based on Error-Controlled Neural Learning for Scientific Data
Large-scale scientific simulations generate massive datasets that pose significant challenges for storage and I/O. While traditional lossy compression techniques can improve performance, balancing compression ratio, data quality, and throughput remains difficult. To address this, we propose NeurLZ, a novel cross-field learning-based and error-controlled compression framework for scientific data. By integrating skipping DNN models, cross-field learning, and error control, our framework aims to substantially enhance lossy compression performance. Our contributions are three-fold: (1) We design a lightweight skipping model to provide high-fidelity detail retention, further improving prediction accuracy. (2) We adopt a cross-field learning approach to significantly improve data prediction accuracy, resulting in a substantially improved compression ratio. (3) We develop an error control approach to provide strict error bounds according to user requirements. We evaluated NeurLZ on several real-world HPC application datasets, including Nyx (cosmological simulation), Miranda (large turbulence simulation), and Hurricane (weather simulation). Experiments demonstrate that our framework achieves up to a 90% relative reduction in bit rate under the same data distortion, compared to the best existing approach.
♻ ☆ What Did My Car Say? Impact of Autonomous Vehicle Explanation Errors and Driving Context On Comfort, Reliance, Satisfaction, and Driving Confidence
Explanations for autonomous vehicle (AV) decisions may build trust, however, explanations can contain errors. In a simulated driving study (n = 232), we tested how AV explanation errors, driving context characteristics (perceived harm and driving difficulty), and personal traits (prior trust and expertise) affected a passenger's comfort in relying on an AV, preference for control, confidence in the AV's ability, and explanation satisfaction. Errors negatively affected all outcomes. Surprisingly, despite identical driving, explanation errors reduced ratings of the AV's driving ability. Severity and potential harm amplified the negative impact of errors. Contextual harm and driving difficulty directly impacted outcome ratings and influenced the relationship between errors and outcomes. Prior trust and expertise were positively associated with outcome ratings. Results emphasize the need for accurate, contextually adaptive, and personalized AV explanations to foster trust, reliance, satisfaction, and confidence. We conclude with design, research, and deployment recommendations for trustworthy AV explanation systems.
comment: 23 pages, 4 figures
♻ ☆ MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG's performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied.
comment: Technical Report. Codes and models are in https://github.com/qhjqhj00/MemoRAG
♻ ☆ Question-Answering Dense Video Events
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
♻ ☆ CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement
Predicting cellular responses to various perturbations is a critical focus in drug discovery and personalized therapeutics, with deep learning models playing a significant role in this endeavor. Single-cell datasets contain technical artifacts that may hinder the predictability of such models, which poses quality control issues highly regarded in this area. To address this, we propose CRADLE-VAE, a causal generative framework tailored for single-cell gene perturbation modeling, enhanced with counterfactual reasoning-based artifact disentanglement. Throughout training, CRADLE-VAE models the underlying latent distribution of technical artifacts and perturbation effects present in single-cell datasets. It employs counterfactual reasoning to effectively disentangle such artifacts by modulating the latent basal spaces and learns robust features for generating cellular response data with improved quality. Experimental results demonstrate that this approach improves not only treatment effect estimation performance but also generative quality as well. The CRADLE-VAE codebase is publicly available at https://github.com/dmis-lab/CRADLE-VAE.
♻ ☆ Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models NLPCC-2024
The development of LLMs has greatly enhanced the intelligence and fluency of question answering, while the emergence of retrieval enhancement has enabled models to better utilize external information. However, the presence of noise and errors in retrieved information poses challenges to the robustness of LLMs. In this work, to evaluate the model's performance under multiple interferences, we first construct a dataset based on machine reading comprehension datasets simulating various scenarios, including critical information absence, noise, and conflicts. To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method to enhance LLM's robustness against noise. Additionally, contrastive learning approach is utilized to preserve the model's discrimination capability of external information. We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4, which indicates that our proposed methods improve model robustness while strengthening the model's discrimination capability.
comment: This paper has been accepted by NLPCC-2024
♻ ☆ A Survey on Self-Supervised Learning for Non-Sequential Tabular Data ACML-24
Self-supervised learning (SSL) has been incorporated into many state-of-the-art models in various domains, where SSL defines pretext tasks based on unlabeled datasets to learn contextualized and robust representations. Recently, SSL has become a new trend in exploring the representation learning capability in the realm of tabular data, which is more challenging due to not having explicit relations for learning descriptive representations. This survey aims to systematically review and summarize the recent progress and challenges of SSL for non-sequential tabular data (SSL4NS-TD). We first present a formal definition of NS-TD and clarify its correlation to related studies. Then, these approaches are categorized into three groups - predictive learning, contrastive learning, and hybrid learning, with their motivations and strengths of representative methods in each direction. Moreover, application issues of SSL4NS-TD are presented, including automatic data engineering, cross-table transferability, and domain knowledge integration. In addition, we elaborate on existing benchmarks and datasets for NS-TD applications to analyze the performance of existing tabular models. Finally, we discuss the challenges of SSL4NS-TD and provide potential directions for future research. We expect our work to be useful in terms of encouraging more research on lowering the barrier to entry SSL for the tabular domain, and of improving the foundations for implicit tabular data.
comment: ACML-24 Journal Track. The paper list can be found at https://github.com/wwweiwei/awesome-self-supervised-learning-for-tabular-data
♻ ☆ Influence-based Attributions can be Manipulated
Influence Functions are a standard tool for attributing predictions to training data in a principled manner and are widely used in applications such as data valuation and fairness. In this work, we present realistic incentives to manipulate influencebased attributions and investigate whether these attributions can be systematically tampered by an adversary. We show that this is indeed possible and provide efficient attacks with backward-friendly implementations. Our work raises questions on the reliability of influence-based attributions under adversarial circumstances.
♻ ☆ Leveraging LLMs, Graphs and Object Hierarchies for Task Planning in Large-Scale Environments
Planning methods struggle with computational intractability in solving task-level problems in large-scale environments. This work explores leveraging the commonsense knowledge encoded in LLMs to empower planning techniques to deal with these complex scenarios. We achieve this by efficiently using LLMs to prune irrelevant components from the planning problem's state space, substantially simplifying its complexity. We demonstrate the efficacy of this system through extensive experiments within a household simulation environment, alongside real-world validation using a 7-DoF manipulator (video https://youtu.be/6ro2UOtOQS4).
comment: 8 pages, 6 figures
♻ ☆ System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning
Evolutionary science provides evidence that diversity confers resilience in natural systems. Yet, traditional multi-agent reinforcement learning techniques commonly enforce homogeneity to increase training sample efficiency. When a system of learning agents is not constrained to homogeneous policies, individuals may develop diverse behaviors, resulting in emergent complementarity that benefits the system. Despite this, there is a surprising lack of tools that quantify behavioral diversity. Such techniques would pave the way towards understanding the impact of diversity in collective artificial intelligence and enabling its control. In this paper, we introduce System Neural Diversity (SND): a measure of behavioral heterogeneity in multi-agent systems. We discuss and prove its theoretical properties, and compare it with alternate, state-of-the-art behavioral diversity metrics used in the robotics domain. Through simulations of a variety of cooperative multi-robot tasks, we show how our metric constitutes an important tool that enables measurement and control of behavioral heterogeneity. In dynamic tasks, where the problem is affected by repeated disturbances during training, we show that SND allows us to measure latent resilience skills acquired by the agents, while other proxies, such as task performance (reward), fail to. Finally, we show how the metric can be employed to control diversity, allowing us to enforce a desired heterogeneity set-point or range. We demonstrate how this paradigm can be used to bootstrap the exploration phase, finding optimal policies faster, thus enabling novel and more efficient MARL paradigms.
♻ ☆ NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients
Federated learning (FL) enables distributed training while preserving data privacy, but stragglers-slow or incapable clients-can significantly slow down the total training time and degrade performance. To mitigate the impact of stragglers, system heterogeneity, including heterogeneous computing and network bandwidth, has been addressed. While previous studies have addressed system heterogeneity by splitting models into submodels, they offer limited flexibility in model architecture design, without considering potential inconsistencies arising from training multiple submodel architectures. We propose nested federated learning (NeFL), a generalized framework that efficiently divides deep neural networks into submodels using both depthwise and widthwise scaling. To address the inconsistency arising from training multiple submodel architectures, NeFL decouples a subset of parameters from those being trained for each submodel. An averaging method is proposed to handle these decoupled parameters during aggregation. NeFL enables resource-constrained devices to effectively participate in the FL pipeline, facilitating larger datasets for model training. Experiments demonstrate that NeFL achieves performance gain, especially for the worst-case submodel compared to baseline approaches (7.63% improvement on CIFAR-100). Furthermore, NeFL aligns with recent advances in FL, such as leveraging pre-trained models and accounting for statistical heterogeneity. Our code is available online.
♻ ☆ DNN-Defender: A Victim-Focused In-DRAM Defense Mechanism for Taming Adversarial Weight Attack on DNNs
With deep learning deployed in many security-sensitive areas, machine learning security is becoming progressively important. Recent studies demonstrate attackers can exploit system-level techniques exploiting the RowHammer vulnerability of DRAM to deterministically and precisely flip bits in Deep Neural Networks (DNN) model weights to affect inference accuracy. The existing defense mechanisms are software-based, such as weight reconstruction requiring expensive training overhead or performance degradation. On the other hand, generic hardware-based victim-/aggressor-focused mechanisms impose expensive hardware overheads and preserve the spatial connection between victim and aggressor rows. In this paper, we present the first DRAM-based victim-focused defense mechanism tailored for quantized DNNs, named DNN-Defender that leverages the potential of in-DRAM swapping to withstand the targeted bit-flip attacks with a priority protection mechanism. Our results indicate that DNN-Defender can deliver a high level of protection downgrading the performance of targeted RowHammer attacks to a random attack level. In addition, the proposed defense has no accuracy drop on CIFAR-10 and ImageNet datasets without requiring any software training or incurring hardware overhead.
comment: 6 pages, 9 figures
♻ ☆ Exploiting Uncertainty for Querying Inconsistent Description Logics Knowledge Bases
The necessity to manage inconsistency in Description Logics Knowledge Bases (KBs) has come to the fore with the increasing importance gained by the Semantic Web, where information comes from different sources that constantly change their content and may contain contradictory descriptions when considered either alone or together. Classical reasoning algorithms do not handle inconsistent KBs, forcing the debugging of the KB in order to remove the inconsistency. In this paper, we exploit an existing probabilistic semantics called DISPONTE to overcome this problem and allow queries also in case of inconsistent KBs. We implemented our approach in the reasoners TRILL and BUNDLE and empirically tested the validity of our proposal. Moreover, we formally compare the presented approach to that of the repair semantics, one of the most established semantics when considering DL reasoning tasks.
♻ ☆ INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks
Leveraging network information for predictive modeling has become widespread in many domains. Within the realm of referral and targeted marketing, influencer detection stands out as an area that could greatly benefit from the incorporation of dynamic network representation due to the continuous evolution of customer-brand relationships. In this paper, we present INFLECT-DGNN, a new method for profit-driven INFLuencer prEdiCTion with Dynamic Graph Neural Networks that innovatively combines Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) with weighted loss functions, synthetic minority oversampling adapted to graph data, and a carefully crafted rolling-window strategy. We introduce a novel profit-driven framework that supports decision-making based on model predictions. To test the framework, we use a unique corporate dataset with diverse networks, capturing the customer interactions across three cities with different socioeconomic and demographic characteristics. Our results show how using RNNs to encode temporal attributes alongside GNNs significantly improves predictive performance, while the profit-driven framework determines the optimal classification threshold for profit maximization. We compare the results of different models to demonstrate the importance of capturing network representation, temporal dependencies, and using a profit-driven evaluation. Our research has significant implications for the fields of referral and targeted marketing, expanding the technical use of deep graph learning within corporate environments.
comment: 27 pages, 7 figures
♻ ☆ Graph Retrieval-Augmented Generation: A Survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field. In order to track recent progress in this field, we set up a repository at \url{https://github.com/pengboci/GraphRAG-Survey}.
comment: Ongoing work. Compared to the first version, several references have been added and a GitHub repository link has been provided
♻ ☆ State-of-the-art review and synthesis: A requirement-based roadmap for standardized predictive maintenance automation using digital twin technologies
Recent digital advances have popularized predictive maintenance (PMx), offering enhanced efficiency, automation, accuracy, cost savings, and independence in maintenance processes. Yet, PMx continues to face numerous limitations such as poor explainability, sample inefficiency of data-driven methods, complexity of physics-based methods, and limited generalizability and scalability of knowledge-based methods. This paper proposes leveraging Digital Twins (DTs) to address these challenges and enable automated PMx adoption on a larger scale. While DTs have the potential to be transformative, they have not yet reached the maturity needed to bridge these gaps in a standardized manner. Without a standard definition guiding this evolution, the transformation lacks a solid foundation for development. This paper provides a requirement-based roadmap to support standardized PMx automation using DT technologies. Our systematic approach comprises two primary stages. First, we methodically identify the Informational Requirements (IRs) and Functional Requirements (FRs) for PMx, which serve as a foundation from which any unified framework must emerge. Our approach to defining and using IRs and FRs as the backbone of any PMx DT is supported by the proven success of these requirements as blueprints in other areas, such as product development in the software industry. Second, we conduct a thorough literature review across various fields to assess how these IRs and FRs are currently being applied within DTs, enabling us to identify specific areas where further research is needed to support the progress and maturation of requirement-based PMx DTs.
comment: This paper has been accepted for publication in Advanced Engineering Informatics (2024)
♻ ☆ Deeper-PINNs: Element-wise Multiplication Based Physics-informed Neural Networks
As a promising framework for resolving partial differential equations (PDEs), physics-informed neural networks (PINNs) have received widespread attention from industrial and scientific fields. However, lack of expressive ability and initialization pathology issues are found to prevent the application of PINNs in complex PDEs. In this work, we propose Deeper Physics-Informed Neural Network (Deeper-PINN) to resolve these issues. The element-wise multiplication operation is adopted to transform features into high-dimensional, non-linear spaces. Benefiting from element-wise multiplication operation, Deeper-PINNs can alleviate the initialization pathologies of PINNs and enhance the expressive capability of PINNs. The proposed structure is verified on various benchmarks. The results show that Deeper-PINNs can effectively resolve the initialization pathology and exhibit strong expressive ability.
♻ ☆ Check-Eval: A Checklist-based Approach for Evaluating Text Quality
Evaluating the quality of text generated by large language models (LLMs) remains a significant challenge. Traditional metrics often fail to align well with human judgments, particularly in tasks requiring creativity and nuance. In this paper, we propose \textsc{Check-Eval}, a novel evaluation framework leveraging LLMs to assess the quality of generated text through a checklist-based approach. \textsc{Check-Eval} can be employed as both a reference-free and reference-dependent evaluation method, providing a structured and interpretable assessment of text quality. The framework consists of two main stages: checklist generation and checklist evaluation. We validate \textsc{Check-Eval} on two benchmark datasets: Portuguese Legal Semantic Textual Similarity and \textsc{SummEval}. Our results demonstrate that \textsc{Check-Eval} achieves higher correlations with human judgments compared to existing metrics, such as \textsc{G-Eval} and \textsc{GPTScore}, underscoring its potential as a more reliable and effective evaluation framework for natural language generation tasks. The code for our experiments is available at \url{https://anonymous.4open.science/r/check-eval-0DB4}
♻ ☆ SPMamba: State-space model is all you need in speech separation SP
Existing CNN-based speech separation models face local receptive field limitations and cannot effectively capture long time dependencies. Although LSTM and Transformer-based speech separation models can avoid this problem, their high complexity makes them face the challenge of computational resources and inference efficiency when dealing with long audio. To address this challenge, we introduce an innovative speech separation method called SPMamba. This model builds upon the robust TF-GridNet architecture, replacing its traditional BLSTM modules with bidirectional Mamba modules. These modules effectively model the spatiotemporal relationships between the time and frequency dimensions, allowing SPMamba to capture long-range dependencies with linear computational complexity. Specifically, the bidirectional processing within the Mamba modules enables the model to utilize both past and future contextual information, thereby enhancing separation performance. Extensive experiments conducted on public datasets, including WSJ0-2Mix, WHAM!, and Libri2Mix, as well as the newly constructed Echo2Mix dataset, demonstrated that SPMamba significantly outperformed existing state-of-the-art models, achieving superior results while also reducing computational complexity. These findings highlighted the effectiveness of SPMamba in tackling the intricate challenges of speech separation in complex environments.
comment: Technical Report. Code is available at https://github.com/JusperLee/SPMamba
♻ ☆ Extending 6D Object Pose Estimators for Stereo Vision ICPR
Estimating the 6D pose of objects accurately, quickly, and robustly remains a difficult task. However, recent methods for directly regressing poses from RGB images using dense features have achieved state-of-the-art results. Stereo vision, which provides an additional perspective on the object, can help reduce pose ambiguity and occlusion. Moreover, stereo can directly infer the distance of an object, while mono-vision requires internalized knowledge of the object's size. To extend the state-of-the-art in 6D object pose estimation to stereo, we created a BOP compatible stereo version of the YCB-V dataset. Our method outperforms state-of-the-art 6D pose estimation algorithms by utilizing stereo vision and can easily be adopted for other dense feature-based algorithms.
comment: 4th International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI)
♻ ☆ Dialogue You Can Trust: Human and AI Perspectives on Generated Conversations
As dialogue systems and chatbots increasingly integrate into everyday interactions, the need for efficient and accurate evaluation methods becomes paramount. This study explores the comparative performance of human and AI assessments across a range of dialogue scenarios, focusing on seven key performance indicators (KPIs): Coherence, Innovation, Concreteness, Goal Contribution, Commonsense Contradiction, Incorrect Fact, and Redundancy. Utilizing the GPT-4o API, we generated a diverse dataset of conversations and conducted a two-part experimental analysis. In Experiment 1, we evaluated multi-party conversations on Coherence, Innovation, Concreteness, and Goal Contribution, revealing that GPT models align closely with human judgments. Notably, both human and AI evaluators exhibited a tendency towards binary judgment rather than linear scaling, highlighting a shared challenge in these assessments. Experiment 2 extended the work of Finch et al. (2023) by focusing on dyadic dialogues and assessing Commonsense Contradiction, Incorrect Fact, and Redundancy. The results indicate that while GPT-4o demonstrates strong performance in maintaining factual accuracy and commonsense reasoning, it still struggles with reducing redundancy and self-contradiction. Our findings underscore the potential of GPT models to closely replicate human evaluation in dialogue systems, while also pointing to areas for improvement. This research offers valuable insights for advancing the development and implementation of more refined dialogue evaluation methodologies, contributing to the evolution of more effective and human-like AI communication tools.
comment: 17 pages, 15 figures
♻ ☆ Qwen2 Technical Report
This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
comment: 26 pages, 1 figure
♻ ☆ VITA: Towards Open-Source Interactive Omni Multimodal LLM
The remarkable multimodal capabilities and interactive experience of GPT-4o underscore their necessity in practical applications, yet open-source models rarely excel in both areas. In this paper, we introduce VITA, the first-ever open-source Multimodal Large Language Model (MLLM) adept at simultaneous processing and analysis of Video, Image, Text, and Audio modalities, and meanwhile has an advanced multimodal interactive experience. Starting from Mixtral 8x7B as a language foundation, we expand its Chinese vocabulary followed by bilingual instruction tuning. We further endow the language model with visual and audio capabilities through two-stage multi-task learning of multimodal alignment and instruction tuning. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. Beyond foundational capabilities, we have made considerable progress in enhancing the natural multimodal human-computer interaction experience. VITA is the first step for the open-source community to explore the seamless integration of multimodal understanding and interaction. While there is still lots of work to be done on VITA to get close to close-source counterparts, we hope that its role as a pioneer can serve as a cornerstone for subsequent research. Project Page: https://vita-home.github.io.
comment: Project Page: https://vita-home.github.io
♻ ☆ MuPT: A Generative Symbolic Music Pretrained Transformer
In this paper, we explore the application of Large Language Models (LLMs) to the pre-training of music. While the prevalent use of MIDI in music modeling is well-established, our findings suggest that LLMs are inherently more compatible with ABC Notation, which aligns more closely with their design and strengths, thereby enhancing the model's performance in musical composition. To address the challenges associated with misaligned measures from different tracks during generation, we propose the development of a Synchronized Multi-Track ABC Notation (SMT-ABC Notation), which aims to preserve coherence across multiple musical tracks. Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set. Furthermore, we explore the implications of the Symbolic Music Scaling Law (SMS Law) on model performance. The results indicate a promising direction for future research in music generation, offering extensive resources for community-led research through our open-source contributions.
♻ ☆ ADESSE: Advice Explanations in Complex Repeated Decision-Making Environments
In the evolving landscape of human-centered AI, fostering a synergistic relationship between humans and AI agents in decision-making processes stands as a paramount challenge. This work considers a problem setup where an intelligent agent comprising a neural network-based prediction component and a deep reinforcement learning component provides advice to a human decision-maker in complex repeated decision-making environments. Whether the human decision-maker would follow the agent's advice depends on their beliefs and trust in the agent and on their understanding of the advice itself. To this end, we developed an approach named ADESSE to generate explanations about the adviser agent to improve human trust and decision-making. Computational experiments on a range of environments with varying model sizes demonstrate the applicability and scalability of ADESSE. Furthermore, an interactive game-based user study shows that participants were significantly more satisfied, achieved a higher reward in the game, and took less time to select an action when presented with explanations generated by ADESSE. These findings illuminate the critical role of tailored, human-centered explanations in AI-assisted decision-making.
♻ ☆ Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust
Machine learning models play a vital role in time series forecasting. These models, however, often overlook an important element: point uncertainty estimates. Incorporating these estimates is crucial for effective risk management, informed model selection, and decision-making.To address this issue, our research introduces a method for uncertainty estimation. We employ a surrogate Gaussian process regression model. It enhances any base regression model with reasonable uncertainty estimates. This approach stands out for its computational efficiency. It only necessitates training one supplementary surrogate and avoids any data-specific assumptions. Furthermore, this method for work requires only the presence of the base model as a black box and its respective training data. The effectiveness of our approach is supported by experimental results. Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals. These techniques outperform both bootstrap-based and built-in methods in a medium-data regime. This superiority holds across a range of base model types, including a linear regression, ARIMA, gradient boosting and a neural network.
♻ ☆ Probabilistic energy forecasting through quantile regression in reproducing kernel Hilbert spaces
Accurate energy demand forecasting is crucial for sustainable and resilient energy development. To meet the Net Zero Representative Concentration Pathways (RCP) $4.5$ scenario in the DACH countries, increased renewable energy production, energy storage, and reduced commercial building consumption are needed. This scenario's success depends on hydroelectric capacity and climatic factors. Informed decisions require quantifying uncertainty in forecasts. This study explores a non-parametric method based on \emph{reproducing kernel Hilbert spaces (RKHS)}, known as kernel quantile regression, for energy prediction. Our experiments demonstrate its reliability and sharpness, and we benchmark it against state-of-the-art methods in load and price forecasting for the DACH region. We offer our implementation in conjunction with additional scripts to ensure the reproducibility of our research.
comment: 12 pages, {Owner/Author | ACM} {2024}. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record will published in https://energy.acm.org/eir
♻ ☆ How Much Data is Enough Data? Fine-Tuning Large Language Models for In-House Translation: Performance Evaluation Across Multiple Dataset Sizes
Decoder-only LLMs have shown impressive performance in MT due to their ability to learn from extensive datasets and generate high-quality translations. However, LLMs often struggle with the nuances and style required for organisation-specific translation. In this study, we explore the effectiveness of fine-tuning Large Language Models (LLMs), particularly Llama 3 8B Instruct, leveraging translation memories (TMs), as a valuable resource to enhance accuracy and efficiency. We investigate the impact of fine-tuning the Llama 3 model using TMs from a specific organisation in the software sector. Our experiments cover five translation directions across languages of varying resource levels (English to Brazilian Portuguese, Czech, German, Finnish, and Korean). We analyse diverse sizes of training datasets (1k to 207k segments) to evaluate their influence on translation quality. We fine-tune separate models for each training set and evaluate their performance based on automatic metrics, BLEU, chrF++, TER, and COMET. Our findings reveal improvement in translation performance with larger datasets across all metrics. On average, BLEU and COMET scores increase by 13 and 25 points, respectively, on the largest training set against the baseline model. Notably, there is a performance deterioration in comparison with the baseline model when fine-tuning on only 1k and 2k examples; however, we observe a substantial improvement as the training dataset size increases. The study highlights the potential of integrating TMs with LLMs to create bespoke translation models tailored to the specific needs of businesses, thus enhancing translation quality and reducing turn-around times. This approach offers a valuable insight for organisations seeking to leverage TMs and LLMs for optimal translation outcomes, especially in narrower domains.
♻ ☆ Relational Prompt-based Pre-trained Language Models for Social Event Detection
Social Event Detection (SED) aims to identify significant events from social streams, and has a wide application ranging from public opinion analysis to risk management. In recent years, Graph Neural Network (GNN) based solutions have achieved state-of-the-art performance. However, GNN-based methods often struggle with missing and noisy edges between messages, affecting the quality of learned message embedding. Moreover, these methods statically initialize node embedding before training, which, in turn, limits the ability to learn from message texts and relations simultaneously. In this paper, we approach social event detection from a new perspective based on Pre-trained Language Models (PLMs), and present RPLM_SED (Relational prompt-based Pre-trained Language Models for Social Event Detection). We first propose a new pairwise message modeling strategy to construct social messages into message pairs with multi-relational sequences. Secondly, a new multi-relational prompt-based pairwise message learning mechanism is proposed to learn more comprehensive message representation from message pairs with multi-relational prompts using PLMs. Thirdly, we design a new clustering constraint to optimize the encoding process by enhancing intra-cluster compactness and inter-cluster dispersion, making the message representation more distinguishable. We evaluate the RPLM_SED on three real-world datasets, demonstrating that the RPLM_SED model achieves state-of-the-art performance in offline, online, low-resource, and long-tail distribution scenarios for social event detection tasks.
comment: ACM TOIS
♻ ☆ Toward accessible comics for blind and low vision readers
This work explores how to fine-tune large language models using prompt engineering techniques with contextual information for generating an accurate text description of the full story, ready to be forwarded to off-the-shelve speech synthesis tools. We propose to use existing computer vision and optical character recognition techniques to build a grounded context from the comic strip image content, such as panels, characters, text, reading order and the association of bubbles and characters. Then we infer character identification and generate comic book script with context-aware panel description including character's appearance, posture, mood, dialogues etc. We believe that such enriched content description can be easily used to produce audiobook and eBook with various voices for characters, captions and playing sound effects.
comment: Accepted to MANPU 2024 (Athens, Greece, August 30, 2024)
♻ ☆ Machine Learning-Driven Open-Source Framework for Assessing QoE in Multimedia Networks
The Internet is integral to modern life, influencing communication, business, and lifestyles globally. As dependence on Internet services grows, the demand for high-quality service delivery increases. Service providers must maintain high standards of quality of service and quality of experience (QoE) to ensure user satisfaction. QoE, which reflects user satisfaction with service quality, is a key metric for multimedia services, yet it is challenging to measure due to its subjective nature and the complexities of real-time feedback. This paper introduces a machine learning-based framework for objectively assessing QoE in multimedia networks. The open-source framework complies with the ITU-T P.1203 standard. It automates data collection and user satisfaction prediction using key network parameters such as delay, jitter, packet loss, bitrate, and throughput. Using a dataset of over 20,000 records from various network conditions, the Random Forest model predicts the mean opinion score with 95.8% accuracy. Our framework addresses the limitations of existing QoE models by integrating real-time data collection, machine learning predictions, and adherence to international standards. This approach enhances QoE evaluation accuracy and allows dynamic network resource management, optimizing performance and cost-efficiency. Its open-source nature encourages adaptation and extension for various multimedia services. The findings significantly affect the telecommunications industry in managing and optimizing multimedia services. The network centric QoE prediction of the framework offers a scalable solution to improve user satisfaction without the need for content-specific data. Future enhancements could include advanced machine learning models and broader applicability to digital services. This research contributes a practical, standardized tool for QoE assessment across diverse networks and platforms.
comment: 11 pages, 6 figures
♻ ☆ Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
The challenge of imbalanced soil nutrient datasets significantly hampers accurate predictions of soil fertility. To tackle this, a new method is suggested in this research, combining Uniform Manifold Approximation and Projection (UMAP) with Least Absolute Shrinkage and Selection Operator (LASSO). The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision. The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset. UMAP is utilized initially to reduce data complexity, unveiling hidden structures and important patterns. Following this, LASSO is applied to refine features and enhance the model's interpretability. The experimental outcomes highlight the effectiveness of the UMAP and LASSO hybrid approach. The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%, demonstrating its capability in accurate soil fertility predictions. Additionally, it showcases a Precision of 91.25%, indicating its adeptness in identifying fertile soil instances accurately. The Recall metric stands at 90.90%, emphasizing the model's ability to capture true positive cases effectively.
comment: There is an error in the result section
♻ ☆ STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM
Spatial-temporal forecasting and imputation are important for real-world intelligent systems. Most existing methods are tailored for individual forecasting or imputation tasks but are not designed for both. Additionally, they are less effective for zero-shot and few-shot learning. While pre-trained language model (PLM) have exhibited strong pattern recognition and reasoning abilities across various tasks, including few-shot and zero-shot learning, their applications in spatial-temporal data understanding has been constrained by insufficient modeling of complex correlations such as the temporal correlations, spatial connectivity, non-pairwise and high-order spatial-temporal correlations within data. In this paper, we propose STD-PLM for understanding both spatial and temporal properties of \underline{S}patial-\underline{T}emporal \underline{D}ata with \underline{PLM}, which is capable of implementing both spatial-temporal forecasting and imputation tasks. STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers. Topology-aware node embeddings are designed for PLM to comprehend and exploit the topology structure of data in inductive manner. Furthermore, to mitigate the efficiency issues introduced by the PLM, we design a sandglass attention module (SGA) combined with a specific constrained loss function, which significantly improves the model's efficiency while ensuring performance. Extensive experiments demonstrate that STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks on various datasets. Moreover, STD-PLM achieves promising results on both few-shot and zero-shot tasks.The code is made available at \href{https://anonymous.4open.science/r/STD-PLM-F3BA}{https://anonymous.4open.science/r/STD-PLM-F3BA}
♻ ☆ vTrain: A Simulation Framework for Evaluating Cost-effective and Compute-optimal Large Language Model Training
As large language models (LLMs) become widespread in various application domains, a critical challenge the AI community is facing is how to train these large AI models in a cost-effective manner. Existing LLM training plans typically employ a heuristic based parallel training strategy which is based on empirical observations rather than grounded upon a thorough examination of the search space of LLM parallelization. Such limitation renders existing systems to leave significant performance left on the table, wasting millions of dollars worth of training cost. This paper presents our profiling-driven simulator called vTrain, providing AI practitioners a fast yet accurate software framework to determine an efficient and cost-effective LLM training system configuration. We demonstrate vTrain's practicality through several case studies, e.g., effectively evaluating optimal training parallelization strategies that balances training time and its associated training cost, efficient multi-tenant GPU cluster schedulers targeting multiple LLM training jobs, and determining a compute-optimal LLM model architecture given a fixed compute budget.
♻ ☆ Greedy Perspectives: Multi-Drone View Planning for Collaborative Perception in Cluttered Environments IROS'24
Deployment of teams of aerial robots could enable large-scale filming of dynamic groups of people (actors) in complex environments for applications in areas such as team sports and cinematography. Toward this end, methods for submodular maximization via sequential greedy planning can enable scalable optimization of camera views across teams of robots but face challenges with efficient coordination in cluttered environments. Obstacles can produce occlusions and increase chances of inter-robot collision which can violate requirements for near-optimality guarantees. To coordinate teams of aerial robots in filming groups of people in dense environments, a more general view-planning approach is required. We explore how collision and occlusion impact performance in filming applications through the development of a multi-robot multi-actor view planner with an occlusion-aware objective for filming groups of people and compare with a formation planner and a greedy planner that ignores inter-robot collisions. We evaluate our approach based on five test environments and complex multi-actor behaviors. Compared with a formation planner, our sequential planner generates 14% greater view reward for filming the actors in three scenarios and comparable performance to formation planning on two others. We also observe near identical view rewards for sequential planning both with and without inter-robot collision constraints which indicates that robots are able to avoid collisions without impairing performance in the perception task. Overall, we demonstrate effective coordination of teams of aerial robots in environments cluttered with obstacles that may cause collisions or occlusions and for filming groups that may split, merge, or spread apart.
comment: IROS'24; 8 pages, 8 figures, 2 tables
♻ ☆ Hybrid Focal and Full-Range Attention Based Graph Transformers
The paradigm of Transformers using the self-attention mechanism has manifested its advantage in learning graph-structured data. Yet, Graph Transformers are capable of modeling full range dependencies but are often deficient in extracting information from locality. A common practice is to utilize Message Passing Neural Networks (MPNNs) as an auxiliary to capture local information, which however are still inadequate for comprehending substructures. In this paper, we present a purely attention-based architecture, namely Focal and Full-Range Graph Transformer (FFGT), which can mitigate the loss of local information in learning global correlations. The core component of FFGT is a new mechanism of compound attention, which combines the conventional full-range attention with K-hop focal attention on ego-nets to aggregate both global and local information. Beyond the scope of canonical Transformers, the FFGT has the merit of being more substructure-aware. Our approach enhances the performance of existing Graph Transformers on various open datasets, while achieves compatible SOTA performance on several Long-Range Graph Benchmark (LRGB) datasets even with a vanilla transformer. We further examine influential factors on the optimal focal length of attention via introducing a novel synthetic dataset based on SBM-PATTERN.
♻ ☆ Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy
Recently, sharpness-aware minimization (SAM) has attracted much attention because of its surprising effectiveness in improving generalization performance. However, compared to stochastic gradient descent (SGD), it is more prone to getting stuck at the saddle points, which as a result may lead to performance degradation. To address this issue, we propose a simple renormalization strategy, dubbed Stable SAM (SSAM), so that the gradient norm of the descent step maintains the same as that of the ascent step. Our strategy is easy to implement and flexible enough to integrate with SAM and its variants, almost at no computational cost. With elementary tools from convex optimization and learning theory, we also conduct a theoretical analysis of sharpness-aware training, revealing that compared to SGD, the effectiveness of SAM is only assured in a limited regime of learning rate. In contrast, we show how SSAM extends this regime of learning rate and then it can consistently perform better than SAM with the minor modification. Finally, we demonstrate the improved performance of SSAM on several representative data sets and tasks.
comment: 33 pages
♻ ☆ Dreaming is All You Need
In classification tasks, achieving a harmonious balance between exploration and precision is of paramount importance. To this end, this research introduces two novel deep learning models, SleepNet and DreamNet, to strike this balance. SleepNet seamlessly integrates supervised learning with unsupervised ``sleep" stages using pre-trained encoder models. Dedicated neurons within SleepNet are embedded in these unsupervised features, forming intermittent ``sleep" blocks that facilitate exploratory learning. Building upon the foundation of SleepNet, DreamNet employs full encoder-decoder frameworks to reconstruct the hidden states, mimicking the human "dreaming" process. This reconstruction process enables further exploration and refinement of the learned representations. Moreover, the principle ideas of our SleepNet and DreamNet are generic and can be applied to both computer vision and natural language processing downstream tasks. Through extensive empirical evaluations on diverse image and text datasets, SleepNet and DreanNet have demonstrated superior performance compared to state-of-the-art models, showcasing the strengths of unsupervised exploration and supervised precision afforded by our innovative approaches.
♻ ☆ When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System
Artificial intelligence (AI) has significantly advanced Earth sciences, yet its full potential in to comprehensively modeling Earth's complex dynamics remains unrealized. Geoscience foundation models (GFMs) emerge as a paradigm-shifting solution, integrating extensive cross-disciplinary data to enhance the simulation and understanding of Earth system dynamics. These data-centric AI models extract insights from petabytes of structured and unstructured data, effectively addressing the complexities of Earth systems that traditional models struggle to capture. The unique strengths of GFMs include flexible task specification, diverse input-output capabilities, and multi-modal knowledge representation, enabling analyses that surpass those of individual data sources or traditional AI methods. This review not only highlights the key advantages of GFMs, but also presents essential techniques for their construction, with a focus on transformers, pre-training, and adaptation strategies. Subsequently, we examine recent advancements in GFMs, including large language models, vision models, and vision-language models, particularly emphasizing the potential applications in remote sensing. Additionally, the review concludes with a comprehensive analysis of the challenges and future trends in GFMs, addressing five critical aspects: data integration, model complexity, uncertainty quantification, interdisciplinary collaboration, and concerns related to privacy, trust, and security. This review offers a comprehensive overview of emerging geoscientific research paradigms, emphasizing the untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of GFMs.
comment: the manuscript is under review
♻ ☆ Explanation as a Watermark: Towards Harmless and Multi-bit Model Ownership Verification via Watermarking Feature Attribution NDSS
Ownership verification is currently the most critical and widely adopted post-hoc method to safeguard model copyright. In general, model owners exploit it to identify whether a given suspicious third-party model is stolen from them by examining whether it has particular properties `inherited' from their released models. Currently, backdoor-based model watermarks are the primary and cutting-edge methods to implant such properties in the released models. However, backdoor-based methods have two fatal drawbacks, including harmfulness and ambiguity. The former indicates that they introduce maliciously controllable misclassification behaviors ($i.e.$, backdoor) to the watermarked released models. The latter denotes that malicious users can easily pass the verification by finding other misclassified samples, leading to ownership ambiguity. In this paper, we argue that both limitations stem from the `zero-bit' nature of existing watermarking schemes, where they exploit the status ($i.e.$, misclassified) of predictions for verification. Motivated by this understanding, we design a new watermarking paradigm, $i.e.$, Explanation as a Watermark (EaaW), that implants verification behaviors into the explanation of feature attribution instead of model predictions. Specifically, EaaW embeds a `multi-bit' watermark into the feature attribution explanation of specific trigger samples without changing the original prediction. We correspondingly design the watermark embedding and extraction algorithms inspired by explainable artificial intelligence. In particular, our approach can be used for different tasks ($e.g.$, image classification and text generation). Extensive experiments verify the effectiveness and harmlessness of our EaaW and its resistance to potential attacks.
comment: This paper is accepted by Network and Distributed System Security Symposium (NDSS) 2025
♻ ☆ Can Large Language Models Learn Independent Causal Mechanisms?
Despite impressive performance on language modelling and complex reasoning tasks, Large Language Models (LLMs) fall short on the same tasks in uncommon settings or with distribution shifts, exhibiting a lack of generalisation ability. By contrast, systems such as causal models, that learn abstract variables and causal relationships, can demonstrate increased robustness against changes in the distribution. One reason for this success is the existence and use of Independent Causal Mechanisms (ICMs) representing high-level concepts that only sparsely interact. In this work, we apply two concepts from causality to learn ICMs within LLMs. We develop a new LLM architecture composed of multiple sparsely interacting language modelling modules. We show that such causal constraints can improve out-of-distribution performance on abstract and causal reasoning tasks. We also investigate the level of independence and domain specialisation and show that LLMs rely on pre-trained partially domain-invariant mechanisms resilient to fine-tuning.
comment: 20 pages, 7 pages for the main paper and 13 pages for references and appendices, 17 figures
♻ ☆ A System and Benchmark for LLM-based Q&A on Heterogeneous Data
In many industrial settings, users wish to ask questions whose answers may be found in structured data sources such as a spreadsheets, databases, APIs, or combinations thereof. Often, the user doesn't know how to identify or access the right data source. This problem is compounded even further if multiple (and potentially siloed) data sources must be assembled to derive the answer. Recently, various Text-to-SQL applications that leverage Large Language Models (LLMs) have addressed some of these problems by enabling users to ask questions in natural language. However, these applications remain impractical in realistic industrial settings because they fail to cope with the data source heterogeneity that typifies such environments. In this paper, we address heterogeneity by introducing the siwarex platform, which enables seamless natural language access to both databases and APIs. To demonstrate the effectiveness of siwarex, we extend the popular Spider dataset and benchmark by replacing some of its tables by data retrieval APIs. We find that siwarex does a good job of coping with data source heterogeneity. Our modified Spider benchmark will soon be available to the research community
♻ ☆ Mpox Narrative on Instagram: A Labeled Multilingual Dataset of Instagram Posts on Mpox for Sentiment, Hate Speech, and Anxiety Analysis
The world is currently experiencing an outbreak of mpox, which has been declared a Public Health Emergency of International Concern by WHO. No prior work related to social media mining has focused on the development of a dataset of Instagram posts about the mpox outbreak. The work presented in this paper aims to address this research gap and makes two scientific contributions to this field. First, it presents a multilingual dataset of 60,127 Instagram posts about mpox, published between July 23, 2022, and September 5, 2024. The dataset, available at https://dx.doi.org/10.21227/7fvc-y093, contains Instagram posts about mpox in 52 languages. For each of these posts, the Post ID, Post Description, Date of publication, language, and translated version of the post (translation to English was performed using the Google Translate API) are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis, hate speech detection, and anxiety or stress detection were performed. This process included classifying each post into (i) one of the sentiment classes, i.e., fear, surprise, joy, sadness, anger, disgust, or neutral, (ii) hate or not hate, and (iii) anxiety/stress detected or no anxiety/stress detected. These results are presented as separate attributes in the dataset. Second, this paper presents the results of performing sentiment analysis, hate speech analysis, and anxiety or stress analysis. The variation of the sentiment classes - fear, surprise, joy, sadness, anger, disgust, and neutral were observed to be 27.95%, 2.57%, 8.69%, 5.94%, 2.69%, 1.53%, and 50.64%, respectively. In terms of hate speech detection, 95.75% of the posts did not contain hate and the remaining 4.25% of the posts contained hate. Finally, 72.05% of the posts did not indicate any anxiety/stress, and the remaining 27.95% of the posts represented some form of anxiety/stress.
♻ ☆ Sim2Real Transfer for Audio-Visual Navigation with Frequency-Adaptive Acoustic Field Prediction IROS 2024
Sim2real transfer has received increasing attention lately due to the success of learning robotic tasks in simulation end-to-end. While there has been a lot of progress in transferring vision-based navigation policies, the existing sim2real strategy for audio-visual navigation performs data augmentation empirically without measuring the acoustic gap. The sound differs from light in that it spans across much wider frequencies and thus requires a different solution for sim2real. We propose the first treatment of sim2real for audio-visual navigation by disentangling it into acoustic field prediction (AFP) and waypoint navigation. We first validate our design choice in the SoundSpaces simulator and show improvement on the Continuous AudioGoal navigation benchmark. We then collect real-world data to measure the spectral difference between the simulation and the real world by training AFP models that only take a specific frequency subband as input. We further propose a frequency-adaptive strategy that intelligently selects the best frequency band for prediction based on both the measured spectral difference and the energy distribution of the received audio, which improves the performance on the real data. Lastly, we build a real robot platform and show that the transferred policy can successfully navigate to sounding objects. This work demonstrates the potential of building intelligent agents that can see, hear, and act entirely from simulation, and transferring them to the real world.
comment: Camera ready version for IROS 2024. Project page: https://vision.cs.utexas.edu/projects/sim2real/
♻ ☆ Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA
Large Multimodal Models (LMMs) have shown remarkable progress in medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that when subjected to simple probing evaluation, state-of-the-art models perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4o, GPT-4V, and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields.
♻ ☆ Goals as Reward-Producing Programs
People are remarkably capable of generating their own goals, beginning with child's play and continuing into adulthood. Despite considerable empirical and computational work on goals and goal-oriented behavior, models are still far from capturing the richness of everyday human goals. Here, we bridge this gap by collecting a dataset of human-generated playful goals (in the form of scorable, single-player games), modeling them as reward-producing programs, and generating novel human-like goals through program synthesis. Reward-producing programs capture the rich semantics of goals through symbolic operations that compose, add temporal constraints, and allow for program execution on behavioral traces to evaluate progress. To build a generative model of goals, we learn a fitness function over the infinite set of possible goal programs and sample novel goals with a quality-diversity algorithm. Human evaluators found that model-generated goals, when sampled from partitions of program space occupied by human examples, were indistinguishable from human-created games. We also discovered that our model's internal fitness scores predict games that are evaluated as more fun to play and more human-like.
comment: Project website and goal program viewer: https://exps.gureckislab.org/guydav/goal_programs_viewer/main/
♻ ☆ Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Knowledge Distillation and Random Data Erasing
In this paper, we present NECHO v2, a novel framework designed to enhance the predictive accuracy of multimodal sequential patient diagnoses under uncertain missing visit sequences, a common challenge in real clinical settings. Firstly, we modify NECHO, designed in a diagnosis code-centric fashion, to handle uncertain modality representation dominance under the imperfect data. Secondly, we develop a systematic knowledge distillation by employing the modified NECHO as both teacher and student. It encompasses a modality-wise contrastive and hierarchical distillation, transformer representation random distillation, along with other distillations to align representations between teacher and student tightly and effectively. We also utilise random erasing on individual data points within sequences during both training and distillation of the teacher to lightly simulate scenario with missing visit information, thereby fostering effective knowledge transfer. As a result, NECHO v2 verifies itself by showing robust superiority in multimodal sequential diagnosis prediction under both balanced and imbalanced incomplete settings on multimodal healthcare data.
comment: 5 pages, 1 figure, and 4 tables
♻ ☆ From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
comment: 55 pages, 48 figures COLM camera-ready version; Changes include: (i) added real-world datasets (Appendix I), (ii) fixed typos
♻ ☆ Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. Despite the progress, most of them suffer from training stability issues and scale poorly with growing data size. More importantly, they generally lack control mechanisms to steer the generated trajectories based on spatiotemporal constraints such as fixing specific visits. To address such limitations, we formally define the controlled trajectory generation problem with spatiotemporal constraints and propose Geo-Llama. This novel LLM-inspired framework enforces explicit visit constraints in a contextually coherent way. It fine-tunes pre-trained LLMs on trajectories with a visit-wise permutation strategy where each visit corresponds to a time and location. This enables the model to capture the spatiotemporal patterns regardless of visit orders and allows flexible and in-context constraint integration through prompts during generation. Extensive experiments on real-world and synthetic datasets validate the effectiveness of Geo-Llama, demonstrating its versatility and robustness in handling a broad range of constraints to generate more realistic trajectories compared to existing methods.
♻ ☆ EXTRACT: Efficient Policy Learning by Extracting Transferable Robot Skills from Offline Data
Most reinforcement learning (RL) methods focus on learning optimal policies over low-level action spaces. While these methods can perform well in their training environments, they lack the flexibility to transfer to new tasks. Instead, RL agents that can act over useful, temporally extended skills rather than low-level actions can learn new tasks more easily. Prior work in skill-based RL either requires expert supervision to define useful skills, which is hard to scale, or learns a skill-space from offline data with heuristics that limit the adaptability of the skills, making them difficult to transfer during downstream RL. Our approach, EXTRACT, instead utilizes pre-trained vision language models to extract a discrete set of semantically meaningful skills from offline data, each of which is parameterized by continuous arguments, without human supervision. This skill parameterization allows robots to learn new tasks by only needing to learn when to select a specific skill and how to modify its arguments for the specific task. We demonstrate through experiments in sparse-reward, image-based, robot manipulation environments that EXTRACT can more quickly learn new tasks than prior works, with major gains in sample efficiency and performance over prior skill-based RL. Website at https://www.jessezhang.net/projects/extract/.
comment: 25 pages, 16 figures
♻ ☆ Evidence of interrelated cognitive-like capabilities in large language models: Indications of artificial general intelligence or achievement?
Large language models (LLMs) are advanced artificial intelligence (AI) systems that can perform a variety of tasks commonly found in human intelligence tests, such as defining words, performing calculations, and engaging in verbal reasoning. There are also substantial individual differences in LLM capacities. Given the consistent observation of a positive manifold and general intelligence factor in human samples, along with group-level factors (e.g., crystallized intelligence), we hypothesized that LLM test scores may also exhibit positive intercorrelations, which could potentially give rise to an artificial general ability (AGA) factor and one or more group-level factors. Based on a sample of 591 LLMs and scores from 12 tests aligned with fluid reasoning (Gf), domain-specific knowledge (Gkn), reading/writing (Grw), and quantitative knowledge (Gq), we found strong empirical evidence for a positive manifold and a general factor of ability. Additionally, we identified a combined Gkn/Grw group-level factor. Finally, the number of LLM parameters correlated positively with both general factor of ability and Gkn/Grw factor scores, although the effects showed diminishing returns. We interpreted our results to suggest that LLMs, like human cognitive abilities, may share a common underlying efficiency in processing information and solving problems, though whether LLMs manifest primarily achievement/expertise rather than intelligence remains to be determined. Finally, while models with greater numbers of parameters exhibit greater general cognitive-like abilities, akin to the connection between greater neuronal density and human general intelligence, other characteristics must also be involved.
comment: 9 pages, 2 figures
♻ ☆ Decision Theoretic Foundations for Experiments Evaluating Human Decisions
How well people use information displays to make decisions is of primary interest in human-centered AI, model explainability, data visualization, and related areas. However, what constitutes a decision problem, and what is required for a study to establish that human decisions could be improved remain open to speculation. We propose a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics as a standard for establishing when human decisions can be improved in HCI. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the utility-maximizing decision. As a demonstration, we evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve these criteria. We find that only 10 (26\%) of 39 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making in at least one treatment condition. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.
Graphics 10
☆ Image Vectorization with Depth: convexified shape layers with depth ordering
Image vectorization is a process to convert a raster image into a scalable vector graphic format. Objective is to effectively remove the pixelization effect while representing boundaries of image by scaleable parameterized curves. We propose new image vectorization with depth which considers depth ordering among shapes and use curvature-based inpainting for convexifying shapes in vectorization process.From a given color quantized raster image, we first define each connected component of the same color as a shape layer, and construct depth ordering among them using a newly proposed depth ordering energy. Global depth ordering among all shapes is described by a directed graph, and we propose an energy to remove cycle within the graph. After constructing depth ordering of shapes, we convexify occluded regions by Euler's elastica curvature-based variational inpainting, and leverage on the stability of Modica-Mortola double-well potential energy to inpaint large regions. This is following human vision perception that boundaries of shapes extend smoothly, and we assume shapes are likely to be convex. Finally, we fit B\'{e}zier curves to the boundaries and save vectorization as a SVG file which allows superposition of curvature-based inpainted shapes following the depth ordering. This is a new way to vectorize images, by decomposing an image into scalable shape layers with computed depth ordering. This approach makes editing shapes and images more natural and intuitive. We also consider grouping shape layers for semantic vectorization. We present various numerical results and comparisons against recent layer-based vectorization methods to validate the proposed model.
☆ MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification
The field of text-to-3D content generation has made significant progress in generating realistic 3D objects, with existing methodologies like Score Distillation Sampling (SDS) offering promising guidance. However, these methods often encounter the "Janus" problem-multi-face ambiguities due to imprecise guidance. Additionally, while recent advancements in 3D gaussian splitting have shown its efficacy in representing 3D volumes, optimization of this representation remains largely unexplored. This paper introduces a unified framework for text-to-3D content generation that addresses these critical gaps. Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model, progressively enhancing detail and accuracy. We also introduce a novel densification algorithm that aligns gaussians close to the surface, optimizing the structural integrity and fidelity of the generated models. Extensive experiments validate our approach, demonstrating that it produces high-quality visual outputs with minimal time cost. Notably, our method achieves high-quality results within half an hour of training, offering a substantial efficiency gain over most existing methods, which require hours of training time to achieve comparable results.
comment: 13 pages, 10 figures
☆ Neural Laplacian Operator for 3D Point Clouds SIGGRAPH
The discrete Laplacian operator holds a crucial role in 3D geometry processing, yet it is still challenging to define it on point clouds. Previous works mainly focused on constructing a local triangulation around each point to approximate the underlying manifold for defining the Laplacian operator, which may not be robust or accurate. In contrast, we simply use the K-nearest neighbors (KNN) graph constructed from the input point cloud and learn the Laplacian operator on the KNN graph with graph neural networks (GNNs). However, the ground-truth Laplacian operator is defined on a manifold mesh with a different connectivity from the KNN graph and thus cannot be directly used for training. To train the GNN, we propose a novel training scheme by imitating the behavior of the ground-truth Laplacian operator on a set of probe functions so that the learned Laplacian operator behaves similarly to the ground-truth Laplacian operator. We train our network on a subset of ShapeNet and evaluate it across a variety of point clouds. Compared with previous methods, our method reduces the error by an order of magnitude and excels in handling sparse point clouds with thin structures or sharp features. Our method also demonstrates a strong generalization ability to unseen shapes. With our learned Laplacian operator, we further apply a series of Laplacian-based geometry processing algorithms directly to point clouds and achieve accurate results, enabling many exciting possibilities for geometry processing on point clouds. The code and trained models are available at https://github.com/IntelligentGeometry/NeLo.
comment: SIGGRAPH Asia 2024 (Journal Track)
☆ Multi-scale Cycle Tracking in Dynamic Planar Graphs
This paper presents a nested tracking framework for analyzing cycles in 2D force networks within granular materials. These materials are composed of interacting particles, whose interactions are described by a force network. Understanding the cycles within these networks at various scales and their evolution under external loads is crucial, as they significantly contribute to the mechanical and kinematic properties of the system. Our approach involves computing a cycle hierarchy by partitioning the 2D domain into segments bounded by cycles in the force network. We can adapt concepts from nested tracking graphs originally developed for merge trees by leveraging the duality between this partitioning and the cycles. We demonstrate the effectiveness of our method on two force networks derived from experiments with photoelastic disks.
comment: TopoInVis 2024, 11 pages
☆ Fiber-level Woven Fabric Capture from a Single Photo
Accurately rendering the appearance of fabrics is challenging, due to their complex 3D microstructures and specialized optical properties. If we model the geometry and optics of fabrics down to the fiber level, we can achieve unprecedented rendering realism, but this raises the difficulty of authoring or capturing the fiber-level assets. Existing approaches can obtain fiber-level geometry with special devices (e.g., CT) or complex hand-designed procedural pipelines (manually tweaking a set of parameters). In this paper, we propose a unified framework to capture fiber-level geometry and appearance of woven fabrics using a single low-cost microscope image. We first use a simple neural network to predict initial parameters of our geometric and appearance models. From this starting point, we further optimize the parameters of procedural fiber geometry and an approximated shading model via differentiable rasterization to match the microscope photo more accurately. Finally, we refine the fiber appearance parameters via differentiable path tracing, converging to accurate fiber optical parameters, which are suitable for physically-based light simulations to produce high-quality rendered results. We believe that our method is the first to utilize differentiable rendering at the microscopic level, supporting physically-based scattering from explicit fiber assemblies. Our fabric parameter estimation achieves high-quality re-rendering of measured woven fabric samples in both distant and close-up views. These results can further be used for efficient rendering or converted to downstream representations. We also propose a patch-space fiber geometry procedural generation and a two-scale path tracing framework for efficient rendering of fabric scenes.
comment: due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF file
☆ Particle-Laden Fluid on Flow Maps SIGGRAPH
We propose a novel framework for simulating ink as a particle-laden flow using particle flow maps. Our method addresses the limitations of existing flow-map techniques, which struggle with dissipative forces like viscosity and drag, thereby extending the application scope from solving the Euler equations to solving the Navier-Stokes equations with accurate viscosity and laden-particle treatment. Our key contribution lies in a coupling mechanism for two particle systems, coupling physical sediment particles and virtual flow-map particles on a background grid by solving a Poisson system. We implemented a novel path integral formula to incorporate viscosity and drag forces into the particle flow map process. Our approach enables state-of-the-art simulation of various particle-laden flow phenomena, exemplified by the bulging and breakup of suspension drop tails, torus formation, torus disintegration, and the coalescence of sedimenting drops. In particular, our method delivered high-fidelity ink diffusion simulations by accurately capturing vortex bulbs, viscous tails, fractal branching, and hierarchical structures.
comment: 13 pages, 16 figures, SIGGRAPH Asia 2024
☆ An Eulerian Vortex Method on Flow Maps SIGGRAPH
We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations for line elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulse $\mathbf{m}$, which has been recently bridged with flow maps to encouraging results, vorticity $\boldsymbol{\omega}$ promises to be preferable for its numerically stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions.
comment: Accepted at ACM Transactions on Graphics (SIGGRAPH Asia 2024)
☆ DECOLLAGE: 3D Detailization by Controllable, Localized, and Learned Geometry Enhancement ECCV 2024
We present a 3D modeling method which enables end-users to refine or detailize 3D shapes using machine learning, expanding the capabilities of AI-assisted 3D content creation. Given a coarse voxel shape (e.g., one produced with a simple box extrusion tool or via generative modeling), a user can directly "paint" desired target styles representing compelling geometric details, from input exemplar shapes, over different regions of the coarse shape. These regions are then up-sampled into high-resolution geometries which adhere with the painted styles. To achieve such controllable and localized 3D detailization, we build on top of a Pyramid GAN by making it masking-aware. We devise novel structural losses and priors to ensure that our method preserves both desired coarse structures and fine-grained features even if the painted styles are borrowed from diverse sources, e.g., different semantic parts and even different shape categories. Through extensive experiments, we show that our ability to localize details enables novel interactive creative workflows and applications. Our experiments further demonstrate that in comparison to prior techniques built on global detailization, our method generates structure-preserving, high-resolution stylized geometries with more coherent shape details and style transitions.
comment: ECCV 2024 (poster). Code: https://qiminchen.github.io/decollage/
♻ ☆ WonderWorld: Interactive 3D Scene Generation from a Single Image
We present WonderWorld, a novel framework for interactive 3D scene generation that enables users to interactively specify scene contents and layout and see the created scenes in low latency. The major challenge lies in achieving fast generation of 3D scenes. Existing scene generation approaches fall short of speed as they often require (1) progressively generating many views and depth maps, and (2) time-consuming optimization of the scene geometry representations. We introduce the Fast Layered Gaussian Surfels (FLAGS) as our scene representation and an algorithm to generate it from a single view. Our approach does not need multiple views, and it leverages a geometry-based initialization that significantly reduces optimization time. Another challenge is generating coherent geometry that allows all scenes to be connected. We introduce the guided depth diffusion that allows partial conditioning of depth estimation. WonderWorld generates connected and diverse 3D scenes in less than 10 seconds on a single A6000 GPU, enabling real-time user interaction and exploration. We demonstrate the potential of WonderWorld for user-driven content creation and exploration in virtual environments. We will release full code and software for reproducibility. Project website: https://kovenyu.com/WonderWorld/.
comment: Project website: https://kovenyu.com/WonderWorld/
♻ ☆ Make-A-Shape: a Ten-Million-scale 3D Shape Model
Significant progress has been made in training large generative models for natural language and images. Yet, the advancement of 3D generative models is hindered by their substantial resource demands for training, along with inefficient, non-compact, and less expressive representations. This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale, capable of utilizing 10 millions publicly-available shapes. Technical-wise, we first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme to efficiently exploit coefficient relations. We then make the representation generatable by a diffusion model by devising the subband coefficients packing scheme to layout the representation in a low-resolution grid. Further, we derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients. Last, we extend our framework to be controlled by additional input conditions to enable it to generate shapes from assorted modalities, e.g., single/multi-view images, point clouds, and low-resolution voxels. In our extensive set of experiments, we demonstrate various applications, such as unconditional generation, shape completion, and conditional generation on a wide range of modalities. Our approach not only surpasses the state of the art in delivering high-quality results but also efficiently generates shapes within a few seconds, often achieving this in just 2 seconds for most conditions. Our source code is available at https://github.com/AutodeskAILab/Make-a-Shape.
Robotics 51
☆ Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments
Robot models, particularly those trained with large amounts of data, have recently shown a plethora of real-world manipulation and navigation capabilities. Several independent efforts have shown that given sufficient training data in an environment, robot policies can generalize to demonstrated variations in that environment. However, needing to finetune robot models to every new environment stands in stark contrast to models in language or vision that can be deployed zero-shot for open-world problems. In this work, we present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies that can directly generalize to new environments without any finetuning. To create RUMs efficiently, we develop new tools to quickly collect data for mobile manipulation tasks, integrate such data into a policy with multi-modal imitation learning, and deploy policies on-device on Hello Robot Stretch, a cheap commodity robot, with an external mLLM verifier for retrying. We train five such utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects. Our system, on average, achieves 90% success rate in unseen, novel environments interacting with unseen objects. Moreover, the utility models can also succeed in different robot and camera set-ups with no further data, training, or fine-tuning. Primary among our lessons are the importance of training data over training algorithm and policy class, guidance about data scaling, necessity for diverse yet high-quality demonstrations, and a recipe for robot introspection and retrying to improve performance on individual environments. Our code, data, models, hardware designs, as well as our experiment and deployment videos are open sourced and can be found on our project website: https://robotutilitymodels.com
comment: Project website https://robotutilitymodels.com
☆ Neural MP: A Generalist Neural Motion Planner
The current paradigm for motion planning generates solutions from scratch for every new problem, which consumes significant amounts of time and computational resources. For complex, cluttered scenes, motion planning approaches can often take minutes to produce a solution, while humans are able to accurately and safely reach any goal in seconds by leveraging their prior experience. We seek to do the same by applying data-driven learning at scale to the problem of motion planning. Our approach builds a large number of complex scenes in simulation, collects expert data from a motion planner, then distills it into a reactive generalist policy. We then combine this with lightweight optimization to obtain a safe path for real world deployment. We perform a thorough evaluation of our method on 64 motion planning tasks across four diverse environments with randomized poses, scenes and obstacles, in the real world, demonstrating an improvement of 23%, 17% and 79% motion planning success rate over state of the art sampling, optimization and learning based planning methods. Video results available at mihdalal.github.io/neuralmotionplanner
comment: Website at mihdalal.github.io/neuralmotionplanner. Main paper: 7 pages, 4 figures, 2 tables. Appendix: 9 pages, 5 figures, 6 tables
☆ Promptable Closed-loop Traffic Simulation
Simulation stands as a cornerstone for safe and efficient autonomous driving development. At its core a simulation system ought to produce realistic, reactive, and controllable traffic patterns. In this paper, we propose ProSim, a multimodal promptable closed-loop traffic simulation framework. ProSim allows the user to give a complex set of numerical, categorical or textual prompts to instruct each agent's behavior and intention. ProSim then rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants. Our experiments show that ProSim achieves high prompt controllability given different user prompts, while reaching competitive performance on the Waymo Sim Agents Challenge when no prompt is given. To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset with over 10M text prompts for over 520k real-world driving scenarios. We will release code of ProSim as well as data and labeling tools of ProSim-Instruct-520k at https://ariostgx.github.io/ProSim.
comment: Accepted to CoRL 2024. Website available at https://ariostgx.github.io/ProSim
☆ Learning control of underactuated double pendulum with Model-Based Reinforcement Learning
This report describes our proposed solution for the second AI Olympics competition held at IROS 2024. Our solution is based on a recent Model-Based Reinforcement Learning algorithm named MC-PILCO. Besides briefly reviewing the algorithm, we discuss the most critical aspects of the MC-PILCO implementation in the tasks at hand.
☆ Leveraging Object Priors for Point Tracking ECCV 2024
Point tracking is a fundamental problem in computer vision with numerous applications in AR and robotics. A common failure mode in long-term point tracking occurs when the predicted point leaves the object it belongs to and lands on the background or another object. We identify this as the failure to correctly capture objectness properties in learning to track. To address this limitation of prior work, we propose a novel objectness regularization approach that guides points to be aware of object priors by forcing them to stay inside the the boundaries of object instances. By capturing objectness cues at training time, we avoid the need to compute object masks during testing. In addition, we leverage contextual attention to enhance the feature representation for capturing objectness at the feature level more effectively. As a result, our approach achieves state-of-the-art performance on three point tracking benchmarks, and we further validate the effectiveness of our components via ablation studies. The source code is available at: https://github.com/RehgLab/tracking_objectness
comment: ECCV 2024 ILR Workshop
☆ Creativity and Visual Communication from Machine to Musician: Sharing a Score through a Robotic Camera
This paper explores the integration of visual communication and musical interaction by implementing a robotic camera within a "Guided Harmony" musical game. We aim to examine co-creative behaviors between human musicians and robotic systems. Our research explores existing methodologies like improvisational game pieces and extends these concepts to include robotic participation using a PTZ camera. The robotic system interprets and responds to nonverbal cues from musicians, creating a collaborative and adaptive musical experience. This initial case study underscores the importance of intuitive visual communication channels. We also propose future research directions, including parameters for refining the visual cue toolkit and data collection methods to understand human-machine co-creativity further. Our findings contribute to the broader understanding of machine intelligence in augmenting human creativity, particularly in musical settings.
☆ Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot
Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (<1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.
comment: 8 pages, 13 figures
☆ Robust Loss Functions for Object Grasping under Limited Ground Truth
Object grasping is a crucial technology enabling robots to perceive and interact with the environment sufficiently. However, in practical applications, researchers are faced with missing or noisy ground truth while training the convolutional neural network, which decreases the accuracy of the model. Therefore, different loss functions are proposed to deal with these problems to improve the accuracy of the neural network. For missing ground truth, a new predicted category probability method is defined for unlabeled samples, which works effectively in conjunction with the pseudo-labeling method. Furthermore, for noisy ground truth, a symmetric loss function is introduced to resist the corruption of label noises. The proposed loss functions are powerful, robust, and easy to use. Experimental results based on the typical grasping neural network show that our method can improve performance by 2 to 13 percent.
☆ RCM-Constrained Manipulator Trajectory Tracking Using Differential Kinematics Control
This paper proposes an approach for controlling surgical robotic systems, while complying with the Remote Center of Motion (RCM) constraint in Robot-Assisted Minimally Invasive Surgery (RA-MIS). In this approach, the RCM-constraint is upheld algorithmically, providing flexibility in the positioning of the insertion point and enabling compatibility with a wide range of general-purpose robots. The paper further investigates the impact of the tool's insertion ratio on the RCM-error, and introduces a manipulability index of the robot which considers the RCM-error that it is used to find a starting configuration. To accurately evaluate the proposed method's trajectory tracking within an RCM-constrained environment, an electromagnetic tracking system is employed. The results demonstrate the effectiveness of the proposed method in addressing the RCM constraint problem in RA-MIS.
comment: 6 pages, 7 figures. Published in the 21st International Conference on Advanced Robotics (ICAR 2023)
☆ Cooperative Decision-Making for CAVs at Unsignalized Intersections: A MARL Approach with Attention and Hierarchical Game Priors
The development of autonomous vehicles has shown great potential to enhance the efficiency and safety of transportation systems. However, the decision-making issue in complex human-machine mixed traffic scenarios, such as unsignalized intersections, remains a challenge for autonomous vehicles. While reinforcement learning (RL) has been used to solve complex decision-making problems, existing RL methods still have limitations in dealing with cooperative decision-making of multiple connected autonomous vehicles (CAVs), ensuring safety during exploration, and simulating realistic human driver behaviors. In this paper, a novel and efficient algorithm, Multi-Agent Game-prior Attention Deep Deterministic Policy Gradient (MA-GA-DDPG), is proposed to address these limitations. Our proposed algorithm formulates the decision-making problem of CAVs at unsignalized intersections as a decentralized multi-agent reinforcement learning problem and incorporates an attention mechanism to capture interaction dependencies between ego CAV and other agents. The attention weights between the ego vehicle and other agents are then used to screen interaction objects and obtain prior hierarchical game relations, based on which a safety inspector module is designed to improve the traffic safety. Furthermore, both simulation and hardware-in-the-loop experiments were conducted, demonstrating that our method outperforms other baseline approaches in terms of driving safety, efficiency, and comfort.
☆ Interactive incremental learning of generalizable skills with local trajectory modulation
The problem of generalization in learning from demonstration (LfD) has received considerable attention over the years, particularly within the context of movement primitives, where a number of approaches have emerged. Recently, two important approaches have gained recognition. While one leverages via-points to adapt skills locally by modulating demonstrated trajectories, another relies on so-called task-parameterized models that encode movements with respect to different coordinate systems, using a product of probabilities for generalization. While the former are well-suited to precise, local modulations, the latter aim at generalizing over large regions of the workspace and often involve multiple objects. Addressing the quality of generalization by leveraging both approaches simultaneously has received little attention. In this work, we propose an interactive imitation learning framework that simultaneously leverages local and global modulations of trajectory distributions. Building on the kernelized movement primitives (KMP) framework, we introduce novel mechanisms for skill modulation from direct human corrective feedback. Our approach particularly exploits the concept of via-points to incrementally and interactively 1) improve the model accuracy locally, 2) add new objects to the task during execution and 3) extend the skill into regions where demonstrations were not provided. We evaluate our method on a bearing ring-loading task using a torque-controlled, 7-DoF, DLR SARA robot.
comment: 21 pages, 16 figures
☆ StratXplore: Strategic Novelty-seeking and Instruction-aligned Exploration for Vision and Language Navigation
Embodied navigation requires robots to understand and interact with the environment based on given tasks. Vision-Language Navigation (VLN) is an embodied navigation task, where a robot navigates within a previously seen and unseen environment, based on linguistic instruction and visual inputs. VLN agents need access to both local and global action spaces; former for immediate decision making and the latter for recovering from navigational mistakes. Prior VLN agents rely only on instruction-viewpoint alignment for local and global decision making and back-track to a previously visited viewpoint, if the instruction and its current viewpoint mismatches. These methods are prone to mistakes, due to the complexity of the instruction and partial observability of the environment. We posit that, back-tracking is sub-optimal and agent that is aware of its mistakes can recover efficiently. For optimal recovery, exploration should be extended to unexplored viewpoints (or frontiers). The optimal frontier is a recently observed but unexplored viewpoint that aligns with the instruction and is novel. We introduce a memory-based and mistake-aware path planning strategy for VLN agents, called \textit{StratXplore}, that presents global and local action planning to select the optimal frontier for path correction. The proposed method collects all past actions and viewpoint features during navigation and then selects the optimal frontier suitable for recovery. Experimental results show this simple yet effective strategy improves the success rate on two VLN datasets with different task complexities.
☆ Interpretable Responsibility Sharing as a Heuristic for Task and Motion Planning
This article introduces a novel heuristic for Task and Motion Planning (TAMP) named Interpretable Responsibility Sharing (IRS), which enhances planning efficiency in domestic robots by leveraging human-constructed environments and inherent biases. Utilizing auxiliary objects (e.g., trays and pitchers), which are commonly found in household settings, IRS systematically incorporates these elements to simplify and optimize task execution. The heuristic is rooted in the novel concept of Responsibility Sharing (RS), where auxiliary objects share the task's responsibility with the embodied agent, dividing complex tasks into manageable sub-problems. This division not only reflects human usage patterns but also aids robots in navigating and manipulating within human spaces more effectively. By integrating Optimized Rule Synthesis (ORS) for decision-making, IRS ensures that the use of auxiliary objects is both strategic and context-aware, thereby improving the interpretability and effectiveness of robotic planning. Experiments conducted across various household tasks demonstrate that IRS significantly outperforms traditional methods by reducing the effort required in task execution and enhancing the overall decision-making process. This approach not only aligns with human intuitive methods but also offers a scalable solution adaptable to diverse domestic environments. Code is available at https://github.com/asyncs/IRS.
☆ LEROjD: Lidar Extended Radar-Only Object Detection ECCV 2024
Accurate 3D object detection is vital for automated driving. While lidar sensors are well suited for this task, they are expensive and have limitations in adverse weather conditions. 3+1D imaging radar sensors offer a cost-effective, robust alternative but face challenges due to their low resolution and high measurement noise. Existing 3+1D imaging radar datasets include radar and lidar data, enabling cross-modal model improvements. Although lidar should not be used during inference, it can aid the training of radar-only object detectors. We explore two strategies to transfer knowledge from the lidar to the radar domain and radar-only object detectors: 1. multi-stage training with sequential lidar point cloud thin-out, and 2. cross-modal knowledge distillation. In the multi-stage process, three thin-out methods are examined. Our results show significant performance gains of up to 4.2 percentage points in mean Average Precision with multi-stage training and up to 3.9 percentage points with knowledge distillation by initializing the student with the teacher's weights. The main benefit of these approaches is their applicability to other 3D object detection networks without altering their architecture, as we show by analyzing it on two different object detectors. Our code is available at https://github.com/rst-tu-dortmund/lerojd
comment: Accepted for publication as ECCV 2024
☆ Adaptive Probabilistic Planning for the Uncertain and Dynamic Orienteering Problem
The Orienteering Problem (OP) is a well-studied routing problem that has been extended to incorporate uncertainties, reflecting stochastic or dynamic travel costs, prize-collection costs, and prizes. Existing approaches may, however, be inefficient in real-world applications due to insufficient modeling knowledge and initially unknowable parameters in online scenarios. Thus, we propose the Uncertain and Dynamic Orienteering Problem (UDOP), modeling travel costs as distributions with unknown and time-variant parameters. UDOP also associates uncertain travel costs with dynamic prizes and prize-collection costs for its objective and budget constraints. To address UDOP, we develop an ADaptive Approach for Probabilistic paThs - ADAPT, that iteratively performs 'execution' and 'online planning' based on an initial 'offline' solution. The execution phase updates system status and records online cost observations. The online planner employs a Bayesian approach to adaptively estimate power consumption and optimize path sequence based on safety beliefs. We evaluate ADAPT in a practical Unmanned Aerial Vehicle (UAV) charging scheduling problem for Wireless Rechargeable Sensor Networks. The UAV must optimize its path to recharge sensor nodes efficiently while managing its energy under uncertain conditions. ADAPT maintains comparable solution quality and computation time while offering superior robustness. Extensive simulations show that ADAPT achieves a 100% Mission Success Rate (MSR) across all tested scenarios, outperforming comparable heuristic-based and frequentist approaches that fail up to 70% (under challenging conditions) and averaging 67% MSR, respectively. This work advances the field of OP with uncertainties, offering a reliable and efficient approach for real-world applications in uncertain and dynamic environments.
☆ DexDiff: Towards Extrinsic Dexterity Manipulation of Ungraspable Objects in Unrestricted Environments
Grasping large and flat objects (e.g. a book or a pan) is often regarded as an ungraspable task, which poses significant challenges due to the unreachable grasping poses. Previous works leverage Extrinsic Dexterity like walls or table edges to grasp such objects. However, they are limited to task-specific policies and lack task planning to find pre-grasp conditions. This makes it difficult to adapt to various environments and extrinsic dexterity constraints. Therefore, we present DexDiff, a robust robotic manipulation method for long-horizon planning with extrinsic dexterity. Specifically, we utilize a vision-language model (VLM) to perceive the environmental state and generate high-level task plans, followed by a goal-conditioned action diffusion (GCAD) model to predict the sequence of low-level actions. This model learns the low-level policy from offline data with the cumulative reward guided by high-level planning as the goal condition, which allows for improved prediction of robot actions. Experimental results demonstrate that our method not only effectively performs ungraspable tasks but also generalizes to previously unseen objects. It outperforms baselines by a 47% higher success rate in simulation and facilitates efficient deployment and manipulation in real-world scenarios.
☆ DWA-3D: A Reactive Planner for Robust and Efficient Autonomous UAV Navigation
Despite the growing impact of Unmanned Aerial Vehicles (UAVs) across various industries, most of current available solutions lack for a robust autonomous navigation system to deal with the appearance of obstacles safely. This work presents an approach to perform autonomous UAV planning and navigation in scenarios in which a safe and high maneuverability is required, due to the cluttered environment and the narrow rooms to move. The system combines an RRT* global planner with a newly proposed reactive planner, DWA-3D, which is the extension of the well known DWA method for 2D robots. We provide a theoretical-empirical method for adjusting the parameters of the objective function to optimize, easing the classical difficulty for tuning them. An onboard LiDAR provides a 3D point cloud, which is projected on an Octomap in which the planning and navigation decisions are made. There is not a prior map; the system builds and updates the map online, from the current and the past LiDAR information included in the Octomap. Extensive real-world experiments were conducted to validate the system and to obtain a fine tuning of the involved parameters. These experiments allowed us to provide a set of values that ensure safe operation across all the tested scenarios. Just by weighting two parameters, it is possible to prioritize either horizontal path alignment or vertical (height) tracking, resulting in enhancing vertical or lateral avoidance, respectively. Additionally, our DWA-3D proposal is able to navigate successfully even in absence of a global planner or with one that does not consider the drone's size. Finally, the conducted experiments show that computation time with the proposed parameters is not only bounded but also remains stable around 40 ms, regardless of the scenario complexity.
comment: 17 pages, 18 figures
☆ From Words to Poses: Enhancing Novel Object Pose Estimation with Vision Language Models
Robots are increasingly envisioned to interact in real-world scenarios, where they must continuously adapt to new situations. To detect and grasp novel objects, zero-shot pose estimators determine poses without prior knowledge. Recently, vision language models (VLMs) have shown considerable advances in robotics applications by establishing an understanding between language input and image input. In our work, we take advantage of VLMs zero-shot capabilities and translate this ability to 6D object pose estimation. We propose a novel framework for promptable zero-shot 6D object pose estimation using language embeddings. The idea is to derive a coarse location of an object based on the relevancy map of a language-embedded NeRF reconstruction and to compute the pose estimate with a point cloud registration method. Additionally, we provide an analysis of LERF's suitability for open-set object pose estimation. We examine hyperparameters, such as activation thresholds for relevancy maps and investigate the zero-shot capabilities on an instance- and category-level. Furthermore, we plan to conduct robotic grasping experiments in a real-world setting.
☆ Leveraging Computation of Expectation Models for Commonsense Affordance Estimation on 3D Scene Graphs IROS24
This article studies the commonsense object affordance concept for enabling close-to-human task planning and task optimization of embodied robotic agents in urban environments. The focus of the object affordance is on reasoning how to effectively identify object's inherent utility during the task execution, which in this work is enabled through the analysis of contextual relations of sparse information of 3D scene graphs. The proposed framework develops a Correlation Information (CECI) model to learn probability distributions using a Graph Convolutional Network, allowing to extract the commonsense affordance for individual members of a semantic class. The overall framework was experimentally validated in a real-world indoor environment, showcasing the ability of the method to level with human commonsense. For a video of the article, showcasing the experimental demonstration, please refer to the following link: https://youtu.be/BDCMVx2GiQE
comment: Accepted in IROS24
☆ GOPT: Generalizable Online 3D Bin Packing via Transformer-based Deep Reinforcement Learning
Robotic object packing has broad practical applications in the logistics and automation industry, often formulated by researchers as the online 3D Bin Packing Problem (3D-BPP). However, existing DRL-based methods primarily focus on enhancing performance in limited packing environments while neglecting the ability to generalize across multiple environments characterized by different bin dimensions. To this end, we propose GOPT, a generalizable online 3D Bin Packing approach via Transformer-based deep reinforcement learning (DRL). First, we design a Placement Generator module to yield finite subspaces as placement candidates and the representation of the bin. Second, we propose a Packing Transformer, which fuses the features of the items and bin, to identify the spatial correlation between the item to be packed and available sub-spaces within the bin. Coupling these two components enables GOPT's ability to perform inference on bins of varying dimensions. We conduct extensive experiments and demonstrate that GOPT not only achieves superior performance against the baselines, but also exhibits excellent generalization capabilities. Furthermore, the deployment with a robot showcases the practical applicability of our method in the real world. The source code will be publicly available at https://github.com/Xiong5Heng/GOPT.
comment: 8 pages, 6 figures. This paper has been accepted by IEEE Robotics and Automation Letters
Neural Surface Reconstruction and Rendering for LiDAR-Visual Systems
This paper presents a unified surface reconstruction and rendering framework for LiDAR-visual systems, integrating Neural Radiance Fields (NeRF) and Neural Distance Fields (NDF) to recover both appearance and structural information from posed images and point clouds. We address the structural visible gap between NeRF and NDF by utilizing a visible-aware occupancy map to classify space into the free, occupied, visible unknown, and background regions. This classification facilitates the recovery of a complete appearance and structure of the scene. We unify the training of the NDF and NeRF using a spatial-varying scale SDF-to-density transformation for levels of detail for both structure and appearance. The proposed method leverages the learned NDF for structure-aware NeRF training by an adaptive sphere tracing sampling strategy for accurate structure rendering. In return, NeRF further refines structural in recovering missing or fuzzy structures in the NDF. Extensive experiments demonstrate the superior quality and versatility of the proposed method across various scenarios. To benefit the community, the codes will be released at \url{https://github.com/hku-mars/M2Mapping}.
☆ Adaptive Visual Servoing for On-Orbit Servicing
This paper presents an adaptive visual servoing framework for robotic on-orbit servicing (OOS), specifically designed for capturing tumbling satellites. The vision-guided robotic system is capable of selecting optimal control actions in the event of partial or complete vision system failure, particularly in the short term. The autonomous system accounts for physical and operational constraints, executing visual servoing tasks to minimize a cost function. A hierarchical control architecture is developed, integrating a variant of the Iterative Closest Point (ICP) algorithm for image registration, a constrained noise-adaptive Kalman filter, fault detection and recovery logic, and a constrained optimal path planner. The dynamic estimator provides real-time estimates of unknown states and uncertain parameters essential for motion prediction, while ensuring consistency through a set of inequality constraints. It also adjusts the Kalman filter parameters adaptively in response to unexpected vision errors. In the event of vision system faults, a recovery strategy is activated, guided by fault detection logic that monitors the visual feedback via the metric fit error of image registration. The estimated/predicted pose and parameters are subsequently fed into an optimal path planner, which directs the robot's end-effector to the target's grasping point. This process is subject to multiple constraints, including acceleration limits, smooth capture, and line-of-sight maintenance with the target. Experimental results demonstrate that the proposed visual servoing system successfully captured a free-floating object, despite complete occlusion of the vision system.
comment: arXiv admin note: substantial text overlap with arXiv:2209.02156
☆ Developing Trajectory Planning with Behavioral Cloning and Proximal Policy Optimization for Path-Tracking and Static Obstacle Nudging
End-to-end approaches with Reinforcement Learning (RL) and Imitation Learning (IL) have gained increasing popularity in autonomous driving. However, they do not involve explicit reasoning like classic robotics workflow, nor planning with horizons, leading strategies implicit and myopic. In this paper, we introduce our trajectory planning method that uses Behavioral Cloning (BC) for path-tracking and Proximal Policy Optimization (PPO) bootstrapped by BC for static obstacle nudging. It outputs lateral offset values to adjust the given reference trajectory, and performs modified path for different controllers. Our experimental results show that the algorithm can do path-tracking that mimics the expert performance, and avoiding collision to fixed obstacles by trial and errors. This method makes a good attempt at planning with learning-based methods in trajectory planning problems of autonomous driving.
comment: 6 pages, 7 figures
☆ Path-Parameterised RRTs for Underactuated Systems IROS 2024
We present a sample-based motion planning algorithm specialised to a class of underactuated systems using path parameterisation. The structure this class presents under a path parameterisation enables the trivial computation of dynamic feasibility along a path. Using this, a specialised state-based steering mechanism within an RRT motion planning algorithm is developed, enabling the generation of both geometric paths and their time parameterisations without introducing excessive computational overhead. We find with two systems that our algorithm computes feasible trajectories with higher rates of success and lower mean computation times compared to existing approaches.
comment: 8 pages, accepted for publication at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
☆ Robotic Ad-Hoc Networks
Practical robotic adhoc networks (RANETs), a type of mobile wireless adhoc networks (WANETs) supporting the WiFi-Direct modes common in internet of things and phone devices, is proposed based on a strategy of exploiting WiFi-Direct connection modes to overcome hardware restrictions. For a certain period of time the community was enthusiastic about the endless opportunities in fair, robust, efficient, and cheap communication created by the Adhoc mode of the WiFi IEEE 802.11 independent basic service set (IBSS) configuration that required no dedicated access points. The mode was a main enabler of wireless Adhoc networks (WANETS). This communication mode unfortunately did not get into the standard network cards present in IoT and mobile phones, likely due to the high energy consumption it exacts. Rather, such devices implement WiFi-Direct which is designed for star topologies. Several attempts were made to overcame the restriction and support WANETs, but they break at least the fairness and symmetry property, thereby reducing applicability. Here we show a solution for fair RANETs and evaluate the behavior of various strategies using simulations.
comment: Presented at the FCRAR 24 conference in May 2024 (Florida Conference on Recent Advances in Robotics)
☆ Online Resynthesis of High-Level Collaborative Tasks for Robots with Changing Capabilities
Given a collaborative high-level task and a team of heterogeneous robots and behaviors to satisfy it, this work focuses on the challenge of automatically, at runtime, adjusting the individual robot behaviors such that the task is still satisfied, when robots encounter changes to their abilities--either failures or additional actions they can perform. We consider tasks encoded in LTL^\psi and minimize global teaming reassignments (and as a result, local resynthesis) when robots' capabilities change. We also increase the expressivity of LTL^\psi by including additional types of constraints on the overall teaming assignment that the user can specify, such as the minimum number of robots required for each assignment. We demonstrate the framework in a simulated warehouse scenario.
comment: Under review in IEEE Robotics and Automation Letters
☆ PaRCE: Probabilistic and Reconstruction-Based Competency Estimation for Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
☆ PEERNet: An End-to-End Profiling Tool for Real-Time Networked Robotic Systems IROS 2024
Networked robotic systems balance compute, power, and latency constraints in applications such as self-driving vehicles, drone swarms, and teleoperated surgery. A core problem in this domain is deciding when to offload a computationally expensive task to the cloud, a remote server, at the cost of communication latency. Task offloading algorithms often rely on precise knowledge of system-specific performance metrics, such as sensor data rates, network bandwidth, and machine learning model latency. While these metrics can be modeled during system design, uncertainties in connection quality, server load, and hardware conditions introduce real-time performance variations, hindering overall performance. We introduce PEERNet, an end-to-end and real-time profiling tool for cloud robotics. PEERNet enables performance monitoring on heterogeneous hardware through targeted yet adaptive profiling of system components such as sensors, networks, deep-learning pipelines, and devices. We showcase PEERNet's capabilities through networked robotics tasks, such as image-based teleoperation of a Franka Emika Panda arm and querying vision language models using an Nvidia Jetson Orin. PEERNet reveals non-intuitive behavior in robotic systems, such as asymmetric network transmission and bimodal language model output. Our evaluation underscores the effectiveness and importance of benchmarking in networked robotics, demonstrating PEERNet's adaptability. Our code is open-source and available at github.com/UTAustin-SwarmLab/PEERNet.
comment: Accepted at IROS 2024
☆ Voronoi-based Multi-Robot Formations for 3D Source Seeking via Cooperative Gradient Estimation
In this paper, we tackle the problem of localizing the source of a three-dimensional signal field with a team of mobile robots able to collect noisy measurements of its strength and share information with each other. The adopted strategy is to cooperatively compute a closed-form estimation of the gradient of the signal field that is then employed to steer the multi-robot system toward the source location. In order to guarantee an accurate and robust gradient estimation, the robots are placed on the surface of a sphere of fixed radius. More specifically, their positions correspond to the generators of a constrained Centroidal Voronoi partition on the spherical surface. We show that, by keeping these specific formations, both crucial geometric properties and a high level of field coverage are simultaneously achieved and that they allow estimating the gradient via simple analytic expressions. We finally provide simulation results to evaluate the performance of the proposed approach, considering both noise-free and noisy measurements. In particular, a comparative analysis shows how its higher robustness against faulty measurements outperforms an alternative state-of-the-art solution.
♻ ☆ RoVi-Aug: Robot and Viewpoint Augmentation for Cross-Embodiment Robot Learning
Scaling up robot learning requires large and diverse datasets, and how to efficiently reuse collected data and transfer policies to new embodiments remains an open question. Emerging research such as the Open-X Embodiment (OXE) project has shown promise in leveraging skills by combining datasets including different robots. However, imbalances in the distribution of robot types and camera angles in many datasets make policies prone to overfit. To mitigate this issue, we propose RoVi-Aug, which leverages state-of-the-art image-to-image generative models to augment robot data by synthesizing demonstrations with different robots and camera views. Through extensive physical experiments, we show that, by training on robot- and viewpoint-augmented data, RoVi-Aug can zero-shot deploy on an unseen robot with significantly different camera angles. Compared to test-time adaptation algorithms such as Mirage, RoVi-Aug requires no extra processing at test time, does not assume known camera angles, and allows policy fine-tuning. Moreover, by co-training on both the original and augmented robot datasets, RoVi-Aug can learn multi-robot and multi-task policies, enabling more efficient transfer between robots and skills and improving success rates by up to 30%. Project website: https://rovi-aug.github.io.
comment: CoRL 2024 (Oral). Project website: https://rovi-aug.github.io
♻ ☆ A Multi-Modal Approach Based on Large Vision Model for Close-Range Underwater Target Localization
Underwater target localization uses real-time sensory measurements to estimate the position of underwater objects of interest, providing critical feedback information for underwater robots. While acoustic sensing is the most acknowledged method in underwater robots and possibly the only effective approach for long-range underwater target localization, such a sensing modality generally suffers from low resolution, high cost and high energy consumption, thus leading to a mediocre performance when applied to close-range underwater target localization. On the other hand, optical sensing has attracted increasing attention in the underwater robotics community for its advantages of high resolution and low cost, holding a great potential particularly in close-range underwater target localization. However, most existing studies in underwater optical sensing are restricted to specific types of targets due to the limited training data available. In addition, these studies typically focus on the design of estimation algorithms and ignore the influence of illumination conditions on the sensing performance, thus hindering wider applications in the real world. To address the aforementioned issues, this paper proposes a novel target localization method that assimilates both optical and acoustic sensory measurements to estimate the 3D positions of close-range underwater targets. A test platform with controllable illumination conditions is designed and developed to experimentally investigate the proposed multi-modal sensing approach. A large vision model is applied to process the optical imaging measurements, eliminating the requirement for training data acquisition, thus significantly expanding the scope of potential applications. Extensive experiments are conducted, the results of which validate the effectiveness of the proposed underwater target localization method.
♻ ☆ Active Collaborative Visual SLAM exploiting ORB Features
In autonomous robotics, a significant challenge involves devising robust solutions for Active Collaborative SLAM (AC-SLAM). This process requires multiple robots to cooperatively explore and map an unknown environment by intelligently coordinating their movements and sensor data acquisition. In this article, we present an efficient visual AC-SLAM method using aerial and ground robots for environment exploration and mapping. We propose an efficient frontiers filtering method that takes into account the common IoU map frontiers and reduces the frontiers for each robot. Additionally, we also present an approach to guide robots to previously visited goal positions to promote loop closure to reduce SLAM uncertainty. The proposed method is implemented in ROS and evaluated through simulations on publicly available datasets and similar methods, achieving an accumulative average of 59% of increase in area coverage.
comment: 6 Pages, 7 Figures, 2 Tables. arXiv admin note: text overlap with arXiv:2310.01967
♻ ☆ Jointly Learning Cost and Constraints from Demonstrations for Safe Trajectory Generation IROS
Learning from Demonstration allows robots to mimic human actions. However, these methods do not model constraints crucial to ensure safety of the learned skill. Moreover, even when explicitly modelling constraints, they rely on the assumption of a known cost function, which limits their practical usability for task with unknown cost. In this work we propose a two-step optimization process that allow to estimate cost and constraints by decoupling the learning of cost functions from the identification of unknown constraints within the demonstrated trajectories. Initially, we identify the cost function by isolating the effect of constraints on parts of the demonstrations. Subsequently, a constraint leaning method is used to identify the unknown constraints. Our approach is validated both on simulated trajectories and a real robotic manipulation task. Our experiments show the impact that incorrect cost estimation has on the learned constraints and illustrate how the proposed method is able to infer unknown constraints, such as obstacles, from demonstrated trajectories without any initial knowledge of the cost.
comment: (Accepted/In press) 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ CLFT: Camera-LiDAR Fusion Transformer for Semantic Segmentation in Autonomous Driving
Critical research about camera-and-LiDAR-based semantic object segmentation for autonomous driving significantly benefited from the recent development of deep learning. Specifically, the vision transformer is the novel ground-breaker that successfully brought the multi-head-attention mechanism to computer vision applications. Therefore, we propose a vision-transformer-based network to carry out camera-LiDAR fusion for semantic segmentation applied to autonomous driving. Our proposal uses the novel progressive-assemble strategy of vision transformers on a double-direction network and then integrates the results in a cross-fusion strategy over the transformer decoder layers. Unlike other works in the literature, our camera-LiDAR fusion transformers have been evaluated in challenging conditions like rain and low illumination, showing robust performance. The paper reports the segmentation results over the vehicle and human classes in different modalities: camera-only, LiDAR-only, and camera-LiDAR fusion. We perform coherent controlled benchmark experiments of CLFT against other networks that are also designed for semantic segmentation. The experiments aim to evaluate the performance of CLFT independently from two perspectives: multimodal sensor fusion and backbone architectures. The quantitative assessments show our CLFT networks yield an improvement of up to 10% for challenging dark-wet conditions when comparing with Fully-Convolutional-Neural-Network-based (FCN) camera-LiDAR fusion neural network. Contrasting to the network with transformer backbone but using single modality input, the all-around improvement is 5-10%.
comment: Accepted to IEEE Transactions on Intelligent Vehicles
♻ ☆ RGBManip: Monocular Image-based Robotic Manipulation through Active Object Pose Estimation ICRA
Robotic manipulation requires accurate perception of the environment, which poses a significant challenge due to its inherent complexity and constantly changing nature. In this context, RGB image and point-cloud observations are two commonly used modalities in visual-based robotic manipulation, but each of these modalities have their own limitations. Commercial point-cloud observations often suffer from issues like sparse sampling and noisy output due to the limits of the emission-reception imaging principle. On the other hand, RGB images, while rich in texture information, lack essential depth and 3D information crucial for robotic manipulation. To mitigate these challenges, we propose an image-only robotic manipulation framework that leverages an eye-on-hand monocular camera installed on the robot's parallel gripper. By moving with the robot gripper, this camera gains the ability to actively perceive object from multiple perspectives during the manipulation process. This enables the estimation of 6D object poses, which can be utilized for manipulation. While, obtaining images from more and diverse viewpoints typically improves pose estimation, it also increases the manipulation time. To address this trade-off, we employ a reinforcement learning policy to synchronize the manipulation strategy with active perception, achieving a balance between 6D pose accuracy and manipulation efficiency. Our experimental results in both simulated and real-world environments showcase the state-of-the-art effectiveness of our approach. %, which, to the best of our knowledge, is the first to achieve robust real-world robotic manipulation through active pose estimation. We believe that our method will inspire further research on real-world-oriented robotic manipulation.
comment: 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024
Learning to Walk and Fly with Adversarial Motion Priors IROS
Robot multimodal locomotion encompasses the ability to transition between walking and flying, representing a significant challenge in robotics. This work presents an approach that enables automatic smooth transitions between legged and aerial locomotion. Leveraging the concept of Adversarial Motion Priors, our method allows the robot to imitate motion datasets and accomplish the desired task without the need for complex reward functions. The robot learns walking patterns from human-like gaits and aerial locomotion patterns from motions obtained using trajectory optimization. Through this process, the robot adapts the locomotion scheme based on environmental feedback using reinforcement learning, with the spontaneous emergence of mode-switching behavior. The results highlight the potential for achieving multimodal locomotion in aerial humanoid robotics through automatic control of walking and flying modes, paving the way for applications in diverse domains such as search and rescue, surveillance, and exploration missions. This research contributes to advancing the capabilities of aerial humanoid robots in terms of versatile locomotion in various environments.
comment: This paper has been accepted for publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, 2024
♻ ☆ Sim-to-Real of Soft Robots with Learned Residual Physics
Accurately modeling soft robots in simulation is computationally expensive and commonly falls short of representing the real world. This well-known discrepancy, known as the sim-to-real gap, can have several causes, such as coarsely approximated geometry and material models, manufacturing defects, viscoelasticity and plasticity, and hysteresis effects. Residual physics networks learn from real-world data to augment a discrepant model and bring it closer to reality. Here, we present a residual physics method for modeling soft robots with large degrees of freedom. We train neural networks to learn a residual term -- the modeling error between simulated and physical systems. Concretely, the residual term is a force applied on the whole simulated mesh, while real position data is collected with only sparse motion markers. The physical prior of the analytical simulation provides a starting point for the residual network, and the combined model is more informed than if physics were learned tabula rasa. We demonstrate our method on 1) a silicone elastomeric beam and 2) a soft pneumatic arm with hard-to-model, anisotropic fiber reinforcements. Our method outperforms traditional system identification up to 60%. We show that residual physics need not be limited to low degrees of freedom but can effectively bridge the sim-to-real gap for high dimensional systems.
comment: 8 pages, 8 figures
♻ ☆ VisFly: An Efficient and Versatile Simulator for Training Vision-based Flight
We present VisFly, a quadrotor simulator designed to efficiently train vision-based flight policies using reinforcement learning algorithms. VisFly offers a user-friendly framework and interfaces, leveraging Habitat-Sim's rendering engines to achieve frame rates exceeding 10,000 frames per second for rendering motion and sensor data. The simulator incorporates differentiable physics and is seamlessly wrapped with the Gym environment, facilitating the straightforward implementation of various learning algorithms. It supports the directly importing open-source scene datasets compatible with Habitat-Sim, enabling training on diverse real-world environments simultaneously. To validate our simulator, we also make three reinforcement learning examples for typical flight tasks relying on visual observations. The simulator is now available at [https://github.com/SJTU-ViSYS-team/VisFly].
♻ ☆ G-Loc: Tightly-coupled Graph Localization with Prior Topo-metric Information
Localization in already mapped environments is a critical component in many robotics and automotive applications, where previously acquired information can be exploited along with sensor fusion to provide robust and accurate localization estimates. In this work, we offer a new perspective on map-based localization by reusing prior topological and metric information. Thus, we reformulate this long-studied problem to go beyond the mere use of metric maps. Our framework seamlessly integrates LiDAR, inertial and GNSS measurements, and cloud-to-map registrations in a sliding window graph fashion, which allows to accommodate the uncertainty of each observation. The modularity of our framework allows it to work with different sensor configurations (e.g., LiDAR resolutions, GNSS denial) and environmental conditions (e.g., mapless regions, large environments). We have conducted several validation experiments, including the deployment in a real-world automotive application, demonstrating the accuracy, efficiency, and versatility of our system in online localization.
comment: 8 pages
♻ ☆ OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation
Light field cameras are capable of capturing intricate angular and spatial details. This allows for acquiring complex light patterns and details from multiple angles, significantly enhancing the precision of image semantic segmentation. However, two significant issues arise: (1) The extensive angular information of light field cameras contains a large amount of redundant data, which is overwhelming for the limited hardware resources of intelligent agents. (2) A relative displacement difference exists in the data collected by different micro-lenses. To address these issues, we propose an Omni-Aperture Fusion model (OAFuser) that leverages dense context from the central view and extracts the angular information from sub-aperture images to generate semantically consistent results. To simultaneously streamline the redundant information from the light field cameras and avoid feature loss during network propagation, we present a simple yet very effective Sub-Aperture Fusion Module (SAFM). This module efficiently embeds sub-aperture images in angular features, allowing the network to process each sub-aperture image with a minimal computational demand of only (around 1GFlops). Furthermore, to address the mismatched spatial information across viewpoints, we present a Center Angular Rectification Module (CARM) to realize feature resorting and prevent feature occlusion caused by misalignment. The proposed OAFuser achieves state-of-the-art performance on four UrbanLF datasets in terms of all evaluation metrics and sets a new record of 84.93% in mIoU on the UrbanLF-Real Extended dataset, with a gain of +3.69%. The source code for OAFuser is available at https://github.com/FeiBryantkit/OAFuser.
comment: Accepted to IEEE Transactions on Artificial Intelligence (TAI). The source code is available at https://github.com/FeiBryantkit/OAFuser
♻ ☆ Risk-Aware Robotics: Tail Risk Measures in Planning, Control, and Verification
The need for a systematic approach to risk assessment has increased in recent years due to the ubiquity of autonomous systems that alter our day-to-day experiences and their need for safety, e.g., for self-driving vehicles, mobile service robots, and bipedal robots. These systems are expected to function safely in unpredictable environments and interact seamlessly with humans, whose behavior is notably challenging to forecast. We present a survey of risk-aware methodologies for autonomous systems. We adopt a contemporary risk-aware approach to mitigate rare and detrimental outcomes by advocating the use of tail risk measures, a concept borrowed from financial literature. This survey will introduce these measures and explain their relevance in the context of robotic systems for planning, control, and verification applications.
♻ ☆ Mirage: Cross-Embodiment Zero-Shot Policy Transfer with Cross-Painting RSS 2024
The ability to reuse collected data and transfer trained policies between robots could alleviate the burden of additional data collection and training. While existing approaches such as pretraining plus finetuning and co-training show promise, they do not generalize to robots unseen in training. Focusing on common robot arms with similar workspaces and 2-jaw grippers, we investigate the feasibility of zero-shot transfer. Through simulation studies on 8 manipulation tasks, we find that state-based Cartesian control policies can successfully zero-shot transfer to a target robot after accounting for forward dynamics. To address robot visual disparities for vision-based policies, we introduce Mirage, which uses "cross-painting"--masking out the unseen target robot and inpainting the seen source robot--during execution in real time so that it appears to the policy as if the trained source robot were performing the task. Mirage applies to both first-person and third-person camera views and policies that take in both states and images as inputs or only images as inputs. Despite its simplicity, our extensive simulation and physical experiments provide strong evidence that Mirage can successfully zero-shot transfer between different robot arms and grippers with only minimal performance degradation on a variety of manipulation tasks such as picking, stacking, and assembly, significantly outperforming a generalist policy. Project website: https://robot-mirage.github.io/
comment: RSS 2024. Project page: https://robot-mirage.github.io/
♻ ☆ Efficient Imitation Without Demonstrations via Value-Penalized Auxiliary Control from Examples ICRA'25
Learning from examples of success is an ap pealing approach to reinforcement learning but it presents a challenging exploration problem, especially for complex or long-horizon tasks. This work introduces value-penalized auxiliary control from examples (VPACE), an algorithm that significantly improves exploration in example-based control by adding examples of simple auxiliary tasks. For instance, a manipulation task may have auxiliary examples of an object being reached for, grasped, or lifted. We show that the na\"{i}ve application of scheduled auxiliary control to example-based learning can lead to value overestimation and poor performance. We resolve the problem with an above-success-level value penalty. Across both simulated and real robotic environments, we show that our approach substantially improves learning efficiency for challenging tasks, while maintaining bounded value estimates. We compare with existing approaches to example-based learning, inverse reinforcement learning, and an exploration bonus. Preliminary results also suggest that VPACE may learn more efficiently than the more common approaches of using full trajectories or true sparse rewards. Videos, code, and datasets: https://papers.starslab.ca/vpace.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA'25), Atlanta, USA, May 19-23, 2025
♻ ☆ A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems
The integration of Large Language Models (LLMs) like GPT-4o into robotic systems represents a significant advancement in embodied artificial intelligence. These models can process multi-modal prompts, enabling them to generate more context-aware responses. However, this integration is not without challenges. One of the primary concerns is the potential security risks associated with using LLMs in robotic navigation tasks. These tasks require precise and reliable responses to ensure safe and effective operation. Multi-modal prompts, while enhancing the robot's understanding, also introduce complexities that can be exploited maliciously. For instance, adversarial inputs designed to mislead the model can lead to incorrect or dangerous navigational decisions. This study investigates the impact of prompt injections on mobile robot performance in LLM-integrated systems and explores secure prompt strategies to mitigate these risks. Our findings demonstrate a substantial overall improvement of approximately 30.8% in both attack detection and system performance with the implementation of robust defence mechanisms, highlighting their critical role in enhancing security and reliability in mission-oriented tasks.
♻ ☆ Learning Lyapunov-Stable Polynomial Dynamical Systems through Imitation
Imitation learning is a paradigm to address complex motion planning problems by learning a policy to imitate an expert's behavior. However, relying solely on the expert's data might lead to unsafe actions when the robot deviates from the demonstrated trajectories. Stability guarantees have previously been provided utilizing nonlinear dynamical systems, acting as high-level motion planners, in conjunction with the Lyapunov stability theorem. Yet, these methods are prone to inaccurate policies, high computational cost, sample inefficiency, or quasi stability when replicating complex and highly nonlinear trajectories. To mitigate this problem, we present an approach for learning a globally stable nonlinear dynamical system as a motion planning policy. We model the nonlinear dynamical system as a parametric polynomial and learn the polynomial's coefficients jointly with a Lyapunov candidate. To showcase its success, we compare our method against the state of the art in simulation and conduct real-world experiments with the Kinova Gen3 Lite manipulator arm. Our experiments demonstrate the sample efficiency and reproduction accuracy of our method for various expert trajectories, while remaining stable in the face of perturbations.
comment: In 7th Annual Conference on Robot Learning 2023 Aug 30
♻ ☆ Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics RSS
We show that off-the-shelf text-based Transformers, with no additional training, can perform few-shot in-context visual imitation learning, mapping visual observations to action sequences that emulate the demonstrator's behaviour. We achieve this by transforming visual observations (inputs) and trajectories of actions (outputs) into sequences of tokens that a text-pretrained Transformer (GPT-4 Turbo) can ingest and generate, via a framework we call Keypoint Action Tokens (KAT). Despite being trained only on language, we show that these Transformers excel at translating tokenised visual keypoint observations into action trajectories, performing on par or better than state-of-the-art imitation learning (diffusion policies) in the low-data regime on a suite of real-world, everyday tasks. Rather than operating in the language domain as is typical, KAT leverages text-based Transformers to operate in the vision and action domains to learn general patterns in demonstration data for highly efficient imitation learning, indicating promising new avenues for repurposing natural language models for embodied tasks. Videos are available at https://www.robot-learning.uk/keypoint-action-tokens.
comment: Published at Robotics: Science and Systems (RSS) 2024
♻ ☆ Development of Advanced FEM Simulation Technology for Pre-Operative Surgical Planning
Intracorporeal needle-based therapeutic ultrasound (NBTU) offers a minimally invasive approach for the thermal ablation of malignant brain tumors, including both primary and metastatic cancers. NBTU utilizes a high-frequency alternating electric field to excite a piezoelectric transducer, generating acoustic waves that cause localized heating and tumor cell ablation, and it provides a more precise ablation by delivering lower acoustic power doses directly to targeted tumors while sparing surrounding healthy tissue. Building on our previous work, this study introduces a database for optimizing pre-operative surgical planning by simulating ablation effects in varied tissue environments and develops an extended simulation model incorporating various tumor types and sizes to evaluate thermal damage under trans-tissue conditions. A comprehensive database is created from these simulations, detailing critical parameters such as CEM43 isodose maps, temperature changes, thermal dose areas, and maximum ablation distances for four directional probes. This database serves as a valuable resource for future studies, aiding in complex trajectory planning and parameter optimization for NBTU procedures. Moreover, a novel probe selection method is proposed to enhance pre-surgical planning, providing a strategic approach to selecting probes that maximize therapeutic efficiency and minimize ablation time. By avoiding unnecessary thermal propagation and optimizing probe angles, this method has the potential to improve patient outcomes and streamline surgical procedures. Overall, the findings of this study contribute significantly to the field of NBTU, offering a robust framework for enhancing treatment precision and efficacy in clinical settings.
comment: 8 pages, 17 figures, 2 tables
♻ ☆ Metaverse for Safer Roadways: An Immersive Digital Twin Framework for Exploring Human-Autonomy Coexistence in Urban Transportation Systems
Societal-scale deployment of autonomous vehicles requires them to coexist with human drivers, necessitating mutual understanding and coordination among these entities. However, purely real-world or simulation-based experiments cannot be employed to explore such complex interactions due to safety and reliability concerns, respectively. Consequently, this work presents an immersive digital twin framework to explore and experiment with the interaction dynamics between autonomous and non-autonomous traffic participants. Particularly, we employ a mixed-reality human-machine interface to allow human drivers and autonomous agents to observe and interact with each other for testing edge-case scenarios while ensuring safety at all times. To validate the versatility of the proposed framework's modular architecture, we first present a discussion on a set of user experience experiments encompassing 4 different levels of immersion with 4 distinct user interfaces. We then present a case study of uncontrolled intersection traversal to demonstrate the efficacy of the proposed framework in validating the interactions of a primary human-driven, autonomous, and connected autonomous vehicle with a secondary semi-autonomous vehicle. The proposed framework has been openly released to guide the future of autonomy-oriented digital twins and research on human-autonomy coexistence.
comment: Accepted at IEEE Conference on Telepresence (TELE) 2024
♻ ☆ What's Wrong with the Absolute Trajectory Error? ECCV 2024
One of the limitations of the commonly used Absolute Trajectory Error (ATE) is that it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers varies. In this work, we propose an alternative error metric for evaluating the accuracy of the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE), is computed in five steps: (1) Shift the ground-truth and estimated trajectories such that both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory such that it minimizes the sum of geodesic distances between the corresponding camera orientations. (3) Scale the estimated trajectory such that the median distance of the cameras to their geometric median is the same as that of the ground truth. (4) Compute, winsorize and normalize the distances between the corresponding cameras. (5) Obtain the DTE by taking the average of the mean and the root-mean-square (RMS) of the resulting distances. This metric is an attractive alternative to the ATE, in that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error or the number of outliers varies. Using the similar idea, we also propose a novel rotation error metric, named Discernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-to-marker rotation, which is needed for the computation of our metrics. Our methods are verified through extensive simulations.
comment: The main part of this manuscript (except the part on DRE) has been accepted to ECCV 2024 Workshop HALF-CENTURY OF STRUCTURE-FROM-MOTION (50SFM)
♻ ☆ Roadmaps with Gaps over Controllers: Achieving Efficiency in Planning under Dynamics IROS
This paper aims to improve the computational efficiency of motion planning for mobile robots with non-trivial dynamics through the use of learned controllers. It adopts a decoupled strategy, where a system-specific controller is first trained offline in an empty environment to deal with the robot's dynamics. For a target environment, the proposed approach constructs offline a data structure, a "Roadmap with Gaps," to approximately learn how to solve planning queries in this environment using the learned controller. The nodes of the roadmap correspond to local regions. Edges correspond to applications of the learned control policy that approximately connect these regions. Gaps arise because the controller does not perfectly connect pairs of individual states along edges. Online, given a query, a tree sampling-based motion planner uses the roadmap so that the tree's expansion is informed towards the goal region. The tree expansion selects local subgoals given a wavefront on the roadmap that guides towards the goal. When the controller cannot reach a subgoal region, the planner resorts to random exploration to maintain probabilistic completeness and asymptotic optimality. The accompanying experimental evaluation shows that the approach significantly improves the computational efficiency of motion planning on various benchmarks, including physics-based vehicular models on uneven and varying friction terrains as well as a quadrotor under air pressure effects.
comment: To be presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
♻ ☆ PCR-99: A Practical Method for Point Cloud Registration with 99 Percent Outliers ECCV 2024
We propose a robust method for point cloud registration that can handle both unknown scales and extreme outlier ratios. Our method, dubbed PCR-99, uses a deterministic 3-point sampling approach with two novel mechanisms that significantly boost the speed: (1) an improved ordering of the samples based on pairwise scale consistency, prioritizing the point correspondences that are more likely to be inliers, and (2) an efficient outlier rejection scheme based on triplet scale consistency, prescreening bad samples and reducing the number of hypotheses to be tested. Our evaluation shows that, up to 98% outlier ratio, the proposed method achieves comparable performance to the state of the art. At 99% outlier ratio, however, it outperforms the state of the art for both known-scale and unknown-scale problems. Especially for the latter, we observe a clear superiority in terms of robustness and speed.
comment: Accepted to ECCV 2024 Workshop on Recovering 6D Object Pose (R6D)
Computer Vision 158
☆ Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering
State-of-the-art techniques for 3D reconstruction are largely based on volumetric scene representations, which require sampling multiple points to compute the color arriving along a ray. Using these representations for more general inverse rendering -- reconstructing geometry, materials, and lighting from observed images -- is challenging because recursively path-tracing such volumetric representations is expensive. Recent works alleviate this issue through the use of radiance caches: data structures that store the steady-state, infinite-bounce radiance arriving at any point from any direction. However, these solutions rely on approximations that introduce bias into the renderings and, more importantly, into the gradients used for optimization. We present a method that avoids these approximations while remaining computationally efficient. In particular, we leverage two techniques to reduce variance for unbiased estimators of the rendering equation: (1) an occlusion-aware importance sampler for incoming illumination and (2) a fast cache architecture that can be used as a control variate for the radiance from a high-quality, but more expensive, volumetric cache. We show that by removing these biases our approach improves the generality of radiance cache based inverse rendering, as well as increasing quality in the presence of challenging light transport effects such as specular reflections.
comment: Website: https://benattal.github.io/flash-cache/
☆ Neural MP: A Generalist Neural Motion Planner
The current paradigm for motion planning generates solutions from scratch for every new problem, which consumes significant amounts of time and computational resources. For complex, cluttered scenes, motion planning approaches can often take minutes to produce a solution, while humans are able to accurately and safely reach any goal in seconds by leveraging their prior experience. We seek to do the same by applying data-driven learning at scale to the problem of motion planning. Our approach builds a large number of complex scenes in simulation, collects expert data from a motion planner, then distills it into a reactive generalist policy. We then combine this with lightweight optimization to obtain a safe path for real world deployment. We perform a thorough evaluation of our method on 64 motion planning tasks across four diverse environments with randomized poses, scenes and obstacles, in the real world, demonstrating an improvement of 23%, 17% and 79% motion planning success rate over state of the art sampling, optimization and learning based planning methods. Video results available at mihdalal.github.io/neuralmotionplanner
comment: Website at mihdalal.github.io/neuralmotionplanner. Main paper: 7 pages, 4 figures, 2 tables. Appendix: 9 pages, 5 figures, 6 tables
☆ Promptable Closed-loop Traffic Simulation
Simulation stands as a cornerstone for safe and efficient autonomous driving development. At its core a simulation system ought to produce realistic, reactive, and controllable traffic patterns. In this paper, we propose ProSim, a multimodal promptable closed-loop traffic simulation framework. ProSim allows the user to give a complex set of numerical, categorical or textual prompts to instruct each agent's behavior and intention. ProSim then rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants. Our experiments show that ProSim achieves high prompt controllability given different user prompts, while reaching competitive performance on the Waymo Sim Agents Challenge when no prompt is given. To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset with over 10M text prompts for over 520k real-world driving scenarios. We will release code of ProSim as well as data and labeling tools of ProSim-Instruct-520k at https://ariostgx.github.io/ProSim.
comment: Accepted to CoRL 2024. Website available at https://ariostgx.github.io/ProSim
☆ LSVOS Challenge Report: Large-scale Complex and Long Video Object Segmentation ECCV 2024
Despite the promising performance of current video segmentation models on existing benchmarks, these models still struggle with complex scenes. In this paper, we introduce the 6th Large-scale Video Object Segmentation (LSVOS) challenge in conjunction with ECCV 2024 workshop. This year's challenge includes two tasks: Video Object Segmentation (VOS) and Referring Video Object Segmentation (RVOS). In this year, we replace the classic YouTube-VOS and YouTube-RVOS benchmark with latest datasets MOSE, LVOS, and MeViS to assess VOS under more challenging complex environments. This year's challenge attracted 129 registered teams from more than 20 institutes across over 8 countries. This report include the challenge and dataset introduction, and the methods used by top 7 teams in two tracks. More details can be found in our homepage https://lsvos.github.io/.
comment: ECCV 2024 LSVOS Challenge Report: https://lsvos.github.io/
☆ Vision-Driven 2D Supervised Fine-Tuning Framework for Bird's Eye View Perception
Visual bird's eye view (BEV) perception, due to its excellent perceptual capabilities, is progressively replacing costly LiDAR-based perception systems, especially in the realm of urban intelligent driving. However, this type of perception still relies on LiDAR data to construct ground truth databases, a process that is both cumbersome and time-consuming. Moreover, most massproduced autonomous driving systems are only equipped with surround camera sensors and lack LiDAR data for precise annotation. To tackle this challenge, we propose a fine-tuning method for BEV perception network based on visual 2D semantic perception, aimed at enhancing the model's generalization capabilities in new scene data. Considering the maturity and development of 2D perception technologies, our method significantly reduces the dependency on high-cost BEV ground truths and shows promising industrial application prospects. Extensive experiments and comparative analyses conducted on the nuScenes and Waymo public datasets demonstrate the effectiveness of our proposed method.
☆ GASP: Gaussian Splatting for Physic-Based Simulations
Physics simulation is paramount for modeling and utilization of 3D scenes in various real-world applications. However, its integration with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. As an alternative, we can modify the physics grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our Gaussian Splatting for Physics-Based Simulations (GASP) model uses such a map (without any modifications) and flat Gaussian distributions, which are parameterized by three points (mesh faces). Subsequently, each 3D point (mesh face node) is treated as a discrete entity within a 3D space. Consequently, the problem of modeling Gaussian components is reduced to working with 3D points. Additionally, the information on mesh faces can be used to incorporate further properties into the physics model, facilitating the use of triangles. Resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed model exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering.
☆ VFA: Vision Frequency Analysis of Foundation Models and Human
Machine learning models often struggle with distribution shifts in real-world scenarios, whereas humans exhibit robust adaptation. Models that better align with human perception may achieve higher out-of-distribution generalization. In this study, we investigate how various characteristics of large-scale computer vision models influence their alignment with human capabilities and robustness. Our findings indicate that increasing model and data size and incorporating rich semantic information and multiple modalities enhance models' alignment with human perception and their overall robustness. Our empirical analysis demonstrates a strong correlation between out-of-distribution accuracy and human alignment.
☆ A Flexible Framework for Universal Computational Aberration Correction via Automatic Lens Library Generation and Domain Adaptation
Emerging universal Computational Aberration Correction (CAC) paradigms provide an inspiring solution to light-weight and high-quality imaging without repeated data preparation and model training to accommodate new lens designs. However, the training databases in these approaches, i.e., the lens libraries (LensLibs), suffer from their limited coverage of real-world aberration behaviors. In this work, we set up an OmniLens framework for universal CAC, considering both the generalization ability and flexibility. OmniLens extends the idea of universal CAC to a broader concept, where a base model is trained for three cases, including zero-shot CAC with the pre-trained model, few-shot CAC with a little lens-specific data for fine-tuning, and domain adaptive CAC using domain adaptation for lens-descriptions-unknown lens. In terms of OmniLens's data foundation, we first propose an Evolution-based Automatic Optical Design (EAOD) pipeline to construct LensLib automatically, coined AODLib, whose diversity is enriched by an evolution framework, with comprehensive constraints and a hybrid optimization strategy for achieving realistic aberration behaviors. For network design, we introduce the guidance of high-quality codebook priors to facilitate zero-shot CAC and few-shot CAC, which enhances the model's generalization ability, while also boosting its convergence in a few-shot case. Furthermore, based on the statistical observation of dark channel priors in optical degradation, we design an unsupervised regularization term to adapt the base model to the target descriptions-unknown lens using its aberration images without ground truth. We validate OmniLens on 4 manually designed low-end lenses with various structures and aberration behaviors. Remarkably, the base model trained on AODLib exhibits strong generalization capabilities, achieving 97% of the lens-specific performance in a zero-shot setting.
☆ Input Space Mode Connectivity in Deep Neural Networks
We extend the concept of loss landscape mode connectivity to the input space of deep neural networks. Mode connectivity was originally studied within parameter space, where it describes the existence of low-loss paths between different solutions (loss minimizers) obtained through gradient descent. We present theoretical and empirical evidence of its presence in the input space of deep networks, thereby highlighting the broader nature of the phenomenon. We observe that different input images with similar predictions are generally connected, and for trained models, the path tends to be simple, with only a small deviation from being a linear path. Our methodology utilizes real, interpolated, and synthetic inputs created using the input optimization technique for feature visualization. We conjecture that input space mode connectivity in high-dimensional spaces is a geometric effect that takes place even in untrained models and can be explained through percolation theory. We exploit mode connectivity to obtain new insights about adversarial examples and demonstrate its potential for adversarial detection. Additionally, we discuss applications for the interpretability of deep networks.
☆ Leveraging Object Priors for Point Tracking ECCV 2024
Point tracking is a fundamental problem in computer vision with numerous applications in AR and robotics. A common failure mode in long-term point tracking occurs when the predicted point leaves the object it belongs to and lands on the background or another object. We identify this as the failure to correctly capture objectness properties in learning to track. To address this limitation of prior work, we propose a novel objectness regularization approach that guides points to be aware of object priors by forcing them to stay inside the the boundaries of object instances. By capturing objectness cues at training time, we avoid the need to compute object masks during testing. In addition, we leverage contextual attention to enhance the feature representation for capturing objectness at the feature level more effectively. As a result, our approach achieves state-of-the-art performance on three point tracking benchmarks, and we further validate the effectiveness of our components via ablation studies. The source code is available at: https://github.com/RehgLab/tracking_objectness
comment: ECCV 2024 ILR Workshop
☆ Creativity and Visual Communication from Machine to Musician: Sharing a Score through a Robotic Camera
This paper explores the integration of visual communication and musical interaction by implementing a robotic camera within a "Guided Harmony" musical game. We aim to examine co-creative behaviors between human musicians and robotic systems. Our research explores existing methodologies like improvisational game pieces and extends these concepts to include robotic participation using a PTZ camera. The robotic system interprets and responds to nonverbal cues from musicians, creating a collaborative and adaptive musical experience. This initial case study underscores the importance of intuitive visual communication channels. We also propose future research directions, including parameters for refining the visual cue toolkit and data collection methods to understand human-machine co-creativity further. Our findings contribute to the broader understanding of machine intelligence in augmenting human creativity, particularly in musical settings.
☆ Consensus-based Distributed Quantum Kernel Learning for Speech Recognition
This paper presents a Consensus-based Distributed Quantum Kernel Learning (CDQKL) framework aimed at improving speech recognition through distributed quantum computing.CDQKL addresses the challenges of scalability and data privacy in centralized quantum kernel learning. It does this by distributing computational tasks across quantum terminals, which are connected through classical channels. This approach enables the exchange of model parameters without sharing local training data, thereby maintaining data privacy and enhancing computational efficiency. Experimental evaluations on benchmark speech emotion recognition datasets demonstrate that CDQKL achieves competitive classification accuracy and scalability compared to centralized and local quantum kernel learning models. The distributed nature of CDQKL offers advantages in privacy preservation and computational efficiency, making it suitable for data-sensitive fields such as telecommunications, automotive, and finance. The findings suggest that CDQKL can effectively leverage distributed quantum computing for large-scale machine-learning tasks.
☆ ReL-SAR: Representation Learning for Skeleton Action Recognition with Convolutional Transformers and BYOL
To extract robust and generalizable skeleton action recognition features, large amounts of well-curated data are typically required, which is a challenging task hindered by annotation and computation costs. Therefore, unsupervised representation learning is of prime importance to leverage unlabeled skeleton data. In this work, we investigate unsupervised representation learning for skeleton action recognition. For this purpose, we designed a lightweight convolutional transformer framework, named ReL-SAR, exploiting the complementarity of convolutional and attention layers for jointly modeling spatial and temporal cues in skeleton sequences. We also use a Selection-Permutation strategy for skeleton joints to ensure more informative descriptions from skeletal data. Finally, we capitalize on Bootstrap Your Own Latent (BYOL) to learn robust representations from unlabeled skeleton sequence data. We achieved very competitive results on limited-size datasets: MCAD, IXMAS, JHMDB, and NW-UCLA, showing the effectiveness of our proposed method against state-of-the-art methods in terms of both performance and computational efficiency. To ensure reproducibility and reusability, the source code including all implementation parameters is provided at: https://github.com/SafwenNaimi/Representation-Learning-for-Skeleton-Action-Recognition-with-Convolutional-Transformers-and-BYOL
comment: 8 pages, 4 figures, 6 tables
☆ Robust Loss Functions for Object Grasping under Limited Ground Truth
Object grasping is a crucial technology enabling robots to perceive and interact with the environment sufficiently. However, in practical applications, researchers are faced with missing or noisy ground truth while training the convolutional neural network, which decreases the accuracy of the model. Therefore, different loss functions are proposed to deal with these problems to improve the accuracy of the neural network. For missing ground truth, a new predicted category probability method is defined for unlabeled samples, which works effectively in conjunction with the pseudo-labeling method. Furthermore, for noisy ground truth, a symmetric loss function is introduced to resist the corruption of label noises. The proposed loss functions are powerful, robust, and easy to use. Experimental results based on the typical grasping neural network show that our method can improve performance by 2 to 13 percent.
☆ Referring Expression Generation in Visually Grounded Dialogue with Discourse-aware Comprehension Guiding
We propose an approach to referring expression generation (REG) in visually grounded dialogue that is meant to produce referring expressions (REs) that are both discriminative and discourse-appropriate. Our method constitutes a two-stage process. First, we model REG as a text- and image-conditioned next-token prediction task. REs are autoregressively generated based on their preceding linguistic context and a visual representation of the referent. Second, we propose the use of discourse-aware comprehension guiding as part of a generate-and-rerank strategy through which candidate REs generated with our REG model are reranked based on their discourse-dependent discriminatory power. Results from our human evaluation indicate that our proposed two-stage approach is effective in producing discriminative REs, with higher performance in terms of text-image retrieval accuracy for reranked REs compared to those generated using greedy decoding.
comment: Accepted for publication at INLG 2024
☆ Boosting CNN-based Handwriting Recognition Systems with Learnable Relaxation Labeling
The primary challenge for handwriting recognition systems lies in managing long-range contextual dependencies, an issue that traditional models often struggle with. To mitigate it, attention mechanisms have recently been employed to enhance context-aware labelling, thereby achieving state-of-the-art performance. In the field of pattern recognition and image analysis, however, the use of contextual information in labelling problems has a long history and goes back at least to the early 1970's. Among the various approaches developed in those years, Relaxation Labelling (RL) processes have played a prominent role and have been the method of choice in the field for more than a decade. Contrary to recent transformer-based architectures, RL processes offer a principled approach to the use of contextual constraints, having a solid theoretic foundation grounded on variational inequality and game theory, as well as effective algorithms with convergence guarantees. In this paper, we propose a novel approach to handwriting recognition that integrates the strengths of two distinct methodologies. In particular, we propose integrating (trainable) RL processes with various well-established neural architectures and we introduce a sparsification technique that accelerates the convergence of the algorithm and enhances the overall system's performance. Experiments over several benchmark datasets show that RL processes can improve the generalisation ability, even surpassing in some cases transformer-based architectures.
comment: 26 pages, 3 figures
☆ Segmentation by Factorization: Unsupervised Semantic Segmentation for Pathology by Factorizing Foundation Model Features
We introduce Segmentation by Factorization (F-SEG), an unsupervised segmentation method for pathology that generates segmentation masks from pre-trained deep learning models. F-SEG allows the use of pre-trained deep neural networks, including recently developed pathology foundation models, for semantic segmentation. It achieves this without requiring additional training or finetuning, by factorizing the spatial features extracted by the models into segmentation masks and their associated concept features. We create generic tissue phenotypes for H&E images by training clustering models for multiple numbers of clusters on features extracted from several deep learning models on The Cancer Genome Atlas Program (TCGA), and then show how the clusters can be used for factorizing corresponding segmentation masks using off-the-shelf deep learning models. Our results show that F-SEG provides robust unsupervised segmentation capabilities for H&E pathology images, and that the segmentation quality is greatly improved by utilizing pathology foundation models. We discuss and propose methods for evaluating the performance of unsupervised segmentation in pathology.
☆ LayeredFlow: A Real-World Benchmark for Non-Lambertian Multi-Layer Optical Flow ECCV 2024
Achieving 3D understanding of non-Lambertian objects is an important task with many useful applications, but most existing algorithms struggle to deal with such objects. One major obstacle towards progress in this field is the lack of holistic non-Lambertian benchmarks -- most benchmarks have low scene and object diversity, and none provide multi-layer 3D annotations for objects occluded by transparent surfaces. In this paper, we introduce LayeredFlow, a real world benchmark containing multi-layer ground truth annotation for optical flow of non-Lambertian objects. Compared to previous benchmarks, our benchmark exhibits greater scene and object diversity, with 150k high quality optical flow and stereo pairs taken over 185 indoor and outdoor scenes and 360 unique objects. Using LayeredFlow as evaluation data, we propose a new task called multi-layer optical flow. To provide training data for this task, we introduce a large-scale densely-annotated synthetic dataset containing 60k images within 30 scenes tailored for non-Lambertian objects. Training on our synthetic dataset enables model to predict multi-layer optical flow, while fine-tuning existing optical flow methods on the dataset notably boosts their performance on non-Lambertian objects without compromising the performance on diffuse objects. Data is available at https://layeredflow.cs.princeton.edu.
comment: Accepted to ECCV 2024
☆ SX-Stitch: An Efficient VMS-UNet Based Framework for Intraoperative Scoliosis X-Ray Image Stitching
In scoliosis surgery, the limited field of view of the C-arm X-ray machine restricts the surgeons' holistic analysis of spinal structures .This paper presents an end-to-end efficient and robust intraoperative X-ray image stitching method for scoliosis surgery,named SX-Stitch. The method is divided into two stages:segmentation and stitching. In the segmentation stage, We propose a medical image segmentation model named Vision Mamba of Spine-UNet (VMS-UNet), which utilizes the state space Mamba to capture long-distance contextual information while maintaining linear computational complexity, and incorporates the SimAM attention mechanism, significantly improving the segmentation performance.In the stitching stage, we simplify the alignment process between images to the minimization of a registration energy function. The total energy function is then optimized to order unordered images, and a hybrid energy function is introduced to optimize the best seam, effectively eliminating parallax artifacts. On the clinical dataset, Sx-Stitch demonstrates superiority over SOTA schemes both qualitatively and quantitatively.
☆ Cherenkov Imaged Bio-morphological Features Verify Patient Positioning with Deformable Tissue Translocation in Breast Radiotherapy
Accurate patient positioning is critical for precise radiotherapy dose delivery, as positioning errors can significantly affect treatment outcomes. This study introduces a novel method for tracking loco-regional tissue deformation through Cherenkov image analysis during fractionated breast cancer radiotherapy. The primary goal was to develop and test an algorithm for Cherenkov-based regional position accuracy quantification, specifically for loco-regional deformations, which lack ideal quantification methods in radiotherapy. Blood vessel detection and segmentation were developed in Cherenkov images using a tissue phantom with incremental movements, and later applied to images from fractionated whole breast radiotherapy in human patients (n=10). A combined rigid and non-rigid registration technique was used to detect inter- and intra-fractional positioning variations. This approach quantified positioning variations in two parts: a global shift from rigid registration and a two-dimensional variation map of loco-regional deformation from non-rigid registration. The methodology was validated using an anthropomorphic chest phantom experiment, where known treatment couch translations and respiratory motion were simulated to assess inter- and intra-fractional uncertainties, yielding an average accuracy of 0.83 mm for couch translations up to 20 mm. Analysis of clinical Cherenkov data from ten breast cancer patients showed an inter-fraction setup variation of 3.7 plus minus 2.4 mm relative to the first fraction and loco-regional deformations (95th percentile) of up to 3.3 plus minus 1.9 mm. This study presents a Cherenkov-based approach to quantify global and local positioning variations, demonstrating feasibility in addressing loco-regional deformations that conventional imaging techniques fail to capture.
comment: 25 pages, 4 figures, 1 table, journal under review
☆ AnomalyCD: A benchmark for Earth anomaly change detection with high-resolution and time-series observations
Various Earth anomalies have destroyed the stable, balanced state, resulting in fatalities and serious destruction of property. With the advantages of large-scale and precise observation, high-resolution remote sensing images have been widely used for anomaly monitoring and localization. Powered by the deep representation, the existing methods have achieved remarkable advances, primarily in classification and change detection techniques. However, labeled samples are difficult to acquire due to the low probability of anomaly occurrence, and the trained models are limited to fixed anomaly categories, which hinders the application for anomalies with few samples or unknown anomalies. In this paper, to tackle this problem, we propose the anomaly change detection (AnomalyCD) technique, which accepts time-series observations and learns to identify anomalous changes by learning from the historical normal change pattern. Compared to the existing techniques, AnomalyCD processes an unfixed number of time steps and can localize the various anomalies in a unified manner, without human supervision. To benchmark AnomalyCD, we constructed a high-resolution dataset with time-series images dedicated to various Earth anomalies (the AnomalyCDD dataset). AnomalyCDD contains high-resolution (from 0.15 to 2.39 m/pixel), time-series (from 3 to 7 time steps), and large-scale images (1927.93 km2 in total) collected globally Furthermore, we developed a zero-shot baseline model (AnomalyCDM), which implements the AnomalyCD technique by extracting a general representation from the segment anything model (SAM) and conducting temporal comparison to distinguish the anomalous changes from normal changes. AnomalyCDM is designed as a two-stage workflow to enhance the efficiency, and has the ability to process the unseen images directly, without retraining for each scene.
comment: remote sensing benchmark
☆ Robust Real-time Segmentation of Bio-Morphological Features in Human Cherenkov Imaging during Radiotherapy via Deep Learning
Cherenkov imaging enables real-time visualization of megavoltage X-ray or electron beam delivery to the patient during Radiation Therapy (RT). Bio-morphological features, such as vasculature, seen in these images are patient-specific signatures that can be used for verification of positioning and motion management that are essential to precise RT treatment. However until now, no concerted analysis of this biological feature-based tracking was utilized because of the slow speed and accuracy of conventional image processing for feature segmentation. This study demonstrated the first deep learning framework for such an application, achieving video frame rate processing. To address the challenge of limited annotation of these features in Cherenkov images, a transfer learning strategy was applied. A fundus photography dataset including 20,529 patch retina images with ground-truth vessel annotation was used to pre-train a ResNet segmentation framework. Subsequently, a small Cherenkov dataset (1,483 images from 212 treatment fractions of 19 breast cancer patients) with known annotated vasculature masks was used to fine-tune the model for accurate segmentation prediction. This deep learning framework achieved consistent and rapid segmentation of Cherenkov-imaged bio-morphological features on another 19 patients, including subcutaneous veins, scars, and pigmented skin. Average segmentation by the model achieved Dice score of 0.85 and required less than 0.7 milliseconds processing time per instance. The model demonstrated outstanding consistency against input image variances and speed compared to conventional manual segmentation methods, laying the foundation for online segmentation in real-time monitoring in a prospective setting.
comment: 9 pages, 7 figures, 1 table, journal under review
☆ Real-Time Human Action Recognition on Embedded Platforms
With advancements in computer vision and deep learning, video-based human action recognition (HAR) has become practical. However, due to the complexity of the computation pipeline, running HAR on live video streams incurs excessive delays on embedded platforms. This work tackles the real-time performance challenges of HAR with four contributions: 1) an experimental study identifying a standard Optical Flow (OF) extraction technique as the latency bottleneck in a state-of-the-art HAR pipeline, 2) an exploration of the latency-accuracy tradeoff between the standard and deep learning approaches to OF extraction, which highlights the need for a novel, efficient motion feature extractor, 3) the design of Integrated Motion Feature Extractor (IMFE), a novel single-shot neural network architecture for motion feature extraction with drastic improvement in latency, 4) the development of RT-HARE, a real-time HAR system tailored for embedded platforms. Experimental results on an Nvidia Jetson Xavier NX platform demonstrated that RT-HARE realizes real-time HAR at a video frame rate of 30 frames per second while delivering high levels of recognition accuracy.
☆ Replay Consolidation with Label Propagation for Continual Object Detection
Object Detection is a highly relevant computer vision problem with many applications such as robotics and autonomous driving. Continual Learning~(CL) considers a setting where a model incrementally learns new information while retaining previously acquired knowledge. This is particularly challenging since Deep Learning models tend to catastrophically forget old knowledge while training on new data. In particular, Continual Learning for Object Detection~(CLOD) poses additional difficulties compared to CL for Classification. In CLOD, images from previous tasks may contain unknown classes that could reappear labeled in future tasks. These missing annotations cause task interference issues for replay-based approaches. As a result, most works in the literature have focused on distillation-based approaches. However, these approaches are effective only when there is a strong overlap of classes across tasks. To address the issues of current methodologies, we propose a novel technique to solve CLOD called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). Based on the replay method, our solution avoids task interference issues by enhancing the buffer memory samples. Our method is evaluated against existing techniques in CLOD literature, demonstrating its superior performance on established benchmarks like VOC and COCO.
☆ Prototype-Driven Multi-Feature Generation for Visible-Infrared Person Re-identification
The primary challenges in visible-infrared person re-identification arise from the differences between visible (vis) and infrared (ir) images, including inter-modal and intra-modal variations. These challenges are further complicated by varying viewpoints and irregular movements. Existing methods often rely on horizontal partitioning to align part-level features, which can introduce inaccuracies and have limited effectiveness in reducing modality discrepancies. In this paper, we propose a novel Prototype-Driven Multi-feature generation framework (PDM) aimed at mitigating cross-modal discrepancies by constructing diversified features and mining latent semantically similar features for modal alignment. PDM comprises two key components: Multi-Feature Generation Module (MFGM) and Prototype Learning Module (PLM). The MFGM generates diversity features closely distributed from modality-shared features to represent pedestrians. Additionally, the PLM utilizes learnable prototypes to excavate latent semantic similarities among local features between visible and infrared modalities, thereby facilitating cross-modal instance-level alignment. We introduce the cosine heterogeneity loss to enhance prototype diversity for extracting rich local features. Extensive experiments conducted on the SYSU-MM01 and LLCM datasets demonstrate that our approach achieves state-of-the-art performance. Our codes are available at https://github.com/mmunhappy/ICASSP2025-PDM.
comment: 7 pages
☆ 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation
Accurately estimating forest biomass is crucial for global carbon cycle modelling and climate change mitigation. Tree height, a key factor in biomass calculations, can be measured using Synthetic Aperture Radar (SAR) technology. This study applies machine learning to extract forest height data from two SAR products: Single Look Complex (SLC) images and tomographic cubes, in preparation for the ESA Biomass Satellite mission. We use the TomoSense dataset, containing SAR and LiDAR data from Germany's Eifel National Park, to develop and evaluate height estimation models. Our approach includes classical methods, deep learning with a 3D U-Net, and Bayesian-optimized techniques. By testing various SAR frequencies and polarimetries, we establish a baseline for future height and biomass modelling. Best-performing models predict forest height to be within 2.82m mean absolute error for canopies around 30m, advancing our ability to measure global carbon stocks and support climate action.
☆ Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery
Satellite imagery, due to its long-range imaging, brings with it a variety of scale-preferred tasks, such as the detection of tiny/small objects, making the precise localization and detection of small objects of interest a challenging task. In this article, we design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction. Renormalized connection (RC) on the KDN enables ``synergistic focusing'' of multi-scale features. Based on our observations of KDN, we abstract a class of RCs with different connection strengths, called n21C, and generalize it to FPN-based multi-branch detectors. In a series of FPN experiments on the scale-preferred tasks, we found that the ``divide-and-conquer'' idea of FPN severely hampers the detector's learning in the right direction due to the large number of large-scale negative samples and interference from background noise. Moreover, these negative samples cannot be eliminated by the focal loss function. The RCs extends the multi-level feature's ``divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks, and enables synergistic effects of multi-level features on the specific learning goal. In addition, interference activations in two aspects are greatly reduced and the detector learns in a more correct direction. Extensive experiments of 17 well-designed detection architectures embedded with n21s on five different levels of scale-preferred tasks validate the effectiveness and efficiency of the RCs. Especially the simplest linear form of RC, E421C performs well in all tasks and it satisfies the scaling property of RGT. We hope that our approach will transfer a large number of well-designed detectors from the computer vision community to the remote sensing community.
comment: 24 pages, 14 figures Journal
☆ G-NeLF: Memory- and Data-Efficient Hybrid Neural Light Field for Novel View Synthesis
Following the burgeoning interest in implicit neural representation, Neural Light Field (NeLF) has been introduced to predict the color of a ray directly. Unlike Neural Radiance Field (NeRF), NeLF does not create a point-wise representation by predicting color and volume density for each point in space. However, the current NeLF methods face a challenge as they need to train a NeRF model first and then synthesize over 10K views to train NeLF for improved performance. Additionally, the rendering quality of NeLF methods is lower compared to NeRF methods. In this paper, we propose G-NeLF, a versatile grid-based NeLF approach that utilizes spatial-aware features to unleash the potential of the neural network's inference capability, and consequently overcome the difficulties of NeLF training. Specifically, we employ a spatial-aware feature sequence derived from a meticulously crafted grid as the ray's representation. Drawing from our empirical studies on the adaptability of multi-resolution hash tables, we introduce a novel grid-based ray representation for NeLF that can represent the entire space with a very limited number of parameters. To better utilize the sequence feature, we design a lightweight ray color decoder that simulates the ray propagation process, enabling a more efficient inference of the ray's color. G-NeLF can be trained without necessitating significant storage overhead and with the model size of only 0.95 MB to surpass previous state-of-the-art NeLF. Moreover, compared with grid-based NeRF methods, e.g., Instant-NGP, we only utilize one-tenth of its parameters to achieve higher performance. Our code will be released upon acceptance.
☆ Adapted-MoE: Mixture of Experts with Test-Time Adaption for Anomaly Detection
Most unsupervised anomaly detection methods based on representations of normal samples to distinguish anomalies have recently made remarkable progress. However, existing methods only learn a single decision boundary for distinguishing the samples within the training dataset, neglecting the variation in feature distribution for normal samples even in the same category in the real world. Furthermore, it was not considered that a distribution bias still exists between the test set and the train set. Therefore, we propose an Adapted-MoE which contains a routing network and a series of expert models to handle multiple distributions of same-category samples by divide and conquer. Specifically, we propose a routing network based on representation learning to route same-category samples into the subclasses feature space. Then, a series of expert models are utilized to learn the representation of various normal samples and construct several independent decision boundaries. We propose the test-time adaption to eliminate the bias between the unseen test sample representation and the feature distribution learned by the expert model. Our experiments are conducted on a dataset that provides multiple subclasses from three categories, namely Texture AD benchmark. The Adapted-MoE significantly improves the performance of the baseline model, achieving 2.18%-7.20% and 1.57%-16.30% increase in I-AUROC and P-AUROC, which outperforms the current state-of-the-art methods. Our code is available at https://github.com/.
☆ CustomContrast: A Multilevel Contrastive Perspective For Subject-Driven Text-to-Image Customization
Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.
☆ SynMorph: Generating Synthetic Face Morphing Dataset with Mated Samples
Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
☆ DSDFormer: An Innovative Transformer-Mamba Framework for Robust High-Precision Driver Distraction Identification
Driver distraction remains a leading cause of traffic accidents, posing a critical threat to road safety globally. As intelligent transportation systems evolve, accurate and real-time identification of driver distraction has become essential. However, existing methods struggle to capture both global contextual and fine-grained local features while contending with noisy labels in training datasets. To address these challenges, we propose DSDFormer, a novel framework that integrates the strengths of Transformer and Mamba architectures through a Dual State Domain Attention (DSDA) mechanism, enabling a balance between long-range dependencies and detailed feature extraction for robust driver behavior recognition. Additionally, we introduce Temporal Reasoning Confident Learning (TRCL), an unsupervised approach that refines noisy labels by leveraging spatiotemporal correlations in video sequences. Our model achieves state-of-the-art performance on the AUC-V1, AUC-V2, and 100-Driver datasets and demonstrates real-time processing efficiency on the NVIDIA Jetson AGX Orin platform. Extensive experimental results confirm that DSDFormer and TRCL significantly improve both the accuracy and robustness of driver distraction detection, offering a scalable solution to enhance road safety.
☆ Latent 3D Brain MRI Counterfactual
The number of samples in structural brain MRI studies is often too small to properly train deep learning models. Generative models show promise in addressing this issue by effectively learning the data distribution and generating high-fidelity MRI. However, they struggle to produce diverse, high-quality data outside the distribution defined by the training data. One way to address the issue is using causal models developed for 3D volume counterfactuals. However, accurately modeling causality in high-dimensional spaces is a challenge so that these models generally generate 3D brain MRIS of lower quality. To address these challenges, we propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space. In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume. Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure using a closed-form Generalized Linear Model (GLM). Our experiments conducted on real-world high-resolution MRI data (1mm) demonstrate that our method can generate high-quality 3D MRI counterfactuals.
☆ LEROjD: Lidar Extended Radar-Only Object Detection ECCV 2024
Accurate 3D object detection is vital for automated driving. While lidar sensors are well suited for this task, they are expensive and have limitations in adverse weather conditions. 3+1D imaging radar sensors offer a cost-effective, robust alternative but face challenges due to their low resolution and high measurement noise. Existing 3+1D imaging radar datasets include radar and lidar data, enabling cross-modal model improvements. Although lidar should not be used during inference, it can aid the training of radar-only object detectors. We explore two strategies to transfer knowledge from the lidar to the radar domain and radar-only object detectors: 1. multi-stage training with sequential lidar point cloud thin-out, and 2. cross-modal knowledge distillation. In the multi-stage process, three thin-out methods are examined. Our results show significant performance gains of up to 4.2 percentage points in mean Average Precision with multi-stage training and up to 3.9 percentage points with knowledge distillation by initializing the student with the teacher's weights. The main benefit of these approaches is their applicability to other 3D object detection networks without altering their architecture, as we show by analyzing it on two different object detectors. Our code is available at https://github.com/rst-tu-dortmund/lerojd
comment: Accepted for publication as ECCV 2024
☆ Seeing Through the Mask: Rethinking Adversarial Examples for CAPTCHAs
Modern CAPTCHAs rely heavily on vision tasks that are supposedly hard for computers but easy for humans. However, advances in image recognition models pose a significant threat to such CAPTCHAs. These models can easily be fooled by generating some well-hidden "random" noise and adding it to the image, or hiding objects in the image. However, these methods are model-specific and thus can not aid CAPTCHAs in fooling all models. We show in this work that by allowing for more significant changes to the images while preserving the semantic information and keeping it solvable by humans, we can fool many state-of-the-art models. Specifically, we demonstrate that by adding masks of various intensities the Accuracy @ 1 (Acc@1) drops by more than 50%-points for all models, and supposedly robust models such as vision transformers see an Acc@1 drop of 80%-points. These masks can therefore effectively fool modern image classifiers, thus showing that machines have not caught up with humans -- yet.
comment: Under review
☆ Seeing is Believing? Enhancing Vision-Language Navigation using Visual Perturbations ICASSP 2025
Autonomous navigation for an embodied agent guided by natural language instructions remains a formidable challenge in vision-and-language navigation (VLN). Despite remarkable recent progress in learning fine-grained and multifarious visual representations, the tendency to overfit to the training environments leads to unsatisfactory generalization performance. In this work, we present a versatile Multi-Branch Architecture (MBA) aimed at exploring and exploiting diverse visual inputs. Specifically, we introduce three distinct visual variants: ground-truth depth images, visual inputs integrated with incongruent views, and those infused with random noise to enrich the diversity of visual input representation and prevent overfitting to the original RGB observations. To adaptively fuse these varied inputs, the proposed MBA extend a base agent model into a multi-branch variant, where each branch processes a different visual input. Surprisingly, even random noise can further enhance navigation performance in unseen environments. Extensive experiments conducted on three VLN benchmarks (R2R, REVERIE, SOON) demonstrate that our proposed method equals or even surpasses state-of-the-art results. The source code will be publicly available.
comment: 5 pages, 2 figures, submitted to ICASSP 2025
☆ Exploring Rich Subjective Quality Information for Image Quality Assessment in the Wild
Traditional in the wild image quality assessment (IQA) models are generally trained with the quality labels of mean opinion score (MOS), while missing the rich subjective quality information contained in the quality ratings, for example, the standard deviation of opinion scores (SOS) or even distribution of opinion scores (DOS). In this paper, we propose a novel IQA method named RichIQA to explore the rich subjective rating information beyond MOS to predict image quality in the wild. RichIQA is characterized by two key novel designs: (1) a three-stage image quality prediction network which exploits the powerful feature representation capability of the Convolutional vision Transformer (CvT) and mimics the short-term and long-term memory mechanisms of human brain; (2) a multi-label training strategy in which rich subjective quality information like MOS, SOS and DOS are concurrently used to train the quality prediction network. Powered by these two novel designs, RichIQA is able to predict the image quality in terms of a distribution, from which the mean image quality can be subsequently obtained. Extensive experimental results verify that the three-stage network is tailored to predict rich quality information, while the multi-label training strategy can fully exploit the potentials within subjective quality rating and enhance the prediction performance and generalizability of the network. RichIQA outperforms state-of-the-art competitors on multiple large-scale in the wild IQA databases with rich subjective rating labels. The code of RichIQA will be made publicly available on GitHub.
☆ HMAFlow: Learning More Accurate Optical Flow via Hierarchical Motion Field Alignment
Optical flow estimation is a fundamental and long-standing visual task. In this work, we present a novel method, dubbed HMAFlow, to improve optical flow estimation in these tough scenes, especially with small objects. The proposed model mainly consists of two core components: a Hierarchical Motion Field Alignment (HMA) module and a Correlation Self-Attention (CSA) module. In addition, we rebuild 4D cost volumes by employing a Multi-Scale Correlation Search (MCS) layer and replacing average pooling in common cost volumes with an search strategy using multiple search ranges. Experimental results demonstrate that our model achieves the best generalization performance in comparison to other state-of-the-art methods. Specifically, compared with RAFT, our method achieves relative error reductions of 14.2% and 3.4% on the clean pass and final pass of the Sintel online benchmark, respectively. On the KITTI test benchmark, HMAFlow surpasses RAFT and GMA in the Fl-all metric by a relative margin of 6.8% and 7.7%, respectively. To facilitate future research, our code will be made available at https://github.com/BooTurbo/HMAFlow.
comment: 11 pages, 6 figures
☆ A Taxonomy of Miscompressions: Preparing Image Forensics for Neural Compression
Neural compression has the potential to revolutionize lossy image compression. Based on generative models, recent schemes achieve unprecedented compression rates at high perceptual quality but compromise semantic fidelity. Details of decompressed images may appear optically flawless but semantically different from the originals, making compression errors difficult or impossible to detect. We explore the problem space and propose a provisional taxonomy of miscompressions. It defines three types of 'what happens' and has a binary 'high impact' flag indicating miscompressions that alter symbols. We discuss how the taxonomy can facilitate risk communication and research into mitigations.
comment: 6 pages, 6 figures
☆ PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction
Neural implicit representations have revolutionized dense multi-view surface reconstruction, yet their performance significantly diminishes with sparse input views. A few pioneering works have sought to tackle the challenge of sparse-view reconstruction by leveraging additional geometric priors or multi-scene generalizability. However, they are still hindered by the imperfect choice of input views, using images under empirically determined viewpoints to provide considerable overlap. We propose PVP-Recon, a novel and effective sparse-view surface reconstruction method that progressively plans the next best views to form an optimal set of sparse viewpoints for image capturing. PVP-Recon starts initial surface reconstruction with as few as 3 views and progressively adds new views which are determined based on a novel warping score that reflects the information gain of each newly added view. This progressive view planning progress is interleaved with a neural SDF-based reconstruction module that utilizes multi-resolution hash features, enhanced by a progressive training scheme and a directional Hessian loss. Quantitative and qualitative experiments on three benchmark datasets show that our framework achieves high-quality reconstruction with a constrained input budget and outperforms existing baselines.
☆ Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
The limited training samples for object detectors commonly result in low accuracy out-of-distribution (OOD) object detection. We have observed that feature vectors of the same class tend to cluster tightly in feature space, whereas those of different classes are more scattered. This insight motivates us to leverage feature similarity for OOD detection. Drawing on the concept of prototypes prevalent in few-shot learning, we introduce a novel network architecture, Proto-OOD, designed for this purpose. Proto-OOD enhances prototype representativeness through contrastive loss and identifies OOD data by assessing the similarity between input features and prototypes. It employs a negative embedding generator to create negative embedding, which are then used to train the similarity module. Proto-OOD achieves significantly lower FPR95 in MS-COCO dataset and higher mAP for Pascal VOC dataset, when utilizing Pascal VOC as ID dataset and MS-COCO as OOD dataset. Additionally, we identify limitations in existing evaluation metrics and propose an enhanced evaluation protocol.
comment: 14pages
☆ EndoOmni: Zero-Shot Cross-Dataset Depth Estimation in Endoscopy by Robust Self-Learning from Noisy Labels
Single-image depth estimation is essential for endoscopy tasks such as localization, reconstruction, and augmented reality. Most existing methods in surgical scenes focus on in-domain depth estimation, limiting their real-world applicability. This constraint stems from the scarcity and inferior labeling quality of medical data for training. In this work, we present EndoOmni, the first foundation model for zero-shot cross-domain depth estimation for endoscopy. To harness the potential of diverse training data, we refine the advanced self-learning paradigm that employs a teacher model to generate pseudo-labels, guiding a student model trained on large-scale labeled and unlabeled data. To address training disturbance caused by inherent noise in depth labels, we propose a robust training framework that leverages both depth labels and estimated confidence from the teacher model to jointly guide the student model training. Moreover, we propose a weighted scale-and-shift invariant loss to adaptively adjust learning weights based on label confidence, thus imposing learning bias towards cleaner label pixels while reducing the influence of highly noisy pixels. Experiments on zero-shot relative depth estimation show that our EndoOmni improves state-of-the-art methods in medical imaging for 41\% and existing foundation models for 25\% in terms of absolute relative error on specific dataset. Furthermore, our model provides strong initialization for fine-tuning to metric depth estimation, maintaining superior performance in both in-domain and out-of-domain scenarios. The source code will be publicly available.
☆ TextToucher: Fine-Grained Text-to-Touch Generation
Tactile sensation plays a crucial role in the development of multi-modal large models and embodied intelligence. To collect tactile data with minimal cost as possible, a series of studies have attempted to generate tactile images by vision-to-touch image translation. However, compared to text modality, visual modality-driven tactile generation cannot accurately depict human tactile sensation. In this work, we analyze the characteristics of tactile images in detail from two granularities: object-level (tactile texture, tactile shape), and sensor-level (gel status). We model these granularities of information through text descriptions and propose a fine-grained Text-to-Touch generation method (TextToucher) to generate high-quality tactile samples. Specifically, we introduce a multimodal large language model to build the text sentences about object-level tactile information and employ a set of learnable text prompts to represent the sensor-level tactile information. To better guide the tactile generation process with the built text information, we fuse the dual grains of text information and explore various dual-grain text conditioning methods within the diffusion transformer architecture. Furthermore, we propose a Contrastive Text-Touch Pre-training (CTTP) metric to precisely evaluate the quality of text-driven generated tactile data. Extensive experiments demonstrate the superiority of our TextToucher method. The source codes will be available at \url{https://github.com/TtuHamg/TextToucher}.
☆ Distribution Discrepancy and Feature Heterogeneity for Active 3D Object Detection
LiDAR-based 3D object detection is a critical technology for the development of autonomous driving and robotics. However, the high cost of data annotation limits its advancement. We propose a novel and effective active learning (AL) method called Distribution Discrepancy and Feature Heterogeneity (DDFH), which simultaneously considers geometric features and model embeddings, assessing information from both the instance-level and frame-level perspectives. Distribution Discrepancy evaluates the difference and novelty of instances within the unlabeled and labeled distributions, enabling the model to learn efficiently with limited data. Feature Heterogeneity ensures the heterogeneity of intra-frame instance features, maintaining feature diversity while avoiding redundant or similar instances, thus minimizing annotation costs. Finally, multiple indicators are efficiently aggregated using Quantile Transform, providing a unified measure of informativeness. Extensive experiments demonstrate that DDFH outperforms the current state-of-the-art (SOTA) methods on the KITTI and Waymo datasets, effectively reducing the bounding box annotation cost by 56.3% and showing robustness when working with both one-stage and two-stage models.
comment: Accepted to CoRL 2024
☆ AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation
In computer-aided diagnosis tools employed for skin cancer treatment and early diagnosis, skin lesion segmentation is important. However, achieving precise segmentation is challenging due to inherent variations in appearance, contrast, texture, and blurry lesion boundaries. This research presents a robust approach utilizing a dilated convolutional residual network, which incorporates an attention-based spatial feature enhancement block (ASFEB) and employs a guided decoder strategy. In each dilated convolutional residual block, dilated convolution is employed to broaden the receptive field with varying dilation rates. To improve the spatial feature information of the encoder, we employed an attention-based spatial feature enhancement block in the skip connections. The ASFEB in our proposed method combines feature maps obtained from average and maximum-pooling operations. These combined features are then weighted using the active outcome of global average pooling and convolution operations. Additionally, we have incorporated a guided decoder strategy, where each decoder block is optimized using an individual loss function to enhance the feature learning process in the proposed AD-Net. The proposed AD-Net presents a significant benefit by necessitating fewer model parameters compared to its peer methods. This reduction in parameters directly impacts the number of labeled data required for training, facilitating faster convergence during the training process. The effectiveness of the proposed AD-Net was evaluated using four public benchmark datasets. We conducted a Wilcoxon signed-rank test to verify the efficiency of the AD-Net. The outcomes suggest that our method surpasses other cutting-edge methods in performance, even without the implementation of data augmentation strategies.
☆ CipherDM: Secure Three-Party Inference for Diffusion Model Sampling
Diffusion Models (DMs) achieve state-of-the-art synthesis results in image generation and have been applied to various fields. However, DMs sometimes seriously violate user privacy during usage, making the protection of privacy an urgent issue. Using traditional privacy computing schemes like Secure Multi-Party Computation (MPC) directly in DMs faces significant computation and communication challenges. To address these issues, we propose CipherDM, the first novel, versatile and universal framework applying MPC technology to DMs for secure sampling, which can be widely implemented on multiple DM based tasks. We thoroughly analyze sampling latency breakdown, find time-consuming parts and design corresponding secure MPC protocols for computing nonlinear activations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular architectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers. Compared to direct implementation on SPU, our approach improves running time by approximately 1.084\times \sim 2.328\times, and reduces communication costs by approximately 1.212\times \sim 1.791\times.
☆ From Words to Poses: Enhancing Novel Object Pose Estimation with Vision Language Models
Robots are increasingly envisioned to interact in real-world scenarios, where they must continuously adapt to new situations. To detect and grasp novel objects, zero-shot pose estimators determine poses without prior knowledge. Recently, vision language models (VLMs) have shown considerable advances in robotics applications by establishing an understanding between language input and image input. In our work, we take advantage of VLMs zero-shot capabilities and translate this ability to 6D object pose estimation. We propose a novel framework for promptable zero-shot 6D object pose estimation using language embeddings. The idea is to derive a coarse location of an object based on the relevancy map of a language-embedded NeRF reconstruction and to compute the pose estimate with a point cloud registration method. Additionally, we provide an analysis of LERF's suitability for open-set object pose estimation. We examine hyperparameters, such as activation thresholds for relevancy maps and investigate the zero-shot capabilities on an instance- and category-level. Furthermore, we plan to conduct robotic grasping experiments in a real-world setting.
☆ KRONC: Keypoint-based Robust Camera Optimization for 3D Car Reconstruction ECCV
The three-dimensional representation of objects or scenes starting from a set of images has been a widely discussed topic for years and has gained additional attention after the diffusion of NeRF-based approaches. However, an underestimated prerequisite is the knowledge of camera poses or, more specifically, the estimation of the extrinsic calibration parameters. Although excellent general-purpose Structure-from-Motion methods are available as a pre-processing step, their computational load is high and they require a lot of frames to guarantee sufficient overlapping among the views. This paper introduces KRONC, a novel approach aimed at inferring view poses by leveraging prior knowledge about the object to reconstruct and its representation through semantic keypoints. With a focus on vehicle scenes, KRONC is able to estimate the position of the views as a solution to a light optimization problem targeting the convergence of keypoints' back-projections to a singular point. To validate the method, a specific dataset of real-world car scenes has been collected. Experiments confirm KRONC's ability to generate excellent estimates of camera poses starting from very coarse initialization. Results are comparable with Structure-from-Motion methods with huge savings in computation. Code and data will be made publicly available.
comment: Accepted at ECCVW
☆ A Survey of Multimodal Composite Editing and Retrieval
In the real world, where information is abundant and diverse across different modalities, understanding and utilizing various data types to improve retrieval systems is a key focus of research. Multimodal composite retrieval integrates diverse modalities such as text, image and audio, etc. to provide more accurate, personalized, and contextually relevant results. To facilitate a deeper understanding of this promising direction, this survey explores multimodal composite editing and retrieval in depth, covering image-text composite editing, image-text composite retrieval, and other multimodal composite retrieval. In this survey, we systematically organize the application scenarios, methods, benchmarks, experiments, and future directions. Multimodal learning is a hot topic in large model era, and have also witnessed some surveys in multimodal learning and vision-language models with transformers published in the PAMI journal. To the best of our knowledge, this survey is the first comprehensive review of the literature on multimodal composite retrieval, which is a timely complement of multimodal fusion to existing reviews. To help readers' quickly track this field, we build the project page for this survey, which can be found at https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.
comment: 22 pages, 3 figures, and 11 tables
☆ Sequential Posterior Sampling with Diffusion Models
Diffusion models have quickly risen in popularity for their ability to model complex distributions and perform effective posterior sampling. Unfortunately, the iterative nature of these generative models makes them computationally expensive and unsuitable for real-time sequential inverse problems such as ultrasound imaging. Considering the strong temporal structure across sequences of frames, we propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis. Through modeling sequence data using a video vision transformer (ViViT) transition model based on previous diffusion outputs, we can initialize the reverse diffusion trajectory at a lower noise scale, greatly reducing the number of iterations required for convergence. We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images and show that it achieves the same performance as a full diffusion trajectory while accelerating inference 25$\times$, enabling real-time posterior sampling. Furthermore, we show that the addition of a transition model improves the PSNR up to 8\% in cases with severe motion. Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
comment: 5 pages, 4 figures, preprint
☆ FacialFlowNet: Advancing Facial Optical Flow Estimation with a Diverse Dataset and a Decomposed Model
Facial movements play a crucial role in conveying altitude and intentions, and facial optical flow provides a dynamic and detailed representation of it. However, the scarcity of datasets and a modern baseline hinders the progress in facial optical flow research. This paper proposes FacialFlowNet (FFN), a novel large-scale facial optical flow dataset, and the Decomposed Facial Flow Model (DecFlow), the first method capable of decomposing facial flow. FFN comprises 9,635 identities and 105,970 image pairs, offering unprecedented diversity for detailed facial and head motion analysis. DecFlow features a facial semantic-aware encoder and a decomposed flow decoder, excelling in accurately estimating and decomposing facial flow into head and expression components. Comprehensive experiments demonstrate that FFN significantly enhances the accuracy of facial flow estimation across various optical flow methods, achieving up to an 11% reduction in Endpoint Error (EPE) (from 3.91 to 3.48). Moreover, DecFlow, when coupled with FFN, outperforms existing methods in both synthetic and real-world scenarios, enhancing facial expression analysis. The decomposed expression flow achieves a substantial accuracy improvement of 18% (from 69.1% to 82.1%) in micro-expressions recognition. These contributions represent a significant advancement in facial motion analysis and optical flow estimation. Codes and datasets can be found.
comment: ACMMM2024
☆ Shaking Up VLMs: Comparing Transformers and Structured State Space Models for Vision & Language Modeling
This study explores replacing Transformers in Visual Language Models (VLMs) with Mamba, a recent structured state space model (SSM) that demonstrates promising performance in sequence modeling. We test models up to 3B parameters under controlled conditions, showing that Mamba-based VLMs outperforms Transformers-based VLMs in captioning, question answering, and reading comprehension. However, we find that Transformers achieve greater performance in visual grounding and the performance gap widens with scale. We explore two hypotheses to explain this phenomenon: 1) the effect of task-agnostic visual encoding on the updates of the hidden states, and 2) the difficulty in performing visual grounding from the perspective of in-context multimodal retrieval. Our results indicate that a task-aware encoding yields minimal performance gains on grounding, however, Transformers significantly outperform Mamba at in-context multimodal retrieval. Overall, Mamba shows promising performance on tasks where the correct output relies on a summary of the image but struggles when retrieval of explicit information from the context is required.
☆ TAVP: Task-Adaptive Visual Prompt for Cross-domain Few-shot Segmentation
Under the backdrop of large-scale pre-training, large visual models (LVM) have demonstrated significant potential in image understanding. The recent emergence of the Segment Anything Model (SAM) has brought a qualitative shift in the field of image segmentation, supporting flexible interactive cues and strong learning capabilities. However, its performance often falls short in cross-domain and few-shot applications. Transferring prior knowledge from foundation models to new applications while preserving learning capabilities is worth exploring. This work proposes a task-adaptive prompt framework based on SAM, a new paradigm for Cross-dominan few-shot segmentation (CD-FSS). First, a Multi-level Feature Fusion (MFF) was used for integrated feature extraction. Besides, an additional Class Domain Task-Adaptive Auto-Prompt (CDTAP) module was combined with the segmentation branch for class-domain agnostic feature extraction and high-quality learnable prompt production. This significant advancement uses a unique generative approach to prompts alongside a comprehensive model structure and specialized prototype computation. While ensuring that the prior knowledge of SAM is not discarded, the new branch disentangles category and domain information through prototypes, guiding it in adapting the CD-FSS. We have achieved the best results on three benchmarks compared to the recent state-of-the-art (SOTA) methods. Comprehensive experiments showed that after task-specific and weighted guidance, the abundant feature information of SAM can be better learned for CD-FSS.
☆ A Novel Representation of Periodic Pattern and Its Application to Untrained Anomaly Detection
There are a variety of industrial products that possess periodic textures or surfaces, such as carbon fiber textiles and display panels. Traditional image-based quality inspection methods for these products require identifying the periodic patterns from normal images (without anomaly and noise) and subsequently detecting anomaly pixels with inconsistent appearances. However, it remains challenging to accurately extract the periodic pattern from a single image in the presence of unknown anomalies and measurement noise. To deal with this challenge, this paper proposes a novel self-representation of the periodic image defined on a set of continuous parameters. In this way, periodic pattern learning can be embedded into a joint optimization framework, which is named periodic-sparse decomposition, with simultaneously modeling the sparse anomalies and Gaussian noise. Finally, for the real-world industrial images that may not strictly satisfy the periodic assumption, we propose a novel pixel-level anomaly scoring strategy to enhance the performance of anomaly detection. Both simulated and real-world case studies demonstrate the effectiveness of the proposed methodology for periodic pattern learning and anomaly detection.
☆ Decoupling Contact for Fine-Grained Motion Style Transfer
Motion style transfer changes the style of a motion while retaining its content and is useful in computer animations and games. Contact is an essential component of motion style transfer that should be controlled explicitly in order to express the style vividly while enhancing motion naturalness and quality. However, it is unknown how to decouple and control contact to achieve fine-grained control in motion style transfer. In this paper, we present a novel style transfer method for fine-grained control over contacts while achieving both motion naturalness and spatial-temporal variations of style. Based on our empirical evidence, we propose controlling contact indirectly through the hip velocity, which can be further decomposed into the trajectory and contact timing, respectively. To this end, we propose a new model that explicitly models the correlations between motions and trajectory/contact timing/style, allowing us to decouple and control each separately. Our approach is built around a motion manifold, where hip controls can be easily integrated into a Transformer-based decoder. It is versatile in that it can generate motions directly as well as be used as post-processing for existing methods to improve quality and contact controllability. In addition, we propose a new metric that measures a correlation pattern of motions based on our empirical evidence, aligning well with human perception in terms of motion naturalness. Based on extensive evaluation, our method outperforms existing methods in terms of style expressivity and motion quality.
☆ Look One and More: Distilling Hybrid Order Relational Knowledge for Cross-Resolution Image Recognition AAAI 2020
In spite of great success in many image recognition tasks achieved by recent deep models, directly applying them to recognize low-resolution images may suffer from low accuracy due to the missing of informative details during resolution degradation. However, these images are still recognizable for subjects who are familiar with the corresponding high-resolution ones. Inspired by that, we propose a teacher-student learning approach to facilitate low-resolution image recognition via hybrid order relational knowledge distillation. The approach refers to three streams: the teacher stream is pretrained to recognize high-resolution images in high accuracy, the student stream is learned to identify low-resolution images by mimicking the teacher's behaviors, and the extra assistant stream is introduced as bridge to help knowledge transfer across the teacher to the student. To extract sufficient knowledge for reducing the loss in accuracy, the learning of student is supervised with multiple losses, which preserves the similarities in various order relational structures. In this way, the capability of recovering missing details of familiar low-resolution images can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on metric learning, low-resolution image classification and low-resolution face recognition tasks show the effectiveness of our approach, while taking reduced models.
comment: Accepted by AAAI 2020
☆ Deep Learning for Video Anomaly Detection: A Review
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos. As a long-standing task in the field of computer vision, VAD has witnessed much good progress. In the era of deep learning, with the explosion of architectures of continuously growing capability and capacity, a great variety of deep learning based methods are constantly emerging for the VAD task, greatly improving the generalization ability of detection algorithms and broadening the application scenarios. Therefore, such a multitude of methods and a large body of literature make a comprehensive survey a pressing necessity. In this paper, we present an extensive and comprehensive research review, covering the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD, and we also delve into the latest VAD works based on pre-trained large models, remedying the limitations of past reviews in terms of only focusing on semi-supervised VAD and small model based methods. For the VAD task with different levels of supervision, we construct a well-organized taxonomy, profoundly discuss the characteristics of different types of methods, and show their performance comparisons. In addition, this review involves the public datasets, open-source codes, and evaluation metrics covering all the aforementioned VAD tasks. Finally, we provide several important research directions for the VAD community.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization
Image Quality Assessment (IQA) remains an unresolved challenge in the field of computer vision, due to complex distortion conditions, diverse image content, and limited data availability. The existing Blind IQA (BIQA) methods heavily rely on extensive human annotations to train models, which is both labor-intensive and costly due to the demanding nature of creating IQA datasets. To mitigate the dependence on labeled samples, this paper introduces a novel Gradient-Regulated Meta-Prompt IQA Framework (GRMP-IQA). This framework aims to fast adapt the powerful visual-language pre-trained model, CLIP, to downstream IQA tasks, significantly improving accuracy in scenarios with limited data. Specifically, the GRMP-IQA comprises two key modules: Meta-Prompt Pre-training Module and Quality-Aware Gradient Regularization. The Meta Prompt Pre-training Module leverages a meta-learning paradigm to pre-train soft prompts with shared meta-knowledge across different distortions, enabling rapid adaptation to various IQA tasks. On the other hand, the Quality-Aware Gradient Regularization is designed to adjust the update gradients during fine-tuning, focusing the model's attention on quality-relevant features and preventing overfitting to semantic information. Extensive experiments on five standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods under limited data setting, i.e., achieving SRCC values of 0.836 (vs. 0.760 on LIVEC) and 0.853 (vs. 0.812 on KonIQ). Notably, utilizing just 20\% of the training data, our GRMP-IQA outperforms most existing fully supervised BIQA methods.
☆ Prim2Room: Layout-Controllable Room Mesh Generation from Primitives
We propose Prim2Room, a novel framework for controllable room mesh generation leveraging 2D layout conditions and 3D primitive retrieval to facilitate precise 3D layout specification. Diverging from existing methods that lack control and precision, our approach allows for detailed customization of room-scale environments. To overcome the limitations of previous methods, we introduce an adaptive viewpoint selection algorithm that allows the system to generate the furniture texture and geometry from more favorable views than predefined camera trajectories. Additionally, we employ non-rigid depth registration to ensure alignment between generated objects and their corresponding primitive while allowing for shape variations to maintain diversity. Our method not only enhances the accuracy and aesthetic appeal of generated 3D scenes but also provides a user-friendly platform for detailed room design.
☆ PersonaTalk: Bring Attention to Your Persona in Visual Dubbing SIGGRAPH
For audio-driven visual dubbing, it remains a considerable challenge to uphold and highlight speaker's persona while synthesizing accurate lip synchronization. Existing methods fall short of capturing speaker's unique speaking style or preserving facial details. In this paper, we present PersonaTalk, an attention-based two-stage framework, including geometry construction and face rendering, for high-fidelity and personalized visual dubbing. In the first stage, we propose a style-aware audio encoding module that injects speaking style into audio features through a cross-attention layer. The stylized audio features are then used to drive speaker's template geometry to obtain lip-synced geometries. In the second stage, a dual-attention face renderer is introduced to render textures for the target geometries. It consists of two parallel cross-attention layers, namely Lip-Attention and Face-Attention, which respectively sample textures from different reference frames to render the entire face. With our innovative design, intricate facial details can be well preserved. Comprehensive experiments and user studies demonstrate our advantages over other state-of-the-art methods in terms of visual quality, lip-sync accuracy and persona preservation. Furthermore, as a person-generic framework, PersonaTalk can achieve competitive performance as state-of-the-art person-specific methods. Project Page: https://grisoon.github.io/PersonaTalk/.
comment: Accepted at SIGGRAPH Asia 2024 (Conference Track)
☆ Memoryless Multimodal Anomaly Detection via Student-Teacher Network and Signed Distance Learning
Unsupervised anomaly detection is a challenging computer vision task, in which 2D-based anomaly detection methods have been extensively studied. However, multimodal anomaly detection based on RGB images and 3D point clouds requires further investigation. The existing methods are mainly inspired by memory bank based methods commonly used in 2D-based anomaly detection, which may cost extra memory for storing mutimodal features. In present study, a novel memoryless method MDSS is proposed for multimodal anomaly detection, which employs a light-weighted student-teacher network and a signed distance function to learn from RGB images and 3D point clouds respectively, and complements the anomaly information from the two modalities. Specifically, a student-teacher network is trained with normal RGB images and masks generated from point clouds by a dynamic loss, and the anomaly score map could be obtained from the discrepancy between the output of student and teacher. Furthermore, the signed distance function learns from normal point clouds to predict the signed distances between points and surface, and the obtained signed distances are used to generate anomaly score map. Subsequently, the anomaly score maps are aligned to generate the final anomaly score map for detection. The experimental results indicate that MDSS is comparable but more stable than the SOTA memory bank based method Shape-guided, and furthermore performs better than other baseline methods.
comment: 14 pages, 4 figures, 2 tables, to be published in PRCV-2024
☆ KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models
Harnessing the robust capabilities of Large Language Models (LLMs) for narrative generation, logical reasoning, and common-sense knowledge integration, this study delves into utilizing LLMs to enhance automated radiology report generation (R2Gen). Despite the wealth of knowledge within LLMs, efficiently triggering relevant knowledge within these large models for specific tasks like R2Gen poses a critical research challenge. This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on LLMs. Utilizing a frozen LLM to generate reports, the framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports. This is achieved by leveraging the knowledge graph to distill disease-related features in a designed way. Since a radiology report encompasses both normal and disease-related findings, the extracted graph-enhanced disease-related features are integrated with regional image features, attending to both aspects. We explore two fusion methods to automatically prioritize and select the most relevant features. The fused features are employed by LLM to generate reports that are more sensitive to diseases and of improved quality. Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
☆ FedBrain-Distill: Communication-Efficient Federated Brain Tumor Classification Using Ensemble Knowledge Distillation on Non-IID Data
Brain is one the most complex organs in the human body. Due to its complexity, classification of brain tumors still poses a significant challenge, making brain tumors a particularly serious medical issue. Techniques such as Machine Learning (ML) coupled with Magnetic Resonance Imaging (MRI) have paved the way for doctors and medical institutions to classify different types of tumors. However, these techniques suffer from limitations that violate patients privacy. Federated Learning (FL) has recently been introduced to solve such an issue, but the FL itself suffers from limitations like communication costs and dependencies on model architecture, forcing all models to have identical architectures. In this paper, we propose FedBrain-Distill, an approach that leverages Knowledge Distillation (KD) in an FL setting that maintains the users privacy and ensures the independence of FL clients in terms of model architecture. FedBrain-Distill uses an ensemble of teachers that distill their knowledge to a simple student model. The evaluation of FedBrain-Distill demonstrated high-accuracy results for both Independent and Identically Distributed (IID) and non-IID data with substantial low communication costs on the real-world Figshare brain tumor dataset. It is worth mentioning that we used Dirichlet distribution to partition the data into IID and non-IID data. All the implementation details are accessible through our Github repository.
☆ Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles, yet their creation and upkeep present significant cost and timeliness challenges. The online construction of HD maps using on-board sensors has emerged as a promising solution; however, these methods can be impeded by incomplete data due to occlusions and inclement weather. This paper proposes the PriorDrive framework to addresses these limitations by harnessing the power of prior maps, significantly enhancing the robustness and accuracy of online HD map construction. Our approach integrates a variety of prior maps, such as OpenStreetMap's Standard Definition Maps (SD maps), outdated HD maps from vendors, and locally constructed maps from historical vehicle data. To effectively encode this prior information into online mapping models, we introduce a Hybrid Prior Representation (HPQuery) that standardizes the representation of diverse map elements. At the core of PriorDrive is the Unified Vector Encoder (UVE), which employs a dual encoding mechanism to process vector data. The intra-vector encoder captures fine-grained local features, while the inter-vector encoder integrates global context. Furthermore, we propose a segment-level and point-level pre-training strategy that enables the UVE to learn the prior distribution of vector data, thereby improving the encoder's generalizability and performance. Through extensive testing on the nuScenes dataset, we demonstrate that PriorDrive is highly compatible with various online mapping models and substantially improves map prediction capabilities. The integration of prior maps through the PriorDrive framework offers a robust solution to the challenges of single-perception data, paving the way for more reliable autonomous vehicle navigation.
☆ Early-exit Convolutional Neural Networks
This paper is aimed at developing a method that reduces the computational cost of convolutional neural networks (CNN) during inference. Conventionally, the input data pass through a fixed neural network architecture. However, easy examples can be classified at early stages of processing and conventional networks do not take this into account. In this paper, we introduce 'Early-exit CNNs', EENets for short, which adapt their computational cost based on the input by stopping the inference process at certain exit locations. In EENets, there are a number of exit blocks each of which consists of a confidence branch and a softmax branch. The confidence branch computes the confidence score of exiting (i.e. stopping the inference process) at that location; while the softmax branch outputs a classification probability vector. Both branches are learnable and their parameters are separate. During training of EENets, in addition to the classical classification loss, the computational cost of inference is taken into account as well. As a result, the network adapts its many confidence branches to the inputs so that less computation is spent for easy examples. Inference works as in conventional feed-forward networks, however, when the output of a confidence branch is larger than a certain threshold, the inference stops for that specific example. The idea of EENets is applicable to available CNN architectures such as ResNets. Through comprehensive experiments on MNIST, SVHN, CIFAR10 and Tiny-ImageNet datasets, we show that early-exit (EE) ResNets achieve similar accuracy with their non-EE versions while reducing the computational cost to 20% of the original. Code is available at https://github.com/eksuas/eenets.pytorch
☆ A Multi-Modal Deep Learning Based Approach for House Price Prediction
Accurate prediction of house price, a vital aspect of the residential real estate sector, is of substantial interest for a wide range of stakeholders. However, predicting house prices is a complex task due to the significant variability influenced by factors such as house features, location, neighborhood, and many others. Despite numerous attempts utilizing a wide array of algorithms, including recent deep learning techniques, to predict house prices accurately, existing approaches have fallen short of considering a wide range of factors such as textual and visual features. This paper addresses this gap by comprehensively incorporating attributes, such as features, textual descriptions, geo-spatial neighborhood, and house images, typically showcased in real estate listings in a house price prediction system. Specifically, we propose a multi-modal deep learning approach that leverages different types of data to learn more accurate representation of the house. In particular, we learn a joint embedding of raw house attributes, geo-spatial neighborhood, and most importantly from textual description and images representing the house; and finally use a downstream regression model to predict the house price from this jointly learned embedding vector. Our experimental results with a real-world dataset show that the text embedding of the house advertisement description and image embedding of the house pictures in addition to raw attributes and geo-spatial embedding, can significantly improve the house price prediction accuracy. The relevant source code and dataset are publicly accessible at the following URL: https://github.com/4P0N/mhpp
comment: 22 pages
☆ Lagrangian Hashing for Compressed Neural Field Representations
We present Lagrangian Hashing, a representation for neural fields combining the characteristics of fast training NeRF methods that rely on Eulerian grids (i.e.~InstantNGP), with those that employ points equipped with features as a way to represent information (e.g. 3D Gaussian Splatting or PointNeRF). We achieve this by incorporating a point-based representation into the high-resolution layers of the hierarchical hash tables of an InstantNGP representation. As our points are equipped with a field of influence, our representation can be interpreted as a mixture of Gaussians stored within the hash table. We propose a loss that encourages the movement of our Gaussians towards regions that require more representation budget to be sufficiently well represented. Our main finding is that our representation allows the reconstruction of signals using a more compact representation without compromising quality.
comment: Project page: https://theialab.github.io/laghashes/
☆ KAN-Based Fusion of Dual-Domain for Audio-Driven Facial Landmarks Generation
Audio-driven talking face generation is a widely researched topic due to its high applicability. Reconstructing a talking face using audio significantly contributes to fields such as education, healthcare, online conversations, virtual assistants, and virtual reality. Early studies often focused solely on changing the mouth movements, which resulted in outcomes with limited practical applications. Recently, researchers have proposed a new approach of constructing the entire face, including face pose, neck, and shoulders. To achieve this, they need to generate through landmarks. However, creating stable landmarks that align well with the audio is a challenge. In this paper, we propose the KFusion of Dual-Domain model, a robust model that generates landmarks from audio. We separate the audio into two distinct domains to learn emotional information and facial context, then use a fusion mechanism based on the KAN model. Our model demonstrates high efficiency compared to recent models. This will lay the groundwork for the development of the audio-driven talking face generation problem in the future.
☆ ICPR 2024 Competition on Safe Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions ICPR
The ICPR 2024 Competition on Safe Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions served as a rigorous platform to evaluate and benchmark state-of-the-art semantic segmentation models under challenging conditions for autonomous driving. Over several months, participants were provided with the IDD-AW dataset, consisting of 5000 high-quality RGB-NIR image pairs, each annotated at the pixel level and captured under adverse weather conditions such as rain, fog, low light, and snow. A key aspect of the competition was the use and improvement of the Safe mean Intersection over Union (Safe mIoU) metric, designed to penalize unsafe incorrect predictions that could be overlooked by traditional mIoU. This innovative metric emphasized the importance of safety in developing autonomous driving systems. The competition showed significant advancements in the field, with participants demonstrating models that excelled in semantic segmentation and prioritized safety and robustness in unstructured and adverse conditions. The results of the competition set new benchmarks in the domain, highlighting the critical role of safety in deploying autonomous vehicles in real-world scenarios. The contributions from this competition are expected to drive further innovation in autonomous driving technology, addressing the critical challenges of operating in diverse and unpredictable environments.
comment: 15 pages, 7 figures, ICPR Competition Paper
☆ FIF-UNet: An Efficient UNet Using Feature Interaction and Fusion for Medical Image Segmentation
Nowadays, pre-trained encoders are widely used in medical image segmentation because of their ability to capture complex feature representations. However, the existing models fail to effectively utilize the rich features obtained by the pre-trained encoder, resulting in suboptimal segmentation results. In this work, a novel U-shaped model, called FIF-UNet, is proposed to address the above issue, including three plug-and-play modules. A channel spatial interaction module (CSI) is proposed to obtain informative features by establishing the interaction between encoder stages and corresponding decoder stages. A cascaded conv-SE module (CoSE) is designed to enhance the representation of critical features by adaptively assigning importance weights on different feature channels. A multi-level fusion module (MLF) is proposed to fuse the multi-scale features from the decoder stages, ensuring accurate and robust final segmentation. Comprehensive experiments on the Synapse and ACDC datasets demonstrate that the proposed FIF-UNet outperforms existing state-of-the-art methods, which achieves the highest average DICE of 86.05% and 92.58%, respectively.
☆ Open-World Dynamic Prompt and Continual Visual Representation Learning ECCV 2024
The open world is inherently dynamic, characterized by ever-evolving concepts and distributions. Continual learning (CL) in this dynamic open-world environment presents a significant challenge in effectively generalizing to unseen test-time classes. To address this challenge, we introduce a new practical CL setting tailored for open-world visual representation learning. In this setting, subsequent data streams systematically introduce novel classes that are disjoint from those seen in previous training phases, while also remaining distinct from the unseen test classes. In response, we present Dynamic Prompt and Representation Learner (DPaRL), a simple yet effective Prompt-based CL (PCL) method. Our DPaRL learns to generate dynamic prompts for inference, as opposed to relying on a static prompt pool in previous PCL methods. In addition, DPaRL jointly learns dynamic prompt generation and discriminative representation at each training stage whereas prior PCL methods only refine the prompt learning throughout the process. Our experimental results demonstrate the superiority of our approach, surpassing state-of-the-art methods on well-established open-world image retrieval benchmarks by an average of 4.7\% improvement in Recall@1 performance.
comment: ECCV 2024
☆ Fitting Skeletal Models via Graph-based Learning
Skeletonization is a popular shape analysis technique that models an object's interior as opposed to just its boundary. Fitting template-based skeletal models is a time-consuming process requiring much manual parameter tuning. Recently, machine learning-based methods have shown promise for generating s-reps from object boundaries. In this work, we propose a new skeletonization method which leverages graph convolutional networks to produce skeletal representations (s-reps) from dense segmentation masks. The method is evaluated on both synthetic data and real hippocampus segmentations, achieving promising results and fast inference.
comment: This paper was presented at the 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
Neural Surface Reconstruction and Rendering for LiDAR-Visual Systems
This paper presents a unified surface reconstruction and rendering framework for LiDAR-visual systems, integrating Neural Radiance Fields (NeRF) and Neural Distance Fields (NDF) to recover both appearance and structural information from posed images and point clouds. We address the structural visible gap between NeRF and NDF by utilizing a visible-aware occupancy map to classify space into the free, occupied, visible unknown, and background regions. This classification facilitates the recovery of a complete appearance and structure of the scene. We unify the training of the NDF and NeRF using a spatial-varying scale SDF-to-density transformation for levels of detail for both structure and appearance. The proposed method leverages the learned NDF for structure-aware NeRF training by an adaptive sphere tracing sampling strategy for accurate structure rendering. In return, NeRF further refines structural in recovering missing or fuzzy structures in the NDF. Extensive experiments demonstrate the superior quality and versatility of the proposed method across various scenarios. To benefit the community, the codes will be released at \url{https://github.com/hku-mars/M2Mapping}.
☆ RAL:Redundancy-Aware Lipreading Model Based on Differential Learning with Symmetric Views
Lip reading involves interpreting a speaker's speech by analyzing sequences of lip movements. Currently, most models regard the left and right halves of the lips as a symmetrical whole, lacking a thorough investigation of their differences. However, the left and right halves of the lips are not always symmetrical, and the subtle differences between them contain rich semantic information. In this paper, we propose a differential learning strategy with symmetric views (DLSV) to address this issue. Additionally, input images often contain a lot of redundant information unrelated to recognition results, which can degrade the model's performance. We present a redundancy-aware operation (RAO) to reduce it. Finally, to leverage the relational information between symmetric views and within each view, we further design an adaptive cross-view interaction module (ACVI). Experiments on LRW and LRW-1000 datasets fully demonstrate the effectiveness of our approach.
comment: 5 pages, 4 figures
☆ RotCAtt-TransUNet++: Novel Deep Neural Network for Sophisticated Cardiac Segmentation
Cardiovascular disease is a major global health concern, contributing significantly to global mortality. Accurately segmenting cardiac medical imaging data is crucial for reducing fatality rates associated with these conditions. However, current state-of-the-art (SOTA) neural networks, including CNN-based and Transformer-based approaches, face challenges in capturing both inter-slice connections and intra-slice details, especially in datasets featuring intricate, long-range details along the z-axis like coronary arteries. Existing methods also struggle with differentiating non-cardiac components from the myocardium, resulting in segmentation inaccuracies and the "spraying" phenomenon. To address these issues, we introduce RotCAtt-TransUNet++, a novel architecture designed for robust segmentation of intricate cardiac structures. Our approach enhances global context modeling through multiscale feature aggregation and nested skip connections in the encoder. Transformer layers facilitate capturing intra-slice interactions, while a rotatory attention mechanism handles inter-slice connectivity. A channel-wise cross-attention gate integrates multiscale information and decoder features, effectively bridging semantic gaps. Experimental results across multiple datasets demonstrate superior performance over current methods, achieving near-perfect annotation of coronary arteries and myocardium. Ablation studies confirm that our rotatory attention mechanism significantly improves segmentation accuracy by transforming embedded vectorized patches in semantic dimensional space.
comment: 6 pages, 5 figures
☆ BrainDecoder: Style-Based Visual Decoding of EEG Signals
Decoding neural representations of visual stimuli from electroencephalography (EEG) offers valuable insights into brain activity and cognition. Recent advancements in deep learning have significantly enhanced the field of visual decoding of EEG, primarily focusing on reconstructing the semantic content of visual stimuli. In this paper, we present a novel visual decoding pipeline that, in addition to recovering the content, emphasizes the reconstruction of the style, such as color and texture, of images viewed by the subject. Unlike previous methods, this ``style-based'' approach learns in the CLIP spaces of image and text separately, facilitating a more nuanced extraction of information from EEG signals. We also use captions for text alignment simpler than previously employed, which we find work better. Both quantitative and qualitative evaluations show that our method better preserves the style of visual stimuli and extracts more fine-grained semantic information from neural signals. Notably, it achieves significant improvements in quantitative results and sets a new state-of-the-art on the popular Brain2Image dataset.
comment: 5 pages, 4 figures, 2 tables
☆ Disentangled Representations for Short-Term and Long-Term Person Re-Identification
We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons could have the same attribute, and persons' appearances look different, e.g., with viewpoint changes. Recent reID methods focus on learning person features discriminative only for a particular factor of variations (e.g., human pose), which also requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to factorize person images into identity-related and unrelated features. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose). To this end, we propose a new generative adversarial network, dubbed identity shuffle GAN (IS-GAN). It disentangles identity-related and unrelated features from person images through an identity-shuffling technique that exploits identification labels alone without any auxiliary supervisory signals. We restrict the distribution of identity-unrelated features or encourage the identity-related and unrelated features to be uncorrelated, facilitating the disentanglement process. Experimental results validate the effectiveness of IS-GAN, showing state-of-the-art performance on standard reID benchmarks, including Market-1501, CUHK03, and DukeMTMC-reID. We further demonstrate the advantages of disentangling person representations on a long-term reID task, setting a new state of the art on a Celeb-reID dataset.
comment: arXiv admin note: substantial text overlap with arXiv:1910.12003
☆ Rethinking the Atmospheric Scattering-driven Attention via Channel and Gamma Correction Priors for Low-Light Image Enhancement
Low-light image enhancement remains a critical challenge in computer vision, as does the lightweight design for edge devices with the computational burden for deep learning models. In this article, we introduce an extended version of Channel-Prior and Gamma-Estimation Network (CPGA-Net), termed CPGA-Net+, which incorporates an attention mechanism driven by a reformulated Atmospheric Scattering Model and effectively addresses both global and local image processing through Plug-in Attention with gamma correction. These innovations enable CPGA-Net+ to achieve superior performance on image enhancement tasks, surpassing lightweight state-of-the-art methods with high efficiency. Our results demonstrate the model's effectiveness and show the potential applications in resource-constrained environments.
☆ Scalable Frame Sampling for Video Classification: A Semi-Optimal Policy Approach with Reduced Search Space
Given a video with $T$ frames, frame sampling is a task to select $N \ll T$ frames, so as to maximize the performance of a fixed video classifier. Not just brute-force search, but most existing methods suffer from its vast search space of $\binom{T}{N}$, especially when $N$ gets large. To address this challenge, we introduce a novel perspective of reducing the search space from $O(T^N)$ to $O(T)$. Instead of exploring the entire $O(T^N)$ space, our proposed semi-optimal policy selects the top $N$ frames based on the independently estimated value of each frame using per-frame confidence, significantly reducing the computational complexity. We verify that our semi-optimal policy can efficiently approximate the optimal policy, particularly under practical settings. Additionally, through extensive experiments on various datasets and model architectures, we demonstrate that learning our semi-optimal policy ensures stable and high performance regardless of the size of $N$ and $T$.
☆ Towards Automated Machine Learning Research
This paper explores a top-down approach to automating incremental advances in machine learning research through component-level innovation, facilitated by Large Language Models (LLMs). Our framework systematically generates novel components, validates their feasibility, and evaluates their performance against existing baselines. A key distinction of this approach lies in how these novel components are generated. Unlike traditional AutoML and NAS methods, which often rely on a bottom-up combinatorial search over predefined, hardcoded base components, our method leverages the cross-domain knowledge embedded in LLMs to propose new components that may not be confined to any hard-coded predefined set. By incorporating a reward model to prioritize promising hypotheses, we aim to improve the efficiency of the hypothesis generation and evaluation process. We hope this approach offers a new avenue for exploration and contributes to the ongoing dialogue in the field.
☆ Label-free evaluation of lung and heart transplant biopsies using virtual staining
Organ transplantation serves as the primary therapeutic strategy for end-stage organ failures. However, allograft rejection is a common complication of organ transplantation. Histological assessment is essential for the timely detection and diagnosis of transplant rejection and remains the gold standard. Nevertheless, the traditional histochemical staining process is time-consuming, costly, and labor-intensive. Here, we present a panel of virtual staining neural networks for lung and heart transplant biopsies, which digitally convert autofluorescence microscopic images of label-free tissue sections into their brightfield histologically stained counterparts, bypassing the traditional histochemical staining process. Specifically, we virtually generated Hematoxylin and Eosin (H&E), Masson's Trichrome (MT), and Elastic Verhoeff-Van Gieson (EVG) stains for label-free transplant lung tissue, along with H&E and MT stains for label-free transplant heart tissue. Subsequent blind evaluations conducted by three board-certified pathologists have confirmed that the virtual staining networks consistently produce high-quality histology images with high color uniformity, closely resembling their well-stained histochemical counterparts across various tissue features. The use of virtually stained images for the evaluation of transplant biopsies achieved comparable diagnostic outcomes to those obtained via traditional histochemical staining, with a concordance rate of 82.4% for lung samples and 91.7% for heart samples. Moreover, virtual staining models create multiple stains from the same autofluorescence input, eliminating structural mismatches observed between adjacent sections stained in the traditional workflow, while also saving tissue, expert time, and staining costs.
comment: 21 Pages, 5 Figures
☆ MRStyle: A Unified Framework for Color Style Transfer with Multi-Modality Reference
In this paper, we introduce MRStyle, a comprehensive framework that enables color style transfer using multi-modality reference, including image and text. To achieve a unified style feature space for both modalities, we first develop a neural network called IRStyle, which generates stylized 3D lookup tables for image reference. This is accomplished by integrating an interaction dual-mapping network with a combined supervised learning pipeline, resulting in three key benefits: elimination of visual artifacts, efficient handling of high-resolution images with low memory usage, and maintenance of style consistency even in situations with significant color style variations. For text reference, we align the text feature of stable diffusion priors with the style feature of our IRStyle to perform text-guided color style transfer (TRStyle). Our TRStyle method is highly efficient in both training and inference, producing notable open-set text-guided transfer results. Extensive experiments in both image and text settings demonstrate that our proposed method outperforms the state-of-the-art in both qualitative and quantitative evaluations.
☆ PaRCE: Probabilistic and Reconstruction-Based Competency Estimation for Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
☆ SGC-VQGAN: Towards Complex Scene Representation via Semantic Guided Clustering Codebook
Vector quantization (VQ) is a method for deterministically learning features through discrete codebook representations. Recent works have utilized visual tokenizers to discretize visual regions for self-supervised representation learning. However, a notable limitation of these tokenizers is lack of semantics, as they are derived solely from the pretext task of reconstructing raw image pixels in an auto-encoder paradigm. Additionally, issues like imbalanced codebook distribution and codebook collapse can adversely impact performance due to inefficient codebook utilization. To address these challenges, We introduce SGC-VQGAN through Semantic Online Clustering method to enhance token semantics through Consistent Semantic Learning. Utilizing inference results from segmentation model , our approach constructs a temporospatially consistent semantic codebook, addressing issues of codebook collapse and imbalanced token semantics. Our proposed Pyramid Feature Learning pipeline integrates multi-level features to capture both image details and semantics simultaneously. As a result, SGC-VQGAN achieves SOTA performance in both reconstruction quality and various downstream tasks. Its simplicity, requiring no additional parameter learning, enables its direct application in downstream tasks, presenting significant potential.
☆ LSE-NeRF: Learning Sensor Modeling Errors for Deblured Neural Radiance Fields with RGB-Event Stereo
We present a method for reconstructing a clear Neural Radiance Field (NeRF) even with fast camera motions. To address blur artifacts, we leverage both (blurry) RGB images and event camera data captured in a binocular configuration. Importantly, when reconstructing our clear NeRF, we consider the camera modeling imperfections that arise from the simple pinhole camera model as learned embeddings for each camera measurement, and further learn a mapper that connects event camera measurements with RGB data. As no previous dataset exists for our binocular setting, we introduce an event camera dataset with captures from a 3D-printed stereo configuration between RGB and event cameras. Empirically, we evaluate our introduced dataset and EVIMOv2 and show that our method leads to improved reconstructions. Our code and dataset are available at https://github.com/ubc-vision/LSENeRF.
☆ SVS-GAN: Leveraging GANs for Semantic Video Synthesis
In recent years, there has been a growing interest in Semantic Image Synthesis (SIS) through the use of Generative Adversarial Networks (GANs) and diffusion models. This field has seen innovations such as the implementation of specialized loss functions tailored for this task, diverging from the more general approaches in Image-to-Image (I2I) translation. While the concept of Semantic Video Synthesis (SVS)$\unicode{x2013}$the generation of temporally coherent, realistic sequences of images from semantic maps$\unicode{x2013}$is newly formalized in this paper, some existing methods have already explored aspects of this field. Most of these approaches rely on generic loss functions designed for video-to-video translation or require additional data to achieve temporal coherence. In this paper, we introduce the SVS-GAN, a framework specifically designed for SVS, featuring a custom architecture and loss functions. Our approach includes a triple-pyramid generator that utilizes SPADE blocks. Additionally, we employ a U-Net-based network for the image discriminator, which performs semantic segmentation for the OASIS loss. Through this combination of tailored architecture and objective engineering, our framework aims to bridge the existing gap between SIS and SVS, outperforming current state-of-the-art models on datasets like Cityscapes and KITTI-360.
☆ DiffusionPen: Towards Controlling the Style of Handwritten Text Generation
Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
☆ Online 3D reconstruction and dense tracking in endoscopic videos
3D scene reconstruction from stereo endoscopic video data is crucial for advancing surgical interventions. In this work, we present an online framework for online, dense 3D scene reconstruction and tracking, aimed at enhancing surgical scene understanding and assisting interventions. Our method dynamically extends a canonical scene representation using Gaussian splatting, while modeling tissue deformations through a sparse set of control points. We introduce an efficient online fitting algorithm that optimizes the scene parameters, enabling consistent tracking and accurate reconstruction. Through experiments on the StereoMIS dataset, we demonstrate the effectiveness of our approach, outperforming state-of-the-art tracking methods and achieving comparable performance to offline reconstruction techniques. Our work enables various downstream applications thus contributing to advancing the capabilities of surgical assistance systems.
☆ Analyzing Tumors by Synthesis
Computer-aided tumor detection has shown great potential in enhancing the interpretation of over 80 million CT scans performed annually in the United States. However, challenges arise due to the rarity of CT scans with tumors, especially early-stage tumors. Developing AI with real tumor data faces issues of scarcity, annotation difficulty, and low prevalence. Tumor synthesis addresses these challenges by generating numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation. Successful synthesis requires realistic and generalizable synthetic tumors across various organs. This chapter reviews AI development on real and synthetic data and summarizes two key trends in synthetic data for cancer imaging research: modeling-based and learning-based approaches. Modeling-based methods, like Pixel2Cancer, simulate tumor development over time using generic rules, while learning-based methods, like DiffTumor, learn from a few annotated examples in one organ to generate synthetic tumors in others. Reader studies with expert radiologists show that synthetic tumors can be convincingly realistic. We also present case studies in the liver, pancreas, and kidneys reveal that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data. Tumor synthesis holds significant promise for expanding datasets, enhancing AI reliability, improving tumor detection performance, and preserving patient privacy.
comment: Accepted as a chapter in the Springer Book: "Generative Machine Learning Models in Medical Image Computing."
☆ NESI: Shape Representation via Neural Explicit Surface Intersection
Compressed representations of 3D shapes that are compact, accurate, and can be processed efficiently directly in compressed form, are extremely useful for digital media applications. Recent approaches in this space focus on learned implicit or parametric representations. While implicits are well suited for tasks such as in-out queries, they lack natural 2D parameterization, complicating tasks such as texture or normal mapping. Conversely, parametric representations support the latter tasks but are ill-suited for occupancy queries. We propose a novel learned alternative to these approaches, based on intersections of localized explicit, or height-field, surfaces. Since explicits can be trivially expressed both implicitly and parametrically, NESI directly supports a wider range of processing operations than implicit alternatives, including occupancy queries and parametric access. We represent input shapes using a collection of differently oriented height-field bounded half-spaces combined using volumetric Boolean intersections. We first tightly bound each input using a pair of oppositely oriented height-fields, forming a Double Height-Field (DHF) Hull. We refine this hull by intersecting it with additional localized height-fields (HFs) that capture surface regions in its interior. We minimize the number of HFs necessary to accurately capture each input and compactly encode both the DHF hull and the local HFs as neural functions defined over subdomains of R^2. This reduced dimensionality encoding delivers high-quality compact approximations. Given similar parameter count, or storage capacity, NESI significantly reduces approximation error compared to the state of the art, especially at lower parameter counts.
☆ Pioneering Precision in Lumbar Spine MRI Segmentation with Advanced Deep Learning and Data Enhancement
This study presents an advanced approach to lumbar spine segmentation using deep learning techniques, focusing on addressing key challenges such as class imbalance and data preprocessing. Magnetic resonance imaging (MRI) scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs). By rectifying class inconsistencies in the data preprocessing stage, the fidelity of the training data is ensured. The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer, to mitigate common issues such as the dying ReLU problem and improve stability during training. Introducing a custom combined loss function effectively tackles class imbalance, significantly improving segmentation accuracy. Evaluation using a comprehensive suite of metrics showcases the superior performance of this approach, outperforming existing methods and advancing the current techniques in lumbar spine segmentation. These findings hold significant advancements for enhanced lumbar spine MRI and segmentation diagnostic accuracy.
☆ Improved Visually Prompted Keyword Localisation in Real Low-Resource Settings
Given an image query, visually prompted keyword localisation (VPKL) aims to find occurrences of the depicted word in a speech collection. This can be useful when transcriptions are not available for a low-resource language (e.g. if it is unwritten). Previous work showed that VPKL can be performed with a visually grounded speech model trained on paired images and unlabelled speech. But all experiments were done on English. Moreover, transcriptions were used to get positive and negative pairs for the contrastive loss. This paper introduces a few-shot learning scheme to mine pairs automatically without transcriptions. On English, this results in only a small drop in performance. We also - for the first time - consider VPKL on a real low-resource language, Yoruba. While scores are reasonable, here we see a bigger drop in performance compared to using ground truth pairs because the mining is less accurate in Yoruba.
♻ ☆ HiPrompt: Tuning-free Higher-Resolution Generation with Hierarchical MLLM Prompts
The potential for higher-resolution image generation using pretrained diffusion models is immense, yet these models often struggle with issues of object repetition and structural artifacts especially when scaling to 4K resolution and higher. We figure out that the problem is caused by that, a single prompt for the generation of multiple scales provides insufficient efficacy. In response, we propose HiPrompt, a new tuning-free solution that tackles the above problems by introducing hierarchical prompts. The hierarchical prompts offer both global and local guidance. Specifically, the global guidance comes from the user input that describes the overall content, while the local guidance utilizes patch-wise descriptions from MLLMs to elaborately guide the regional structure and texture generation. Furthermore, during the inverse denoising process, the generated noise is decomposed into low- and high-frequency spatial components. These components are conditioned on multiple prompt levels, including detailed patch-wise descriptions and broader image-level prompts, facilitating prompt-guided denoising under hierarchical semantic guidance. It further allows the generation to focus more on local spatial regions and ensures the generated images maintain coherent local and global semantics, structures, and textures with high definition. Extensive experiments demonstrate that HiPrompt outperforms state-of-the-art works in higher-resolution image generation, significantly reducing object repetition and enhancing structural quality.
comment: https://liuxinyv.github.io/HiPrompt/
♻ ☆ HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 $m^2$), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicated on www.lidarhumanmotion.net/hisc4d available for research purposes.
comment: 17 pages, 10 figures, Jornal
♻ ☆ Question-Answering Dense Video Events AAAI 2025
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
comment: Submitted to AAAI 2025
♻ ☆ Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver
Mathematical reasoning remains an ongoing challenge for AI models, especially for geometry problems that require both linguistic and visual signals. As the vision encoders of most MLLMs are trained on natural scenes, they often struggle to understand geometric diagrams, performing no better in geometry problem solving than LLMs that only process text. This limitation is amplified by the lack of effective methods for representing geometric relationships. To address these issues, we introduce the Diagram Formalization Enhanced Geometry Problem Solver (DFE-GPS), a new framework that integrates visual features, geometric formal language, and natural language representations. We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions, designed to enhance the vision encoder for a better understanding of geometric structures. Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
♻ ☆ UV-Mamba: A DCN-Enhanced State Space Model for Urban Village Boundary Identification in High-Resolution Remote Sensing Images
Due to the diverse geographical environments, intricate landscapes, and high-density settlements, the automatic identification of urban village boundaries using remote sensing images remains a highly challenging task. This paper proposes a novel and efficient neural network model called UV-Mamba for accurate boundary detection in high-resolution remote sensing images. UV-Mamba mitigates the memory loss problem in lengthy sequence modeling, which arises in state space models with increasing image size, by incorporating deformable convolutions. Its architecture utilizes an encoder-decoder framework and includes an encoder with four deformable state space augmentation blocks for efficient multi-level semantic extraction and a decoder to integrate the extracted semantic information. We conducted experiments on two large datasets showing that UV-Mamba achieves state-of-the-art performance. Specifically, our model achieves 73.3% and 78.1% IoU on the Beijing and Xi'an datasets, respectively, representing improvements of 1.2% and 3.4% IoU over the previous best model while also being 6x faster in inference speed and 40x smaller in parameter count. Source code and pre-trained models are available at https://github.com/Devin-Egber/UV-Mamba.
comment: 5 pages, 4 figures, 3 tables
♻ ☆ Scaling Diffusion Transformers to 16 Billion Parameters
In this paper, we present DiT-MoE, a sparse version of the diffusion Transformer, that is scalable and competitive with dense networks while exhibiting highly optimized inference. The DiT-MoE includes two simple designs: shared expert routing and expert-level balance loss, thereby capturing common knowledge and reducing redundancy among the different routed experts. When applied to conditional image generation, a deep analysis of experts specialization gains some interesting observations: (i) Expert selection shows preference with spatial position and denoising time step, while insensitive with different class-conditional information; (ii) As the MoE layers go deeper, the selection of experts gradually shifts from specific spacial position to dispersion and balance. (iii) Expert specialization tends to be more concentrated at the early time step and then gradually uniform after half. We attribute it to the diffusion process that first models the low-frequency spatial information and then high-frequency complex information. Based on the above guidance, a series of DiT-MoE experimentally achieves performance on par with dense networks yet requires much less computational load during inference. More encouragingly, we demonstrate the potential of DiT-MoE with synthesized image data, scaling diffusion model at a 16.5B parameter that attains a new SoTA FID-50K score of 1.80 in 512$\times$512 resolution settings. The project page: https://github.com/feizc/DiT-MoE.
♻ ☆ The Influence of Faulty Labels in Data Sets on Human Pose Estimation
In this study we provide empirical evidence demonstrating that the quality of training data impacts model performance in Human Pose Estimation (HPE). Inaccurate labels in widely used data sets, ranging from minor errors to severe mislabeling, can negatively influence learning and distort performance metrics. We perform an in-depth analysis of popular HPE data sets to show the extent and nature of label inaccuracies. Our findings suggest that accounting for the impact of faulty labels will facilitate the development of more robust and accurate HPE models for a variety of real-world applications. We show improved performance with cleansed data.
comment: 15 pages, 7 figures, 5 tables
♻ ☆ Pre-processing and Compression: Understanding Hidden Representation Refinement Across Imaging Domains via Intrinsic Dimension
In recent years, there has been interest in how geometric properties such as intrinsic dimension (ID) of a neural network's hidden representations change through its layers, and how such properties are predictive of important model behavior such as generalization ability. However, evidence has begun to emerge that such behavior can change significantly depending on the domain of the network's training data, such as natural versus medical images. Here, we further this inquiry by exploring how the ID of a network's learned representations changes through its layers, in essence, characterizing how the network successively refines the information content of input data to be used for predictions. Analyzing eleven natural and medical image datasets across six network architectures, we find that how ID changes through the network differs noticeably between natural and medical image models. Specifically, medical image models peak in representation ID earlier in the network, implying a difference in the image features and their abstractness that are typically used for downstream tasks in these domains. Additionally, we discover a strong correlation of this peak representation ID with the ID of the data in its input space, implying that the intrinsic information content of a model's learned representations is guided by that of the data it was trained on. Overall, our findings emphasize notable discrepancies in network behavior between natural and non-natural imaging domains regarding hidden representation information content, and provide further insights into how a network's learned features are shaped by its training data.
♻ ☆ Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing ECCV 2024
Despite recent advances in large-scale text-to-image generative models, manipulating real images with these models remains a challenging problem. The main limitations of existing editing methods are that they either fail to perform with consistent quality on a wide range of image edits or require time-consuming hyperparameter tuning or fine-tuning of the diffusion model to preserve the image-specific appearance of the input image. We propose a novel approach that is built upon a modified diffusion sampling process via the guidance mechanism. In this work, we explore the self-guidance technique to preserve the overall structure of the input image and its local regions appearance that should not be edited. In particular, we explicitly introduce layout-preserving energy functions that are aimed to save local and global structures of the source image. Additionally, we propose a noise rescaling mechanism that allows to preserve noise distribution by balancing the norms of classifier-free guidance and our proposed guiders during generation. Such a guiding approach does not require fine-tuning the diffusion model and exact inversion process. As a result, the proposed method provides a fast and high-quality editing mechanism. In our experiments, we show through human evaluation and quantitative analysis that the proposed method allows to produce desired editing which is more preferable by humans and also achieves a better trade-off between editing quality and preservation of the original image. Our code is available at https://github.com/FusionBrainLab/Guide-and-Rescale.
comment: Accepted to ECCV 2024. The project page is available at https://fusionbrainlab.github.io/Guide-and-Rescale
♻ ☆ A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models ECCV 2024
In deep learning, maintaining model robustness against distribution shifts is critical. This work explores a broad range of possibilities to adapt vision-language foundation models at test-time, with a particular emphasis on CLIP and its variants. The study systematically examines prompt-based techniques and existing test-time adaptation methods, aiming to improve the robustness under distribution shift in diverse real-world scenarios. Specifically, the investigation covers various prompt engineering strategies, including handcrafted prompts, prompt ensembles, and prompt learning techniques. Additionally, we introduce a vision-text-space ensemble that substantially enhances average performance compared to text-space-only ensembles. Since online test-time adaptation has shown to be effective to mitigate performance drops under distribution shift, the study extends its scope to evaluate the effectiveness of existing test-time adaptation methods that were originally designed for vision-only classification models. Through extensive experimental evaluations conducted across multiple datasets and diverse model architectures, the research demonstrates the effectiveness of these adaptation strategies. Code is available at: https://github.com/mariodoebler/test-time-adaptation
comment: Accepted at ECCV 2024 OOD-CV Workshop
♻ ☆ MeshBrush: Painting the Anatomical Mesh with Neural Stylization for Endoscopy
Style transfer is a promising approach to close the sim-to-real gap in medical endoscopy. Rendering synthetic endoscopic videos by traversing pre-operative scans (such as MRI or CT) can generate structurally accurate simulations as well as ground truth camera poses and depth maps. Although image-to-image (I2I) translation models such as CycleGAN can imitate realistic endoscopic images from these simulations, they are unsuitable for video-to-video synthesis due to the lack of temporal consistency, resulting in artifacts between frames. We propose MeshBrush, a neural mesh stylization method to synthesize temporally consistent videos with differentiable rendering. MeshBrush uses the underlying geometry of patient imaging data while leveraging existing I2I methods. With learned per-vertex textures, the stylized mesh guarantees consistency while producing high-fidelity outputs. We demonstrate that mesh stylization is a promising approach for creating realistic simulations for downstream tasks such as training networks and preoperative planning. Although our method is tested and designed for ureteroscopy, its components are transferable to general endoscopic and laparoscopic procedures. The code will be made public on GitHub.
comment: 10 pages, 5 figures
♻ ☆ A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification
Large pretrained transformers are increasingly being developed as generalised foundation models which can underpin powerful task-specific artificial intelligence models. Histopathology foundation models show great promise across many tasks, but analyses have typically been limited by arbitrary hyperparameters that were not tuned to the specific task. We report the most rigorous single-task validation of histopathology foundation models to date, specifically in ovarian cancer morphological subtyping. Attention-based multiple instance learning classifiers were compared using three ImageNet-pretrained feature extractors and fourteen histopathology foundation models. The training set consisted of 1864 whole slide images from 434 ovarian carcinoma cases at Leeds Teaching Hospitals NHS Trust. Five-class classification performance was evaluated through five-fold cross-validation, and these cross-validation models were ensembled for hold-out testing and external validation on the Transcanadian Study and OCEAN Challenge datasets. The best-performing model used the H-optimus-0 foundation model, with five-class balanced accuracies of 89%, 97%, and 74% in the test sets. Normalisations and augmentations aided the performance of the ImageNet-pretrained ResNets, but these were still outperformed by 13 of the 14 foundation models. Hyperparameter tuning the downstream classifiers improved performance by a median 1.9% balanced accuracy, with many improvements being statistically significant. Histopathology foundation models offer a clear benefit to ovarian cancer subtyping, improving classification performance to a degree where clinical utility is tangible, albeit with an increased computational burden. Such models could provide a second opinion to histopathologists diagnosing challenging cases and may improve the accuracy, objectivity, and efficiency of pathological diagnoses overall.
♻ ☆ Espresso: Robust Concept Filtering in Text-to-Image Models
Diffusion based text-to-image models are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright infringing or unsafe). We need concept removal techniques (CRTs) which are effective in preventing the generation of images with unacceptable concepts, utility-preserving on acceptable concepts, and robust against evasion with adversarial prompts. None of the prior CRTs satisfy all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). We configure CLIP to identify unacceptable concepts in generated images using the distance of their embeddings to the text embeddings of both unacceptable and acceptable concepts. This lets us fine-tune for robustness by separating the text embeddings of unacceptable and acceptable concepts while preserving their pairing with image embeddings for utility. We present a pipeline to evaluate various CRTs, attacks against them, and show that Espresso, is more effective and robust than prior CRTs, while retaining utility.
♻ ☆ Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation ECCV2024
Audio-Visual Segmentation (AVS) aims to achieve pixel-level localization of sound sources in videos, while Audio-Visual Semantic Segmentation (AVSS), as an extension of AVS, further pursues semantic understanding of audio-visual scenes. However, since the AVSS task requires the establishment of audio-visual correspondence and semantic understanding simultaneously, we observe that previous methods have struggled to handle this mashup of objectives in end-to-end training, resulting in insufficient learning and sub-optimization. Therefore, we propose a two-stage training strategy called \textit{Stepping Stones}, which decomposes the AVSS task into two simple subtasks from localization to semantic understanding, which are fully optimized in each stage to achieve step-by-step global optimization. This training strategy has also proved its generalization and effectiveness on existing methods. To further improve the performance of AVS tasks, we propose a novel framework Adaptive Audio Visual Segmentation, in which we incorporate an adaptive audio query generator and integrate masked attention into the transformer decoder, facilitating the adaptive fusion of visual and audio features. Extensive experiments demonstrate that our methods achieve state-of-the-art results on all three AVS benchmarks. The project homepage can be accessed at https://gewu-lab.github.io/stepping_stones/.
comment: ECCV2024 poster. Project url: https://gewu-lab.github.io/stepping_stones
♻ ☆ PromptCCD: Learning Gaussian Mixture Prompt Pool for Continual Category Discovery ECCV 2024
We tackle the problem of Continual Category Discovery (CCD), which aims to automatically discover novel categories in a continuous stream of unlabeled data while mitigating the challenge of catastrophic forgetting -- an open problem that persists even in conventional, fully supervised continual learning. To address this challenge, we propose PromptCCD, a simple yet effective framework that utilizes a Gaussian Mixture Model (GMM) as a prompting method for CCD. At the core of PromptCCD lies the Gaussian Mixture Prompting (GMP) module, which acts as a dynamic pool that updates over time to facilitate representation learning and prevent forgetting during category discovery. Moreover, GMP enables on-the-fly estimation of category numbers, allowing PromptCCD to discover categories in unlabeled data without prior knowledge of the category numbers. We extend the standard evaluation metric for Generalized Category Discovery (GCD) to CCD and benchmark state-of-the-art methods on diverse public datasets. PromptCCD significantly outperforms existing methods, demonstrating its effectiveness. Project page: https://visual-ai.github.io/promptccd .
comment: ECCV 2024, Project page: https://visual-ai.github.io/promptccd
♻ ☆ DiffCSG: Differentiable CSG via Rasterization
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requires that each scene parameter relates to pixel values through differentiable operations. While 3D mesh rendering algorithms have been implemented in a differentiable way, these algorithms do not directly extend to Constructive-Solid-Geometry (CSG), a popular parametric representation of shapes, because the underlying boolean operations are typically performed with complex black-box mesh-processing libraries. We present an algorithm, DiffCSG, to render CSG models in a differentiable manner. Our algorithm builds upon CSG rasterization, which displays the result of boolean operations between primitives without explicitly computing the resulting mesh and, as such, bypasses black-box mesh processing. We describe how to implement CSG rasterization within a differentiable rendering pipeline, taking special care to apply antialiasing along primitive intersections to obtain gradients in such critical areas. Our algorithm is simple and fast, can be easily incorporated into modern machine learning setups, and enables a range of applications for computer-aided design, including direct and image-based editing of CSG primitives. Code and data: https://yyyyyhc.github.io/DiffCSG/.
♻ ☆ Prediction-Feedback DETR for Temporal Action Detection
Temporal Action Detection (TAD) is fundamental yet challenging for real-world video applications. Leveraging the unique benefits of transformers, various DETR-based approaches have been adopted in TAD. However, it has recently been identified that the attention collapse in self-attention causes the performance degradation of DETR for TAD. Building upon previous research, this paper newly addresses the attention collapse problem in cross-attention within DETR-based TAD methods. Moreover, our findings reveal that cross-attention exhibits patterns distinct from predictions, indicating a short-cut phenomenon. To resolve this, we propose a new framework, Prediction-Feedback DETR (Pred-DETR), which utilizes predictions to restore the collapse and align the cross- and self-attention with predictions. Specifically, we devise novel prediction-feedback objectives using guidance from the relations of the predictions. As a result, Pred-DETR significantly alleviates the collapse and achieves state-of-the-art performance among DETR-based methods on various challenging benchmarks including THUMOS14, ActivityNet-v1.3, HACS, and FineAction.
♻ ☆ 3D Lymphoma Segmentation on PET/CT Images via Multi-Scale Information Fusion with Cross-Attention
Background: Accurate segmentation of diffuse large B-cell lymphoma (DLBCL) lesions is challenging due to their complex patterns in medical imaging. Objective: This study aims to develop a precise segmentation method for DLBCL using 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) images. Methods: We propose a 3D dual-branch encoder segmentation method using shifted window transformers and a Multi-Scale Information Fusion (MSIF) module. To enhance feature integration, the MSIF module performs multi-scale feature fusion using cross-attention mechanisms with a shifted window framework. A gated neural network within the MSIF module dynamically balances the contributions from each modality. The model was optimized using the Dice Similarity Coefficient (DSC) loss function. Additionally, we computed the total metabolic tumor volume (TMTV) and performed statistical analyses. Results: The model was trained and validated on a dataset of 165 DLBCL patients using 5-fold cross-validation, achieving a DSC of 0.7512. Statistical analysis showed a significant improvement over comparative methods (p < 0.05). Additionally, a Pearson correlation coefficient of 0.91 and an R^2 of 0.89 were observed when comparing manual annotations to segmentation results for TMTV measurement. Conclusion: This study presents an effective automatic segmentation method for DLBCL that leverages the complementary strengths of PET and CT imaging. Our method has the potential to improve diagnostic interpretations and assist in treatment planning for DLBCL patients.
comment: 19 pages, 7 figures; reference added
♻ ☆ Long-term Pre-training for Temporal Action Detection with Transformers
Temporal action detection (TAD) is challenging, yet fundamental for real-world video applications. Recently, DETR-based models for TAD have been prevailing thanks to their unique benefits. However, transformers demand a huge dataset, and unfortunately data scarcity in TAD causes a severe degeneration. In this paper, we identify two crucial problems from data scarcity: attention collapse and imbalanced performance. To this end, we propose a new pre-training strategy, Long-Term Pre-training (LTP), tailored for transformers. LTP has two main components: 1) class-wise synthesis, 2) long-term pretext tasks. Firstly, we synthesize long-form video features by merging video snippets of a target class and non-target classes. They are analogous to untrimmed data used in TAD, despite being created from trimmed data. In addition, we devise two types of long-term pretext tasks to learn long-term dependency. They impose long-term conditions such as finding second-to-fourth or short-duration actions. Our extensive experiments show state-of-the-art performances in DETR-based methods on ActivityNet-v1.3 and THUMOS14 by a large margin. Moreover, we demonstrate that LTP significantly relieves the data scarcity issues in TAD.
♻ ☆ TivNe-SLAM: Dynamic Mapping and Tracking via Time-Varying Neural Radiance Fields
Previous attempts to integrate Neural Radiance Fields (NeRF) into the Simultaneous Localization and Mapping (SLAM) framework either rely on the assumption of static scenes or require the ground truth camera poses, which impedes their application in real-world scenarios. This paper proposes a time-varying representation to track and reconstruct the dynamic scenes. Firstly, two processes, a tracking process and a mapping process, are maintained simultaneously in our framework. In the tracking process, all input images are uniformly sampled and then progressively trained in a self-supervised paradigm. In the mapping process, we leverage motion masks to distinguish dynamic objects from the static background, and sample more pixels from dynamic areas. Secondly, the parameter optimization for both processes is comprised of two stages: the first stage associates time with 3D positions to convert the deformation field to the canonical field. The second stage associates time with the embeddings of the canonical field to obtain colors and a Signed Distance Function (SDF). Lastly, we propose a novel keyframe selection strategy based on the overlapping rate. Our approach is evaluated on two synthetic datasets and one real-world dataset, and the experiments validate that our method achieves competitive results in both tracking and mapping when compared to existing state-of-the-art NeRF-based dynamic SLAM systems.
♻ ☆ X-InstructBLIP: A Framework for aligning X-Modal instruction-aware representations to LLMs and Emergent Cross-modal Reasoning
Recent research has achieved significant advancements in visual reasoning tasks through learning image-to-language projections and leveraging the impressive reasoning abilities of Large Language Models (LLMs). This paper introduces an efficient and effective framework that integrates multiple modalities (images, 3D, audio and video) to a frozen LLM and demonstrates an emergent ability for cross-modal reasoning (2+ modality inputs). Our approach explores two distinct projection mechanisms: Q-Formers and Linear Projections (LPs). Through extensive experimentation across all four modalities on 16 benchmarks, we explore both methods and assess their adaptability in integrated and separate cross-modal reasoning. The Q-Former projection demonstrates superior performance in single modality scenarios and adaptability in joint versus discriminative reasoning involving two or more modalities. However, it exhibits lower generalization capabilities than linear projection in contexts where task-modality data are limited. To enable this framework, we devise a scalable pipeline that automatically generates high-quality, instruction-tuning datasets from readily available captioning data across different modalities, and contribute 24K QA data for audio and 250K QA data for 3D. To facilitate further research in cross-modal reasoning, we introduce the DisCRn (Discriminative Cross-modal Reasoning) benchmark comprising 9K audio-video QA samples and 28K image-3D QA samples that require the model to reason discriminatively across disparate input modalities.
♻ ☆ The Principle of Uncertain Maximum Entropy
The principle of maximum entropy is a well-established technique for choosing a distribution that matches available information while minimizing bias. It finds broad use across scientific disciplines and in machine learning. However, the principle as defined by is susceptible to noise and error in observations. This forces real-world practitioners to use relaxed versions of the principle in an ad hoc way, negatively impacting interpretation. To address this situation, we present a new principle we call uncertain maximum entropy that generalizes the classic principle and provides interpretable solutions irrespective of the observational methods in use. We introduce a convex approximation and expectation-maximization based algorithm for finding solutions to our new principle. Finally, we contrast this new technique with two simpler generally applicable solutions theoretically and experimentally show our technique provides superior accuracy.
♻ ☆ Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning ACM MM 2024
Recently, the AI community has made significant strides in developing powerful foundation models, driven by large-scale multimodal datasets. However, for audio representation learning, existing datasets suffer from limitations in the following aspects: insufficient volume, simplistic content, and arduous collection procedures. To establish an audio dataset with high-quality captions, we propose an innovative, automatic approach leveraging multimodal inputs, such as video frames, audio streams. Specifically, we construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.5M audio-text pairs. We exploit a series of pre-trained models or APIs, to determine audio-visual synchronisation, generate image captions, object detection, or audio tags for specific videos. Subsequently, we employ LLM to paraphrase a congruent caption for each audio, guided by the extracted multi-modality clues. To demonstrate the effectiveness of the proposed dataset, we train widely used models on our dataset and show performance improvement on various downstream tasks, for example, audio-language retrieval, audio captioning, zero-shot classification. In addition, we establish a novel benchmark with environmental information and provide a benchmark for audio-text tasks.
comment: Accepted by ACM MM 2024
♻ ☆ Separation of Body and Background in Radiological Images. A Practical Python Code
Radiological images, such as magnetic resonance imaging (MRI) and computed tomography (CT) images, typically consist of a body part and a dark background. For many analyses, it is necessary to separate the body part from the background. In this article, we present a Python code designed to separate body and background regions in 2D and 3D radiological images. We tested the algorithm on various MRI and CT images of different body parts, including the brain, neck, and abdominal regions. Additionally, we introduced a method for intensity normalization and outlier restriction, adjusted for data conversion into 8-bit unsigned integer (UINT8) format, and examined its effects on body-background separation. Our Python code is available for use with proper citation.
comment: 14 pages, 8 figures. typos corrected
♻ ☆ TextGaze: Gaze-Controllable Face Generation with Natural Language ACM MM2024
Generating face image with specific gaze information has attracted considerable attention. Existing approaches typically input gaze values directly for face generation, which is unnatural and requires annotated gaze datasets for training, thereby limiting its application. In this paper, we present a novel gaze-controllable face generation task. Our approach inputs textual descriptions that describe human gaze and head behavior and generates corresponding face images. Our work first introduces a text-of-gaze dataset containing over 90k text descriptions spanning a dense distribution of gaze and head poses. We further propose a gaze-controllable text-to-face method. Our method contains a sketch-conditioned face diffusion module and a model-based sketch diffusion module. We define a face sketch based on facial landmarks and eye segmentation map. The face diffusion module generates face images from the face sketch, and the sketch diffusion module employs a 3D face model to generate face sketch from text description. Experiments on the FFHQ dataset show the effectiveness of our method. We will release our dataset and code for future research.
comment: ACM MM2024
♻ ☆ FashionLOGO: Prompting Multimodal Large Language Models for Fashion Logo Embeddings
Logo embedding models convert the product logos in images into vectors, enabling their utilization for logo recognition and detection within e-commerce platforms. This facilitates the enforcement of intellectual property rights and enhances product search capabilities. However, current methods treat logo embedding as a purely visual problem. A noteworthy issue is that visual models capture features more than logos. Instead, we view this as a multimodal task, using text as auxiliary information to facilitate the visual model's understanding of the logo. The emerging Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in both visual and textual understanding. Inspired by this, we propose an approach, \textbf{FashionLOGO}, to explore how to prompt MLLMs to generate appropriate text for product images, which can help visual models achieve better logo embeddings. We adopt a cross-attention transformer block that enables visual embedding to automatically learn supplementary knowledge from textual embedding. Our extensive experiments on real-world datasets prove that FashionLOGO is capable of generating generic and robust logo embeddings, achieving state-of-the-art performance in all benchmarks.
♻ ☆ CLFT: Camera-LiDAR Fusion Transformer for Semantic Segmentation in Autonomous Driving
Critical research about camera-and-LiDAR-based semantic object segmentation for autonomous driving significantly benefited from the recent development of deep learning. Specifically, the vision transformer is the novel ground-breaker that successfully brought the multi-head-attention mechanism to computer vision applications. Therefore, we propose a vision-transformer-based network to carry out camera-LiDAR fusion for semantic segmentation applied to autonomous driving. Our proposal uses the novel progressive-assemble strategy of vision transformers on a double-direction network and then integrates the results in a cross-fusion strategy over the transformer decoder layers. Unlike other works in the literature, our camera-LiDAR fusion transformers have been evaluated in challenging conditions like rain and low illumination, showing robust performance. The paper reports the segmentation results over the vehicle and human classes in different modalities: camera-only, LiDAR-only, and camera-LiDAR fusion. We perform coherent controlled benchmark experiments of CLFT against other networks that are also designed for semantic segmentation. The experiments aim to evaluate the performance of CLFT independently from two perspectives: multimodal sensor fusion and backbone architectures. The quantitative assessments show our CLFT networks yield an improvement of up to 10% for challenging dark-wet conditions when comparing with Fully-Convolutional-Neural-Network-based (FCN) camera-LiDAR fusion neural network. Contrasting to the network with transformer backbone but using single modality input, the all-around improvement is 5-10%.
comment: Accepted to IEEE Transactions on Intelligent Vehicles
♻ ☆ OD-VAE: An Omni-dimensional Video Compressor for Improving Latent Video Diffusion Model
Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.
comment: https://github.com/PKU-YuanGroup/Open-Sora-Plan
♻ ☆ CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark
As the capabilities of large multimodal models (LMMs) continue to advance, evaluating the performance of LMMs emerges as an increasing need. Additionally, there is an even larger gap in evaluating the advanced knowledge and reasoning abilities of LMMs in non-English contexts such as Chinese. We introduce CMMMU, a new Chinese Massive Multi-discipline Multimodal Understanding benchmark designed to evaluate LMMs on tasks demanding college-level subject knowledge and deliberate reasoning in a Chinese context. CMMMU is inspired by and strictly follows the annotation and analysis pattern of MMMU. CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. CMMMU focuses on complex perception and reasoning with domain-specific knowledge in the Chinese context. We evaluate 11 open-source LLMs and one proprietary GPT-4V(ision). Even GPT-4V only achieves accuracies of 42%, indicating a large space for improvement. CMMMU will boost the community to build the next-generation LMMs towards expert artificial intelligence and promote the democratization of LMMs by providing diverse language contexts.
♻ ☆ Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis
The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
comment: Github Page: https://github.com/Nihukat/Concept-Conductor
♻ ☆ No Captions, No Problem: Captionless 3D-CLIP Alignment with Hard Negatives via CLIP Knowledge and LLMs BMVC 2024
In this study, we explore an alternative approach to enhance contrastive text-image-3D alignment in the absence of textual descriptions for 3D objects. We introduce two unsupervised methods, $I2I$ and $(I2L)^2$, which leverage CLIP knowledge about textual and 2D data to compute the neural perceived similarity between two 3D samples. We employ the proposed methods to mine 3D hard negatives, establishing a multimodal contrastive pipeline with hard negative weighting via a custom loss function. We train on different configurations of the proposed hard negative mining approach, and we evaluate the accuracy of our models in 3D classification and on the cross-modal retrieval benchmark, testing image-to-shape and shape-to-image retrieval. Results demonstrate that our approach, even without explicit text alignment, achieves comparable or superior performance on zero-shot and standard 3D classification, while significantly improving both image-to-shape and shape-to-image retrieval compared to previous methods.
comment: to be published in BMVC 2024 Proceedings
♻ ☆ SUM: Saliency Unification through Mamba for Visual Attention Modeling WACV 2025
Visual attention modeling, important for interpreting and prioritizing visual stimuli, plays a significant role in applications such as marketing, multimedia, and robotics. Traditional saliency prediction models, especially those based on Convolutional Neural Networks (CNNs) or Transformers, achieve notable success by leveraging large-scale annotated datasets. However, the current state-of-the-art (SOTA) models that use Transformers are computationally expensive. Additionally, separate models are often required for each image type, lacking a unified approach. In this paper, we propose Saliency Unification through Mamba (SUM), a novel approach that integrates the efficient long-range dependency modeling of Mamba with U-Net to provide a unified model for diverse image types. Using a novel Conditional Visual State Space (C-VSS) block, SUM dynamically adapts to various image types, including natural scenes, web pages, and commercial imagery, ensuring universal applicability across different data types. Our comprehensive evaluations across five benchmarks demonstrate that SUM seamlessly adapts to different visual characteristics and consistently outperforms existing models. These results position SUM as a versatile and powerful tool for advancing visual attention modeling, offering a robust solution universally applicable across different types of visual content.
comment: Accepted at IEEE/CVF WACV 2025
♻ ☆ Student Classroom Behavior Detection based on YOLOv7-BRA and Multi-Model Fusion
Accurately detecting student behavior in classroom videos can aid in analyzing their classroom performance and improving teaching effectiveness. However, the current accuracy rate in behavior detection is low. To address this challenge, we propose the Student Classroom Behavior Detection system based on based on YOLOv7-BRA (YOLOv7 with Bi-level Routing Attention ). We identified eight different behavior patterns, including standing, sitting, speaking, listening, walking, raising hands, reading, and writing. We constructed a dataset, which contained 11,248 labels and 4,001 images, with an emphasis on the common behavior of raising hands in a classroom setting (Student Classroom Behavior dataset, SCB-Dataset). To improve detection accuracy, we added the biformer attention module to the YOLOv7 network. Finally, we fused the results from YOLOv7 CrowdHuman, SlowFast, and DeepSort models to obtain student classroom behavior data. We conducted experiments on the SCB-Dataset, and YOLOv7-BRA achieved an mAP@0.5 of 87.1%, resulting in a 2.2% improvement over previous results. Our SCB-dataset can be downloaded from: https://github.com/Whiffe/SCB-datase
comment: arXiv admin note: substantial text overlap with arXiv:2304.02488
♻ ☆ Student Classroom Behavior Detection based on Improved YOLOv7
Accurately detecting student behavior in classroom videos can aid in analyzing their classroom performance and improving teaching effectiveness. However, the current accuracy rate in behavior detection is low. To address this challenge, we propose the Student Classroom Behavior Detection method, based on improved YOLOv7. First, we created the Student Classroom Behavior dataset (SCB-Dataset), which includes 18.4k labels and 4.2k images, covering three behaviors: hand raising, reading, and writing. To improve detection accuracy in crowded scenes, we integrated the biformer attention module and Wise-IoU into the YOLOv7 network. Finally, experiments were conducted on the SCB-Dataset, and the model achieved an mAP@0.5 of 79%, resulting in a 1.8% improvement over previous results. The SCB-Dataset and code are available for download at: https://github.com/Whiffe/SCB-dataset.
comment: arXiv admin note: text overlap with arXiv:2305.07825
♻ ☆ SCB-Dataset3: A Benchmark for Detecting Student Classroom Behavior
The use of deep learning methods to automatically detect students' classroom behavior is a promising approach for analyzing their class performance and improving teaching effectiveness. However, the lack of publicly available datasets on student behavior poses a challenge for researchers in this field. To address this issue, we propose the Student Classroom Behavior dataset (SCB-dataset3), which represents real-life scenarios. Our dataset comprises 5686 images with 45578 labels, focusing on six behaviors: hand-raising, reading, writing, using a phone, bowing the head, and leaning over the table. We evaluated the dataset using the YOLOv5, YOLOv7, and YOLOv8 algorithms, achieving a mean average precision (map) of up to 80.3$\%$. We believe that our dataset can serve as a robust foundation for future research in student behavior detection and contribute to advancements in this field. Our SCB-dataset3 is available for download at: https://github.com/Whiffe/SCB-dataset
comment: arXiv admin note: text overlap with arXiv:2304.02488, arXiv:2306.03318
♻ ☆ A Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors
Accurately detecting student behavior from classroom videos is beneficial for analyzing their classroom status and improving teaching efficiency. However, low accuracy in student classroom behavior detection is a prevalent issue. To address this issue, we propose a Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors (BDSTA). Firstly, the SlowFast network is used to generate motion and environmental information feature maps from the video. Then, the spatio-temporal attention module is applied to the feature maps, including information aggregation, compression and stimulation processes. Subsequently, attention maps in the time, channel and space dimensions are obtained, and multi-label behavior classification is performed based on these attention maps. To solve the long-tail data problem that exists in student classroom behavior datasets, we use an improved focal loss function to assign more weight to the tail class data during training. Experimental results are conducted on a self-made student classroom behavior dataset named STSCB. Compared with the SlowFast model, the average accuracy of student behavior classification detection improves by 8.94\% using BDSTA.
♻ ☆ Student Classroom Behavior Detection based on Spatio-Temporal Network and Multi-Model Fusion
Using deep learning methods to detect students' classroom behavior automatically is a promising approach for analyzing their class performance and improving teaching effectiveness. However, the lack of publicly available spatio-temporal datasets on student behavior, as well as the high cost of manually labeling such datasets, pose significant challenges for researchers in this field. To address this issue, we proposed a method for extending the spatio-temporal behavior dataset in Student Classroom Scenarios (SCB-ST-Dataset4) through image dataset. Our SCB-ST-Dataset4 comprises 757265 images with 25810 labels, focusing on 3 behaviors: hand-raising, reading, writing. Our proposed method can rapidly generate spatio-temporal behavior datasets without requiring extra manual labeling. Furthermore, we proposed a Behavior Similarity Index (BSI) to explore the similarity of behaviors. We evaluated the dataset using the YOLOv5, YOLOv7, YOLOv8, and SlowFast algorithms, achieving a mean average precision (map) of up to 82.3%. Last, we fused multiple models to generate student behavior-related data from various perspectives. The experiment further demonstrates the effectiveness of our method. And SCB-ST-Dataset4 provides a robust foundation for future research in student behavior detection, potentially contributing to advancements in this field. The SCB-ST-Dataset4 is available for download at: https://github.com/Whiffe/SCB-dataset.
comment: arXiv admin note: substantial text overlap with arXiv:2310.02522; text overlap with arXiv:2306.03318
♻ ☆ SOVC: Subject-Oriented Video Captioning
Describing video content according to users' needs is a long-held goal. Although existing video captioning methods have made significant progress, the generated captions may not focus on the entity that users are particularly interested in. To address this problem, we propose a new video captioning task, Subject-Oriented Video Captioning (SOVC), which aims to allow users to specify the describing target via a bounding box. To support this task, we construct two subject-oriented video captioning datasets based on two widely used video captioning datasets: MSVD and MSRVTT, by annotating subjects in each video for each caption. These datasets pave the way for describing users' interested targets. To tackle this task, we introduce a method tailored to this task, named SOVCNet. It consists of two key components: a subject-oriented sampling module that samples frames related to the subject to minimize irrelevant information; and a subject-oriented encoding module that utilizes the subject areas as hard prompts and integrates learnable soft prompts, enhancing the model's focus on the subject's activities and facilitating adaptation to the downstream generation task. Extensive experimental results demonstrate the effectiveness of our method on this new task.
♻ ☆ Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
In image-guided liver surgery, 3D-3D non-rigid registration methods play a crucial role in estimating the mapping between the preoperative model and the intraoperative surface represented as point clouds, addressing the challenge of tissue deformation. Typically, these methods incorporate a biomechanical model, represented as a finite element model (FEM), used to regularize a surface matching term. This paper introduces a novel 3D-3D non-rigid registration method. In contrast to the preceding techniques, our method uniquely incorporates the FEM within the surface matching term itself, ensuring that the estimated deformation maintains geometric consistency throughout the registration process. Additionally, we eliminate the need to determine zero-boundary conditions and applied force locations in the FEM. We achieve this by integrating soft springs into the stiffness matrix and allowing forces to be distributed across the entire liver surface. To further improve robustness, we introduce a regularization technique focused on the gradient of the force magnitudes. This regularization imposes spatial smoothness and helps prevent the overfitting of irregular noise in intraoperative data. Optimization is achieved through an accelerated proximal gradient algorithm, further enhanced by our proposed method for determining the optimal step size. Our method is evaluated and compared to both a learning-based method and a traditional method that features FEM regularization using data collected on our custom-developed phantom, as well as two publicly available datasets. Our method consistently outperforms or is comparable to the baseline techniques. Both the code and dataset will be made publicly available.
♻ ☆ PlaneRecTR++: Unified Query Learning for Joint 3D Planar Reconstruction and Pose Estimation ICCV 2023
3D plane reconstruction from images can usually be divided into several sub-tasks of plane detection, segmentation, parameters regression and possibly depth prediction for per-frame, along with plane correspondence and relative camera pose estimation between frames. Previous works tend to divide and conquer these sub-tasks with distinct network modules, overall formulated by a two-stage paradigm. With an initial camera pose and per-frame plane predictions provided from the first stage, exclusively designed modules, potentially relying on extra plane correspondence labelling, are applied to merge multi-view plane entities and produce 6DoF camera pose. As none of existing works manage to integrate above closely related sub-tasks into a unified framework but treat them separately and sequentially, we suspect it potentially as a main source of performance limitation for existing approaches. Motivated by this finding and the success of query-based learning in enriching reasoning among semantic entities, in this paper, we propose PlaneRecTR++, a Transformer-based architecture, which for the first time unifies all sub-tasks related to multi-view reconstruction and pose estimation with a compact single-stage model, refraining from initial pose estimation and plane correspondence supervision. Extensive quantitative and qualitative experiments demonstrate that our proposed unified learning achieves mutual benefits across sub-tasks, obtaining a new state-of-the-art performance on public ScanNetv1, ScanNetv2, NYUv2-Plane, and MatterPort3D datasets.
comment: Journal extension of our ICCV 2023 paper "PlaneRecTR", which expands from single view reconstruction to simultaneous multi-view reconstruction and camera pose estimation. Note that the ICCV23 PlaneRecTR paper could be found in the previous arxiv version [v2](arXiv:2307.13756v2)
♻ ☆ Pan-denoising: Guided Hyperspectral Image Denoising via Weighted Represent Coefficient Total Variation
This paper introduces a novel paradigm for hyperspectral image (HSI) denoising, which is termed \textit{pan-denoising}. In a given scene, panchromatic (PAN) images capture similar structures and textures to HSIs but with less noise. This enables the utilization of PAN images to guide the HSI denoising process. Consequently, pan-denoising, which incorporates an additional prior, has the potential to uncover underlying structures and details beyond the internal information modeling of traditional HSI denoising methods. However, the proper modeling of this additional prior poses a significant challenge. To alleviate this issue, the paper proposes a novel regularization term, Panchromatic Weighted Representation Coefficient Total Variation (PWRCTV). It employs the gradient maps of PAN images to automatically assign different weights of TV regularization for each pixel, resulting in larger weights for smooth areas and smaller weights for edges. This regularization forms the basis of a pan-denoising model, which is solved using the Alternating Direction Method of Multipliers. Extensive experiments on synthetic and real-world datasets demonstrate that PWRCTV outperforms several state-of-the-art methods in terms of metrics and visual quality. Furthermore, an HSI classification experiment confirms that PWRCTV, as a preprocessing method, can enhance the performance of downstream classification tasks. The code and data are available at https://github.com/shuangxu96/PWRCTV.
♻ ☆ OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation
Light field cameras are capable of capturing intricate angular and spatial details. This allows for acquiring complex light patterns and details from multiple angles, significantly enhancing the precision of image semantic segmentation. However, two significant issues arise: (1) The extensive angular information of light field cameras contains a large amount of redundant data, which is overwhelming for the limited hardware resources of intelligent agents. (2) A relative displacement difference exists in the data collected by different micro-lenses. To address these issues, we propose an Omni-Aperture Fusion model (OAFuser) that leverages dense context from the central view and extracts the angular information from sub-aperture images to generate semantically consistent results. To simultaneously streamline the redundant information from the light field cameras and avoid feature loss during network propagation, we present a simple yet very effective Sub-Aperture Fusion Module (SAFM). This module efficiently embeds sub-aperture images in angular features, allowing the network to process each sub-aperture image with a minimal computational demand of only (around 1GFlops). Furthermore, to address the mismatched spatial information across viewpoints, we present a Center Angular Rectification Module (CARM) to realize feature resorting and prevent feature occlusion caused by misalignment. The proposed OAFuser achieves state-of-the-art performance on four UrbanLF datasets in terms of all evaluation metrics and sets a new record of 84.93% in mIoU on the UrbanLF-Real Extended dataset, with a gain of +3.69%. The source code for OAFuser is available at https://github.com/FeiBryantkit/OAFuser.
comment: Accepted to IEEE Transactions on Artificial Intelligence (TAI). The source code is available at https://github.com/FeiBryantkit/OAFuser
GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection ECCV 2024
Diffusion models have shown superior performance on unsupervised anomaly detection tasks. Since trained with normal data only, diffusion models tend to reconstruct normal counterparts of test images with certain noises added. However, these methods treat all potential anomalies equally, which may cause two main problems. From the global perspective, the difficulty of reconstructing images with different anomalies is uneven. Therefore, instead of utilizing the same setting for all samples, we propose to predict a particular denoising step for each sample by evaluating the difference between image contents and the priors extracted from diffusion models. From the local perspective, reconstructing abnormal regions differs from normal areas even in the same image. Theoretically, the diffusion model predicts a noise for each step, typically following a standard Gaussian distribution. However, due to the difference between the anomaly and its potential normal counterpart, the predicted noise in abnormal regions will inevitably deviate from the standard Gaussian distribution. To this end, we propose introducing synthetic abnormal samples in training to encourage the diffusion models to break through the limitation of standard Gaussian distribution, and a spatial-adaptive feature fusion scheme is utilized during inference. With the above modifications, we propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection, which introduces appealing flexibility and achieves anomaly-free reconstruction while retaining as much normal information as possible. Extensive experiments are conducted on three commonly used anomaly detection datasets (MVTec-AD, MPDD, and VisA) and a printed circuit board dataset (PCB-Bank) we integrated, showing the effectiveness of the proposed method.
comment: Accepted by ECCV 2024, code and models: https://github.com/hyao1/GLAD. Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
♻ ☆ W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration
Previous methods for 3D human motion recovery from monocular images often fall short due to reliance on camera coordinates, leading to inaccuracies in real-world applications. The limited availability and diversity of focal length labels further exacerbate misalignment issues in reconstructed 3D human bodies. To address these challenges, we introduce W-HMR, a weak-supervised calibration method that predicts "reasonable" focal lengths based on body distortion information, eliminating the need for precise focal length labels. Our approach enhances 2D supervision precision and recovery accuracy. Additionally, we present the OrientCorrect module, which corrects body orientation for plausible reconstructions in world space, avoiding the error accumulation associated with inaccurate camera rotation predictions. Our contributions include a novel weak-supervised camera calibration technique, an effective orientation correction module, and a decoupling strategy that significantly improves the generalizability and accuracy of human motion recovery in both camera and world coordinates. The robustness of W-HMR is validated through extensive experiments on various datasets, showcasing its superiority over existing methods. Codes and demos have been made available on the project page https://yw0208.github.io/w-hmr/.
♻ ☆ iBA: Backdoor Attack on 3D Point Cloud via Reconstructing Itself
The widespread deployment of Deep Neural Networks (DNNs) for 3D point cloud processing starkly contrasts with their susceptibility to security breaches, notably backdoor attacks. These attacks hijack DNNs during training, embedding triggers in the data that, once activated, cause the network to make predetermined errors while maintaining normal performance on unaltered data. This vulnerability poses significant risks, especially given the insufficient research on robust defense mechanisms for 3D point cloud networks against such sophisticated threats. Existing attacks either struggle to resist basic point cloud pre-processing methods, or rely on delicate manual design. Exploring simple, effective, imperceptible, and difficult-to-defend triggers in 3D point clouds is still challenging.To address these challenges, we introduce MirrorAttack, a novel effective 3D backdoor attack method, which implants the trigger by simply reconstructing a clean point cloud with an auto-encoder. The data-driven nature of the MirrorAttack obviates the need for complex manual design. Minimizing the reconstruction loss automatically improves imperceptibility. Simultaneously, the reconstruction network endows the trigger with pronounced nonlinearity and sample specificity, rendering traditional preprocessing techniques ineffective in eliminating it. A trigger smoothing module based on spherical harmonic transformation is also attached to regulate the intensity of the attack.Both quantitive and qualitative results verify the effectiveness of our method. We achieve state-of-the-art ASR on different types of victim models with the intervention of defensive techniques. Moreover, the minimal perturbation introduced by our trigger, as assessed by various metrics, attests to the method's stealth, ensuring its imperceptibility.
comment: 16 pages. in IEEE Transactions on Information Forensics and Security (2024)
♻ ☆ Diffusion-Occ: 3D Point Cloud Completion via Occupancy Diffusion
Point clouds are crucial for capturing three-dimensional data but often suffer from incompleteness due to limitations such as resolution and occlusion. Traditional methods typically rely on point-based approaches within discriminative frameworks for point cloud completion. In this paper, we introduce \textbf{Diffusion-Occ}, a novel framework for Diffusion Point Cloud Completion. Diffusion-Occ utilizes a two-stage coarse-to-fine approach. In the first stage, the Coarse Density Voxel Prediction Network (CDNet) processes partial points to predict coarse density voxels, streamlining global feature extraction through voxel classification, as opposed to previous regression-based methods. In the second stage, we introduce the Occupancy Generation Network (OccGen), a conditional occupancy diffusion model based on a transformer architecture and enhanced by our Point-Voxel Fuse (PVF) block. This block integrates coarse density voxels with partial points to leverage both global and local features for comprehensive completion. By thresholding the occupancy field, we convert it into a complete point cloud. Additionally, our method employs diverse training mixtures and efficient diffusion parameterization to enable effective one-step sampling during both training and inference. Experimental results demonstrate that Diffusion-Occ outperforms existing discriminative and generative methods.
comment: After a closer examination of our work, we've determined that our experiments are not thorough and robust enough, possibly impacting the accuracy of our conclusions. Hence, we've decided to withdraw our article and, after refining our experiments, intend to resubmit the paper once significant improvements have been made
♻ ☆ Animate3D: Animating Any 3D Model with Multi-view Video Diffusion
Recent advances in 4D generation mainly focus on generating 4D content by distilling pre-trained text or single-view image-conditioned models. It is inconvenient for them to take advantage of various off-the-shelf 3D assets with multi-view attributes, and their results suffer from spatiotemporal inconsistency owing to the inherent ambiguity in the supervision signals. In this work, we present Animate3D, a novel framework for animating any static 3D model. The core idea is two-fold: 1) We propose a novel multi-view video diffusion model (MV-VDM) conditioned on multi-view renderings of the static 3D object, which is trained on our presented large-scale multi-view video dataset (MV-Video). 2) Based on MV-VDM, we introduce a framework combining reconstruction and 4D Score Distillation Sampling (4D-SDS) to leverage the multi-view video diffusion priors for animating 3D objects. Specifically, for MV-VDM, we design a new spatiotemporal attention module to enhance spatial and temporal consistency by integrating 3D and video diffusion models. Additionally, we leverage the static 3D model's multi-view renderings as conditions to preserve its identity. For animating 3D models, an effective two-stage pipeline is proposed: we first reconstruct motions directly from generated multi-view videos, followed by the introduced 4D-SDS to refine both appearance and motion. Benefiting from accurate motion learning, we could achieve straightforward mesh animation. Qualitative and quantitative experiments demonstrate that Animate3D significantly outperforms previous approaches. Data, code, and models will be open-released.
comment: Project Page: https://animate3d.github.io/
♻ ☆ Invariant Causal Knowledge Distillation in Neural Networks
Knowledge distillation (KD) involves transferring the knowledge from one neural network to another, often from a larger, well-trained model (teacher) to a smaller, more efficient model (student). Traditional KD methods minimize the Kullback-Leibler (KL) divergence between the probabilistic outputs of the teacher and student networks. However, this approach often overlooks crucial structural knowledge embedded within the teacher's network. In this paper, we introduce Invariant Consistency Distillation (ICD), a novel methodology designed to enhance KD by ensuring that the student model's representations are both discriminative and invariant with respect to the teacher's outputs. Our approach is based on causal inference principles and combines contrastive learning with an explicit invariance penalty, capturing significantly more information from the teacher's representation. ICD uses an efficient, parameter-free approach for flexible teacher-student alignment. We provide a theoretical foundation for ICD and demonstrate its effectiveness through extensive experiments. Our results on CIFAR-100 and ImageNet ILSVRC-2012 show that ICD outperforms traditional KD techniques and surpasses state-of-the-art methods. In some cases, the student model even exceeds the teacher model in terms of accuracy. Furthermore, we successfully apply our method to other datasets, such as Tiny ImageNet and STL-10, demonstrating superior cross-dataset generalization. Code is available at https://github.com/giakoumoglou/distillers.
comment: 8 pages, 2 figures, 4 tables. The paper's title has been changed to better emphasize its theoretical foundation
♻ ☆ Relational Representation Distillation
Knowledge distillation (KD) is an effective method for transferring knowledge from a large, well-trained teacher model to a smaller, more efficient student model. Despite its success, one of the main challenges in KD is ensuring the efficient transfer of complex knowledge while maintaining the student's computational efficiency. Unlike previous works that applied contrastive objectives promoting explicit negative instances with little attention to the relationships between them, we introduce Relational Representation Distillation (RRD). Our approach leverages pairwise similarities to explore and reinforce the relationships between the teacher and student models. Inspired by self-supervised learning principles, it uses a relaxed contrastive loss that focuses on similarity rather than exact replication. This method aligns the output distributions of teacher samples in a large memory buffer, improving the robustness and performance of the student model without the need for strict negative instance differentiation. Our approach demonstrates superior performance on CIFAR-100 and ImageNet ILSVRC-2012, outperforming traditional KD and sometimes even outperforms the teacher network when combined with KD. It also transfers successfully to other datasets like Tiny ImageNet and STL-10. Code is available at https://github.com/giakoumoglou/distillers.
comment: 8 pages, 4 figures, 4 tables. Updated experiments on ImageNet ILSVRC-2012. arXiv admin note: text overlap with arXiv:2407.11802
♻ ☆ A Greedy Hierarchical Approach to Whole-Network Filter-Pruning in CNNs
Deep convolutional neural networks (CNNs) have achieved impressive performance in many computer vision tasks. However, their large model sizes require heavy computational resources, making pruning redundant filters from existing pre-trained CNNs an essential task in developing efficient models for resource-constrained devices. Whole-network filter pruning algorithms prune varying fractions of filters from each layer, hence providing greater flexibility. Current whole-network pruning methods are either computationally expensive due to the need to calculate the loss for each pruned filter using a training dataset, or use various heuristic / learned criteria for determining the pruning fractions for each layer. This paper proposes a two-level hierarchical approach for whole-network filter pruning which is efficient and uses the classification loss as the final criterion. The lower-level algorithm (called filter-pruning) uses a sparse-approximation formulation based on linear approximation of filter weights. We explore two algorithms: orthogonal matching pursuit-based greedy selection and a greedy backward pruning approach. The backward pruning algorithm uses a novel closed-form error criterion for efficiently selecting the optimal filter at each stage, thus making the whole algorithm much faster. The higher-level algorithm (called layer-selection) greedily selects the best-pruned layer (pruning using the filter-selection algorithm) using a global pruning criterion. We propose algorithms for two different global-pruning criteria: (1) layer-wise relative error (HBGS), and (2) final classification error (HBGTS). Our suite of algorithms outperforms state-of-the-art pruning methods on ResNet18, ResNet32, ResNet56, VGG16, and ResNext101. Our method reduces the RAM requirement for ResNext101 from 7.6 GB to 1.5 GB and achieves a 94% reduction in FLOPS without losing accuracy on CIFAR-10.
comment: Accepted in TMLR 2024
♻ ☆ mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding
Multimodel Large Language Models(MLLMs) have achieved promising OCR-free Document Understanding performance by increasing the supported resolution of document images. However, this comes at the cost of generating thousands of visual tokens for a single document image, leading to excessive GPU memory and slower inference times, particularly in multi-page document comprehension. In this work, to address these challenges, we propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens, guided by low-resolution global visual features. With this compression module, to strengthen multi-page document comprehension ability and balance both token efficiency and question-answering performance, we develop the DocOwl2 under a three-stage training framework: Single-image Pretraining, Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%, demonstrating advanced capabilities in multi-page questioning answering, explanation with evidence pages, and cross-page structure understanding. Additionally, compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens. Our codes, models, and data are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl2.
comment: 15 pages, 7 figures
♻ ☆ SiamMo: Siamese Motion-Centric 3D Object Tracking
Current 3D single object tracking methods primarily rely on the Siamese matching-based paradigm, which struggles with textureless and incomplete LiDAR point clouds. Conversely, the motion-centric paradigm avoids appearance matching, thus overcoming these issues. However, its complex multi-stage pipeline and the limited temporal modeling capability of a single-stream architecture constrain its potential. In this paper, we introduce SiamMo, a novel and simple Siamese motion-centric tracking approach. Unlike the traditional single-stream architecture, we employ Siamese feature extraction for motion-centric tracking. This decouples feature extraction from temporal fusion, significantly enhancing tracking performance. Additionally, we design a Spatio-Temporal Feature Aggregation module to integrate Siamese features at multiple scales, capturing motion information effectively. We also introduce a Box-aware Feature Encoding module to encode object size priors into motion estimation. SiamMo is a purely motion-centric tracker that eliminates the need for additional processes like segmentation and box refinement. Without whistles and bells, SiamMo not only surpasses state-of-the-art methods across multiple benchmarks but also demonstrates exceptional robustness in challenging scenarios. SiamMo sets a new record on the KITTI tracking benchmark with 90.1\% precision while maintaining a high inference speed of 108 FPS. The code will be released at https://github.com/HDU-VRLab/SiamMo.
♻ ☆ TPA3D: Triplane Attention for Fast Text-to-3D Generation ECCV2024
Due to the lack of large-scale text-3D correspondence data, recent text-to-3D generation works mainly rely on utilizing 2D diffusion models for synthesizing 3D data. Since diffusion-based methods typically require significant optimization time for both training and inference, the use of GAN-based models would still be desirable for fast 3D generation. In this work, we propose Triplane Attention for text-guided 3D generation (TPA3D), an end-to-end trainable GAN-based deep learning model for fast text-to-3D generation. With only 3D shape data and their rendered 2D images observed during training, our TPA3D is designed to retrieve detailed visual descriptions for synthesizing the corresponding 3D mesh data. This is achieved by the proposed attention mechanisms on the extracted sentence and word-level text features. In our experiments, we show that TPA3D generates high-quality 3D textured shapes aligned with fine-grained descriptions, while impressive computation efficiency can be observed.
comment: ECCV2024, Project Page: https://redxouls.github.io/TPA3D/
♻ ☆ EventZoom: A Progressive Approach to Event-Based Data Augmentation for Enhanced Neuromorphic Vision
Dynamic Vision Sensors (DVS) capture event data with high temporal resolution and low power consumption, presenting a more efficient solution for visual processing in dynamic and real-time scenarios compared to conventional video capture methods. Event data augmentation serve as an essential method for overcoming the limitation of scale and diversity in event datasets. Our comparative experiments demonstrate that the two factors, spatial integrity and temporal continuity, can significantly affect the capacity of event data augmentation, which are guarantee for maintaining the sparsity and high dynamic range characteristics unique to event data. However, existing augmentation methods often neglect the preservation of spatial integrity and temporal continuity. To address this, we developed a novel event data augmentation strategy EventZoom, which employs a temporal progressive strategy, embedding transformed samples into the original samples through progressive scaling and shifting. The scaling process avoids the spatial information loss associated with cropping, while the progressive strategy prevents interruptions or abrupt changes in temporal information. We validated EventZoom across various supervised learning frameworks. The experimental results show that EventZoom consistently outperforms existing event data augmentation methods with SOTA performance. For the first time, we have concurrently employed Semi-supervised and Unsupervised learning to verify feasibility on event augmentation algorithms, demonstrating the applicability and effectiveness of EventZoom as a powerful event-based data augmentation tool in handling real-world scenes with high dynamics and variability environments.
♻ ☆ Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning
In this work, we propose a geometry-aware semi-supervised framework for fine-grained building function recognition, utilizing geometric relationships among multi-source data to enhance pseudo-label accuracy in semi-supervised learning, broadening its applicability to various building function categorization systems. Firstly, we design an online semi-supervised pre-training stage, which facilitates the precise acquisition of building facade location information in street-view images. In the second stage, we propose a geometry-aware coarse annotation generation module. This module effectively combines GIS data and street-view data based on the geometric relationships, improving the accuracy of pseudo annotations. In the third stage, we combine the newly generated coarse annotations with the existing labeled dataset to achieve fine-grained functional recognition of buildings across multiple cities at a large scale. Extensive experiments demonstrate that our proposed framework exhibits superior performance in fine-grained functional recognition of buildings. Within the same categorization system, it achieves improvements of 7.6\% and 4.8\% compared to fully-supervised methods and state-of-the-art semi-supervised methods, respectively. Additionally, our method also performs well in cross-city scenarios, i.e., extending the model trained on OmniCity (New York) to new cities (i.e., Los Angeles and Boston) with different building function categorization systems. This study offers a new solution for large-scale multi-city applications with minimal annotation requirements, facilitating more efficient data updates and resource allocation in urban management.
comment: This paper is currently under review
♻ ☆ INK: Inheritable Natural Backdoor Attack Against Model Distillation
Deep learning models are vulnerable to backdoor attacks, where attackers inject malicious behavior through data poisoning and later exploit triggers to manipulate deployed models. To improve the stealth and effectiveness of backdoors, prior studies have introduced various imperceptible attack methods targeting both defense mechanisms and manual inspection. However, all poisoning-based attacks still rely on privileged access to the training dataset. Consequently, model distillation using a trusted dataset has emerged as an effective defense against these attacks. To bridge this gap, we introduce INK, an inheritable natural backdoor attack that targets model distillation. The key insight behind INK is the use of naturally occurring statistical features in all datasets, allowing attackers to leverage them as backdoor triggers without direct access to the training data. Specifically, INK employs image variance as a backdoor trigger and enables both clean-image and clean-label attacks by manipulating the labels and image variance in an unauthenticated dataset. Once the backdoor is embedded, it transfers from the teacher model to the student model, even when defenders use a trusted dataset for distillation. Theoretical analysis and experimental results demonstrate the robustness of INK against transformation-based, search-based, and distillation-based defenses. For instance, INK maintains an attack success rate of over 98\% post-distillation, compared to an average success rate of 1.4\% for existing methods.
comment: 11 pages, 9 figures
♻ ☆ Data standardization for robust lip sync
Lip sync is a fundamental audio-visual task. However, existing lip sync methods fall short of being robust in the wild. One important cause could be distracting factors on the visual input side, making extracting lip motion information difficult. To address these issues, this paper proposes a data standardization pipeline to standardize the visual input for lip sync. Based on recent advances in 3D face reconstruction, we first create a model that can consistently disentangle lip motion information from the raw images. Then, standardized images are synthesized with disentangled lip motion information, with all other attributes related to distracting factors set to predefined values independent of the input, to reduce their effects. Using synthesized images, existing lip sync methods improve their data efficiency and robustness, and they achieve competitive performance for the active speaker detection task.
♻ ☆ 360VFI: A Dataset and Benchmark for Omnidirectional Video Frame Interpolation
Head-mounted 360{\deg} displays and portable 360{\deg} cameras have significantly progressed, providing viewers a realistic and immersive experience. However, many omnidirectional videos have low frame rates that can lead to visual fatigue, and the prevailing plane frame interpolation methodologies are unsuitable for omnidirectional video interpolation because they are designed solely for traditional videos. This paper introduces the benchmark dataset, 360VFI, for Omnidirectional Video Frame Interpolation. We present a practical implementation that introduces a distortion prior from omnidirectional video into the network to modulate distortions. Specifically, we propose a pyramid distortion-sensitive feature extractor that uses the unique characteristics of equirectangular projection (ERP) format as prior information. Moreover, we devise a decoder that uses an affine transformation to further facilitate the synthesis of intermediate frames. 360VFI is the first dataset and benchmark that explores the challenge of Omnidirectional Video Frame Interpolation. Through our benchmark analysis, we present four different distortion condition scenes in the proposed 360VFI dataset to evaluate the challenges triggered by distortion during interpolation. Besides, experimental results demonstrate that Omnidirectional Video Interpolation can be effectively improved by modeling for omnidirectional distortion.
comment: This is a preprint version
Diffusion Cocktail: Mixing Domain-Specific Diffusion Models for Diversified Image Generations
Diffusion models, capable of high-quality image generation, receive unparalleled popularity for their ease of extension. Active users have created a massive collection of domain-specific diffusion models by fine-tuning base models on self-collected datasets. Recent work has focused on improving a single diffusion model by uncovering semantic and visual information encoded in various architecture components. However, those methods overlook the vastly available set of fine-tuned diffusion models and, therefore, miss the opportunity to utilize their combined capacity for novel generation. In this work, we propose Diffusion Cocktail (Ditail), a training-free method that transfers style and content information between multiple diffusion models. This allows us to perform diversified generations using a set of diffusion models, resulting in novel images unobtainable by a single model. Ditail also offers fine-grained control of the generation process, which enables flexible manipulations of styles and contents. With these properties, Ditail excels in numerous applications, including style transfer guided by diffusion models, novel-style image generation, and image manipulation via prompts or collage inputs.
comment: Project Page: https://maps-research.github.io/Ditail/
♻ ☆ CLAMP-ViT: Contrastive Data-Free Learning for Adaptive Post-Training Quantization of ViTs ECCV 2024
We present CLAMP-ViT, a data-free post-training quantization method for vision transformers (ViTs). We identify the limitations of recent techniques, notably their inability to leverage meaningful inter-patch relationships, leading to the generation of simplistic and semantically vague data, impacting quantization accuracy. CLAMP-ViT employs a two-stage approach, cyclically adapting between data generation and model quantization. Specifically, we incorporate a patch-level contrastive learning scheme to generate richer, semantically meaningful data. Furthermore, we leverage contrastive learning in layer-wise evolutionary search for fixed- and mixed-precision quantization to identify optimal quantization parameters while mitigating the effects of a non-smooth loss landscape. Extensive evaluations across various vision tasks demonstrate the superiority of CLAMP-ViT, with performance improvements of up to 3% in top-1 accuracy for classification, 0.6 mAP for object detection, and 1.5 mIoU for segmentation at similar or better compression ratio over existing alternatives. Code is available at https://github.com/georgia-tech-synergy-lab/CLAMP-ViT.git
comment: ECCV 2024
♻ ☆ Feedback-guided Data Synthesis for Imbalanced Classification
Current status quo in machine learning is to use static datasets of real images for training, which often come from long-tailed distributions. With the recent advances in generative models, researchers have started augmenting these static datasets with synthetic data, reporting moderate performance improvements on classification tasks. We hypothesize that these performance gains are limited by the lack of feedback from the classifier to the generative model, which would promote the usefulness of the generated samples to improve the classifier's performance. In this work, we introduce a framework for augmenting static datasets with useful synthetic samples, which leverages one-shot feedback from the classifier to drive the sampling of the generative model. In order for the framework to be effective, we find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse. We validate three feedback criteria on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset (NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes while being twice efficient in terms of the number of generated synthetic samples. NICO++ also enjoys marked boosts of over 5 percent in worst group accuracy. With these results, our framework paves the path towards effectively leveraging state-of-the-art text-to-image models as data sources that can be queried to improve downstream applications.
♻ ☆ Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features ACM MM 2024
Detecting out-of-distribution (OOD) inputs is a principal task for ensuring the safety of deploying deep-neural-network classifiers in open-set scenarios. OOD samples can be drawn from arbitrary distributions and exhibit deviations from in-distribution (ID) data in various dimensions, such as foreground features (e.g., objects in CIFAR100 images vs. those in CIFAR10 images) and background features (e.g., textural images vs. objects in CIFAR10). Existing methods can confound foreground and background features in training, failing to utilize the background features for OOD detection. This paper considers the importance of feature disentanglement in out-of-distribution detection and proposes the simultaneous exploitation of both foreground and background features to support the detection of OOD inputs in in out-of-distribution detection. To this end, we propose a novel framework that first disentangles foreground and background features from ID training samples via a dense prediction approach, and then learns a new classifier that can evaluate the OOD scores of test images from both foreground and background features. It is a generic framework that allows for a seamless combination with various existing OOD detection methods. Extensive experiments show that our approach 1) can substantially enhance the performance of four different state-of-the-art (SotA) OOD detection methods on multiple widely-used OOD datasets with diverse background features, and 2) achieves new SotA performance on these benchmarks.
comment: Accepted by ACM MM 2024, 9 pages
♻ ☆ VideoMambaPro: A Leap Forward for Mamba in Video Understanding
Video understanding requires the extraction of rich spatio-temporal representations, which transformer models achieve through self-attention. Unfortunately, self-attention poses a computational burden. In NLP, Mamba has surfaced as an efficient alternative for transformers. However, Mamba's successes do not trivially extend to computer vision tasks, including those in video analysis. In this paper, we theoretically analyze the differences between self-attention and Mamba. We identify two limitations in Mamba's token processing: historical decay and element contradiction. We propose VideoMambaPro (VMP) that solves the identified limitations by adding masked backward computation and elemental residual connections to a VideoMamba backbone. VideoMambaPro shows state-of-the-art video action recognition performance compared to transformer models, and surpasses VideoMamba by clear margins: 7.9% and 8.1% top-1 on Kinetics-400 and Something-Something V2, respectively. Our VideoMambaPro-M model achieves 91.9% top-1 on Kinetics-400, only 0.2% below InternVideo2-6B but with only 1.2% of its parameters. The combination of high performance and efficiency makes VideoMambaPro an interesting alternative for transformer models.
comment: Model weights are lost due to management error, will re-calculate and update the results
♻ ☆ ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models
Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
♻ ☆ XCAT-3.0: A Comprehensive Library of Personalized Digital Twins Derived from CT Scans
Virtual Imaging Trials (VIT) offer a cost-effective and scalable approach for evaluating medical imaging technologies. Computational phantoms, which mimic real patient anatomy and physiology, play a central role in VITs. However, the current libraries of computational phantoms face limitations, particularly in terms of sample size and diversity. Insufficient representation of the population hampers accurate assessment of imaging technologies across different patient groups. Traditionally, the more realistic computational phantoms were created by manual segmentation, which is a laborious and time-consuming task, impeding the expansion of phantom libraries. This study presents a framework for creating realistic computational phantoms using a suite of automatic segmentation models and performing three forms of automated quality control on the segmented organ masks. The result is the release of over 2500 new computational phantoms, so-named XCAT3.0 after the ubiquitous XCAT computational construct. This new formation embodies 140 structures and represents a comprehensive approach to detailed anatomical modeling. The developed computational phantoms are formatted in both voxelized and surface mesh formats. The framework is combined with an in-house CT scanner simulator to produce realistic CT images. The framework has the potential to advance virtual imaging trials, facilitating comprehensive and reliable evaluations of medical imaging technologies. Phantoms may be requested at https://cvit.duke.edu/resources/. Code, model weights, and sample CT images are available at https://xcat-3.github.io/.
♻ ☆ What's Wrong with the Absolute Trajectory Error? ECCV 2024
One of the limitations of the commonly used Absolute Trajectory Error (ATE) is that it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers varies. In this work, we propose an alternative error metric for evaluating the accuracy of the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE), is computed in five steps: (1) Shift the ground-truth and estimated trajectories such that both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory such that it minimizes the sum of geodesic distances between the corresponding camera orientations. (3) Scale the estimated trajectory such that the median distance of the cameras to their geometric median is the same as that of the ground truth. (4) Compute, winsorize and normalize the distances between the corresponding cameras. (5) Obtain the DTE by taking the average of the mean and the root-mean-square (RMS) of the resulting distances. This metric is an attractive alternative to the ATE, in that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error or the number of outliers varies. Using the similar idea, we also propose a novel rotation error metric, named Discernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-to-marker rotation, which is needed for the computation of our metrics. Our methods are verified through extensive simulations.
comment: The main part of this manuscript (except the part on DRE) has been accepted to ECCV 2024 Workshop HALF-CENTURY OF STRUCTURE-FROM-MOTION (50SFM)
Artificial Intelligence 146
☆ Neural MP: A Generalist Neural Motion Planner
The current paradigm for motion planning generates solutions from scratch for every new problem, which consumes significant amounts of time and computational resources. For complex, cluttered scenes, motion planning approaches can often take minutes to produce a solution, while humans are able to accurately and safely reach any goal in seconds by leveraging their prior experience. We seek to do the same by applying data-driven learning at scale to the problem of motion planning. Our approach builds a large number of complex scenes in simulation, collects expert data from a motion planner, then distills it into a reactive generalist policy. We then combine this with lightweight optimization to obtain a safe path for real world deployment. We perform a thorough evaluation of our method on 64 motion planning tasks across four diverse environments with randomized poses, scenes and obstacles, in the real world, demonstrating an improvement of 23%, 17% and 79% motion planning success rate over state of the art sampling, optimization and learning based planning methods. Video results available at mihdalal.github.io/neuralmotionplanner
comment: Website at mihdalal.github.io/neuralmotionplanner. Main paper: 7 pages, 4 figures, 2 tables. Appendix: 9 pages, 5 figures, 6 tables
☆ Promptable Closed-loop Traffic Simulation
Simulation stands as a cornerstone for safe and efficient autonomous driving development. At its core a simulation system ought to produce realistic, reactive, and controllable traffic patterns. In this paper, we propose ProSim, a multimodal promptable closed-loop traffic simulation framework. ProSim allows the user to give a complex set of numerical, categorical or textual prompts to instruct each agent's behavior and intention. ProSim then rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants. Our experiments show that ProSim achieves high prompt controllability given different user prompts, while reaching competitive performance on the Waymo Sim Agents Challenge when no prompt is given. To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset with over 10M text prompts for over 520k real-world driving scenarios. We will release code of ProSim as well as data and labeling tools of ProSim-Instruct-520k at https://ariostgx.github.io/ProSim.
comment: Accepted to CoRL 2024. Website available at https://ariostgx.github.io/ProSim
☆ An Introduction to Quantum Reinforcement Learning (QRL)
Recent advancements in quantum computing (QC) and machine learning (ML) have sparked considerable interest in the integration of these two cutting-edge fields. Among the various ML techniques, reinforcement learning (RL) stands out for its ability to address complex sequential decision-making problems. RL has already demonstrated substantial success in the classical ML community. Now, the emerging field of Quantum Reinforcement Learning (QRL) seeks to enhance RL algorithms by incorporating principles from quantum computing. This paper offers an introduction to this exciting area for the broader AI and ML community.
comment: Accepted by The 15th International Conference on ICT Convergence - ICTC 2024
☆ Applying Attribution Explanations in Truth-Discovery Quantitative Bipolar Argumentation Frameworks
Explaining the strength of arguments under gradual semantics is receiving increasing attention. For example, various studies in the literature offer explanations by computing the attribution scores of arguments or edges in Quantitative Bipolar Argumentation Frameworks (QBAFs). These explanations, known as Argument Attribution Explanations (AAEs) and Relation Attribution Explanations (RAEs), commonly employ removal-based and Shapley-based techniques for computing the attribution scores. While AAEs and RAEs have proven useful in several applications with acyclic QBAFs, they remain largely unexplored for cyclic QBAFs. Furthermore, existing applications tend to focus solely on either AAEs or RAEs, but do not compare them directly. In this paper, we apply both AAEs and RAEs, to Truth Discovery QBAFs (TD-QBAFs), which assess the trustworthiness of sources (e.g., websites) and their claims (e.g., the severity of a virus), and feature complex cycles. We find that both AAEs and RAEs can provide interesting explanations and can give non-trivial and surprising insights.
comment: This paper has been accepted at ArgXAI Workshop 2024
☆ The Future of Software Testing: AI-Powered Test Case Generation and Validation
Software testing is a crucial phase in the software development lifecycle (SDLC), ensuring that products meet necessary functional, performance, and quality benchmarks before release. Despite advancements in automation, traditional methods of generating and validating test cases still face significant challenges, including prolonged timelines, human error, incomplete test coverage, and high costs of manual intervention. These limitations often lead to delayed product launches and undetected defects that compromise software quality and user satisfaction. The integration of artificial intelligence (AI) into software testing presents a promising solution to these persistent challenges. AI-driven testing methods automate the creation of comprehensive test cases, dynamically adapt to changes, and leverage machine learning to identify high-risk areas in the codebase. This approach enhances regression testing efficiency while expanding overall test coverage. Furthermore, AI-powered tools enable continuous testing and self-healing test cases, significantly reducing manual oversight and accelerating feedback loops, ultimately leading to faster and more reliable software releases. This paper explores the transformative potential of AI in improving test case generation and validation, focusing on its ability to enhance efficiency, accuracy, and scalability in testing processes. It also addresses key challenges associated with adapting AI for testing, including the need for high quality training data, ensuring model transparency, and maintaining a balance between automation and human oversight. Through case studies and examples of real-world applications, this paper illustrates how AI can significantly enhance testing efficiency across both legacy and modern software systems.
comment: 24 Pages
☆ Benchmarking Chinese Knowledge Rectification in Large Language Models
While Large Language Models (LLMs) exhibit remarkable generative capabilities, they are not without flaws, particularly in the form of hallucinations. This issue is even more pronounced when LLMs are applied to specific languages and domains. For example, LLMs may generate nonsense information when handling Chinese ancient poetry, proverbs, or idioms, owing to the lack of specific knowledge. To this end, this paper introduces a benchmark for rectifying Chinese knowledge in LLMs via knowledge editing. Specifically, we introduce a new Chinese dataset, CKnowEdit, by collecting seven type of knowledge from various sources, including classical texts, idioms, and content from Baidu Tieba Ruozhiba, thereby accounting for the unique polyphony, antithesis, and logical constructs inherent in the Chinese language. Through the analysis of this dataset, we uncover the challenges faced by current LLMs in mastering Chinese. Furthermore, our evaluation of state-of-the-art knowledge editing techniques on this dataset unveil the substantial scope for advancement in the rectification of Chinese knowledge. Code and dataset are available at https://github.com/zjunlp/EasyEdit.
comment: Ongoing work; code and dataset are available at https://github.com/zjunlp/EasyEdit
☆ Enhancing Preference-based Linear Bandits via Human Response Time
Binary human choice feedback is widely used in interactive preference learning for its simplicity, but it provides limited information about preference strength. To overcome this limitation, we leverage human response times, which inversely correlate with preference strength, as complementary information. Our work integrates the EZ-diffusion model, which jointly models human choices and response times, into preference-based linear bandits. We introduce a computationally efficient utility estimator that reformulates the utility estimation problem using both choices and response times as a linear regression problem. Theoretical and empirical comparisons with traditional choice-only estimators reveal that for queries with strong preferences ("easy" queries), choices alone provide limited information, while response times offer valuable complementary information about preference strength. As a result, incorporating response times makes easy queries more useful. We demonstrate this advantage in the fixed-budget best-arm identification problem, with simulations based on three real-world datasets, consistently showing accelerated learning when response times are incorporated.
☆ Leveraging Object Priors for Point Tracking ECCV 2024
Point tracking is a fundamental problem in computer vision with numerous applications in AR and robotics. A common failure mode in long-term point tracking occurs when the predicted point leaves the object it belongs to and lands on the background or another object. We identify this as the failure to correctly capture objectness properties in learning to track. To address this limitation of prior work, we propose a novel objectness regularization approach that guides points to be aware of object priors by forcing them to stay inside the the boundaries of object instances. By capturing objectness cues at training time, we avoid the need to compute object masks during testing. In addition, we leverage contextual attention to enhance the feature representation for capturing objectness at the feature level more effectively. As a result, our approach achieves state-of-the-art performance on three point tracking benchmarks, and we further validate the effectiveness of our components via ablation studies. The source code is available at: https://github.com/RehgLab/tracking_objectness
comment: ECCV 2024 ILR Workshop
☆ Creativity and Visual Communication from Machine to Musician: Sharing a Score through a Robotic Camera
This paper explores the integration of visual communication and musical interaction by implementing a robotic camera within a "Guided Harmony" musical game. We aim to examine co-creative behaviors between human musicians and robotic systems. Our research explores existing methodologies like improvisational game pieces and extends these concepts to include robotic participation using a PTZ camera. The robotic system interprets and responds to nonverbal cues from musicians, creating a collaborative and adaptive musical experience. This initial case study underscores the importance of intuitive visual communication channels. We also propose future research directions, including parameters for refining the visual cue toolkit and data collection methods to understand human-machine co-creativity further. Our findings contribute to the broader understanding of machine intelligence in augmenting human creativity, particularly in musical settings.
☆ Evidence from fMRI Supports a Two-Phase Abstraction Process in Language Models NeurIPS
Research has repeatedly demonstrated that intermediate hidden states extracted from large language models are able to predict measured brain response to natural language stimuli. Yet, very little is known about the representation properties that enable this high prediction performance. Why is it the intermediate layers, and not the output layers, that are most capable for this unique and highly general transfer task? In this work, we show that evidence from language encoding models in fMRI supports the existence of a two-phase abstraction process within LLMs. We use manifold learning methods to show that this abstraction process naturally arises over the course of training a language model and that the first "composition" phase of this abstraction process is compressed into fewer layers as training continues. Finally, we demonstrate a strong correspondence between layerwise encoding performance and the intrinsic dimensionality of representations from LLMs. We give initial evidence that this correspondence primarily derives from the inherent compositionality of LLMs and not their next-word prediction properties.
comment: Equal contribution from both authors. Submitted to NeurIPS NeuroAI workshop 2024
☆ ReL-SAR: Representation Learning for Skeleton Action Recognition with Convolutional Transformers and BYOL
To extract robust and generalizable skeleton action recognition features, large amounts of well-curated data are typically required, which is a challenging task hindered by annotation and computation costs. Therefore, unsupervised representation learning is of prime importance to leverage unlabeled skeleton data. In this work, we investigate unsupervised representation learning for skeleton action recognition. For this purpose, we designed a lightweight convolutional transformer framework, named ReL-SAR, exploiting the complementarity of convolutional and attention layers for jointly modeling spatial and temporal cues in skeleton sequences. We also use a Selection-Permutation strategy for skeleton joints to ensure more informative descriptions from skeletal data. Finally, we capitalize on Bootstrap Your Own Latent (BYOL) to learn robust representations from unlabeled skeleton sequence data. We achieved very competitive results on limited-size datasets: MCAD, IXMAS, JHMDB, and NW-UCLA, showing the effectiveness of our proposed method against state-of-the-art methods in terms of both performance and computational efficiency. To ensure reproducibility and reusability, the source code including all implementation parameters is provided at: https://github.com/SafwenNaimi/Representation-Learning-for-Skeleton-Action-Recognition-with-Convolutional-Transformers-and-BYOL
comment: 8 pages, 4 figures, 6 tables
☆ A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System
This paper presents a novel conversational AI-enabled active ideation interface as a creative idea-generation tool to assist novice designers in mitigating the initial latency and ideation bottlenecks that are commonly observed. It is a dynamic, interactive, and contextually responsive approach, actively involving a large language model (LLM) from the domain of natural language processing (NLP) in artificial intelligence (AI) to produce multiple statements of potential ideas for different design problems. Integrating such AI models with ideation creates what we refer to as an Active Ideation scenario, which helps foster continuous dialogue-based interaction, context-sensitive conversation, and prolific idea generation. A pilot study was conducted with thirty novice designers to generate ideas for given problems using traditional methods and the new CAI-based interface. The key parameters of fluency, novelty, and variety were used to compare the outcomes qualitatively by a panel of experts. The findings demonstrated the effectiveness of the proposed tool for generating prolific, diverse and novel ideas. The interface was enhanced by incorporating a prompt-engineered structured dialogue style for each ideation stage to make it uniform and more convenient for the designers. The resulting responses of such a structured CAI interface were found to be more succinct and aligned towards the subsequent design stage, namely conceptualization. The paper thus established the rich potential of using Generative AI (Gen-AI) for the early ill-structured phase of the creative product design process.
comment: 21 pages, 16 figures, AIEDAM Journal Article
☆ A System and Benchmark for LLM-based Q\&A on Heterogeneous Data
In many industrial settings, users wish to ask questions whose answers may be found in structured data sources such as a spreadsheets, databases, APIs, or combinations thereof. Often, the user doesn't know how to identify or access the right data source. This problem is compounded even further if multiple (and potentially siloed) data sources must be assembled to derive the answer. Recently, various Text-to-SQL applications that leverage Large Language Models (LLMs) have addressed some of these problems by enabling users to ask questions in natural language. However, these applications remain impractical in realistic industrial settings because they fail to cope with the data source heterogeneity that typifies such environments. In this paper, we address heterogeneity by introducing the siwarex platform, which enables seamless natural language access to both databases and APIs. To demonstrate the effectiveness of siwarex, we extend the popular Spider dataset and benchmark by replacing some of its tables by data retrieval APIs. We find that siwarex does a good job of coping with data source heterogeneity. Our modified Spider benchmark will soon be available to the research community
☆ Referring Expression Generation in Visually Grounded Dialogue with Discourse-aware Comprehension Guiding
We propose an approach to referring expression generation (REG) in visually grounded dialogue that is meant to produce referring expressions (REs) that are both discriminative and discourse-appropriate. Our method constitutes a two-stage process. First, we model REG as a text- and image-conditioned next-token prediction task. REs are autoregressively generated based on their preceding linguistic context and a visual representation of the referent. Second, we propose the use of discourse-aware comprehension guiding as part of a generate-and-rerank strategy through which candidate REs generated with our REG model are reranked based on their discourse-dependent discriminatory power. Results from our human evaluation indicate that our proposed two-stage approach is effective in producing discriminative REs, with higher performance in terms of text-image retrieval accuracy for reranked REs compared to those generated using greedy decoding.
comment: Accepted for publication at INLG 2024
☆ pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning
Federated Learning (FL) offers a decentralized approach to model training, where data remains local and only model parameters are shared between the clients and the central server. Traditional methods, such as Federated Averaging (FedAvg), linearly aggregate these parameters which are usually trained on heterogeneous data distributions, potentially overlooking the complex, high-dimensional nature of the parameter space. This can result in degraded performance of the aggregated model. While personalized FL approaches can mitigate the heterogeneous data issue to some extent, the limitation of linear aggregation remains unresolved. To alleviate this issue, we investigate the generative approach of diffusion model and propose a novel generative parameter aggregation framework for personalized FL, \texttt{pFedGPA}. In this framework, we deploy a diffusion model on the server to integrate the diverse parameter distributions and propose a parameter inversion method to efficiently generate a set of personalized parameters for each client. This inversion method transforms the uploaded parameters into a latent code, which is then aggregated through denoising sampling to produce the final personalized parameters. By encoding the dependence of a client's model parameters on the specific data distribution using the high-capacity diffusion model, \texttt{pFedGPA} can effectively decouple the complexity of the overall distribution of all clients' model parameters from the complexity of each individual client's parameter distribution. Our experimental results consistently demonstrate the superior performance of the proposed method across multiple datasets, surpassing baseline approaches.
☆ MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction CIKM 24
It is widely acknowledged that extracting market sentiments from news data benefits market predictions. However, existing methods of using financial sentiments remain simplistic, relying on equal-weight and static aggregation to manage sentiments from multiple news items. This leads to a critical issue termed ``Aggregated Sentiment Homogenization'', which has been explored through our analysis of a large financial news dataset from industry practice. This phenomenon occurs when aggregating numerous sentiments, causing representations to converge towards the mean values of sentiment distributions and thereby smoothing out unique and important information. Consequently, the aggregated sentiment representations lose much predictive value of news data. To address this problem, we introduce the Market Attention-weighted News Aggregation Network (MANA-Net), a novel method that leverages a dynamic market-news attention mechanism to aggregate news sentiments for market prediction. MANA-Net learns the relevance of news sentiments to price changes and assigns varying weights to individual news items. By integrating the news aggregation step into the networks for market prediction, MANA-Net allows for trainable sentiment representations that are optimized directly for prediction. We evaluate MANA-Net using the S&P 500 and NASDAQ 100 indices, along with financial news spanning from 2003 to 2018. Experimental results demonstrate that MANA-Net outperforms various recent market prediction methods, enhancing Profit & Loss by 1.1% and the daily Sharpe ratio by 0.252.
comment: Accepted by CIKM 24
☆ RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation
Regulatory documents, issued by governmental regulatory bodies, establish rules, guidelines, and standards that organizations must adhere to for legal compliance. These documents, characterized by their length, complexity and frequent updates, are challenging to interpret, requiring significant allocation of time and expertise on the part of organizations to ensure ongoing compliance.Regulatory Natural Language Processing (RegNLP) is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations. We define an Automated Question-Passage Generation task for RegNLP, create the ObliQA dataset containing 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection, design a baseline Regulatory Information Retrieval and Answer Generation system, and evaluate it with RePASs, a novel evaluation metric that tests whether generated answers accurately capture all relevant obligations and avoid contradictions.
☆ Evaluation of real-time transcriptions using end-to-end ASR models
Automatic Speech Recognition (ASR) or Speech-to-text (STT) has greatly evolved in the last few years. Traditional architectures based on pipelines have been replaced by joint end-to-end (E2E) architectures that simplify and streamline the model training process. In addition, new AI training methods, such as weak-supervised learning have reduced the need for high-quality audio datasets for model training. However, despite all these advancements, little to no research has been done on real-time transcription. In real-time scenarios, the audio is not pre-recorded, and the input audio must be fragmented to be processed by the ASR systems. To achieve real-time requirements, these fragments must be as short as possible to reduce latency. However, audio cannot be split at any point as dividing an utterance into two separate fragments will generate an incorrect transcription. Also, shorter fragments provide less context for the ASR model. For this reason, it is necessary to design and test different splitting algorithms to optimize the quality and delay of the resulting transcription. In this paper, three audio splitting algorithms are evaluated with different ASR models to determine their impact on both the quality of the transcription and the end-to-end delay. The algorithms are fragmentation at fixed intervals, voice activity detection (VAD), and fragmentation with feedback. The results are compared to the performance of the same model, without audio fragmentation, to determine the effects of this division. The results show that VAD fragmentation provides the best quality with the highest delay, whereas fragmentation at fixed intervals provides the lowest quality and the lowest delay. The newly proposed feedback algorithm exchanges a 2-4% increase in WER for a reduction of 1.5-2s delay, respectively, to the VAD splitting.
comment: 15 pages, 4 figures
☆ Zero-shot Outlier Detection via Prior-data Fitted Networks: Model Selection Bygone!
Outlier detection (OD) has a vast literature as it finds numerous applications in environmental monitoring, cybersecurity, finance, and medicine to name a few. Being an inherently unsupervised task, model selection is a key bottleneck for OD (both algorithm and hyperparameter selection) without label supervision. There is a long list of techniques to choose from -- both classical algorithms and deep neural architectures -- and while several studies report their hyperparameter sensitivity, the literature is quite slim on unsupervised model selection -- limiting the effective use of OD in practice. In this paper we present FoMo-0D, for zero/0-shot OD exploring a transformative new direction that bypasses the hurdle of model selection altogether (!), thus breaking new ground. The fundamental idea behind FoMo-0D is the Prior-data Fitted Networks, recently introduced by Muller et al.(2022), which trains a Transformer model on a large body of synthetically generated data from a prior data distribution. In essence, FoMo-0D is a pretrained Foundation Model for zero/0-shot OD on tabular data, which can directly predict the (outlier/inlier) label of any test data at inference time, by merely a single forward pass -- making obsolete the need for choosing an algorithm/architecture, tuning its associated hyperparameters, and even training any model parameters when given a new OD dataset. Extensive experiments on 57 public benchmark datasets against 26 baseline methods show that FoMo-0D performs statistically no different from the top 2nd baseline, while significantly outperforming the majority of the baselines, with an average inference time of 7.7 ms per test sample.
comment: preprint
☆ Real-Time Human Action Recognition on Embedded Platforms
With advancements in computer vision and deep learning, video-based human action recognition (HAR) has become practical. However, due to the complexity of the computation pipeline, running HAR on live video streams incurs excessive delays on embedded platforms. This work tackles the real-time performance challenges of HAR with four contributions: 1) an experimental study identifying a standard Optical Flow (OF) extraction technique as the latency bottleneck in a state-of-the-art HAR pipeline, 2) an exploration of the latency-accuracy tradeoff between the standard and deep learning approaches to OF extraction, which highlights the need for a novel, efficient motion feature extractor, 3) the design of Integrated Motion Feature Extractor (IMFE), a novel single-shot neural network architecture for motion feature extraction with drastic improvement in latency, 4) the development of RT-HARE, a real-time HAR system tailored for embedded platforms. Experimental results on an Nvidia Jetson Xavier NX platform demonstrated that RT-HARE realizes real-time HAR at a video frame rate of 30 frames per second while delivering high levels of recognition accuracy.
☆ Interactive incremental learning of generalizable skills with local trajectory modulation
The problem of generalization in learning from demonstration (LfD) has received considerable attention over the years, particularly within the context of movement primitives, where a number of approaches have emerged. Recently, two important approaches have gained recognition. While one leverages via-points to adapt skills locally by modulating demonstrated trajectories, another relies on so-called task-parameterized models that encode movements with respect to different coordinate systems, using a product of probabilities for generalization. While the former are well-suited to precise, local modulations, the latter aim at generalizing over large regions of the workspace and often involve multiple objects. Addressing the quality of generalization by leveraging both approaches simultaneously has received little attention. In this work, we propose an interactive imitation learning framework that simultaneously leverages local and global modulations of trajectory distributions. Building on the kernelized movement primitives (KMP) framework, we introduce novel mechanisms for skill modulation from direct human corrective feedback. Our approach particularly exploits the concept of via-points to incrementally and interactively 1) improve the model accuracy locally, 2) add new objects to the task during execution and 3) extend the skill into regions where demonstrations were not provided. We evaluate our method on a bearing ring-loading task using a torque-controlled, 7-DoF, DLR SARA robot.
comment: 21 pages, 16 figures
☆ Replay Consolidation with Label Propagation for Continual Object Detection
Object Detection is a highly relevant computer vision problem with many applications such as robotics and autonomous driving. Continual Learning~(CL) considers a setting where a model incrementally learns new information while retaining previously acquired knowledge. This is particularly challenging since Deep Learning models tend to catastrophically forget old knowledge while training on new data. In particular, Continual Learning for Object Detection~(CLOD) poses additional difficulties compared to CL for Classification. In CLOD, images from previous tasks may contain unknown classes that could reappear labeled in future tasks. These missing annotations cause task interference issues for replay-based approaches. As a result, most works in the literature have focused on distillation-based approaches. However, these approaches are effective only when there is a strong overlap of classes across tasks. To address the issues of current methodologies, we propose a novel technique to solve CLOD called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). Based on the replay method, our solution avoids task interference issues by enhancing the buffer memory samples. Our method is evaluated against existing techniques in CLOD literature, demonstrating its superior performance on established benchmarks like VOC and COCO.
☆ 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation
Accurately estimating forest biomass is crucial for global carbon cycle modelling and climate change mitigation. Tree height, a key factor in biomass calculations, can be measured using Synthetic Aperture Radar (SAR) technology. This study applies machine learning to extract forest height data from two SAR products: Single Look Complex (SLC) images and tomographic cubes, in preparation for the ESA Biomass Satellite mission. We use the TomoSense dataset, containing SAR and LiDAR data from Germany's Eifel National Park, to develop and evaluate height estimation models. Our approach includes classical methods, deep learning with a 3D U-Net, and Bayesian-optimized techniques. By testing various SAR frequencies and polarimetries, we establish a baseline for future height and biomass modelling. Best-performing models predict forest height to be within 2.82m mean absolute error for canopies around 30m, advancing our ability to measure global carbon stocks and support climate action.
☆ Joint Input and Output Coordination for Class-Incremental Learning IJCAI 2024
Incremental learning is nontrivial due to severe catastrophic forgetting. Although storing a small amount of data on old tasks during incremental learning is a feasible solution, current strategies still do not 1) adequately address the class bias problem, and 2) alleviate the mutual interference between new and old tasks, and 3) consider the problem of class bias within tasks. This motivates us to propose a joint input and output coordination (JIOC) mechanism to address these issues. This mechanism assigns different weights to different categories of data according to the gradient of the output score, and uses knowledge distillation (KD) to reduce the mutual interference between the outputs of old and new tasks. The proposed mechanism is general and flexible, and can be incorporated into different incremental learning approaches that use memory storage. Extensive experiments show that our mechanism can significantly improve their performance.
comment: 11 pages, 4 figues. Accepted by IJCAI 2024
☆ Adapted-MoE: Mixture of Experts with Test-Time Adaption for Anomaly Detection
Most unsupervised anomaly detection methods based on representations of normal samples to distinguish anomalies have recently made remarkable progress. However, existing methods only learn a single decision boundary for distinguishing the samples within the training dataset, neglecting the variation in feature distribution for normal samples even in the same category in the real world. Furthermore, it was not considered that a distribution bias still exists between the test set and the train set. Therefore, we propose an Adapted-MoE which contains a routing network and a series of expert models to handle multiple distributions of same-category samples by divide and conquer. Specifically, we propose a routing network based on representation learning to route same-category samples into the subclasses feature space. Then, a series of expert models are utilized to learn the representation of various normal samples and construct several independent decision boundaries. We propose the test-time adaption to eliminate the bias between the unseen test sample representation and the feature distribution learned by the expert model. Our experiments are conducted on a dataset that provides multiple subclasses from three categories, namely Texture AD benchmark. The Adapted-MoE significantly improves the performance of the baseline model, achieving 2.18%-7.20% and 1.57%-16.30% increase in I-AUROC and P-AUROC, which outperforms the current state-of-the-art methods. Our code is available at https://github.com/.
☆ SynMorph: Generating Synthetic Face Morphing Dataset with Mated Samples
Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
☆ ExDDI: Explaining Drug-Drug Interaction Predictions with Natural Language
Predicting unknown drug-drug interactions (DDIs) is crucial for improving medication safety. Previous efforts in DDI prediction have typically focused on binary classification or predicting DDI categories, with the absence of explanatory insights that could enhance trust in these predictions. In this work, we propose to generate natural language explanations for DDI predictions, enabling the model to reveal the underlying pharmacodynamics and pharmacokinetics mechanisms simultaneously as making the prediction. To do this, we have collected DDI explanations from DDInter and DrugBank and developed various models for extensive experiments and analysis. Our models can provide accurate explanations for unknown DDIs between known drugs. This paper contributes new tools to the field of DDI prediction and lays a solid foundation for further research on generating explanations for DDI predictions.
comment: 17 pages, 4 figures
☆ Interpretable Responsibility Sharing as a Heuristic for Task and Motion Planning
This article introduces a novel heuristic for Task and Motion Planning (TAMP) named Interpretable Responsibility Sharing (IRS), which enhances planning efficiency in domestic robots by leveraging human-constructed environments and inherent biases. Utilizing auxiliary objects (e.g., trays and pitchers), which are commonly found in household settings, IRS systematically incorporates these elements to simplify and optimize task execution. The heuristic is rooted in the novel concept of Responsibility Sharing (RS), where auxiliary objects share the task's responsibility with the embodied agent, dividing complex tasks into manageable sub-problems. This division not only reflects human usage patterns but also aids robots in navigating and manipulating within human spaces more effectively. By integrating Optimized Rule Synthesis (ORS) for decision-making, IRS ensures that the use of auxiliary objects is both strategic and context-aware, thereby improving the interpretability and effectiveness of robotic planning. Experiments conducted across various household tasks demonstrate that IRS significantly outperforms traditional methods by reducing the effort required in task execution and enhancing the overall decision-making process. This approach not only aligns with human intuitive methods but also offers a scalable solution adaptable to diverse domestic environments. Code is available at https://github.com/asyncs/IRS.
☆ Latent 3D Brain MRI Counterfactual
The number of samples in structural brain MRI studies is often too small to properly train deep learning models. Generative models show promise in addressing this issue by effectively learning the data distribution and generating high-fidelity MRI. However, they struggle to produce diverse, high-quality data outside the distribution defined by the training data. One way to address the issue is using causal models developed for 3D volume counterfactuals. However, accurately modeling causality in high-dimensional spaces is a challenge so that these models generally generate 3D brain MRIS of lower quality. To address these challenges, we propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space. In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume. Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure using a closed-form Generalized Linear Model (GLM). Our experiments conducted on real-world high-resolution MRI data (1mm) demonstrate that our method can generate high-quality 3D MRI counterfactuals.
☆ Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting
Recent years have witnessed great success in handling graph-related tasks with Graph Neural Networks (GNNs). However, most existing GNNs are based on message passing to perform feature aggregation and transformation, where the structural information is explicitly involved in the forward propagation by coupling with node features through graph convolution at each layer. As a result, subtle feature noise or structure perturbation may cause severe error propagation, resulting in extremely poor robustness. In this paper, we rethink the roles played by graph structural information in graph data training and identify that message passing is not the only path to modeling structural information. Inspired by this, we propose a simple but effective Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing. The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge to guide the computation of supervision signals, substituting the explicit message propagation as in GNNs. Specifically, it first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations. Finally, structural sparsification and self-contrasting are formulated as a bi-level optimization problem and solved in a unified framework. Extensive experiments have qualitatively and quantitatively demonstrated that the GSSC framework can produce truly encouraging performance with better generalization and robustness than other leading competitors.
☆ On the Convergence of Sigmoid and tanh Fuzzy General Grey Cognitive Maps
Fuzzy General Grey Cognitive Map (FGGCM) and Fuzzy Grey Cognitive Map (FGCM) are extensions of Fuzzy Cognitive Map (FCM) in terms of uncertainty. FGGCM allows for the processing of general grey number with multiple intervals, enabling FCM to better address uncertain situations. Although the convergence of FCM and FGCM has been discussed in many literature, the convergence of FGGCM has not been thoroughly explored. This paper aims to fill this research gap. First, metrics for the general grey number space and its vector space is given and proved using the Minkowski inequality. By utilizing the characteristic that Cauchy sequences are convergent sequences, the completeness of these two space is demonstrated. On this premise, utilizing Banach fixed point theorem and Browder-Gohde-Kirk fixed point theorem, combined with Lagrange's mean value theorem and Cauchy's inequality, deduces the sufficient conditions for FGGCM to converge to a unique fixed point when using tanh and sigmoid functions as activation functions. The sufficient conditions for the kernels and greyness of FGGCM to converge to a unique fixed point are also provided separately. Finally, based on Web Experience and Civil engineering FCM, designed corresponding FGGCM with sigmoid and tanh as activation functions by modifying the weights to general grey numbers. By comparing with the convergence theorems of FCM and FGCM, the effectiveness of the theorems proposed in this paper was verified. It was also demonstrated that the convergence theorems of FCM are special cases of the theorems proposed in this paper. The study for convergence of FGGCM is of great significance for guiding the learning algorithm of FGGCM, which is needed for designing FGGCM with specific fixed points, lays a solid theoretical foundation for the application of FGGCM in fields such as control, prediction, and decision support systems.
☆ LEROjD: Lidar Extended Radar-Only Object Detection ECCV 2024
Accurate 3D object detection is vital for automated driving. While lidar sensors are well suited for this task, they are expensive and have limitations in adverse weather conditions. 3+1D imaging radar sensors offer a cost-effective, robust alternative but face challenges due to their low resolution and high measurement noise. Existing 3+1D imaging radar datasets include radar and lidar data, enabling cross-modal model improvements. Although lidar should not be used during inference, it can aid the training of radar-only object detectors. We explore two strategies to transfer knowledge from the lidar to the radar domain and radar-only object detectors: 1. multi-stage training with sequential lidar point cloud thin-out, and 2. cross-modal knowledge distillation. In the multi-stage process, three thin-out methods are examined. Our results show significant performance gains of up to 4.2 percentage points in mean Average Precision with multi-stage training and up to 3.9 percentage points with knowledge distillation by initializing the student with the teacher's weights. The main benefit of these approaches is their applicability to other 3D object detection networks without altering their architecture, as we show by analyzing it on two different object detectors. Our code is available at https://github.com/rst-tu-dortmund/lerojd
comment: Accepted for publication as ECCV 2024
☆ CauseJudger: Identifying the Cause with LLMs for Abductive Logical Reasoning
Large language models (LLMs) have been utilized in solving diverse reasoning tasks, encompassing common sense, arithmetic and deduction tasks. However, with difficulties of reversing thinking patterns and irrelevant premises, how to determine the authenticity of the cause in abductive logical reasoning remains underexplored. Inspired by hypothesis and verification method and identification of irrelevant information in human thinking process, we propose a new framework for LLMs abductive logical reasoning called CauseJudger (CJ), which identifies the authenticity of possible cause by transforming thinking from reverse to forward and removing irrelevant information. In addition, we construct an abductive logical reasoning dataset for decision task called CauseLogics, which contains 200,000 tasks of varying reasoning lengths. Our experiments show the efficiency of CJ with overall experiments and ablation experiments as well as case studies on our dataset and reconstructed public dataset. Notably, CJ's implementation is efficient, requiring only two calls to LLM. Its impact is profound: when using gpt-3.5, CJ achieves a maximum correctness improvement of 41% compared to Zero-Shot-CoT. Moreover, with gpt-4, CJ attains an accuracy exceeding 90% across all datasets.
☆ Seeing Through the Mask: Rethinking Adversarial Examples for CAPTCHAs
Modern CAPTCHAs rely heavily on vision tasks that are supposedly hard for computers but easy for humans. However, advances in image recognition models pose a significant threat to such CAPTCHAs. These models can easily be fooled by generating some well-hidden "random" noise and adding it to the image, or hiding objects in the image. However, these methods are model-specific and thus can not aid CAPTCHAs in fooling all models. We show in this work that by allowing for more significant changes to the images while preserving the semantic information and keeping it solvable by humans, we can fool many state-of-the-art models. Specifically, we demonstrate that by adding masks of various intensities the Accuracy @ 1 (Acc@1) drops by more than 50%-points for all models, and supposedly robust models such as vision transformers see an Acc@1 drop of 80%-points. These masks can therefore effectively fool modern image classifiers, thus showing that machines have not caught up with humans -- yet.
comment: Under review
☆ SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
☆ HMAFlow: Learning More Accurate Optical Flow via Hierarchical Motion Field Alignment
Optical flow estimation is a fundamental and long-standing visual task. In this work, we present a novel method, dubbed HMAFlow, to improve optical flow estimation in these tough scenes, especially with small objects. The proposed model mainly consists of two core components: a Hierarchical Motion Field Alignment (HMA) module and a Correlation Self-Attention (CSA) module. In addition, we rebuild 4D cost volumes by employing a Multi-Scale Correlation Search (MCS) layer and replacing average pooling in common cost volumes with an search strategy using multiple search ranges. Experimental results demonstrate that our model achieves the best generalization performance in comparison to other state-of-the-art methods. Specifically, compared with RAFT, our method achieves relative error reductions of 14.2% and 3.4% on the clean pass and final pass of the Sintel online benchmark, respectively. On the KITTI test benchmark, HMAFlow surpasses RAFT and GMA in the Fl-all metric by a relative margin of 6.8% and 7.7%, respectively. To facilitate future research, our code will be made available at https://github.com/BooTurbo/HMAFlow.
comment: 11 pages, 6 figures
☆ An encoding of argumentation problems using quadratic unconstrained binary optimization
In this paper, we develop a way to encode several NP-Complete problems in Abstract Argumentation to Quadratic Unconstrained Binary Optimization (QUBO) problems. In this form, a solution for a QUBO problem involves minimizing a quadratic function over binary variables (0/1), where the coefficients can be represented by a symmetric square matrix (or an equivalent upper triangular version). With the QUBO formulation, exploiting new computing architectures, such as Quantum and Digital Annealers, is possible. A more conventional approach consists of developing approximate solvers, which, in this case, are used to tackle the intrinsic complexity. We performed tests to prove the correctness and applicability of classical problems in Argumentation and enforcement of argument sets. We compared our approach to two other approximate solvers in the literature during tests. In the final experimentation, we used a Simulated Annealing algorithm on a local machine. Also, we tested a Quantum Annealer from the D-Wave Ocean SDK and the Leap Quantum Cloud Service.
☆ Harmonic Reasoning in Large Language Models
Large Language Models (LLMs) are becoming very popular and are used for many different purposes, including creative tasks in the arts. However, these models sometimes have trouble with specific reasoning tasks, especially those that involve logical thinking and counting. This paper looks at how well LLMs understand and reason when dealing with musical tasks like figuring out notes from intervals and identifying chords and scales. We tested GPT-3.5 and GPT-4o to see how they handle these tasks. Our results show that while LLMs do well with note intervals, they struggle with more complicated tasks like recognizing chords and scales. This points out clear limits in current LLM abilities and shows where we need to make them better, which could help improve how they think and work in both artistic and other complex areas. We also provide an automatically generated benchmark data set for the described tasks.
☆ Using machine learning for fault detection in lighthouse light sensors
Lighthouses play a crucial role in ensuring maritime safety by signaling hazardous areas such as dangerous coastlines, shoals, reefs, and rocks, along with aiding harbor entries and aerial navigation. This is achieved through the use of photoresistor sensors that activate or deactivate based on the time of day. However, a significant issue is the potential malfunction of these sensors, leading to the gradual misalignment of the light's operational timing. This paper introduces an innovative machine learning-based approach for automatically detecting such malfunctions. We evaluate four distinct algorithms: decision trees, random forest, extreme gradient boosting, and multi-layer perceptron. Our findings indicate that the multi-layer perceptron is the most effective, capable of detecting timing discrepancies as small as 10-15 minutes. This accuracy makes it a highly efficient tool for automating the detection of faults in lighthouse light sensors.
☆ Elsevier Arena: Human Evaluation of Chemistry/Biology/Health Foundational Large Language Models
The quality and capabilities of large language models cannot be currently fully assessed with automated, benchmark evaluations. Instead, human evaluations that expand on traditional qualitative techniques from natural language generation literature are required. One recent best-practice consists in using A/B-testing frameworks, which capture preferences of human evaluators for specific models. In this paper we describe a human evaluation experiment focused on the biomedical domain (health, biology, chemistry/pharmacology) carried out at Elsevier. In it a large but not massive (8.8B parameter) decoder-only foundational transformer trained on a relatively small (135B tokens) but highly curated collection of Elsevier datasets is compared to OpenAI's GPT-3.5-turbo and Meta's foundational 7B parameter Llama 2 model against multiple criteria. Results indicate -- even if IRR scores were generally low -- a preference towards GPT-3.5-turbo, and hence towards models that possess conversational abilities, are very large and were trained on very large datasets. But at the same time, indicate that for less massive models training on smaller but well-curated training sets can potentially give rise to viable alternatives in the biomedical domain.
comment: 11 pages, 5 tables, 6 figures
☆ Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
The limited training samples for object detectors commonly result in low accuracy out-of-distribution (OOD) object detection. We have observed that feature vectors of the same class tend to cluster tightly in feature space, whereas those of different classes are more scattered. This insight motivates us to leverage feature similarity for OOD detection. Drawing on the concept of prototypes prevalent in few-shot learning, we introduce a novel network architecture, Proto-OOD, designed for this purpose. Proto-OOD enhances prototype representativeness through contrastive loss and identifies OOD data by assessing the similarity between input features and prototypes. It employs a negative embedding generator to create negative embedding, which are then used to train the similarity module. Proto-OOD achieves significantly lower FPR95 in MS-COCO dataset and higher mAP for Pascal VOC dataset, when utilizing Pascal VOC as ID dataset and MS-COCO as OOD dataset. Additionally, we identify limitations in existing evaluation metrics and propose an enhanced evaluation protocol.
comment: 14pages
☆ Visualizing Extensions of Argumentation Frameworks as Layered Graphs
The visualization of argumentation frameworks (AFs) is crucial for enabling a wide applicability of argumentative tools. However, their visualization is often considered only as an accompanying part of tools for computing semantics and standard graphical representations are used. We introduce a new visualization technique that draws an AF, together with an extension (as part of the input), as a 3-layer graph layout. Our technique supports the user to more easily explore the visualized AF, better understand extensions, and verify algorithms for computing semantics. To optimize the visual clarity and aesthetics of this layout, we propose to minimize edge crossings in our 3-layer drawing. We do so by an exact ILP-based approach, but also propose a fast heuristic pipeline. Via a quantitative evaluation, we show that the heuristic is feasible even for large instances, while producing at most twice as many crossings as an optimal drawing in most cases.
☆ Semifactual Explanations for Reinforcement Learning
Reinforcement Learning (RL) is a learning paradigm in which the agent learns from its environment through trial and error. Deep reinforcement learning (DRL) algorithms represent the agent's policies using neural networks, making their decisions difficult to interpret. Explaining the behaviour of DRL agents is necessary to advance user trust, increase engagement, and facilitate integration with real-life tasks. Semifactual explanations aim to explain an outcome by providing "even if" scenarios, such as "even if the car were moving twice as slowly, it would still have to swerve to avoid crashing". Semifactuals help users understand the effects of different factors on the outcome and support the optimisation of resources. While extensively studied in psychology and even utilised in supervised learning, semifactuals have not been used to explain the decisions of RL systems. In this work, we develop a first approach to generating semifactual explanations for RL agents. We start by defining five properties of desirable semifactual explanations in RL and then introducing SGRL-Rewind and SGRL-Advance, the first algorithms for generating semifactual explanations in RL. We evaluate the algorithms in two standard RL environments and find that they generate semifactuals that are easier to reach, represent the agent's policy better, and are more diverse compared to baselines. Lastly, we conduct and analyse a user study to assess the participant's perception of semifactual explanations of the agent's actions.
comment: 9 pages, 2 figures, 4 tables
☆ State-Novelty Guided Action Persistence in Deep Reinforcement Learning
While a powerful and promising approach, deep reinforcement learning (DRL) still suffers from sample inefficiency, which can be notably improved by resorting to more sophisticated techniques to address the exploration-exploitation dilemma. One such technique relies on action persistence (i.e., repeating an action over multiple steps). However, previous work exploiting action persistence either applies a fixed strategy or learns additional value functions (or policy) for selecting the repetition number. In this paper, we propose a novel method to dynamically adjust the action persistence based on the current exploration status of the state space. In such a way, our method does not require training of additional value functions or policy. Moreover, the use of a smooth scheduling of the repeat probability allows a more effective balance between exploration and exploitation. Furthermore, our method can be seamlessly integrated into various basic exploration strategies to incorporate temporal persistence. Finally, extensive experiments on different DMControl tasks demonstrate that our state-novelty guided action persistence method significantly improves the sample efficiency.
comment: Under review
☆ AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation
In computer-aided diagnosis tools employed for skin cancer treatment and early diagnosis, skin lesion segmentation is important. However, achieving precise segmentation is challenging due to inherent variations in appearance, contrast, texture, and blurry lesion boundaries. This research presents a robust approach utilizing a dilated convolutional residual network, which incorporates an attention-based spatial feature enhancement block (ASFEB) and employs a guided decoder strategy. In each dilated convolutional residual block, dilated convolution is employed to broaden the receptive field with varying dilation rates. To improve the spatial feature information of the encoder, we employed an attention-based spatial feature enhancement block in the skip connections. The ASFEB in our proposed method combines feature maps obtained from average and maximum-pooling operations. These combined features are then weighted using the active outcome of global average pooling and convolution operations. Additionally, we have incorporated a guided decoder strategy, where each decoder block is optimized using an individual loss function to enhance the feature learning process in the proposed AD-Net. The proposed AD-Net presents a significant benefit by necessitating fewer model parameters compared to its peer methods. This reduction in parameters directly impacts the number of labeled data required for training, facilitating faster convergence during the training process. The effectiveness of the proposed AD-Net was evaluated using four public benchmark datasets. We conducted a Wilcoxon signed-rank test to verify the efficiency of the AD-Net. The outcomes suggest that our method surpasses other cutting-edge methods in performance, even without the implementation of data augmentation strategies.
☆ CipherDM: Secure Three-Party Inference for Diffusion Model Sampling
Diffusion Models (DMs) achieve state-of-the-art synthesis results in image generation and have been applied to various fields. However, DMs sometimes seriously violate user privacy during usage, making the protection of privacy an urgent issue. Using traditional privacy computing schemes like Secure Multi-Party Computation (MPC) directly in DMs faces significant computation and communication challenges. To address these issues, we propose CipherDM, the first novel, versatile and universal framework applying MPC technology to DMs for secure sampling, which can be widely implemented on multiple DM based tasks. We thoroughly analyze sampling latency breakdown, find time-consuming parts and design corresponding secure MPC protocols for computing nonlinear activations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular architectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers. Compared to direct implementation on SPU, our approach improves running time by approximately 1.084\times \sim 2.328\times, and reduces communication costs by approximately 1.212\times \sim 1.791\times.
☆ A Survey of Multimodal Composite Editing and Retrieval
In the real world, where information is abundant and diverse across different modalities, understanding and utilizing various data types to improve retrieval systems is a key focus of research. Multimodal composite retrieval integrates diverse modalities such as text, image and audio, etc. to provide more accurate, personalized, and contextually relevant results. To facilitate a deeper understanding of this promising direction, this survey explores multimodal composite editing and retrieval in depth, covering image-text composite editing, image-text composite retrieval, and other multimodal composite retrieval. In this survey, we systematically organize the application scenarios, methods, benchmarks, experiments, and future directions. Multimodal learning is a hot topic in large model era, and have also witnessed some surveys in multimodal learning and vision-language models with transformers published in the PAMI journal. To the best of our knowledge, this survey is the first comprehensive review of the literature on multimodal composite retrieval, which is a timely complement of multimodal fusion to existing reviews. To help readers' quickly track this field, we build the project page for this survey, which can be found at https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.
comment: 22 pages, 3 figures, and 11 tables
☆ HyperSMOTE: A Hypergraph-based Oversampling Approach for Imbalanced Node Classifications
Hypergraphs are increasingly utilized in both unimodal and multimodal data scenarios due to their superior ability to model and extract higher-order relationships among nodes, compared to traditional graphs. However, current hypergraph models are encountering challenges related to imbalanced data, as this imbalance can lead to biases in the model towards the more prevalent classes. While the existing techniques, such as GraphSMOTE, have improved classification accuracy for minority samples in graph data, they still fall short when addressing the unique structure of hypergraphs. Inspired by SMOTE concept, we propose HyperSMOTE as a solution to alleviate the class imbalance issue in hypergraph learning. This method involves a two-step process: initially synthesizing minority class nodes, followed by the nodes integration into the original hypergraph. We synthesize new nodes based on samples from minority classes and their neighbors. At the same time, in order to solve the problem on integrating the new node into the hypergraph, we train a decoder based on the original hypergraph incidence matrix to adaptively associate the augmented node to hyperedges. We conduct extensive evaluation on multiple single-modality datasets, such as Cora, Cora-CA and Citeseer, as well as multimodal conversation dataset MELD to verify the effectiveness of HyperSMOTE, showing an average performance gain of 3.38% and 2.97% on accuracy, respectively.
☆ FacialFlowNet: Advancing Facial Optical Flow Estimation with a Diverse Dataset and a Decomposed Model
Facial movements play a crucial role in conveying altitude and intentions, and facial optical flow provides a dynamic and detailed representation of it. However, the scarcity of datasets and a modern baseline hinders the progress in facial optical flow research. This paper proposes FacialFlowNet (FFN), a novel large-scale facial optical flow dataset, and the Decomposed Facial Flow Model (DecFlow), the first method capable of decomposing facial flow. FFN comprises 9,635 identities and 105,970 image pairs, offering unprecedented diversity for detailed facial and head motion analysis. DecFlow features a facial semantic-aware encoder and a decomposed flow decoder, excelling in accurately estimating and decomposing facial flow into head and expression components. Comprehensive experiments demonstrate that FFN significantly enhances the accuracy of facial flow estimation across various optical flow methods, achieving up to an 11% reduction in Endpoint Error (EPE) (from 3.91 to 3.48). Moreover, DecFlow, when coupled with FFN, outperforms existing methods in both synthetic and real-world scenarios, enhancing facial expression analysis. The decomposed expression flow achieves a substantial accuracy improvement of 18% (from 69.1% to 82.1%) in micro-expressions recognition. These contributions represent a significant advancement in facial motion analysis and optical flow estimation. Codes and datasets can be found.
comment: ACMMM2024
☆ Shaking Up VLMs: Comparing Transformers and Structured State Space Models for Vision & Language Modeling
This study explores replacing Transformers in Visual Language Models (VLMs) with Mamba, a recent structured state space model (SSM) that demonstrates promising performance in sequence modeling. We test models up to 3B parameters under controlled conditions, showing that Mamba-based VLMs outperforms Transformers-based VLMs in captioning, question answering, and reading comprehension. However, we find that Transformers achieve greater performance in visual grounding and the performance gap widens with scale. We explore two hypotheses to explain this phenomenon: 1) the effect of task-agnostic visual encoding on the updates of the hidden states, and 2) the difficulty in performing visual grounding from the perspective of in-context multimodal retrieval. Our results indicate that a task-aware encoding yields minimal performance gains on grounding, however, Transformers significantly outperform Mamba at in-context multimodal retrieval. Overall, Mamba shows promising performance on tasks where the correct output relies on a summary of the image but struggles when retrieval of explicit information from the context is required.
☆ Look One and More: Distilling Hybrid Order Relational Knowledge for Cross-Resolution Image Recognition AAAI 2020
In spite of great success in many image recognition tasks achieved by recent deep models, directly applying them to recognize low-resolution images may suffer from low accuracy due to the missing of informative details during resolution degradation. However, these images are still recognizable for subjects who are familiar with the corresponding high-resolution ones. Inspired by that, we propose a teacher-student learning approach to facilitate low-resolution image recognition via hybrid order relational knowledge distillation. The approach refers to three streams: the teacher stream is pretrained to recognize high-resolution images in high accuracy, the student stream is learned to identify low-resolution images by mimicking the teacher's behaviors, and the extra assistant stream is introduced as bridge to help knowledge transfer across the teacher to the student. To extract sufficient knowledge for reducing the loss in accuracy, the learning of student is supervised with multiple losses, which preserves the similarities in various order relational structures. In this way, the capability of recovering missing details of familiar low-resolution images can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on metric learning, low-resolution image classification and low-resolution face recognition tasks show the effectiveness of our approach, while taking reduced models.
comment: Accepted by AAAI 2020
☆ Deep Learning for Video Anomaly Detection: A Review
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos. As a long-standing task in the field of computer vision, VAD has witnessed much good progress. In the era of deep learning, with the explosion of architectures of continuously growing capability and capacity, a great variety of deep learning based methods are constantly emerging for the VAD task, greatly improving the generalization ability of detection algorithms and broadening the application scenarios. Therefore, such a multitude of methods and a large body of literature make a comprehensive survey a pressing necessity. In this paper, we present an extensive and comprehensive research review, covering the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD, and we also delve into the latest VAD works based on pre-trained large models, remedying the limitations of past reviews in terms of only focusing on semi-supervised VAD and small model based methods. For the VAD task with different levels of supervision, we construct a well-organized taxonomy, profoundly discuss the characteristics of different types of methods, and show their performance comparisons. In addition, this review involves the public datasets, open-source codes, and evaluation metrics covering all the aforementioned VAD tasks. Finally, we provide several important research directions for the VAD community.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ PersonaTalk: Bring Attention to Your Persona in Visual Dubbing SIGGRAPH
For audio-driven visual dubbing, it remains a considerable challenge to uphold and highlight speaker's persona while synthesizing accurate lip synchronization. Existing methods fall short of capturing speaker's unique speaking style or preserving facial details. In this paper, we present PersonaTalk, an attention-based two-stage framework, including geometry construction and face rendering, for high-fidelity and personalized visual dubbing. In the first stage, we propose a style-aware audio encoding module that injects speaking style into audio features through a cross-attention layer. The stylized audio features are then used to drive speaker's template geometry to obtain lip-synced geometries. In the second stage, a dual-attention face renderer is introduced to render textures for the target geometries. It consists of two parallel cross-attention layers, namely Lip-Attention and Face-Attention, which respectively sample textures from different reference frames to render the entire face. With our innovative design, intricate facial details can be well preserved. Comprehensive experiments and user studies demonstrate our advantages over other state-of-the-art methods in terms of visual quality, lip-sync accuracy and persona preservation. Furthermore, as a person-generic framework, PersonaTalk can achieve competitive performance as state-of-the-art person-specific methods. Project Page: https://grisoon.github.io/PersonaTalk/.
comment: Accepted at SIGGRAPH Asia 2024 (Conference Track)
☆ KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models
Harnessing the robust capabilities of Large Language Models (LLMs) for narrative generation, logical reasoning, and common-sense knowledge integration, this study delves into utilizing LLMs to enhance automated radiology report generation (R2Gen). Despite the wealth of knowledge within LLMs, efficiently triggering relevant knowledge within these large models for specific tasks like R2Gen poses a critical research challenge. This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on LLMs. Utilizing a frozen LLM to generate reports, the framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports. This is achieved by leveraging the knowledge graph to distill disease-related features in a designed way. Since a radiology report encompasses both normal and disease-related findings, the extracted graph-enhanced disease-related features are integrated with regional image features, attending to both aspects. We explore two fusion methods to automatically prioritize and select the most relevant features. The fused features are employed by LLM to generate reports that are more sensitive to diseases and of improved quality. Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
☆ BAMDP Shaping: a Unified Theoretical Framework for Intrinsic Motivation and Reward Shaping
Intrinsic motivation (IM) and reward shaping are common methods for guiding the exploration of reinforcement learning (RL) agents by adding pseudo-rewards. Designing these rewards is challenging, however, and they can counter-intuitively harm performance. To address this, we characterize them as reward shaping in Bayes-Adaptive Markov Decision Processes (BAMDPs), which formalizes the value of exploration by formulating the RL process as updating a prior over possible MDPs through experience. RL algorithms can be viewed as BAMDP policies; instead of attempting to find optimal algorithms by solving BAMDPs directly, we use it at a theoretical framework for understanding how pseudo-rewards guide suboptimal algorithms. By decomposing BAMDP state value into the value of the information collected plus the prior value of the physical state, we show how psuedo-rewards can help by compensating for RL algorithms' misestimation of these two terms, yielding a new typology of IM and reward shaping approaches. We carefully extend the potential-based shaping theorem to BAMDPs to prove that when pseudo-rewards are BAMDP Potential-based shaping Functions (BAMPFs), they preserve optimal, or approximately optimal, behavior of RL algorithms; otherwise, they can corrupt even optimal learners. We finally give guidance on how to design or convert existing pseudo-rewards to BAMPFs by expressing assumptions about the environment as potential functions on BAMDP states.
☆ TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency
The rapid advancement and increasing complexity of pretrained models, exemplified by CLIP, offer significant opportunities as well as challenges for Federated Learning (FL), a critical component of privacy-preserving artificial intelligence. This research delves into the intricacies of integrating large foundation models like CLIP within FL frameworks to enhance privacy, efficiency, and adaptability across heterogeneous data landscapes. It specifically addresses the challenges posed by non-IID data distributions, the computational and communication overheads of leveraging such complex models, and the skewed representation of classes within datasets. We propose TriplePlay, a framework that integrates CLIP as an adapter to enhance FL's adaptability and performance across diverse data distributions. This approach addresses the long-tail distribution challenge to ensure fairness while reducing resource demands through quantization and low-rank adaptation techniques.Our simulation results demonstrate that TriplePlay effectively decreases GPU usage costs and speeds up the learning process, achieving convergence with reduced communication overhead.
☆ GDFlow: Anomaly Detection with NCDE-based Normalizing Flow for Advanced Driver Assistance System
For electric vehicles, the Adaptive Cruise Control (ACC) in Advanced Driver Assistance Systems (ADAS) is designed to assist braking based on driving conditions, road inclines, predefined deceleration strengths, and user braking patterns. However, the driving data collected during the development of ADAS are generally limited and lack diversity. This deficiency leads to late or aggressive braking for different users. Crucially, it is necessary to effectively identify anomalies, such as unexpected or inconsistent braking patterns in ADAS, especially given the challenge of working with unlabelled, limited, and noisy datasets from real-world electric vehicles. In order to tackle the aforementioned challenges in ADAS, we propose Graph Neural Controlled Differential Equation Normalizing Flow (GDFlow), a model that leverages Normalizing Flow (NF) with Neural Controlled Differential Equations (NCDE) to learn the distribution of normal driving patterns continuously. Compared to the traditional clustering or anomaly detection algorithms, our approach effectively captures the spatio-temporal information from different sensor data and more accurately models continuous changes in driving patterns. Additionally, we introduce a quantile-based maximum likelihood objective to improve the likelihood estimate of the normal data near the boundary of the distribution, enhancing the model's ability to distinguish between normal and anomalous patterns. We validate GDFlow using real-world electric vehicle driving data that we collected from Hyundai IONIQ5 and GV80EV, achieving state-of-the-art performance compared to six baselines across four dataset configurations of different vehicle types and drivers. Furthermore, our model outperforms the latest anomaly detection methods across four time series benchmark datasets. Our approach demonstrates superior efficiency in inference time compared to existing methods.
☆ Early-exit Convolutional Neural Networks
This paper is aimed at developing a method that reduces the computational cost of convolutional neural networks (CNN) during inference. Conventionally, the input data pass through a fixed neural network architecture. However, easy examples can be classified at early stages of processing and conventional networks do not take this into account. In this paper, we introduce 'Early-exit CNNs', EENets for short, which adapt their computational cost based on the input by stopping the inference process at certain exit locations. In EENets, there are a number of exit blocks each of which consists of a confidence branch and a softmax branch. The confidence branch computes the confidence score of exiting (i.e. stopping the inference process) at that location; while the softmax branch outputs a classification probability vector. Both branches are learnable and their parameters are separate. During training of EENets, in addition to the classical classification loss, the computational cost of inference is taken into account as well. As a result, the network adapts its many confidence branches to the inputs so that less computation is spent for easy examples. Inference works as in conventional feed-forward networks, however, when the output of a confidence branch is larger than a certain threshold, the inference stops for that specific example. The idea of EENets is applicable to available CNN architectures such as ResNets. Through comprehensive experiments on MNIST, SVHN, CIFAR10 and Tiny-ImageNet datasets, we show that early-exit (EE) ResNets achieve similar accuracy with their non-EE versions while reducing the computational cost to 20% of the original. Code is available at https://github.com/eksuas/eenets.pytorch
☆ A Multi-Modal Deep Learning Based Approach for House Price Prediction
Accurate prediction of house price, a vital aspect of the residential real estate sector, is of substantial interest for a wide range of stakeholders. However, predicting house prices is a complex task due to the significant variability influenced by factors such as house features, location, neighborhood, and many others. Despite numerous attempts utilizing a wide array of algorithms, including recent deep learning techniques, to predict house prices accurately, existing approaches have fallen short of considering a wide range of factors such as textual and visual features. This paper addresses this gap by comprehensively incorporating attributes, such as features, textual descriptions, geo-spatial neighborhood, and house images, typically showcased in real estate listings in a house price prediction system. Specifically, we propose a multi-modal deep learning approach that leverages different types of data to learn more accurate representation of the house. In particular, we learn a joint embedding of raw house attributes, geo-spatial neighborhood, and most importantly from textual description and images representing the house; and finally use a downstream regression model to predict the house price from this jointly learned embedding vector. Our experimental results with a real-world dataset show that the text embedding of the house advertisement description and image embedding of the house pictures in addition to raw attributes and geo-spatial embedding, can significantly improve the house price prediction accuracy. The relevant source code and dataset are publicly accessible at the following URL: https://github.com/4P0N/mhpp
comment: 22 pages
☆ Sample-Efficient Bayesian Optimization with Transfer Learning for Heterogeneous Search Spaces
Bayesian optimization (BO) is a powerful approach to sample-efficient optimization of black-box functions. However, in settings with very few function evaluations, a successful application of BO may require transferring information from historical experiments. These related experiments may not have exactly the same tunable parameters (search spaces), motivating the need for BO with transfer learning for heterogeneous search spaces. In this paper, we propose two methods for this setting. The first approach leverages a Gaussian process (GP) model with a conditional kernel to transfer information between different search spaces. Our second approach treats the missing parameters as hyperparameters of the GP model that can be inferred jointly with the other GP hyperparameters or set to fixed values. We show that these two methods perform well on several benchmark problems.
☆ Machine Anomalous Sound Detection Using Spectral-temporal Modulation Representations Derived from Machine-specific Filterbanks
Early detection of factory machinery malfunctions is crucial in industrial applications. In machine anomalous sound detection (ASD), different machines exhibit unique vibration-frequency ranges based on their physical properties. Meanwhile, the human auditory system is adept at tracking both temporal and spectral dynamics of machine sounds. Consequently, integrating the computational auditory models of the human auditory system with machine-specific properties can be an effective approach to machine ASD. We first quantified the frequency importances of four types of machines using the Fisher ratio (F-ratio). The quantified frequency importances were then used to design machine-specific non-uniform filterbanks (NUFBs), which extract the log non-uniform spectrum (LNS) feature. The designed NUFBs have a narrower bandwidth and higher filter distribution density in frequency regions with relatively high F-ratios. Finally, spectral and temporal modulation representations derived from the LNS feature were proposed. These proposed LNS feature and modulation representations are input into an autoencoder neural-network-based detector for ASD. The quantification results from the training set of the Malfunctioning Industrial Machine Investigation and Inspection dataset with a signal-to-noise (SNR) of 6 dB reveal that the distinguishing information between normal and anomalous sounds of different machines is encoded non-uniformly in the frequency domain. By highlighting these important frequency regions using NUFBs, the LNS feature can significantly enhance performance using the metric of AUC (area under the receiver operating characteristic curve) under various SNR conditions. Furthermore, modulation representations can further improve performance. Specifically, temporal modulation is effective for fans, pumps, and sliders, while spectral modulation is particularly effective for valves.
☆ Tele-LLMs: A Series of Specialized Large Language Models for Telecommunications
The emergence of large language models (LLMs) has significantly impacted various fields, from natural language processing to sectors like medicine and finance. However, despite their rapid proliferation, the applications of LLMs in telecommunications remain limited, often relying on general-purpose models that lack domain-specific specialization. This lack of specialization results in underperformance, particularly when dealing with telecommunications-specific technical terminology and their associated mathematical representations. This paper addresses this gap by first creating and disseminating Tele-Data, a comprehensive dataset of telecommunications material curated from relevant sources, and Tele-Eval, a large-scale question-and-answer dataset tailored to the domain. Through extensive experiments, we explore the most effective training techniques for adapting LLMs to the telecommunications domain, ranging from examining the division of expertise across various telecommunications aspects to employing parameter-efficient techniques. We also investigate how models of different sizes behave during adaptation and analyze the impact of their training data on this behavior. Leveraging these findings, we develop and open-source Tele-LLMs, the first series of language models ranging from 1B to 8B parameters, specifically tailored for telecommunications. Our evaluations demonstrate that these models outperform their general-purpose counterparts on Tele-Eval while retaining their previously acquired capabilities, thus avoiding the catastrophic forgetting phenomenon.
☆ Closed-Form Interpretation of Neural Network Latent Spaces with Symbolic Gradients
It has been demonstrated in many scientific fields that artificial neural networks like autoencoders or Siamese networks encode meaningful concepts in their latent spaces. However, there does not exist a comprehensive framework for retrieving this information in a human-readable form without prior knowledge. In order to extract these concepts, we introduce a framework for finding closed-form interpretations of neurons in latent spaces of artificial neural networks. The interpretation framework is based on embedding trained neural networks into an equivalence class of functions that encode the same concept. We interpret these neural networks by finding an intersection between the equivalence class and human-readable equations defined by a symbolic search space. The approach is demonstrated by retrieving invariants of matrices and conserved quantities of dynamical systems from latent spaces of Siamese neural networks.
☆ Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks
The surging development of Artificial Intelligence-Generated Content (AIGC) marks a transformative era of the content creation and production. Edge servers promise attractive benefits, e.g., reduced service delay and backhaul traffic load, for hosting AIGC services compared to cloud-based solutions. However, the scarcity of available resources on the edge pose significant challenges in deploying generative AI models. In this paper, by characterizing the resource and delay demands of typical generative AI models, we find that the consumption of storage and GPU memory, as well as the model switching delay represented by I/O delay during the preloading phase, are significant and vary across models. These multidimensional coupling factors render it difficult to make efficient edge model deployment decisions. Hence, we present a collaborative edge-cloud framework aiming to properly manage generative AI model deployment on the edge. Specifically, we formulate edge model deployment problem considering heterogeneous features of models as an optimization problem, and propose a model-level decision selection algorithm to solve it. It enables pooled resource sharing and optimizes the trade-off between resource consumption and delay in edge generative AI model deployment. Simulation results validate the efficacy of the proposed algorithm compared with baselines, demonstrating its potential to reduce overall costs by providing feature-aware model deployment decisions.
☆ TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors
Diffusion models have achieved notable success in image generation, but they remain highly vulnerable to backdoor attacks, which compromise their integrity by producing specific undesirable outputs when presented with a pre-defined trigger. In this paper, we investigate how to protect diffusion models from this dangerous threat. Specifically, we propose TERD, a backdoor defense framework that builds unified modeling for current attacks, which enables us to derive an accessible reversed loss. A trigger reversion strategy is further employed: an initial approximation of the trigger through noise sampled from a prior distribution, followed by refinement through differential multi-step samplers. Additionally, with the reversed trigger, we propose backdoor detection from the noise space, introducing the first backdoor input detection approach for diffusion models and a novel model detection algorithm that calculates the KL divergence between reversed and benign distributions. Extensive evaluations demonstrate that TERD secures a 100% True Positive Rate (TPR) and True Negative Rate (TNR) across datasets of varying resolutions. TERD also demonstrates nice adaptability to other Stochastic Differential Equation (SDE)-based models. Our code is available at https://github.com/PKU-ML/TERD.
☆ Mpox Narrative on Instagram: A Labeled Multilingual Dataset of Instagram Posts on Mpox for Sentiment, Hate Speech, and Anxiety Analysis
The world is currently experiencing an outbreak of mpox, which has been declared a Public Health Emergency of International Concern by WHO. No prior work related to social media mining has focused on the development of a dataset of Instagram posts about the mpox outbreak. The work presented in this paper aims to address this research gap and makes two scientific contributions to this field. First, it presents a multilingual dataset of 60,127 Instagram posts about mpox, published between July 23, 2022, and September 5, 2024. The dataset, available at https://dx.doi.org/10.21227/7fvc-y093, contains Instagram posts about mpox in 52 languages. For each of these posts, the Post ID, Post Description, Date of publication, language, and translated version of the post (translation to English was performed using the Google Translate API) are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis, hate speech detection, and anxiety or stress detection were performed. This process included classifying each post into (i) one of the sentiment classes, i.e., fear, surprise, joy, sadness, anger, disgust, or neutral, (ii) hate or not hate, and (iii) anxiety/stress detected or no anxiety/stress detected. These results are presented as separate attributes in the dataset. Second, this paper presents the results of performing sentiment analysis, hate speech analysis, and anxiety or stress analysis. The variation of the sentiment classes - fear, surprise, joy, sadness, anger, disgust, and neutral were observed to be 27.95%, 2.57%, 8.69%, 5.94%, 2.69%, 1.53%, and 50.64%, respectively. In terms of hate speech detection, 95.75% of the posts did not contain hate and the remaining 4.25% of the posts contained hate. Finally, 72.05% of the posts did not indicate any anxiety/stress, and the remaining 27.95% of the posts represented some form of anxiety/stress.
☆ Seek and Solve Reasoning for Table Question Answering
Table-based Question Answering (TQA) involves answering questions based on tabular data. The complexity of table structures and question logic makes this task difficult even for Large Language Models (LLMs). This paper improves TQA performance by leveraging LLMs' reasoning capabilities. Inspired by how humans solve TQA tasks, we propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions. The two stages are integrated at the reasoning level, and their Chain of Thought (CoT) paths are integrated into a coherent Seek-and-Solve CoT (SS-CoT). Furthermore, we present a compact single-stage TQA-solving prompt distilled from the pipeline. Experiments demonstrate that under In-Context Learning settings, using samples with SS-CoT paths as demonstrations, the TQA-solving prompt can effectively guide the LLM to solve complex TQA tasks, resulting in improved performance and reliability. Our results highlight the importance of properly eliciting LLMs' reasoning capabilities in solving complex TQA tasks.
☆ On the Relationship between Truth and Political Bias in Language Models
Language model alignment research often attempts to ensure that models are not only helpful and harmless, but also truthful and unbiased. However, optimizing these objectives simultaneously can obscure how improving one aspect might impact the others. In this work, we focus on analyzing the relationship between two concepts essential in both language model alignment and political science: \textit{truthfulness} and \textit{political bias}. We train reward models on various popular truthfulness datasets and subsequently evaluate their political bias. Our findings reveal that optimizing reward models for truthfulness on these datasets tends to result in a left-leaning political bias. We also find that existing open-source reward models (i.e. those trained on standard human preference datasets) already show a similar bias and that the bias is larger for larger models. These results raise important questions about both the datasets used to represent truthfulness and what language models capture about the relationship between truth and politics.
☆ RotCAtt-TransUNet++: Novel Deep Neural Network for Sophisticated Cardiac Segmentation
Cardiovascular disease is a major global health concern, contributing significantly to global mortality. Accurately segmenting cardiac medical imaging data is crucial for reducing fatality rates associated with these conditions. However, current state-of-the-art (SOTA) neural networks, including CNN-based and Transformer-based approaches, face challenges in capturing both inter-slice connections and intra-slice details, especially in datasets featuring intricate, long-range details along the z-axis like coronary arteries. Existing methods also struggle with differentiating non-cardiac components from the myocardium, resulting in segmentation inaccuracies and the "spraying" phenomenon. To address these issues, we introduce RotCAtt-TransUNet++, a novel architecture designed for robust segmentation of intricate cardiac structures. Our approach enhances global context modeling through multiscale feature aggregation and nested skip connections in the encoder. Transformer layers facilitate capturing intra-slice interactions, while a rotatory attention mechanism handles inter-slice connectivity. A channel-wise cross-attention gate integrates multiscale information and decoder features, effectively bridging semantic gaps. Experimental results across multiple datasets demonstrate superior performance over current methods, achieving near-perfect annotation of coronary arteries and myocardium. Ablation studies confirm that our rotatory attention mechanism significantly improves segmentation accuracy by transforming embedded vectorized patches in semantic dimensional space.
comment: 6 pages, 5 figures
☆ BrainDecoder: Style-Based Visual Decoding of EEG Signals
Decoding neural representations of visual stimuli from electroencephalography (EEG) offers valuable insights into brain activity and cognition. Recent advancements in deep learning have significantly enhanced the field of visual decoding of EEG, primarily focusing on reconstructing the semantic content of visual stimuli. In this paper, we present a novel visual decoding pipeline that, in addition to recovering the content, emphasizes the reconstruction of the style, such as color and texture, of images viewed by the subject. Unlike previous methods, this ``style-based'' approach learns in the CLIP spaces of image and text separately, facilitating a more nuanced extraction of information from EEG signals. We also use captions for text alignment simpler than previously employed, which we find work better. Both quantitative and qualitative evaluations show that our method better preserves the style of visual stimuli and extracts more fine-grained semantic information from neural signals. Notably, it achieves significant improvements in quantitative results and sets a new state-of-the-art on the popular Brain2Image dataset.
comment: 5 pages, 4 figures, 2 tables
☆ Disentangled Representations for Short-Term and Long-Term Person Re-Identification
We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons could have the same attribute, and persons' appearances look different, e.g., with viewpoint changes. Recent reID methods focus on learning person features discriminative only for a particular factor of variations (e.g., human pose), which also requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to factorize person images into identity-related and unrelated features. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose). To this end, we propose a new generative adversarial network, dubbed identity shuffle GAN (IS-GAN). It disentangles identity-related and unrelated features from person images through an identity-shuffling technique that exploits identification labels alone without any auxiliary supervisory signals. We restrict the distribution of identity-unrelated features or encourage the identity-related and unrelated features to be uncorrelated, facilitating the disentanglement process. Experimental results validate the effectiveness of IS-GAN, showing state-of-the-art performance on standard reID benchmarks, including Market-1501, CUHK03, and DukeMTMC-reID. We further demonstrate the advantages of disentangling person representations on a long-term reID task, setting a new state of the art on a Celeb-reID dataset.
comment: arXiv admin note: substantial text overlap with arXiv:1910.12003
☆ Learning Submodular Sequencing from Samples
This paper addresses the problem of sequential submodular maximization: selecting and ranking items in a sequence to optimize some composite submodular function. In contrast to most of the previous works, which assume access to the utility function, we assume that we are given only a set of samples. Each sample includes a random sequence of items and its associated utility. We present an algorithm that, given polynomially many samples drawn from a two-stage uniform distribution, achieves an approximation ratio dependent on the curvature of individual submodular functions. Our results apply in a wide variety of real-world scenarios, such as ranking products in online retail platforms, where complete knowledge of the utility function is often impossible to obtain. Our algorithm gives an empirically useful solution in such contexts, thus proving that limited data can be of great use in sequencing tasks. From a technical perspective, our results extend prior work on ``optimization from samples'' by generalizing from optimizing a set function to a sequence-dependent function.
☆ Towards Automated Machine Learning Research
This paper explores a top-down approach to automating incremental advances in machine learning research through component-level innovation, facilitated by Large Language Models (LLMs). Our framework systematically generates novel components, validates their feasibility, and evaluates their performance against existing baselines. A key distinction of this approach lies in how these novel components are generated. Unlike traditional AutoML and NAS methods, which often rely on a bottom-up combinatorial search over predefined, hardcoded base components, our method leverages the cross-domain knowledge embedded in LLMs to propose new components that may not be confined to any hard-coded predefined set. By incorporating a reward model to prioritize promising hypotheses, we aim to improve the efficiency of the hypothesis generation and evaluation process. We hope this approach offers a new avenue for exploration and contributes to the ongoing dialogue in the field.
☆ PaRCE: Probabilistic and Reconstruction-Based Competency Estimation for Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
☆ Doppelgänger's Watch: A Split Objective Approach to Large Language Models
In this paper, we investigate the problem of "generation supervision" in large language models, and present a novel bicameral architecture to separate supervision signals from their core capability, helpfulness. Doppelg\"anger, a new module parallel to the underlying language model, supervises the generation of each token, and learns to concurrently predict the supervision score(s) of the sequences up to and including each token. In this work, we present the theoretical findings, and leave the report on experimental results to a forthcoming publication.
☆ Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer
Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which consists of unpaired monophonic single-instrument audio data. Each diffusion model is trained on a specific instrument with a Gaussian prior. During inference, a model is designated as the source model to map the input audio to its corresponding Gaussian prior, and another model is designated as the target model to reconstruct the target audio from this Gaussian prior, thereby facilitating timbre transfer. We compare our approach against existing unsupervised timbre transfer models such as VAEGAN and Gaussian Flow Bridges (GFB). Experimental results demonstrate that our method achieves both better Fr\'echet Audio Distance (FAD) and melody preservation, as reflected by lower pitch distances (DPD) compared to VAEGAN and GFB. Additionally, we discover that the noise level from the Gaussian prior, $\sigma$, can be adjusted to control the degree of melody preservation and amount of timbre transferred.
☆ Scalable Multitask Learning Using Gradient-based Estimation of Task Affinity
Multitask learning is a widely used paradigm for training models on diverse tasks, with applications ranging from graph neural networks to language model fine-tuning. Since tasks may interfere with each other, a key notion for modeling their relationships is task affinity. This includes pairwise task affinity, computed among pairs of tasks, and higher-order affinity, computed among subsets of tasks. Naively computing either of them requires repeatedly training on data from various task combinations, which is computationally intensive. We present a new algorithm Grad-TAG that can estimate task affinities without this repeated training. The key idea of Grad-TAG is to train a "base" model for all tasks and then use a linearization technique to estimate the loss of the model for a specific task combination. The linearization works by computing a gradient-based approximation of the loss, using low-dimensional projections of gradients as features in a logistic regression to predict labels for the task combination. We show that the linearized model can provably approximate the loss when the gradient-based approximation is accurate, and also empirically verify that on several large models. Then, given the estimated task affinity, we design a semi-definite program for clustering similar tasks by maximizing the average density of clusters. We evaluate Grad-TAG's performance across seven datasets, including multi-label classification on graphs, and instruction fine-tuning of language models. Our task affinity estimates are within 2.7% distance to the true affinities while needing only 3% of FLOPs in full training. On our largest graph with 21M edges and 500 labeling tasks, our algorithm delivers estimates within 5% distance to the true affinities, using only 112 GPU hours. Our results show that Grad-TAG achieves excellent performance and runtime tradeoffs compared to existing approaches.
comment: 16 pages
☆ MTLSO: A Multi-Task Learning Approach for Logic Synthesis Optimization
Electronic Design Automation (EDA) is essential for IC design and has recently benefited from AI-based techniques to improve efficiency. Logic synthesis, a key EDA stage, transforms high-level hardware descriptions into optimized netlists. Recent research has employed machine learning to predict Quality of Results (QoR) for pairs of And-Inverter Graphs (AIGs) and synthesis recipes. However, the severe scarcity of data due to a very limited number of available AIGs results in overfitting, significantly hindering performance. Additionally, the complexity and large number of nodes in AIGs make plain GNNs less effective for learning expressive graph-level representations. To tackle these challenges, we propose MTLSO - a Multi-Task Learning approach for Logic Synthesis Optimization. On one hand, it maximizes the use of limited data by training the model across different tasks. This includes introducing an auxiliary task of binary multi-label graph classification alongside the primary regression task, allowing the model to benefit from diverse supervision sources. On the other hand, we employ a hierarchical graph representation learning strategy to improve the model's capacity for learning expressive graph-level representations of large AIGs, surpassing traditional plain GNNs. Extensive experiments across multiple datasets and against state-of-the-art baselines demonstrate the superiority of our method, achieving an average performance gain of 8.22\% for delay and 5.95\% for area.
☆ Privacy-Preserving Data Linkage Across Private and Public Datasets for Collaborative Agriculture Research
Digital agriculture leverages technology to enhance crop yield, disease resilience, and soil health, playing a critical role in agricultural research. However, it raises privacy concerns such as adverse pricing, price discrimination, higher insurance costs, and manipulation of resources, deterring farm operators from sharing data due to potential misuse. This study introduces a privacy-preserving framework that addresses these risks while allowing secure data sharing for digital agriculture. Our framework enables comprehensive data analysis while protecting privacy. It allows stakeholders to harness research-driven policies that link public and private datasets. The proposed algorithm achieves this by: (1) identifying similar farmers based on private datasets, (2) providing aggregate information like time and location, (3) determining trends in price and product availability, and (4) correlating trends with public policy data, such as food insecurity statistics. We validate the framework with real-world Farmer's Market datasets, demonstrating its efficacy through machine learning models trained on linked privacy-preserved data. The results support policymakers and researchers in addressing food insecurity and pricing issues. This work significantly contributes to digital agriculture by providing a secure method for integrating and analyzing data, driving advancements in agricultural technology and development.
☆ MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data
Previous studies on federated learning (FL) often encounter performance degradation due to data heterogeneity among different clients. In light of the recent advances in multimodal large language models (MLLMs), such as GPT-4v and LLaVA, which demonstrate their exceptional proficiency in multimodal tasks, such as image captioning and multimodal question answering. We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL), which which employs powerful MLLMs at the server end to address the heterogeneous and long-tailed challenges. Owing to the advanced cross-modality representation capabilities and the extensive open-vocabulary prior knowledge of MLLMs, our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources. Hence, the MLLM-FL not only enhances the performance but also avoids increasing the risk of privacy leakage and the computational burden on local devices, distinguishing it from prior methodologies. Our framework has three key stages. Initially, prior to local training on local datasets of clients, we conduct global visual-text pretraining of the model. This pretraining is facilitated by utilizing the extensive open-source data available online, with the assistance of multimodal large language models. Subsequently, the pretrained model is distributed among various clients for local training. Finally, once the locally trained models are transmitted back to the server, a global alignment is carried out under the supervision of MLLMs to further enhance the performance. Experimental evaluations on established benchmarks, show that our framework delivers promising performance in the typical scenarios with data heterogeneity and long-tail distribution across different clients in FL.
☆ SongCreator: Lyrics-based Universal Song Generation
Music is an integral part of human culture, embodying human intelligence and creativity, of which songs compose an essential part. While various aspects of song generation have been explored by previous works, such as singing voice, vocal composition and instrumental arrangement, etc., generating songs with both vocals and accompaniment given lyrics remains a significant challenge, hindering the application of music generation models in the real world. In this light, we propose SongCreator, a song-generation system designed to tackle this challenge. The model features two novel designs: a meticulously designed dual-sequence language model (DSLM) to capture the information of vocals and accompaniment for song generation, and an additional attention mask strategy for DSLM, which allows our model to understand, generate and edit songs, making it suitable for various song-related generation tasks. Extensive experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks. Notably, it surpasses previous works by a large margin in lyrics-to-song and lyrics-to-vocals. Additionally, it is able to independently control the acoustic conditions of the vocals and accompaniment in the generated song through different prompts, exhibiting its potential applicability. Our samples are available at https://songcreator.github.io/.
comment: work in progress
☆ Deep Generative Model for Mechanical System Configuration Design
Generative AI has made remarkable progress in addressing various design challenges. One prominent area where generative AI could bring significant value is in engineering design. In particular, selecting an optimal set of components and their interfaces to create a mechanical system that meets design requirements is one of the most challenging and time-consuming tasks for engineers. This configuration design task is inherently challenging due to its categorical nature, multiple design requirements a solution must satisfy, and the reliance on physics simulations for evaluating potential solutions. These characteristics entail solving a combinatorial optimization problem with multiple constraints involving black-box functions. To address this challenge, we propose a deep generative model to predict the optimal combination of components and interfaces for a given design problem. To demonstrate our approach, we solve a gear train synthesis problem by first creating a synthetic dataset using a grammar, a parts catalogue, and a physics simulator. We then train a Transformer using this dataset, named GearFormer, which can not only generate quality solutions on its own, but also augment search methods such as an evolutionary algorithm and Monte Carlo tree search. We show that GearFormer outperforms such search methods on their own in terms of satisfying the specified design requirements with orders of magnitude faster generation time. Additionally, we showcase the benefit of hybrid methods that leverage both GearFormer and search methods, which further improve the quality of the solutions.
☆ MessIRve: A Large-Scale Spanish Information Retrieval Dataset
Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers.
☆ A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data
Alzheimer's Disease is an incurable cognitive condition that affects thousands of people globally. While some diagnostic methods exist for Alzheimer's Disease, many of these methods cannot detect Alzheimer's in its earlier stages. Recently, researchers have explored the use of Electroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a noninvasive method of recording the brain's electrical signals, and EEG data has shown distinct differences between patients with and without Alzheimer's. In the past, Artificial Neural Networks (ANNs) have been used to predict Alzheimer's from EEG data, but these models sometimes produce false positive diagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold Networks (KANs) across multiple types of epochs, learning rates, and nodes. The results show that across these different parameters, ANNs are more accurate in predicting Alzheimer's Disease from EEG signals.
☆ DeepFM-Crispr: Prediction of CRISPR On-Target Effects via Deep Learning ICML
Since the advent of CRISPR-Cas9, a groundbreaking gene-editing technology that enables precise genomic modifications via a short RNA guide sequence, there has been a marked increase in the accessibility and application of this technology across various fields. The success of CRISPR-Cas9 has spurred further investment and led to the discovery of additional CRISPR systems, including CRISPR-Cas13. Distinct from Cas9, which targets DNA, Cas13 targets RNA, offering unique advantages for gene modulation. We focus on Cas13d, a variant known for its collateral activity where it non-specifically cleaves adjacent RNA molecules upon activation, a feature critical to its function. We introduce DeepFM-Crispr, a novel deep learning model developed to predict the on-target efficiency and evaluate the off-target effects of Cas13d. This model harnesses a large language model to generate comprehensive representations rich in evolutionary and structural data, thereby enhancing predictions of RNA secondary structures and overall sgRNA efficacy. A transformer-based architecture processes these inputs to produce a predictive efficacy score. Comparative experiments show that DeepFM-Crispr not only surpasses traditional models but also outperforms recent state-of-the-art deep learning methods in terms of prediction accuracy and reliability.
comment: 11 page, 2 figures, accepted to ICMLA 2024
☆ Elucidating Optimal Reward-Diversity Tradeoffs in Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have become prominent tools for generating high-fidelity images from text prompts. However, when trained on unfiltered internet data, these models can produce unsafe, incorrect, or stylistically undesirable images that are not aligned with human preferences. To address this, recent approaches have incorporated human preference datasets to fine-tune T2I models or to optimize reward functions that capture these preferences. Although effective, these methods are vulnerable to reward hacking, where the model overfits to the reward function, leading to a loss of diversity in the generated images. In this paper, we prove the inevitability of reward hacking and study natural regularization techniques like KL divergence and LoRA scaling, and their limitations for diffusion models. We also introduce Annealed Importance Guidance (AIG), an inference-time regularization inspired by Annealed Importance Sampling, which retains the diversity of the base model while achieving Pareto-Optimal reward-diversity tradeoffs. Our experiments demonstrate the benefits of AIG for Stable Diffusion models, striking the optimal balance between reward optimization and image diversity. Furthermore, a user study confirms that AIG improves diversity and quality of generated images across different model architectures and reward functions.
☆ Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models
Recent Large Multi-Modal Models (LMMs) have made significant advancements in multi-modal alignment by employing lightweight connection modules to facilitate the representation and fusion of knowledge from existing pre-trained uni-modal models. However, these methods still rely on modality-specific and direction-specific connectors, leading to compartmentalized knowledge representations and reduced computational efficiency, which limits the model's ability to form unified multi-modal representations. To address these issues, we introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities, and employs a multi-step sequential alternating unidirectional alignment strategy, which converges to bidirectional alignment over iterations. The extensive empirical studies revealed the following key points: 1) Alt-MoE achieves competitive results by integrating diverse knowledge representations from uni-modal models. This approach seamlessly fuses the specialized expertise of existing high-performance uni-modal models, effectively synthesizing their domain-specific knowledge into a cohesive multi-modal representation. 2) Alt-MoE efficiently scales to new tasks and modalities without altering its model architecture or training strategy. Furthermore, Alt-MoE operates in latent space, supporting vector pre-storage and real-time retrieval via lightweight multi-directional MoE, thereby facilitating massive data processing. Our methodology has been validated on several well-performing uni-modal models (LLAMA3, Qwen2, and DINOv2), achieving competitive results on a wide range of downstream tasks and datasets.
comment: work in progress
☆ Assessing SPARQL capabilities of Large Language Models
The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) offers significant synergistic potential for knowledge-driven applications. One possible integration is the interpretation and generation of formal languages, such as those used in the Semantic Web, with SPARQL being a core technology for accessing KGs. In this paper, we focus on measuring out-of-the box capabilities of LLMs to work with SPARQL and more specifically with SPARQL SELECT queries applying a quantitative approach. We implemented various benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation with several LLMs. The tasks assess capabilities along the dimensions of syntax, semantic read, semantic create, and the role of knowledge graph prompt inclusion. With this new benchmarking tasks, we evaluated a selection of GPT, Gemini, and Claude models. Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs and heavily depends on the specific LLM as well as the complexity of the task. While fixing basic syntax errors seems to pose no problems for the best of the current LLMs evaluated, creating semantically correct SPARQL SELECT queries is difficult in several cases.
comment: peer reviewed publication at NLP4KGc @ Semantics 2024, see https://sites.google.com/view/3rdnlp4kgc
☆ $\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding
Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective \textbf{u}ncertainty-aware \textbf{s}elective \textbf{c}ontrastive \textbf{d}ecoding ($\mathbb{USCD}$) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately $0.25$), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average \textit{pass@$1$} scores increase of 16.59\%. We will release code and data on GitHub.
comment: 13pages,8 figures
♻ ☆ HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 $m^2$), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicated on www.lidarhumanmotion.net/hisc4d available for research purposes.
comment: 17 pages, 10 figures, Jornal
♻ ☆ Question-Answering Dense Video Events AAAI 2025
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
comment: Submitted to AAAI 2025
♻ ☆ Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph-Attention
Traditional multi-agent reinforcement learning algorithms are difficultly applied in a large-scale multi-agent environment. The introduction of mean field theory has enhanced the scalability of multi-agent reinforcement learning in recent years. This paper considers partially observable multi-agent reinforcement learning (MARL), where each agent can only observe other agents within a fixed range. This partial observability affects the agent's ability to assess the quality of the actions of surrounding agents. This paper focuses on developing a method to capture more effective information from local observations in order to select more effective actions. Previous work in this field employs probability distributions or weighted mean field to update the average actions of neighborhood agents, but it does not fully consider the feature information of surrounding neighbors and leads to a local optimum. In this paper, we propose a novel multi-agent reinforcement learning algorithm, Partially Observable Mean Field Multi-Agent Reinforcement Learning based on Graph-Attention (GAMFQ) to remedy this flaw. GAMFQ uses a graph attention module and a mean field module to describe how an agent is influenced by the actions of other agents at each time step. This graph attention module consists of a graph attention encoder and a differentiable attention mechanism, and this mechanism outputs a dynamic graph to represent the effectiveness of neighborhood agents against central agents. The mean-field module approximates the effect of a neighborhood agent on a central agent as the average effect of effective neighborhood agents. Experiments show that GAMFQ outperforms baselines including the state-of-the-art partially observable mean-field reinforcement learning algorithms. The code for this paper is here \url{https://github.com/yangmin32/GPMF}.
♻ ☆ Intelligent tutoring systems by Bayesian nets with noisy gates
Directed graphical models such as Bayesian nets are often used to implement intelligent tutoring systems able to interact in real-time with learners in a purely automatic way. When coping with such models, keeping a bound on the number of parameters might be important for multiple reasons. First, as these models are typically based on expert knowledge, a huge number of parameters to elicit might discourage practitioners from adopting them. Moreover, the number of model parameters affects the complexity of the inferences, while a fast computation of the queries is needed for real-time feedback. We advocate logical gates with uncertainty for a compact parametrization of the conditional probability tables in the underlying Bayesian net used by tutoring systems. We discuss the semantics of the model parameters to elicit and the assumptions required to apply such approach in this domain. We also derive a dedicated inference scheme to speed up computations.
♻ ☆ AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model
Entity matching (EM) is the problem of determining whether two records refer to same real-world entity, which is crucial in data integration, e.g., for product catalogs or address databases. A major drawback of many EM approaches is their dependence on labelled examples. We thus focus on the challenging setting of zero-shot entity matching where no labelled examples are available for an unseen target dataset. Recently, large language models (LLMs) have shown promising results for zero-shot EM, but their low throughput and high deployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model fine-tuned in a transfer learning setup. We propose several novel data selection techniques to generate fine-tuning data for our model, e.g., by selecting difficult pairs to match via an AutoML filter, by generating additional attribute-level examples, and by controlling label imbalance in the data. We conduct an extensive evaluation of the prediction quality and deployment cost of our model, in a comparison to thirteen baselines on nine benchmark datasets. We find that AnyMatch provides competitive prediction quality despite its small parameter size: it achieves the second-highest F1 score overall, and outperforms several other approaches that employ models with hundreds of billions of parameters. Furthermore, our approach exhibits major cost benefits: the average prediction quality of AnyMatch is within 4.4% of the state-of-the-art method MatchGPT with the proprietary trillion-parameter model GPT-4, yet AnyMatch requires four orders of magnitude less parameters and incurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).
comment: 12 pages excluding references, 3 figures, and 5 tables
♻ ☆ WildVis: Open Source Visualizer for Million-Scale Chat Logs in the Wild
The increasing availability of real-world conversation data offers exciting opportunities for researchers to study user-chatbot interactions. However, the sheer volume of this data makes manually examining individual conversations impractical. To overcome this challenge, we introduce WildVis, an interactive tool that enables fast, versatile, and large-scale conversation analysis. WildVis provides search and visualization capabilities in the text and embedding spaces based on a list of criteria. To manage million-scale datasets, we implemented optimizations including search index construction, embedding precomputation and compression, and caching to ensure responsive user interactions within seconds. We demonstrate WildVis' utility through three case studies: facilitating chatbot misuse research, visualizing and comparing topic distributions across datasets, and characterizing user-specific conversation patterns. WildVis is open-source and designed to be extendable, supporting additional datasets and customized search and visualization functionalities.
♻ ☆ A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification
Large pretrained transformers are increasingly being developed as generalised foundation models which can underpin powerful task-specific artificial intelligence models. Histopathology foundation models show great promise across many tasks, but analyses have typically been limited by arbitrary hyperparameters that were not tuned to the specific task. We report the most rigorous single-task validation of histopathology foundation models to date, specifically in ovarian cancer morphological subtyping. Attention-based multiple instance learning classifiers were compared using three ImageNet-pretrained feature extractors and fourteen histopathology foundation models. The training set consisted of 1864 whole slide images from 434 ovarian carcinoma cases at Leeds Teaching Hospitals NHS Trust. Five-class classification performance was evaluated through five-fold cross-validation, and these cross-validation models were ensembled for hold-out testing and external validation on the Transcanadian Study and OCEAN Challenge datasets. The best-performing model used the H-optimus-0 foundation model, with five-class balanced accuracies of 89%, 97%, and 74% in the test sets. Normalisations and augmentations aided the performance of the ImageNet-pretrained ResNets, but these were still outperformed by 13 of the 14 foundation models. Hyperparameter tuning the downstream classifiers improved performance by a median 1.9% balanced accuracy, with many improvements being statistically significant. Histopathology foundation models offer a clear benefit to ovarian cancer subtyping, improving classification performance to a degree where clinical utility is tangible, albeit with an increased computational burden. Such models could provide a second opinion to histopathologists diagnosing challenging cases and may improve the accuracy, objectivity, and efficiency of pathological diagnoses overall.
♻ ☆ Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation ECCV2024
Audio-Visual Segmentation (AVS) aims to achieve pixel-level localization of sound sources in videos, while Audio-Visual Semantic Segmentation (AVSS), as an extension of AVS, further pursues semantic understanding of audio-visual scenes. However, since the AVSS task requires the establishment of audio-visual correspondence and semantic understanding simultaneously, we observe that previous methods have struggled to handle this mashup of objectives in end-to-end training, resulting in insufficient learning and sub-optimization. Therefore, we propose a two-stage training strategy called \textit{Stepping Stones}, which decomposes the AVSS task into two simple subtasks from localization to semantic understanding, which are fully optimized in each stage to achieve step-by-step global optimization. This training strategy has also proved its generalization and effectiveness on existing methods. To further improve the performance of AVS tasks, we propose a novel framework Adaptive Audio Visual Segmentation, in which we incorporate an adaptive audio query generator and integrate masked attention into the transformer decoder, facilitating the adaptive fusion of visual and audio features. Extensive experiments demonstrate that our methods achieve state-of-the-art results on all three AVS benchmarks. The project homepage can be accessed at https://gewu-lab.github.io/stepping_stones/.
comment: ECCV2024 poster. Project url: https://gewu-lab.github.io/stepping_stones
♻ ☆ Mixture of Experts with Mixture of Precisions for Tuning Quality of Service
The increasing demand for deploying large Mixture-of-Experts (MoE) models in resource-constrained environments necessitates efficient approaches to address their high memory and computational requirements challenges. Moreover, given that tasks come in different user-defined constraints and the available resources change over time in multi-tenant environments, it is necessary to design an approach which provides a flexible configuration space. This paper presents an adaptive serving approach for the efficient deployment of MoE models, capitalizing on partial quantization of the experts. By dynamically determining the number of quantized experts and their distribution across CPU and GPU, our approach explores the Pareto frontier and offers a fine-grained range of configurations for tuning throughput and model quality. Our evaluation on an NVIDIA A100 GPU using a Mixtral 8x7B MoE model for three language modelling benchmarks demonstrates that the throughput of token generation can be adjusted from 0.63 to 13.00 token per second. This enhancement comes with a marginal perplexity increase of 3.81 to 4.00, 13.59 to 14.17, and 7.24 to 7.40 for WikiText2, PTB, and C4 datasets respectively under maximum quantization. These results highlight the practical applicability of our approach in dynamic and accuracy-sensitive applications where both memory usage and output quality are important.
♻ ☆ Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
comment: This article is currently under review. All data will be open on GitHub once the review is complete. https://github.com/limanwang/Balancing-Rigor-and-Utility
♻ ☆ PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis ACM MM 2024
While existing Aspect-based Sentiment Analysis (ABSA) has received extensive effort and advancement, there are still gaps in defining a more holistic research target seamlessly integrating multimodality, conversation context, fine-granularity, and also covering the changing sentiment dynamics as well as cognitive causal rationales. This paper bridges the gaps by introducing a multimodal conversational ABSA, where two novel subtasks are proposed: 1) Panoptic Sentiment Sextuple Extraction, panoramically recognizing holder, target, aspect, opinion, sentiment, rationale from multi-turn multi-party multimodal dialogue. 2) Sentiment Flipping Analysis, detecting the dynamic sentiment transformation throughout the conversation with the causal reasons. To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements. To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism. Extensive evaluations demonstrate the superiority of our methods over strong baselines, validating the efficacy of all our proposed methods. The work is expected to open up a new era for the ABSA community, and thus all our codes and data are open at https://PanoSent.github.io/
comment: Accepted by ACM MM 2024 (Oral)
♻ ☆ Exploiting the Vulnerability of Large Language Models via Defense-Aware Architectural Backdoor
Deep neural networks (DNNs) have long been recognized as vulnerable to backdoor attacks. By providing poisoned training data in the fine-tuning process, the attacker can implant a backdoor into the victim model. This enables input samples meeting specific textual trigger patterns to be classified as target labels of the attacker's choice. While such black-box attacks have been well explored in both computer vision and natural language processing (NLP), backdoor attacks relying on white-box attack philosophy have hardly been thoroughly investigated. In this paper, we take the first step to introduce a new type of backdoor attack that conceals itself within the underlying model architecture. Specifically, we propose to design separate backdoor modules consisting of two functions: trigger detection and noise injection. The add-on modules of model architecture layers can detect the presence of input trigger tokens and modify layer weights using Gaussian noise to disturb the feature distribution of the baseline model. We conduct extensive experiments to evaluate our attack methods using two model architecture settings on five different large language datasets. We demonstrate that the training-free architectural backdoor on a large language model poses a genuine threat. Unlike the-state-of-art work, it can survive the rigorous fine-tuning and retraining process, as well as evade output probability-based defense methods (i.e. BDDR). All the code and data is available https://github.com/SiSL-URI/Arch_Backdoor_LLM.
♻ ☆ Large Language Models Synergize with Automated Machine Learning
Recently, program synthesis driven by large language models (LLMs) has become increasingly popular. However, program synthesis for machine learning (ML) tasks still poses significant challenges. This paper explores a novel form of program synthesis, targeting ML programs, by combining LLMs and automated machine learning (autoML). Specifically, our goal is to fully automate the generation and optimization of the code of the entire ML workflow, from data preparation to modeling and post-processing, utilizing only textual descriptions of the ML tasks. To manage the length and diversity of ML programs, we propose to break each ML program into smaller, manageable parts. Each part is generated separately by the LLM, with careful consideration of their compatibilities. To ensure compatibilities, we design a testing technique for ML programs. Unlike traditional program synthesis, which typically relies on binary evaluations (i.e., correct or incorrect), evaluating ML programs necessitates more than just binary judgments. Our approach automates the numerical evaluation and optimization of these programs, selecting the best candidates through autoML techniques. In experiments across various ML tasks, our method outperforms existing methods in 10 out of 12 tasks for generating ML programs. In addition, autoML significantly improves the performance of the generated ML programs. In experiments, given the textual task description, our method, Text-to-ML, generates the complete and optimized ML program in a fully autonomous process. The implementation of our method is available at https://github.com/JLX0/llm-automl.
comment: published at TMLR
♻ ☆ CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark
As the capabilities of large multimodal models (LMMs) continue to advance, evaluating the performance of LMMs emerges as an increasing need. Additionally, there is an even larger gap in evaluating the advanced knowledge and reasoning abilities of LMMs in non-English contexts such as Chinese. We introduce CMMMU, a new Chinese Massive Multi-discipline Multimodal Understanding benchmark designed to evaluate LMMs on tasks demanding college-level subject knowledge and deliberate reasoning in a Chinese context. CMMMU is inspired by and strictly follows the annotation and analysis pattern of MMMU. CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. CMMMU focuses on complex perception and reasoning with domain-specific knowledge in the Chinese context. We evaluate 11 open-source LLMs and one proprietary GPT-4V(ision). Even GPT-4V only achieves accuracies of 42%, indicating a large space for improvement. CMMMU will boost the community to build the next-generation LMMs towards expert artificial intelligence and promote the democratization of LMMs by providing diverse language contexts.
♻ ☆ R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML), where components of large ML models are outsourced to remote servers. A significant challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming that could jeopardize the learning process. This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding. In this paper, rigorous insights are provided into the influence of jamming LLM word embeddings in SFL by deriving an expression for the ML training loss divergence and showing that it is upper-bounded by the mean squared error (MSE). Based on this analysis, a physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks. R-SFLLM leverages wireless sensing data to gather information on the jamming directions-of-arrival (DoAs) for the purpose of devising a novel, sensing-assisted anti-jamming strategy while jointly optimizing beamforming, user scheduling, and resource allocation. Extensive experiments using BERT and RoBERTa models demonstrate R-SFLLM's effectiveness, achieving close-to-baseline performance across various natural language processing (NLP) tasks and datasets. The proposed methodology further introduces an adversarial training component, where controlled noise exposure significantly enhances the LLM's resilience to perturbed parameters during training. The results show that more noise-sensitive models, such as RoBERTa, benefit from this feature, especially when resource allocation is unfair. It is also shown that worst-case jamming in particular translates into worst-case model outcomes, thereby necessitating the need for jamming-resilient SFL protocols.
♻ ☆ Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis
The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
comment: Github Page: https://github.com/Nihukat/Concept-Conductor
♻ ☆ No Captions, No Problem: Captionless 3D-CLIP Alignment with Hard Negatives via CLIP Knowledge and LLMs BMVC 2024
In this study, we explore an alternative approach to enhance contrastive text-image-3D alignment in the absence of textual descriptions for 3D objects. We introduce two unsupervised methods, $I2I$ and $(I2L)^2$, which leverage CLIP knowledge about textual and 2D data to compute the neural perceived similarity between two 3D samples. We employ the proposed methods to mine 3D hard negatives, establishing a multimodal contrastive pipeline with hard negative weighting via a custom loss function. We train on different configurations of the proposed hard negative mining approach, and we evaluate the accuracy of our models in 3D classification and on the cross-modal retrieval benchmark, testing image-to-shape and shape-to-image retrieval. Results demonstrate that our approach, even without explicit text alignment, achieves comparable or superior performance on zero-shot and standard 3D classification, while significantly improving both image-to-shape and shape-to-image retrieval compared to previous methods.
comment: to be published in BMVC 2024 Proceedings
♻ ☆ SUM: Saliency Unification through Mamba for Visual Attention Modeling WACV 2025
Visual attention modeling, important for interpreting and prioritizing visual stimuli, plays a significant role in applications such as marketing, multimedia, and robotics. Traditional saliency prediction models, especially those based on Convolutional Neural Networks (CNNs) or Transformers, achieve notable success by leveraging large-scale annotated datasets. However, the current state-of-the-art (SOTA) models that use Transformers are computationally expensive. Additionally, separate models are often required for each image type, lacking a unified approach. In this paper, we propose Saliency Unification through Mamba (SUM), a novel approach that integrates the efficient long-range dependency modeling of Mamba with U-Net to provide a unified model for diverse image types. Using a novel Conditional Visual State Space (C-VSS) block, SUM dynamically adapts to various image types, including natural scenes, web pages, and commercial imagery, ensuring universal applicability across different data types. Our comprehensive evaluations across five benchmarks demonstrate that SUM seamlessly adapts to different visual characteristics and consistently outperforms existing models. These results position SUM as a versatile and powerful tool for advancing visual attention modeling, offering a robust solution universally applicable across different types of visual content.
comment: Accepted at IEEE/CVF WACV 2025
♻ ☆ Communication and Control Co-Design in 6G: Sequential Decision-Making with LLMs
This article investigates a control system within the context of six-generation wireless networks. The control performance optimization confronts the technical challenges that arise from the intricate interactions between communication and control sub-systems, asking for a co-design. Accounting for the system dynamics, we formulate the sequential co-design decision-makings of communication and control over the discrete time horizon as a Markov decision process, for which a practical offline learning framework is proposed. Our proposed framework integrates large language models into the elements of reinforcement learning. We present a case study on the age of semantics-aware communication and control co-design to showcase the potentials from our proposed learning framework. Furthermore, we discuss the open issues remaining to make our proposed offline learning framework feasible for real-world implementations, and highlight the research directions for future explorations.
♻ ☆ Explaining Learned Reward Functions with Counterfactual Trajectories
Learning rewards from human behaviour or feedback is a promising approach to aligning AI systems with human values but fails to consistently extract correct reward functions. Interpretability tools could enable users to understand and evaluate possible flaws in learned reward functions. We propose Counterfactual Trajectory Explanations (CTEs) to interpret reward functions in reinforcement learning by contrasting an original with a counterfactual partial trajectory and the rewards they each receive. We derive six quality criteria for CTEs and propose a novel Monte-Carlo-based algorithm for generating CTEs that optimises these quality criteria. Finally, we measure how informative the generated explanations are to a proxy-human model by training it on CTEs. CTEs are demonstrably informative for the proxy-human model, increasing the similarity between its predictions and the reward function on unseen trajectories. Further, it learns to accurately judge differences in rewards between trajectories and generalises to out-of-distribution examples. Although CTEs do not lead to a perfect understanding of the reward, our method, and more generally the adaptation of XAI methods, are presented as a fruitful approach for interpreting learned reward functions.
♻ ☆ On the Expressivity of Recurrent Neural Cascades with Identity KR 2024
Recurrent Neural Cascades (RNC) are the class of recurrent neural networks with no cyclic dependencies among recurrent neurons. Their subclass RNC+ with positive recurrent weights has been shown to be closely connected to the star-free regular languages, which are the expressivity of many well-established temporal logics. The existing expressivity results show that the regular languages captured by RNC+ are the star-free ones, and they leave open the possibility that RNC+ may capture languages beyond regular. We exclude this possibility for languages that include an identity element, i.e., an input that can occur an arbitrary number of times without affecting the output. Namely, in the presence of an identity element, we show that the languages captured by RNC+ are exactly the star-free regular languages. Identity elements are ubiquitous in temporal patterns, and hence our results apply to a large number of applications. The implications of our results go beyond expressivity. At their core, we establish a close structural correspondence between RNC+ and semiautomata cascades, showing that every neuron can be equivalently captured by a three-state semiautomaton. A notable consequence of this result is that RNC+ are no more succinct than cascades of three-state semiautomata.
comment: Full version with appendix of a paper with the same title that will appear in the proceedings of KR 2024
♻ ☆ How adversarial attacks can disrupt seemingly stable accurate classifiers
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data. Paradoxically, empirical evidence indicates that even systems which are robust to large random perturbations of the input data remain susceptible to small, easily constructed, adversarial perturbations of their inputs. Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data. We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability -- notably the simultaneous susceptibility of the (otherwise accurate) model to easily constructed adversarial attacks, and robustness to random perturbations of the input data. We confirm that the same phenomena are directly observed in practical neural networks trained on standard image classification problems, where even large additive random noise fails to trigger the adversarial instability of the network. A surprising takeaway is that even small margins separating a classifier's decision surface from training and testing data can hide adversarial susceptibility from being detected using randomly sampled perturbations. Counterintuitively, using additive noise during training or testing is therefore inefficient for eradicating or detecting adversarial examples, and more demanding adversarial training is required.
comment: 11 pages, 8 figures, additional supplementary materials
♻ ☆ Online Advertisements with LLMs: Opportunities and Challenges
This paper explores the potential for leveraging Large Language Models (LLM) in the realm of online advertising systems. We introduce a general framework for LLM advertisement, consisting of modification, bidding, prediction, and auction modules. Different design considerations for each module are presented. These design choices are evaluated and discussed based on essential desiderata required to maintain a sustainable system. Further fundamental questions regarding practicality, efficiency, and implementation challenges are raised for future research. Finally, we exposit how recent approaches on mechanism design for LLM can be framed in our unified perspective.
♻ ☆ YOLO-Stutter: End-to-end Region-Wise Speech Dysfluency Detection
Dysfluent speech detection is the bottleneck for disordered speech analysis and spoken language learning. Current state-of-the-art models are governed by rule-based systems which lack efficiency and robustness, and are sensitive to template design. In this paper, we propose YOLO-Stutter: a first end-to-end method that detects dysfluencies in a time-accurate manner. YOLO-Stutter takes imperfect speech-text alignment as input, followed by a spatial feature aggregator, and a temporal dependency extractor to perform region-wise boundary and class predictions. We also introduce two dysfluency corpus, VCTK-Stutter and VCTK-TTS, that simulate natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation. Our end-to-end method achieves state-of-the-art performance with a minimum number of trainable parameters for on both simulated data and real aphasia speech. Code and datasets are open-sourced at https://github.com/rorizzz/YOLO-Stutter
comment: Interspeech 2024
♻ ☆ Deep Oscillatory Neural Network
We propose a novel, brain-inspired deep neural network model known as the Deep Oscillatory Neural Network (DONN). Deep neural networks like the Recurrent Neural Networks indeed possess sequence processing capabilities but the internal states of the network are not designed to exhibit brain-like oscillatory activity. With this motivation, the DONN is designed to have oscillatory internal dynamics. Neurons of the DONN are either nonlinear neural oscillators or traditional neurons with sigmoidal or ReLU activation. The neural oscillator used in the model is the Hopf oscillator, with the dynamics described in the complex domain. Input can be presented to the neural oscillator in three possible modes. The sigmoid and ReLU neurons also use complex-valued extensions. All the weight stages are also complex-valued. Training follows the general principle of weight change by minimizing the output error and therefore has an overall resemblance to complex backpropagation. A generalization of DONN to convolutional networks known as the Oscillatory Convolutional Neural Network is also proposed. The two proposed oscillatory networks are applied to a variety of benchmark problems in signal and image/video processing. The performance of the proposed models is either comparable or superior to published results on the same data sets.
♻ ☆ Natural Language Processing RELIES on Linguistics
Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym RELIES that encapsulates six major facets where linguistics contributes to NLP: Resources, Evaluation, Low-resource settings, Interpretability, Explanation, and the Study of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-\`a-vis systems of human language.
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant benefit of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, leveraging DRL, we can train the policy network to optimize the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ Jailbreaking Text-to-Image Models with LLM-Based Agents
Recent advancements have significantly improved automated task-solving capabilities using autonomous agents powered by large language models (LLMs). However, most LLM-based agents focus on dialogue, programming, or specialized domains, leaving their potential for addressing generative AI safety tasks largely unexplored. In this paper, we propose Atlas, an advanced LLM-based multi-agent framework targeting generative AI models, specifically focusing on jailbreak attacks against text-to-image (T2I) models with built-in safety filters. Atlas consists of two agents, namely the mutation agent and the selection agent, each comprising four key modules: a vision-language model (VLM) or LLM brain, planning, memory, and tool usage. The mutation agent uses its VLM brain to determine whether a prompt triggers the T2I model's safety filter. It then collaborates iteratively with the LLM brain of the selection agent to generate new candidate jailbreak prompts with the highest potential to bypass the filter. In addition to multi-agent communication, we leverage in-context learning (ICL) memory mechanisms and the chain-of-thought (COT) approach to learn from past successes and failures, thereby enhancing Atlas's performance. Our evaluation demonstrates that Atlas successfully jailbreaks several state-of-the-art T2I models equipped with multi-modal safety filters in a black-box setting. Additionally, Atlas outperforms existing methods in both query efficiency and the quality of generated images. This work convincingly demonstrates the successful application of LLM-based agents in studying the safety vulnerabilities of popular text-to-image generation models. We urge the community to consider advanced techniques like ours in response to the rapidly evolving text-to-image generation field.
♻ ☆ Local Universal Explainer (LUX) -- a rule-based explainer with factual, counterfactual and visual explanations
Explainable artificial intelligence (XAI) is one of the most intensively developed area of AI in recent years. It is also one of the most fragmented with multiple methods that focus on different aspects of explanations. This makes difficult to obtain the full spectrum of explanation at once in a compact and consistent way. To address this issue, we present Local Universal Explainer (LUX), which is a rule-based explainer that can generate factual, counterfactual and visual explanations. It is based on a modified version of decision tree algorithms that allows for oblique splits and integration with feature importance XAI methods such as SHAP. It limits the use data generation in opposite to other algorithms, but is focused on selecting local concepts in a form of high-density clusters of real data that have the highest impact on forming the decision boundary of the explained model and generating artificial samples with novel SHAP-guided sampling algorithm. We tested our method on real and synthetic datasets and compared it with state-of-the-art rule-based explainers such as LORE, EXPLAN and Anchor. Our method outperforms the existing approaches in terms of simplicity, fidelity, representativeness, and consistency.
♻ ☆ AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
Advancements in the capabilities of Large Language Models (LLMs) have created a promising foundation for developing autonomous agents. With the right tools, these agents could learn to solve tasks in new environments by accumulating and updating their knowledge. Current LLM-based agents process past experiences using a full history of observations, summarization, retrieval augmentation. However, these unstructured memory representations do not facilitate the reasoning and planning essential for complex decision-making. In our study, we introduce AriGraph, a novel method wherein the agent constructs and updates a memory graph that integrates semantic and episodic memories while exploring the environment. We demonstrate that our Ariadne LLM agent, consisting of the proposed memory architecture augmented with planning and decision-making, effectively handles complex tasks within interactive text game environments difficult even for human players. Results show that our approach markedly outperforms other established memory methods and strong RL baselines in a range of problems of varying complexity. Additionally, AriGraph demonstrates competitive performance compared to dedicated knowledge graph-based methods in static multi-hop question-answering.
comment: Code for this work is avaliable at https://github.com/AIRI-Institute/AriGraph
♻ ☆ CL4KGE: A Curriculum Learning Method for Knowledge Graph Embedding
Knowledge graph embedding (KGE) constitutes a foundational task, directed towards learning representations for entities and relations within knowledge graphs (KGs), with the objective of crafting representations comprehensive enough to approximate the logical and symbolic interconnections among entities. In this paper, we define a metric Z-counts to measure the difficulty of training each triple ($<$head entity, relation, tail entity$>$) in KGs with theoretical analysis. Based on this metric, we propose \textbf{CL4KGE}, an efficient \textbf{C}urriculum \textbf{L}earning based training strategy for \textbf{KGE}. This method includes a difficulty measurer and a training scheduler that aids in the training of KGE models. Our approach possesses the flexibility to act as a plugin within a wide range of KGE models, with the added advantage of adaptability to the majority of KGs in existence. The proposed method has been evaluated on popular KGE models, and the results demonstrate that it enhances the state-of-the-art methods. The use of Z-counts as a metric has enabled the identification of challenging triples in KGs, which helps in devising effective training strategies.
comment: 16 pages, 3 figures
♻ ☆ Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents. However, these models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks. These vulnerabilities can lead to the generation of malicious content, unauthorized actions, or the disclosure of confidential information. While foundational LLMs undergo alignment training and incorporate safety measures, they are often subject to fine-tuning, or doing quantization resource-constrained environments. This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems. We evaluate foundational models including Mistral, Llama series, Qwen, and MosaicML, along with their fine-tuned variants. Our comprehensive analysis reveals that fine-tuning generally increases the success rates of jailbreak attacks, while quantization has variable effects on attack success rates. Importantly, we find that properly implemented guardrails significantly enhance resistance to jailbreak attempts. These findings contribute to our understanding of LLM vulnerabilities and provide insights for developing more robust safety strategies in the deployment of language models.
♻ ☆ ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities
In this work, we introduce ChatQA 2, an Llama 3.0-based model with a 128K context window, designed to bridge the gap between open-source LLMs and leading proprietary models (e.g., GPT-4-Turbo) in long-context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are essential for LLMs to process large volumes of information that cannot fit into a single prompt and are complementary to each other, depending on the downstream tasks and computational budgets. We present a detailed continued training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens, along with a three-stage instruction tuning process to enhance the model's instruction-following, RAG performance, and long-context understanding capabilities. Our results demonstrate that the Llama3-ChatQA-2-70B model outperforms most existing state-of-the-art models, including GPT-4-Turbo-2024-04-09, Qwen2-72B-Instruct, and Llama3.1-70B-Instruct, on ultra-long tasks beyond 100K tokens, as well as on the RAG benchmark using only a 4K context window, showing the strong long context capability across varying sequence lengths. We further provide extensive comparisons between direct long-context and RAG solutions using the same state-of-the-art long-context LLMs. Interestingly, we find that the performance of strong long-context LLMs using RAG improves when retrieving a larger number of chunks. With a large set of top-k chunks, RAG consistently outperforms direct long-context solution using the same state-of-the-art long-context models (e.g., Llama3-ChatQA-2-70B and Qwen2-72B-Instruct) on both 32K benchmarks and real-world 128K tasks. To advance research in this field, we open-sourced the model weights, training data, and the evaluation setup for the for the community: https://chatqa2-project.github.io/
comment: v2: major update with significantly improved results
♻ ☆ Invariant Causal Knowledge Distillation in Neural Networks
Knowledge distillation (KD) involves transferring the knowledge from one neural network to another, often from a larger, well-trained model (teacher) to a smaller, more efficient model (student). Traditional KD methods minimize the Kullback-Leibler (KL) divergence between the probabilistic outputs of the teacher and student networks. However, this approach often overlooks crucial structural knowledge embedded within the teacher's network. In this paper, we introduce Invariant Consistency Distillation (ICD), a novel methodology designed to enhance KD by ensuring that the student model's representations are both discriminative and invariant with respect to the teacher's outputs. Our approach is based on causal inference principles and combines contrastive learning with an explicit invariance penalty, capturing significantly more information from the teacher's representation. ICD uses an efficient, parameter-free approach for flexible teacher-student alignment. We provide a theoretical foundation for ICD and demonstrate its effectiveness through extensive experiments. Our results on CIFAR-100 and ImageNet ILSVRC-2012 show that ICD outperforms traditional KD techniques and surpasses state-of-the-art methods. In some cases, the student model even exceeds the teacher model in terms of accuracy. Furthermore, we successfully apply our method to other datasets, such as Tiny ImageNet and STL-10, demonstrating superior cross-dataset generalization. Code is available at https://github.com/giakoumoglou/distillers.
comment: 8 pages, 2 figures, 4 tables. The paper's title has been changed to better emphasize its theoretical foundation
♻ ☆ Relational Representation Distillation
Knowledge distillation (KD) is an effective method for transferring knowledge from a large, well-trained teacher model to a smaller, more efficient student model. Despite its success, one of the main challenges in KD is ensuring the efficient transfer of complex knowledge while maintaining the student's computational efficiency. Unlike previous works that applied contrastive objectives promoting explicit negative instances with little attention to the relationships between them, we introduce Relational Representation Distillation (RRD). Our approach leverages pairwise similarities to explore and reinforce the relationships between the teacher and student models. Inspired by self-supervised learning principles, it uses a relaxed contrastive loss that focuses on similarity rather than exact replication. This method aligns the output distributions of teacher samples in a large memory buffer, improving the robustness and performance of the student model without the need for strict negative instance differentiation. Our approach demonstrates superior performance on CIFAR-100 and ImageNet ILSVRC-2012, outperforming traditional KD and sometimes even outperforms the teacher network when combined with KD. It also transfers successfully to other datasets like Tiny ImageNet and STL-10. Code is available at https://github.com/giakoumoglou/distillers.
comment: 8 pages, 4 figures, 4 tables. Updated experiments on ImageNet ILSVRC-2012. arXiv admin note: text overlap with arXiv:2407.11802
♻ ☆ Resolving Ethics Trade-offs in Implementing Responsible AI
While the operationalisation of high-level AI ethics principles into practical AI/ML systems has made progress, there is still a theory-practice gap in managing tensions between the underlying AI ethics aspects. We cover five approaches for addressing the tensions via trade-offs, ranging from rudimentary to complex. The approaches differ in the types of considered context, scope, methods for measuring contexts, and degree of justification. None of the approaches is likely to be appropriate for all organisations, systems, or applications. To address this, we propose a framework which consists of: (i) proactive identification of tensions, (ii) prioritisation and weighting of ethics aspects, (iii) justification and documentation of trade-off decisions. The proposed framework aims to facilitate the implementation of well-rounded AI/ML systems that are appropriate for potential regulatory requirements.
♻ ☆ Advancing Aspect-Based Sentiment Analysis through Deep Learning Models
Aspect-based sentiment analysis predicts sentiment polarity with fine granularity. While graph convolutional networks (GCNs) are widely utilized for sentimental feature extraction, their naive application for syntactic feature extraction can compromise information preservation. This study introduces an innovative edge-enhanced GCN, named SentiSys, to navigate the syntactic graph while preserving intact feature information, leading to enhanced performance. Specifically,we first integrate a bidirectional long short-term memory (Bi-LSTM) network and a self-attention-based transformer. This combination facilitates effective text encoding, preventing the loss of information and predicting long dependency text. A bidirectional GCN (Bi-GCN) with message passing is then employed to encode relationships between entities. Additionally, unnecessary information is filtered out using an aspect-specific masking technique. To validate the effectiveness of our proposed model, we conduct extensive evaluation experiments on four benchmark datasets. The experimental results demonstrate enhanced performance in aspect-based sentiment analysis with the use of SentiSys.
comment: This paper has already been accepted by the 20th International Conference on Advanced Data Mining and Applications (ADMA2024)
♻ ☆ INK: Inheritable Natural Backdoor Attack Against Model Distillation
Deep learning models are vulnerable to backdoor attacks, where attackers inject malicious behavior through data poisoning and later exploit triggers to manipulate deployed models. To improve the stealth and effectiveness of backdoors, prior studies have introduced various imperceptible attack methods targeting both defense mechanisms and manual inspection. However, all poisoning-based attacks still rely on privileged access to the training dataset. Consequently, model distillation using a trusted dataset has emerged as an effective defense against these attacks. To bridge this gap, we introduce INK, an inheritable natural backdoor attack that targets model distillation. The key insight behind INK is the use of naturally occurring statistical features in all datasets, allowing attackers to leverage them as backdoor triggers without direct access to the training data. Specifically, INK employs image variance as a backdoor trigger and enables both clean-image and clean-label attacks by manipulating the labels and image variance in an unauthenticated dataset. Once the backdoor is embedded, it transfers from the teacher model to the student model, even when defenders use a trusted dataset for distillation. Theoretical analysis and experimental results demonstrate the robustness of INK against transformation-based, search-based, and distillation-based defenses. For instance, INK maintains an attack success rate of over 98\% post-distillation, compared to an average success rate of 1.4\% for existing methods.
comment: 11 pages, 9 figures
Diffusion Cocktail: Mixing Domain-Specific Diffusion Models for Diversified Image Generations
Diffusion models, capable of high-quality image generation, receive unparalleled popularity for their ease of extension. Active users have created a massive collection of domain-specific diffusion models by fine-tuning base models on self-collected datasets. Recent work has focused on improving a single diffusion model by uncovering semantic and visual information encoded in various architecture components. However, those methods overlook the vastly available set of fine-tuned diffusion models and, therefore, miss the opportunity to utilize their combined capacity for novel generation. In this work, we propose Diffusion Cocktail (Ditail), a training-free method that transfers style and content information between multiple diffusion models. This allows us to perform diversified generations using a set of diffusion models, resulting in novel images unobtainable by a single model. Ditail also offers fine-grained control of the generation process, which enables flexible manipulations of styles and contents. With these properties, Ditail excels in numerous applications, including style transfer guided by diffusion models, novel-style image generation, and image manipulation via prompts or collage inputs.
comment: Project Page: https://maps-research.github.io/Ditail/
♻ ☆ Technical Report of HelixFold3 for Biomolecular Structure Prediction
The AlphaFold series has transformed protein structure prediction with remarkable accuracy, often matching experimental methods. AlphaFold2, AlphaFold-Multimer, and the latest AlphaFold3 represent significant strides in predicting single protein chains, protein complexes, and biomolecular structures. While AlphaFold2 and AlphaFold-Multimer are open-sourced, facilitating rapid and reliable predictions, AlphaFold3 remains partially accessible through a limited online server and has not been open-sourced, restricting further development. To address these challenges, the PaddleHelix team is developing HelixFold3, aiming to replicate AlphaFold3's capabilities. Using insights from previous models and extensive datasets, HelixFold3 achieves an accuracy comparable to AlphaFold3 in predicting the structures of conventional ligands, nucleic acids, and proteins. The initial release of HelixFold3 is available as open source on GitHub for academic research, promising to advance biomolecular research and accelerate discoveries. We also provide online service at PaddleHelix website at https://paddlehelix.baidu.com/app/all/helixfold3/forecast.
♻ ☆ Efficient Imitation Without Demonstrations via Value-Penalized Auxiliary Control from Examples ICRA'25
Learning from examples of success is an ap pealing approach to reinforcement learning but it presents a challenging exploration problem, especially for complex or long-horizon tasks. This work introduces value-penalized auxiliary control from examples (VPACE), an algorithm that significantly improves exploration in example-based control by adding examples of simple auxiliary tasks. For instance, a manipulation task may have auxiliary examples of an object being reached for, grasped, or lifted. We show that the na\"{i}ve application of scheduled auxiliary control to example-based learning can lead to value overestimation and poor performance. We resolve the problem with an above-success-level value penalty. Across both simulated and real robotic environments, we show that our approach substantially improves learning efficiency for challenging tasks, while maintaining bounded value estimates. We compare with existing approaches to example-based learning, inverse reinforcement learning, and an exploration bonus. Preliminary results also suggest that VPACE may learn more efficiently than the more common approaches of using full trajectories or true sparse rewards. Videos, code, and datasets: https://papers.starslab.ca/vpace.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA'25), Atlanta, USA, May 19-23, 2025
♻ ☆ A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems
The integration of Large Language Models (LLMs) like GPT-4o into robotic systems represents a significant advancement in embodied artificial intelligence. These models can process multi-modal prompts, enabling them to generate more context-aware responses. However, this integration is not without challenges. One of the primary concerns is the potential security risks associated with using LLMs in robotic navigation tasks. These tasks require precise and reliable responses to ensure safe and effective operation. Multi-modal prompts, while enhancing the robot's understanding, also introduce complexities that can be exploited maliciously. For instance, adversarial inputs designed to mislead the model can lead to incorrect or dangerous navigational decisions. This study investigates the impact of prompt injections on mobile robot performance in LLM-integrated systems and explores secure prompt strategies to mitigate these risks. Our findings demonstrate a substantial overall improvement of approximately 30.8% in both attack detection and system performance with the implementation of robust defence mechanisms, highlighting their critical role in enhancing security and reliability in mission-oriented tasks.
♻ ☆ CLAMP-ViT: Contrastive Data-Free Learning for Adaptive Post-Training Quantization of ViTs ECCV 2024
We present CLAMP-ViT, a data-free post-training quantization method for vision transformers (ViTs). We identify the limitations of recent techniques, notably their inability to leverage meaningful inter-patch relationships, leading to the generation of simplistic and semantically vague data, impacting quantization accuracy. CLAMP-ViT employs a two-stage approach, cyclically adapting between data generation and model quantization. Specifically, we incorporate a patch-level contrastive learning scheme to generate richer, semantically meaningful data. Furthermore, we leverage contrastive learning in layer-wise evolutionary search for fixed- and mixed-precision quantization to identify optimal quantization parameters while mitigating the effects of a non-smooth loss landscape. Extensive evaluations across various vision tasks demonstrate the superiority of CLAMP-ViT, with performance improvements of up to 3% in top-1 accuracy for classification, 0.6 mAP for object detection, and 1.5 mIoU for segmentation at similar or better compression ratio over existing alternatives. Code is available at https://github.com/georgia-tech-synergy-lab/CLAMP-ViT.git
comment: ECCV 2024
♻ ☆ Hermes: Memory-Efficient Pipeline Inference for Large Models on Edge Devices
The application of Transformer-based large models has achieved numerous success in recent years. However, the exponential growth in the parameters of large models introduces formidable memory challenge for edge deployment. Prior works to address this challenge mainly focus on optimizing the model structure and adopting memory swapping methods. However, the former reduces the inference accuracy, and the latter raises the inference latency. This paper introduces PIPELOAD, a novel memory-efficient pipeline execution mechanism. It reduces memory usage by incorporating dynamic memory management and minimizes inference latency by employing parallel model loading. Based on PIPELOAD mechanism, we present Hermes, a framework optimized for large model inference on edge devices. We evaluate Hermes on Transformer-based models of different sizes. Our experiments illustrate that Hermes achieves up to 4.24 X increase in inference speed and 86.7% lower memory consumption than the state-of-the-art pipeline mechanism for BERT and ViT models, 2.58 X increase in inference speed and 90.3% lower memory consumption for GPT-style models.
comment: Accepted by the 42nd IEEE International Conference on Computer Design (ICCD 2024)
♻ ☆ The Benefits of a Concise Chain of Thought on Problem-Solving in Large Language Models
In this paper, we introduce Concise Chain-of-Thought (CCoT) prompting. We compared standard CoT and CCoT prompts to see how conciseness impacts response length and correct-answer accuracy. We evaluated this using GPT-3.5 and GPT-4 with a multiple-choice question-and-answer (MCQA) benchmark. CCoT reduced average response length by 48.70% for both GPT-3.5 and GPT-4 while having a negligible impact on problem-solving performance. However, on math problems, GPT-3.5 with CCoT incurs a performance penalty of 27.69%. Overall, CCoT leads to an average per-token cost reduction of 22.67%.
comment: All code, data, and supplemental materials are available on GitHub at https://github.com/matthewrenze/jhu-concise-cot
♻ ☆ PhishLang: A Lightweight, Client-Side Phishing Detection Framework using MobileBERT for Real-Time, Explainable Threat Mitigation
In this paper, we introduce PhishLang, an open-source, lightweight language model specifically designed for phishing website detection through contextual analysis of the website. Unlike traditional heuristic or machine learning models that rely on static features and struggle to adapt to new threats, and deep learning models that are computationally intensive, our model leverages MobileBERT, a fast and memory-efficient variant of the BERT architecture, to learn granular features characteristic of phishing attacks. PhishLang operates with minimal data preprocessing and offers performance comparable to leading deep learning anti-phishing tools, while being significantly faster and less resource-intensive. Over a 3.5-month testing period, PhishLang successfully identified 25,796 phishing URLs, many of which were undetected by popular antiphishing blocklists, thus demonstrating its potential to enhance current detection measures. Capitalizing on PhishLang's resource efficiency, we release the first open-source fully client-side Chromium browser extension that provides inference locally without requiring to consult an online blocklist and can be run on low-end systems with no impact on inference times. Our implementation not only outperforms prevalent (server-side) phishing tools, but is significantly more effective than the limited commercial client-side measures available. Furthermore, we study how PhishLang can be integrated with GPT-3.5 Turbo to create explainable blocklisting -- which, upon detection of a website, provides users with detailed contextual information about the features that led to a website being marked as phishing.
♻ ☆ On Stateful Value Factorization in Multi-Agent Reinforcement Learning
Value factorization is a popular paradigm for designing scalable multi-agent reinforcement learning algorithms. However, current factorization methods make choices without full justification that may limit their performance. For example, the theory in prior work uses stateless (i.e., history) functions, while the practical implementations use state information -- making the motivating theory a mismatch for the implementation. Also, methods have built off of previous approaches, inheriting their architectures without exploring other, potentially better ones. To address these concerns, we formally analyze the theory of using the state instead of the history in current methods -- reconnecting theory and practice. We then introduce DuelMIX, a factorization algorithm that learns distinct per-agent utility estimators to improve performance and achieve full expressiveness. Experiments on StarCraft II micromanagement and Box Pushing tasks demonstrate the benefits of our intuitions.
comment: 22 pages, 9 figures, 4 tables
♻ ☆ Ambient Technology & Intelligence
Ambient intelligence refers to technological enhanced electronic environments which are both responsive and sensitive to the presence of people within their environment. Environments that are integrated with ambient intelligence tends to adapt to the needs of individuals within the environment in an unobtrusive manner in such a way as to enhance everyday life thereby making interaction with technology extremely seamless and well integrated. This capability was made possible because it is a concept that combines several key technologies such as IoT (Internet of Things) technology, sensor technology, AI (Artificial Intelligence), and advanced human-computer interaction all embedded and integrated together with the environment.
comment: 11 pages
♻ ☆ Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data. Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks, where adversaries poison the local training data of a subset of clients using a backdoor trigger, aiming to make the aggregated model produce malicious results when the same backdoor condition is met by an inference-time input. Existing backdoor attacks in FL suffer from common deficiencies: fixed trigger patterns and reliance on the assistance of model poisoning. State-of-the-art defenses based on analyzing clients' model updates exhibit a good defense performance on these attacks because of the significant divergence between malicious and benign client model updates. To effectively conceal malicious model updates among benign ones, we propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger, making backdoor data have minimal effect on model updates. We provide theoretical justifications for DPOT's attacking principle and display experimental results showing that DPOT, via only a data-poisoning attack, effectively undermines state-of-the-art defenses and outperforms existing backdoor attack techniques on various datasets.
♻ ☆ Feedback-guided Data Synthesis for Imbalanced Classification
Current status quo in machine learning is to use static datasets of real images for training, which often come from long-tailed distributions. With the recent advances in generative models, researchers have started augmenting these static datasets with synthetic data, reporting moderate performance improvements on classification tasks. We hypothesize that these performance gains are limited by the lack of feedback from the classifier to the generative model, which would promote the usefulness of the generated samples to improve the classifier's performance. In this work, we introduce a framework for augmenting static datasets with useful synthetic samples, which leverages one-shot feedback from the classifier to drive the sampling of the generative model. In order for the framework to be effective, we find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse. We validate three feedback criteria on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset (NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes while being twice efficient in terms of the number of generated synthetic samples. NICO++ also enjoys marked boosts of over 5 percent in worst group accuracy. With these results, our framework paves the path towards effectively leveraging state-of-the-art text-to-image models as data sources that can be queried to improve downstream applications.
♻ ☆ Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?
Trustworthy ML systems should not only return accurate predictions, but also a reliable representation of their uncertainty. Bayesian methods are commonly used to quantify both aleatoric and epistemic uncertainty, but alternative approaches, such as evidential deep learning methods, have become popular in recent years. The latter group of methods in essence extends empirical risk minimization (ERM) for predicting second-order probability distributions over outcomes, from which measures of epistemic (and aleatoric) uncertainty can be extracted. This paper presents novel theoretical insights of evidential deep learning, highlighting the difficulties in optimizing second-order loss functions and interpreting the resulting epistemic uncertainty measures. With a systematic setup that covers a wide range of approaches for classification, regression and counts, it provides novel insights into issues of identifiability and convergence in second-order loss minimization, and the relative (rather than absolute) nature of epistemic uncertainty measures.
♻ ☆ Identifiable Exchangeable Mechanisms for Causal Structure and Representation Learning
Identifying latent representations or causal structures is important for good generalization and downstream task performance. However, both fields have been developed rather independently. We observe that several methods in both representation and causal structure learning rely on the same data-generating process (DGP), namely, exchangeable but not i.i.d. (independent and identically distributed) data. We provide a unified framework, termed Identifiable Exchangeable Mechanisms (IEM), for representation and structure learning under the lens of exchangeability. IEM provides new insights that let us relax the necessary conditions for causal structure identification in exchangeable non--i.i.d. data. We also demonstrate the existence of a duality condition in identifiable representation learning, leading to new identifiability results. We hope this work will pave the way for further research in causal representation learning.
♻ ☆ Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits
General purpose AI, such as ChatGPT, seems to have lowered the barriers for the public to use AI and harness its power. However, the governance and development of AI still remain in the hands of a few, and the pace of development is accelerating without a comprehensive assessment of risks. As a first step towards democratic risk assessment and design of general purpose AI, we introduce PARTICIP-AI, a carefully designed framework for laypeople to speculate and assess AI use cases and their impacts. Our framework allows us to study more nuanced and detailed public opinions on AI through collecting use cases, surfacing diverse harms through risk assessment under alternate scenarios (i.e., developing and not developing a use case), and illuminating tensions over AI development through making a concluding choice on its development. To showcase the promise of our framework towards informing democratic AI development, we run a medium-scale study with inputs from 295 demographically diverse participants. Our analyses show that participants' responses emphasize applications for personal life and society, contrasting with most current AI development's business focus. We also surface diverse set of envisioned harms such as distrust in AI and institutions, complementary to those defined by experts. Furthermore, we found that perceived impact of not developing use cases significantly predicted participants' judgements of whether AI use cases should be developed, and highlighted lay users' concerns of techno-solutionism. We conclude with a discussion on how frameworks like PARTICIP-AI can further guide democratic AI development and governance.
comment: AIES 2024, 34 pages, 4 figures, 23 tables
♻ ☆ Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback. Tools for the Recurrent Optimization via Machine Editing (ROME) method can be found at https://github.com/ajn313/ROME-LLM
comment: Accepted at MLCAD '24. 10 pages, 7 figures, 5 tables
♻ ☆ User-LLM: Efficient LLM Contextualization with User Embeddings
Large language models (LLMs) have achieved remarkable success across various domains, but effectively incorporating complex and potentially noisy user timeline data into LLMs remains a challenge. Current approaches often involve translating user timelines into text descriptions before feeding them to LLMs, which can be inefficient and may not fully capture the nuances of user behavior. Inspired by how LLMs are effectively integrated with images through direct embeddings, we propose User-LLM, a novel framework that leverages user embeddings to directly contextualize LLMs with user history interactions. These embeddings, generated by a user encoder pretrained using self-supervised learning on diverse user interactions, capture latent user behaviors and interests as well as their evolution over time. We integrate these user embeddings with LLMs through cross-attention, enabling LLMs to dynamically adapt their responses based on the context of a user's past actions and preferences. Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X. Comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate that User-LLM outperforms text-prompt-based contextualization on tasks requiring deep user understanding, with improvements of up to 16.33%, particularly excelling on long sequences that capture subtle shifts in user behavior. Furthermore, the incorporation of Perceiver layers streamlines the integration between user encoders and LLMs, yielding additional computational savings.
♻ ☆ A Heterogeneous Graph-Based Multi-Task Learning for Fault Event Diagnosis in Smart Grid
Precise and timely fault diagnosis is a prerequisite for a distribution system to ensure minimum downtime and maintain reliable operation. This necessitates access to a comprehensive procedure that can provide the grid operators with insightful information in the case of a fault event. In this paper, we propose a heterogeneous multi-task learning graph neural network (MTL-GNN) capable of detecting, locating and classifying faults in addition to providing an estimate of the fault resistance and current. Using a graph neural network (GNN) allows for learning the topological representation of the distribution system as well as feature learning through a message-passing scheme. We investigate the robustness of our proposed model using the IEEE-123 test feeder system. This work also proposes a novel GNN-based explainability method to identify key nodes in the distribution system which then facilitates informed sparse measurements. Numerical tests validate the performance of the model across all tasks.
comment: Published in IEEE Transactions on Power Systems (2024)
♻ ☆ LLMmap: Fingerprinting For Large Language Models
We introduce LLMmap, a first-generation fingerprinting technique targeted at LLM-integrated applications. LLMmap employs an active fingerprinting approach, sending carefully crafted queries to the application and analyzing the responses to identify the specific LLM version in use. Our query selection is informed by domain expertise on how LLMs generate uniquely identifiable responses to thematically varied prompts. With as few as 8 interactions, LLMmap can accurately identify 42 different LLM versions with over 95% accuracy. More importantly, LLMmap is designed to be robust across different application layers, allowing it to identify LLM versions--whether open-source or proprietary--from various vendors, operating under various unknown system prompts, stochastic sampling hyperparameters, and even complex generation frameworks such as RAG or Chain-of-Thought. We discuss potential mitigations and demonstrate that, against resourceful adversaries, effective countermeasures may be challenging or even unrealizable.
comment: version 0.2 (more experiments)
Graphics 12
☆ Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering
State-of-the-art techniques for 3D reconstruction are largely based on volumetric scene representations, which require sampling multiple points to compute the color arriving along a ray. Using these representations for more general inverse rendering -- reconstructing geometry, materials, and lighting from observed images -- is challenging because recursively path-tracing such volumetric representations is expensive. Recent works alleviate this issue through the use of radiance caches: data structures that store the steady-state, infinite-bounce radiance arriving at any point from any direction. However, these solutions rely on approximations that introduce bias into the renderings and, more importantly, into the gradients used for optimization. We present a method that avoids these approximations while remaining computationally efficient. In particular, we leverage two techniques to reduce variance for unbiased estimators of the rendering equation: (1) an occlusion-aware importance sampler for incoming illumination and (2) a fast cache architecture that can be used as a control variate for the radiance from a high-quality, but more expensive, volumetric cache. We show that by removing these biases our approach improves the generality of radiance cache based inverse rendering, as well as increasing quality in the presence of challenging light transport effects such as specular reflections.
comment: Website: https://benattal.github.io/flash-cache/
☆ Weighted Squared Volume Minimization (WSVM) for Generating Uniform Tetrahedral Meshes
This paper presents a new algorithm, Weighted Squared Volume Minimization (WSVM), for generating high-quality tetrahedral meshes from closed triangle meshes. Drawing inspiration from the principle of minimal surfaces that minimize squared surface area, WSVM employs a new energy function integrating weighted squared volumes for tetrahedral elements. When minimized with constant weights, this energy promotes uniform volumes among the tetrahedra. Adjusting the weights to account for local geometry further achieves uniform dihedral angles within the mesh. The algorithm begins with an initial tetrahedral mesh generated via Delaunay tetrahedralization and proceeds by sequentially minimizing volume-oriented and then dihedral angle-oriented energies. At each stage, it alternates between optimizing vertex positions and refining mesh connectivity through the iterative process. The algorithm operates fully automatically and requires no parameter tuning. Evaluations on a variety of 3D models demonstrate that WSVM consistently produces tetrahedral meshes of higher quality, with fewer slivers and enhanced uniformity compared to existing methods. Check out further details at the project webpage: https://kaixinyu-hub.github.io/WSVM.github.io.
☆ PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction
Neural implicit representations have revolutionized dense multi-view surface reconstruction, yet their performance significantly diminishes with sparse input views. A few pioneering works have sought to tackle the challenge of sparse-view reconstruction by leveraging additional geometric priors or multi-scene generalizability. However, they are still hindered by the imperfect choice of input views, using images under empirically determined viewpoints to provide considerable overlap. We propose PVP-Recon, a novel and effective sparse-view surface reconstruction method that progressively plans the next best views to form an optimal set of sparse viewpoints for image capturing. PVP-Recon starts initial surface reconstruction with as few as 3 views and progressively adds new views which are determined based on a novel warping score that reflects the information gain of each newly added view. This progressive view planning progress is interleaved with a neural SDF-based reconstruction module that utilizes multi-resolution hash features, enhanced by a progressive training scheme and a directional Hessian loss. Quantitative and qualitative experiments on three benchmark datasets show that our framework achieves high-quality reconstruction with a constrained input budget and outperforms existing baselines.
☆ Holonomy: A Virtual Reality Exploration of Hyperbolic Geometry
HOLONOMY is a virtual environment based on the mathematical concept of hyperbolic geometry. Unlike other environments, HOLONOMY allows users to seamlessly explore an infinite hyperbolic space by physically walking. They use their body as the controller, eliminating the need for teleportation or other artificial VR locomotion methods. This paper discusses the development of HOLONOMY, highlighting the technical challenges faced and overcome during its creation, including rendering complex hyperbolic environments, populating the space with objects, and implementing algorithms for finding shortest paths in the underlying non-Euclidean geometry. Furthermore, we present a proof-of-concept implementation in the form of a VR navigation game and some preliminary learning outcomes from this implementation.
comment: Published at the WEB 3D 2024 conference, September 25-27, 2024, Guimaraes, Portugal. in Proceedings of the 29th International ACM Conference on 3D Web Technology. 2024
☆ Decoupling Contact for Fine-Grained Motion Style Transfer
Motion style transfer changes the style of a motion while retaining its content and is useful in computer animations and games. Contact is an essential component of motion style transfer that should be controlled explicitly in order to express the style vividly while enhancing motion naturalness and quality. However, it is unknown how to decouple and control contact to achieve fine-grained control in motion style transfer. In this paper, we present a novel style transfer method for fine-grained control over contacts while achieving both motion naturalness and spatial-temporal variations of style. Based on our empirical evidence, we propose controlling contact indirectly through the hip velocity, which can be further decomposed into the trajectory and contact timing, respectively. To this end, we propose a new model that explicitly models the correlations between motions and trajectory/contact timing/style, allowing us to decouple and control each separately. Our approach is built around a motion manifold, where hip controls can be easily integrated into a Transformer-based decoder. It is versatile in that it can generate motions directly as well as be used as post-processing for existing methods to improve quality and contact controllability. In addition, we propose a new metric that measures a correlation pattern of motions based on our empirical evidence, aligning well with human perception in terms of motion naturalness. Based on extensive evaluation, our method outperforms existing methods in terms of style expressivity and motion quality.
☆ PersonaTalk: Bring Attention to Your Persona in Visual Dubbing SIGGRAPH
For audio-driven visual dubbing, it remains a considerable challenge to uphold and highlight speaker's persona while synthesizing accurate lip synchronization. Existing methods fall short of capturing speaker's unique speaking style or preserving facial details. In this paper, we present PersonaTalk, an attention-based two-stage framework, including geometry construction and face rendering, for high-fidelity and personalized visual dubbing. In the first stage, we propose a style-aware audio encoding module that injects speaking style into audio features through a cross-attention layer. The stylized audio features are then used to drive speaker's template geometry to obtain lip-synced geometries. In the second stage, a dual-attention face renderer is introduced to render textures for the target geometries. It consists of two parallel cross-attention layers, namely Lip-Attention and Face-Attention, which respectively sample textures from different reference frames to render the entire face. With our innovative design, intricate facial details can be well preserved. Comprehensive experiments and user studies demonstrate our advantages over other state-of-the-art methods in terms of visual quality, lip-sync accuracy and persona preservation. Furthermore, as a person-generic framework, PersonaTalk can achieve competitive performance as state-of-the-art person-specific methods. Project Page: https://grisoon.github.io/PersonaTalk/.
comment: Accepted at SIGGRAPH Asia 2024 (Conference Track)
☆ NESI: Shape Representation via Neural Explicit Surface Intersection
Compressed representations of 3D shapes that are compact, accurate, and can be processed efficiently directly in compressed form, are extremely useful for digital media applications. Recent approaches in this space focus on learned implicit or parametric representations. While implicits are well suited for tasks such as in-out queries, they lack natural 2D parameterization, complicating tasks such as texture or normal mapping. Conversely, parametric representations support the latter tasks but are ill-suited for occupancy queries. We propose a novel learned alternative to these approaches, based on intersections of localized explicit, or height-field, surfaces. Since explicits can be trivially expressed both implicitly and parametrically, NESI directly supports a wider range of processing operations than implicit alternatives, including occupancy queries and parametric access. We represent input shapes using a collection of differently oriented height-field bounded half-spaces combined using volumetric Boolean intersections. We first tightly bound each input using a pair of oppositely oriented height-fields, forming a Double Height-Field (DHF) Hull. We refine this hull by intersecting it with additional localized height-fields (HFs) that capture surface regions in its interior. We minimize the number of HFs necessary to accurately capture each input and compactly encode both the DHF hull and the local HFs as neural functions defined over subdomains of R^2. This reduced dimensionality encoding delivers high-quality compact approximations. Given similar parameter count, or storage capacity, NESI significantly reduces approximation error compared to the state of the art, especially at lower parameter counts.
☆ A Hardware Ray Tracer Datapath with Generalized Features
This article documents an open-source hardware ray tracer datapath pipeline module implemented with the Chisel hardware construction language. The module implements a unified fix-latency pipeline for Ray-Box and Ray-Triangle intersection tests which are the two core, compute-intensive tasks involved in Ray Tracing workloads. Furthermore, the module offers the flexibility of supporting two additional compute modes that can accelerate the computation of Euclidean distance and angular distance (aka cosine similarity) between two vectors, at the cost of minimal additional hardware overhead. Several design choices are made in favor of creating a composable and easily-modifiable Chisel module. This document also explains the trade-offs of these choices.
♻ ☆ HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 $m^2$), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicated on www.lidarhumanmotion.net/hisc4d available for research purposes.
comment: 17 pages, 10 figures, Jornal
♻ ☆ DiffCSG: Differentiable CSG via Rasterization
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requires that each scene parameter relates to pixel values through differentiable operations. While 3D mesh rendering algorithms have been implemented in a differentiable way, these algorithms do not directly extend to Constructive-Solid-Geometry (CSG), a popular parametric representation of shapes, because the underlying boolean operations are typically performed with complex black-box mesh-processing libraries. We present an algorithm, DiffCSG, to render CSG models in a differentiable manner. Our algorithm builds upon CSG rasterization, which displays the result of boolean operations between primitives without explicitly computing the resulting mesh and, as such, bypasses black-box mesh processing. We describe how to implement CSG rasterization within a differentiable rendering pipeline, taking special care to apply antialiasing along primitive intersections to obtain gradients in such critical areas. Our algorithm is simple and fast, can be easily incorporated into modern machine learning setups, and enables a range of applications for computer-aided design, including direct and image-based editing of CSG primitives. Code and data: https://yyyyyhc.github.io/DiffCSG/.
♻ ☆ Quantum Wave Function Collapse for Procedural Content Generation
Quantum computers exhibit an inherent randomness, so it seems natural to consider them for procedural content generation. In this work, a quantum version of the famous (classical) wave function collapse algorithm is proposed. This quantum wave function collapse algorithm is based on the idea that a quantum circuit can be prepared in such a way that it acts as a special-purpose random generator for content of a desired form. The proposed method is presented theoretically and investigated experimentally on simulators and IBM Quantum devices.
comment: 13 pages, 11 figures
♻ ☆ Local Decomposition of Hexahedral Singular Nodes into Singular Curves
Hexahedral (hex) meshing is a long studied topic in geometry processing with many fascinating and challenging associated problems. Hex meshes vary in complexity from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges are adjacent to exactly four hexes. Edges not satisfying this criteria are considered singular and indicate an unstructured hex mesh. Singular edges join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular node, a complex junction of more than two singular curves. While all hex meshes with singularities are unstructured, those with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular nodes becomes effectively 2D.
Robotics 18
☆ CARDinality: Interactive Card-shaped Robots with Locomotion and Haptics using Vibration
This paper introduces a novel approach to interactive robots by leveraging the form-factor of cards to create thin robots equipped with vibrational capabilities for locomotion and haptic feedback. The system is composed of flat-shaped robots with on-device sensing and wireless control, which offer lightweight portability and scalability. This research introduces a hardware prototype. Applications include augmented card playing, educational tools, and assistive technology, which showcase CARDinality's versatility in tangible interaction.
comment: Accepted for ACM UIST 2024
☆ AI-Driven Robotic Crystal Explorer for Rapid Polymorph Identification
Crystallisation is an important phenomenon which facilitates the purification as well as structural and bulk phase material characterisation using crystallographic methods. However, different conditions can lead to a vast set of different crystal structure polymorphs and these often exhibit different physical properties, allowing materials to be tailored to specific purposes. This means the high dimensionality that can result from variations in the conditions which affect crystallisation, and the interaction between them, means that exhaustive exploration is difficult, time-consuming, and costly to explore. Herein we present a robotic crystal search engine for the automated and efficient high-throughput approach to the exploration of crystallisation conditions. The system comprises a closed-loop computer crystal-vision system that uses machine learning to both identify crystals and classify their identity in a multiplexed robotic platform. By exploring the formation of a well-known polymorph, we were able to show how a robotic system could be used to efficiently search experimental space as a function of relative polymorph amount and efficiently create a high dimensionality phase diagram with minimal experimental budget and without expensive analytical techniques such as crystallography. In this way, we identify the set of polymorphs possible within a set of experimental conditions, as well as the optimal values of these conditions to grow each polymorph.
comment: 18 pages, 6 figures, 20 references
☆ A Remote Control Painting System for Exterior Walls of High-Rise Buildings through Robotic System
Exterior painting of high-rise buildings is a challenging task. In our country, as well as in other countries of the world, this task is accomplished manually, which is risky and life-threatening for the workers. Researchers and industry experts are trying to find an automatic and robotic solution for the exterior painting of high-rise building walls. In this paper, we propose a solution to this problem. We design and implement a prototype for automatically painting the building walls' exteriors. A spray mechanism was introduced in the prototype that can move in four different directions (up-down and left-right). All the movements are achieved by using microcontroller-operated servo motors. Further, these components create a scope to upgrade the proposed remote-controlled system to a robotic system in the future. In the presented system, all the operations are controlled remotely from a smartphone interface. Bluetooth technology is used for remote communications. It is expected that the suggested system will improve productivity with better workplace safety.
☆ Adaptive Control based Friction Estimation for Tracking Control of Robot Manipulators
Adaptive control is often used for friction compensation in trajectory tracking tasks because it does not require torque sensors. However, it has some drawbacks: first, the most common certainty-equivalence adaptive control design is based on linearized parameterization of the friction model, therefore nonlinear effects, including the stiction and Stribeck effect, are usually omitted. Second, the adaptive control-based estimation can be biased due to non-zero steady-state error. Third, neglecting unknown model mismatch could result in non-robust estimation. This paper proposes a novel linear parameterized friction model capturing the nonlinear static friction phenomenon. Subsequently, an adaptive control-based friction estimator is proposed to reduce the bias during estimation based on backstepping. Finally, we propose an algorithm to generate excitation for robust estimation. Using a KUKA iiwa 14, we conducted trajectory tracking experiments to evaluate the estimated friction model, including random Fourier and drawing trajectories, showing the effectiveness of our methodology in different control schemes.
☆ The Influence of Demographic Variation on the Perception of Industrial Robot Movements
The influence of individual differences on the perception and evaluation of interactions with robots has been researched for decades. Some human demographic characteristics have been shown to affect how individuals perceive interactions with robots. Still, it is to-date not clear whether, which and to what extent individual differences influence how we perceive robots, and even less is known about human factors and their effect on the perception of robot movements. In addition, most results on the relevance of individual differences investigate human-robot interactions with humanoid or social robots whereas interactions with industrial robots are underrepresented. We present a literature review on the relationship of robot movements and the influence of demographic variation. Our review reveals a limited comparability of existing findings due to a lack of standardized robot manipulations, various dependent variables used and differing experimental setups including different robot types. In addition, most studies have insufficient sample sizes to derive generalizable results. To overcome these shortcomings, we report the results from a Web-based experiment with 930 participants that studies the effect of demographic characteristics on the evaluation of movement behaviors of an articulated robot arm. Our findings demonstrate that most participants prefer an approach from the side, a large movement range, conventional numbers of rotations, smooth movements and neither fast nor slow movement speeds. Regarding individual differences, most of these preferences are robust to demographic variation, and only gender and age was found to cause slight preference differences between slow and fast movements.
☆ Limiting Computation Levels in Prioritized Trajectory Planning with Safety Guarantees
In prioritized planning for vehicles, vehicles plan trajectories in parallel or in sequence. Parallel prioritized planning offers approximately consistent computation time regardless of the number of vehicles but struggles to guarantee collision-free trajectories. Conversely, sequential prioritized planning can guarantee collision-freeness but results in increased computation time as the number of sequentially computing vehicles, which we term computation levels, grows. This number is determined by the directed coupling graph resulted from the coupling and prioritization of vehicles. In this work, we guarantee safe trajectories in parallel planning through reachability analysis. Although these trajectories are collision-free, they tend to be conservative. We address this by planning with a subset of vehicles in sequence. We formulate the problem of selecting this subset as a graph partitioning problem that allows us to independently set computation levels. Our simulations demonstrate a reduction in computation levels by approximately 64% compared to sequential prioritized planning while maintaining the solution quality.
comment: 8 pages, 4 figures. This is an extended abstract of our previous work published at the 2024 European Control Conference (ECC), June 25-28, 2024. Stockholm, Sweden
☆ Using vs. Purchasing Industrial Robots: Adding an Organizational Perspective to Industrial HRI
Purpose: Industrial robots allow manufacturing companies to increase productivity and remain competitive. For robots to be used, they must be accepted by operators on the one hand and bought by decision-makers on the other. The roles involved in such organizational processes have very different perspectives. It is therefore essential for suppliers and robot customers to understand these motives so that robots can successfully be integrated on manufacturing shopfloors. Methodology: We present findings of a qualitative study with operators and decision-makers from two Swiss manufacturing SMEs. Using laddering interviews and means-end analysis, we compare operators' and deciders' relevant elements and how these elements are linked to each other on different abstraction levels. These findings represent drivers and barriers to the acquisition, integration and acceptance of robots in the industry. Findings: We present the differing foci of operators and deciders, and how they can be used by demanders as well as suppliers of robots to achieve robot acceptance and deployment. First, we present a list of relevant attributes, consequences and values that constitute robot acceptance and/or rejection. Second, we provide quantified relevancies for these elements, and how they differ between operators and deciders. And third, we demonstrate how the elements are linked with each other on different abstraction levels, and how these links differ between the two groups.
comment: 25 pages, 2 figures, 3 tables
☆ Gesture Generation from Trimodal Context for Humanoid Robots
Natural co-speech gestures are essential components to improve the experience of Human-robot interaction (HRI). However, current gesture generation approaches have many limitations of not being natural, not aligning with the speech and content, or the lack of diverse speaker styles. Therefore, this work aims to repoduce the work by Yoon et,al generating natural gestures in simulation based on tri-modal inputs and apply this to a robot. During evaluation, ``motion variance'' and ``Frechet Gesture Distance (FGD)'' is employed to evaluate the performance objectively. Then, human participants were recruited to subjectively evaluate the gestures. Results show that the movements in that paper have been successfully transferred to the robot and the gestures have diverse styles and are correlated with the speech. Moreover, there is a significant likeability and style difference between different gestures.
☆ HelmetPoser: A Helmet-Mounted IMU Dataset for Data-Driven Estimation of Human Head Motion in Diverse Conditions
Helmet-mounted wearable positioning systems are crucial for enhancing safety and facilitating coordination in industrial, construction, and emergency rescue environments. These systems, including LiDAR-Inertial Odometry (LIO) and Visual-Inertial Odometry (VIO), often face challenges in localization due to adverse environmental conditions such as dust, smoke, and limited visual features. To address these limitations, we propose a novel head-mounted Inertial Measurement Unit (IMU) dataset with ground truth, aimed at advancing data-driven IMU pose estimation. Our dataset captures human head motion patterns using a helmet-mounted system, with data from ten participants performing various activities. We explore the application of neural networks, specifically Long Short-Term Memory (LSTM) and Transformer networks, to correct IMU biases and improve localization accuracy. Additionally, we evaluate the performance of these methods across different IMU data window dimensions, motion patterns, and sensor types. We release a publicly available dataset, demonstrate the feasibility of advanced neural network approaches for helmet-based localization, and provide evaluation metrics to establish a baseline for future studies in this field. Data and code can be found at \url{https://lqiutong.github.io/HelmetPoser.github.io/}.
☆ Enhancing Socially-Aware Robot Navigation through Bidirectional Natural Language Conversation
Robot navigation is an important research field with applications in various domains. However, traditional approaches often prioritize efficiency and obstacle avoidance, neglecting a nuanced understanding of human behavior or intent in shared spaces. With the rise of service robots, there's an increasing emphasis on endowing robots with the capability to navigate and interact in complex real-world environments. Socially aware navigation has recently become a key research area. However, existing work either predicts pedestrian movements or simply emits alert signals to pedestrians, falling short of facilitating genuine interactions between humans and robots. In this paper, we introduce the Hybrid Soft Actor-Critic with Large Language Model (HSAC-LLM), an innovative model designed for socially-aware navigation in robots. This model seamlessly integrates deep reinforcement learning with large language models, enabling it to predict both continuous and discrete actions for navigation. Notably, HSAC-LLM facilitates bidirectional interaction based on natural language with pedestrian models. When a potential collision with pedestrians is detected, the robot can initiate or respond to communications with pedestrians, obtaining and executing subsequent avoidance strategies. Experimental results in 2D simulation, the Gazebo environment, and the real-world environment demonstrate that HSAC-LLM not only efficiently enables interaction with humans but also exhibits superior performance in navigation and obstacle avoidance compared to state-of-the-art DRL algorithms. We believe this innovative paradigm opens up new avenues for effective and socially aware human-robot interactions in dynamic environments. Videos are available at https://hsacllm.github.io/.
♻ ☆ FLAF: Focal Line and Feature-constrained Active View Planning for Visual Teach and Repeat
This paper presents FLAF, a focal line and feature-constrained active view planning method for tracking failure avoidance in feature-based visual navigation of mobile robots. Our FLAF-based visual navigation is built upon a feature-based visual teach and repeat (VT\&R) framework, which supports many robotic applications by teaching a robot to navigate on various paths that cover a significant portion of daily autonomous navigation requirements. However, tracking failure in feature-based visual simultaneous localization and mapping (VSLAM) caused by textureless regions in human-made environments is still limiting VT\&R to be adopted in the real world. To address this problem, the proposed view planner is integrated into a feature-based visual SLAM system to build up an active VT\&R system that avoids tracking failure. In our system, a pan-tilt unit (PTU)-based active camera is mounted on the mobile robot. Using FLAF, the active camera-based VSLAM operates during the teaching phase to construct a complete path map and in the repeat phase to maintain stable localization. FLAF orients the robot toward more map points to avoid mapping failures during path learning and toward more feature-identifiable map points beneficial for localization while following the learned trajectory. Experiments in real scenarios demonstrate that FLAF outperforms the methods that do not consider feature-identifiability, and our active VT\&R system performs well in complex environments by effectively dealing with low-texture regions.
♻ ☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos. A sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/.
comment: 8 pages, 5 figures, 4 tables. Last updated on September 3rd, 2024
♻ ☆ KOROL: Learning Visualizable Object Feature with Koopman Operator Rollout for Manipulation
Learning dexterous manipulation skills presents significant challenges due to complex nonlinear dynamics that underlie the interactions between objects and multi-fingered hands. Koopman operators have emerged as a robust method for modeling such nonlinear dynamics within a linear framework. However, current methods rely on runtime access to ground-truth (GT) object states, making them unsuitable for vision-based practical applications. Unlike image-to-action policies that implicitly learn visual features for control, we use a dynamics model, specifically the Koopman operator, to learn visually interpretable object features critical for robotic manipulation within a scene. We construct a Koopman operator using object features predicted by a feature extractor and utilize it to auto-regressively advance system states. We train the feature extractor to embed scene information into object features, thereby enabling the accurate propagation of robot trajectories. We evaluate our approach on simulated and real-world robot tasks, with results showing that it outperformed the model-based imitation learning NDP by 1.08$\times$ and the image-to-action Diffusion Policy by 1.16$\times$. The results suggest that our method maintains task success rates with learned features and extends applicability to real-world manipulation without GT object states. Project video and code are available at: \url{https://github.com/hychen-naza/KOROL}.
♻ ☆ Resilient Fleet Management for Energy-Aware Intra-Factory Logistics
This paper presents a novel fleet management strategy for battery-powered robot fleets tasked with intra-factory logistics in an autonomous manufacturing facility. In this environment, repetitive material handling operations are subject to real-world uncertainties such as blocked passages, and equipment or robot malfunctions. In such cases, centralized approaches enhance resilience by immediately adjusting the task allocation between the robots. To overcome the computational expense, a two-step methodology is proposed where the nominal problem is solved a priori using a Monte Carlo Tree Search algorithm for task allocation, resulting in a nominal search tree. When a disruption occurs, the nominal search tree is rapidly updated a posteriori with costs to the new problem while simultaneously generating feasible solutions. Computational experiments prove the real-time capability of the proposed algorithm for various scenarios and compare it with the case where the search tree is not used and the decentralized approach that does not attempt task reassignment.
comment: This manuscript was accepted to the 2024 American Control Conference (ACC) which was held from Wednesday through Friday, July 10-12, 2024 in Toronto, ON, Canada. arXiv admin note: text overlap with arXiv:2304.11444
♻ ☆ DeRi-IGP: Manipulating Rigid Objects Using Deformable Objects via Iterative Grasp-Pull
Heterogeneous systems manipulation, i.e., manipulating rigid objects via deformable (soft) objects, is an emerging field that remains in its early stages of research. Existing works in this field suffer from limited action and operational space, poor generalization ability, and expensive development. To address these challenges, we propose a universally applicable and effective moving primitive, Iterative Grasp-Pull (IGP), and a sample-based framework, DeRi-IGP, to solve the heterogeneous system manipulation task. The DeRi-IGP framework uses local onboard robots' RGBD sensors to observe the environment, comprising a soft-rigid body system. It then uses this information to iteratively grasp and pull a soft body (e.g., rope) to move the attached rigid body to a desired location. We evaluate the effectiveness of our framework in solving various heterogeneous manipulation tasks and compare its performance with several state-of-the-art baselines. The result shows that DeRi-IGP outperforms other methods by a significant margin. We also evaluate the sim-to-real generalization of our framework through real-world human-robot collaborative goal-reaching and distant object acquisition tasks. Our framework successfully transfers to the real world and demonstrates the advantage of the large operational space of the IGP primitive.
comment: We found we need IRB approval to release the human-involved experiments. So we need to retrieve version 2 of this paper
♻ ☆ Green Screen Augmentation Enables Scene Generalisation in Robotic Manipulation
Generalising vision-based manipulation policies to novel environments remains a challenging area with limited exploration. Current practices involve collecting data in one location, training imitation learning or reinforcement learning policies with this data, and deploying the policy in the same location. However, this approach lacks scalability as it necessitates data collection in multiple locations for each task. This paper proposes a novel approach where data is collected in a location predominantly featuring green screens. We introduce Green-screen Augmentation (GreenAug), employing a chroma key algorithm to overlay background textures onto a green screen. Through extensive real-world empirical studies with over 850 training demonstrations and 8.2k evaluation episodes, we demonstrate that GreenAug surpasses no augmentation, standard computer vision augmentation, and prior generative augmentation methods in performance. While no algorithmic novelties are claimed, our paper advocates for a fundamental shift in data collection practices. We propose that real-world demonstrations in future research should utilise green screens, followed by the application of GreenAug. We believe GreenAug unlocks policy generalisation to visually distinct novel locations, addressing the current scene generalisation limitations in robot learning.
comment: Project website: https://greenaug.github.io/
♻ ☆ PO-VINS: An Efficient and Robust Pose-Only Visual-Inertial State Estimator With LiDAR Enhancement
The pose adjustment (PA) with a pose-only visual representation has been proven equivalent to the bundle adjustment (BA), while significantly improving the computational efficiency. However, the pose-only solution has not yet been properly considered in a tightly-coupled visual-inertial state estimator (VISE) with a normal configuration for real-time navigation. In this study, we propose a tightly-coupled LiDAR-enhanced VISE, named PO-VINS, with a full pose-only form for visual and LiDAR-depth measurements to improve efficiency. Based on the pose-only visual representation, we derive the analytical depth uncertainty, which is then employed for culling LiDAR depth outliers. Thus, we propose a multi-state constraint (MSC)-based LiDAR-depth measurement model with the pose-only form to balance efficiency and robustness. The pose-only visual and LiDAR-depth measurements and the IMU-preintegration measurements are tightly integrated under the factor graph optimization framework to perform efficient and accurate state estimation. Exhaustive experimental results on private and public datasets indicate that the proposed PO-VINS yields improved or comparable accuracy to sate-of-the-art methods. Compared to the baseline method LE-VINS, the state-estimation efficiency of PO-VINS is improved by 33% and 56% on the laptop PC and the onboard ARM computer, respectively. Besides, PO-VINS yields notably improved robustness by employing the proposed outlier-culling method and the MSC-based measurement model for LiDAR depth.
comment: 17 pages, 13 figures, 8 tables
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is therefore to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Accepted, Oct. 1st
Computer Vision 5
☆ Mamba-Enhanced Text-Audio-Video Alignment Network for Emotion Recognition in Conversations
Emotion Recognition in Conversations (ERCs) is a vital area within multimodal interaction research, dedicated to accurately identifying and classifying the emotions expressed by speakers throughout a conversation. Traditional ERC approaches predominantly rely on unimodal cues\-such as text, audio, or visual data\-leading to limitations in their effectiveness. These methods encounter two significant challenges: 1) Consistency in multimodal information. Before integrating various modalities, it is crucial to ensure that the data from different sources is aligned and coherent. 2) Contextual information capture. Successfully fusing multimodal features requires a keen understanding of the evolving emotional tone, especially in lengthy dialogues where emotions may shift and develop over time. To address these limitations, we propose a novel Mamba-enhanced Text-Audio-Video alignment network (MaTAV) for the ERC task. MaTAV is with the advantages of aligning unimodal features to ensure consistency across different modalities and handling long input sequences to better capture contextual multimodal information. The extensive experiments on the MELD and IEMOCAP datasets demonstrate that MaTAV significantly outperforms existing state-of-the-art methods on the ERC task with a big margin.
☆ A Low-Computational Video Synopsis Framework with a Standard Dataset
Video synopsis is an efficient method for condensing surveillance videos. This technique begins with the detection and tracking of objects, followed by the creation of object tubes. These tubes consist of sequences, each containing chronologically ordered bounding boxes of a unique object. To generate a condensed video, the first step involves rearranging the object tubes to maximize the number of non-overlapping objects in each frame. Then, these tubes are stitched to a background image extracted from the source video. The lack of a standard dataset for the video synopsis task hinders the comparison of different video synopsis models. This paper addresses this issue by introducing a standard dataset, called SynoClip, designed specifically for the video synopsis task. SynoClip includes all the necessary features needed to evaluate various models directly and effectively. Additionally, this work introduces a video synopsis model, called FGS, with low computational cost. The model includes an empty-frame object detector to identify frames empty of any objects, facilitating efficient utilization of the deep object detector. Moreover, a tube grouping algorithm is proposed to maintain relationships among tubes in the synthesized video. This is followed by a greedy tube rearrangement algorithm, which efficiently determines the start time of each tube. Finally, the proposed model is evaluated using the proposed dataset. The source code, fine-tuned object detection model, and tutorials are available at https://github.com/Ramtin-ma/VideoSynopsis-FGS.
comment: 13 pages, 8 figures
☆ Comparison of Two Augmentation Methods in Improving Detection Accuracy of Hemarthrosis
With the increase of computing power, machine learning models in medical imaging have been introduced to help in rending medical diagnosis and inspection, like hemophilia, a rare disorder in which blood cannot clot normally. Often, one of the bottlenecks of detecting hemophilia is the lack of data available to train the algorithm to increase the accuracy. As a possible solution, this research investigated whether introducing augmented data by data synthesis or traditional augmentation techniques can improve model accuracy, helping to diagnose the diseases. To tackle this research, features of ultrasound images were extracted by the pre-trained VGG-16, and similarities were compared by cosine similarity measure based on extracted features in different distributions among real images, synthetic images, and augmentation images (Real vs. Real, Syn vs. Syn, Real vs. Different Batches of Syn, Real vs. Augmentation Techniques). Model testing performance was investigated using EffientNet-B4 to recognize "blood" images with two augmentation methods. In addition, a gradient-weighted class activation mapping (Grad-CAM) visualization was used to interpret the unexpected results like loss of accuracy. Synthetic and real images do not show high similarity, with a mean similarity score of 0.4737. Synthetic batch 1 dataset and images by horizontal flip are more similar to the original images. Classic augmentation techniques and data synthesis can improve model accuracy, and data by traditional augmentation techniques have a better performance than synthetic data. In addition, the Grad-CAM heatmap figured out the loss of accuracy is due to a shift in the domain. Overall, this research found that two augmentation methods, data synthesis and traditional augmentation techniques, both can improve accuracy to a certain extent to help to diagnose rare diseases.
☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at \url{https://github.com/Westlake-AI/Awesome-Mixup}.
comment: Preprint V1 with 27 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
☆ Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection
Accurate lung nodule detection for computed tomography (CT) scan imagery is challenging in real-world settings due to the sparse occurrence of nodules and similarity to other anatomical structures. In a typical positive case, nodules may appear in as few as 3% of CT slices, complicating detection. To address this, we reframe the problem as an anomaly detection task, targeting rare nodule occurrences in a predominantly normal dataset. We introduce a novel solution leveraging custom data preprocessing and Deformable Detection Transformer (Deformable- DETR). A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine adjacent lung slices into single images, reducing the slice count and decreasing nodule sparsity. This enhances spatial context, allowing for better differentiation between nodules and other structures such as complex vascular structures and bronchioles. Deformable-DETR is employed to detect nodules, with a custom focal loss function to better handle the imbalanced dataset. Our model achieves state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2% (95.2% recall, 93.3% precision) on a dataset sparsely populated with lung nodules that is reflective of real-world clinical data.
Artificial Intelligence 57
☆ FedFT: Improving Communication Performance for Federated Learning with Frequency Space Transformation
Communication efficiency is a widely recognised research problem in Federated Learning (FL), with recent work focused on developing techniques for efficient compression, distribution and aggregation of model parameters between clients and the server. Particularly within distributed systems, it is important to balance the need for computational cost and communication efficiency. However, existing methods are often constrained to specific applications and are less generalisable. In this paper, we introduce FedFT (federated frequency-space transformation), a simple yet effective methodology for communicating model parameters in a FL setting. FedFT uses Discrete Cosine Transform (DCT) to represent model parameters in frequency space, enabling efficient compression and reducing communication overhead. FedFT is compatible with various existing FL methodologies and neural architectures, and its linear property eliminates the need for multiple transformations during federated aggregation. This methodology is vital for distributed solutions, tackling essential challenges like data privacy, interoperability, and energy efficiency inherent to these environments. We demonstrate the generalisability of the FedFT methodology on four datasets using comparative studies with three state-of-the-art FL baselines (FedAvg, FedProx, FedSim). Our results demonstrate that using FedFT to represent the differences in model parameters between communication rounds in frequency space results in a more compact representation compared to representing the entire model in frequency space. This leads to a reduction in communication overhead, while keeping accuracy levels comparable and in some cases even improving it. Our results suggest that this reduction can range from 5% to 30% per client, depending on dataset.
☆ Synthetic Tabular Data Generation for Class Imbalance and Fairness: A Comparative Study ECML
Due to their data-driven nature, Machine Learning (ML) models are susceptible to bias inherited from data, especially in classification problems where class and group imbalances are prevalent. Class imbalance (in the classification target) and group imbalance (in protected attributes like sex or race) can undermine both ML utility and fairness. Although class and group imbalances commonly coincide in real-world tabular datasets, limited methods address this scenario. While most methods use oversampling techniques, like interpolation, to mitigate imbalances, recent advancements in synthetic tabular data generation offer promise but have not been adequately explored for this purpose. To this end, this paper conducts a comparative analysis to address class and group imbalances using state-of-the-art models for synthetic tabular data generation and various sampling strategies. Experimental results on four datasets, demonstrate the effectiveness of generative models for bias mitigation, creating opportunities for further exploration in this direction.
comment: Accepted at the ECML PKDD 2024, 4th Workshop on Bias and Fairness in AI
☆ ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain ICML 2024
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were asked to design and implement topological liftings, i.e. mappings between different data structures and topological domains --like hypergraphs, or simplicial/cell/combinatorial complexes. The challenge received 52 submissions satisfying all the requirements. This paper introduces the main scope of the challenge, and summarizes the main results and findings.
comment: Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM) at ICML 2024
☆ SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks
In today's era, Neural Networks (NN) are applied in various scientific fields such as robotics, medicine, engineering, etc. However, the predictions of neural networks themselves contain a degree of uncertainty that must always be taken into account before any decision is made. This is why many researchers have focused on developing different ways to quantify the uncertainty of neural network predictions. Some of these methods are based on generating prediction intervals (PI) via neural networks for the requested target values. The SEF (Shifting the Error Function) method presented in this paper is a new method that belongs to this category of methods. The proposed approach involves training a single neural network three times, thus generating an estimate along with the corresponding upper and lower bounds for a given problem. A pivotal aspect of the method is the calculation of a parameter from the initial network's estimates, which is then integrated into the loss functions of the other two networks. This innovative process effectively produces PIs, resulting in a robust and efficient technique for uncertainty quantification. To evaluate the effectiveness of our method, a comparison in terms of successful PI generation between the SEF, PI3NN and PIVEN methods was made using two synthetic datasets.
comment: The paper has been accepted at the 2024 International Conference on Computer and Applications (ICCA24), Cairo, Egypt, December 17-19, 2024. https://icca-conf.info/icca-2024
☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at \url{https://github.com/Westlake-AI/Awesome-Mixup}.
comment: Preprint V1 with 27 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
☆ Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?
State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension, over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on their multi-hop reasoning capability: the ability to identify and integrate information from multiple textual sources. Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate, whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. Motivated by this finding, we propose a challenging multi-hop reasoning benchmark, by generating seemingly plausible multi-hop reasoning chains, which ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs, and find that their performance to perform multi-hop reasoning is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We conduct a deeper analysis and find evidence that while LLMs tend to ignore misleading lexical cues, misleading reasoning paths indeed present a significant challenge.
comment: 16 pages, 3 figures
☆ Insights from Benchmarking Frontier Language Models on Web App Code Generation
This paper presents insights from evaluating 16 frontier large language models (LLMs) on the WebApp1K benchmark, a test suite designed to assess the ability of LLMs to generate web application code. The results reveal that while all models possess similar underlying knowledge, their performance is differentiated by the frequency of mistakes they make. By analyzing lines of code (LOC) and failure distributions, we find that writing correct code is more complex than generating incorrect code. Furthermore, prompt engineering shows limited efficacy in reducing errors beyond specific cases. These findings suggest that further advancements in coding LLM should emphasize on model reliability and mistake minimization.
☆ OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs
Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.
comment: Work in progress; code is available at https://github.com/zjunlp/OneGen
☆ QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE
The goal of alpha factor mining is to discover indicative signals of investment opportunities from the historical financial market data of assets. Deep learning based alpha factor mining methods have shown to be powerful, which, however, lack of the interpretability, making them unacceptable in the risk-sensitive real markets. Alpha factors in formulaic forms are more interpretable and therefore favored by market participants, while the search space is complex and powerful explorative methods are urged. Recently, a promising framework is proposed for generating formulaic alpha factors using deep reinforcement learning, and quickly gained research focuses from both academia and industries. This paper first argues that the originally employed policy training method, i.e., Proximal Policy Optimization (PPO), faces several important issues in the context of alpha factors mining, making it ineffective to explore the search space of the formula. Herein, a novel reinforcement learning based on the well-known REINFORCE algorithm is proposed. Given that the underlying state transition function adheres to the Dirac distribution, the Markov Decision Process within this framework exhibit minimal environmental variability, making REINFORCE algorithm more appropriate than PPO. A new dedicated baseline is designed to theoretically reduce the commonly suffered high variance of REINFORCE. Moreover, the information ratio is introduced as a reward shaping mechanism to encourage the generation of steady alpha factors that can better adapt to changes in market volatility. Experimental evaluations on various real assets data show that the proposed algorithm can increase the correlation with asset returns by 3.83%, and a stronger ability to obtain excess returns compared to the latest alpha factors mining methods, which meets the theoretical results well.
comment: 15 pages, 7 figures
☆ EdaCSC: Two Easy Data Augmentation Methods for Chinese Spelling Correction
Chinese Spelling Correction (CSC) aims to detect and correct spelling errors in Chinese sentences caused by phonetic or visual similarities. While current CSC models integrate pinyin or glyph features and have shown significant progress,they still face challenges when dealing with sentences containing multiple typos and are susceptible to overcorrection in real-world scenarios. In contrast to existing model-centric approaches, we propose two data augmentation methods to address these limitations. Firstly, we augment the dataset by either splitting long sentences into shorter ones or reducing typos in sentences with multiple typos. Subsequently, we employ different training processes to select the optimal model. Experimental evaluations on the SIGHAN benchmarks demonstrate the superiority of our approach over most existing models, achieving state-of-the-art performance on the SIGHAN15 test set.
comment: 18 pages, 2 figures
☆ Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator
The $k$-nearest neighbor ($k$-NN) algorithm is one of the most popular methods for nonparametric classification. However, a relevant limitation concerns the definition of the number of neighbors $k$. This parameter exerts a direct impact on several properties of the classifier, such as the bias-variance tradeoff, smoothness of decision boundaries, robustness to noise, and class imbalance handling. In the present paper, we introduce a new adaptive $k$-nearest neighbours ($kK$-NN) algorithm that explores the local curvature at a sample to adaptively defining the neighborhood size. The rationale is that points with low curvature could have larger neighborhoods (locally, the tangent space approximates well the underlying data shape), whereas points with high curvature could have smaller neighborhoods (locally, the tangent space is a loose approximation). We estimate the local Gaussian curvature by computing an approximation to the local shape operator in terms of the local covariance matrix as well as the local Hessian matrix. Results on many real-world datasets indicate that the new $kK$-NN algorithm yields superior balanced accuracy compared to the established $k$-NN method and also another adaptive $k$-NN algorithm. This is particularly evident when the number of samples in the training data is limited, suggesting that the $kK$-NN is capable of learning more discriminant functions with less data considering many relevant cases.
comment: 18 pages, 4 figures
☆ PIP: Detecting Adversarial Examples in Large Vision-Language Models via Attention Patterns of Irrelevant Probe Questions
Large Vision-Language Models (LVLMs) have demonstrated their powerful multimodal capabilities. However, they also face serious safety problems, as adversaries can induce robustness issues in LVLMs through the use of well-designed adversarial examples. Therefore, LVLMs are in urgent need of detection tools for adversarial examples to prevent incorrect responses. In this work, we first discover that LVLMs exhibit regular attention patterns for clean images when presented with probe questions. We propose an unconventional method named PIP, which utilizes the attention patterns of one randomly selected irrelevant probe question (e.g., "Is there a clock?") to distinguish adversarial examples from clean examples. Regardless of the image to be tested and its corresponding question, PIP only needs to perform one additional inference of the image to be tested and the probe question, and then achieves successful detection of adversarial examples. Even under black-box attacks and open dataset scenarios, our PIP, coupled with a simple SVM, still achieves more than 98% recall and a precision of over 90%. Our PIP is the first attempt to detect adversarial attacks on LVLMs via simple irrelevant probe questions, shedding light on deeper understanding and introspection within LVLMs. The code is available at https://github.com/btzyd/pip.
comment: Accepted by ACM Multimedia 2024 BNI track (Oral)
Dynamic Demand Management for Parcel Lockers
In pursuit of a more sustainable and cost-efficient last mile, parcel lockers have gained a firm foothold in the parcel delivery landscape. To fully exploit their potential and simultaneously ensure customer satisfaction, successful management of the locker's limited capacity is crucial. This is challenging as future delivery requests and pickup times are stochastic from the provider's perspective. In response, we propose to dynamically control whether the locker is presented as an available delivery option to each incoming customer with the goal of maximizing the number of served requests weighted by their priority. Additionally, we take different compartment sizes into account, which entails a second type of decision as parcels scheduled for delivery must be allocated. We formalize the problem as an infinite-horizon sequential decision problem and find that exact methods are intractable due to the curses of dimensionality. In light of this, we develop a solution framework that orchestrates multiple algorithmic techniques rooted in Sequential Decision Analytics and Reinforcement Learning, namely cost function approximation and an offline trained parametric value function approximation together with a truncated online rollout. Our innovative approach to combine these techniques enables us to address the strong interrelations between the two decision types. As a general methodological contribution, we enhance the training of our value function approximation with a modified version of experience replay that enforces structure in the value function. Our computational study shows that our method outperforms a myopic benchmark by 13.7% and an industry-inspired policy by 12.6%.
☆ Deep Generic Representations for Domain-Generalized Anomalous Sound Detection
Developing a reliable anomalous sound detection (ASD) system requires robustness to noise, adaptation to domain shifts, and effective performance with limited training data. Current leading methods rely on extensive labeled data for each target machine type to train feature extractors using Outlier-Exposure (OE) techniques, yet their performance on the target domain remains sub-optimal. In this paper, we present \textit{GenRep}, which utilizes generic feature representations from a robust, large-scale pre-trained feature extractor combined with kNN for domain-generalized ASD, without the need for fine-tuning. \textit{GenRep} incorporates MemMixup, a simple approach for augmenting the target memory bank using nearest source samples, paired with a domain normalization technique to address the imbalance between source and target domains. \textit{GenRep} outperforms the best OE-based approach without a need for labeled data with an Official Score of 73.79\% on the DCASE2023T2 Eval set and demonstrates robustness under limited data scenarios. The code is available open-source.
☆ A Survey on Diffusion Models for Recommender Systems
While traditional recommendation techniques have made significant strides in the past decades, they still suffer from limited generalization performance caused by factors like inadequate collaborative signals, weak latent representations, and noisy data. In response, diffusion models (DMs) have emerged as promising solutions for recommender systems due to their robust generative capabilities, solid theoretical foundations, and improved training stability. To this end, in this paper, we present the first comprehensive survey on diffusion models for recommendation, and draw a bird's-eye view from the perspective of the whole pipeline in real-world recommender systems. We systematically categorize existing research works into three primary domains: (1) diffusion for data engineering & encoding, focusing on data augmentation and representation enhancement; (2) diffusion as recommender models, employing diffusion models to directly estimate user preferences and rank items; and (3) diffusion for content presentation, utilizing diffusion models to generate personalized content such as fashion and advertisement creatives. Our taxonomy highlights the unique strengths of diffusion models in capturing complex data distributions and generating high-quality, diverse samples that closely align with user preferences. We also summarize the core characteristics of the adapting diffusion models for recommendation, and further identify key areas for future exploration, which helps establish a roadmap for researchers and practitioners seeking to advance recommender systems through the innovative application of diffusion models. To further facilitate the research community of recommender systems based on diffusion models, we actively maintain a GitHub repository for papers and other related resources in this rising direction https://github.com/CHIANGEL/Awesome-Diffusion-for-RecSys.
comment: Under Review
☆ Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings
Sequential recommendation models have achieved state-of-the-art performance using self-attention mechanism. It has since been found that moving beyond only using item ID and positional embeddings leads to a significant accuracy boost when predicting the next item. In recent literature, it was reported that a multi-dimensional kernel embedding with temporal contextual kernels to capture users' diverse behavioral patterns results in a substantial performance improvement. In this study, we further improve the sequential recommender model's robustness and generalization by introducing a mix-attention mechanism with a layer-wise noise injection (LNI) regularization. We refer to our proposed model as adaptive robust sequential recommendation framework (ADRRec), and demonstrate through extensive experiments that our model outperforms existing self-attention architectures.
Audio-Guided Fusion Techniques for Multimodal Emotion Analysis
In this paper, we propose a solution for the semi-supervised learning track (MER-SEMI) in MER2024. First, in order to enhance the performance of the feature extractor on sentiment classification tasks,we fine-tuned video and text feature extractors, specifically CLIP-vit-large and Baichuan-13B, using labeled data. This approach effectively preserves the original emotional information conveyed in the videos. Second, we propose an Audio-Guided Transformer (AGT) fusion mechanism, which leverages the robustness of Hubert-large, showing superior effectiveness in fusing both inter-channel and intra-channel information. Third, To enhance the accuracy of the model, we iteratively apply self-supervised learning by using high-confidence unlabeled data as pseudo-labels. Finally, through black-box probing, we discovered an imbalanced data distribution between the training and test sets. Therefore, We adopt a prior-knowledge-based voting mechanism. The results demonstrate the effectiveness of our strategy, ultimately earning us third place in the MER-SEMI track.
☆ A Pair Programming Framework for Code Generation via Multi-Plan Exploration and Feedback-Driven Refinement
Large language models (LLMs) have achieved impressive performance on code generation. Although prior studies enhanced LLMs with prompting techniques and code refinement, they still struggle with complex programming problems due to rigid solution plans. In this paper, we draw on pair programming practices to propose PairCoder, a novel LLM-based framework for code generation. PairCoder incorporates two collaborative LLM agents, namely a Navigator agent for high-level planning and a Driver agent for specific implementation. The Navigator is responsible for proposing promising solution plans, selecting the current optimal plan, and directing the next iteration round based on execution feedback. The Driver follows the guidance of Navigator to undertake initial code generation, code testing, and refinement. This interleaved and iterative workflow involves multi-plan exploration and feedback-based refinement, which mimics the collaboration of pair programmers. We evaluate PairCoder with both open-source and closed-source LLMs on various code generation benchmarks. Extensive experimental results demonstrate the superior accuracy of PairCoder, achieving relative pass@1 improvements of 12.00%-162.43% compared to prompting LLMs directly.
comment: Accepted in the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)
☆ Enhancing Convolutional Neural Networks with Higher-Order Numerical Difference Methods
With the rise of deep learning technology in practical applications, Convolutional Neural Networks (CNNs) have been able to assist humans in solving many real-world problems. To enhance the performance of CNNs, numerous network architectures have been explored. Some of these architectures are designed based on the accumulated experience of researchers over time, while others are designed through neural architecture search methods. The improvements made to CNNs by the aforementioned methods are quite significant, but most of the improvement methods are limited in reality by model size and environmental constraints, making it difficult to fully realize the improved performance. In recent years, research has found that many CNN structures can be explained by the discretization of ordinary differential equations. This implies that we can design theoretically supported deep network structures using higher-order numerical difference methods. It should be noted that most of the previous CNN model structures are based on low-order numerical methods. Therefore, considering that the accuracy of linear multi-step numerical difference methods is higher than that of the forward Euler method, this paper proposes a stacking scheme based on the linear multi-step method. This scheme enhances the performance of ResNet without increasing the model size and compares it with the Runge-Kutta scheme. The experimental results show that the performance of the stacking scheme proposed in this paper is superior to existing stacking schemes (ResNet and HO-ResNet), and it has the capability to be extended to other types of neural networks.
☆ HYDRA: Hybrid Data Multiplexing and Run-time Layer Configurable DNN Accelerator
Deep neural networks (DNNs) offer plenty of challenges in executing efficient computation at edge nodes, primarily due to the huge hardware resource demands. The article proposes HYDRA, hybrid data multiplexing, and runtime layer configurable DNN accelerators to overcome the drawbacks. The work proposes a layer-multiplexed approach, which further reuses a single activation function within the execution of a single layer with improved Fused-Multiply-Accumulate (FMA). The proposed approach works in iterative mode to reuse the same hardware and execute different layers in a configurable fashion. The proposed architectures achieve reductions over 90% of power consumption and resource utilization improvements of state-of-the-art works, with 35.21 TOPSW. The proposed architecture reduces the area overhead (N-1) times required in bandwidth, AF and layer architecture. This work shows HYDRA architecture supports optimal DNN computations while improving performance on resource-constrained edge devices.
☆ Soft Actor-Critic with Beta Policy via Implicit Reparameterization Gradients
Recent advances in deep reinforcement learning have achieved impressive results in a wide range of complex tasks, but poor sample efficiency remains a major obstacle to real-world deployment. Soft actor-critic (SAC) mitigates this problem by combining stochastic policy optimization and off-policy learning, but its applicability is restricted to distributions whose gradients can be computed through the reparameterization trick. This limitation excludes several important examples such as the beta distribution, which was shown to improve the convergence rate of actor-critic algorithms in high-dimensional continuous control problems thanks to its bounded support. To address this issue, we investigate the use of implicit reparameterization, a powerful technique that extends the class of reparameterizable distributions. In particular, we use implicit reparameterization gradients to train SAC with the beta policy on simulated robot locomotion environments and compare its performance with common baselines. Experimental results show that the beta policy is a viable alternative, as it outperforms the normal policy and is on par with the squashed normal policy, which is the go-to choice for SAC. The code is available at https://github.com/lucadellalib/sac-beta.
comment: 10 pages
☆ Evaluation of Google Translate for Mandarin Chinese translation using sentiment and semantic analysis
Machine translation using large language models (LLMs) is having a significant global impact, making communication easier. Mandarin Chinese is the official language used for communication by the government, education institutes, and media in China. In this study, we provide an automated assessment of machine translation models with human experts using sentiment and semantic analysis. In order to demonstrate our framework, we select classic early twentieth-century novel 'The True Story of Ah Q' with selected Mandarin Chinese to English translations. We also us Google Translate to generate the given text into English and then conduct a chapter-wise sentiment analysis and semantic analysis to compare the extracted sentiments across the different translations. We utilise LLMs for semantic and sentiment analysis. Our results indicate that the precision of Google Translate differs both in terms of semantic and sentiment analysis when compared to human expert translations. We find that Google Translate is unable to translate some of the specific words or phrases in Chinese, such as Chinese traditional allusions. The mistranslations have to its lack of contextual significance and historical knowledge of China. Thus, this framework brought us some new insights about machine translation for Chinese Mandarin. The future work can explore other languages or types of texts with this framework.
☆ DDNet: Deformable Convolution and Dense FPN for Surface Defect Detection in Recycled Books
Recycled and recirculated books, such as ancient texts and reused textbooks, hold significant value in the second-hand goods market, with their worth largely dependent on surface preservation. However, accurately assessing surface defects is challenging due to the wide variations in shape, size, and the often imprecise detection of defects. To address these issues, we propose DDNet, an innovative detection model designed to enhance defect localization and classification. DDNet introduces a surface defect feature extraction module based on a deformable convolution operator (DC) and a densely connected FPN module (DFPN). The DC module dynamically adjusts the convolution grid to better align with object contours, capturing subtle shape variations and improving boundary delineation and prediction accuracy. Meanwhile, DFPN leverages dense skip connections to enhance feature fusion, constructing a hierarchical structure that generates multi-resolution, high-fidelity feature maps, thus effectively detecting defects of various sizes. In addition to the model, we present a comprehensive dataset specifically curated for surface defect detection in recycled and recirculated books. This dataset encompasses a diverse range of defect types, shapes, and sizes, making it ideal for evaluating the robustness and effectiveness of defect detection models. Through extensive evaluations, DDNet achieves precise localization and classification of surface defects, recording a mAP value of 46.7% on our proprietary dataset - an improvement of 14.2% over the baseline model - demonstrating its superior detection capabilities.
☆ Evaluating Neural Networks Architectures for Spring Reverb Modelling
Reverberation is a key element in spatial audio perception, historically achieved with the use of analogue devices, such as plate and spring reverb, and in the last decades with digital signal processing techniques that have allowed different approaches for Virtual Analogue Modelling (VAM). The electromechanical functioning of the spring reverb makes it a nonlinear system that is difficult to fully emulate in the digital domain with white-box modelling techniques. In this study, we compare five different neural network architectures, including convolutional and recurrent models, to assess their effectiveness in replicating the characteristics of this audio effect. The evaluation is conducted on two datasets at sampling rates of 16 kHz and 48 kHz. This paper specifically focuses on neural audio architectures that offer parametric control, aiming to advance the boundaries of current black-box modelling techniques in the domain of spring reverberation.
comment: 8 pages, 7 figures, 2 tables
☆ Attention-Based Efficient Breath Sound Removal in Studio Audio Recordings
In this research, we present an innovative, parameter-efficient model that utilizes the attention U-Net architecture for the automatic detection and eradication of non-speech vocal sounds, specifically breath sounds, in vocal recordings. This task is of paramount importance in the field of sound engineering, despite being relatively under-explored. The conventional manual process for detecting and eliminating these sounds requires significant expertise and is extremely time-intensive. Existing automated detection and removal methods often fall short in terms of efficiency and precision. Our proposed model addresses these limitations by offering a streamlined process and superior accuracy, achieved through the application of advanced deep learning techniques. A unique dataset, derived from Device and Produced Speech (DAPS), was employed for this purpose. The training phase of the model emphasizes a log spectrogram and integrates an early stopping mechanism to prevent overfitting. Our model not only conserves precious time for sound engineers but also enhances the quality and consistency of audio production. This constitutes a significant breakthrough, as evidenced by its comparative efficiency, necessitating only 1.9M parameters and a training duration of 3.2 hours - markedly less than the top-performing models in this domain. The model is capable of generating identical outputs as previous models with drastically improved precision, making it an optimal choice.
☆ STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting
The rapid advancement of Intelligent Transportation Systems (ITS) presents challenges, particularly with missing data in multi-modal transportation and the complexity of handling diverse sequential tasks within a centralized framework. To address these issues, we propose the Spatial-Temporal Large Language Model Diffusion (STLLM-DF), an innovative model that leverages Denoising Diffusion Probabilistic Models (DDPMs) and Large Language Models (LLMs) to improve multi-task transportation prediction. The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs, making it particularly effective in complex transportation systems. Meanwhile, the non-pretrained LLM dynamically adapts to spatial-temporal relationships within multi-modal networks, allowing the system to efficiently manage diverse transportation tasks in both long-term and short-term predictions. Extensive experiments demonstrate that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40\% in MAE, 4.50\% in RMSE, and 1.51\% in MAPE. This model significantly advances centralized ITS by enhancing predictive accuracy, robustness, and overall system performance across multiple tasks, thus paving the way for more effective spatio-temporal traffic forecasting through the integration of frozen transformer language models and diffusion techniques.
comment: 26 pages, 11 figures
☆ KModels: Unlocking AI for Business Applications
As artificial intelligence (AI) continues to rapidly advance, there is a growing demand to integrate AI capabilities into existing business applications. However, a significant gap exists between the rapid progress in AI and how slowly AI is being embedded into business environments. Deploying well-performing lab models into production settings, especially in on-premise environments, often entails specialized expertise and imposes a heavy burden of model management, creating significant barriers to implementing AI models in real-world applications. KModels leverages proven libraries and platforms (Kubeflow Pipelines, KServe) to streamline AI adoption by supporting both AI developers and consumers. It allows model developers to focus solely on model development and share models as transportable units (Templates), abstracting away complex production deployment concerns. KModels enables AI consumers to eliminate the need for a dedicated data scientist, as the templates encapsulate most data science considerations while providing business-oriented control. This paper presents the architecture of KModels and the key decisions that shape it. We outline KModels' main components as well as its interfaces. Furthermore, we explain how KModels is highly suited for on-premise deployment but can also be used in cloud environments. The efficacy of KModels is demonstrated through the successful deployment of three AI models within an existing Work Order Management system. These models operate in a client's data center and are trained on local data, without data scientist intervention. One model improved the accuracy of Failure Code specification for work orders from 46% to 83%, showcasing the substantial benefit of accessible and localized AI solutions.
♻ ☆ Jointly Complementary&Competitive Influence Maximization with Concurrent Ally-Boosting and Rival-Preventing
In this paper, we propose a new influence spread model, namely, Complementary\&Competitive Independent Cascade (C$^2$IC) model. C$^2$IC model generalizes three well known influence model, i.e., influence boosting (IB) model, campaign oblivious (CO)IC model and the IC-N (IC model with negative opinions) model. This is the first model that considers both complementary and competitive influence spread comprehensively under multi-agent environment. Correspondingly, we propose the Complementary\&Competitive influence maximization (C$^2$IM) problem. Given an ally seed set and a rival seed set, the C$^2$IM problem aims to select a set of assistant nodes that can boost the ally spread and prevent the rival spread concurrently. We show the problem is NP-hard and can generalize the influence boosting problem and the influence blocking problem. With classifying the different cascade priorities into 4 cases by the monotonicity and submodularity (M\&S) holding conditions, we design 4 algorithms respectively, with theoretical approximation bounds provided. We conduct extensive experiments on real social networks and the experimental results demonstrate the effectiveness of the proposed algorithms. We hope this work can inspire abundant future exploration for constructing more generalized influence models that help streamline the works of this area.
comment: proof is wrong in the time complexity analysis
♻ ☆ Balancing Immediate Revenue and Future Off-Policy Evaluation in Coupon Allocation
Coupon allocation drives customer purchases and boosts revenue. However, it presents a fundamental trade-off between exploiting the current optimal policy to maximize immediate revenue and exploring alternative policies to collect data for future policy improvement via off-policy evaluation (OPE). To balance this trade-off, we propose a novel approach that combines a model-based revenue maximization policy and a randomized exploration policy for data collection. Our framework enables flexible adjustment of the mixture ratio between these two policies to optimize the balance between short-term revenue and future policy improvement. We formulate the problem of determining the optimal mixture ratio as multi-objective optimization, enabling quantitative evaluation of this trade-off. We empirically verified the effectiveness of the proposed mixed policy using synthetic data. Our main contributions are: (1) Demonstrating a mixed policy combining deterministic and probabilistic policies, flexibly adjusting the data collection vs. revenue trade-off. (2) Formulating the optimal mixture ratio problem as multi-objective optimization, enabling quantitative evaluation of this trade-off.
♻ ☆ Self-Reflection in LLM Agents: Effects on Problem-Solving Performance
In this study, we investigated the effects of self-reflection in large language models (LLMs) on problem-solving performance. We instructed nine popular LLMs to answer a series of multiple-choice questions to provide a performance baseline. For each incorrectly answered question, we instructed eight types of self-reflecting LLM agents to reflect on their mistakes and provide themselves with guidance to improve problem-solving. Then, using this guidance, each self-reflecting agent attempted to re-answer the same questions. Our results indicate that LLM agents are able to significantly improve their problem-solving performance through self-reflection ($p < 0.001$). In addition, we compared the various types of self-reflection to determine their individual contribution to performance. All code and data are available on GitHub at https://github.com/matthewrenze/self-reflection
♻ ☆ Using LLMs to Establish Implicit User Sentiment of Software Desirability
This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.
comment: 6 pages, 2 figures, 2 tables, updated to incorporate feedback
♻ ☆ TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing and Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind.This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively. Our experiments show that during pre-training, TimelyGPT excels in learning time-series representations from continuously monitored biosignals and irregularly-sampled time series data commonly observed in longitudinal electronic health records (EHRs). In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in a broad spectrum of health domains, including long-term patient health state forecasting and patient risk trajectory prediction.
comment: 17 pages
♻ ☆ Distributed Speculative Inference of Large Language Models is Provably Faster
Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces Distributed Speculative Inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast,chen2023accelerating,miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require fast and accurate drafters, which are often unavailable in practice. We identify a gap where SI can be slower than non-SI given slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI--given any drafters. DSI introduces a novel type of task parallelism called Speculation Parallelism (SP), which orchestrates target and drafter instances to overlap in time, creating a new foundational tradeoff between computational resources and latency. DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic single-node settings where DSI is 1.29-1.92x faster than SI.
♻ ☆ MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
We introduce MIM (Masked Image Modeling)-Refiner, a contrastive learning boost for pre-trained MIM models. MIM-Refiner is motivated by the insight that strong representations within MIM models generally reside in intermediate layers. Accordingly, MIM-Refiner leverages multiple contrastive heads that are connected to different intermediate layers. In each head, a modified nearest neighbor objective constructs semantic clusters that capture semantic information which improves performance on downstream tasks, including off-the-shelf and fine-tuning settings. The refinement process is short and simple - yet highly effective. Within a few epochs, we refine the features of MIM models from subpar to state-of-the-art, off-the-shelf features. Refining a ViT-H, pre-trained with data2vec 2.0 on ImageNet-1K, sets a new state-of-the-art in linear probing (84.7%) and low-shot classification among models that are pre-trained on ImageNet-1K. MIM-Refiner efficiently combines the advantages of MIM and ID objectives and compares favorably against previous state-of-the-art SSL models on a variety of benchmarks such as low-shot classification, long-tailed classification, clustering and semantic segmentation.
♻ ☆ GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text. Compared to sentence-level relation extraction, it requires more complex semantic understanding from a broader text context. Currently, some studies are utilizing logical rules within evidence sentences to enhance the performance of DocRE. However, in the data without provided evidence sentences, researchers often obtain a list of evidence sentences for the entire document through evidence retrieval (ER). Therefore, DocRE suffers from two challenges: firstly, the relevance between evidence and entity pairs is weak; secondly, there is insufficient extraction of complex cross-relations between long-distance multi-entities. To overcome these challenges, we propose GEGA, a novel model for DocRE. The model leverages graph neural networks to construct multiple weight matrices, guiding attention allocation to evidence sentences. It also employs multi-scale representation aggregation to enhance ER. Subsequently, we integrate the most efficient evidence information to implement both fully supervised and weakly supervised training processes for the model. We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED. The experimental results indicate that our model has achieved comprehensive improvements compared to the existing SOTA model.
♻ ☆ LTOS: Layout-controllable Text-Object Synthesis via Adaptive Cross-attention Fusions
Controllable text-to-image generation synthesizes visual text and objects in images with certain conditions, which are frequently applied to emoji and poster generation. Visual text rendering and layout-to-image generation tasks have been popular in controllable text-to-image generation. However, each of these tasks typically focuses on single modality generation or rendering, leaving yet-to-be-bridged gaps between the approaches correspondingly designed for each of the tasks. In this paper, we combine text rendering and layout-to-image generation tasks into a single task: layout-controllable text-object synthesis (LTOS) task, aiming at synthesizing images with object and visual text based on predefined object layout and text contents. As compliant datasets are not readily available for our LTOS task, we construct a layout-aware text-object synthesis dataset, containing elaborate well-aligned labels of visual text and object information. Based on the dataset, we propose a layout-controllable text-object adaptive fusion (TOF) framework, which generates images with clear, legible visual text and plausible objects. We construct a visual-text rendering module to synthesize text and employ an object-layout control module to generate objects while integrating the two modules to harmoniously generate and integrate text content and objects in images. To better the image-text integration, we propose a self-adaptive cross-attention fusion module that helps the image generation to attend more to important text information. Within such a fusion module, we use a self-adaptive learnable factor to learn to flexibly control the influence of cross-attention outputs on image generation. Experimental results show that our method outperforms the state-of-the-art in LTOS, text rendering, and layout-to-image tasks, enabling harmonious visual text rendering and object generation.
♻ ☆ Declarative Probabilistic Logic Programming in Discrete-Continuous Domains
Over the past three decades, the logic programming paradigm has been successfully expanded to support probabilistic modeling, inference and learning. The resulting paradigm of probabilistic logic programming (PLP) and its programming languages owes much of its success to a declarative semantics, the so-called distribution semantics. However, the distribution semantics is limited to discrete random variables only. While PLP has been extended in various ways for supporting hybrid, that is, mixed discrete and continuous random variables, we are still lacking a declarative semantics for hybrid PLP that not only generalizes the distribution semantics and the modeling language but also the standard inference algorithm that is based on knowledge compilation. We contribute the measure semantics together with the hybrid PLP language DC-ProbLog (where DC stands for distributional clauses) and its inference engine infinitesimal algebraic likelihood weighting (IALW). These have the original distribution semantics, standard PLP languages such as ProbLog, and standard inference engines for PLP based on knowledge compilation as special cases. Thus, we generalize the state of the art of PLP towards hybrid PLP in three different aspects: semantics, language and inference. Furthermore, IALW is the first inference algorithm for hybrid probabilistic programming based on knowledge compilation
♻ ☆ T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
♻ ☆ Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model
Exploring the outer atmosphere of the sun has remained a significant bottleneck in astrophysics, given the intricate magnetic formations that significantly influence diverse solar events. Magnetohydrodynamics (MHD) simulations allow us to model the complex interactions between the sun's plasma, magnetic fields, and the surrounding environment. However, MHD simulation is extremely time-consuming, taking days or weeks for simulation. The goal of this study is to accelerate coronal magnetic field simulation using deep learning, specifically, the Fourier Neural Operator (FNO). FNO has been proven to be an ideal tool for scientific computing and discovery in the literature. In this paper, we proposed a global-local Fourier Neural Operator (GL-FNO) that contains two branches of FNOs: the global FNO branch takes downsampled input to reconstruct global features while the local FNO branch takes original resolution input to capture fine details. The performance of the GLFNO is compared with state-of-the-art deep learning methods, including FNO, U-NO, U-FNO, Vision Transformer, CNN-RNN, and CNN-LSTM, to demonstrate its accuracy, computational efficiency, and scalability. Furthermore, physics analysis from domain experts is also performed to demonstrate the reliability of GL-FNO. The results demonstrate that GL-FNO not only accelerates the MHD simulation (a few seconds for prediction, more than \times 20,000 speed up) but also provides reliable prediction capabilities, thus greatly contributing to the understanding of space weather dynamics. Our code implementation is available at https://github.com/Yutao-0718/GL-FNO
comment: 10 pages
♻ ☆ DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision
Low-light image enhancement restores colors and details of single image and improves high-level visual tasks. However, restoring the lost details in the dark area is a challenge by only relying on the RGB domain. In this paper, we introduce frequency as a new clue into the network and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. In addition, we propose a cross domain fusion (CDF) for reducing the differences between the RGB domain and the frequency domain. Our DEFormer has achieved advanced results in both the LOL and MIT-Adobe FiveK datasets and improved the performance of dark detection.
♻ ☆ Leveraging Large Language Models for Wireless Symbol Detection via In-Context Learning
Deep neural networks (DNNs) have made significant strides in tackling challenging tasks in wireless systems, especially when an accurate wireless model is not available. However, when available data is limited, traditional DNNs often yield subpar results due to underfitting. At the same time, large language models (LLMs) exemplified by GPT-3, have remarkably showcased their capabilities across a broad range of natural language processing tasks. But whether and how LLMs can benefit challenging non-language tasks in wireless systems is unexplored. In this work, we propose to leverage the in-context learning ability (a.k.a. prompting) of LLMs to solve wireless tasks in the low data regime without any training or fine-tuning, unlike DNNs which require training. We further demonstrate that the performance of LLMs varies significantly when employed with different prompt templates. To solve this issue, we employ the latest LLM calibration methods. Our results reveal that using LLMs via ICL methods generally outperforms traditional DNNs on the symbol demodulation task and yields highly confident predictions when coupled with calibration techniques.
comment: Accepted at IEEE GLOBECOM 2024
♻ ☆ Green Screen Augmentation Enables Scene Generalisation in Robotic Manipulation
Generalising vision-based manipulation policies to novel environments remains a challenging area with limited exploration. Current practices involve collecting data in one location, training imitation learning or reinforcement learning policies with this data, and deploying the policy in the same location. However, this approach lacks scalability as it necessitates data collection in multiple locations for each task. This paper proposes a novel approach where data is collected in a location predominantly featuring green screens. We introduce Green-screen Augmentation (GreenAug), employing a chroma key algorithm to overlay background textures onto a green screen. Through extensive real-world empirical studies with over 850 training demonstrations and 8.2k evaluation episodes, we demonstrate that GreenAug surpasses no augmentation, standard computer vision augmentation, and prior generative augmentation methods in performance. While no algorithmic novelties are claimed, our paper advocates for a fundamental shift in data collection practices. We propose that real-world demonstrations in future research should utilise green screens, followed by the application of GreenAug. We believe GreenAug unlocks policy generalisation to visually distinct novel locations, addressing the current scene generalisation limitations in robot learning.
comment: Project website: https://greenaug.github.io/
♻ ☆ Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
Kant's Critique of Pure Reason, a major contribution to the history of epistemology, proposes a table of categories to elucidate the structure of the a priori principle of human judgment. The technology of artificial intelligence (AI), based on functionalism, claims to simulate or replicate human judgment. To assess this claim, it is necessary to study whether AI judgment possesses the characteristics of human judgment. This paper argues that AI judgments exhibit a form that cannot be understood in terms of the characteristics of human judgments according to Kant. Because the characteristics of judgment overlap, we can call this AI's uncertainty. Then, I show that concepts without physical intuitions are not easy to explain when their functions are shown through vision. Finally, I illustrate that even if AI makes sentences through subject and predicate in natural language, which are components of judgment, it is difficult to determine whether AI understands the concepts to the level humans can accept. This shows that it is questionable whether the explanation through natural language is reliable.
comment: 9 pages, 3 figures
♻ ☆ Tasks People Prompt: A Taxonomy of LLM Downstream Tasks in Software Verification and Falsification Approaches
Prompting has become one of the main approaches to leverage emergent capabilities of Large Language Models [Brown et al. NeurIPS 2020, Wei et al. TMLR 2022, Wei et al. NeurIPS 2022]. Recently, researchers and practitioners have been "playing" with prompts (e.g., In-Context Learning) to see how to make the most of pre-trained Language Models. By homogeneously dissecting more than a hundred articles, we investigate how software testing and verification research communities have leveraged LLMs capabilities. First, we validate that downstream tasks are adequate to convey a nontrivial modular blueprint of prompt-based proposals in scope. Moreover, we name and classify the concrete downstream tasks we recover in both validation research papers and solution proposals. In order to perform classification, mapping, and analysis, we also develop a novel downstream-task taxonomy. The main taxonomy requirement is to highlight commonalities while exhibiting variation points of task types that enable pinpointing emerging patterns in a varied spectrum of Software Engineering problems that encompasses testing, fuzzing, fault localization, vulnerability detection, static analysis, and program verification approaches. Avenues for future research are also discussed based on conceptual clusters induced by the taxonomy.
♻ ☆ GuideWalk: A Novel Graph-Based Word Embedding for Enhanced Text Classification
One of the prime problems of computer science and machine learning is to extract information efficiently from large-scale, heterogeneous data. Text data, with its syntax, semantics, and even hidden information content, possesses an exceptional place among the data types in concern. The processing of the text data requires embedding, a method of translating the content of the text to numeric vectors. A correct embedding algorithm is the starting point for obtaining the full information content of the text data. In this work, a new text embedding approach, namely the Guided Transition Probability Matrix (GTPM) model is proposed. The model uses the graph structure of sentences to capture different types of information from text data, such as syntactic, semantic, and hidden content. Using random walks on a weighted word graph, GTPM calculates transition probabilities to derive text embedding vectors. The proposed method is tested with real-world data sets and eight well-known and successful embedding algorithms. GTPM shows significantly better classification performance for binary and multi-class datasets than well-known algorithms. Additionally, the proposed method demonstrates superior robustness, maintaining performance with limited (only $10\%$) training data, showing an $8\%$ decline compared to $15-20\%$ for baseline methods.
♻ ☆ A Generative Marker Enhanced End-to-End Framework for Argument Mining
Argument Mining (AM) involves identifying and extracting Argumentative Components (ACs) and their corresponding Argumentative Relations (ARs). Most of the prior works have broken down these tasks into multiple sub-tasks. Existing end-to-end setups primarily use the dependency parsing approach. This work introduces a generative paradigm-based end-to-end framework argTANL. argTANL frames the argumentative structures into label-augmented text, called Augmented Natural Language (ANL). This framework jointly extracts both ACs and ARs from a given argumentative text. Additionally, this study explores the impact of Argumentative and Discourse markers on enhancing the model's performance within the proposed framework. Two distinct frameworks, Marker-Enhanced argTANL (ME-argTANL) and argTANL with specialized Marker-Based Fine-Tuning, are proposed to achieve this. Extensive experiments are conducted on three standard AM benchmarks to demonstrate the superior performance of the ME-argTANL.
♻ ☆ Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
This paper presents a fast and cost-effective method for diagnosing cardiac abnormalities with high accuracy and reliability using low-cost systems in clinics. The primary limitation of automatic diagnosing of cardiac diseases is the rarity of correct and acceptable labeled samples, which can be expensive to prepare. To address this issue, two methods are proposed in this work. The first method is a unique Multi-Branch Deep Convolutional Neural Network (MBDCN) architecture inspired by human auditory processing, specifically designed to optimize feature extraction by employing various sizes of convolutional filters and audio signal power spectrum as input. In the second method, called as Long short-term memory-Convolutional Neural (LSCN) model, Additionally, the network architecture includes Long Short-Term Memory (LSTM) network blocks to improve feature extraction in the time domain. The innovative approach of combining multiple parallel branches consisting of the one-dimensional convolutional layers along with LSTM blocks helps in achieving superior results in audio signal processing tasks. The experimental results demonstrate superiority of the proposed methods over the state-of-the-art techniques. The overall classification accuracy of heart sounds with the LSCN network is more than 96%. The efficiency of this network is significant compared to common feature extraction methods such as Mel Frequency Cepstral Coefficients (MFCC) and wavelet transform. Therefore, the proposed method shows promising results in the automatic analysis of heart sounds and has potential applications in the diagnosis and early detection of cardiovascular diseases.
comment: 19 pages,
♻ ☆ Toward Understanding BERT-Like Pre-Training for DNA Foundation Models
With the success of large-scale pre-training in language tasks, there is an increasing trend of applying it to the domain of life sciences. In particular, pre-training methods based on DNA sequences have received increasing attention because of their potential to capture general information about genes. However, existing pre-training methods for DNA sequences largely rely on direct adoptions of BERT pre-training from NLP, lacking a comprehensive understanding and a specifically tailored approach. To address this research gap, we provide the first empirical study with three insightful observations. Based on the empirical study, we notice that overlapping tokenizer can benefit the fine-tuning of downstream tasks but leads to inadequate pre-training with fast convergence. To unleash the pre-training potential, we introduce a novel approach called RandomMask, which gradually increases the task difficulty of BERT-like pre-training by continuously expanding its mask boundary, forcing the model to learn more knowledge. RandomMask is simple but effective, achieving state-of-the-art performance across 6 downstream tasks. RandomMask achieves a staggering 68.16\% in Matthew's correlation coefficient for Epigenetic Mark Prediction, a groundbreaking increase of 19.85\% over the baseline and a remarkable 3.69\% improvement over the previous state-of-the-art result.
♻ ☆ Advances and Open Challenges in Federated Foundation Models
The integration of Foundation Models (FMs) with Federated Learning (FL) presents a transformative paradigm in Artificial Intelligence (AI). This integration offers enhanced capabilities, while addressing concerns of privacy, data decentralization and computational efficiency. This paper provides a comprehensive survey of the emerging field of Federated Foundation Models (FedFM), elucidating their synergistic relationship and exploring novel methodologies, challenges, and future directions that the FL research field needs to focus on in order to thrive in the age of FMs. A systematic multi-tiered taxonomy is proposed, categorizing existing FedFM approaches for model training, aggregation, trustworthiness, and incentivization. Key challenges, including how to enable FL to deal with high complexity of computational demands, privacy considerations, contribution evaluation, and communication efficiency, are thoroughly discussed. Moreover, this paper explores the intricate challenges of communication, scalability and security inherent in training/fine-tuning FMs via FL. It highlights the potential of quantum computing to revolutionize the processes of training, inference, optimization and security. This survey also introduces the implementation requirement of FedFM and some practical FedFM applications. It highlights lessons learned with a clear understanding of our findings for FedFM. Finally, this survey not only provides insights into the current state and challenges of FedFM, but also offers a blueprint for future research directions, emphasizing the need for developing trustworthy solutions. It serves as a foundational guide for researchers and practitioners interested in contributing to this interdisciplinary and rapidly advancing field.
comment: Survey of Federated Foundation Models (FedFM)
♻ ☆ BernGraph: Probabilistic Graph Neural Networks for EHR-based Medication Recommendations
The medical community believes binary medical event outcomes in EHR data contain sufficient information for making a sensible recommendation. However, there are two challenges to effectively utilizing such data: (1) modeling the relationship between massive 0,1 event outcomes is difficult, even with expert knowledge; (2) in practice, learning can be stalled by the binary values since the equally important 0 entries propagate no learning signals. Currently, there is a large gap between the assumed sufficient information and the reality that no promising results have been shown by utilizing solely the binary data: visiting or secondary information is often necessary to reach acceptable performance. In this paper, we attempt to build the first successful binary EHR data-oriented drug recommendation system by tackling the two difficulties, making sensible drug recommendations solely using the binary EHR medical records. To this end, we take a statistical perspective to view the EHR data as a sample from its cohorts and transform them into continuous Bernoulli probabilities. The transformed entries not only model a deterministic binary event with a distribution but also allow reflecting \emph{event-event} relationship by conditional probability. A graph neural network is learned on top of the transformation. It captures event-event correlations while emphasizing \emph{event-to-patient} features. Extensive results demonstrate that the proposed method achieves state-of-the-art performance on large-scale databases, outperforming baseline methods that use secondary information by a large margin. The source code is available at \url{https://github.com/chenzRG/BEHRMecom}
♻ ☆ Universal Quantum Tomography With Deep Neural Networks
Quantum state tomography is a crucial technique for characterizing the state of a quantum system, which is essential for many applications in quantum technologies. In recent years, there has been growing interest in leveraging neural networks to enhance the efficiency and accuracy of quantum state tomography. Still, many of them did not include mixed quantum state, since pure states are arguably less common in practical situations. In this research paper, we present two neural networks based approach for both pure and mixed quantum state tomography: Restricted Feature Based Neural Network and Mixed States Conditional Generative Adversarial Network, evaluate its effectiveness in comparison to existing neural based methods. We demonstrate that our proposed methods can achieve state-of-the-art results in reconstructing mixed quantum states from experimental data. Our work highlights the potential of neural networks in revolutionizing quantum state tomography and facilitating the development of quantum technologies.
comment: 10 pages, 5 figures, 17 illustration, 1 table
♻ ☆ Hint of Thought prompting: an explainable and zero-shot approach to reasoning tasks with LLMs
Prompting becomes an increasingly important research topic for better utilization of LLMs. Although simple prompting performs well on single-step questions, it cannot permanently activate the correct knowledge path for multi-step reasoning tasks. The chain of thought (CoT), which often contains zero-shot CoT and few-shot CoT, is a recently developed prompting method that can explain the reasoning process to the LLM and outperforms simple prompting in three challenging reasoning tasks, including arithmetic, symbolic, and commonsense reasoning. Inspired by zero-shot CoT, and further extending the zero-shot ability, this paper proposes a novel hint of thought (HoT) prompting with explain-ability and zero-shot generalization. It is decomposed into three steps: explainable sub-questions, logical reasoning, and answering. Such three steps are sequentially ordered in step-by-step hints, which can be easily adjusted and explained to different tasks. Finally, experimental results demonstrate that our HoT prompting has a significant advantage on the zero-shot reasoning task compared to existing zero-shot CoT. We did zero-shot experiments on math tasks like GSM8K, ADDSUB, AQUA, SVAMP, and commonsense tasks such as StrategyQA. In particular, the accuracy of the proposed HoT prompting is improved with GSM8K from 40.50% to 70.65%, with AQUA from 31.9% to 46.4%, with SVAMP from 63.7% to 76.9%, and with ADDSUB from 74.7% to 87.34%, respectively, which even defeats the competitive PoT approach on GSM8k, AQUA, and SVAMP.
♻ ☆ A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications
While AI is extensively transforming Software Engineering (SE) fields, SE is still in need of a framework to overall consider all phases to facilitate Automated Software Evolution (ASEv), particularly for intelligent applications that are context-rich, instead of conquering each division independently. Its complexity comes from the intricacy of the intelligent applications, the heterogeneity of the data sources, and the constant changes in the context. This study proposes a conceptual framework for achieving automated software evolution, emphasizing the importance of multimodality learning. A Selective Sequential Scope Model (3S) model is developed based on the conceptual framework, and it can be used to categorize existing and future research when it covers different SE phases and multimodal learning tasks. This research is a preliminary step toward the blueprint of a higher-level ASEv. The proposed conceptual framework can act as a practical guideline for practitioners to prepare themselves for diving into this area. Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
♻ ☆ Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions
The emergent abilities of large language models (LLMs) have demonstrated great potential in solving medical questions. They can possess considerable medical knowledge, but may still hallucinate and are inflexible in the knowledge updates. While Retrieval-Augmented Generation (RAG) has been proposed to enhance the medical question-answering capabilities of LLMs with external knowledge bases, it may still fail in complex cases where multiple rounds of information-seeking are required. To address such an issue, we propose iterative RAG for medicine (i-MedRAG), where LLMs can iteratively ask follow-up queries based on previous information-seeking attempts. In each iteration of i-MedRAG, the follow-up queries will be answered by a conventional RAG system and they will be further used to guide the query generation in the next iteration. Our experiments show the improved performance of various LLMs brought by i-MedRAG compared with conventional RAG on complex questions from clinical vignettes in the United States Medical Licensing Examination (USMLE), as well as various knowledge tests in the Massive Multitask Language Understanding (MMLU) dataset. Notably, our zero-shot i-MedRAG outperforms all existing prompt engineering and fine-tuning methods on GPT-3.5, achieving an accuracy of 69.68\% on the MedQA dataset. In addition, we characterize the scaling properties of i-MedRAG with different iterations of follow-up queries and different numbers of queries per iteration. Our case studies show that i-MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-depth analysis of medical questions. To the best of our knowledge, this is the first-of-its-kind study on incorporating follow-up queries into medical RAG.
♻ ☆ Random walk model that universally generates inverse square Lévy walk by eliminating search cost minimization constraint
The L\'evy walk, a type of random walk characterized by linear step lengths that follow a power-law distribution, is observed in the migratory behaviors of various organisms, ranging from bacteria to humans. Notably, L\'evy walks with power exponents close to two are frequently observed, though their underlying causes remain elusive. This study introduces a simplified, abstract random walk model designed to produce inverse square L\'evy walks, also known as Cauchy walks and explores the conditions that facilitate these phenomena. In our model, agents move toward a randomly selected destination in multi-dimensional space, and their movement strategy is parameterized by the extent to which they pursue the shortest path. When the search cost is proportional to the distance traveled, this parameter effectively reflects the emphasis on minimizing search costs. Our findings reveal that strict adherence to this cost minimization constraint results in a Brownian walk pattern. However, removing this constraint transitions the movement to an inverse square L\'evy walk. Therefore, by modulating the prioritization of search costs, our model can seamlessly alternate between Brownian and Cauchy walk dynamics. This model has the potential to be utilized for exploring the parameter space of an optimization problem.
♻ ☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos. A sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/.
comment: 8 pages, 5 figures, 4 tables. Last updated on September 3rd, 2024
♻ ☆ GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling WACV 2025
Depth estimation plays a pivotal role in autonomous driving, facilitating a comprehensive understanding of the vehicle's 3D surroundings. Radar, with its robustness to adverse weather conditions and capability to measure distances, has drawn significant interest for radar-camera depth estimation. However, existing algorithms process the inherently noisy and sparse radar data by projecting 3D points onto the image plane for pixel-level feature extraction, overlooking the valuable geometric information contained within the radar point cloud. To address this gap, we propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data. This approach effectively enriches the feature representation by incorporating spatial relationships compared to traditional methods that rely only on 2D feature extraction. Furthermore, we incorporate a point cloud upsampling task to densify the radar point cloud, rectify point positions, and derive additional 3D features under the guidance of lidar data. Finally, we fuse radar and camera features during the decoding phase for depth estimation. We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model. Code: https://github.com/harborsarah/GET-UP
comment: Accepted by WACV 2025
Graphics 7
☆ Exploring Fungal Morphology Simulation and Dynamic Light Containment from a Graphics Generation Perspective
Fungal simulation and control are considered crucial techniques in Bio-Art creation. However, coding algorithms for reliable fungal simulations have posed significant challenges for artists. This study equates fungal morphology simulation to a two-dimensional graphic time-series generation problem. We propose a zero-coding, neural network-driven cellular automaton. Fungal spread patterns are learned through an image segmentation model and a time-series prediction model, which then supervise the training of neural network cells, enabling them to replicate real-world spreading behaviors. We further implemented dynamic containment of fungal boundaries with lasers. Synchronized with the automaton, the fungus successfully spreads into pre-designed complex shapes in reality.
comment: Siggraph Asia 2024 Art Paper
☆ Image color consistency in datasets: the Smooth-TPS3D method
Image color consistency is the key problem in digital imaging consistency when creating datasets. Here, we propose an improved 3D Thin-Plate Splines (TPS3D) color correction method to be used, in conjunction with color charts (i.e. Macbeth ColorChecker) or other machine-readable patterns, to achieve image consistency by post-processing. Also, we benchmark our method against its former implementation and the alternative methods reported to date with an augmented dataset based on the Gehler's ColorChecker dataset. Benchmark includes how corrected images resemble the ground-truth images and how fast these implementations are. Results demonstrate that the TPS3D is the best candidate to achieve image consistency. Furthermore, our Smooth-TPS3D method shows equivalent results compared to the original method and reduced the 11-15% of ill-conditioned scenarios which the previous method failed to less than 1%. Moreover, we demonstrate that the Smooth-TPS method is 20% faster than the original method. Finally, we discuss how different methods offer different compromises between quality, correction accuracy and computational load.
☆ Ultron: Enabling Temporal Geometry Compression of 3D Mesh Sequences using Temporal Correspondence and Mesh Deformation
With the advancement of computer vision, dynamic 3D reconstruction techniques have seen significant progress and found applications in various fields. However, these techniques generate large amounts of 3D data sequences, necessitating efficient storage and transmission methods. Existing 3D model compression methods primarily focus on static models and do not consider inter-frame information, limiting their ability to reduce data size. Temporal mesh compression, which has received less attention, often requires all input meshes to have the same topology, a condition rarely met in real-world applications. This research proposes a method to compress mesh sequences with arbitrary topology using temporal correspondence and mesh deformation. The method establishes temporal correspondence between consecutive frames, applies a deformation model to transform the mesh from one frame to subsequent frames, and replaces the original meshes with deformed ones if the quality meets a tolerance threshold. Extensive experiments demonstrate that this method can achieve state-of-the-art performance in terms of compression performance. The contributions of this paper include a geometry and motion-based model for establishing temporal correspondence between meshes, a mesh quality assessment for temporal mesh sequences, an entropy-based encoding and corner table-based method for compressing mesh sequences, and extensive experiments showing the effectiveness of the proposed method. All the code will be open-sourced at https://github.com/lszhuhaichao/ultron.
☆ PhysHand: A Hand Simulation Model with Physiological Geometry, Physical Deformation, and Accurate Contact Handling
In virtual Hand-Object Interaction (HOI) scenarios, the authenticity of the hand's deformation is important to immersive experience, such as natural manipulation or tactile feedback. Unrealistic deformation arises from simplified hand geometry, neglect of the different physics attributes of the hand, and penetration due to imprecise contact handling. To address these problems, we propose PhysHand, a novel hand simulation model, which enhances the realism of deformation in HOI. First, we construct a physiologically plausible geometry, a layered mesh with a "skin-flesh-skeleton" structure. Second, to satisfy the distinct physics features of different soft tissues, a constraint-based dynamics framework is adopted with carefully designed layer-corresponding constraints to maintain flesh attached and skin smooth. Finally, we employ an SDF-based method to eliminate the penetration caused by contacts and enhance its accuracy by introducing a novel multi-resolution querying strategy. Extensive experiments have been conducted to demonstrate the outstanding performance of PhysHand in calculating deformations and handling contacts. Compared to existing methods, our PhysHand: 1) can compute both physiologically and physically plausible deformation; 2) significantly reduces the depth and count of penetration in HOI.
comment: 11 pages
☆ DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
comment: 15 pages, 14 figures
♻ ☆ TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering
Four-dimensional Digital Subtraction Angiography (4D DSA) is a medical imaging technique that provides a series of 2D images captured at different stages and angles during the process of contrast agent filling blood vessels. It plays a significant role in the diagnosis of cerebrovascular diseases. Improving the rendering quality and speed under sparse sampling is important for observing the status and location of lesions. The current methods exhibit inadequate rendering quality in sparse views and suffer from slow rendering speed. To overcome these limitations, we propose TOGS, a Gaussian splatting method with opacity offset over time, which can effectively improve the rendering quality and speed of 4D DSA. We introduce an opacity offset table for each Gaussian to model the opacity offsets of the Gaussian, using these opacity-varying Gaussians to model the temporal variations in the radiance of the contrast agent. By interpolating the opacity offset table, the opacity variation of the Gaussian at different time points can be determined. This enables us to render the 2D DSA image at that specific moment. Additionally, we introduced a Smooth loss term in the loss function to mitigate overfitting issues that may arise in the model when dealing with sparse view scenarios. During the training phase, we randomly prune Gaussians, thereby reducing the storage overhead of the model. The experimental results demonstrate that compared to previous methods, this model achieves state-of-the-art render quality under the same number of training views. Additionally, it enables real-time rendering while maintaining low storage overhead. The code is available at https://github.com/hustvl/TOGS.
♻ ☆ DiffUHaul: A Training-Free Method for Object Dragging in Images SIGGRAPH
Text-to-image diffusion models have proven effective for solving many image editing tasks. However, the seemingly straightforward task of seamlessly relocating objects within a scene remains surprisingly challenging. Existing methods addressing this problem often struggle to function reliably in real-world scenarios due to lacking spatial reasoning. In this work, we propose a training-free method, dubbed DiffUHaul, that harnesses the spatial understanding of a localized text-to-image model, for the object dragging task. Blindly manipulating layout inputs of the localized model tends to cause low editing performance due to the intrinsic entanglement of object representation in the model. To this end, we first apply attention masking in each denoising step to make the generation more disentangled across different objects and adopt the self-attention sharing mechanism to preserve the high-level object appearance. Furthermore, we propose a new diffusion anchoring technique: in the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance; in the later denoising steps, we pass the localized features from the source images to the interpolated images to retain fine-grained object details. To adapt DiffUHaul to real-image editing, we apply a DDPM self-attention bucketing that can better reconstruct real images with the localized model. Finally, we introduce an automated evaluation pipeline for this task and showcase the efficacy of our method. Our results are reinforced through a user preference study.
comment: Accepted to SIGGRAPH Asia 2024. Project page is available at https://omriavrahami.com/diffuhaul/
Robotics 11
☆ Chemical Power Variability among Microscopic Robots in Blood Vessels
Fuel cells using oxygen and glucose could power microscopic robots operating in blood vessels. Swarms of such robots can significantly reduce oxygen concentration, depending on the time between successive transits of the lung, hematocrit variation in vessels and tissue oxygen consumption. These factors differ among circulation paths through the body. This paper evaluates how these variations affect the minimum oxygen concentration due to robot consumption and where it occurs: mainly in moderate-sized veins toward the end of long paths prior to their merging with veins from shorter paths. This shows that tens of billions of robots can obtain hundreds of picowatts throughout the body with minor reduction in total oxygen. However, a trillion robots significantly deplete oxygen in some parts of the body. By storing oxygen or limiting their consumption in long circulation paths, robots can actively mitigate this depletion. The variation in behavior is illustrated in three cases: the portal system which involves passage through two capillary networks, the spleen whose slits significantly slow some of the flow, and large tissue consumption in coronary circulation.
☆ Learning to Open and Traverse Doors with a Legged Manipulator
Using doors is a longstanding challenge in robotics and is of significant practical interest in giving robots greater access to human-centric spaces. The task is challenging due to the need for online adaptation to varying door properties and precise control in manipulating the door panel and navigating through the confined doorway. To address this, we propose a learning-based controller for a legged manipulator to open and traverse through doors. The controller is trained using a teacher-student approach in simulation to learn robust task behaviors as well as estimate crucial door properties during the interaction. Unlike previous works, our approach is a single control policy that can handle both push and pull doors through learned behaviour which infers the opening direction during deployment without prior knowledge. The policy was deployed on the ANYmal legged robot with an arm and achieved a success rate of 95.0% in repeated trials conducted in an experimental setting. Additional experiments validate the policy's effectiveness and robustness to various doors and disturbances. A video overview of the method and experiments can be found at youtu.be/tQDZXN_k5NU.
☆ Context-Aware Replanning with Pre-explored Semantic Map for Object Navigation
Pre-explored Semantic Maps, constructed through prior exploration using visual language models (VLMs), have proven effective as foundational elements for training-free robotic applications. However, existing approaches assume the map's accuracy and do not provide effective mechanisms for revising decisions based on incorrect maps. To address this, we introduce Context-Aware Replanning (CARe), which estimates map uncertainty through confidence scores and multi-view consistency, enabling the agent to revise erroneous decisions stemming from inaccurate maps without requiring additional labels. We demonstrate the effectiveness of our proposed method by integrating it with two modern mapping backbones, VLMaps and OpenMask3D, and observe significant performance improvements in object navigation tasks. More details can be found on the project page: https://carmaps.github.io/supplements/.
comment: CoRL 2024. The first three authors contributed equally, and their order of authorship is interchangeable. Project page: https://carmaps.github.io/supplements/
☆ Simulation and optimization of computed torque control 3 DOF RRR manipulator using MATLAB
Robot manipulators have become a significant tool for production industries due to their advantages in high speed, accuracy, safety, and repeatability. This paper simulates and optimizes the design of a 3-DOF articulated robotic manipulator (RRR Configuration). The forward and inverse dynamic models are utilized. The trajectory is planned using the end effector's required initial position. A torque compute model is used to calculate the physical end effector's trajectory, position, and velocity. The MATLAB Simulink platform is used for all simulations of the RRR manipulator. With the aid of MATLAB, we primarily focused on manipulator control of the robot using a calculated torque control strategy to achieve the required position.
☆ Should I Stay or Should I Go: A Learning Approach for Drone-based Sensing Applications
Multicopter drones are becoming a key platform in several application domains, enabling precise on-the-spot sensing and/or actuation. We focus on the case where the drone must process the sensor data in order to decide, depending on the outcome, whether it needs to perform some additional action, e.g., more accurate sensing or some form of actuation. On the one hand, waiting for the computation to complete may waste time, if it turns out that no further action is needed. On the other hand, if the drone starts moving toward the next point of interest before the computation ends, it may need to return back to the previous point, if some action needs to be taken. In this paper, we propose a learning approach that enables the drone to take informed decisions about whether to wait for the result of the computation (or not), based on past experience gathered from previous missions. Through an extensive evaluation, we show that the proposed approach, when properly configured, outperforms several static policies, up to 25.8%, over a wide variety of different scenarios where the probability of some action being required at a given point of interest remains stable as well as for scenarios where this probability varies in time.
comment: 9 pages, 9 figures
☆ Modeling Drivers' Risk Perception via Attention to Improve Driving Assistance
Advanced Driver Assistance Systems (ADAS) alert drivers during safety-critical scenarios but often provide superfluous alerts due to a lack of consideration for drivers' knowledge or scene awareness. Modeling these aspects together in a data-driven way is challenging due to the scarcity of critical scenario data with in-cabin driver state and world state recorded together. We explore the benefits of driver modeling in the context of Forward Collision Warning (FCW) systems. Working with real-world video dataset of on-road FCW deployments, we collect observers' subjective validity rating of the deployed alerts. We also annotate participants' gaze-to-objects and extract 3D trajectories of the ego vehicle and other vehicles semi-automatically. We generate a risk estimate of the scene and the drivers' perception in a two step process: First, we model the movement of vehicles in a given scenario as a joint trajectory forecasting problem. Then, we reason about the drivers' risk perception of the scene by counterfactually modifying the input to the forecasting model to represent the drivers' actual observations of vehicles in the scene. The difference in these behaviours gives us an estimate of driver behaviour that accounts for their actual (inattentive) observations and their downstream effect on overall scene risk. We compare both a learned scene representation as well as a more traditional ``worse-case'' deceleration model to achieve the future trajectory forecast. Our experiments show that using this risk formulation to generate FCW alerts may lead to improved false positive rate of FCWs and improved FCW timing.
☆ IR2: Implicit Rendezvous for Robotic Exploration Teams under Sparse Intermittent Connectivity
Information sharing is critical in time-sensitive and realistic multi-robot exploration, especially for smaller robotic teams in large-scale environments where connectivity may be sparse and intermittent. Existing methods often overlook such communication constraints by assuming unrealistic global connectivity. Other works account for communication constraints (by maintaining close proximity or line of sight during information exchange), but are often inefficient. For instance, preplanned rendezvous approaches typically involve unnecessary detours resulting from poorly timed rendezvous, while pursuit-based approaches often result in short-sighted decisions due to their greedy nature. We present IR2, a deep reinforcement learning approach to information sharing for multi-robot exploration. Leveraging attention-based neural networks trained via reinforcement and curriculum learning, IR2 allows robots to effectively reason about the longer-term trade-offs between disconnecting for solo exploration and reconnecting for information sharing. In addition, we propose a hierarchical graph formulation to maintain a sparse yet informative graph, enabling our approach to scale to large-scale environments. We present simulation results in three large-scale Gazebo environments, which show that our approach yields 6.6-34.1% shorter exploration paths and significantly improved mapped area consistency among robots when compared to state-of-the-art baselines. Our simulation training and testing code is available at https://github.com/marmotlab/IR2.
comment: \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization
Recent advancements in reinforcement learning (RL) have been fueled by large-scale data and deep neural networks, particularly for high-dimensional and complex tasks. Online RL methods like Proximal Policy Optimization (PPO) are effective in dynamic scenarios but require substantial real-time data, posing challenges in resource-constrained or slow simulation environments. Offline RL addresses this by pre-learning policies from large datasets, though its success depends on the quality and diversity of the data. This work proposes a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets. This approach improves exploration and sample efficiency, leading to significant gains in cumulative rewards, convergence speed, and strategy stability in complex tasks. Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models. These findings provide new insights and methods for applying RL to high-dimensional, complex tasks. Finally, we open-source our code at https://github.com/TianciGao/DiffPPO
♻ ☆ LeTac-MPC: Learning Model Predictive Control for Tactile-reactive Grasping
Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this paper, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight, which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network (NN) from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability. We release our code and dataset at https://github.com/ZhengtongXu/LeTac-MPC.
♻ ☆ NeB-SLAM: Neural Blocks-based Salable RGB-D SLAM for Unknown Scenes
Neural implicit representations have recently demonstrated considerable potential in the field of visual simultaneous localization and mapping (SLAM). This is due to their inherent advantages, including low storage overhead and representation continuity. However, these methods necessitate the size of the scene as input, which is impractical for unknown scenes. Consequently, we propose NeB-SLAM, a neural block-based scalable RGB-D SLAM for unknown scenes. Specifically, we first propose a divide-and-conquer mapping strategy that represents the entire unknown scene as a set of sub-maps. These sub-maps are a set of neural blocks of fixed size. Then, we introduce an adaptive map growth strategy to achieve adaptive allocation of neural blocks during camera tracking and gradually cover the whole unknown scene. Finally, extensive evaluations on various datasets demonstrate that our method is competitive in both mapping and tracking when targeting unknown environments.
♻ ☆ Providing Safety Assurances for Systems with Unknown Dynamics
As autonomous systems become more complex and integral in our society, the need to accurately model and safely control these systems has increased significantly. In the past decade, there has been tremendous success in using deep learning techniques to model and control systems that are difficult to model using first principles. However, providing safety assurances for such systems remains difficult, partially due to the uncertainty in the learned model. In this work, we aim to provide safety assurances for systems whose dynamics are not readily derived from first principles and, hence, are more advantageous to be learned using deep learning techniques. Given the system of interest and safety constraints, we learn an ensemble model of the system dynamics from data. Leveraging ensemble uncertainty as a measure of uncertainty in the learned dynamics model, we compute a maximal robust control invariant set, starting from which the system is guaranteed to satisfy the safety constraints under the condition that realized model uncertainties are contained in the predefined set of admissible model uncertainty. We demonstrate the effectiveness of our method using a simulated case study with an inverted pendulum and a hardware experiment with a TurtleBot. The experiments show that our method robustifies the control actions of the system against model uncertainty and generates safe behaviors without being overly restrictive. The codes and accompanying videos can be found on the project website.
comment: Accepted to L-CSS and CDC 2024
Artificial Intelligence 64
☆ Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities
Relation extraction is a Natural Language Processing task aiming to extract relationships from textual data. It is a critical step for information extraction. Due to its wide-scale applicability, research in relation extraction has rapidly scaled to using highly advanced neural networks. Despite their computational superiority, modern relation extractors fail to handle complicated extraction scenarios. However, a comprehensive performance analysis of the state-of-the-art relation extractors that compile these challenges has been missing from the literature, and this paper aims to bridge this gap. The goal has been to investigate the possible data-centric characteristics that impede neural relation extraction. Based on extensive experiments conducted using 15 state-of-the-art relation extraction algorithms ranging from recurrent architectures to large language models and seven large-scale datasets, this research suggests that modern relation extractors are not robust to complex data and relation characteristics. It emphasizes pivotal issues, such as contextual ambiguity, correlating relations, long-tail data, and fine-grained relation distributions. In addition, it sets a marker for future directions to alleviate these issues, thereby proving to be a critical resource for novice and advanced researchers. Efficient handling of the challenges described can have significant implications for the field of information extraction, which is a critical part of popular systems such as search engines and chatbots. Data and relevant code can be found at https://github.com/anushkasw/MaxRE.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ A $Δ$-evaluation function for column permutation problems
In this study, a new $\Delta$-evaluation method is introduced for solving a column permutation problem defined on a sparse binary matrix with the consecutive ones property. This problem models various $\mathcal{NP}$-hard problems in graph theory and industrial manufacturing contexts. The computational experiments compare the processing time of the $\Delta$-evaluation method with two other methods used in well-known local search procedures. The study considers a comprehensive set of instances of well-known problems, such as Gate Matrix Layout and Minimization of Open Stacks. The proposed evaluation method is generally competitive and particularly useful for large and dense instances. It can be easily integrated into local search and metaheuristic algorithms to improve solutions without significantly increasing processing time.
comment: technical report
☆ Nearest Neighbor CCP-Based Molecular Sequence Analysis
Molecular sequence analysis is crucial for comprehending several biological processes, including protein-protein interactions, functional annotation, and disease classification. The large number of sequences and the inherently complicated nature of protein structures make it challenging to analyze such data. Finding patterns and enhancing subsequent research requires the use of dimensionality reduction and feature selection approaches. Recently, a method called Correlated Clustering and Projection (CCP) has been proposed as an effective method for biological sequencing data. The CCP technique is still costly to compute even though it is effective for sequence visualization. Furthermore, its utility for classifying molecular sequences is still uncertain. To solve these two problems, we present a Nearest Neighbor Correlated Clustering and Projection (CCP-NN)-based technique for efficiently preprocessing molecular sequence data. To group related molecular sequences and produce representative supersequences, CCP makes use of sequence-to-sequence correlations. As opposed to conventional methods, CCP doesn't rely on matrix diagonalization, therefore it can be applied to a range of machine-learning problems. We estimate the density map and compute the correlation using a nearest-neighbor search technique. We performed molecular sequence classification using CCP and CCP-NN representations to assess the efficacy of our proposed approach. Our findings show that CCP-NN considerably improves classification task accuracy as well as significantly outperforms CCP in terms of computational runtime.
☆ MoistNet: Machine Vision-based Deep Learning Models for Wood Chip Moisture Content Measurement
Quick and reliable measurement of wood chip moisture content is an everlasting problem for numerous forest-reliant industries such as biofuel, pulp and paper, and bio-refineries. Moisture content is a critical attribute of wood chips due to its direct relationship with the final product quality. Conventional techniques for determining moisture content, such as oven-drying, possess some drawbacks in terms of their time-consuming nature, potential sample damage, and lack of real-time feasibility. Furthermore, alternative techniques, including NIR spectroscopy, electrical capacitance, X-rays, and microwaves, have demonstrated potential; nevertheless, they are still constrained by issues related to portability, precision, and the expense of the required equipment. Hence, there is a need for a moisture content determination method that is instant, portable, non-destructive, inexpensive, and precise. This study explores the use of deep learning and machine vision to predict moisture content classes from RGB images of wood chips. A large-scale image dataset comprising 1,600 RGB images of wood chips has been collected and annotated with ground truth labels, utilizing the results of the oven-drying technique. Two high-performing neural networks, MoistNetLite and MoistNetMax, have been developed leveraging Neural Architecture Search (NAS) and hyperparameter optimization. The developed models are evaluated and compared with state-of-the-art deep learning models. Results demonstrate that MoistNetLite achieves 87% accuracy with minimal computational overhead, while MoistNetMax exhibits exceptional precision with a 91% accuracy in wood chip moisture content class prediction. With improved accuracy and faster prediction speed, our proposed MoistNet models hold great promise for the wood chip processing industry.
☆ Activation Function Optimization Scheme for Image Classification
Activation function has a significant impact on the dynamics, convergence, and performance of deep neural networks. The search for a consistent and high-performing activation function has always been a pursuit during deep learning model development. Existing state-of-the-art activation functions are manually designed with human expertise except for Swish. Swish was developed using a reinforcement learning-based search strategy. In this study, we propose an evolutionary approach for optimizing activation functions specifically for image classification tasks, aiming to discover functions that outperform current state-of-the-art options. Through this optimization framework, we obtain a series of high-performing activation functions denoted as Exponential Error Linear Unit (EELU). The developed activation functions are evaluated for image classification tasks from two perspectives: (1) five state-of-the-art neural network architectures, such as ResNet50, AlexNet, VGG16, MobileNet, and Compact Convolutional Transformer which cover computationally heavy to light neural networks, and (2) eight standard datasets, including CIFAR10, Imagenette, MNIST, Fashion MNIST, Beans, Colorectal Histology, CottonWeedID15, and TinyImageNet which cover from typical machine vision benchmark, agricultural image applications to medical image applications. Finally, we statistically investigate the generalization of the resultant activation functions developed through the optimization scheme. With a Friedman test, we conclude that the optimization scheme is able to generate activation functions that outperform the existing standard ones in 92.8% cases among 28 different cases studied, and $-x\cdot erf(e^{-x})$ is found to be the best activation function for image classification generated by the optimization scheme.
☆ Efficient Training of Transformers for Molecule Property Prediction on Small-scale Datasets
The blood-brain barrier (BBB) serves as a protective barrier that separates the brain from the circulatory system, regulating the passage of substances into the central nervous system. Assessing the BBB permeability of potential drugs is crucial for effective drug targeting. However, traditional experimental methods for measuring BBB permeability are challenging and impractical for large-scale screening. Consequently, there is a need to develop computational approaches to predict BBB permeability. This paper proposes a GPS Transformer architecture augmented with Self Attention, designed to perform well in the low-data regime. The proposed approach achieved a state-of-the-art performance on the BBB permeability prediction task using the BBBP dataset, surpassing existing models. With a ROC-AUC of 78.8%, the approach sets a state-of-the-art by 5.5%. We demonstrate that standard Self Attention coupled with GPS transformer performs better than other variants of attention coupled with GPS Transformer.
Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments
Efficient load balancing is crucial in cloud computing environments to ensure optimal resource utilization, minimize response times, and prevent server overload. Traditional load balancing algorithms, such as round-robin or least connections, are often static and unable to adapt to the dynamic and fluctuating nature of cloud workloads. In this paper, we propose a novel adaptive load balancing framework using Reinforcement Learning (RL) to address these challenges. The RL-based approach continuously learns and improves the distribution of tasks by observing real-time system performance and making decisions based on traffic patterns and resource availability. Our framework is designed to dynamically reallocate tasks to minimize latency and ensure balanced resource usage across servers. Experimental results show that the proposed RL-based load balancer outperforms traditional algorithms in terms of response time, resource utilization, and adaptability to changing workloads. These findings highlight the potential of AI-driven solutions for enhancing the efficiency and scalability of cloud infrastructures.
comment: Length: 6 pages (including references) Figures: 3 figures Submission Type: Conference paper Keywords: Reinforcement Learning, Load Balancing, Cloud Computing, Adaptive Algorithms, AI-driven Load Management
☆ Defeasible Reasoning on Concepts
In this paper, we take first steps toward developing defeasible reasoning on concepts in KLM framework. We define generalizations of cumulative reasoning system C and cumulative reasoning system with loop CL to conceptual setting. We also generalize cumulative models, cumulative ordered models, and preferential models to conceptual setting and show the soundness and completeness results for these models.
☆ Learning to Open and Traverse Doors with a Legged Manipulator
Using doors is a longstanding challenge in robotics and is of significant practical interest in giving robots greater access to human-centric spaces. The task is challenging due to the need for online adaptation to varying door properties and precise control in manipulating the door panel and navigating through the confined doorway. To address this, we propose a learning-based controller for a legged manipulator to open and traverse through doors. The controller is trained using a teacher-student approach in simulation to learn robust task behaviors as well as estimate crucial door properties during the interaction. Unlike previous works, our approach is a single control policy that can handle both push and pull doors through learned behaviour which infers the opening direction during deployment without prior knowledge. The policy was deployed on the ANYmal legged robot with an arm and achieved a success rate of 95.0% in repeated trials conducted in an experimental setting. Additional experiments validate the policy's effectiveness and robustness to various doors and disturbances. A video overview of the method and experiments can be found at youtu.be/tQDZXN_k5NU.
☆ Towards identifying Source credibility on Information Leakage in Digital Gadget Market
The use of Social media to share content is on a constant rise. One of the capsize effect of information sharing on Social media includes the spread of sensitive information on the public domain. With the digital gadget market becoming highly competitive and ever-evolving, the trend of an increasing number of sensitive posts leaking information on devices in social media is observed. Many web-blogs on digital gadget market have mushroomed recently, making the problem of information leak all pervasive. Credible leaks on specifics of an upcoming device can cause a lot of financial damage to the respective organization. Hence, it is crucial to assess the credibility of the platforms that continuously post about a smartphone or digital gadget leaks. In this work, we analyze the headlines of leak web-blog posts and their corresponding official press-release. We first collect 54, 495 leak and press-release headlines for different smartphones. We train our custom NER model to capture the evolving smartphone names with an accuracy of 82.14% on manually annotated results. We further propose a credibility score metric for the web-blog, based on the number of falsified and authentic smartphone leak posts.
☆ FedModule: A Modular Federated Learning Framework
Federated learning (FL) has been widely adopted across various applications, such as healthcare, finance, and smart cities. However, as experimental scenarios become more complex, existing FL frameworks and benchmarks have struggled to keep pace. This paper introduces FedModule, a flexible and extensible FL experimental framework that has been open-sourced to support diverse FL paradigms and provide comprehensive benchmarks for complex experimental scenarios. FedModule adheres to the "one code, all scenarios" principle and employs a modular design that breaks the FL process into individual components, allowing for the seamless integration of different FL paradigms. The framework supports synchronous, asynchronous, and personalized federated learning, with over 20 implemented algorithms. Experiments conducted on public datasets demonstrate the flexibility and extensibility of FedModule. The framework offers multiple execution modes-including linear, threaded, process-based, and distributed-enabling users to tailor their setups to various experimental needs. Additionally, FedModule provides extensive logging and testing capabilities, which facilitate detailed performance analysis of FL algorithms. Comparative evaluations against existing FL toolkits, such as TensorFlow Federated, PySyft, Flower, and FLGo, highlight FedModule's superior scalability, flexibility, and comprehensive benchmark support. By addressing the limitations of current FL frameworks, FedModule marks a significant advancement in FL experimentation, providing researchers and practitioners with a robust tool for developing and evaluating FL algorithms across a wide range of scenarios.
☆ Sample- and Oracle-Efficient Reinforcement Learning for MDPs with Linearly-Realizable Value Functions
Designing sample-efficient and computationally feasible reinforcement learning (RL) algorithms is particularly challenging in environments with large or infinite state and action spaces. In this paper, we advance this effort by presenting an efficient algorithm for Markov Decision Processes (MDPs) where the state-action value function of any policy is linear in a given feature map. This challenging setting can model environments with infinite states and actions, strictly generalizes classic linear MDPs, and currently lacks a computationally efficient algorithm under online access to the MDP. Specifically, we introduce a new RL algorithm that efficiently finds a near-optimal policy in this setting, using a number of episodes and calls to a cost-sensitive classification (CSC) oracle that are both polynomial in the problem parameters. Notably, our CSC oracle can be efficiently implemented when the feature dimension is constant, representing a clear improvement over state-of-the-art methods, which require solving non-convex problems with horizon-many variables and can incur computational costs that are \emph{exponential} in the horizon.
☆ Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
As software systems grow increasingly intricate, the precise detection of anomalies have become both essential and challenging. Current log-based anomaly detection methods depend heavily on vast amounts of log data leading to inefficient inference and potential misguidance by noise logs. However, the quantitative effects of log reduction on the effectiveness of anomaly detection remain unexplored. Therefore, we first conduct a comprehensive study on six distinct models spanning three datasets. Through the study, the impact of log quantity and their effectiveness in representing anomalies is qualifies, uncovering three distinctive log event types that differently influence model performance. Drawing from these insights, we propose LogCleaner: an efficient methodology for the automatic reduction of log events in the context of anomaly detection. Serving as middleware between software systems and models, LogCleaner continuously updates and filters anti-events and duplicative-events in the raw generated logs. Experimental outcomes highlight LogCleaner's capability to reduce over 70% of log events in anomaly detection, accelerating the model's inference speed by approximately 300%, and universally improving the performance of models for anomaly detection.
comment: Accepted By ESEM'24
☆ Achieving Peak Performance for Large Language Models: A Systematic Review
In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.
comment: 34 pages, 7 figures, 8 tables. Journal Article: IEEE Access
☆ Reward-Directed Score-Based Diffusion Models via q-Learning
We propose a new reinforcement learning (RL) formulation for training continuous-time score-based diffusion models for generative AI to generate samples that maximize reward functions while keeping the generated distributions close to the unknown target data distributions. Different from most existing studies, our formulation does not involve any pretrained model for the unknown score functions of the noise-perturbed data distributions. We present an entropy-regularized continuous-time RL problem and show that the optimal stochastic policy has a Gaussian distribution with a known covariance matrix. Based on this result, we parameterize the mean of Gaussian policies and develop an actor-critic type (little) q-learning algorithm to solve the RL problem. A key ingredient in our algorithm design is to obtain noisy observations from the unknown score function via a ratio estimator. Numerically, we show the effectiveness of our approach by comparing its performance with two state-of-the-art RL methods that fine-tune pretrained models. Finally, we discuss extensions of our RL formulation to probability flow ODE implementation of diffusion models and to conditional diffusion models.
☆ MILE: A Mutation Testing Framework of In-Context Learning Systems
In-context Learning (ICL) has achieved notable success in the applications of large language models (LLMs). By adding only a few input-output pairs that demonstrate a new task, the LLM can efficiently learn the task during inference without modifying the model parameters. Such mysterious ability of LLMs has attracted great research interests in understanding, formatting, and improving the in-context demonstrations, while still suffering from drawbacks like black-box mechanisms and sensitivity against the selection of examples. In this work, inspired by the foundations of adopting testing techniques in machine learning (ML) systems, we propose a mutation testing framework designed to characterize the quality and effectiveness of test data for ICL systems. First, we propose several mutation operators specialized for ICL demonstrations, as well as corresponding mutation scores for ICL test sets. With comprehensive experiments, we showcase the effectiveness of our framework in evaluating the reliability and quality of ICL test suites. Our code is available at https://github.com/weizeming/MILE.
☆ NASH: Neural Architecture and Accelerator Search for Multiplication-Reduced Hybrid Models
The significant computational cost of multiplications hinders the deployment of deep neural networks (DNNs) on edge devices. While multiplication-free models offer enhanced hardware efficiency, they typically sacrifice accuracy. As a solution, multiplication-reduced hybrid models have emerged to combine the benefits of both approaches. Particularly, prior works, i.e., NASA and NASA-F, leverage Neural Architecture Search (NAS) to construct such hybrid models, enhancing hardware efficiency while maintaining accuracy. However, they either entail costly retraining or encounter gradient conflicts, limiting both search efficiency and accuracy. Additionally, they overlook the acceleration opportunity introduced by accelerator search, yielding sub-optimal hardware performance. To overcome these limitations, we propose NASH, a Neural architecture and Accelerator Search framework for multiplication-reduced Hybrid models. Specifically, as for NAS, we propose a tailored zero-shot metric to pre-identify promising hybrid models before training, enhancing search efficiency while alleviating gradient conflicts. Regarding accelerator search, we innovatively introduce coarse-to-fine search to streamline the search process. Furthermore, we seamlessly integrate these two levels of searches to unveil NASH, obtaining the optimal model and accelerator pairing. Experiments validate our effectiveness, e.g., when compared with the state-of-the-art multiplication-based system, we can achieve $\uparrow$$2.14\times$ throughput and $\uparrow$$2.01\times$ FPS with $\uparrow$$0.25\%$ accuracy on CIFAR-100, and $\uparrow$$1.40\times$ throughput and $\uparrow$$1.19\times$ FPS with $\uparrow$$0.56\%$ accuracy on Tiny-ImageNet. Codes are available at \url{https://github.com/xuyang527/NASH.}
☆ POINTS: Improving Your Vision-language Model with Affordable Strategies
In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.
☆ Exploring Straightforward Conversational Red-Teaming
Large language models (LLMs) are increasingly used in business dialogue systems but they pose security and ethical risks. Multi-turn conversations, where context influences the model's behavior, can be exploited to produce undesired responses. In this paper, we examine the effectiveness of utilizing off-the-shelf LLMs in straightforward red-teaming approaches, where an attacker LLM aims to elicit undesired output from a target LLM, comparing both single-turn and conversational red-teaming tactics. Our experiments offer insights into various usage strategies that significantly affect their performance as red teamers. They suggest that off-the-shelf models can act as effective red teamers and even adjust their attack strategy based on past attempts, although their effectiveness decreases with greater alignment.
☆ FreeAugment: Data Augmentation Search Across All Degrees of Freedom ECCV 2024
Data augmentation has become an integral part of deep learning, as it is known to improve the generalization capabilities of neural networks. Since the most effective set of image transformations differs between tasks and domains, automatic data augmentation search aims to alleviate the extreme burden of manually finding the optimal image transformations. However, current methods are not able to jointly optimize all degrees of freedom: (1) the number of transformations to be applied, their (2) types, (3) order, and (4) magnitudes. Many existing methods risk picking the same transformation more than once, limit the search to two transformations only, or search for the number of transformations exhaustively or iteratively in a myopic manner. Our approach, FreeAugment, is the first to achieve global optimization of all four degrees of freedom simultaneously, using a fully differentiable method. It efficiently learns the number of transformations and a probability distribution over their permutations, inherently refraining from redundant repetition while sampling. Our experiments demonstrate that this joint learning of all degrees of freedom significantly improves performance, achieving state-of-the-art results on various natural image benchmarks and beyond across other domains. Project page at https://tombekor.github.io/FreeAugment-web
comment: Accepted by ECCV 2024
☆ Top-GAP: Integrating Size Priors in CNNs for more Interpretability, Robustness, and Bias Mitigation ECCV 2024
This paper introduces Top-GAP, a novel regularization technique that enhances the explainability and robustness of convolutional neural networks. By constraining the spatial size of the learned feature representation, our method forces the network to focus on the most salient image regions, effectively reducing background influence. Using adversarial attacks and the Effective Receptive Field, we show that Top-GAP directs more attention towards object pixels rather than the background. This leads to enhanced interpretability and robustness. We achieve over 50% robust accuracy on CIFAR-10 with PGD $\epsilon=\frac{8}{255}$ and $20$ iterations while maintaining the original clean accuracy. Furthermore, we see increases of up to 5% accuracy against distribution shifts. Our approach also yields more precise object localization, as evidenced by up to 25% improvement in Intersection over Union (IOU) compared to methods like GradCAM and Recipro-CAM.
comment: eXCV Workshop at ECCV 2024
☆ Generalized Learning of Coefficients in Spectral Graph Convolutional Networks
Spectral Graph Convolutional Networks (GCNs) have gained popularity in graph machine learning applications due, in part, to their flexibility in specification of network propagation rules. These propagation rules are often constructed as polynomial filters whose coefficients are learned using label information during training. In contrast to learned polynomial filters, explicit filter functions are useful in capturing relationships between network topology and distribution of labels across the network. A number of algorithms incorporating either approach have been proposed; however the relationship between filter functions and polynomial approximations is not fully resolved. This is largely due to the ill-conditioned nature of the linear systems that must be solved to derive polynomial approximations of filter functions. To address this challenge, we propose a novel Arnoldi orthonormalization-based algorithm, along with a unifying approach, called G-Arnoldi-GCN that can efficiently and effectively approximate a given filter function with a polynomial. We evaluate G-Arnoldi-GCN in the context of multi-class node classification across ten datasets with diverse topological characteristics. Our experiments show that G-Arnoldi-GCN consistently outperforms state-of-the-art methods when suitable filter functions are employed. Overall, G-Arnoldi-GCN opens important new directions in graph machine learning by enabling the explicit design and application of diverse filter functions. Code link: https://anonymous.4open.science/r/GArnoldi-GCN-F7E2/README.md
☆ HULLMI: Human vs LLM identification with explainability
As LLMs become increasingly proficient at producing human-like responses, there has been a rise of academic and industrial pursuits dedicated to flagging a given piece of text as "human" or "AI". Most of these pursuits involve modern NLP detectors like T5-Sentinel and RoBERTa-Sentinel, without paying too much attention to issues of interpretability and explainability of these models. In our study, we provide a comprehensive analysis that shows that traditional ML models (Naive-Bayes,MLP, Random Forests, XGBoost) perform as well as modern NLP detectors, in human vs AI text detection. We achieve this by implementing a robust testing procedure on diverse datasets, including curated corpora and real-world samples. Subsequently, by employing the explainable AI technique LIME, we uncover parts of the input that contribute most to the prediction of each model, providing insights into the detection process. Our study contributes to the growing need for developing production-level LLM detection tools, which can leverage a wide range of traditional as well as modern NLP detectors we propose. Finally, the LIME techniques we demonstrate also have the potential to equip these detection tools with interpretability analysis features, making them more reliable and trustworthy in various domains like education, healthcare, and media.
comment: 17 pages, 8 figures
☆ Phrase-Level Adversarial Training for Mitigating Bias in Neural Network-based Automatic Essay Scoring
Automatic Essay Scoring (AES) is widely used to evaluate candidates for educational purposes. However, due to the lack of representative data, most existing AES systems are not robust, and their scoring predictions are biased towards the most represented data samples. In this study, we propose a model-agnostic phrase-level method to generate an adversarial essay set to address the biases and robustness of AES models. Specifically, we construct an attack test set comprising samples from the original test set and adversarially generated samples using our proposed method. To evaluate the effectiveness of the attack strategy and data augmentation, we conducted a comprehensive analysis utilizing various neural network scoring models. Experimental results show that the proposed approach significantly improves AES model performance in the presence of adversarial examples and scenarios without such attacks.
☆ Action is the primary key: a categorical framework for episode description and logical reasoning
This research presents a computational framework for describing and recognizing episodes and for logical reasoning. This framework, named cognitive-logs, consists of a set of relational and graph databases. Cognitive-logs record knowledge, particularly in episodes that consist of "actions" represented by verbs in natural languages and "participants" who perform the actions. These objects are connected by arrows (morphisms) that link each action to its participant and link cause to effect. Operations based on category theory enable comparisons between episodes and deductive inferences, including abstractions of stories. One of the goals of this study is to develop a database-driven artificial intelligence. This artificial intelligence thinks like a human but possesses the accuracy and rigour of a machine. The vast capacities of databases (up to petabyte scales in current technologies) enable the artificial intelligence to store a greater volume of knowledge than neural-network based artificial intelligences. Cognitive-logs serve as a model of human cognition and designed with references to cognitive linguistics. Cognitive-logs also have the potential to model various human mind activities.
comment: 26 pages, 18 figures, 4 tables
☆ Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn
Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. However, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch. Although such a churn phenomenon exists in each step of network training, how churn occurs and impacts RL remains under-explored. In this work, we start by characterizing churn in a view of Generalized Policy Iteration with function approximation, and we discover a chain effect of churn that leads to a cycle where the churns in value estimation and policy improvement compound and bias the learning dynamics throughout the iteration. Further, we concretize the study and focus on the learning issues caused by the chain effect in different settings, including greedy action deviation in value-based methods, trust region violation in proximal policy optimization, and dual bias of policy value in actor-critic methods. We then propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms. Our experiments demonstrate the effectiveness of our method in both reducing churn and improving learning performance across online and offline, value-based and policy-based RL settings, as well as a scaling setting.
☆ Selective Self-Rehearsal: A Fine-Tuning Approach to Improve Generalization in Large Language Models
Fine-tuning Large Language Models (LLMs) on specific datasets is a common practice to improve performance on target tasks. However, this performance gain often leads to overfitting, where the model becomes too specialized in either the task or the characteristics of the training data, resulting in a loss of generalization. This paper introduces Selective Self-Rehearsal (SSR), a fine-tuning approach that achieves performance comparable to the standard supervised fine-tuning (SFT) while improving generalization. SSR leverages the fact that there can be multiple valid responses to a query. By utilizing the model's correct responses, SSR reduces model specialization during the fine-tuning stage. SSR first identifies the correct model responses from the training set by deploying an appropriate LLM as a judge. Then, it fine-tunes the model using the correct model responses and the gold response for the remaining samples. The effectiveness of SSR is demonstrated through experiments on the task of identifying unanswerable queries across various datasets. The results show that standard SFT can lead to an average performance drop of up to $16.7\%$ on multiple benchmarks, such as MMLU and TruthfulQA. In contrast, SSR results in close to $2\%$ drop on average, indicating better generalization capabilities compared to standard SFT.
comment: 14 pages, 8 figures
☆ Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models
Large language models (LLM) have prioritized expanding the context window from which models can incorporate more information. However, training models to handle long contexts presents significant challenges. These include the scarcity of high-quality natural long-context data, the potential for performance degradation on short-context tasks, and the reduced training efficiency associated with attention mechanisms. In this paper, we introduce Untie the Knots (\textbf{UtK}), a novel data augmentation strategy employed during the continue pre-training phase, designed to efficiently enable LLMs to gain long-context capabilities without the need to modify the existing data mixture. In particular, we chunk the documents, shuffle the chunks, and create a complex and knotted structure of long texts; LLMs are then trained to untie these knots and identify relevant segments within seemingly chaotic token sequences. This approach greatly improves the model's performance by accurately attending to relevant information in long context and the training efficiency is also largely increased. We conduct extensive experiments on models with 7B and 72B parameters, trained on 20 billion tokens, demonstrating that UtK achieves 75\% and 84.5\% accurracy on RULER at 128K context length, significantly outperforming other long context strategies. The trained models will open-source for further research.
☆ LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs
The uncertainty inherent in the environmental transition model of Reinforcement Learning (RL) necessitates a careful balance between exploration and exploitation to optimize the use of computational resources for accurately estimating an agent's expected reward. Achieving balance in control systems is particularly challenging in scenarios with sparse rewards. However, given the extensive prior knowledge available for many environments, it is redundant to begin learning from scratch in such settings. To address this, we introduce \textbf{L}anguage \textbf{M}odel \textbf{G}uided \textbf{T}rade-offs (i.e., \textbf{LMGT}), a novel, sample-efficient framework that leverages the comprehensive prior knowledge embedded in Large Language Models (LLMs) and their adeptness at processing non-standard data forms, such as wiki tutorials. LMGT proficiently manages the exploration-exploitation trade-off by employing reward shifts guided by LLMs, which direct agents' exploration endeavors, thereby improving sample efficiency. We have thoroughly tested LMGT across various RL tasks and deployed it in industrial-grade RL recommendation systems, where it consistently outperforms baseline methods. The results indicate that our framework can significantly reduce the time cost required during the training phase in RL.
☆ Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems
Traditional simulation of complex mechanical systems relies on numerical solvers of Partial Differential Equations (PDEs), e.g., using the Finite Element Method (FEM). The FEM solvers frequently suffer from intensive computation cost and high running time. Recent graph neural network (GNN)-based simulation models can improve running time meanwhile with acceptable accuracy. Unfortunately, they are hard to tailor GNNs for complex mechanical systems, including such disadvantages as ineffective representation and inefficient message propagation (MP). To tackle these issues, in this paper, with the proposed Up-sampling-only and Adaptive MP techniques, we develop a novel hierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective mechanical simulation. Evaluation on two synthetic and one real datasets demonstrates the superiority of the UA-MGN. For example, on the Beam dataset, compared to the state-of-the-art MS-MGN, UA-MGN leads to 40.99% lower errors but using only 43.48% fewer network parameters and 4.49% fewer floating point operations (FLOPs).
☆ VidLPRO: A $\underline{Vid}$eo-$\underline{L}$anguage $\underline{P}$re-training Framework for $\underline{Ro}$botic and Laparoscopic Surgery
We introduce VidLPRO, a novel video-language (VL) pre-training framework designed specifically for robotic and laparoscopic surgery. While existing surgical VL models primarily rely on contrastive learning, we propose a more comprehensive approach to capture the intricate temporal dynamics and align video with language. VidLPRO integrates video-text contrastive learning, video-text matching, and masked language modeling objectives to learn rich VL representations. To support this framework, we present GenSurg+, a carefully curated dataset derived from GenSurgery, comprising 17k surgical video clips paired with captions generated by GPT-4 using transcripts extracted by the Whisper model. This dataset addresses the need for large-scale, high-quality VL data in the surgical domain. Extensive experiments on benchmark datasets, including Cholec80 and AutoLaparo, demonstrate the efficacy of our approach. VidLPRO achieves state-of-the-art performance in zero-shot surgical phase recognition, significantly outperforming existing surgical VL models such as SurgVLP and HecVL. Our model demonstrates improvements of up to 21.5\% in accuracy and 15.7% in F1 score, setting a new benchmark in the field. Notably, VidLPRO exhibits robust performance even with single-frame inference, while effectively scaling with increased temporal context. Ablation studies reveal the impact of frame sampling strategies on model performance and computational efficiency. These results underscore VidLPRO's potential as a foundation model for surgical video understanding.
☆ NapTune: Efficient Model Tuning for Mood Classification using Previous Night's Sleep Measures along with Wearable Time-series
Sleep is known to be a key factor in emotional regulation and overall mental health. In this study, we explore the integration of sleep measures from the previous night into wearable-based mood recognition. To this end, we propose NapTune, a novel prompt-tuning framework that utilizes sleep-related measures as additional inputs to a frozen pre-trained wearable time-series encoder by adding and training lightweight prompt parameters to each Transformer layer. Through rigorous empirical evaluation, we demonstrate that the inclusion of sleep data using NapTune not only improves mood recognition performance across different wearable time-series namely ECG, PPG, and EDA, but also makes it more sample-efficient. Our method demonstrates significant improvements over the best baselines and unimodal variants. Furthermore, we analyze the impact of adding sleep-related measures on recognizing different moods as well as the influence of individual sleep-related measures.
comment: Accepted at ICMI 2024
☆ A Comprehensive Survey on Evidential Deep Learning and Its Applications
Reliable uncertainty estimation has become a crucial requirement for the industrial deployment of deep learning algorithms, particularly in high-risk applications such as autonomous driving and medical diagnosis. However, mainstream uncertainty estimation methods, based on deep ensembling or Bayesian neural networks, generally impose substantial computational overhead. To address this challenge, a novel paradigm called Evidential Deep Learning (EDL) has emerged, providing reliable uncertainty estimation with minimal additional computation in a single forward pass. This survey provides a comprehensive overview of the current research on EDL, designed to offer readers a broad introduction to the field without assuming prior knowledge. Specifically, we first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks. We further present existing theoretical advancements in EDL from four perspectives: reformulating the evidence collection process, improving uncertainty estimation via OOD samples, delving into various training strategies, and evidential regression networks. Thereafter, we elaborate on its extensive applications across various machine learning paradigms and downstream tasks. In the end, an outlook on future directions for better performances and broader adoption of EDL is provided, highlighting potential research avenues.
☆ Algorithmic Scenario Generation as Quality Diversity Optimization
The increasing complexity of robots and autonomous agents that interact with people highlights the critical need for approaches that systematically test them before deployment. This review paper presents a general framework for solving this problem, describes the insights that we have gained from working on each component of the framework, and shows how integrating these components leads to the discovery of a diverse range of realistic and challenging scenarios that reveal previously unknown failures in deployed robotic systems interacting with people.
☆ Enhancing Deep Learning with Optimized Gradient Descent: Bridging Numerical Methods and Neural Network Training
Optimization theory serves as a pivotal scientific instrument for achieving optimal system performance, with its origins in economic applications to identify the best investment strategies for maximizing benefits. Over the centuries, from the geometric inquiries of ancient Greece to the calculus contributions by Newton and Leibniz, optimization theory has significantly advanced. The persistent work of scientists like Lagrange, Cauchy, and von Neumann has fortified its progress. The modern era has seen an unprecedented expansion of optimization theory applications, particularly with the growth of computer science, enabling more sophisticated computational practices and widespread utilization across engineering, decision analysis, and operations research. This paper delves into the profound relationship between optimization theory and deep learning, highlighting the omnipresence of optimization problems in the latter. We explore the gradient descent algorithm and its variants, which are the cornerstone of optimizing neural networks. The chapter introduces an enhancement to the SGD optimizer, drawing inspiration from numerical optimization methods, aiming to enhance interpretability and accuracy. Our experiments on diverse deep learning tasks substantiate the improved algorithm's efficacy. The paper concludes by emphasizing the continuous development of optimization theory and its expanding role in solving intricate problems, enhancing computational capabilities, and informing better policy decisions.
☆ A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting
Continuous blood pressure (BP) monitoring is essential for timely diagnosis and intervention in critical care settings. However, BP varies significantly across individuals, this inter-patient variability motivates the development of personalized models tailored to each patient's physiology. In this work, we propose a personalized BP forecasting model mainly using electrocardiogram (ECG) and photoplethysmogram (PPG) signals. This time-series model incorporates 2D representation learning to capture complex physiological relationships. Experiments are conducted on datasets collected from three diverse scenarios with BP measurements from 60 subjects total. Results demonstrate that the model achieves accurate and robust BP forecasts across scenarios within the Association for the Advancement of Medical Instrumentation (AAMI) standard criteria. This reliable early detection of abnormal fluctuations in BP is crucial for at-risk patients undergoing surgery or intensive care. The proposed model provides a valuable addition for continuous BP tracking to reduce mortality and improve prognosis.
comment: 5 pages, 2 figures
☆ MuAP: Multi-step Adaptive Prompt Learning for Vision-Language Model with Missing Modality
Recently, prompt learning has garnered considerable attention for its success in various Vision-Language (VL) tasks. However, existing prompt-based models are primarily focused on studying prompt generation and prompt strategies with complete modality settings, which does not accurately reflect real-world scenarios where partial modality information may be missing. In this paper, we present the first comprehensive investigation into prompt learning behavior when modalities are incomplete, revealing the high sensitivity of prompt-based models to missing modalities. To this end, we propose a novel Multi-step Adaptive Prompt Learning (MuAP) framework, aiming to generate multimodal prompts and perform multi-step prompt tuning, which adaptively learns knowledge by iteratively aligning modalities. Specifically, we generate multimodal prompts for each modality and devise prompt strategies to integrate them into the Transformer model. Subsequently, we sequentially perform prompt tuning from single-stage and alignment-stage, allowing each modality-prompt to be autonomously and adaptively learned, thereby mitigating the imbalance issue caused by only textual prompts that are learnable in previous works. Extensive experiments demonstrate the effectiveness of our MuAP and this model achieves significant improvements compared to the state-of-the-art on all benchmark datasets
♻ ☆ Real-time Speech Enhancement on Raw Signals with Deep State-space Modeling
We present aTENNuate, a simple deep state-space autoencoder configured for efficient online raw speech enhancement in an end-to-end fashion. The network's performance is primarily evaluated on raw speech denoising, with additional assessments on tasks such as super-resolution and de-quantization. We benchmark aTENNuate on the VoiceBank + DEMAND and the Microsoft DNS1 synthetic test sets. The network outperforms previous real-time denoising models in terms of PESQ score, parameter count, MACs, and latency. Even as a raw waveform processing model, the model maintains high fidelity to the clean signal with minimal audible artifacts. In addition, the model remains performant even when the noisy input is compressed down to 4000Hz and 4 bits, suggesting general speech enhancement capabilities in low-resource environments. Code is available at github.com/Brainchip-Inc/aTENNuate
comment: 7 pages, 2 figures
♻ ☆ Incorporating Like-Minded Peers to Overcome Friend Data Sparsity in Session-Based Social Recommendations
Session-based Social Recommendation (SSR) leverages social relationships within online networks to enhance the performance of Session-based Recommendation (SR). However, existing SSR algorithms often encounter the challenge of "friend data sparsity". Moreover, significant discrepancies can exist between the purchase preferences of social network friends and those of the target user, reducing the influence of friends relative to the target user's own preferences. To address these challenges, this paper introduces the concept of "Like-minded Peers" (LMP), representing users whose preferences align with the target user's current session based on their historical sessions. This is the first work, to our knowledge, that uses LMP to enhance the modeling of social influence in SSR. This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user. We propose a novel model named Transformer Encoder with Graph Attention Aggregator Recommendation (TEGAARec), which includes the TEGAA module and the GAT-based social aggregation module. The TEGAA module captures and merges both long-term and short-term interests for target users and LMP users. Concurrently, the GAT-based social aggregation module is designed to aggregate the target users' dynamic interests and social influence in a weighted manner. Extensive experiments on four real-world datasets demonstrate the efficacy and superiority of our proposed model and ablation studies are done to illustrate the contributions of each component in TEGAARec.
comment: None
♻ ☆ LeTac-MPC: Learning Model Predictive Control for Tactile-reactive Grasping
Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this paper, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight, which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network (NN) from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability. We release our code and dataset at https://github.com/ZhengtongXu/LeTac-MPC.
♻ ☆ A Percolation Model of Emergence: Analyzing Transformers Trained on a Formal Language
Increase in data, size, or compute can lead to sudden learning of specific capabilities by a neural network -- a phenomenon often called "emergence''. Beyond scientific understanding, establishing the causal factors underlying such emergent capabilities is crucial to enable risk regulation frameworks for AI. In this work, we seek inspiration from study of emergent properties in other fields and propose a phenomenological definition for the concept in the context of neural networks. Our definition implicates the acquisition of general structures underlying the data-generating process as a cause of sudden performance growth for specific, narrower tasks. We empirically investigate this definition by proposing an experimental system grounded in a context-sensitive formal language and find that Transformers trained to perform tasks on top of strings from this language indeed exhibit emergent capabilities. Specifically, we show that once the language's underlying grammar and context-sensitivity inducing structures are learned by the model, performance on narrower tasks suddenly begins to improve. We then analogize our network's learning dynamics with the process of percolation on a bipartite graph, establishing a formal phase transition model that predicts the shift in the point of emergence observed in our experiments when changing the data structure. Overall, our experimental and theoretical frameworks yield a step towards better defining, characterizing, and predicting emergence in neural networks.
comment: Preprint
♻ ☆ Quantifying Misalignment Between Agents: Towards a Sociotechnical Understanding of Alignment AAAI-25
Existing work on the alignment problem has focused mainly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on a single agent or on humanity as a monolith. Recent sociotechnical approaches highlight the need to understand complex misalignment among multiple human and AI agents. We address this gap by adapting a computational social science model of human contention to the alignment problem. Our model quantifies misalignment in large, diverse agent groups with potentially conflicting goals across various problem areas. Misalignment scores in our framework depend on the observed agent population, the domain in question, and conflict between agents' weighted preferences. Through simulations, we demonstrate how our model captures intuitive aspects of misalignment across different scenarios. We then apply our model to two case studies, including an autonomous vehicle setting, showcasing its practical utility. Our approach offers enhanced explanatory power for complex sociotechnical environments and could inform the design of more aligned AI systems in real-world applications.
comment: 7 pages, 8 figures, 3 tables, submitted to AAAI-25
♻ ☆ A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
Principal curve is a well-known statistical method oriented in manifold learning using concepts from differential geometry. In this paper, we propose a novel metric-based principal curve (MPC) method that learns one-dimensional manifold of spatial data. Synthetic datasets Real applications using MNIST dataset show that our method can learn the one-dimensional manifold well in terms of the shape.
♻ ☆ The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Our codes will be available at https://github.com/Yaphabates/Rocket.
comment: 29 pages, 12 tables, 10 figures
♻ ☆ Implementing Streaming algorithm and k-means clusters to RAG
Retrieval-augmented generation (RAG) has achieved significant success in information retrieval to assist large language models LLMs because it builds an external knowledge database. However, it also has many problems, it consumes a lot of memory because of the enormous database, and it cannot update the established index database in time when confronted with massive streaming data. To reduce the memory required for building the database and maintain accuracy simultaneously, we proposed a new approach integrating a streaming algorithm with k-means clustering into RAG. Our approach applied a streaming algorithm to update the index dynamically and reduce memory consumption. Additionally, the k-means algorithm clusters highly similar documents, and the query time would be shortened. We conducted comparative experiments on four methods, and the results indicated that RAG with streaming algorithm and k-means clusters outperforms traditional RAG in accuracy and memory, particularly when dealing with large-scale streaming data.
♻ ☆ Does Your Neural Code Completion Model Use My Code? A Membership Inference Approach
Recent years have witnessed significant progress in developing deep learning-based models for automated code completion. Although using source code in GitHub has been a common practice for training deep-learning-based models for code completion, it may induce some legal and ethical issues such as copyright infringement. In this paper, we investigate the legal and ethical issues of current neural code completion models by answering the following question: Is my code used to train your neural code completion model? To this end, we tailor a membership inference approach (termed CodeMI) that was originally crafted for classification tasks to a more challenging task of code completion. In particular, since the target code completion models perform as opaque black boxes, preventing access to their training data and parameters, we opt to train multiple shadow models to mimic their behavior. The acquired posteriors from these shadow models are subsequently employed to train a membership classifier. Subsequently, the membership classifier can be effectively employed to deduce the membership status of a given code sample based on the output of a target code completion model. We comprehensively evaluate the effectiveness of this adapted approach across a diverse array of neural code completion models, (i.e., LSTM-based, CodeGPT, CodeGen, and StarCoder). Experimental results reveal that the LSTM-based and CodeGPT models suffer the membership leakage issue, which can be easily detected by our proposed membership inference approach with an accuracy of 0.842, and 0.730, respectively. Interestingly, our experiments also show that the data membership of current large language models of code, e.g., CodeGen and StarCoder, is difficult to detect, leaving ampler space for further improvement. Finally, we also try to explain the findings from the perspective of model memorization.
♻ ☆ HAIChart: Human and AI Paired Visualization System VLDB 2024
The growing importance of data visualization in business intelligence and data science emphasizes the need for tools that can efficiently generate meaningful visualizations from large datasets. Existing tools fall into two main categories: human-powered tools (e.g., Tableau and PowerBI), which require intensive expert involvement, and AI-powered automated tools (e.g., Draco and Table2Charts), which often fall short of guessing specific user needs. In this paper, we aim to achieve the best of both worlds. Our key idea is to initially auto-generate a set of high-quality visualizations to minimize manual effort, then refine this process iteratively with user feedback to more closely align with their needs. To this end, we present HAIChart, a reinforcement learning-based framework designed to iteratively recommend good visualizations for a given dataset by incorporating user feedback. Specifically, we propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations. We devise a visualization hints mechanism to actively incorporate user feedback, thus progressively refining the visualization generation module. We further prove that the top-k visualization hints selection problem is NP-hard and design an efficient algorithm. We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
comment: VLDB 2024
♻ ☆ Improving Speech Inversion Through Self-Supervised Embeddings and Enhanced Tract Variables
The performance of deep learning models depends significantly on their capacity to encode input features efficiently and decode them into meaningful outputs. Better input and output representation has the potential to boost models' performance and generalization. In the context of acoustic-to-articulatory speech inversion (SI) systems, we study the impact of utilizing speech representations acquired via self-supervised learning (SSL) models, such as HuBERT compared to conventional acoustic features. Additionally, we investigate the incorporation of novel tract variables (TVs) through an improved geometric transformation model. By combining these two approaches, we improve the Pearson product-moment correlation (PPMC) scores which evaluate the accuracy of TV estimation of the SI system from 0.7452 to 0.8141, a 6.9% increase. Our findings underscore the profound influence of rich feature representations from SSL models and improved geometric transformations with target TVs on the enhanced functionality of SI systems.
♻ ☆ Latent-EnSF: A Latent Ensemble Score Filter for High-Dimensional Data Assimilation with Sparse Observation Data
Accurate modeling and prediction of complex physical systems often rely on data assimilation techniques to correct errors inherent in model simulations. Traditional methods like the Ensemble Kalman Filter (EnKF) and its variants as well as the recently developed Ensemble Score Filters (EnSF) face significant challenges when dealing with high-dimensional and nonlinear Bayesian filtering problems with sparse observations, which are ubiquitous in real-world applications. In this paper, we propose a novel data assimilation method, Latent-EnSF, which leverages EnSF with efficient and consistent latent representations of the full states and sparse observations to address the joint challenges of high dimensionlity in states and high sparsity in observations for nonlinear Bayesian filtering. We introduce a coupled Variational Autoencoder (VAE) with two encoders to encode the full states and sparse observations in a consistent way guaranteed by a latent distribution matching and regularization as well as a consistent state reconstruction. With comparison to several methods, we demonstrate the higher accuracy, faster convergence, and higher efficiency of Latent-EnSF for two challenging applications with complex models in shallow water wave propagation and medium-range weather forecasting, for highly sparse observations in both space and time.
comment: 13 pages, 10 figures, 1 table
♻ ☆ Comet: A Communication-efficient and Performant Approximation for Private Transformer Inference
The prevalent use of Transformer-like models, exemplified by ChatGPT in modern language processing applications, underscores the critical need for enabling private inference essential for many cloud-based services reliant on such models. However, current privacy-preserving frameworks impose significant communication burden, especially for non-linear computation in Transformer model. In this paper, we introduce a novel plug-in method Comet to effectively reduce the communication cost without compromising the inference performance. We second introduce an efficient approximation method to eliminate the heavy communication in finding good initial approximation. We evaluate our Comet on Bert and RoBERTa models with GLUE benchmark datasets, showing up to 3.9$\times$ less communication and 3.5$\times$ speedups while keep competitive model performance compared to the prior art.
♻ ☆ Narrow Transformer: StarCoder-Based Java-LM For Desktop
This paper presents NT-Java-1.1B, an open-source specialized code language model built on StarCoderBase-1.1B, designed for coding tasks in Java programming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base model and majority of other models of similar size on MultiPL-E Java code benchmark. While there have been studies on extending large, generic pre-trained models to improve proficiency in specific programming languages like Python, similar investigations on small code models for other programming languages are lacking. Large code models require specialized hardware like GPUs for inference, highlighting the need for research into building small code models that can be deployed on developer desktops. This paper addresses this research gap by focusing on the development of a small Java code model, NT-Java-1.1B, and its quantized versions, which performs comparably to open models around 1.1B on MultiPL-E Java code benchmarks, making them ideal for desktop deployment. This paper establishes the foundation for specialized models across languages and sizes for a family of NT Models.
comment: Updated Authors list
♻ ☆ OneActor: Consistent Character Generation via Cluster-Conditioned Guidance
Text-to-image diffusion models benefit artists with high-quality image generation. Yet their stochastic nature hinders artists from creating consistent images of the same subject. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external restricted data or require expensive tuning of the diffusion model. For this issue, we propose a novel one-shot tuning paradigm, termed as OneActor. It efficiently performs consistent subject generation solely driven by prompts via a learned semantic guidance to bypass the laborious backbone tuning. We lead the way to formalize the objective of consistent subject generation from a clustering perspective, and thus design a cluster-conditioned model. To mitigate the overfitting challenge shared by one-shot tuning pipelines, we augment the tuning with auxiliary samples and devise two inference strategies: semantic interpolation and cluster guidance. These techniques are later verified to significantly enhance the generation quality. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory subject consistency, superior prompt conformity as well as high image quality. Our method is capable of multi-subject generation and compatible with popular diffusion extensions. Besides, we achieve a 4 times faster tuning speed than tuning-based baselines and, if desired, avoid increasing inference time. Furthermore, to our best knowledge, we are the first to prove that the semantic space of the diffusion model has the same interpolation property as the latent space does. This property can serve as another promising tool for fine generation control.
♻ ☆ Pixels and Predictions: Potential of GPT-4V in Meteorological Imagery Analysis and Forecast Communication
Generative AI, such as OpenAI's GPT-4V large-language model, has rapidly entered mainstream discourse. Novel capabilities in image processing and natural-language communication may augment existing forecasting methods. Large language models further display potential to better communicate weather hazards in a style honed for diverse communities and different languages. This study evaluates GPT-4V's ability to interpret meteorological charts and communicate weather hazards appropriately to the user, despite challenges of hallucinations, where generative AI delivers coherent, confident, but incorrect responses. We assess GPT-4V's competence via its web interface ChatGPT in two tasks: (1) generating a severe-weather outlook from weather-chart analysis and conducting self-evaluation, revealing an outlook that corresponds well with a Storm Prediction Center human-issued forecast; and (2) producing hazard summaries in Spanish and English from weather charts. Responses in Spanish, however, resemble direct (not idiomatic) translations from English to Spanish, yielding poorly translated summaries that lose critical idiomatic precision required for optimal communication. Our findings advocate for cautious integration of tools like GPT-4V in meteorology, underscoring the necessity of human oversight and development of trustworthy, explainable AI.
comment: Supplementary material PDF attached. Submitted to Artificial Intelligence for the Earth Systems (American Meteorological Society) on 18 April 2024
♻ ☆ DOCE: Finding the Sweet Spot for Execution-Based Code Generation
Recently, a diverse set of decoding and reranking procedures have been shown effective for LLM-based code generation. However, a comprehensive framework that links and experimentally compares these methods is missing. We address this by proposing Decoding Objectives for Code Execution, a comprehensive framework that includes candidate generation, $n$-best reranking, minimum Bayes risk (MBR) decoding, and self-debugging as the core components. We then study the contributions of these components through execution-based evaluation metrics. Our findings highlight the importance of execution-based methods and the difference gap between execution-based and execution-free methods. Furthermore, we assess the impact of filtering based on trial unit tests, a simple and effective strategy that has been often overlooked in prior works. We also propose self-debugging on multiple candidates, obtaining state-of-the-art performance on reranking for code generation. We expect our framework to provide a solid guideline for future research on code generation.
comment: 10 pages (32 including appendix), 5 figures, 25 tables. To ensure reproducibility, we present some prompts used in our experiments from arXiv:2304.05128 that leads to text overlap
♻ ☆ Naeural AI OS -- Decentralized ubiquitous computing MLOps execution engine
Over the past few years, ubiquitous, or pervasive computing has gained popularity as the primary approach for a wide range of applications, including enterprise-grade systems, consumer applications, and gaming systems. Ubiquitous computing refers to the integration of computing technologies into everyday objects and environments, creating a network of interconnected devices that can communicate with each other and with humans. By using ubiquitous computing technologies, communities can become more connected and efficient, with members able to communicate and collaborate more easily. This enabled interconnectedness and collaboration can lead to a more successful and sustainable community. The spread of ubiquitous computing, however, has emphasized the importance of automated learning and smart applications in general. Even though there have been significant strides in Artificial Intelligence and Deep Learning, large scale adoption has been hesitant due to mounting pressure on expensive and highly complex cloud numerical-compute infrastructures. Adopting, and even developing, practical machine learning systems can come with prohibitive costs, not only in terms of complex infrastructures but also of solid expertise in Data Science and Machine Learning. In this paper we present an innovative approach for low-code development and deployment of end-to-end AI cooperative application pipelines. We address infrastructure allocation, costs, and secure job distribution in a fully decentralized global cooperative community based on tokenized economics.
comment: preprint
♻ ☆ Content Augmented Graph Neural Networks
In recent years, graph neural networks (GNNs) have become a popular tool for solving various problems over graphs. In these models, the link structure of the graph is typically exploited and nodes' embeddings are iteratively updated based on adjacent nodes. Nodes' contents are used solely in the form of feature vectors, served as nodes' first-layer embeddings. However, the filters or convolutions, applied during iterations/layers to these initial embeddings lead to their impact diminish and contribute insignificantly to the final embeddings. In order to address this issue, in this paper we propose augmenting nodes' embeddings by embeddings generated from their content, at higher GNN layers. More precisely, we propose models wherein a structural embedding using a GNN and a content embedding are computed for each node. These two are combined using a combination layer to form the embedding of a node at a given layer layer. We suggest methods such as using an auto-encoder or building a content graph, to generate content embeddings. In the end, by conducting experiments over several real-world datasets, we demonstrate the high accuracy and performance of our models.
♻ ☆ Goal-guided Generative Prompt Injection Attack on Large Language Models
Current large language models (LLMs) provide a strong foundation for large-scale user-oriented natural language tasks. A large number of users can easily inject adversarial text or instructions through the user interface, thus causing LLMs model security challenges. Although there is currently a large amount of research on prompt injection attacks, most of these black-box attacks use heuristic strategies. It is unclear how these heuristic strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we redefine the goal of the attack: to maximize the KL divergence between the conditional probabilities of the clean text and the adversarial text. Furthermore, we prove that maximizing the KL divergence is equivalent to maximizing the Mahalanobis distance between the embedded representation $x$ and $x'$ of the clean text and the adversarial text when the conditional probability is a Gaussian distribution and gives a quantitative relationship on $x$ and $x'$. Then we designed a simple and effective goal-guided generative prompt injection strategy (G2PIA) to find an injection text that satisfies specific constraints to achieve the optimal attack effect approximately. It is particularly noteworthy that our attack method is a query-free black-box attack method with low computational cost. Experimental results on seven LLM models and four datasets show the effectiveness of our attack method.
comment: 11 pages, 6 figures
♻ ☆ Lightweight Cross-Modal Representation Learning
Low-cost cross-modal representation learning is crucial for deriving semantic representations across diverse modalities such as text, audio, images, and video. Traditional approaches typically depend on large specialized models trained from scratch, requiring extensive datasets and resulting in high resource and time costs. To overcome these challenges, we introduce a novel approach named Lightweight Cross-Modal Representation Learning (LightCRL). This method uses a single neural network titled Deep Fusion Encoder (DFE), which projects data from multiple modalities into a shared latent representation space. This reduces the overall parameter count while still delivering robust performance comparable to more complex systems.
♻ ☆ Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization
Training a fine-grained image recognition model with limited data presents a significant challenge, as the subtle differences between categories may not be easily discernible amidst distracting noise patterns. One commonly employed strategy is to leverage pretrained neural networks, which can generate effective feature representations for constructing an image classification model with a restricted dataset. However, these pretrained neural networks are typically trained for different tasks than the fine-grained visual recognition (FGVR) task at hand, which can lead to the extraction of less relevant features. Moreover, in the context of building FGVR models with limited data, these irrelevant features can dominate the training process, overshadowing more useful, generalizable discriminative features. Our research has identified a surprisingly simple solution to this challenge: we introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed. This regularization is achieved by maximizing the uniformity of feature magnitude distribution, measured through the entropy of the normalized features. The motivation behind this regularization is to remove bias in feature magnitudes from pretrained models, where some features may be more prominent and, consequently, more likely to be used for classification. Additionally, we have developed a dynamic weighting mechanism to adjust the strength of this regularization throughout the learning process. Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
♻ ☆ MiniCache: KV Cache Compression in Depth Dimension for Large Language Models
A critical approach for efficiently deploying computationally demanding large language models (LLMs) is Key-Value (KV) caching. The KV cache stores key-value states of previously generated tokens, significantly reducing the need for repetitive computations and thereby lowering latency in autoregressive generation. However, the size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation. In this paper, we present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective, significantly reducing the memory footprint for LLM inference. Our approach is based on the observation that KV cache states exhibit high similarity between the adjacent layers in the middle-to-deep portion of LLMs. To facilitate merging, we propose disentangling the states into the magnitude and direction components, interpolating the directions of the state vectors while preserving their lengths unchanged. Furthermore, we introduce a token retention strategy to keep highly distinct state pairs unmerged, thus preserving the information with minimal additional storage overhead. Our MiniCache is training-free and general, complementing existing KV cache compression strategies, such as quantization and sparsity. We conduct a comprehensive evaluation of MiniCache utilizing various models including LLaMA-2, LLaMA-3, Phi-3, Mistral, and Mixtral across multiple benchmarks, demonstrating its exceptional performance in achieving superior compression ratios and high throughput. On the ShareGPT dataset, LLaMA-2-7B with 4-bit MiniCache achieves a remarkable compression ratio of up to 5.02x, enhances inference throughput by approximately 5x, and reduces the memory footprint by 41% compared to the FP16 full cache baseline, all while maintaining near-lossless performance.
comment: Project is available at https://minicache.vmv.re
♻ ☆ PSST: A Benchmark for Evaluation-driven Text Public-Speaking Style Transfer
Language style is necessary for AI systems to understand and generate diverse human language accurately. However, previous text style transfer primarily focused on sentence-level data-driven approaches, limiting exploration of potential problems in large language models (LLMs) and the ability to meet complex application needs. To overcome these limitations, we introduce a novel task called Public-Speaking Style Transfer (PSST), which aims to simulate humans to transform passage-level, official texts into a public-speaking style. Grounded in the analysis of real-world data from a linguistic perspective, we decompose public-speaking style into key sub-styles to pose challenges and quantify the style modeling capability of LLMs. For such intricate text style transfer, we further propose a fine-grained evaluation framework to analyze the characteristics and identify the problems of stylized texts. Comprehensive experiments suggest that current LLMs struggle to generate public speaking texts that align with human preferences, primarily due to excessive stylization and loss of semantic information.
♻ ☆ MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers
Adversarial robustness often comes at the cost of degraded accuracy, impeding real-life applications of robust classification models. Training-based solutions for better trade-offs are limited by incompatibilities with already-trained high-performance large models, necessitating the exploration of training-free ensemble approaches. Observing that robust models are more confident in correct predictions than in incorrect ones on clean and adversarial data alike, we speculate amplifying this "benign confidence property" can reconcile accuracy and robustness in an ensemble setting. To achieve so, we propose "MixedNUTS", a training-free method where the output logits of a robust classifier and a standard non-robust classifier are processed by nonlinear transformations with only three parameters, which are optimized through an efficient algorithm. MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output. On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness -- it boosts CIFAR-100 clean accuracy by 7.86 points, sacrificing merely 0.87 points in robust accuracy.
♻ ☆ A+AI: Threats to Society, Remedies, and Governance
This document focuses on the threats, especially near-term threats, that Artificial Intelligence (AI) brings to society. Most of the threats discussed here can result from any algorithmic process, not just AI; in addition, defining AI is notoriously difficult. For both reasons, it is important to think of "A+AI": Algorithms and Artificial Intelligence. In addition to the threats, this paper discusses countermeasures to them, and it includes a table showing which countermeasures are likely to mitigate which threats. Thoughtful governance could manage the risks without seriously impeding progress; in fact, chances are it would accelerate progress by reducing the social chaos that would otherwise be likely. The paper lists specific actions government should take as soon as possible, namely: * Require all social media platforms accessible in the U.S. to offer users verification that their accounts are owned by citizens, and to display every account's verification status * Establish regulations to require that all products created or significantly modified with A+AI be clearly labeled as such; to restrict use of generative AI to create likenesses of persons; and to require creators of generative AI software to disclose materials used to train their software and to compensate the creators of any copyrighted material used * Fund a crash project of research on mitigating the threats * Fund educational campaigns to raise awareness of the threats
comment: 25 pages
Graphics 2
☆ Fisheye-GS: Lightweight and Extensible Gaussian Splatting Module for Fisheye Cameras
Recently, 3D Gaussian Splatting (3DGS) has garnered attention for its high fidelity and real-time rendering. However, adapting 3DGS to different camera models, particularly fisheye lenses, poses challenges due to the unique 3D to 2D projection calculation. Additionally, there are inefficiencies in the tile-based splatting, especially for the extreme curvature and wide field of view of fisheye lenses, which are crucial for its broader real-life applications. To tackle these challenges, we introduce Fisheye-GS.This innovative method recalculates the projection transformation and its gradients for fisheye cameras. Our approach can be seamlessly integrated as a module into other efficient 3D rendering methods, emphasizing its extensibility, lightweight nature, and modular design. Since we only modified the projection component, it can also be easily adapted for use with different camera models. Compared to methods that train after undistortion, our approach demonstrates a clear improvement in visual quality.
♻ ☆ NeB-SLAM: Neural Blocks-based Salable RGB-D SLAM for Unknown Scenes
Neural implicit representations have recently demonstrated considerable potential in the field of visual simultaneous localization and mapping (SLAM). This is due to their inherent advantages, including low storage overhead and representation continuity. However, these methods necessitate the size of the scene as input, which is impractical for unknown scenes. Consequently, we propose NeB-SLAM, a neural block-based scalable RGB-D SLAM for unknown scenes. Specifically, we first propose a divide-and-conquer mapping strategy that represents the entire unknown scene as a set of sub-maps. These sub-maps are a set of neural blocks of fixed size. Then, we introduce an adaptive map growth strategy to achieve adaptive allocation of neural blocks during camera tracking and gradually cover the whole unknown scene. Finally, extensive evaluations on various datasets demonstrate that our method is competitive in both mapping and tracking when targeting unknown environments.
Robotics 30
☆ Safe and Efficient Path Planning under Uncertainty via Deep Collision Probability Fields
Estimating collision probabilities between robots and environmental obstacles or other moving agents is crucial to ensure safety during path planning. This is an important building block of modern planning algorithms in many application scenarios such as autonomous driving, where noisy sensors perceive obstacles. While many approaches exist, they either provide too conservative estimates of the collision probabilities or are computationally intensive due to their sampling-based nature. To deal with these issues, we introduce Deep Collision Probability Fields, a neural-based approach for computing collision probabilities of arbitrary objects with arbitrary unimodal uncertainty distributions. Our approach relegates the computationally intensive estimation of collision probabilities via sampling at the training step, allowing for fast neural network inference of the constraints during planning. In extensive experiments, we show that Deep Collision Probability Fields can produce reasonably accurate collision probabilities (up to 10^{-3}) for planning and that our approach can be easily plugged into standard path planning approaches to plan safe paths on 2-D maps containing uncertain static and dynamic obstacles. Additional material, code, and videos are available at https://sites.google.com/view/ral-dcpf.
comment: Preprint version of a paper accepted to the IEEE Robotics and Automation Letters
☆ SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms
Swarm robotics explores the coordination of multiple robots to achieve collective goals, with collective decision-making being a central focus. This process involves decentralized robots autonomously making local decisions and communicating them, which influences the overall emergent behavior. Testing such decentralized algorithms in real-world scenarios with hundreds or more robots is often impractical, underscoring the need for effective simulation tools. We propose SPACE (Swarm Planning and Control Evaluation), a Python-based simulator designed to support the research, evaluation, and comparison of decentralized Multi-Robot Task Allocation (MRTA) algorithms. SPACE streamlines core algorithmic development by allowing users to implement decision-making algorithms as Python plug-ins, easily construct agent behavior trees via an intuitive GUI, and leverage built-in support for inter-agent communication and local task awareness. To demonstrate its practical utility, we implement and evaluate CBBA and GRAPE within the simulator, comparing their performance across different metrics, particularly in scenarios with dynamically introduced tasks. This evaluation shows the usefulness of SPACE in conducting rigorous and standardized comparisons of MRTA algorithms, helping to support future research in the field.
☆ Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective ECCV
The increasing accuracy reports of metric monocular depth estimation models lead to a growing interest from the automotive domain. Current model evaluations do not provide deeper insights into the models' performance, also in relation to safety-critical or unseen classes. Within this paper, we present a novel approach for the evaluation of depth estimation models. Our proposed metric leverages three components, a class-wise component, an edge and corner image feature component, and a global consistency retaining component. Classes are further weighted on their distance in the scene and on criticality for automotive applications. In the evaluation, we present the benefits of our metric through comparison to classical metrics, class-wise analytics, and the retrieval of critical situations. The results show that our metric provides deeper insights into model results while fulfilling safety-critical requirements. We release the code and weights on the following repository: \href{https://github.com/leisemann/ca_mmde}
comment: Accepted at the European Conference on Computer Vision (ECCV) 2024 Workshop on Out Of Distribution Generalization in Computer Vision
☆ Design and Characterization of MRI-compatible Plastic Ultrasonic Motor
Precise surgical procedures may benefit from intra-operative image guidance using magnetic resonance imaging (MRI). However, the MRI's strong magnetic fields, fast switching gradients, and constrained space pose the need for an MR-guided robotic system to assist the surgeon. Piezoelectric actuators can be used in an MRI environment by utilizing the inverse piezoelectric effect for different application purposes. Piezoelectric ultrasonic motor (USM) is one type of MRI-compatible actuator that can actuate these robots with fast response times, compactness, and simple configuration. Although the piezoelectric motors are mostly made of nonferromagnetic material, the generation of eddy currents due to the MRI's gradient fields can lead to magnetic field distortions causing image artifacts. Motor vibrations due to interactions between the MRI's magnetic fields and those generated by the eddy currents can further degrade image quality by causing image artifacts. In this work, a plastic piezoelectric ultrasonic (USM) motor with more degree of MRI compatibility was developed and induced with preliminary optimization. Multiple parameters, namely teeth number, notch size, edge bevel or straight, and surface finish level parameters were used versus the prepressure for the experiment, and the results suggested that using 48 teeth, thin teeth notch with 0.39mm, beveled edge and a surface finish using grit number of approximate 1000 sandpaper performed a better output both in rotary speed and torque. Under this combination, the highest speed reached up to 436.6665rpm when the prepressure was low, and the highest torque reached up to 0.0348Nm when the prepressure was approximately 500g.
comment: 10 pages, 30 figures, 3 tables
☆ Matched Filtering based LiDAR Place Recognition for Urban and Natural Environments
Place recognition is an important task within autonomous navigation, involving the re-identification of previously visited locations from an initial traverse. Unlike visual place recognition (VPR), LiDAR place recognition (LPR) is tolerant to changes in lighting, seasons, and textures, leading to high performance on benchmark datasets from structured urban environments. However, there is a growing need for methods that can operate in diverse environments with high performance and minimal training. In this paper, we propose a handcrafted matching strategy that performs roto-translation invariant place recognition and relative pose estimation for both urban and unstructured natural environments. Our approach constructs Birds Eye View (BEV) global descriptors and employs a two-stage search using matched filtering -- a signal processing technique for detecting known signals amidst noise. Extensive testing on the NCLT, Oxford Radar, and WildPlaces datasets consistently demonstrates state-of-the-art (SoTA) performance across place recognition and relative pose estimation metrics, with up to 15% higher recall than previous SoTA.
☆ Goal-Reaching Policy Learning from Non-Expert Observations via Effective Subgoal Guidance
In this work, we address the challenging problem of long-horizon goal-reaching policy learning from non-expert, action-free observation data. Unlike fully labeled expert data, our data is more accessible and avoids the costly process of action labeling. Additionally, compared to online learning, which often involves aimless exploration, our data provides useful guidance for more efficient exploration. To achieve our goal, we propose a novel subgoal guidance learning strategy. The motivation behind this strategy is that long-horizon goals offer limited guidance for efficient exploration and accurate state transition. We develop a diffusion strategy-based high-level policy to generate reasonable subgoals as waypoints, preferring states that more easily lead to the final goal. Additionally, we learn state-goal value functions to encourage efficient subgoal reaching. These two components naturally integrate into the off-policy actor-critic framework, enabling efficient goal attainment through informative exploration. We evaluate our method on complex robotic navigation and manipulation tasks, demonstrating a significant performance advantage over existing methods. Our ablation study further shows that our method is robust to observation data with various corruptions.
comment: Accepted to CoRL 2024
☆ Development of Advanced FEM Simulation Technology for Pre-Operative Surgical Planning
Intracorporeal needle-based therapeutic ultrasound (NBTU) offers a minimally invasive approach for the thermal ablation of malignant brain tumors, including both primary and metastatic cancers. NBTU utilizes a high-frequency alternating electric field to excite a piezoelectric transducer, generating acoustic waves that cause localized heating and tumor cell ablation, and it provides a more precise ablation by delivering lower acoustic power doses directly to targeted tumors while sparing surrounding healthy tissue. Building on our previous work, this study introduces a database for optimizing pre-operative surgical planning by simulating ablation effects in varied tissue environments and develops an extended simulation model incorporating various tumor types and sizes to evaluate thermal damage under trans-tissue conditions. A comprehensive database is created from these simulations, detailing critical parameters such as CEM43 isodose maps, temperature changes, thermal dose areas, and maximum ablation distances for four directional probes. This database serves as a valuable resource for future studies, aiding in complex trajectory planning and parameter optimization for NBTU procedures. Moreover, a novel probe selection method is proposed to enhance pre-surgical planning, providing a strategic approach to selecting probes that maximize therapeutic efficiency and minimize ablation time. By avoiding unnecessary thermal propagation and optimizing probe angles, this method has the potential to improve patient outcomes and streamline surgical procedures. Overall, the findings of this study contribute significantly to the field of NBTU, offering a robust framework for enhancing treatment precision and efficacy in clinical settings.
comment: 8 pages, 17 figures, 2 tables
☆ Automating Robot Failure Recovery Using Vision-Language Models With Optimized Prompts
Current robot autonomy struggles to operate beyond the assumed Operational Design Domain (ODD), the specific set of conditions and environments in which the system is designed to function, while the real-world is rife with uncertainties that may lead to failures. Automating recovery remains a significant challenge. Traditional methods often rely on human intervention to manually address failures or require exhaustive enumeration of failure cases and the design of specific recovery policies for each scenario, both of which are labor-intensive. Foundational Vision-Language Models (VLMs), which demonstrate remarkable common-sense generalization and reasoning capabilities, have broader, potentially unbounded ODDs. However, limitations in spatial reasoning continue to be a common challenge for many VLMs when applied to robot control and motion-level error recovery. In this paper, we investigate how optimizing visual and text prompts can enhance the spatial reasoning of VLMs, enabling them to function effectively as black-box controllers for both motion-level position correction and task-level recovery from unknown failures. Specifically, the optimizations include identifying key visual elements in visual prompts, highlighting these elements in text prompts for querying, and decomposing the reasoning process for failure detection and control generation. In experiments, prompt optimizations significantly outperform pre-trained Vision-Language-Action Models in correcting motion-level position errors and improve accuracy by 65.78% compared to VLMs with unoptimized prompts. Additionally, for task-level failures, optimized prompts enhanced the success rate by 5.8%, 5.8%, and 7.5% in VLMs' abilities to detect failures, analyze issues, and generate recovery plans, respectively, across a wide range of unknown errors in Lego assembly.
☆ Solving Stochastic Orienteering Problems with Chance Constraints Using a GNN Powered Monte Carlo Tree Search
Leveraging the power of a graph neural network (GNN) with message passing, we present a Monte Carlo Tree Search (MCTS) method to solve stochastic orienteering problems with chance constraints. While adhering to an assigned travel budget the algorithm seeks to maximize collected reward while incurring stochastic travel costs. In this context, the acceptable probability of exceeding the assigned budget is expressed as a chance constraint. Our MCTS solution is an online and anytime algorithm alternating planning and execution that determines the next vertex to visit by continuously monitoring the remaining travel budget. The novelty of our work is that the rollout phase in the MCTS framework is implemented using a message passing GNN, predicting both the utility and failure probability of each available action. This allows to enormously expedite the search process. Our experimental evaluation shows that with the proposed method and architecture we manage to efficiently solve complex problem instances while incurring in moderate losses in terms of collected reward. Moreover, we demonstrate how the approach is capable of generalizing beyond the characteristics of the training dataset. The paper's website, open-source code, and supplementary documentation can be found at ucmercedrobotics.github.io/gnn-sop.
comment: 8 pages, 6 figures
☆ High-Speed and Impact Resilient Teleoperation of Humanoid Robots
Teleoperation of humanoid robots has long been a challenging domain, necessitating advances in both hardware and software to achieve seamless and intuitive control. This paper presents an integrated solution based on several elements: calibration-free motion capture and retargeting, low-latency fast whole-body kinematics streaming toolbox and high-bandwidth cycloidal actuators. Our motion retargeting approach stands out for its simplicity, requiring only 7 IMUs to generate full-body references for the robot. The kinematics streaming toolbox, ensures real-time, responsive control of the robot's movements, significantly reducing latency and enhancing operational efficiency. Additionally, the use of cycloidal actuators makes it possible to withstand high speeds and impacts with the environment. Together, these approaches contribute to a teleoperation framework that offers unprecedented performance. Experimental results on the humanoid robot Nadia demonstrate the effectiveness of the integrated system.
Structure-Invariant Range-Visual-Inertial Odometry IROS
The Mars Science Helicopter (MSH) mission aims to deploy the next generation of unmanned helicopters on Mars, targeting landing sites in highly irregular terrain such as Valles Marineris, the largest canyons in the Solar system with elevation variances of up to 8000 meters. Unlike its predecessor, the Mars 2020 mission, which relied on a state estimation system assuming planar terrain, MSH requires a novel approach due to the complex topography of the landing site. This work introduces a novel range-visual-inertial odometry system tailored for the unique challenges of the MSH mission. Our system extends the state-of-the-art xVIO framework by fusing consistent range information with visual and inertial measurements, preventing metric scale drift in the absence of visual-inertial excitation (mono camera and constant velocity descent), and enabling landing on any terrain structure, without requiring any planar terrain assumption. Through extensive testing in image-based simulations using actual terrain structure and textures collected in Mars orbit, we demonstrate that our range-VIO approach estimates terrain-relative velocity meeting the stringent mission requirements, and outperforming existing methods.
comment: IEEE/RSJ International Conference on Intelligent Robots (IROS), 2024
☆ Multi-scale Feature Fusion with Point Pyramid for 3D Object Detection
Effective point cloud processing is crucial to LiDARbased autonomous driving systems. The capability to understand features at multiple scales is required for object detection of intelligent vehicles, where road users may appear in different sizes. Recent methods focus on the design of the feature aggregation operators, which collect features at different scales from the encoder backbone and assign them to the points of interest. While efforts are made into the aggregation modules, the importance of how to fuse these multi-scale features has been overlooked. This leads to insufficient feature communication across scales. To address this issue, this paper proposes the Point Pyramid RCNN (POP-RCNN), a feature pyramid-based framework for 3D object detection on point clouds. POP-RCNN consists of a Point Pyramid Feature Enhancement (PPFE) module to establish connections across spatial scales and semantic depths for information exchange. The PPFE module effectively fuses multi-scale features for rich information without the increased complexity in feature aggregation. To remedy the impact of inconsistent point densities, a point density confidence module is deployed. This design integration enables the use of a lightweight feature aggregator, and the emphasis on both shallow and deep semantics, realising a detection framework for 3D object detection. With great adaptability, the proposed method can be applied to a variety of existing frameworks to increase feature richness, especially for long-distance detection. By adopting the PPFE in the voxel-based and point-voxel-based baselines, experimental results on KITTI and Waymo Open Dataset show that the proposed method achieves remarkable performance even with limited computational headroom.
comment: 12 pages
☆ Developing a Modular Toolkit for Rapid Prototyping of Wearable Vibrotactile Haptic Harness
This paper presents a toolkit for rapid harness prototyping. These wearable structures attach vibrotactile actuators to the body using modular elements like 3D printed joints, laser cut or vinyl cutter-based sheets and magnetic clasps. This facilitates easy customization and assembly. The toolkit's primary objective is to simplify the design of haptic wearables, making research in this field easier and more approachable.
comment: two pages, short paper, 3 figures
☆ ActionFlow: Equivariant, Accurate, and Efficient Policies with Spatially Symmetric Flow Matching
Spatial understanding is a critical aspect of most robotic tasks, particularly when generalization is important. Despite the impressive results of deep generative models in complex manipulation tasks, the absence of a representation that encodes intricate spatial relationships between observations and actions often limits spatial generalization, necessitating large amounts of demonstrations. To tackle this problem, we introduce a novel policy class, ActionFlow. ActionFlow integrates spatial symmetry inductive biases while generating expressive action sequences. On the representation level, ActionFlow introduces an SE(3) Invariant Transformer architecture, which enables informed spatial reasoning based on the relative SE(3) poses between observations and actions. For action generation, ActionFlow leverages Flow Matching, a state-of-the-art deep generative model known for generating high-quality samples with fast inference - an essential property for feedback control. In combination, ActionFlow policies exhibit strong spatial and locality biases and SE(3)-equivariant action generation. Our experiments demonstrate the effectiveness of ActionFlow and its two main components on several simulated and real-world robotic manipulation tasks and confirm that we can obtain equivariant, accurate, and efficient policies with spatially symmetric flow matching. Project website: https://flowbasedpolicies.github.io/
☆ Solve paint color effect prediction problem in trajectory optimization of spray painting robot using artificial neural network inspired by the Kubelka Munk model
Currently, the spray-painting robot trajectory planning technology aiming at spray painting quality mainly applies to single-color spraying. Conventional methods of optimizing the spray gun trajectory based on simulated thickness can only qualitatively reflect the color distribution, and can not simulate the color effect of spray painting at the pixel level. Therefore, it is not possible to accurately control the area covered by the color and the gradation of the edges of the area, and it is also difficult to deal with the situation where multiple colors of paint are sprayed in combination. To solve the above problems, this paper is inspired by the Kubelka-Munk model and combines the 3D machine vision method and artificial neural network to propose a spray painting color effect prediction method. The method is enabled to predict the execution effect of the spray gun trajectory with pixel-level accuracy from the dimension of the surface color of the workpiece after spray painting. On this basis, the method can be used to replace the traditional thickness simulation method to establish the objective function of the spray gun trajectory optimization problem, and thus solve the difficult problem of spray gun trajectory optimization for multi-color paint combination spraying. In this paper, the mathematical model of the spray painting color effect prediction problem is first determined through the analysis of the Kubelka-Munk paint film color rendering model, and at the same time, the spray painting color effect dataset is established with the help of the depth camera and point cloud processing algorithm. After that, the multilayer perceptron model was improved with the help of gating and residual structure and was used for the color prediction task. To verify ...
♻ ☆ Rico: extended TIAGo robot towards up-to-date social and assistive robot usage scenarios
Social and assistive robotics have vastly increased in popularity in recent years. Due to the wide range of usage, robots executing such tasks must be highly reliable and possess enough functions to satisfy multiple scenarios. This article describes a mobile, artificial intelligence-driven, robotic platform Rico. Its prior usage in similar scenarios, the number of its capabilities, and the experiments it presented should qualify it as a proper arm-less platform for social and assistive circumstances.
comment: PP-RAI 2024, 5th Polish Conference on Artificial Intelligence, 18-20.04.2024 Warsaw, Poland
♻ ☆ A Black-Box Physics-Informed Estimator based on Gaussian Process Regression for Robot Inverse Dynamics Identification
Learning the inverse dynamics of robots directly from data, adopting a black-box approach, is interesting for several real-world scenarios where limited knowledge about the system is available. In this paper, we propose a black-box model based on Gaussian Process (GP) Regression for the identification of the inverse dynamics of robotic manipulators. The proposed model relies on a novel multidimensional kernel, called \textit{Lagrangian Inspired Polynomial} (\kernelInitials{}) kernel. The \kernelInitials{} kernel is based on two main ideas. First, instead of directly modeling the inverse dynamics components, we model as GPs the kinetic and potential energy of the system. The GP prior on the inverse dynamics components is derived from those on the energies by applying the properties of GPs under linear operators. Second, as regards the energy prior definition, we prove a polynomial structure of the kinetic and potential energy, and we derive a polynomial kernel that encodes this property. As a consequence, the proposed model allows also to estimate the kinetic and potential energy without requiring any label on these quantities. Results on simulation and on two real robotic manipulators, namely a 7 DOF Franka Emika Panda, and a 6 DOF MELFA RV4FL, show that the proposed model outperforms state-of-the-art black-box estimators based both on Gaussian Processes and Neural Networks in terms of accuracy, generality and data efficiency. The experiments on the MELFA robot also demonstrate that our approach achieves performance comparable to fine-tuned model-based estimators, despite requiring less prior information.
♻ ☆ Repeatable and Reliable Efforts of Accelerated Risk Assessment in Robot Testing
Risk assessment of a robot in controlled environments, such as laboratories and proving grounds, is a common means to assess, certify, validate, verify, and characterize the robots' safety performance before, during, and even after their commercialization in the real-world. A standard testing program that acquires the risk estimate is expected to be (i) repeatable, such that it obtains similar risk assessments of the same testing subject among multiple trials or attempts with the similar testing effort by different stakeholders, and (ii) reliable against a variety of testing subjects produced by different vendors and manufacturers. Both repeatability and reliability are fundamental and crucial for a testing algorithm's validity, fairness, and practical feasibility, especially for standardization. However, these properties are rarely satisfied or ensured, especially as the subject robots become more complex, uncertain, and varied. This issue was present in traditional risk assessments through Monte-Carlo sampling, and remains a bottleneck for the recent accelerated risk assessment methods, primarily those using importance sampling. This study aims to enhance existing accelerated testing frameworks by proposing a new algorithm that provably integrates repeatability and reliability with the already established formality and efficiency. It also features demonstrations assessing the risk of instability from frontal impacts, initiated by push-over disturbances on a controlled inverted pendulum and a 7-DoF planar bipedal robot Rabbit managed by various control algorithms.
♻ ☆ Imitation learning for sim-to-real transfer of robotic cutting policies based on residual Gaussian process disturbance force model IROS
Robotic cutting, or milling, plays a significant role in applications such as disassembly, decommissioning, and demolition. Planning and control of cutting in real-world scenarios in uncertain environments is a complex task, with the potential to benefit from simulated training environments. This letter focuses on sim-to-real transfer for robotic cutting policies, addressing the need for effective policy transfer from simulation to practical implementation. We extend our previous domain generalisation approach to learning cutting tasks based on a mechanistic model-based simulation framework, by proposing a hybrid approach for sim-to-real transfer based on a milling process force model and residual Gaussian process (GP) force model, learned from either single or multiple real-world cutting force examples. We demonstrate successful sim-to-real transfer of a robotic cutting policy without the need for fine-tuning on the real robot setup. The proposed approach autonomously adapts to materials with differing structural and mechanical properties. Furthermore, we demonstrate the proposed method outperforms fine-tuning or re-training alone.
comment: 8 pages, 9 figures, accepted for publication in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ On The Evaluation of Collision Probability along a Path
Characterizing the risk of operations is a fundamental requirement in robotics, and a crucial ingredient of safe planning. The problem is multifaceted, with multiple definitions arising in the vast recent literature fitting different application scenarios and leading to different computational approaches. A basic element shared by most frameworks is the definition and evaluation of the probability of collision for a mobile object in an environment with obstacles. We observe that, even in basic cases, different interpretations are possible. This paper proposes an index we call "Risk Density", which offers a theoretical link between conceptually distant assumptions about the interplay of single collision events along a continuous path. We show how this index can be used to approximate the collision probability in the case where the robot evolves along a nominal continuous curve from random initial conditions. Indeed, under this hypothesis the proposed approximation outperforms some well-established methods either in accuracy or computational cost.
♻ ☆ Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation IROS 2024
Autonomous robots are increasingly becoming a strong fixture in social environments. Effective crowd navigation requires not only safe yet fast planning, but should also enable interpretability and computational efficiency for working in real-time on embedded devices. In this work, we advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav. Different from conventional reinforcement learning-based crowd navigation methods, Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks. We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings, using up to 6 times fewer parameters than competitor state-of-the-art models. With our approach, it becomes even possible to obtain policies that work in 2-dimensional embedding spaces, opening up new possibilities for low-resource crowd navigation and model interpretability. Insightfully, the internal hyperbolic representation of Hyp2Nav correlates with how much attention the robot pays to the surrounding crowds, e.g. due to multiple people occluding its pathway or to a few of them showing colliding plans, rather than to its own planned route. The code is available at https://github.com/GDam90/hyp2nav.
comment: Accepted as oral at IROS 2024
♻ ☆ A global approach for the redefinition of higher-order flexibility and rigidity
The famous example of the double-Watt mechanism given by Connelly and Servatius raises some problems concerning the classical definitions of higher-order flexibility and rigidity, respectively, as they attest the cusp configuration of the mechanism a third-order rigidity, which conflicts with its continuous flexion. Some attempts were done to resolve the dilemma but they could not settle the problem. As cusp mechanisms demonstrate the basic shortcoming of any local mobility analysis using higher-order constraints, we present a global approach inspired by Sabitov's finite algorithm for testing the bendability of a polyhedron, which allows us (a) to compute iteratively configurations with a higher-order flexion and (b) to come up with a proper redefinition of higher-order flexibility and rigidity. We also give algorithms for computing the flexion orders as well as the associated flexes. The presented approach is demonstrated on several examples (double-Watt mechanisms and Tarnai's Leonardo structure). Moreover, we determine all configurations of a given 3-RPR manipulator with a third-order flexion and present a corresponding joint-bar framework of flexion order 23.
comment: 29 pages, 12 figures, 10 examples
♻ ☆ A Flexible and Resilient Formation Approach based on Hierarchical Reorganization
Conventional formation methods typically rely on fixed hierarchical structures, such as predetermined leaders or predefined formation shapes. These rigid hierarchies can render formations cumbersome and inflexible in complex environments, leading to potential failure if any leader loses connectivity. To address these limitations, this paper introduces a reconfigurable affine formation that enhances both flexibility and resilience through hierarchical reorganization. The paper first elucidates the critical role of hierarchical reorganization, conceptualizing this process as involving role reallocation and dynamic changes in topological structures. To further investigate the conditions necessary for hierarchical reorganization, a reconfigurable hierarchical formation is developed based on graph theory, with its feasibility rigorously demonstrated. In conjunction with role transitions, a power-centric topology switching mechanism grounded in formation consensus convergence is proposed, ensuring coordinated resilience within the formation. Finally, simulations and experiments validate the performance of the proposed method. The aerial formations successfully performed multiple hierarchical reorganizations in both three-dimensional and two-dimensional spaces. Even in the event of a single leader's failure, the formation maintained stable flight through hierarchical reorganization. This rapid adaptability enables the robotic formations to execute complex tasks, including sharp turns and navigating through forests at speeds up to 1.9 m/s.
♻ ☆ Trust the PRoC3S: Solving Long-Horizon Robotics Problems with LLMs and Constraint Satisfaction
Recent developments in pretrained large language models (LLMs) applied to robotics have demonstrated their capacity for sequencing a set of discrete skills to achieve open-ended goals in simple robotic tasks. In this paper, we examine the topic of LLM planning for a set of continuously parameterized skills whose execution must avoid violations of a set of kinematic, geometric, and physical constraints. We prompt the LLM to output code for a function with open parameters, which, together with environmental constraints, can be viewed as a Continuous Constraint Satisfaction Problem (CCSP). This CCSP can be solved through sampling or optimization to find a skill sequence and continuous parameter settings that achieve the goal while avoiding constraint violations. Additionally, we consider cases where the LLM proposes unsatisfiable CCSPs, such as those that are kinematically infeasible, dynamically unstable, or lead to collisions, and re-prompt the LLM to form a new CCSP accordingly. Experiments across three different simulated 3D domains demonstrate that our proposed strategy, PRoC3S, is capable of solving a wide range of complex manipulation tasks with realistic constraints on continuous parameters much more efficiently and effectively than existing baselines.
♻ ☆ PEACE: Prompt Engineering Automation for CLIPSeg Enhancement in Aerial Robotics
Safe landing is an essential aspect of flight operations in fields ranging from industrial to space robotics. With the growing interest in artificial intelligence, we focus on learning-based methods for safe landing. Our previous work, Dynamic Open-Vocabulary Enhanced SafE-Landing with Intelligence (DOVESEI), demonstrated the feasibility of using prompt-based segmentation for identifying safe landing zones with open vocabulary models. However, relying on a heuristic selection of words for prompts is not reliable, as it cannot adapt to changing environments, potentially leading to harmful outcomes if the observed environment is not accurately represented by the chosen prompt. To address this issue, we introduce PEACE (Prompt Engineering Automation for CLIPSeg Enhancement), an enhancement to DOVESEI that automates prompt engineering to adapt to shifts in data distribution. PEACE can perform safe landings using only monocular cameras and image segmentation. PEACE shows significant improvements in prompt generation and engineering for aerial images compared to standard prompts used for CLIP and CLIPSeg. By combining DOVESEI and PEACE, our system improved the success rate of safe landing zone selection by at least 30\% in both simulations and indoor experiments.
comment: arXiv admin note: text overlap with arXiv:2308.11471
♻ ☆ Patching Approximately Safe Value Functions Leveraging Local Hamilton-Jacobi Reachability Analysis
Safe value functions, such as control barrier functions, characterize a safe set and synthesize a safety filter, overriding unsafe actions, for a dynamic system. While function approximators like neural networks can synthesize approximately safe value functions, they typically lack formal guarantees. In this paper, we propose a local dynamic programming-based approach to "patch" approximately safe value functions to obtain a safe value function. This algorithm, HJ-Patch, produces a novel value function that provides formal safety guarantees, yet retains the global structure of the initial value function. HJ-Patch modifies an approximately safe value function at states that are both (i) near the safety boundary and (ii) may violate safety. We iteratively update both this set of "active" states and the value function until convergence. This approach bridges the gap between value function approximation methods and formal safety through Hamilton-Jacobi (HJ) reachability, offering a framework for integrating various safety methods. We provide simulation results on analytic and learned examples, demonstrating HJ-Patch reduces the computational complexity by 2 orders of magnitude with respect to standard HJ reachability. Additionally, we demonstrate the perils of using approximately safe value functions directly and showcase improved safety using HJ-Patch.
comment: 8 pages, IEEE Conference on Decision and Control (CDC), 2024 (In Press)
♻ ☆ Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic
In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, _variance_ is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning.
comment: 8 pages
♻ ☆ DeliGrasp: Inferring Object Properties with LLMs for Adaptive Grasp Policies
Large language models (LLMs) can provide rich physical descriptions of most worldly objects, allowing robots to achieve more informed and capable grasping. We leverage LLMs' common sense physical reasoning and code-writing abilities to infer an object's physical characteristics$\unicode{x2013}$mass $m$, friction coefficient $\mu$, and spring constant $k$$\unicode{x2013}$from a semantic description, and then translate those characteristics into an executable adaptive grasp policy. Using a two-finger gripper with a built-in depth camera that can control its torque by limiting motor current, we demonstrate that LLM-parameterized but first-principles grasp policies outperform both traditional adaptive grasp policies and direct LLM-as-code policies on a custom benchmark of 12 delicate and deformable items including food, produce, toys, and other everyday items, spanning two orders of magnitude in mass and required pick-up force. We then improve property estimation and grasp performance on variable size objects with model finetuning on property-based comparisons and eliciting such comparisons via chain-of-thought prompting. We also demonstrate how compliance feedback from DeliGrasp policies can aid in downstream tasks such as measuring produce ripeness. Our code and videos are available at: https://deligrasp.github.io
♻ ☆ Safe POMDP Online Planning among Dynamic Agents via Adaptive Conformal Prediction
Online planning for partially observable Markov decision processes (POMDPs) provides efficient techniques for robot decision-making under uncertainty. However, existing methods fall short of preventing safety violations in dynamic environments. This work presents a novel safe POMDP online planning approach that maximizes expected returns while providing probabilistic safety guarantees amidst environments populated by multiple dynamic agents. Our approach utilizes data-driven trajectory prediction models of dynamic agents and applies Adaptive Conformal Prediction (ACP) to quantify the uncertainties in these predictions. Leveraging the obtained ACP-based trajectory predictions, our approach constructs safety shields on-the-fly to prevent unsafe actions within POMDP online planning. Through experimental evaluation in various dynamic environments using real-world pedestrian trajectory data, the proposed approach has been shown to effectively maintain probabilistic safety guarantees while accommodating up to hundreds of dynamic agents.
♻ ☆ Learning Generalizable Tool-use Skills through Trajectory Generation
Autonomous systems that efficiently utilize tools can assist humans in completing many common tasks such as cooking and cleaning. However, current systems fall short of matching human-level of intelligence in terms of adapting to novel tools. Prior works based on affordance often make strong assumptions about the environments and cannot scale to more complex, contact-rich tasks. In this work, we tackle this challenge and explore how agents can learn to use previously unseen tools to manipulate deformable objects. We propose to learn a generative model of the tool-use trajectories as a sequence of tool point clouds, which generalizes to different tool shapes. Given any novel tool, we first generate a tool-use trajectory and then optimize the sequence of tool poses to align with the generated trajectory. We train a single model on four different challenging deformable object manipulation tasks, using demonstration data from only one tool per task. The model generalizes to various novel tools, significantly outperforming baselines. We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human. Additional materials can be found on our project website: https://sites.google.com/view/toolgen.
Computer Vision 96
☆ Synergy and Synchrony in Couple Dances
This paper asks to what extent social interaction influences one's behavior. We study this in the setting of two dancers dancing as a couple. We first consider a baseline in which we predict a dancer's future moves conditioned only on their past motion without regard to their partner. We then investigate the advantage of taking social information into account by conditioning also on the motion of their dancing partner. We focus our analysis on Swing, a dance genre with tight physical coupling for which we present an in-the-wild video dataset. We demonstrate that single-person future motion prediction in this context is challenging. Instead, we observe that prediction greatly benefits from considering the interaction partners' behavior, resulting in surprisingly compelling couple dance synthesis results (see supp. video). Our contributions are a demonstration of the advantages of socially conditioned future motion prediction and an in-the-wild, couple dance video dataset to enable future research in this direction. Video results are available on the project website: https://von31.github.io/synNsync
☆ VILA-U: a Unified Foundation Model Integrating Visual Understanding and Generation
VILA-U is a Unified foundation model that integrates Video, Image, Language understanding and generation. Traditional visual language models (VLMs) use separate modules for understanding and generating visual content, which can lead to misalignment and increased complexity. In contrast, VILA-U employs a single autoregressive next-token prediction framework for both tasks, eliminating the need for additional components like diffusion models. This approach not only simplifies the model but also achieves near state-of-the-art performance in visual language understanding and generation. The success of VILA-U is attributed to two main factors: the unified vision tower that aligns discrete visual tokens with textual inputs during pretraining, which enhances visual perception, and autoregressive image generation can achieve similar quality as diffusion models with high-quality dataset. This allows VILA-U to perform comparably to more complex models using a fully token-based autoregressive framework.
comment: 11 pages, 7 figures, 8 tables
☆ Exploring Foundation Models for Synthetic Medical Imaging: A Study on Chest X-Rays and Fine-Tuning Techniques
Machine learning has significantly advanced healthcare by aiding in disease prevention and treatment identification. However, accessing patient data can be challenging due to privacy concerns and strict regulations. Generating synthetic, realistic data offers a potential solution for overcoming these limitations, and recent studies suggest that fine-tuning foundation models can produce such data effectively. In this study, we explore the potential of foundation models for generating realistic medical images, particularly chest x-rays, and assess how their performance improves with fine-tuning. We propose using a Latent Diffusion Model, starting with a pre-trained foundation model and refining it through various configurations. Additionally, we performed experiments with input from a medical professional to assess the realism of the images produced by each trained model.
☆ Open-MAGVIT2: An Open-Source Project Toward Democratizing Auto-regressive Visual Generation
We present Open-MAGVIT2, a family of auto-regressive image generation models ranging from 300M to 1.5B. The Open-MAGVIT2 project produces an open-source replication of Google's MAGVIT-v2 tokenizer, a tokenizer with a super-large codebook (i.e., $2^{18}$ codes), and achieves the state-of-the-art reconstruction performance (1.17 rFID) on ImageNet $256 \times 256$. Furthermore, we explore its application in plain auto-regressive models and validate scalability properties. To assist auto-regressive models in predicting with a super-large vocabulary, we factorize it into two sub-vocabulary of different sizes by asymmetric token factorization, and further introduce "next sub-token prediction" to enhance sub-token interaction for better generation quality. We release all models and codes to foster innovation and creativity in the field of auto-regressive visual generation.
☆ Train Till You Drop: Towards Stable and Robust Source-free Unsupervised 3D Domain Adaptation ECCV 2024
We tackle the challenging problem of source-free unsupervised domain adaptation (SFUDA) for 3D semantic segmentation. It amounts to performing domain adaptation on an unlabeled target domain without any access to source data; the available information is a model trained to achieve good performance on the source domain. A common issue with existing SFUDA approaches is that performance degrades after some training time, which is a by product of an under-constrained and ill-posed problem. We discuss two strategies to alleviate this issue. First, we propose a sensible way to regularize the learning problem. Second, we introduce a novel criterion based on agreement with a reference model. It is used (1) to stop the training when appropriate and (2) as validator to select hyperparameters without any knowledge on the target domain. Our contributions are easy to implement and readily amenable for all SFUDA methods, ensuring stable improvements over all baselines. We validate our findings on various 3D lidar settings, achieving state-of-the-art performance. The project repository (with code) is: github.com/valeoai/TTYD.
comment: Accepted to ECCV 2024. Project repository: github.com/valeoai/TTYD
☆ Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences
Accurate and robust LiDAR 3D object detection is essential for comprehensive scene understanding in autonomous driving. Despite its importance, LiDAR detection performance is limited by inherent constraints of point cloud data, particularly under conditions of extended distances and occlusions. Recently, temporal aggregation has been proven to significantly enhance detection accuracy by fusing multi-frame viewpoint information and enriching the spatial representation of objects. In this work, we introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information. We aim to improve the spatial-temporal interpretation capabilities of the LiDAR detector by incorporating a dynamic prior, generated from a non-learnable motion estimation model. Specifically, Motion-Guided Feature Aggregation (MGFA) is proposed to utilize the object trajectory from previous and future motion states to model spatial-temporal correlations into gaussian heatmap over a driving sequence. This motion-based heatmap then guides the temporal feature fusion, enriching the proposed object features. Moreover, we design a Dual Correlation Weighting Module (DCWM) that effectively facilitates the interaction between past and prospective frames through scene- and channel-wise feature abstraction. In the end, a cascade cross-attention-based decoder is employed to refine the 3D prediction. We have conducted experiments on the Waymo and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance with effective spatial-temporal feature learning.
☆ Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior
Score-based diffusion methods provide a powerful strategy to solve image restoration tasks by flexibly combining a pre-trained foundational prior model with a likelihood function specified during test time. Such methods are predominantly derived from two stochastic processes: reversing Ornstein-Uhlenbeck, which underpins the celebrated denoising diffusion probabilistic models (DDPM) and denoising diffusion implicit models (DDIM), and the Langevin diffusion process. The solutions delivered by DDPM and DDIM are often remarkably realistic, but they are not always consistent with measurements because of likelihood intractability issues and the associated required approximations. Alternatively, using a Langevin process circumvents the intractable likelihood issue, but usually leads to restoration results of inferior quality and longer computing times. This paper presents a novel and highly computationally efficient image restoration method that carefully embeds a foundational DDPM denoiser within an empirical Bayesian Langevin algorithm, which jointly calibrates key model hyper-parameters as it estimates the model's posterior mean. Extensive experimental results on three canonical tasks (image deblurring, super-resolution, and inpainting) demonstrate that the proposed approach improves on state-of-the-art strategies both in image estimation accuracy and computing time.
comment: 24 pages
☆ Enhancing Skin Lesion Diagnosis with Ensemble Learning
Skin lesions are an increasingly significant medical concern, varying widely in severity from benign to cancerous. Accurate diagnosis is essential for ensuring timely and appropriate treatment. This study examines the implementation of deep learning methods to assist in the diagnosis of skin lesions using the HAM10000 dataset, which contains seven distinct types of lesions. First, we evaluated three pre-trained models: MobileNetV2, ResNet18, and VGG11, achieving accuracies of 0.798, 0.802, and 0.805, respectively. To further enhance classification accuracy, we developed ensemble models employing max voting, average voting, and stacking, resulting in accuracies of 0.803, 0.82, and 0.83. Building on the best-performing ensemble learning model, stacking, we developed our proposed model, SkinNet, which incorporates a customized architecture and fine-tuning, achieving an accuracy of 0.867 and an AUC of 0.96. This substantial improvement over individual models demonstrates the effectiveness of ensemble learning in improving skin lesion classification.
☆ The Impact of Scanner Domain Shift on Deep Learning Performance in Medical Imaging: an Experimental Study
Purpose: Medical images acquired using different scanners and protocols can differ substantially in their appearance. This phenomenon, scanner domain shift, can result in a drop in the performance of deep neural networks which are trained on data acquired by one scanner and tested on another. This significant practical issue is well-acknowledged, however, no systematic study of the issue is available across different modalities and diagnostic tasks. Materials and Methods: In this paper, we present a broad experimental study evaluating the impact of scanner domain shift on convolutional neural network performance for different automated diagnostic tasks. We evaluate this phenomenon in common radiological modalities, including X-ray, CT, and MRI. Results: We find that network performance on data from a different scanner is almost always worse than on same-scanner data, and we quantify the degree of performance drop across different datasets. Notably, we find that this drop is most severe for MRI, moderate for X-ray, and quite small for CT, on average, which we attribute to the standardized nature of CT acquisition systems which is not present in MRI or X-ray. We also study how injecting varying amounts of target domain data into the training set, as well as adding noise to the training data, helps with generalization. Conclusion: Our results provide extensive experimental evidence and quantification of the extent of performance drop caused by scanner domain shift in deep learning across different modalities, with the goal of guiding the future development of robust deep learning models for medical image analysis.
☆ RCNet: Deep Recurrent Collaborative Network for Multi-View Low-Light Image Enhancement
Scene observation from multiple perspectives would bring a more comprehensive visual experience. However, in the context of acquiring multiple views in the dark, the highly correlated views are seriously alienated, making it challenging to improve scene understanding with auxiliary views. Recent single image-based enhancement methods may not be able to provide consistently desirable restoration performance for all views due to the ignorance of potential feature correspondence among different views. To alleviate this issue, we make the first attempt to investigate multi-view low-light image enhancement. First, we construct a new dataset called Multi-View Low-light Triplets (MVLT), including 1,860 pairs of triple images with large illumination ranges and wide noise distribution. Each triplet is equipped with three different viewpoints towards the same scene. Second, we propose a deep multi-view enhancement framework based on the Recurrent Collaborative Network (RCNet). Specifically, in order to benefit from similar texture correspondence across different views, we design the recurrent feature enhancement, alignment and fusion (ReEAF) module, in which intra-view feature enhancement (Intra-view EN) followed by inter-view feature alignment and fusion (Inter-view AF) is performed to model the intra-view and inter-view feature propagation sequentially via multi-view collaboration. In addition, two different modules from enhancement to alignment (E2A) and from alignment to enhancement (A2E) are developed to enable the interactions between Intra-view EN and Inter-view AF, which explicitly utilize attentive feature weighting and sampling for enhancement and alignment, respectively. Experimental results demonstrate that our RCNet significantly outperforms other state-of-the-art methods. All of our dataset, code, and model will be available at https://github.com/hluo29/RCNet.
comment: 14 Pages, 10 Figures, Under Review
☆ Connectivity-Inspired Network for Context-Aware Recognition ECCV 2024
The aim of this paper is threefold. We inform the AI practitioner about the human visual system with an extensive literature review; we propose a novel biologically motivated neural network for image classification; and, finally, we present a new plug-and-play module to model context awareness. We focus on the effect of incorporating circuit motifs found in biological brains to address visual recognition. Our convolutional architecture is inspired by the connectivity of human cortical and subcortical streams, and we implement bottom-up and top-down modulations that mimic the extensive afferent and efferent connections between visual and cognitive areas. Our Contextual Attention Block is simple and effective and can be integrated with any feed-forward neural network. It infers weights that multiply the feature maps according to their causal influence on the scene, modeling the co-occurrence of different objects in the image. We place our module at different bottlenecks to infuse a hierarchical context awareness into the model. We validated our proposals through image classification experiments on benchmark data and found a consistent improvement in performance and the robustness of the produced explanations via class activation. Our code is available at https://github.com/gianlucarloni/CoCoReco.
comment: ECCV 2024 - HCV Workshop, Accepted for presentation, Submitted Manuscript Version (adapted to include author names, Acknowledgements, and reference DOIs): the version of the manuscript improved after peer review will appear in the Proceedings later
☆ Serp-Mamba: Advancing High-Resolution Retinal Vessel Segmentation with Selective State-Space Model
Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) images capture high-resolution views of the retina with typically 200 spanning degrees. Accurate segmentation of vessels in UWF-SLO images is essential for detecting and diagnosing fundus disease. Recent studies have revealed that the selective State Space Model (SSM) in Mamba performs well in modeling long-range dependencies, which is crucial for capturing the continuity of elongated vessel structures. Inspired by this, we propose the first Serpentine Mamba (Serp-Mamba) network to address this challenging task. Specifically, we recognize the intricate, varied, and delicate nature of the tubular structure of vessels. Furthermore, the high-resolution of UWF-SLO images exacerbates the imbalance between the vessel and background categories. Based on the above observations, we first devise a Serpentine Interwoven Adaptive (SIA) scan mechanism, which scans UWF-SLO images along curved vessel structures in a snake-like crawling manner. This approach, consistent with vascular texture transformations, ensures the effective and continuous capture of curved vascular structure features. Second, we propose an Ambiguity-Driven Dual Recalibration (ADDR) module to address the category imbalance problem intensified by high-resolution images. Our ADDR module delineates pixels by two learnable thresholds and refines ambiguous pixels through a dual-driven strategy, thereby accurately distinguishing vessels and background regions. Experiment results on three datasets demonstrate the superior performance of our Serp-Mamba on high-resolution vessel segmentation. We also conduct a series of ablation studies to verify the impact of our designs. Our code shall be released upon publication of this work.
☆ Computer-Generated Sand Mixtures and Sand-based Images
This paper aims to verify the effectiveness of the software implementation of the proposed algorithm in creating computer-generated images of sand mixtures using a photograph of sand as an input and its effectiveness in converting digital pictures into sand-based images out of the mixtures it generated. The method of this paper is to visually compare the photographed image of the actual mixtures to its computer-generated counterpart to verify if the mixture generation produces results as expected and compare the computer-generated sand-based images with its source to verify image reproduction maintains same image content. The results of the mixture comparison shows that the actual and the computer-generated ones have similar overall shade and color. Still, the generated one has a rougher texture and higher contrast due to the method of inheriting visual features by pixel, not by individual sand particles. The comparison of the sand-based image and its source has demonstrated the software's ability to maintain the essence of its contents during conversion while replacing its texture with the visual properties of the generated sand mixture. The result have shown that the software implementation of the proposed algorithm can effectively use the images of sand to generate images of its mixtures and use those mixture images to convert a digital picture into a computer-generated sand-based image.
comment: 12 pages, 8 figures, 2nd International Research Conference on Computer Engineering and Technology Education
☆ How to Identify Good Superpixels for Deforestation Detection on Tropical Rainforests
The conservation of tropical forests is a topic of significant social and ecological relevance due to their crucial role in the global ecosystem. Unfortunately, deforestation and degradation impact millions of hectares annually, requiring government or private initiatives for effective forest monitoring. However, identifying deforested regions in satellite images is challenging due to data imbalance, image resolution, low-contrast regions, and occlusion. Superpixel segmentation can overcome these drawbacks, reducing workload and preserving important image boundaries. However, most works for remote sensing images do not exploit recent superpixel methods. In this work, we evaluate 16 superpixel methods in satellite images to support a deforestation detection system in tropical forests. We also assess the performance of superpixel methods for the target task, establishing a relationship with segmentation methodological evaluation. According to our results, ERS, GMMSP, and DISF perform best on UE, BR, and SIRS, respectively, whereas ERS has the best trade-off with CO and Reg. In classification, SH, DISF, and ISF perform best on RGB, UMDA, and PCA compositions, respectively. According to our experiments, superpixel methods with better trade-offs between delineation, homogeneity, compactness, and regularity are more suitable for identifying good superpixels for deforestation detection tasks.
comment: 8 pages, 3 figures, paper accepted for publication at the IEEE GRSL
☆ Advancing SEM Based Nano-Scale Defect Analysis in Semiconductor Manufacturing for Advanced IC Nodes ECCV 2024
In this research, we introduce a unified end-to-end Automated Defect Classification-Detection-Segmentation (ADCDS) framework for classifying, detecting, and segmenting multiple instances of semiconductor defects for advanced nodes. This framework consists of two modules: (a) a defect detection module, followed by (b) a defect segmentation module. The defect detection module employs Deformable DETR to aid in the classification and detection of nano-scale defects, while the segmentation module utilizes BoxSnake. BoxSnake facilitates box-supervised instance segmentation of nano-scale defects, supported by the former module. This simplifies the process by eliminating the laborious requirement for ground-truth pixel-wise mask annotation by human experts, which is typically associated with training conventional segmentation models. We have evaluated the performance of our ADCDS framework using two distinct process datasets from real wafers, as ADI and AEI, specifically focusing on Line-space patterns. We have demonstrated the applicability and significance of our proposed methodology, particularly in the nano-scale segmentation and generation of binary defect masks, using the challenging ADI SEM dataset where ground-truth pixelwise segmentation annotations were unavailable. Furthermore, we have presented a comparative analysis of our proposed framework against previous approaches to demonstrate its effectiveness. Our proposed framework achieved an overall mAP@IoU0.5 of 72.19 for detection and 78.86 for segmentation on the ADI dataset. Similarly, for the AEI dataset, these metrics were 90.38 for detection and 95.48 for segmentation. Thus, our proposed framework effectively fulfils the requirements of advanced defect analysis while addressing significant constraints.
comment: Accepted in ECCV 2024 2nd workshop on Vision-based InduStrial InspectiON (VISION)
☆ FS-MedSAM2: Exploring the Potential of SAM2 for Few-Shot Medical Image Segmentation without Fine-tuning
The Segment Anything Model 2 (SAM2) has recently demonstrated exceptional performance in zero-shot prompt segmentation for natural images and videos. However, it faces significant challenges when applied to medical images. Since its release, many attempts have been made to adapt SAM2's segmentation capabilities to the medical imaging domain. These efforts typically involve using a substantial amount of labeled data to fine-tune the model's weights. In this paper, we explore SAM2 from a different perspective via making the full use of its trained memory attention module and its ability of processing mask prompts. We introduce FS-MedSAM2, a simple yet effective framework that enables SAM2 to achieve superior medical image segmentation in a few-shot setting, without the need for fine-tuning. Our framework outperforms the current state-of-the-arts on two publicly available medical image datasets. The code is available at https://github.com/DeepMed-Lab-ECNU/FS_MedSAM2.
comment: 13 pages, 4 figures
☆ Cycle Pixel Difference Network for Crisp Edge Detection
Edge detection, as a fundamental task in computer vision, has garnered increasing attention. The advent of deep learning has significantly advanced this field. However, recent deep learning-based methods which rely on large-scale pre-trained weights cannot be trained from scratch, with very limited research addressing this issue. This paper proposes a novel cycle pixel difference convolution (CPDC), which effectively integrates image gradient information with modern convolution operations. Based on the CPDC, we develop a U-shape encoder-decoder model named CPD-Net, which is a purely end-to-end network. Additionally, to address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM) to enhance the discriminative ability of the model, thereby generating crisp and clean contour maps. Comprehensive experiments conducted on three standard benchmarks demonstrate that our method achieves competitive performance on the BSDS500 dataset (ODS=0.813), NYUD-V2 (ODS=0.760), and BIPED dataset (ODS=0.898). Our approach provides a novel perspective for addressing these challenges in edge detection.
☆ Hybrid Cost Volume for Memory-Efficient Optical Flow
Current state-of-the-art flow methods are mostly based on dense all-pairs cost volumes. However, as image resolution increases, the computational and spatial complexity of constructing these cost volumes grows at a quartic rate, making these methods impractical for high-resolution images. In this paper, we propose a novel Hybrid Cost Volume for memory-efficient optical flow, named HCV. To construct HCV, we first propose a Top-k strategy to separate the 4D cost volume into two global 3D cost volumes. These volumes significantly reduce memory usage while retaining a substantial amount of matching information. We further introduce a local 4D cost volume with a local search space to supplement the local information for HCV. Based on HCV, we design a memory-efficient optical flow network, named HCVFlow. Compared to the recurrent flow methods based the all-pairs cost volumes, our HCVFlow significantly reduces memory consumption while ensuring high accuracy. We validate the effectiveness and efficiency of our method on the Sintel and KITTI datasets and real-world 4K (2160*3840) resolution images. Extensive experiments show that our HCVFlow has very low memory usage and outperforms other memory-efficient methods in terms of accuracy. The code is publicly available at https://github.com/gangweiX/HCVFlow.
comment: 10 pages, 6 figures
Calibration of Network Confidence for Unsupervised Domain Adaptation Using Estimated Accuracy
This study addresses the problem of calibrating network confidence while adapting a model that was originally trained on a source domain to a target domain using unlabeled samples from the target domain. The absence of labels from the target domain makes it impossible to directly calibrate the adapted network on the target domain. To tackle this challenge, we introduce a calibration procedure that relies on estimating the network's accuracy on the target domain. The network accuracy is first computed on the labeled source data and then is modified to represent the actual accuracy of the model on the target domain. The proposed algorithm calibrates the prediction confidence directly in the target domain by minimizing the disparity between the estimated accuracy and the computed confidence. The experimental results show that our method significantly outperforms existing methods, which rely on importance weighting, across several standard datasets.
☆ UniDet3D: Multi-dataset Indoor 3D Object Detection
Growing customer demand for smart solutions in robotics and augmented reality has attracted considerable attention to 3D object detection from point clouds. Yet, existing indoor datasets taken individually are too small and insufficiently diverse to train a powerful and general 3D object detection model. In the meantime, more general approaches utilizing foundation models are still inferior in quality to those based on supervised training for a specific task. In this work, we propose \ours{}, a simple yet effective 3D object detection model, which is trained on a mixture of indoor datasets and is capable of working in various indoor environments. By unifying different label spaces, \ours{} enables learning a strong representation across multiple datasets through a supervised joint training scheme. The proposed network architecture is built upon a vanilla transformer encoder, making it easy to run, customize and extend the prediction pipeline for practical use. Extensive experiments demonstrate that \ours{} obtains significant gains over existing 3D object detection methods in 6 indoor benchmarks: ScanNet (+1.1 mAP50), ARKitScenes (+19.4 mAP25), S3DIS (+9.1 mAP50), MultiScan (+9.3 mAP50), 3RScan (+3.2 mAP50), and ScanNet++ (+2.7 mAP50). Code is available at https://github.com/filapro/unidet3d .
☆ MpoxMamba: A Grouped Mamba-based Lightweight Hybrid Network for Mpox Detection
Due to the lack of effective mpox detection tools, the mpox virus continues to spread worldwide and has once again been declared a public health emergency of international concern by the World Health Organization. Deep learning-based mpox detection tools are crucial to alleviate mpox outbreak. However, existing methods have difficulty in achieving a good trade-off between detection performance, parameter size, and model complexity, which is crucial for practical applications and widespread deployment, especially in resource-limited scenarios. Given that the success of Mamba in modeling long-range dependencies and its linear complexity, we proposed a lightweight hybrid architecture called MpoxMamba. MpoxMamba utilizes deep separable convolutions to extract local feature representations in mpox skin lesions, and greatly enhances the model's ability to model the global contextual information by grouped Mamba modules. Experimental results on two widely recognized mpox datasets demonstrate that MpoxMamba outperforms existing mpox detection methods and state-of-the-art lightweight models. We also developed a web-based online application to provide free mpox detection services to the public in the epidemic areas (http://5227i971s5.goho.co:30290). The source codes of MpoxMamba are available at https://github.com/YubiaoYue/MpoxMamba.
☆ Learning to Learn Transferable Generative Attack for Person Re-Identification
Deep learning-based person re-identification (re-id) models are widely employed in surveillance systems and inevitably inherit the vulnerability of deep networks to adversarial attacks. Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains. To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed, which adopts meta-learning optimization to promote the generative attacker producing highly transferable adversarial examples by learning comprehensively simulated transfer-based cross-model\&dataset\&test black-box meta attack tasks. Specifically, cross-model\&dataset black-box attack tasks are first mimicked by selecting different re-id models and datasets for meta-train and meta-test attack processes. As different models may focus on different feature regions, the Perturbation Random Erasing module is further devised to prevent the attacker from learning to only corrupt model-specific features. To boost the attacker learning to possess cross-test transferability, the Normalization Mix strategy is introduced to imitate diverse feature embedding spaces by mixing multi-domain statistics of target models. Extensive experiments show the superiority of MTGA, especially in cross-model\&dataset and cross-model\&dataset\&test attacks, our MTGA outperforms the SOTA methods by 21.5\% and 11.3\% on mean mAP drop rate, respectively. The code of MTGA will be released after the paper is accepted.
☆ Introducing Gating and Context into Temporal Action Detection ECCV 2024
Temporal Action Detection (TAD), the task of localizing and classifying actions in untrimmed video, remains challenging due to action overlaps and variable action durations. Recent findings suggest that TAD performance is dependent on the structural design of transformers rather than on the self-attention mechanism. Building on this insight, we propose a refined feature extraction process through lightweight, yet effective operations. First, we employ a local branch that employs parallel convolutions with varying window sizes to capture both fine-grained and coarse-grained temporal features. This branch incorporates a gating mechanism to select the most relevant features. Second, we introduce a context branch that uses boundary frames as key-value pairs to analyze their relationship with the central frame through cross-attention. The proposed method captures temporal dependencies and improves contextual understanding. Evaluations of the gating mechanism and context branch on challenging datasets (THUMOS14 and EPIC-KITCHEN 100) show a consistent improvement over the baseline and existing methods.
comment: Accepted for publication at the ECCV 2024 ABAW Workshop
☆ GST: Precise 3D Human Body from a Single Image with Gaussian Splatting Transformers
Reconstructing realistic 3D human models from monocular images has significant applications in creative industries, human-computer interfaces, and healthcare. We base our work on 3D Gaussian Splatting (3DGS), a scene representation composed of a mixture of Gaussians. Predicting such mixtures for a human from a single input image is challenging, as it is a non-uniform density (with a many-to-one relationship with input pixels) with strict physical constraints. At the same time, it needs to be flexible to accommodate a variety of clothes and poses. Our key observation is that the vertices of standardized human meshes (such as SMPL) can provide an adequate density and approximate initial position for Gaussians. We can then train a transformer model to jointly predict comparatively small adjustments to these positions, as well as the other Gaussians' attributes and the SMPL parameters. We show empirically that this combination (using only multi-view supervision) can achieve fast inference of 3D human models from a single image without test-time optimization, expensive diffusion models, or 3D points supervision. We also show that it can improve 3D pose estimation by better fitting human models that account for clothes and other variations. The code is available on the project website https://abdullahamdi.com/gst/ .
comment: preprint
☆ LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration ICONIP-2024
The Lightweight Integrated Tracking-Feature Extraction (LITE) paradigm is introduced as a novel multi-object tracking (MOT) approach. It enhances ReID-based trackers by eliminating inference, pre-processing, post-processing, and ReID model training costs. LITE uses real-time appearance features without compromising speed. By integrating appearance feature extraction directly into the tracking pipeline using standard CNN-based detectors such as YOLOv8m, LITE demonstrates significant performance improvements. The simplest implementation of LITE on top of classic DeepSORT achieves a HOTA score of 43.03% at 28.3 FPS on the MOT17 benchmark, making it twice as fast as DeepSORT on MOT17 and four times faster on the more crowded MOT20 dataset, while maintaining similar accuracy. Additionally, a new evaluation framework for tracking-by-detection approaches reveals that conventional trackers like DeepSORT remain competitive with modern state-of-the-art trackers when evaluated under fair conditions. The code will be available post-publication at https://github.com/Jumabek/LITE.
comment: 15 pages, 6 figures, to be published in ICONIP-2024
☆ Reprojection Errors as Prompts for Efficient Scene Coordinate Regression ECCV2024
Scene coordinate regression (SCR) methods have emerged as a promising area of research due to their potential for accurate visual localization. However, many existing SCR approaches train on samples from all image regions, including dynamic objects and texture-less areas. Utilizing these areas for optimization during training can potentially hamper the overall performance and efficiency of the model. In this study, we first perform an in-depth analysis to validate the adverse impacts of these areas. Drawing inspiration from our analysis, we then introduce an error-guided feature selection (EGFS) mechanism, in tandem with the use of the Segment Anything Model (SAM). This mechanism seeds low reprojection areas as prompts and expands them into error-guided masks, and then utilizes these masks to sample points and filter out problematic areas in an iterative manner. The experiments demonstrate that our method outperforms existing SCR approaches that do not rely on 3D information on the Cambridge Landmarks and Indoor6 datasets.
comment: ECCV2024
☆ CISCA and CytoDArk0: a Cell Instance Segmentation and Classification method for histo(patho)logical image Analyses and a new, open, Nissl-stained dataset for brain cytoarchitecture studies
Delineating and classifying individual cells in microscopy tissue images is a complex task, yet it is a pivotal endeavor in various medical and biological investigations. We propose a new deep learning framework (CISCA) for automatic cell instance segmentation and classification in histological slices to support detailed morphological and structural analysis or straightforward cell counting in digital pathology workflows and brain cytoarchitecture studies. At the core of CISCA lies a network architecture featuring a lightweight U-Net with three heads in the decoder. The first head classifies pixels into boundaries between neighboring cells, cell bodies, and background, while the second head regresses four distance maps along four directions. The network outputs from the first and second heads are integrated through a tailored post-processing step, which ultimately yields the segmentation of individual cells. A third head enables simultaneous classification of cells into relevant classes, if required. We showcase the effectiveness of our method using four datasets, including CoNIC, PanNuke, and MoNuSeg, which are publicly available H\&E datasets. Additionally, we introduce CytoDArk0, a novel dataset consisting of Nissl-stained images of the cortex, cerebellum, and hippocampus from mammals belonging to the orders Cetartiodactyla and Primates. We evaluate CISCA in comparison to other state-of-the-art methods, demonstrating CISCA's robustness and accuracy in segmenting and classifying cells across diverse tissue types, magnifications, and staining techniques.
☆ Optical Coherence Tomography Angiography-OCTA dataset for the study of Diabetic Retinopathy
This study presents a dataset consisting of 268 retinal images from 179 individuals, including 133 left-eye and 135 right-eye images, collected from Natasha Eye Care and Research Institute in Pune, Maharashtra, India. The images were captured using a nonmydriatic Optical Coherence Tomography Angiography (OCTA) device, specifically the Optovue Avanti Edition machine as per the protocol mentioned in this paper. Two ophthalmologists then annotated the images. This dataset can be used by researchers and doctors to develop automated diagnostic tools for early detection of diabetic retinopathy (DR).
comment: 11 pages
☆ Secure Traffic Sign Recognition: An Attention-Enabled Universal Image Inpainting Mechanism against Light Patch Attacks
Traffic sign recognition systems play a crucial role in assisting drivers to make informed decisions while driving. However, due to the heavy reliance on deep learning technologies, particularly for future connected and autonomous driving, these systems are susceptible to adversarial attacks that pose significant safety risks to both personal and public transportation. Notably, researchers recently identified a new attack vector to deceive sign recognition systems: projecting well-designed adversarial light patches onto traffic signs. In comparison with traditional adversarial stickers or graffiti, these emerging light patches exhibit heightened aggression due to their ease of implementation and outstanding stealthiness. To effectively counter this security threat, we propose a universal image inpainting mechanism, namely, SafeSign. It relies on attention-enabled multi-view image fusion to repair traffic signs contaminated by adversarial light patches, thereby ensuring the accurate sign recognition. Here, we initially explore the fundamental impact of malicious light patches on the local and global feature spaces of authentic traffic signs. Then, we design a binary mask-based U-Net image generation pipeline outputting diverse contaminated sign patterns, to provide our image inpainting model with needed training data. Following this, we develop an attention mechanism-enabled neural network to jointly utilize the complementary information from multi-view images to repair contaminated signs. Finally, extensive experiments are conducted to evaluate SafeSign's effectiveness in resisting potential light patch-based attacks, bringing an average accuracy improvement of 54.8% in three widely-used sign recognition models
☆ Confidence-Aware Document OCR Error Detection
Optical Character Recognition (OCR) continues to face accuracy challenges that impact subsequent applications. To address these errors, we explore the utility of OCR confidence scores for enhancing post-OCR error detection. Our study involves analyzing the correlation between confidence scores and error rates across different OCR systems. We develop ConfBERT, a BERT-based model that incorporates OCR confidence scores into token embeddings and offers an optional pre-training phase for noise adjustment. Our experimental results demonstrate that integrating OCR confidence scores can enhance error detection capabilities. This work underscores the importance of OCR confidence scores in improving detection accuracy and reveals substantial disparities in performance between commercial and open-source OCR technologies.
☆ Smooth-edged Perturbations Improve Perturbation-based Image Explanations
Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models by perturbing parts of the input to measure how those parts affect the output. Due to the intractability of perturbing each pixel individually, images are typically attributed to larger segments. The Randomized Input Sampling for Explanations (RISE) method solved this issue by using smooth perturbation masks. While this method has proven effective and popular, it has not been investigated which parts of the method are responsible for its success. This work tests many combinations of mask sampling, segmentation techniques, smoothing, and attribution calculation. The results show that the RISE-style pixel attribution is beneficial to all evaluated methods. Furthermore, it is shown that attribution calculation is the least impactful parameter. The implementation of this work is available online: https://github.com/guspih/post-hoc-image-perturbation.
comment: This manuscript have been submitted to NLDL 2025
☆ MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification
Recent advances in deep learning (DL) have significantly impacted motor imagery (MI)-based brain-computer interface (BCI) systems, enhancing the decoding of electroencephalography (EEG) signals. However, most studies struggle to identify discriminative patterns across subjects during MI tasks, limiting MI classification performance. In this article, we propose MixNet, a novel classification framework designed to overcome this limitation by utilizing spectral-spatial signals from MI data, along with a multitask learning architecture named MIN2Net, for classification. Here, the spectral-spatial signals are generated using the filter-bank common spatial patterns (FBCSPs) method on MI data. Since the multitask learning architecture is used for the classification task, the learning in each task may exhibit different generalization rates and potential overfitting across tasks. To address this issue, we implement adaptive gradient blending, simultaneously regulating multiple loss weights and adjusting the learning pace for each task based on its generalization/overfitting tendencies. Experimental results on six benchmark data sets of different data sizes demonstrate that MixNet consistently outperforms all state-of-the-art algorithms in subject-dependent and -independent settings. Finally, the low-density EEG MI classification results show that MixNet outperforms all state-of-the-art algorithms, offering promising implications for Internet of Thing (IoT) applications, such as lightweight and portable EEG wearable devices based on low-density montages.
comment: Supplementary materials and source codes are available on-line at https://github.com/Max-Phairot-A/MixNet
☆ UNIT: Unifying Image and Text Recognition in One Vision Encoder
Currently, vision encoder models like Vision Transformers (ViTs) typically excel at image recognition tasks but cannot simultaneously support text recognition like human visual recognition. To address this limitation, we propose UNIT, a novel training framework aimed at UNifying Image and Text recognition within a single model. Starting with a vision encoder pre-trained with image recognition tasks, UNIT introduces a lightweight language decoder for predicting text outputs and a lightweight vision decoder to prevent catastrophic forgetting of the original image encoding capabilities. The training process comprises two stages: intra-scale pretraining and inter-scale finetuning. During intra-scale pretraining, UNIT learns unified representations from multi-scale inputs, where images and documents are at their commonly used resolution, to enable fundamental recognition capability. In the inter-scale finetuning stage, the model introduces scale-exchanged data, featuring images and documents at resolutions different from the most commonly used ones, to enhance its scale robustness. Notably, UNIT retains the original vision encoder architecture, making it cost-free in terms of inference and deployment. Experiments across multiple benchmarks confirm that our method significantly outperforms existing methods on document-related tasks (e.g., OCR and DocQA) while maintaining the performances on natural images, demonstrating its ability to substantially enhance text recognition without compromising its core image recognition capabilities.
☆ Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective ECCV
The increasing accuracy reports of metric monocular depth estimation models lead to a growing interest from the automotive domain. Current model evaluations do not provide deeper insights into the models' performance, also in relation to safety-critical or unseen classes. Within this paper, we present a novel approach for the evaluation of depth estimation models. Our proposed metric leverages three components, a class-wise component, an edge and corner image feature component, and a global consistency retaining component. Classes are further weighted on their distance in the scene and on criticality for automotive applications. In the evaluation, we present the benefits of our metric through comparison to classical metrics, class-wise analytics, and the retrieval of critical situations. The results show that our metric provides deeper insights into model results while fulfilling safety-critical requirements. We release the code and weights on the following repository: \href{https://github.com/leisemann/ca_mmde}
comment: Accepted at the European Conference on Computer Vision (ECCV) 2024 Workshop on Out Of Distribution Generalization in Computer Vision
☆ SDformerFlow: Spatiotemporal swin spikeformer for event-based optical flow estimation
Event cameras generate asynchronous and sparse event streams capturing changes in light intensity. They offer significant advantages over conventional frame-based cameras, such as a higher dynamic range and an extremely faster data rate, making them particularly useful in scenarios involving fast motion or challenging lighting conditions. Spiking neural networks (SNNs) share similar asynchronous and sparse characteristics and are well-suited for processing data from event cameras. Inspired by the potential of transformers and spike-driven transformers (spikeformers) in other computer vision tasks, we propose two solutions for fast and robust optical flow estimation for event cameras: STTFlowNet and SDformerFlow. STTFlowNet adopts a U-shaped artificial neural network (ANN) architecture with spatiotemporal shifted window self-attention (swin) transformer encoders, while SDformerFlow presents its fully spiking counterpart, incorporating swin spikeformer encoders. Furthermore, we present two variants of the spiking version with different neuron models. Our work is the first to make use of spikeformers for dense optical flow estimation. We conduct end-to-end training for all models using supervised learning. Our results yield state-of-the-art performance among SNN-based event optical flow methods on both the DSEC and MVSEC datasets, and show significant reduction in power consumption compared to the equivalent ANNs.
comment: Under Review
☆ Site-Specific Color Features of Green Coffee Beans
Coffee is one of the most valuable primary commodities. Despite this, the common selection technique of green coffee beans relies on personnel visual inspection, which is labor-intensive and subjective. Therefore, an efficient way to evaluate the quality of beans is needed. In this paper, we demonstrate a site-independent approach to find site-specific color features of the seed coat in qualified green coffee beans. We then propose two evaluation schemes for green coffee beans based on this site-specific color feature of qualified beans. Due to the site-specific properties of these color features, machine learning classifiers indicate that compared with the existing evaluation schemes of beans, our evaluation schemes have the advantages of being simple, having less computational costs, and having universal applicability. Finally, this site-specific color feature can distinguish qualified beans from different growing sites. Moreover, this function can prevent cheating in the coffee business and is unique to our evaluation scheme of beans.
comment: 21 pages, 7 figures
☆ D4: Text-guided diffusion model-based domain adaptive data augmentation for vineyard shoot detection
In an agricultural field, plant phenotyping using object detection models is gaining attention. However, collecting the training data necessary to create generic and high-precision models is extremely challenging due to the difficulty of annotation and the diversity of domains. Furthermore, it is difficult to transfer training data across different crops, and although machine learning models effective for specific environments, conditions, or crops have been developed, they cannot be widely applied in actual fields. In this study, we propose a generative data augmentation method (D4) for vineyard shoot detection. D4 uses a pre-trained text-guided diffusion model based on a large number of original images culled from video data collected by unmanned ground vehicles or other means, and a small number of annotated datasets. The proposed method generates new annotated images with background information adapted to the target domain while retaining annotation information necessary for object detection. In addition, D4 overcomes the lack of training data in agriculture, including the difficulty of annotation and diversity of domains. We confirmed that this generative data augmentation method improved the mean average precision by up to 28.65% for the BBox detection task and the average precision by up to 13.73% for the keypoint detection task for vineyard shoot detection. Our generative data augmentation method D4 is expected to simultaneously solve the cost and domain diversity issues of training data generation in agriculture and improve the generalization performance of detection models.
☆ COLUMBUS: Evaluating COgnitive Lateral Understanding through Multiple-choice reBUSes AAAI-25
While visual question-answering (VQA) benchmarks have catalyzed the development of reasoning techniques, they have focused on vertical thinking. Effective problem-solving also necessitates lateral thinking, which remains understudied in AI and has not been used to test visual perception systems. To bridge this gap, we formulate visual lateral thinking as a multiple-choice question-answering task and describe a three-step taxonomy-driven methodology for instantiating task examples. Then, we develop COLUMBUS, a synthetic benchmark that applies the task pipeline to create QA sets with text and icon rebus puzzles based on publicly available collections of compounds and common phrases. COLUMBUS comprises over 1,000 puzzles, each with four answer candidates. While the SotA vision-language models (VLMs) achieve decent performance, our evaluation demonstrates a substantial gap between humans and models. VLMs benefit from human-curated descriptions but struggle to self-generate such representations at the right level of abstraction.
comment: 18 pages, 10 figures, submitted to AAAI-25
☆ EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution AAAI 2025
Single hyperspectral image super-resolution (single-HSI-SR) aims to improve the resolution of a single input low-resolution HSI. Due to the bottleneck of data scarcity, the development of single-HSI-SR lags far behind that of RGB natural images. In recent years, research on RGB SR has shown that models pre-trained on large-scale benchmark datasets can greatly improve performance on unseen data, which may stand as a remedy for HSI. But how can we transfer the pre-trained RGB model to HSI, to overcome the data-scarcity bottleneck? Because of the significant difference in the channels between the pre-trained RGB model and the HSI, the model cannot focus on the correlation along the spectral dimension, thus limiting its ability to utilize on HSI. Inspired by the HSI spatial-spectral decoupling, we propose a new framework that first fine-tunes the pre-trained model with the spatial components (known as eigenimages), and then infers on unseen HSI using an iterative spectral regularization (ISR) to maintain the spectral correlation. The advantages of our method lie in: 1) we effectively inject the spatial texture processing capabilities of the pre-trained RGB model into HSI while keeping spectral fidelity, 2) learning in the spectral-decorrelated domain can improve the generalizability to spectral-agnostic data, and 3) our inference in the eigenimage domain naturally exploits the spectral low-rank property of HSI, thereby reducing the complexity. This work bridges the gap between pre-trained RGB models and HSI via eigenimages, addressing the issue of limited HSI training data, hence the name EigenSR. Extensive experiments show that EigenSR outperforms the state-of-the-art (SOTA) methods in both spatial and spectral metrics. Our code will be released.
comment: Submitted to AAAI 2025
☆ On Evaluation of Vision Datasets and Models using Human Competency Frameworks
Evaluating models and datasets in computer vision remains a challenging task, with most leaderboards relying solely on accuracy. While accuracy is a popular metric for model evaluation, it provides only a coarse assessment by considering a single model's score on all dataset items. This paper explores Item Response Theory (IRT), a framework that infers interpretable latent parameters for an ensemble of models and each dataset item, enabling richer evaluation and analysis beyond the single accuracy number. Leveraging IRT, we assess model calibration, select informative data subsets, and demonstrate the usefulness of its latent parameters for analyzing and comparing models and datasets in computer vision.
☆ PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation
Plant diseases pose significant threats to agriculture. It necessitates proper diagnosis and effective treatment to safeguard crop yields. To automate the diagnosis process, image segmentation is usually adopted for precisely identifying diseased regions, thereby advancing precision agriculture. Developing robust image segmentation models for plant diseases demands high-quality annotations across numerous images. However, existing plant disease datasets typically lack segmentation labels and are often confined to controlled laboratory settings, which do not adequately reflect the complexity of natural environments. Motivated by this fact, we established PlantSeg, a large-scale segmentation dataset for plant diseases. PlantSeg distinguishes itself from existing datasets in three key aspects. (1) Annotation type: Unlike the majority of existing datasets that only contain class labels or bounding boxes, each image in PlantSeg includes detailed and high-quality segmentation masks, associated with plant types and disease names. (2) Image source: Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images. This choice enhances the practical applicability, as the trained models can be applied for integrated disease management. (3) Scale: PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type. Extensive technical experiments validate the high quality of PlantSeg's annotations. This dataset not only allows researchers to evaluate their image classification methods but also provides a critical foundation for developing and benchmarking advanced plant disease segmentation algorithms.
☆ MultiCounter: Multiple Action Agnostic Repetition Counting in Untrimmed Videos
Multi-instance Repetitive Action Counting (MRAC) aims to estimate the number of repetitive actions performed by multiple instances in untrimmed videos, commonly found in human-centric domains like sports and exercise. In this paper, we propose MultiCounter, a fully end-to-end deep learning framework that enables simultaneous detection, tracking, and counting of repetitive actions of multiple human instances. Specifically, MultiCounter incorporates two novel modules: 1) mixed spatiotemporal interaction for efficient context correlation across consecutive frames, and 2) task-specific heads for accurate perception of periodic boundaries and generalization for action-agnostic human instances. We train MultiCounter on a synthetic dataset called MultiRep generated from annotated real-world videos. Experiments on the MultiRep dataset validate the fundamental challenge of MRAC tasks and showcase the superiority of our proposed model. Compared to ByteTrack+RepNet, a solution that combines an advanced tracker with a single repetition counter, MultiCounter substantially improves Period-mAP by 41.0%, reduces AvgMAE by 58.6%, and increases AvgOBO 1.48 times. This sets a new benchmark in the field of MRAC. Moreover, MultiCounter runs in real-time on a commodity GPU server and is insensitive to the number of human instances in a video.
comment: Accepted by ECAI 2024
☆ Dense Hand-Object(HO) GraspNet with Full Grasping Taxonomy and Dynamics ECCV
Existing datasets for 3D hand-object interaction are limited either in the data cardinality, data variations in interaction scenarios, or the quality of annotations. In this work, we present a comprehensive new training dataset for hand-object interaction called HOGraspNet. It is the only real dataset that captures full grasp taxonomies, providing grasp annotation and wide intraclass variations. Using grasp taxonomies as atomic actions, their space and time combinatorial can represent complex hand activities around objects. We select 22 rigid objects from the YCB dataset and 8 other compound objects using shape and size taxonomies, ensuring coverage of all hand grasp configurations. The dataset includes diverse hand shapes from 99 participants aged 10 to 74, continuous video frames, and a 1.5M RGB-Depth of sparse frames with annotations. It offers labels for 3D hand and object meshes, 3D keypoints, contact maps, and \emph{grasp labels}. Accurate hand and object 3D meshes are obtained by fitting the hand parametric model (MANO) and the hand implicit function (HALO) to multi-view RGBD frames, with the MoCap system only for objects. Note that HALO fitting does not require any parameter tuning, enabling scalability to the dataset's size with comparable accuracy to MANO. We evaluate HOGraspNet on relevant tasks: grasp classification and 3D hand pose estimation. The result shows performance variations based on grasp type and object class, indicating the potential importance of the interaction space captured by our dataset. The provided data aims at learning universal shape priors or foundation models for 3D hand-object interaction. Our dataset and code are available at https://hograspnet2024.github.io/.
comment: 14 pages except for references. It will be published at European Conference on Computer Vision(ECCV) 2024
☆ BFA-YOLO: Balanced multiscale object detection network for multi-view building facade attachments detection
Detection of building facade attachments such as doors, windows, balconies, air conditioner units, billboards, and glass curtain walls plays a pivotal role in numerous applications. Building facade attachments detection aids in vbuilding information modeling (BIM) construction and meeting Level of Detail 3 (LOD3) standards. Yet, it faces challenges like uneven object distribution, small object detection difficulty, and background interference. To counter these, we propose BFA-YOLO, a model for detecting facade attachments in multi-view images. BFA-YOLO incorporates three novel innovations: the Feature Balanced Spindle Module (FBSM) for addressing uneven distribution, the Target Dynamic Alignment Task Detection Head (TDATH) aimed at improving small object detection, and the Position Memory Enhanced Self-Attention Mechanism (PMESA) to combat background interference, with each component specifically designed to solve its corresponding challenge. Detection efficacy of deep network models deeply depends on the dataset's characteristics. Existing open source datasets related to building facades are limited by their single perspective, small image pool, and incomplete category coverage. We propose a novel method for building facade attachments detection dataset construction and construct the BFA-3D dataset for facade attachments detection. The BFA-3D dataset features multi-view, accurate labels, diverse categories, and detailed classification. BFA-YOLO surpasses YOLOv8 by 1.8% and 2.9% in mAP@0.5 on the multi-view BFA-3D and street-view Facade-WHU datasets, respectively. These results underscore BFA-YOLO's superior performance in detecting facade attachments.
comment: 22 pages
☆ Towards Energy-Efficiency by Navigating the Trilemma of Energy, Latency, and Accuracy
Extended Reality (XR) enables immersive experiences through untethered headsets but suffers from stringent battery and resource constraints. Energy-efficient design is crucial to ensure both longevity and high performance in XR devices. However, latency and accuracy are often prioritized over energy, leading to a gap in achieving energy efficiency. This paper examines scene reconstruction, a key building block for immersive XR experiences, and demonstrates how energy efficiency can be achieved by navigating the trilemma of energy, latency, and accuracy. We explore three classes of energy-oriented optimizations, covering the algorithm, execution, and data, that reveal a broad design space through configurable parameters. Our resulting 72 designs expose a wide range of latency and energy trade-offs, with a smaller range of accuracy loss. We identify a Pareto-optimal curve and show that the designs on the curve are achievable only through synergistic co-optimization of all three optimization classes and by considering the latency and accuracy needs of downstream scene reconstruction consumers. Our analysis covering various use cases and measurements on an embedded class system shows that, relative to the baseline, our designs offer energy benefits of up to 60X with potential latency range of 4X slowdown to 2X speedup. Detailed exploration of a use case across representative data sequences from ScanNet showed about 25X energy savings with 1.5X latency reduction and negligible reconstruction quality loss.
comment: ISMAR 2024
☆ 3D-GP-LMVIC: Learning-based Multi-View Image Coding with 3D Gaussian Geometric Priors
Multi-view image compression is vital for 3D-related applications. To effectively model correlations between views, existing methods typically predict disparity between two views on a 2D plane, which works well for small disparities, such as in stereo images, but struggles with larger disparities caused by significant view changes. To address this, we propose a novel approach: learning-based multi-view image coding with 3D Gaussian geometric priors (3D-GP-LMVIC). Our method leverages 3D Gaussian Splatting to derive geometric priors of the 3D scene, enabling more accurate disparity estimation across views within the compression model. Additionally, we introduce a depth map compression model to reduce redundancy in geometric information between views. A multi-view sequence ordering method is also proposed to enhance correlations between adjacent views. Experimental results demonstrate that 3D-GP-LMVIC surpasses both traditional and learning-based methods in performance, while maintaining fast encoding and decoding speed.
comment: 19pages, 8 figures, conference
☆ Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision
Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. Recently, deep learning approaches have shown promising results in this domain. However, these methods heavily rely on extensive manual annotations, which are particularly cumbersome and resource-intensive for infrared small targets owing to their minute sizes. To address this limitation, we introduce a Hybrid Mask Generation (HMG) approach that recovers high-quality masks for each target from only a single-point label for network training. Specifically, our HMG approach consists of a handcrafted Points-to-Mask Generation strategy coupled with a pseudo mask updating strategy to recover and refine pseudo masks from point labels. The Points-to-Mask Generation strategy divides two distinct stages: Points-to-Box conversion, where individual point labels are transformed into bounding boxes, and subsequently, Box-to-Mask prediction, where these bounding boxes are elaborated into precise masks. The mask updating strategy integrates the complementary strengths of handcrafted and deep-learning algorithms to iteratively refine the initial pseudo masks. Experimental results across three datasets demonstrate that our method outperforms the existing methods for infrared small target detection with single-point supervision.
comment: 9 pages, 5 figures
☆ Qihoo-T2X: An Efficiency-Focused Diffusion Transformer via Proxy Tokens for Text-to-Any-Task
The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy Token Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, in each transformer block, we randomly sample one token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 48% reduction compared to DiT and a 35% reduction compared to Pixart-alpha). Our source code is available at https://github.com/360CVGroup/Qihoo-T2X.
☆ One-Shot Diffusion Mimicker for Handwritten Text Generation ECCV 2024
Existing handwritten text generation methods often require more than ten handwriting samples as style references. However, in practical applications, users tend to prefer a handwriting generation model that operates with just a single reference sample for its convenience and efficiency. This approach, known as "one-shot generation", significantly simplifies the process but poses a significant challenge due to the difficulty of accurately capturing a writer's style from a single sample, especially when extracting fine details from the characters' edges amidst sparse foreground and undesired background noise. To address this problem, we propose a One-shot Diffusion Mimicker (One-DM) to generate handwritten text that can mimic any calligraphic style with only one reference sample. Inspired by the fact that high-frequency information of the individual sample often contains distinct style patterns (e.g., character slant and letter joining), we develop a novel style-enhanced module to improve the style extraction by incorporating high-frequency components from a single sample. We then fuse the style features with the text content as a merged condition for guiding the diffusion model to produce high-quality handwritten text images. Extensive experiments demonstrate that our method can successfully generate handwriting scripts with just one sample reference in multiple languages, even outperforming previous methods using over ten samples. Our source code is available at https://github.com/dailenson/One-DM.
comment: To appear in ECCV 2024
☆ DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have significantly enhanced the cotrollable generation of streetscapes for and facilitated downstream perception and planning tasks. However, challenges such as maintaining temporal coherence, generating long videos, and accurately modeling driving scenes persist. Accordingly, we propose DreamForge, an advanced diffusion-based autoregressive video generation model designed for the long-term generation of 3D-controllable and extensible video. In terms of controllability, our DreamForge supports flexible conditions such as text descriptions, camera poses, 3D bounding boxes, and road layouts, while also providing perspective guidance to produce driving scenes that are both geometrically and contextually accurate. For consistency, we ensure inter-view consistency through cross-view attention and temporal coherence via an autoregressive architecture enhanced with motion cues. Codes will be available at https://github.com/PJLab-ADG/DriveArena.
comment: Second place solution for W-CODA-Track2
☆ Boundary feature fusion network for tooth image segmentation MICCAI
Tooth segmentation is a critical technology in the field of medical image segmentation, with applications ranging from orthodontic treatment to human body identification and dental pathology assessment. Despite the development of numerous tooth image segmentation models by researchers, a common shortcoming is the failure to account for the challenges of blurred tooth boundaries. Dental diagnostics require precise delineation of tooth boundaries. This paper introduces an innovative tooth segmentation network that integrates boundary information to address the issue of indistinct boundaries between teeth and adjacent tissues. This network's core is its boundary feature extraction module, which is designed to extract detailed boundary information from high-level features. Concurrently, the feature cross-fusion module merges detailed boundary and global semantic information in a synergistic way, allowing for stepwise layer transfer of feature information. This method results in precise tooth segmentation. In the most recent STS Data Challenge, our methodology was rigorously tested and received a commendable overall score of 0.91. When compared to other existing approaches, this score demonstrates our method's significant superiority in segmenting tooth boundaries.
comment: MICCAI workshop,see https://link.springer.com/book/9783031723957
☆ Bi-modality Images Transfer with a Discrete Process Matching Method
Recently, medical image synthesis gains more and more popularity, along with the rapid development of generative models. Medical image synthesis aims to generate an unacquired image modality, often from other observed data modalities. Synthesized images can be used for clinical diagnostic assistance, data augmentation for model training and validation or image quality improving. In the meanwhile, the flow-based models are among the successful generative models for the ability of generating realistic and high-quality synthetic images. However, most flow-based models require to calculate flow ordinary different equation (ODE) evolution steps in transfer process, for which the performances are significantly limited by heavy computation time due to a large number of time iterations. In this paper, we propose a novel flow-based model, namely Discrete Process Matching (DPM) to accomplish the bi-modality image transfer tasks. Different to other flow matching based models, we propose to utilize both forward and backward ODE flow and enhance the consistency on the intermediate images of few discrete time steps, resulting in a transfer process with much less iteration steps while maintaining high-quality generations for both modalities. Our experiments on three datasets of MRI T1/T2 and CT/MRI demonstrate that DPM outperforms other state-of-the-art flow-based methods for bi-modality image synthesis, achieving higher image quality with less computation time cost.
☆ Generating Faithful and Salient Text from Multimodal Data
While large multimodal models (LMMs) have obtained strong performance on many multimodal tasks, they may still hallucinate while generating text. Their performance on detecting salient features from visual data is also unclear. In this paper, we develop a framework to generate faithful and salient text from mixed-modal data, which includes images and structured data ( represented in knowledge graphs or tables). Specifically, we train a small vision critic model to identify hallucinated and non-salient features from the image modality. The critic model also generates a list of salient image features. This information is used in the post editing step to improve the generation quality. Experiments on two datasets show that our framework improves LMMs' generation quality on both faithfulness and saliency, outperforming recent techniques aimed at reducing hallucination.
☆ FODA-PG for Enhanced Medical Imaging Narrative Generation: Adaptive Differentiation of Normal and Abnormal Attributes
Automatic Medical Imaging Narrative generation aims to alleviate the workload of radiologists by producing accurate clinical descriptions directly from radiological images. However, the subtle visual nuances and domain-specific terminology in medical images pose significant challenges compared to generic image captioning tasks. Existing approaches often neglect the vital distinction between normal and abnormal findings, leading to suboptimal performance. In this work, we propose FODA-PG, a novel Fine-grained Organ-Disease Adaptive Partitioning Graph framework that addresses these limitations through domain-adaptive learning. FODA-PG constructs a granular graphical representation of radiological findings by separating disease-related attributes into distinct "disease-specific" and "disease-free" categories based on their clinical significance and location. This adaptive partitioning enables our model to capture the nuanced differences between normal and pathological states, mitigating the impact of data biases. By integrating this fine-grained semantic knowledge into a powerful transformer-based architecture and providing rigorous mathematical justifications for its effectiveness, FODA-PG generates precise and clinically coherent reports with enhanced generalization capabilities. Extensive experiments on the IU-Xray and MIMIC-CXR benchmarks demonstrate the superiority of our approach over state-of-the-art methods, highlighting the importance of domain adaptation in medical report generation.
♻ ☆ UV-Mamba: A DCN-Enhanced State Space Model for Urban Village Boundary Identification in High-Resolution Remote Sensing Images
Owing to the diverse geographical environments, intricate landscapes, and high-density settlements, the automatic identification of urban village boundaries using remote sensing images is a highly challenging task. This paper proposes a novel and efficient neural network model called UV-Mamba for accurate boundary detection in high-resolution remote sensing images. UV-Mamba mitigates the memory loss problem in long sequence modeling, which arises in state space model (SSM) with increasing image size, by incorporating deformable convolutions (DCN). Its architecture utilizes an encoder-decoder framework, includes an encoder with four deformable state space augmentation (DSSA) blocks for efficient multi-level semantic extraction and a decoder to integrate the extracted semantic information. We conducted experiments on the Beijing and Xi'an datasets, and the results show that UV-Mamba achieves state-of-the-art performance. Specifically, our model achieves 73.3% and 78.1% IoU on the Beijing and Xi'an datasets, respectively, representing improvements of 1.2% and 3.4% IoU over the previous best model, while also being 6x faster in inference speed and 40x smaller in parameter count. Source code and pre-trained models are available in the supplementary material.
comment: 5 pages, 4 figures, 3 tables
♻ ☆ 3D Single-object Tracking in Point Clouds with High Temporal Variation ECCV24
The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
comment: Accepted by ECCV24
♻ ☆ iSeg: An Iterative Refinement-based Framework for Training-free Segmentation
Stable diffusion has demonstrated strong image synthesis ability to given text descriptions, suggesting it to contain strong semantic clue for grouping objects. Inspired by this, researchers have explored employing stable diffusion for trainingfree segmentation. Most existing approaches either simply employ cross-attention map or refine it by self-attention map, to generate segmentation masks. We believe that iterative refinement with self-attention map would lead to better results. However, we mpirically demonstrate that such a refinement is sub-optimal likely due to the self-attention map containing irrelevant global information which hampers accurately refining cross-attention map with multiple iterations. To address this, we propose an iterative refinement framework for training-free segmentation, named iSeg, having an entropy-reduced self-attention module which utilizes a gradient descent scheme to reduce the entropy of self-attention map, thereby suppressing the weak responses corresponding to irrelevant global information. Leveraging the entropy-reduced self-attention module, our iSeg stably improves refined crossattention map with iterative refinement. Further, we design a category-enhanced cross-attention module to generate accurate cross-attention map, providing a better initial input for iterative refinement. Extensive experiments across different datasets and diverse segmentation tasks reveal the merits of proposed contributions, leading to promising performance on diverse segmentation tasks. For unsupervised semantic segmentation on Cityscapes, our iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature. Moreover, our proposed iSeg can support segmentation with different kind of images and interactions.
comment: Project Page: https://linsun449.github.io/iSeg/ Code: https://github.com/linsun449/iseg.code
♻ ☆ HiPrompt: Tuning-free Higher-Resolution Generation with Hierarchical MLLM Prompts
The potential for higher-resolution image generation using pretrained diffusion models is immense, yet these models often struggle with issues of object repetition and structural artifacts especially when scaling to 4K resolution and higher. We figure out that the problem is caused by that, a single prompt for the generation of multiple scales provides insufficient efficacy. In response, we propose HiPrompt, a new tuning-free solution that tackles the above problems by introducing hierarchical prompts. The hierarchical prompts offer both global and local guidance. Specifically, the global guidance comes from the user input that describes the overall content, while the local guidance utilizes patch-wise descriptions from MLLMs to elaborately guide the regional structure and texture generation. Furthermore, during the inverse denoising process, the generated noise is decomposed into low- and high-frequency spatial components. These components are conditioned on multiple prompt levels, including detailed patch-wise descriptions and broader image-level prompts, facilitating prompt-guided denoising under hierarchical semantic guidance. It further allows the generation to focus more on local spatial regions and ensures the generated images maintain coherent local and global semantics, structures, and textures with high definition. Extensive experiments demonstrate that HiPrompt outperforms state-of-the-art works in higher-resolution image generation, significantly reducing object repetition and enhancing structural quality.
comment: https://liuxinyv.github.io/HiPrompt/
♻ ☆ MSLIQA: Enhancing Learning Representations for Image Quality Assessment through Multi-Scale Learning
No-Reference Image Quality Assessment (NR-IQA) remains a challenging task due to the diversity of distortions and the lack of large annotated datasets. Many studies have attempted to tackle these challenges by developing more accurate NR-IQA models, often employing complex and computationally expensive networks, or by bridging the domain gap between various distortions to enhance performance on test datasets. In our work, we improve the performance of a generic lightweight NR-IQA model by introducing a novel augmentation strategy that boosts its performance by almost 28\%. This augmentation strategy enables the network to better discriminate between different distortions in various parts of the image by zooming in and out. Additionally, the inclusion of test-time augmentation further enhances performance, making our lightweight network's results comparable to the current state-of-the-art models, simply through the use of augmentations.
♻ ☆ LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model
Recent advancements in the field of No-Reference Image Quality Assessment (NR-IQA) using deep learning techniques demonstrate high performance across multiple open-source datasets. However, such models are typically very large and complex making them not so suitable for real-world deployment, especially on resource- and battery-constrained mobile devices. To address this limitation, we propose a compact, lightweight NR-IQA model that achieves state-of-the-art (SOTA) performance on ECCV AIM UHD-IQA challenge validation and test datasets while being also nearly 5.7 times faster than the fastest SOTA model. Our model features a dual-branch architecture, with each branch separately trained on synthetically and authentically distorted images which enhances the model's generalizability across different distortion types. To improve robustness under diverse real-world visual conditions, we additionally incorporate multiple color spaces during the training process. We also demonstrate the higher accuracy of recently proposed Kolmogorov-Arnold Networks (KANs) for final quality regression as compared to the conventional Multi-Layer Perceptrons (MLPs). Our evaluation considering various open-source datasets highlights the practical, high-accuracy, and robust performance of our proposed lightweight model. Code: https://github.com/nasimjamshidi/LAR-IQA.
♻ ☆ Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning
Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
comment: 14 pages, 3 figures
♻ ☆ 3D Gaussian Splatting for Large-scale 3D Surface Reconstruction from Aerial Images
Recently, 3D Gaussian Splatting (3DGS) has garnered significant attention. However, the unstructured nature of 3DGS poses challenges for large-scale surface reconstruction from aerial images. To address this gap, we propose the first large-scale surface reconstruction method for multi-view stereo (MVS) aerial images based on 3DGS, named Aerial Gaussian Splatting (AGS). Initially, we introduce a data chunking method tailored for large-scale aerial imagery, making the modern 3DGS technology feasible for surface reconstruction over extensive scenes. Additionally, we integrate the Ray-Gaussian Intersection method to obtain normal and depth information, facilitating geometric constraints. Finally, we introduce a multi-view geometric consistency constraint to enhance global geometric consistency and improve reconstruction accuracy. Our experiments on multiple datasets demonstrate for the first time that the GS-based technique can match traditional aerial MVS methods on geometric accuracy, and beat state-of-the-art GS-based methods on geometry and rendering quality.
comment: In the writing, some parts of the book were wrong and needed a large revision
♻ ☆ Training-Free Condition Video Diffusion Models for single frame Spatial-Semantic Echocardiogram Synthesis MICCAI 2024
Conditional video diffusion models (CDM) have shown promising results for video synthesis, potentially enabling the generation of realistic echocardiograms to address the problem of data scarcity. However, current CDMs require a paired segmentation map and echocardiogram dataset. We present a new method called Free-Echo for generating realistic echocardiograms from a single end-diastolic segmentation map without additional training data. Our method is based on the 3D-Unet with Temporal Attention Layers model and is conditioned on the segmentation map using a training-free conditioning method based on SDEdit. We evaluate our model on two public echocardiogram datasets, CAMUS and EchoNet-Dynamic. We show that our model can generate plausible echocardiograms that are spatially aligned with the input segmentation map, achieving performance comparable to training-based CDMs. Our work opens up new possibilities for generating echocardiograms from a single segmentation map, which can be used for data augmentation, domain adaptation, and other applications in medical imaging. Our code is available at \url{https://github.com/gungui98/echo-free}
comment: Accepted to MICCAI 2024
♻ ☆ Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
♻ ☆ Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts ECCV
The challenge of Out-Of-Distribution (OOD) robustness remains a critical hurdle towards deploying deep vision models. Vision-Language Models (VLMs) have recently achieved groundbreaking results. VLM-based open-vocabulary object detection extends the capabilities of traditional object detection frameworks, enabling the recognition and classification of objects beyond predefined categories. Investigating OOD robustness in recent open-vocabulary object detection is essential to increase the trustworthiness of these models. This study presents a comprehensive robustness evaluation of the zero-shot capabilities of three recent open-vocabulary (OV) foundation object detection models: OWL-ViT, YOLO World, and Grounding DINO. Experiments carried out on the robustness benchmarks COCO-O, COCO-DC, and COCO-C encompassing distribution shifts due to information loss, corruption, adversarial attacks, and geometrical deformation, highlighting the challenges of the model's robustness to foster the research for achieving robustness. Project page: https://prakashchhipa.github.io/projects/ovod_robustness
comment: Accepted at 2024 European Conference on Computer Vision Workshops (ECCVW). Project page - https://prakashchhipa.github.io/projects/ovod_robustness
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Zero-Shot Video Editing through Adaptive Sliding Score Distillation
The rapidly evolving field of Text-to-Video generation (T2V) has catalyzed renewed interest in controllable video editing research. While the application of editing prompts to guide diffusion model denoising has gained prominence, mirroring advancements in image editing, this noise-based inference process inherently compromises the original video's integrity, resulting in unintended over-editing and temporal discontinuities. To address these challenges, this study proposes a novel paradigm of video-based score distillation, facilitating direct manipulation of original video content. Specifically, distinguishing it from image-based score distillation, we propose an Adaptive Sliding Score Distillation strategy, which incorporates both global and local video guidance to reduce the impact of editing errors. Combined with our proposed Image-based Joint Guidance mechanism, it has the ability to mitigate the inherent instability of the T2V model and single-step sampling. Additionally, we design a Weighted Attention Fusion module to further preserve the key features of the original video and avoid over-editing. Extensive experiments demonstrate that these strategies effectively address existing challenges, achieving superior performance compared to current state-of-the-art methods.
♻ ☆ UniPortrait: A Unified Framework for Identity-Preserving Single- and Multi-Human Image Personalization
This paper presents UniPortrait, an innovative human image personalization framework that unifies single- and multi-ID customization with high face fidelity, extensive facial editability, free-form input description, and diverse layout generation. UniPortrait consists of only two plug-and-play modules: an ID embedding module and an ID routing module. The ID embedding module extracts versatile editable facial features with a decoupling strategy for each ID and embeds them into the context space of diffusion models. The ID routing module then combines and distributes these embeddings adaptively to their respective regions within the synthesized image, achieving the customization of single and multiple IDs. With a carefully designed two-stage training scheme, UniPortrait achieves superior performance in both single- and multi-ID customization. Quantitative and qualitative experiments demonstrate the advantages of our method over existing approaches as well as its good scalability, e.g., the universal compatibility with existing generative control tools. The project page is at https://aigcdesigngroup.github.io/UniPortrait-Page/ .
comment: Tech report; Project page: https://aigcdesigngroup.github.io/UniPortrait-Page/
♻ ☆ Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
Predicting realistic ground views from satellite imagery in urban scenes is a challenging task due to the significant view gaps between satellite and ground-view images. We propose a novel pipeline to tackle this challenge, by generating geospecifc views that maximally respect the weak geometry and texture from multi-view satellite images. Different from existing approaches that hallucinate images from cues such as partial semantics or geometry from overhead satellite images, our method directly predicts ground-view images at geolocation by using a comprehensive set of information from the satellite image, resulting in ground-level images with a resolution boost at a factor of ten or more. We leverage a novel building refinement method to reduce geometric distortions in satellite data at ground level, which ensures the creation of accurate conditions for view synthesis using diffusion networks. Moreover, we proposed a novel geospecific prior, which prompts distribution learning of diffusion models to respect image samples that are closer to the geolocation of the predicted images. We demonstrate our pipeline is the first to generate close-to-real and geospecific ground views merely based on satellite images.
comment: 11 figures
♻ ☆ HSTR-Net: Reference Based Video Super-resolution with Dual Cameras
High-spatio-temporal resolution (HSTR) video recording plays a crucial role in enhancing various imagery tasks that require fine-detailed information. State-of-the-art cameras provide this required high frame-rate and high spatial resolution together, albeit at a high cost. To alleviate this issue, this paper proposes a dual camera system for the generation of HSTR video using reference-based super-resolution (RefSR). One camera captures high spatial resolution low frame rate (HSLF) video while the other captures low spatial resolution high frame rate (LSHF) video simultaneously for the same scene. A novel deep learning architecture is proposed to fuse HSLF and LSHF video feeds and synthesize HSTR video frames. The proposed model combines optical flow estimation and (channel-wise and spatial) attention mechanisms to capture the fine motion and complex dependencies between frames of the two video feeds. Simulations show that the proposed model provides significant improvement over existing reference-based SR techniques in terms of PSNR and SSIM metrics. The method also exhibits sufficient frames per second (FPS) for aerial monitoring when deployed on a power-constrained drone equipped with dual cameras.
comment: 15 pages, 8 figures, 8 tables
♻ ☆ LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
With advances in digital technology, the classification of medical images has become a crucial step for image-based clinical decision support systems. Automatic medical image classification represents a pivotal domain where the use of AI holds the potential to create a significant social impact. However, several challenges act as obstacles to the development of practical and effective solutions. One of these challenges is the prevalent class imbalance problem in most medical imaging datasets. As a result, existing AI techniques, particularly deep-learning-based methodologies, often underperform in such scenarios. In this study, we propose a novel framework called Large Margin aware Focal (LMF) loss to mitigate the class imbalance problem in medical imaging. The LMF loss represents a linear combination of two loss functions optimized by two hyperparameters. This framework harnesses the distinct characteristics of both loss functions by enforcing wider margins for minority classes while simultaneously emphasizing challenging samples found in the datasets. We perform rigorous experiments on three neural network architectures and with four medical imaging datasets. We provide empirical evidence that our proposed framework consistently outperforms other baseline methods, showing an improvement of 2%-9% in macro-f1 scores. Through class-wise analysis of f1 scores, we also demonstrate how the proposed framework can significantly improve performance for minority classes. The results of our experiments show that our proposed framework can perform consistently well across different architectures and datasets. Overall, our study demonstrates a simple and effective approach to addressing the class imbalance problem in medical imaging datasets. We hope our work will inspire new research toward a more generalized approach to medical image classification.
comment: 21 pages, 4 figures, a detailed version of our previous submission with additional findings
♻ ☆ A Unified Representation Framework for the Evaluation of Optical Music Recognition Systems
Modern-day Optical Music Recognition (OMR) is a fairly fragmented field. Most OMR approaches use datasets that are independent and incompatible between each other, making it difficult to both combine them and compare recognition systems built upon them. In this paper we identify the need of a common music representation language and propose the Music Tree Notation (MTN) format, with the idea to construct a common endpoint for OMR research that allows coordination, reuse of technology and fair evaluation of community efforts. This format represents music as a set of primitives that group together into higher-abstraction nodes, a compromise between the expression of fully graph-based and sequential notation formats. We have also developed a specific set of OMR metrics and a typeset score dataset as a proof of concept of this idea.
comment: 18 pages, 4 figures, 3 tables, submitted (under review) for the International Journal in Document Analysis and Recognition
♻ ☆ RSF-Conv: Rotation-and-Scale Equivariant Fourier Parameterized Convolution for Retinal Vessel Segmentation
Retinal vessel segmentation is of great clinical significance for the diagnosis of many eye-related diseases, but it is still a formidable challenge due to the intricate vascular morphology. With the skillful characterization of the translation symmetry existing in retinal vessels, convolutional neural networks (CNNs) have achieved great success in retinal vessel segmentation. However, the rotation-and-scale symmetry, as a more widespread image prior in retinal vessels, fails to be characterized by CNNs. Therefore, we propose a rotation-and-scale equivariant Fourier parameterized convolution (RSF-Conv) specifically for retinal vessel segmentation, and provide the corresponding equivariance analysis. As a general module, RSF-Conv can be integrated into existing networks in a plug-and-play manner while significantly reducing the number of parameters. For instance, we replace the traditional convolution filters in U-Net and Iter-Net with RSF-Convs, and faithfully conduct comprehensive experiments. RSF-Conv+U-Net and RSF-Conv+Iter-Net not only have slight advantages under in-domain evaluation, but more importantly, outperform all comparison methods by a significant margin under out-of-domain evaluation. It indicates the remarkable generalization of RSF-Conv, which holds greater practical clinical significance for the prevalent cross-device and cross-hospital challenges in clinical practice. To comprehensively demonstrate the effectiveness of RSF-Conv, we also apply RSF-Conv+U-Net and RSF-Conv+Iter-Net to retinal artery/vein classification and achieve promising performance as well, indicating its clinical application potential.
♻ ☆ AdaNAT: Exploring Adaptive Policy for Token-Based Image Generation ECCV2024
Recent studies have demonstrated the effectiveness of token-based methods for visual content generation. As a representative work, non-autoregressive Transformers (NATs) are able to synthesize images with decent quality in a small number of steps. However, NATs usually necessitate configuring a complicated generation policy comprising multiple manually-designed scheduling rules. These heuristic-driven rules are prone to sub-optimality and come with the requirements of expert knowledge and labor-intensive efforts. Moreover, their one-size-fits-all nature cannot flexibly adapt to the diverse characteristics of each individual sample. To address these issues, we propose AdaNAT, a learnable approach that automatically configures a suitable policy tailored for every sample to be generated. In specific, we formulate the determination of generation policies as a Markov decision process. Under this framework, a lightweight policy network for generation can be learned via reinforcement learning. Importantly, we demonstrate that simple reward designs such as FID or pre-trained reward models, may not reliably guarantee the desired quality or diversity of generated samples. Therefore, we propose an adversarial reward design to guide the training of policy networks effectively. Comprehensive experiments on four benchmark datasets, i.e., ImageNet-256 & 512, MS-COCO, and CC3M, validate the effectiveness of AdaNAT. Code and pre-trained models will be released at https://github.com/LeapLabTHU/AdaNAT.
comment: Accepted by ECCV2024
♻ ☆ TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection
Task-oriented object detection aims to find objects suitable for accomplishing specific tasks. As a challenging task, it requires simultaneous visual data processing and reasoning under ambiguous semantics. Recent solutions are mainly all-in-one models. However, the object detection backbones are pre-trained without text supervision. Thus, to incorporate task requirements, their intricate models undergo extensive learning on a highly imbalanced and scarce dataset, resulting in capped performance, laborious training, and poor generalizability. In contrast, we propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection. Particularly for the latter, we resort to the recently successful large Vision-Language Models (VLMs) as our backbone, which provides rich semantic knowledge and a uniform embedding space for images and texts. Nevertheless, the naive application of VLMs leads to sub-optimal quality, due to the misalignment between embeddings of object images and their visual attributes, which are mainly adjective phrases. To this end, we design a transformer-based aligner after the pre-trained VLMs to re-calibrate both embeddings. Finally, we employ a trainable score function to post-process the VLM matching results for object selection. Experimental results demonstrate that our TaskCLIP outperforms the state-of-the-art DETR-based model TOIST by 3.5% and only requires a single NVIDIA RTX 4090 for both training and inference.
♻ ☆ Video alignment using unsupervised learning of local and global features
In this paper, we tackle the problem of video alignment, the process of matching the frames of a pair of videos containing similar actions. The main challenge in video alignment is that accurate correspondence should be established despite the differences in the execution processes and appearances between the two videos. We introduce an unsupervised method for alignment that uses global and local features of the frames. In particular, we introduce effective features for each video frame by means of three machine vision tools: person detection, pose estimation, and VGG network. Then the features are processed and combined to construct a multidimensional time series that represent the video. The resulting time series are used to align videos of the same actions using a novel version of dynamic time warping named Diagonalized Dynamic Time Warping(DDTW). The main advantage of our approach is that no training is required, which makes it applicable for any new type of action without any need to collect training samples for it. Additionally, our approach can be used for framewise labeling of action phases in a dataset with only a few labeled videos. For evaluation, we considered video synchronization and phase classification tasks on the Penn action and subset of UCF101 datasets. Also, for an effective evaluation of the video synchronization task, we present a new metric called Enclosed Area Error(EAE). The results show that our method outperforms previous state-of-the-art methods, such as TCC, and other self-supervised and weakly supervised methods.
comment: 11 pages, 6 figures
♻ ☆ EgoPoser: Robust Real-Time Egocentric Pose Estimation from Sparse and Intermittent Observations Everywhere ECCV 2024
Full-body egocentric pose estimation from head and hand poses alone has become an active area of research to power articulate avatar representations on headset-based platforms. However, existing methods over-rely on the indoor motion-capture spaces in which datasets were recorded, while simultaneously assuming continuous joint motion capture and uniform body dimensions. We propose EgoPoser to overcome these limitations with four main contributions. 1) EgoPoser robustly models body pose from intermittent hand position and orientation tracking only when inside a headset's field of view. 2) We rethink input representations for headset-based ego-pose estimation and introduce a novel global motion decomposition method that predicts full-body pose independent of global positions. 3) We enhance pose estimation by capturing longer motion time series through an efficient SlowFast module design that maintains computational efficiency. 4) EgoPoser generalizes across various body shapes for different users. We experimentally evaluate our method and show that it outperforms state-of-the-art methods both qualitatively and quantitatively while maintaining a high inference speed of over 600fps. EgoPoser establishes a robust baseline for future work where full-body pose estimation no longer needs to rely on outside-in capture and can scale to large-scale and unseen environments.
comment: Accepted by ECCV 2024, Code: https://siplab.org/projects/EgoPoser
♻ ☆ A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 200 benchmarks and evaluations for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
♻ ☆ Is my Data in your AI Model? Membership Inference Test with Application to Face Images
This article introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if given data was used during the training of AI/ML models. Specifically, we propose two MINT architectures designed to learn the distinct activation patterns that emerge when an Audited Model is exposed to data used during its training process. These architectures are based on Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The experimental framework focuses on the challenging task of Face Recognition, considering three state-of-the-art Face Recognition systems. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Different experimental scenarios are considered depending on the context of the AI model to test. Our proposed MINT approach achieves promising results, with up to 90% accuracy, indicating the potential to recognize if an AI model has been trained with specific data. The proposed MINT approach can serve to enforce privacy and fairness in several AI applications, e.g., revealing if sensitive or private data was used for training or tuning Large Language Models (LLMs).
comment: 12 pages including references and authors
♻ ☆ Training-free Camera Control for Video Generation
We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models. Unlike previous work, our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation. Instead, it can be plugged and played with most pretrained video diffusion models and generate camera controllable videos with a single image or text prompt as input. The inspiration of our work comes from the layout prior that intermediate latents hold towards generated results, thus rearranging noisy pixels in them will make output content reallocated as well. As camera move could also be seen as a kind of pixel rearrangement caused by perspective change, videos could be reorganized following specific camera motion if their noisy latents change accordingly. Established on this, we propose our method CamTrol, which enables robust camera control for video diffusion models. It is achieved by a two-stage process. First, we model image layout rearrangement through explicit camera movement in 3D point cloud space. Second, we generate videos with camera motion using layout prior of noisy latents formed by a series of rearranged images. Extensive experiments have demonstrated the robustness our method holds in controlling camera motion of generated videos. Furthermore, we show that our method can produce impressive results in generating 3D rotation videos with dynamic content. Project page at https://lifedecoder.github.io/CamTrol/.
♻ ☆ Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation IROS 2024
Autonomous robots are increasingly becoming a strong fixture in social environments. Effective crowd navigation requires not only safe yet fast planning, but should also enable interpretability and computational efficiency for working in real-time on embedded devices. In this work, we advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav. Different from conventional reinforcement learning-based crowd navigation methods, Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks. We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings, using up to 6 times fewer parameters than competitor state-of-the-art models. With our approach, it becomes even possible to obtain policies that work in 2-dimensional embedding spaces, opening up new possibilities for low-resource crowd navigation and model interpretability. Insightfully, the internal hyperbolic representation of Hyp2Nav correlates with how much attention the robot pays to the surrounding crowds, e.g. due to multiple people occluding its pathway or to a few of them showing colliding plans, rather than to its own planned route. The code is available at https://github.com/GDam90/hyp2nav.
comment: Accepted as oral at IROS 2024
Gaussian Splatting in Style
3D scene stylization extends the work of neural style transfer to 3D. A vital challenge in this problem is to maintain the uniformity of the stylized appearance across multiple views. A vast majority of the previous works achieve this by training a 3D model for every stylized image and a set of multi-view images. In contrast, we propose a novel architecture trained on a collection of style images that, at test time, produces real time high-quality stylized novel views. We choose the underlying 3D scene representation for our model as 3D Gaussian splatting. We take the 3D Gaussians and process them using a multi-resolution hash grid and a tiny MLP to obtain stylized views. The MLP is conditioned on different style codes for generalization to different styles during test time. The explicit nature of 3D Gaussians gives us inherent advantages over NeRF-based methods, including geometric consistency and a fast training and rendering regime. This enables our method to be useful for various practical use cases, such as augmented or virtual reality. We demonstrate that our method achieves state-of-the-art performance with superior visual quality on various indoor and outdoor real-world data.
comment: GCPR 2024
♻ ☆ Barbie: Text to Barbie-Style 3D Avatars
Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://xiaokunsun.github.io/Barbie.github.io/.
comment: 9 pages, 7 figures
♻ ☆ Scattering-induced entropy boost for highly-compressed optical sensing and encryption
Image sensing often relies on a high-quality machine vision system with a large field of view and high resolution. It requires fine imaging optics, has high computational costs, and requires a large communication bandwidth between image sensors and computing units. In this paper, we propose a novel image-free sensing framework for resource-efficient image classification, where the required number of measurements can be reduced by up to two orders of magnitude. In the proposed framework for single-pixel detection, the optical field for a target is first scattered by an optical diffuser and then two-dimensionally modulated by a spatial light modulator. The optical diffuser simultaneously serves as a compressor and an encryptor for the target information, effectively narrowing the field of view and improving the system's security. The one-dimensional sequence of intensity values, which is measured with time-varying patterns on the spatial light modulator, is then used to extract semantic information based on end-to-end deep learning. The proposed sensing framework is shown to obtain over a 95\% accuracy at sampling rates of 1% and 5% for classification on the MNIST dataset and the recognition of Chinese license plates, respectively, and the framework is up to 24% more efficient than the approach without an optical diffuser. The proposed framework represents a significant breakthrough in high-throughput machine intelligence for scene analysis with low bandwidth, low costs, and strong encryption.
♻ ☆ Segment Change Model (SCM) for Unsupervised Change detection in VHR Remote Sensing Images: a Case Study of Buildings RSS 2024
The field of Remote Sensing (RS) widely employs Change Detection (CD) on very-high-resolution (VHR) images. A majority of extant deep-learning-based methods hinge on annotated samples to complete the CD process. Recently, the emergence of Vision Foundation Model (VFM) enables zero-shot predictions in particular vision tasks. In this work, we propose an unsupervised CD method named Segment Change Model (SCM), built upon the Segment Anything Model (SAM) and Contrastive Language-Image Pre-training (CLIP). Our method recalibrates features extracted at different scales and integrates them in a top-down manner to enhance discriminative change edges. We further design an innovative Piecewise Semantic Attention (PSA) scheme, which can offer semantic representation without training, thereby minimize pseudo change phenomenon. Through conducting experiments on two public datasets, the proposed SCM increases the mIoU from 46.09% to 53.67% on the LEVIR-CD dataset, and from 47.56% to 52.14% on the WHU-CD dataset. Our codes are available at https://github.com/StephenApX/UCD-SCM.
comment: Published in: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
♻ ☆ Beware of Validation by Eye: Visual Validation of Linear Trends in Scatterplots
Visual validation of regression models in scatterplots is a common practice for assessing model quality, yet its efficacy remains unquantified. We conducted two empirical experiments to investigate individuals' ability to visually validate linear regression models (linear trends) and to examine the impact of common visualization designs on validation quality. The first experiment showed that the level of accuracy for visual estimation of slope (i.e., fitting a line to data) is higher than for visual validation of slope (i.e., accepting a shown line). Notably, we found bias toward slopes that are "too steep" in both cases. This lead to novel insights that participants naturally assessed regression with orthogonal distances between the points and the line (i.e., ODR regression) rather than the common vertical distances (OLS regression). In the second experiment, we investigated whether incorporating common designs for regression visualization (error lines, bounding boxes, and confidence intervals) would improve visual validation. Even though error lines reduced validation bias, results failed to show the desired improvements in accuracy for any design. Overall, our findings suggest caution in using visual model validation for linear trends in scatterplots.
comment: Preprint and Author Version of a Full Paper, accepted to the 2024 IEEE Visualization Conference (VIS)
♻ ☆ DEVIAS: Learning Disentangled Video Representations of Action and Scene ECCV 2024
Video recognition models often learn scene-biased action representation due to the spurious correlation between actions and scenes in the training data. Such models show poor performance when the test data consists of videos with unseen action-scene combinations. Although scene-debiased action recognition models might address the issue, they often overlook valuable scene information in the data. To address this challenge, we propose to learn DisEntangled VIdeo representations of Action and Scene (DEVIAS), for more holistic video understanding. We propose an encoder-decoder architecture to learn disentangled action and scene representations with a single model. The architecture consists of a disentangling encoder (DE), an action mask decoder (AMD), and a prediction head. The key to achieving the disentanglement is employing both DE and AMD during training time. The DE uses the slot attention mechanism to learn disentangled action and scene representations. For further disentanglement, an AMD learns to predict action masks, given an action slot. With the resulting disentangled representations, we can achieve robust performance across diverse scenarios, including both seen and unseen action-scene combinations. We rigorously validate the proposed method on the UCF-101, Kinetics-400, and HVU datasets for the seen, and the SCUBA, HAT, and HVU datasets for unseen action-scene combination scenarios. Furthermore, DEVIAS provides flexibility to adjust the emphasis on action or scene information depending on dataset characteristics for downstream tasks. DEVIAS shows favorable performance in various downstream tasks: Diving48, Something-Something-V2, UCF-101, and ActivityNet. The code is available at https://github.com/KHU-VLL/DEVIAS.
comment: Accepted to ECCV 2024 (Oral). Project page : https://khu-vll.github.io/DEVIAS/
♻ ☆ White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
comment: Accepted at Journal of Machine Learning Research. This paper integrates the works arXiv:2306.01129 and arXiv:2308.16271 into a complete story. In this paper, we improve the writing and organization, and also add conceptual, empirical, and theoretical improvements over the previous work. V2: small typo fixes/formatting improvements. V3: improvements from journal revisions. V4: fix figures
♻ ☆ DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.
♻ ☆ Invisible Gas Detection: An RGB-Thermal Cross Attention Network and A New Benchmark
The widespread use of various chemical gases in industrial processes necessitates effective measures to prevent their leakage during transportation and storage, given their high toxicity. Thermal infrared-based computer vision detection techniques provide a straightforward approach to identify gas leakage areas. However, the development of high-quality algorithms has been challenging due to the low texture in thermal images and the lack of open-source datasets. In this paper, we present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images. Additionally, to facilitate the research of invisible gas detection, we introduce Gas-DB, an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes. Experimental results demonstrate that our method successfully leverages the advantages of both modalities, achieving state-of-the-art (SOTA) performance among RGB-thermal methods, surpassing single-stream SOTA models in terms of accuracy, Intersection of Union (IoU), and F2 metrics by 4.86%, 5.65%, and 4.88%, respectively. The code and data can be found at https://github.com/logic112358/RT-CAN.
♻ ☆ Frame Interpolation with Consecutive Brownian Bridge Diffusion
Recent work in Video Frame Interpolation (VFI) tries to formulate VFI as a diffusion-based conditional image generation problem, synthesizing the intermediate frame given a random noise and neighboring frames. Due to the relatively high resolution of videos, Latent Diffusion Models (LDMs) are employed as the conditional generation model, where the autoencoder compresses images into latent representations for diffusion and then reconstructs images from these latent representations. Such a formulation poses a crucial challenge: VFI expects that the output is deterministically equal to the ground truth intermediate frame, but LDMs randomly generate a diverse set of different images when the model runs multiple times. The reason for the diverse generation is that the cumulative variance (variance accumulated at each step of generation) of generated latent representations in LDMs is large. This makes the sampling trajectory random, resulting in diverse rather than deterministic generations. To address this problem, we propose our unique solution: Frame Interpolation with Consecutive Brownian Bridge Diffusion. Specifically, we propose consecutive Brownian Bridge diffusion that takes a deterministic initial value as input, resulting in a much smaller cumulative variance of generated latent representations. Our experiments suggest that our method can improve together with the improvement of the autoencoder and achieve state-of-the-art performance in VFI, leaving strong potential for further enhancement.
comment: corrected typo
♻ ☆ HyperKAN: Kolmogorov-Arnold Networks make Hyperspectral Image Classificators Smarter
In traditional neural network architectures, a multilayer perceptron (MLP) is typically employed as a classification block following the feature extraction stage. However, the Kolmogorov-Arnold Network (KAN) presents a promising alternative to MLP, offering the potential to enhance prediction accuracy. In this paper, we propose the replacement of linear and convolutional layers of traditional networks with KAN-based counterparts. These modifications allowed us to significantly increase the per-pixel classification accuracy for hyperspectral remote-sensing images. We modified seven different neural network architectures for hyperspectral image classification and observed a substantial improvement in the classification accuracy across all the networks. The architectures considered in the paper include baseline MLP, state-of-the-art 1D (1DCNN) and 3D convolutional (two different 3DCNN, NM3DCNN), and transformer (SSFTT) architectures, as well as newly proposed M1DCNN. The greatest effect was achieved for convolutional networks working exclusively on spectral data, and the best classification quality was achieved using a KAN-based transformer architecture. All the experiments were conducted using seven openly available hyperspectral datasets. Our code is available at https://github.com/f-neumann77/HyperKAN.
♻ ☆ Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement
Low-light remote sensing images generally feature high resolution and high spatial complexity, with continuously distributed surface features in space. This continuity in scenes leads to extensive long-range correlations in spatial domains within remote sensing images. Convolutional Neural Networks, which rely on local correlations for long-distance modeling, struggle to establish long-range correlations in such images. On the other hand, transformer-based methods that focus on global information face high computational complexities when processing high-resolution remote sensing images. From another perspective, Fourier transform can compute global information without introducing a large number of parameters, enabling the network to more efficiently capture the overall image structure and establish long-range correlations. Therefore, we propose a Dual-Domain Feature Fusion Network (DFFN) for low-light remote sensing image enhancement. Specifically, this challenging task of low-light enhancement is divided into two more manageable sub-tasks: the first phase learns amplitude information to restore image brightness, and the second phase learns phase information to refine details. To facilitate information exchange between the two phases, we designed an information fusion affine block that combines data from different phases and scales. Additionally, we have constructed two dark light remote sensing datasets to address the current lack of datasets in dark light remote sensing image enhancement. Extensive evaluations show that our method outperforms existing state-of-the-art methods. The code is available at https://github.com/iijjlk/DFFN.
comment: 14 page
♻ ☆ Orthogonal Adaptation for Modular Customization of Diffusion Models
Customization techniques for text-to-image models have paved the way for a wide range of previously unattainable applications, enabling the generation of specific concepts across diverse contexts and styles. While existing methods facilitate high-fidelity customization for individual concepts or a limited, pre-defined set of them, they fall short of achieving scalability, where a single model can seamlessly render countless concepts. In this paper, we address a new problem called Modular Customization, with the goal of efficiently merging customized models that were fine-tuned independently for individual concepts. This allows the merged model to jointly synthesize concepts in one image without compromising fidelity or incurring any additional computational costs. To address this problem, we introduce Orthogonal Adaptation, a method designed to encourage the customized models, which do not have access to each other during fine-tuning, to have orthogonal residual weights. This ensures that during inference time, the customized models can be summed with minimal interference. Our proposed method is both simple and versatile, applicable to nearly all optimizable weights in the model architecture. Through an extensive set of quantitative and qualitative evaluations, our method consistently outperforms relevant baselines in terms of efficiency and identity preservation, demonstrating a significant leap toward scalable customization of diffusion models.
comment: Project page: https://ryanpo.com/ortha/; Hugging Face Demo: https://huggingface.co/spaces/ujin-song/ortha
♻ ☆ QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning
The practical deployment of diffusion models still suffers from the high memory and time overhead. While quantization paves a way for compression and acceleration, existing methods unfortunately fail when the models are quantized to low-bits. In this paper, we empirically unravel three properties in quantized diffusion models that compromise the efficacy of current methods: imbalanced activation distributions, imprecise temporal information, and vulnerability to perturbations of specific modules. To alleviate the intensified low-bit quantization difficulty stemming from the distribution imbalance, we propose finetuning the quantized model to better adapt to the activation distribution. Building on this idea, we identify two critical types of quantized layers: those holding vital temporal information and those sensitive to reduced bit-width, and finetune them to mitigate performance degradation with efficiency. We empirically verify that our approach modifies the activation distribution and provides meaningful temporal information, facilitating easier and more accurate quantization. Our method is evaluated over three high-resolution image generation tasks and achieves state-of-the-art performance under various bit-width settings, as well as being the first method to generate readable images on full 4-bit (i.e. W4A4) Stable Diffusion. Code is available \href{https://github.com/hatchetProject/QuEST}{here}.
comment: Code available at https://github.com/hatchetProject/QuEST
♻ ☆ RMT-BVQA: Recurrent Memory Transformer-based Blind Video Quality Assessment for Enhanced Video Content ECCV 2024
With recent advances in deep learning, numerous algorithms have been developed to enhance video quality, reduce visual artifacts, and improve perceptual quality. However, little research has been reported on the quality assessment of enhanced content - the evaluation of enhancement methods is often based on quality metrics that were designed for compression applications. In this paper, we propose a novel blind deep video quality assessment (VQA) method specifically for enhanced video content. It employs a new Recurrent Memory Transformer (RMT) based network architecture to obtain video quality representations, which is optimized through a novel content-quality-aware contrastive learning strategy based on a new database containing 13K training patches with enhanced content. The extracted quality representations are then combined through linear regression to generate video-level quality indices. The proposed method, RMT-BVQA, has been evaluated on the VDPVE (VQA Dataset for Perceptual Video Enhancement) database through a five-fold cross validation. The results show its superior correlation performance when compared to ten existing no-reference quality metrics.
comment: This paper has been accepted by the ECCV 2024 AIM Advances in Image Manipulation workshop
Artificial Intelligence 108
☆ Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
comment: code https://github.com/SamsungSAILMontreal/nino
☆ A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges
Knowledge Organization Systems (KOSs), such as term lists, thesauri, taxonomies, and ontologies, play a fundamental role in categorising, managing, and retrieving information. In the academic domain, KOSs are often adopted for representing research areas and their relationships, primarily aiming to classify research articles, academic courses, patents, books, scientific venues, domain experts, grants, software, experiment materials, and several other relevant products and agents. These structured representations of research areas, widely embraced by many academic fields, have proven effective in empowering AI-based systems to i) enhance retrievability of relevant documents, ii) enable advanced analytic solutions to quantify the impact of academic research, and iii) analyse and forecast research dynamics. This paper aims to present a comprehensive survey of the current KOS for academic disciplines. We analysed and compared 45 KOSs according to five main dimensions: scope, structure, curation, usage, and links to other KOSs. Our results reveal a very heterogeneous scenario in terms of scope, scale, quality, and usage, highlighting the need for more integrated solutions for representing research knowledge across academic fields. We conclude by discussing the main challenges and the most promising future directions.
☆ Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia by restoring their ability to perform daily activities. However, current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring. Wireless iBMIs offer a solution but are constrained by a limited data rate. To overcome this challenge, we are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs. The networks consist of a temporal convolution-based compression followed by recurrent processing and a final interpolation back to the original sequence length. As recurrent units, we explore gated recurrent units (GRUs), leaky integrate-and-fire (LIF) neurons, and a combination of both - spiking GRUs (sGRUs) and analyze their differences in terms of accuracy, footprint, and activation sparsity. To that end, we train decoders on the "Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology" dataset and evaluate it using the NeuroBench framework, targeting both tracks of the IEEE BioCAS Grand Challenge on Neural Decoding. Our approach achieves high accuracy in predicting velocities of primate reaching movements from multichannel primary motor cortex recordings while maintaining a low number of synaptic operations, surpassing the current baseline models in the NeuroBench framework. This work highlights the potential of hybrid neural networks to facilitate wireless iBMIs with high decoding precision and a substantial increase in the number of monitored neurons, paving the way toward more advanced neuroprosthetic technologies.
comment: This work has been accepted at the 2024 IEEE Biomedical Circuits and Systems Conference
☆ RLPF: Reinforcement Learning from Prediction Feedback for User Summarization with LLMs
LLM-powered personalization agent systems employ Large Language Models (LLMs) to predict users' behavior from their past activities. However, their effectiveness often hinges on the ability to effectively leverage extensive, long user historical data due to its inherent noise and length of such data. Existing pretrained LLMs may generate summaries that are concise but lack the necessary context for downstream tasks, hindering their utility in personalization systems. To address these challenges, we introduce Reinforcement Learning from Prediction Feedback (RLPF). RLPF fine-tunes LLMs to generate concise, human-readable user summaries that are optimized for downstream task performance. By maximizing the usefulness of the generated summaries, RLPF effectively distills extensive user history data while preserving essential information for downstream tasks. Our empirical evaluation demonstrates significant improvements in both extrinsic downstream task utility and intrinsic summary quality, surpassing baseline methods by up to 22% on downstream task performance and achieving an up to 84.59% win rate on Factuality, Abstractiveness, and Readability. RLPF also achieves a remarkable 74% reduction in context length while improving performance on 16 out of 19 unseen tasks and/or datasets, showcasing its generalizability. This approach offers a promising solution for enhancing LLM personalization by effectively transforming long, noisy user histories into informative and human-readable representations.
☆ Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint IJCAI
This work proposes an efficient parallel algorithm for non-monotone submodular maximization under a knapsack constraint problem over the ground set of size $n$. Our algorithm improves the best approximation factor of the existing parallel one from $8+\epsilon$ to $7+\epsilon$ with $O(\log n)$ adaptive complexity. The key idea of our approach is to create a new alternate threshold algorithmic framework. This strategy alternately constructs two disjoint candidate solutions within a constant number of sequence rounds. Then, the algorithm boosts solution quality without sacrificing the adaptive complexity. Extensive experimental studies on three applications, Revenue Maximization, Image Summarization, and Maximum Weighted Cut, show that our algorithm not only significantly increases solution quality but also requires comparative adaptivity to state-of-the-art algorithms.
comment: In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI), Main Track
☆ Open-MAGVIT2: An Open-Source Project Toward Democratizing Auto-regressive Visual Generation
We present Open-MAGVIT2, a family of auto-regressive image generation models ranging from 300M to 1.5B. The Open-MAGVIT2 project produces an open-source replication of Google's MAGVIT-v2 tokenizer, a tokenizer with a super-large codebook (i.e., $2^{18}$ codes), and achieves the state-of-the-art reconstruction performance (1.17 rFID) on ImageNet $256 \times 256$. Furthermore, we explore its application in plain auto-regressive models and validate scalability properties. To assist auto-regressive models in predicting with a super-large vocabulary, we factorize it into two sub-vocabulary of different sizes by asymmetric token factorization, and further introduce "next sub-token prediction" to enhance sub-token interaction for better generation quality. We release all models and codes to foster innovation and creativity in the field of auto-regressive visual generation.
☆ The Impact of Scanner Domain Shift on Deep Learning Performance in Medical Imaging: an Experimental Study
Purpose: Medical images acquired using different scanners and protocols can differ substantially in their appearance. This phenomenon, scanner domain shift, can result in a drop in the performance of deep neural networks which are trained on data acquired by one scanner and tested on another. This significant practical issue is well-acknowledged, however, no systematic study of the issue is available across different modalities and diagnostic tasks. Materials and Methods: In this paper, we present a broad experimental study evaluating the impact of scanner domain shift on convolutional neural network performance for different automated diagnostic tasks. We evaluate this phenomenon in common radiological modalities, including X-ray, CT, and MRI. Results: We find that network performance on data from a different scanner is almost always worse than on same-scanner data, and we quantify the degree of performance drop across different datasets. Notably, we find that this drop is most severe for MRI, moderate for X-ray, and quite small for CT, on average, which we attribute to the standardized nature of CT acquisition systems which is not present in MRI or X-ray. We also study how injecting varying amounts of target domain data into the training set, as well as adding noise to the training data, helps with generalization. Conclusion: Our results provide extensive experimental evidence and quantification of the extent of performance drop caused by scanner domain shift in deep learning across different modalities, with the goal of guiding the future development of robust deep learning models for medical image analysis.
☆ Provable Hyperparameter Tuning for Structured Pfaffian Settings
Data-driven algorithm design automatically adapts algorithms to specific application domains, achieving better performance. In the context of parameterized algorithms, this approach involves tuning the algorithm parameters using problem instances drawn from the problem distribution of the target application domain. While empirical evidence supports the effectiveness of data-driven algorithm design, providing theoretical guarantees for several parameterized families remains challenging. This is due to the intricate behaviors of their corresponding utility functions, which typically admit piece-wise and discontinuity structures. In this work, we present refined frameworks for providing learning guarantees for parameterized data-driven algorithm design problems in both distributional and online learning settings. For the distributional learning setting, we introduce the Pfaffian GJ framework, an extension of the classical GJ framework, capable of providing learning guarantees for function classes for which the computation involves Pfaffian functions. Unlike the GJ framework, which is limited to function classes with computation characterized by rational functions, our proposed framework can deal with function classes involving Pfaffian functions, which are much more general and widely applicable. We then show that for many parameterized algorithms of interest, their utility function possesses a refined piece-wise structure, which automatically translates to learning guarantees using our proposed framework. For the online learning setting, we provide a new tool for verifying dispersion property of a sequence of loss functions. This sufficient condition allows no-regret learning for sequences of piece-wise structured loss functions where the piece-wise structure involves Pfaffian transition boundaries.
☆ Connectivity-Inspired Network for Context-Aware Recognition ECCV 2024
The aim of this paper is threefold. We inform the AI practitioner about the human visual system with an extensive literature review; we propose a novel biologically motivated neural network for image classification; and, finally, we present a new plug-and-play module to model context awareness. We focus on the effect of incorporating circuit motifs found in biological brains to address visual recognition. Our convolutional architecture is inspired by the connectivity of human cortical and subcortical streams, and we implement bottom-up and top-down modulations that mimic the extensive afferent and efferent connections between visual and cognitive areas. Our Contextual Attention Block is simple and effective and can be integrated with any feed-forward neural network. It infers weights that multiply the feature maps according to their causal influence on the scene, modeling the co-occurrence of different objects in the image. We place our module at different bottlenecks to infuse a hierarchical context awareness into the model. We validated our proposals through image classification experiments on benchmark data and found a consistent improvement in performance and the robustness of the produced explanations via class activation. Our code is available at https://github.com/gianlucarloni/CoCoReco.
comment: ECCV 2024 - HCV Workshop, Accepted for presentation, Submitted Manuscript Version (adapted to include author names, Acknowledgements, and reference DOIs): the version of the manuscript improved after peer review will appear in the Proceedings later
☆ Towards Fine-Grained Webpage Fingerprinting at Scale CCS
Website Fingerprinting (WF) attacks can effectively identify the websites visited by Tor clients via analyzing encrypted traffic patterns. Existing attacks focus on identifying different websites, but their accuracy dramatically decreases when applied to identify fine-grained webpages, especially when distinguishing among different subpages of the same website. WebPage Fingerprinting (WPF) attacks face the challenges of highly similar traffic patterns and a much larger scale of webpages. Furthermore, clients often visit multiple webpages concurrently, increasing the difficulty of extracting the traffic patterns of each webpage from the obfuscated traffic. In this paper, we propose Oscar, a WPF attack based on multi-label metric learning that identifies different webpages from obfuscated traffic by transforming the feature space. Oscar can extract the subtle differences among various webpages, even those with similar traffic patterns. In particular, Oscar combines proxy-based and sample-based metric learning losses to extract webpage features from obfuscated traffic and identify multiple webpages. We prototype Oscar and evaluate its performance using traffic collected from 1,000 monitored webpages and over 9,000 unmonitored webpages in the real world. Oscar demonstrates an 88.6% improvement in the multi-label metric Recall@5 compared to the state-of-the-art attacks.
comment: To appear in the Proceedings of The ACM Conference on Computer and Communications Security (CCS), 2024
☆ AGR: Age Group fairness Reward for Bias Mitigation in LLMs
LLMs can exhibit age biases, resulting in unequal treatment of individuals across age groups. While much research has addressed racial and gender biases, age bias remains little explored. The scarcity of instruction-tuning and preference datasets for age bias hampers its detection and measurement, and existing fine-tuning methods seldom address age-related fairness. In this paper, we construct age bias preference datasets and instruction-tuning datasets for RLHF. We introduce ARG, an age fairness reward to reduce differences in the response quality of LLMs across different age groups. Extensive experiments demonstrate that this reward significantly improves response accuracy and reduces performance disparities across age groups. Our source code and datasets are available at the anonymous \href{https://anonymous.4open.science/r/FairRLHF-D445/readme.md}{link}.
comment: The first two authors contributed equally to this work. Corresponding to Zhiqiang Wang. ACKNOWLEDGMENT: we would like to thank the computing resources support from the State Key Laboratory of New Computer Software Technologies at Nanjing University
☆ Learning vs Retrieval: The Role of In-Context Examples in Regression with LLMs
Generative Large Language Models (LLMs) are capable of being in-context learners. However, the underlying mechanism of in-context learning (ICL) is still a major research question, and experimental research results about how models exploit ICL are not always consistent. In this work, we propose a framework for evaluating in-context learning mechanisms, which we claim are a combination of retrieving internal knowledge and learning from in-context examples by focusing on regression tasks. First, we show that LLMs can perform regression on real-world datasets and then design experiments to measure the extent to which the LLM retrieves its internal knowledge versus learning from in-context examples. We argue that this process lies on a spectrum between these two extremes. We provide an in-depth analysis of the degrees to which these mechanisms are triggered depending on various factors, such as prior knowledge about the tasks and the type and richness of the information provided by the in-context examples. We employ three LLMs and utilize multiple datasets to corroborate the robustness of our findings. Our results shed light on how to engineer prompts to leverage meta-learning from in-context examples and foster knowledge retrieval depending on the problem being addressed.
☆ Safe and Efficient Path Planning under Uncertainty via Deep Collision Probability Fields
Estimating collision probabilities between robots and environmental obstacles or other moving agents is crucial to ensure safety during path planning. This is an important building block of modern planning algorithms in many application scenarios such as autonomous driving, where noisy sensors perceive obstacles. While many approaches exist, they either provide too conservative estimates of the collision probabilities or are computationally intensive due to their sampling-based nature. To deal with these issues, we introduce Deep Collision Probability Fields, a neural-based approach for computing collision probabilities of arbitrary objects with arbitrary unimodal uncertainty distributions. Our approach relegates the computationally intensive estimation of collision probabilities via sampling at the training step, allowing for fast neural network inference of the constraints during planning. In extensive experiments, we show that Deep Collision Probability Fields can produce reasonably accurate collision probabilities (up to 10^{-3}) for planning and that our approach can be easily plugged into standard path planning approaches to plan safe paths on 2-D maps containing uncertain static and dynamic obstacles. Additional material, code, and videos are available at https://sites.google.com/view/ral-dcpf.
comment: Preprint version of a paper accepted to the IEEE Robotics and Automation Letters
☆ CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
Survival analysis is a branch of statistics used for modeling the time until a specific event occurs and is widely used in medicine, engineering, finance, and many other fields. When choosing survival models, there is typically a trade-off between performance and interpretability, where the highest performance is achieved by black-box models based on deep learning. This is a major problem in fields such as medicine where practitioners are reluctant to blindly trust black-box models to make important patient decisions. Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs). We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis. We evaluate the proposed CoxKAN on 4 synthetic datasets and 9 real medical datasets. The synthetic experiments demonstrate that CoxKAN accurately recovers interpretable symbolic formulae for the hazard function, and effectively performs automatic feature selection. Evaluation on the 9 real datasets show that CoxKAN consistently outperforms the Cox proportional hazards model and achieves performance that is superior or comparable to that of tuned MLPs. Furthermore, we find that CoxKAN identifies complex interactions between predictor variables that would be extremely difficult to recognise using existing survival methods, and automatically finds symbolic formulae which uncover the precise effect of important biomarkers on patient risk.
☆ Using Large Language Models to Generate Authentic Multi-agent Knowledge Work Datasets
Current publicly available knowledge work data collections lack diversity, extensive annotations, and contextual information about the users and their documents. These issues hinder objective and comparable data-driven evaluations and optimizations of knowledge work assistance systems. Due to the considerable resources needed to collect such data in real-life settings and the necessity of data censorship, collecting such a dataset appears nearly impossible. For this reason, we propose a configurable, multi-agent knowledge work dataset generator. This system simulates collaborative knowledge work among agents producing Large Language Model-generated documents and accompanying data traces. Additionally, the generator captures all background information, given in its configuration or created during the simulation process, in a knowledge graph. Finally, the resulting dataset can be utilized and shared without privacy or confidentiality concerns. This paper introduces our approach's design and vision and focuses on generating authentic knowledge work documents using Large Language Models. Our study involving human raters who assessed 53% of the generated and 74% of the real documents as realistic demonstrates the potential of our approach. Furthermore, we analyze the authenticity criteria mentioned in the participants' comments and elaborate on potential improvements for identified common issues.
comment: Accepted and in press (INFORMATIK Festival, Wiesbaden, 2024)
☆ Cycle Pixel Difference Network for Crisp Edge Detection
Edge detection, as a fundamental task in computer vision, has garnered increasing attention. The advent of deep learning has significantly advanced this field. However, recent deep learning-based methods which rely on large-scale pre-trained weights cannot be trained from scratch, with very limited research addressing this issue. This paper proposes a novel cycle pixel difference convolution (CPDC), which effectively integrates image gradient information with modern convolution operations. Based on the CPDC, we develop a U-shape encoder-decoder model named CPD-Net, which is a purely end-to-end network. Additionally, to address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM) to enhance the discriminative ability of the model, thereby generating crisp and clean contour maps. Comprehensive experiments conducted on three standard benchmarks demonstrate that our method achieves competitive performance on the BSDS500 dataset (ODS=0.813), NYUD-V2 (ODS=0.760), and BIPED dataset (ODS=0.898). Our approach provides a novel perspective for addressing these challenges in edge detection.
☆ An overview of domain-specific foundation model: key technologies, applications and challenges
The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios. This process, known as the customization of domain-specific foundation models, addresses the limitations of general-purpose models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack of comprehensive overview papers on building domain-specific foundation models, while numerous resources exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific foundation models. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models. Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop their own customized foundation models.
☆ Hermes: Memory-Efficient Pipeline Inference for Large Models on Edge Devices
The application of Transformer-based large models has achieved numerous success in recent years. However, the exponential growth in the parameters of large models introduces formidable memory challenge for edge deployment. Prior works to address this challenge mainly focus on optimizing the model structure and adopting memory swapping methods. However, the former reduces the inference accuracy, and the latter raises the inference latency. This paper introduces PIPELOAD, a novel memory-efficient pipeline execution mechanism. It reduces memory usage by incorporating dynamic memory management and minimizes inference latency by employing parallel model loading. Based on PIPELOAD mechanism, we present Hermes, a framework optimized for large model inference on edge devices. We evaluate Hermes on Transformer-based models of different sizes. Our experiments illustrate that Hermes achieves up to 4.24 X increase in inference speed and 86.7% lower memory consumption than the state-of-the-art pipeline mechanism for BERT and ViT models, 2.58 X increase in inference speed and 90.3% lower memory consumption for GPT-style models.
comment: Accepted by the 42nd IEEE International Conference on Computer Design (ICCD 2024)
☆ WarpAdam: A new Adam optimizer based on Meta-Learning approach
Optimal selection of optimization algorithms is crucial for training deep learning models. The Adam optimizer has gained significant attention due to its efficiency and wide applicability. However, to enhance the adaptability of optimizers across diverse datasets, we propose an innovative optimization strategy by integrating the 'warped gradient descend'concept from Meta Learning into the Adam optimizer. In the conventional Adam optimizer, gradients are utilized to compute estimates of gradient mean and variance, subsequently updating model parameters. Our approach introduces a learnable distortion matrix, denoted as P, which is employed for linearly transforming gradients. This transformation slightly adjusts gradients during each iteration, enabling the optimizer to better adapt to distinct dataset characteristics. By learning an appropriate distortion matrix P, our method aims to adaptively adjust gradient information across different data distributions, thereby enhancing optimization performance. Our research showcases the potential of this novel approach through theoretical insights and empirical evaluations. Experimental results across various tasks and datasets validate the superiority of our optimizer that integrates the 'warped gradient descend' concept in terms of adaptability. Furthermore, we explore effective strategies for training the adaptation matrix P and identify scenarios where this method can yield optimal results. In summary, this study introduces an innovative approach that merges the 'warped gradient descend' concept from Meta Learning with the Adam optimizer. By introducing a learnable distortion matrix P within the optimizer, we aim to enhance the model's generalization capability across diverse data distributions, thus opening up new possibilities in the field of deep learning optimization.
☆ SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms
Swarm robotics explores the coordination of multiple robots to achieve collective goals, with collective decision-making being a central focus. This process involves decentralized robots autonomously making local decisions and communicating them, which influences the overall emergent behavior. Testing such decentralized algorithms in real-world scenarios with hundreds or more robots is often impractical, underscoring the need for effective simulation tools. We propose SPACE (Swarm Planning and Control Evaluation), a Python-based simulator designed to support the research, evaluation, and comparison of decentralized Multi-Robot Task Allocation (MRTA) algorithms. SPACE streamlines core algorithmic development by allowing users to implement decision-making algorithms as Python plug-ins, easily construct agent behavior trees via an intuitive GUI, and leverage built-in support for inter-agent communication and local task awareness. To demonstrate its practical utility, we implement and evaluate CBBA and GRAPE within the simulator, comparing their performance across different metrics, particularly in scenarios with dynamically introduced tasks. This evaluation shows the usefulness of SPACE in conducting rigorous and standardized comparisons of MRTA algorithms, helping to support future research in the field.
☆ Advancing Multi-Organ Disease Care: A Hierarchical Multi-Agent Reinforcement Learning Framework
Multi-organ diseases present significant challenges due to their simultaneous impact on multiple organ systems, necessitating complex and adaptive treatment strategies. Despite recent advancements in AI-powered healthcare decision support systems, existing solutions are limited to individual organ systems. They often ignore the intricate dependencies between organ system and thereby fails to provide holistic treatment recommendations that are useful in practice. We propose a novel hierarchical multi-agent reinforcement learning (HMARL) framework to address these challenges. This framework uses dedicated agents for each organ system, and model dynamic through explicit inter-agent communication channels, enabling coordinated treatment strategies across organs. Furthermore, we introduce a dual-layer state representation technique to contextualize patient conditions at various hierarchical levels, enhancing the treatment accuracy and relevance. Through extensive qualitative and quantitative evaluations in managing sepsis (a complex multi-organ disease), our approach demonstrates its ability to learn effective treatment policies that significantly improve patient survival rates. This framework marks a substantial advancement in clinical decision support systems, pioneering a comprehensive approach for multi-organ treatment recommendations.
☆ GST: Precise 3D Human Body from a Single Image with Gaussian Splatting Transformers
Reconstructing realistic 3D human models from monocular images has significant applications in creative industries, human-computer interfaces, and healthcare. We base our work on 3D Gaussian Splatting (3DGS), a scene representation composed of a mixture of Gaussians. Predicting such mixtures for a human from a single input image is challenging, as it is a non-uniform density (with a many-to-one relationship with input pixels) with strict physical constraints. At the same time, it needs to be flexible to accommodate a variety of clothes and poses. Our key observation is that the vertices of standardized human meshes (such as SMPL) can provide an adequate density and approximate initial position for Gaussians. We can then train a transformer model to jointly predict comparatively small adjustments to these positions, as well as the other Gaussians' attributes and the SMPL parameters. We show empirically that this combination (using only multi-view supervision) can achieve fast inference of 3D human models from a single image without test-time optimization, expensive diffusion models, or 3D points supervision. We also show that it can improve 3D pose estimation by better fitting human models that account for clothes and other variations. The code is available on the project website https://abdullahamdi.com/gst/ .
comment: preprint
☆ Towards Privacy-Preserving Relational Data Synthesis via Probabilistic Relational Models
Probabilistic relational models provide a well-established formalism to combine first-order logic and probabilistic models, thereby allowing to represent relationships between objects in a relational domain. At the same time, the field of artificial intelligence requires increasingly large amounts of relational training data for various machine learning tasks. Collecting real-world data, however, is often challenging due to privacy concerns, data protection regulations, high costs, and so on. To mitigate these challenges, the generation of synthetic data is a promising approach. In this paper, we solve the problem of generating synthetic relational data via probabilistic relational models. In particular, we propose a fully-fledged pipeline to go from relational database to probabilistic relational model, which can then be used to sample new synthetic relational data points from its underlying probability distribution. As part of our proposed pipeline, we introduce a learning algorithm to construct a probabilistic relational model from a given relational database.
comment: Accepted to the Proceedings of the 47th German Conference on Artificial Intelligence (KI 2024)
☆ GALLa: Graph Aligned Large Language Models for Improved Source Code Understanding
Programming languages possess rich semantic information such as data flow that is represented by graphs and not available from the surface form of source code. Recent code language models have scaled to billions of parameters, but model source code solely as text tokens while ignoring any other structural information. Conversely, models that do encode structural information of code make modifications to the Transformer architecture, limiting their scale and compatibility with pretrained LLMs. In this work, we take the best of both worlds with GALLa - Graph Aligned Large Language Model. GALLa utilizes graph neural networks and cross-modal alignment technologies to inject the structural information of code into LLMs as an auxiliary task during finetuning. This framework is both model-agnostic and task-agnostic, as it can be applied to any code LLM for any code downstream task, and requires the structural graph data only at training time from a corpus unrelated to the finetuning data, while incurring no cost at inference time over the baseline LLM. Experiments on five code tasks with four different baseline LLMs ranging in size from 350M to 8B validate the effectiveness of GALLa, demonstrating consistent improvement over the baseline, even for powerful models such as LLaMA3.
☆ The Prevalence of Neural Collapse in Neural Multivariate Regression
Recently it has been observed that neural networks exhibit Neural Collapse (NC) during the final stage of training for the classification problem. We empirically show that multivariate regression, as employed in imitation learning and other applications, exhibits Neural Regression Collapse (NRC), a new form of neural collapse: (NRC1) The last-layer feature vectors collapse to the subspace spanned by the $n$ principal components of the feature vectors, where $n$ is the dimension of the targets (for univariate regression, $n=1$); (NRC2) The last-layer feature vectors also collapse to the subspace spanned by the last-layer weight vectors; (NRC3) The Gram matrix for the weight vectors converges to a specific functional form that depends on the covariance matrix of the targets. After empirically establishing the prevalence of (NRC1)-(NRC3) for a variety of datasets and network architectures, we provide an explanation of these phenomena by modeling the regression task in the context of the Unconstrained Feature Model (UFM), in which the last layer feature vectors are treated as free variables when minimizing the loss function. We show that when the regularization parameters in the UFM model are strictly positive, then (NRC1)-(NRC3) also emerge as solutions in the UFM optimization problem. We also show that if the regularization parameters are equal to zero, then there is no collapse. To our knowledge, this is the first empirical and theoretical study of neural collapse in the context of regression. This extension is significant not only because it broadens the applicability of neural collapse to a new category of problems but also because it suggests that the phenomena of neural collapse could be a universal behavior in deep learning.
☆ From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks
To reduce the need for human annotations, large language models (LLMs) have been proposed as judges of the quality of other candidate models. LLM judges are typically evaluated by measuring the correlation with human judgments on generation tasks such as summarization or machine translation. In contrast, we study LLM judges on mathematical reasoning tasks. These tasks require multi-step reasoning, and the correctness of their solutions is verifiable, enabling a more objective evaluation. We perform a detailed performance analysis and find that the used judges are mostly unable to improve task performance but are able to pick the better model. Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance. We observe that judges tend to choose the model of higher quality even if its answer is incorrect. Further, we show that it is possible to use statistics, such as the task performances of the individual models, to predict judgment performance. In an ablation, we either swap or mask the candidate answers and observe that judges often keep the original judgment, providing evidence that judges incorporate writing style in their judgments. In summary, we find that regularities in the judgments are quantifiable using statistical measures and provide various angles on exploiting them.
☆ Context is the Key: Backdoor Attacks for In-Context Learning with Vision Transformers
Due to the high cost of training, large model (LM) practitioners commonly use pretrained models downloaded from untrusted sources, which could lead to owning compromised models. In-context learning is the ability of LMs to perform multiple tasks depending on the prompt or context. This can enable new attacks, such as backdoor attacks with dynamic behavior depending on how models are prompted. In this paper, we leverage the ability of vision transformers (ViTs) to perform different tasks depending on the prompts. Then, through data poisoning, we investigate two new threats: i) task-specific backdoors where the attacker chooses a target task to attack, and only the selected task is compromised at test time under the presence of the trigger. At the same time, any other task is not affected, even if prompted with the trigger. We succeeded in attacking every tested model, achieving up to 89.90\% degradation on the target task. ii) We generalize the attack, allowing the backdoor to affect \emph{any} task, even tasks unseen during the training phase. Our attack was successful on every tested model, achieving a maximum of $13\times$ degradation. Finally, we investigate the robustness of prompts and fine-tuning as techniques for removing the backdoors from the model. We found that these methods fall short and, in the best case, reduce the degradation from 89.90\% to 73.46\%.
☆ Confidence-Aware Document OCR Error Detection
Optical Character Recognition (OCR) continues to face accuracy challenges that impact subsequent applications. To address these errors, we explore the utility of OCR confidence scores for enhancing post-OCR error detection. Our study involves analyzing the correlation between confidence scores and error rates across different OCR systems. We develop ConfBERT, a BERT-based model that incorporates OCR confidence scores into token embeddings and offers an optional pre-training phase for noise adjustment. Our experimental results demonstrate that integrating OCR confidence scores can enhance error detection capabilities. This work underscores the importance of OCR confidence scores in improving detection accuracy and reveals substantial disparities in performance between commercial and open-source OCR technologies.
☆ Multi-Programming Language Ensemble for Code Generation in Large Language Model
Large language models (LLMs) have significantly improved code generation, particularly in one-pass code generation. However, most existing approaches focus solely on generating code in a single programming language, overlooking the potential of leveraging the multi-language capabilities of LLMs. LLMs have varying patterns of errors across different languages, suggesting that a more robust approach could be developed by leveraging these multi-language outputs. In this study, we propose Multi-Programming Language Ensemble (MPLE), a novel ensemble-based method that utilizes code generation across multiple programming languages to enhance overall performance. By treating each language-specific code generation process as an individual "weak expert" and effectively integrating their outputs, our method mitigates language-specific errors and biases. This multi-language ensemble strategy leverages the complementary strengths of different programming languages, enabling the model to produce more accurate and robust code. Our approach can be seamlessly integrated with commonly used techniques such as the reflection algorithm and Monte Carlo tree search to improve code generation quality further. Experimental results show that our framework consistently enhances baseline performance by up to 17.92% on existing benchmarks (HumanEval and HumanEval-plus), with a standout result of 96.25% accuracy on the HumanEval benchmark, achieving new state-of-the-art results across various LLM models. The code will be released at https://github.com/NinjaTech-AI/MPLE
comment: Code available at https://github.com/NinjaTech-AI/MPLE
☆ Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers
Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire research process. We address this by establishing an experimental design that evaluates research idea generation while controlling for confounders and performs the first head-to-head comparison between expert NLP researchers and an LLM ideation agent. By recruiting over 100 NLP researchers to write novel ideas and blind reviews of both LLM and human ideas, we obtain the first statistically significant conclusion on current LLM capabilities for research ideation: we find LLM-generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged slightly weaker on feasibility. Studying our agent baselines closely, we identify open problems in building and evaluating research agents, including failures of LLM self-evaluation and their lack of diversity in generation. Finally, we acknowledge that human judgements of novelty can be difficult, even by experts, and propose an end-to-end study design which recruits researchers to execute these ideas into full projects, enabling us to study whether these novelty and feasibility judgements result in meaningful differences in research outcome.
comment: main paper is 20 pages
☆ MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification
Recent advances in deep learning (DL) have significantly impacted motor imagery (MI)-based brain-computer interface (BCI) systems, enhancing the decoding of electroencephalography (EEG) signals. However, most studies struggle to identify discriminative patterns across subjects during MI tasks, limiting MI classification performance. In this article, we propose MixNet, a novel classification framework designed to overcome this limitation by utilizing spectral-spatial signals from MI data, along with a multitask learning architecture named MIN2Net, for classification. Here, the spectral-spatial signals are generated using the filter-bank common spatial patterns (FBCSPs) method on MI data. Since the multitask learning architecture is used for the classification task, the learning in each task may exhibit different generalization rates and potential overfitting across tasks. To address this issue, we implement adaptive gradient blending, simultaneously regulating multiple loss weights and adjusting the learning pace for each task based on its generalization/overfitting tendencies. Experimental results on six benchmark data sets of different data sizes demonstrate that MixNet consistently outperforms all state-of-the-art algorithms in subject-dependent and -independent settings. Finally, the low-density EEG MI classification results show that MixNet outperforms all state-of-the-art algorithms, offering promising implications for Internet of Thing (IoT) applications, such as lightweight and portable EEG wearable devices based on low-density montages.
comment: Supplementary materials and source codes are available on-line at https://github.com/Max-Phairot-A/MixNet
☆ The Role of Graph Topology in the Performance of Biomedical Knowledge Graph Completion Models
Knowledge Graph Completion has been increasingly adopted as a useful method for several tasks in biomedical research, like drug repurposing or drug-target identification. To that end, a variety of datasets and Knowledge Graph Embedding models has been proposed over the years. However, little is known about the properties that render a dataset useful for a given task and, even though theoretical properties of Knowledge Graph Embedding models are well understood, their practical utility in this field remains controversial. We conduct a comprehensive investigation into the topological properties of publicly available biomedical Knowledge Graphs and establish links to the accuracy observed in real-world applications. By releasing all model predictions and a new suite of analysis tools we invite the community to build upon our work and continue improving the understanding of these crucial applications.
☆ SDformerFlow: Spatiotemporal swin spikeformer for event-based optical flow estimation
Event cameras generate asynchronous and sparse event streams capturing changes in light intensity. They offer significant advantages over conventional frame-based cameras, such as a higher dynamic range and an extremely faster data rate, making them particularly useful in scenarios involving fast motion or challenging lighting conditions. Spiking neural networks (SNNs) share similar asynchronous and sparse characteristics and are well-suited for processing data from event cameras. Inspired by the potential of transformers and spike-driven transformers (spikeformers) in other computer vision tasks, we propose two solutions for fast and robust optical flow estimation for event cameras: STTFlowNet and SDformerFlow. STTFlowNet adopts a U-shaped artificial neural network (ANN) architecture with spatiotemporal shifted window self-attention (swin) transformer encoders, while SDformerFlow presents its fully spiking counterpart, incorporating swin spikeformer encoders. Furthermore, we present two variants of the spiking version with different neuron models. Our work is the first to make use of spikeformers for dense optical flow estimation. We conduct end-to-end training for all models using supervised learning. Our results yield state-of-the-art performance among SNN-based event optical flow methods on both the DSEC and MVSEC datasets, and show significant reduction in power consumption compared to the equivalent ANNs.
comment: Under Review
☆ UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity
Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.
☆ An Argumentative Approach for Explaining Preemption in Soft-Constraint Based Norms
Although various aspects of soft-constraint based norms have been explored, it is still challenging to understand preemption. Preemption is a situation where higher-level norms override lower-level norms when new information emerges. To address this, we propose a derivation state argumentation framework (DSA-framework). DSA-framework incorporates derivation states to explain how preemption arises based on evolving situational knowledge. Based on DSA-framework, we present an argumentative approach for explaining preemption. We formally prove that, under local optimality, DSA-framework can provide explanations why one consequence is obligatory or forbidden by soft-constraint based norms represented as logical constraint hierarchies.
comment: submitted to VECOMP/AICOM 2024 associated with 27th European Conference on Artificial Intelligence (ECAI2024)
☆ D4: Text-guided diffusion model-based domain adaptive data augmentation for vineyard shoot detection
In an agricultural field, plant phenotyping using object detection models is gaining attention. However, collecting the training data necessary to create generic and high-precision models is extremely challenging due to the difficulty of annotation and the diversity of domains. Furthermore, it is difficult to transfer training data across different crops, and although machine learning models effective for specific environments, conditions, or crops have been developed, they cannot be widely applied in actual fields. In this study, we propose a generative data augmentation method (D4) for vineyard shoot detection. D4 uses a pre-trained text-guided diffusion model based on a large number of original images culled from video data collected by unmanned ground vehicles or other means, and a small number of annotated datasets. The proposed method generates new annotated images with background information adapted to the target domain while retaining annotation information necessary for object detection. In addition, D4 overcomes the lack of training data in agriculture, including the difficulty of annotation and diversity of domains. We confirmed that this generative data augmentation method improved the mean average precision by up to 28.65% for the BBox detection task and the average precision by up to 13.73% for the keypoint detection task for vineyard shoot detection. Our generative data augmentation method D4 is expected to simultaneously solve the cost and domain diversity issues of training data generation in agriculture and improve the generalization performance of detection models.
☆ Refining Wikidata Taxonomy using Large Language Models
Due to its collaborative nature, Wikidata is known to have a complex taxonomy, with recurrent issues like the ambiguity between instances and classes, the inaccuracy of some taxonomic paths, the presence of cycles, and the high level of redundancy across classes. Manual efforts to clean up this taxonomy are time-consuming and prone to errors or subjective decisions. We present WiKC, a new version of Wikidata taxonomy cleaned automatically using a combination of Large Language Models (LLMs) and graph mining techniques. Operations on the taxonomy, such as cutting links or merging classes, are performed with the help of zero-shot prompting on an open-source LLM. The quality of the refined taxonomy is evaluated from both intrinsic and extrinsic perspectives, on a task of entity typing for the latter, showing the practical interest of WiKC.
comment: ACM International Conference on Information and Knowledge Management, Oct 2024, Boise, Idaho, United States
☆ A First Look At Efficient And Secure On-Device LLM Inference Against KV Leakage
Running LLMs on end devices has garnered significant attention recently due to their advantages in privacy preservation. With the advent of lightweight LLM models and specially designed GPUs, on-device LLM inference has achieved the necessary accuracy and performance metrics. However, we have identified that LLM inference on GPUs can leak privacy-sensitive intermediate information, specifically the KV pairs. An attacker could exploit these KV pairs to reconstruct the entire user conversation, leading to significant vulnerabilities. Existing solutions, such as Fully Homomorphic Encryption (FHE) and Trusted Execution Environments (TEE), are either too computation-intensive or resource-limited. To address these issues, we designed KV-Shield, which operates in two phases. In the initialization phase, it permutes the weight matrices so that all KV pairs are correspondingly permuted. During the runtime phase, the attention vector is inversely permuted to ensure the correctness of the layer output. All permutation-related operations are executed within the TEE, ensuring that insecure GPUs cannot access the original KV pairs, thus preventing conversation reconstruction. Finally, we theoretically analyze the correctness of KV-Shield, along with its advantages and overhead.
☆ BFA-YOLO: Balanced multiscale object detection network for multi-view building facade attachments detection
Detection of building facade attachments such as doors, windows, balconies, air conditioner units, billboards, and glass curtain walls plays a pivotal role in numerous applications. Building facade attachments detection aids in vbuilding information modeling (BIM) construction and meeting Level of Detail 3 (LOD3) standards. Yet, it faces challenges like uneven object distribution, small object detection difficulty, and background interference. To counter these, we propose BFA-YOLO, a model for detecting facade attachments in multi-view images. BFA-YOLO incorporates three novel innovations: the Feature Balanced Spindle Module (FBSM) for addressing uneven distribution, the Target Dynamic Alignment Task Detection Head (TDATH) aimed at improving small object detection, and the Position Memory Enhanced Self-Attention Mechanism (PMESA) to combat background interference, with each component specifically designed to solve its corresponding challenge. Detection efficacy of deep network models deeply depends on the dataset's characteristics. Existing open source datasets related to building facades are limited by their single perspective, small image pool, and incomplete category coverage. We propose a novel method for building facade attachments detection dataset construction and construct the BFA-3D dataset for facade attachments detection. The BFA-3D dataset features multi-view, accurate labels, diverse categories, and detailed classification. BFA-YOLO surpasses YOLOv8 by 1.8% and 2.9% in mAP@0.5 on the multi-view BFA-3D and street-view Facade-WHU datasets, respectively. These results underscore BFA-YOLO's superior performance in detecting facade attachments.
comment: 22 pages
☆ Searching for Effective Preprocessing Method and CNN-based Architecture with Efficient Channel Attention on Speech Emotion Recognition
Speech emotion recognition (SER) classifies human emotions in speech with a computer model. Recently, performance in SER has steadily increased as deep learning techniques have adapted. However, unlike many domains that use speech data, data for training in the SER model is insufficient. This causes overfitting of training of the neural network, resulting in performance degradation. In fact, successful emotion recognition requires an effective preprocessing method and a model structure that efficiently uses the number of weight parameters. In this study, we propose using eight dataset versions with different frequency-time resolutions to search for an effective emotional speech preprocessing method. We propose a 6-layer convolutional neural network (CNN) model with efficient channel attention (ECA) to pursue an efficient model structure. In particular, the well-positioned ECA blocks can improve channel feature representation with only a few parameters. With the interactive emotional dyadic motion capture (IEMOCAP) dataset, increasing the frequency resolution in preprocessing emotional speech can improve emotion recognition performance. Also, ECA after the deep convolution layer can effectively increase channel feature representation. Consequently, the best result (79.37UA 79.68WA) can be obtained, exceeding the performance of previous SER models. Furthermore, to compensate for the lack of emotional speech data, we experiment with multiple preprocessing data methods that augment trainable data preprocessed with all different settings from one sample. In the experiment, we can achieve the highest result (80.28UA 80.46WA).
☆ Confidential Computing on nVIDIA H100 GPU: A Performance Benchmark Study
This report evaluates the performance impact of enabling Trusted Execution Environments (TEE) on NVIDIA H100 GPUs for large language model (LLM) inference tasks. We benchmark the overhead introduced by TEE mode across various models and token lengths, focusing on the bottleneck caused by CPU-GPU data transfers via PCIe. Our results show that while there is minimal computational overhead within the GPU, the overall performance penalty is primarily due to data transfer. For most typical LLM queries, the overhead remains below 5%, with larger models and longer sequences experiencing near-zero overhead.
☆ FODA-PG for Enhanced Medical Imaging Narrative Generation: Adaptive Differentiation of Normal and Abnormal Attributes
Automatic Medical Imaging Narrative generation aims to alleviate the workload of radiologists by producing accurate clinical descriptions directly from radiological images. However, the subtle visual nuances and domain-specific terminology in medical images pose significant challenges compared to generic image captioning tasks. Existing approaches often neglect the vital distinction between normal and abnormal findings, leading to suboptimal performance. In this work, we propose FODA-PG, a novel Fine-grained Organ-Disease Adaptive Partitioning Graph framework that addresses these limitations through domain-adaptive learning. FODA-PG constructs a granular graphical representation of radiological findings by separating disease-related attributes into distinct "disease-specific" and "disease-free" categories based on their clinical significance and location. This adaptive partitioning enables our model to capture the nuanced differences between normal and pathological states, mitigating the impact of data biases. By integrating this fine-grained semantic knowledge into a powerful transformer-based architecture and providing rigorous mathematical justifications for its effectiveness, FODA-PG generates precise and clinically coherent reports with enhanced generalization capabilities. Extensive experiments on the IU-Xray and MIMIC-CXR benchmarks demonstrate the superiority of our approach over state-of-the-art methods, highlighting the importance of domain adaptation in medical report generation.
☆ Solving Stochastic Orienteering Problems with Chance Constraints Using a GNN Powered Monte Carlo Tree Search
Leveraging the power of a graph neural network (GNN) with message passing, we present a Monte Carlo Tree Search (MCTS) method to solve stochastic orienteering problems with chance constraints. While adhering to an assigned travel budget the algorithm seeks to maximize collected reward while incurring stochastic travel costs. In this context, the acceptable probability of exceeding the assigned budget is expressed as a chance constraint. Our MCTS solution is an online and anytime algorithm alternating planning and execution that determines the next vertex to visit by continuously monitoring the remaining travel budget. The novelty of our work is that the rollout phase in the MCTS framework is implemented using a message passing GNN, predicting both the utility and failure probability of each available action. This allows to enormously expedite the search process. Our experimental evaluation shows that with the proposed method and architecture we manage to efficiently solve complex problem instances while incurring in moderate losses in terms of collected reward. Moreover, we demonstrate how the approach is capable of generalizing beyond the characteristics of the training dataset. The paper's website, open-source code, and supplementary documentation can be found at ucmercedrobotics.github.io/gnn-sop.
comment: 8 pages, 6 figures
☆ Stacked Universal Successor Feature Approximators for Safety in Reinforcement Learning
Real-world problems often involve complex objective structures that resist distillation into reinforcement learning environments with a single objective. Operation costs must be balanced with multi-dimensional task performance and end-states' effects on future availability, all while ensuring safety for other agents in the environment and the reinforcement learning agent itself. System redundancy through secondary backup controllers has proven to be an effective method to ensure safety in real-world applications where the risk of violating constraints is extremely high. In this work, we investigate the utility of a stacked, continuous-control variation of universal successor feature approximation (USFA) adapted for soft actor-critic (SAC) and coupled with a suite of secondary safety controllers, which we call stacked USFA for safety (SUSFAS). Our method improves performance on secondary objectives compared to SAC baselines using an intervening secondary controller such as a runtime assurance (RTA) controller.
comment: 13 pages
☆ Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography
Federated learning (FL) has become one of the standard approaches for deploying machine learning models on edge devices, where private training data are distributed across clients, and a shared model is learned by aggregating locally computed updates from each client. While this paradigm enhances communication efficiency by only requiring updates at the end of each training epoch, the transmitted model updates remain vulnerable to malicious tampering, posing risks to the integrity of the global model. Although current digital signature algorithms can protect these communicated model updates, they fail to ensure quantum security in the era of large-scale quantum computing. Fortunately, various post-quantum cryptography algorithms have been developed to address this vulnerability, especially the three NIST-standardized algorithms - Dilithium, FALCON, and SPHINCS+. In this work, we empirically investigate the impact of these three NIST-standardized PQC algorithms for digital signatures within the FL procedure, covering a wide range of models, tasks, and FL settings. Our results indicate that Dilithium stands out as the most efficient PQC algorithm for digital signature in federated learning. Additionally, we offer an in-depth discussion of the implications of our findings and potential directions for future research.
comment: Submission for IEEE 2024 IEEE Workshop on Quantum IntelLigence, Learning & Security (QUILLS), https://sites.google.com/pitt.edu/quills/home
☆ Zero-Shot Whole Slide Image Retrieval in Histopathology Using Embeddings of Foundation Models
We have tested recently published foundation models for histopathology for image retrieval. We report macro average of F1 score for top-1 retrieval, majority of top-3 retrievals, and majority of top-5 retrievals. We perform zero-shot retrievals, i.e., we do not alter embeddings and we do not train any classifier. As test data, we used diagnostic slides of TCGA, The Cancer Genome Atlas, consisting of 23 organs and 117 cancer subtypes. As a search platform we used Yottixel that enabled us to perform WSI search using patches. Achieved F1 scores show low performance, e.g., for top-5 retrievals, 27% +/- 13% (Yottixel-DenseNet), 42% +/- 14% (Yottixel-UNI), 40%+/-13% (Yottixel-Virchow), and 41%+/-13% (Yottixel-GigaPath). The results for GigaPath WSI will be delayed due to the significant computational resources required for processing
comment: This paper will be updated with more results
☆ A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology
Digital pathology is revolutionizing the field of pathology by enabling the digitization, storage, and analysis of tissue samples as whole slide images (WSIs). WSIs are gigapixel files that capture the intricate details of tissue samples, providing a rich source of information for diagnostic and research purposes. However, due to their enormous size, representing these images as one compact vector is essential for many computational pathology tasks, such as search and retrieval, to ensure efficiency and scalability. Most current methods are "patch-oriented," meaning they divide WSIs into smaller patches for processing, which prevents a holistic analysis of the entire slide. Additionally, the necessity for compact representation is driven by the expensive high-performance storage required for WSIs. Not all hospitals have access to such extensive storage solutions, leading to potential disparities in healthcare quality and accessibility. This paper provides an overview of existing set-based approaches to single-vector WSI representation, highlighting the innovations that allow for more efficient and effective use of these complex images in digital pathology, thus addressing both computational challenges and storage limitations.
☆ Decentralized Learning in General-sum Markov Games
The Markov game framework is widely used to model interactions among agents with heterogeneous utilities in dynamic and uncertain societal-scale systems. In these systems, agents typically operate in a decentralized manner due to privacy and scalability concerns, often acting without any information about other agents. The design and analysis of decentralized learning algorithms that provably converge to rational outcomes remain elusive, especially beyond Markov zero-sum games and Markov potential games, which do not adequately capture the nature of many real-world interactions that is neither fully competitive nor fully cooperative. This paper investigates the design of decentralized learning algorithms for general-sum Markov games, aiming to provide provable guarantees of convergence to approximate Nash equilibria in the long run. Our approach builds on constructing a Markov Near-Potential Function (MNPF) to address the intractability of designing algorithms that converge to exact Nash equilibria. We demonstrate that MNPFs play a central role in ensuring the convergence of an actor-critic-based decentralized learning algorithm to approximate Nash equilibria. By leveraging a two-timescale approach, where Q-function estimates are updated faster than policy updates, we show that the system converges to a level set of the MNPF over the set of approximate Nash equilibria. This convergence result is further strengthened if the set of Nash equilibria is assumed to be finite. Our findings provide a new perspective on the analysis and design of decentralized learning algorithms in multi-agent systems.
comment: 16 pages, 1 figure
Detection of False Data Injection Attacks (FDIA) on Power Dynamical Systems With a State Prediction Method
With the deeper penetration of inverter-based resources in power systems, false data injection attacks (FDIA) are a growing cyber-security concern. They have the potential to disrupt the system's stability like frequency stability, thereby leading to catastrophic failures. Therefore, an FDIA detection method would be valuable to protect power systems. FDIAs typically induce a discrepancy between the desired and the effective behavior of the power system dynamics. A suitable detection method can leverage power dynamics predictions to identify whether such a discrepancy was induced by an FDIA. This work investigates the efficacy of temporal and spatio-temporal state prediction models, such as Long Short-Term Memory (LSTM) and a combination of Graph Neural Networks (GNN) with LSTM, for predicting frequency dynamics in the absence of an FDIA but with noisy measurements, and thereby identify FDIA events. For demonstration purposes, the IEEE 39 New England Kron-reduced model simulated with a swing equation is considered. It is shown that the proposed state prediction models can be used as a building block for developing an effective FDIA detection method that can maintain high detection accuracy across various attack and deployment settings. It is also shown how the FDIA detection should be deployed to limit its exposure to detection inaccuracies and mitigate its computational burden.
comment: Under review
☆ Training quantum machine learning model on cloud without uploading the data
Based on the linearity of quantum unitary operations, we propose a method that runs the parameterized quantum circuits before encoding the input data. It enables a dataset owner to train machine learning models on quantum cloud computation platforms, without the risk of leaking the information of the data. It is also capable of encoding a huge number of data effectively at a later time using classical computations, thus saving the runtime on quantum computation devices. The trained quantum machine learning model can be run completely on classical computers, so that the dataset owner does not need to have any quantum hardware, nor even quantum simulators. Moreover, the method can mitigate the encoding bottom neck by reducing the required circuit depth from $O(2^{n})$ to $n/2$. These results manifest yet another advantage of quantum and quantum-inspired machine learning models over existing classical neural networks, and broaden the approaches for data security.
comment: 6 pages, 1 figure
☆ The emergence of Large Language Models (LLM) as a tool in literature reviews: an LLM automated systematic review
Objective: This study aims to summarize the usage of Large Language Models (LLMs) in the process of creating a scientific review. We look at the range of stages in a review that can be automated and assess the current state-of-the-art research projects in the field. Materials and Methods: The search was conducted in June 2024 in PubMed, Scopus, Dimensions, and Google Scholar databases by human reviewers. Screening and extraction process took place in Covidence with the help of LLM add-on which uses OpenAI gpt-4o model. ChatGPT was used to clean extracted data and generate code for figures in this manuscript, ChatGPT and Scite.ai were used in drafting all components of the manuscript, except the methods and discussion sections. Results: 3,788 articles were retrieved, and 172 studies were deemed eligible for the final review. ChatGPT and GPT-based LLM emerged as the most dominant architecture for review automation (n=126, 73.2%). A significant number of review automation projects were found, but only a limited number of papers (n=26, 15.1%) were actual reviews that used LLM during their creation. Most citations focused on automation of a particular stage of review, such as Searching for publications (n=60, 34.9%), and Data extraction (n=54, 31.4%). When comparing pooled performance of GPT-based and BERT-based models, the former were better in data extraction with mean precision 83.0% (SD=10.4), and recall 86.0% (SD=9.8), while being slightly less accurate in title and abstract screening stage (Maccuracy=77.3%, SD=13.0). Discussion/Conclusion: Our LLM-assisted systematic review revealed a significant number of research projects related to review automation using LLMs. The results looked promising, and we anticipate that LLMs will change in the near future the way the scientific reviews are conducted.
comment: 18 main pages with 5 figures and 1 table, references, followed by supplementary materials
☆ CubicML: Automated ML for Distributed ML Systems Co-design with ML Prediction of Performance
Scaling up deep learning models has been proven effective to improve intelligence of machine learning (ML) models, especially for industry recommendation models and large language models. The co-design of distributed ML systems and algorithms (to maximize training performance) plays a pivotal role for its success. As it scales, the number of co-design hyper-parameters grows rapidly which brings challenges to feasibly find the optimal setup for system performance maximization. In this paper, we propose CubicML which uses ML to automatically optimize training performance of distributed ML systems. In CubicML, we use a ML model as a proxy to predict the training performance for search efficiency and performance modeling flexibility. We proved that CubicML can effectively optimize training speed of in-house ads recommendation models and large language models at Meta.
☆ ActionFlow: Equivariant, Accurate, and Efficient Policies with Spatially Symmetric Flow Matching
Spatial understanding is a critical aspect of most robotic tasks, particularly when generalization is important. Despite the impressive results of deep generative models in complex manipulation tasks, the absence of a representation that encodes intricate spatial relationships between observations and actions often limits spatial generalization, necessitating large amounts of demonstrations. To tackle this problem, we introduce a novel policy class, ActionFlow. ActionFlow integrates spatial symmetry inductive biases while generating expressive action sequences. On the representation level, ActionFlow introduces an SE(3) Invariant Transformer architecture, which enables informed spatial reasoning based on the relative SE(3) poses between observations and actions. For action generation, ActionFlow leverages Flow Matching, a state-of-the-art deep generative model known for generating high-quality samples with fast inference - an essential property for feedback control. In combination, ActionFlow policies exhibit strong spatial and locality biases and SE(3)-equivariant action generation. Our experiments demonstrate the effectiveness of ActionFlow and its two main components on several simulated and real-world robotic manipulation tasks and confirm that we can obtain equivariant, accurate, and efficient policies with spatially symmetric flow matching. Project website: https://flowbasedpolicies.github.io/
☆ Neurosymbolic Methods for Dynamic Knowledge Graphs
Knowledge graphs (KGs) have recently been used for many tools and applications, making them rich resources in structured format. However, in the real world, KGs grow due to the additions of new knowledge in the form of entities and relations, making these KGs dynamic. This chapter formally defines several types of dynamic KGs and summarizes how these KGs can be represented. Additionally, many neurosymbolic methods have been proposed for learning representations over static KGs for several tasks such as KG completion and entity alignment. This chapter further focuses on neurosymbolic methods for dynamic KGs with or without temporal information. More specifically, it provides an insight into neurosymbolic methods for dynamic (temporal or non-temporal) KG completion and entity alignment tasks. It further discusses the challenges of current approaches and provides some future directions.
☆ Thinking Outside the BBox: Unconstrained Generative Object Compositing
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
☆ The role of data embedding in quantum autoencoders for improved anomaly detection
The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is critically dependent on the choice of data embedding and ansatz design. This study explores the effects of three data embedding techniques, data re-uploading, parallel embedding, and alternate embedding, on the representability and effectiveness of QAEs in detecting anomalies. Our findings reveal that even with relatively simple variational circuits, enhanced data embedding strategies can substantially improve anomaly detection accuracy and the representability of underlying data across different datasets. Starting with toy examples featuring low-dimensional data, we visually demonstrate the effect of different embedding techniques on the representability of the model. We then extend our analysis to complex, higher-dimensional datasets, highlighting the significant impact of embedding methods on QAE performance.
comment: 8 pages, 5 figures, 4 tables
☆ Learning to Solve Combinatorial Optimization under Positive Linear Constraints via Non-Autoregressive Neural Networks
Combinatorial optimization (CO) is the fundamental problem at the intersection of computer science, applied mathematics, etc. The inherent hardness in CO problems brings up challenge for solving CO exactly, making deep-neural-network-based solvers a research frontier. In this paper, we design a family of non-autoregressive neural networks to solve CO problems under positive linear constraints with the following merits. First, the positive linear constraint covers a wide range of CO problems, indicating that our approach breaks the generality bottleneck of existing non-autoregressive networks. Second, compared to existing autoregressive neural network solvers, our non-autoregressive networks have the advantages of higher efficiency and preserving permutation invariance. Third, our offline unsupervised learning has lower demand on high-quality labels, getting rid of the demand of optimal labels in supervised learning. Fourth, our online differentiable search method significantly improves the generalizability of our neural network solver to unseen problems. We validate the effectiveness of this framework in solving representative CO problems including facility location, max-set covering, and traveling salesman problem. Our non-autoregressive neural solvers are competitive to and can be even superior to state-of-the-art solvers such as SCIP and Gurobi, especially when both efficiency and efficacy are considered. Code is available at https://github.com/Thinklab-SJTU/NAR-CO-Solver
comment: English version of the same paper published on Scientia Sinica Informationis
♻ ☆ CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
Cognitive psychology investigates perception, attention, memory, language, problem-solving, decision-making, and reasoning. Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2. Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks. Nonetheless, the presence of a dual-system framework analogous to human cognition in LLMs remains unexplored. This study introduces the \textbf{CogniDual Framework for LLMs} (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses, thereby emulating the human process of acquiring and mastering new information. Our findings reveal the cognitive mechanisms behind LLMs' response generation, enhancing our understanding of their capabilities in cognitive psychology. Practically, self-trained models can provide faster responses to certain queries, reducing computational demands during inference.
♻ ☆ 3D Single-object Tracking in Point Clouds with High Temporal Variation ECCV24
The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
comment: Accepted by ECCV24
♻ ☆ Recent Advances in Attack and Defense Approaches of Large Language Models
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities. However, their widespread deployment has raised significant safety and reliability concerns. Established vulnerabilities in deep neural networks, coupled with emerging threat models, may compromise security evaluations and create a false sense of security. Given the extensive research in the field of LLM security, we believe that summarizing the current state of affairs will help the research community better understand the present landscape and inform future developments. This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms. We analyze recent studies on attack vectors and model weaknesses, providing insights into attack mechanisms and the evolving threat landscape. We also examine current defense strategies, highlighting their strengths and limitations. By contrasting advancements in attack and defense methodologies, we identify research gaps and propose future directions to enhance LLM security. Our goal is to advance the understanding of LLM safety challenges and guide the development of more robust security measures.
♻ ☆ Oops, I Sampled it Again: Reinterpreting Confidence Intervals in Few-Shot Learning
The predominant method for computing confidence intervals (CI) in few-shot learning (FSL) is based on sampling the tasks with replacement, i.e.\ allowing the same samples to appear in multiple tasks. This makes the CI misleading in that it takes into account the randomness of the sampler but not the data itself. To quantify the extent of this problem, we conduct a comparative analysis between CIs computed with and without replacement. These reveal a notable underestimation by the predominant method. This observation calls for a reevaluation of how we interpret confidence intervals and the resulting conclusions in FSL comparative studies. Our research demonstrates that the use of paired tests can partially address this issue. Additionally, we explore methods to further reduce the (size of the) CI by strategically sampling tasks of a specific size. We also introduce a new optimized benchmark, which can be accessed at https://github.com/RafLaf/FSL-benchmark-again
♻ ☆ A Hybrid Framework for Spatial Interpolation: Merging Data-driven with Domain Knowledge
Estimating spatially distributed information through the interpolation of scattered observation datasets often overlooks the critical role of domain knowledge in understanding spatial dependencies. Additionally, the features of these data sets are typically limited to the spatial coordinates of the scattered observation locations. In this paper, we propose a hybrid framework that integrates data-driven spatial dependency feature extraction with rule-assisted spatial dependency function mapping to augment domain knowledge. We demonstrate the superior performance of our framework in two comparative application scenarios, highlighting its ability to capture more localized spatial features in the reconstructed distribution fields. Furthermore, we underscore its potential to enhance nonlinear estimation capabilities through the application of transformed fuzzy rules and to quantify the inherent uncertainties associated with the observation data sets. Our framework introduces an innovative approach to spatial information estimation by synergistically combining observational data with rule-assisted domain knowledge.
comment: 21 pages, 13 figures; typos corrected, references updated; few typos in few equations corrected, changed to Tex source
♻ ☆ SELF-[IN]CORRECT: LLMs Struggle with Discriminating Self-Generated Responses
Can LLMs consistently improve their previous outputs for better results? For this to be true, LLMs would need to be better at discriminating among previously-generated alternatives, than generating initial responses. We explore the validity of this hypothesis in practice. We first formulate a unified framework that allows us to compare the generative and discriminative capability of any model on any task. In our resulting experimental analysis of several open-source and industrial LLMs, we observe that models are not reliably better at discriminating among previously-generated alternatives than generating initial responses. This finding challenges the notion that LLMs may be able to enhance their performance only through their own judgment.
♻ ☆ Re-evaluating Retrosynthesis Algorithms with Syntheseus
Automated Synthesis Planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called syntheseus, which promotes best practice by default, enabling consistent meaningful evaluation of single-step models and multi-step planning algorithms. We demonstrate the capabilities of syntheseus by re-evaluating several previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes in controlled evaluation experiments. We end with guidance for future works in this area, and call the community to engage in the discussion on how to improve benchmarks for synthesis planning.
comment: Accepted for publication in Faraday Discussions
♻ ☆ Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning
Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
comment: 14 pages, 3 figures
♻ ☆ Zero-Shot Topic Classification of Column Headers: Leveraging LLMs for Metadata Enrichment
Traditional dataset retrieval systems rely on metadata for indexing, rather than on the underlying data values. However, high-quality metadata creation and enrichment often require manual annotations, which is a labour-intensive and challenging process to automate. In this study, we propose a method to support metadata enrichment using topic annotations generated by three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard, and GoogleGemini. Our analysis focuses on classifying column headers based on domain-specific topics from the Consortium of European Social Science Data Archives (CESSDA), a Linked Data controlled vocabulary. Our approach operates in a zero-shot setting, integrating the controlled topic vocabulary directly within the input prompt. This integration serves as a Large Context Windows approach, with the aim of improving the results of the topic classification task. We evaluated the performance of the LLMs in terms of internal consistency, inter-machine alignment, and agreement with human classification. Additionally, we investigate the impact of contextual information (i.e., dataset description) on the classification outcomes. Our findings suggest that ChatGPT and GoogleGemini outperform GoogleBard in terms of internal consistency as well as LLM-human-agreement. Interestingly, we found that contextual information had no significant impact on LLM performance. This work proposes a novel approach that leverages LLMs for topic classification of column headers using a controlled vocabulary, presenting a practical application of LLMs and Large Context Windows within the Semantic Web domain. This approach has the potential to facilitate automated metadata enrichment, thereby enhancing dataset retrieval and the Findability, Accessibility, Interoperability, and Reusability (FAIR) of research data on the Web.
♻ ☆ LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
With advances in digital technology, the classification of medical images has become a crucial step for image-based clinical decision support systems. Automatic medical image classification represents a pivotal domain where the use of AI holds the potential to create a significant social impact. However, several challenges act as obstacles to the development of practical and effective solutions. One of these challenges is the prevalent class imbalance problem in most medical imaging datasets. As a result, existing AI techniques, particularly deep-learning-based methodologies, often underperform in such scenarios. In this study, we propose a novel framework called Large Margin aware Focal (LMF) loss to mitigate the class imbalance problem in medical imaging. The LMF loss represents a linear combination of two loss functions optimized by two hyperparameters. This framework harnesses the distinct characteristics of both loss functions by enforcing wider margins for minority classes while simultaneously emphasizing challenging samples found in the datasets. We perform rigorous experiments on three neural network architectures and with four medical imaging datasets. We provide empirical evidence that our proposed framework consistently outperforms other baseline methods, showing an improvement of 2%-9% in macro-f1 scores. Through class-wise analysis of f1 scores, we also demonstrate how the proposed framework can significantly improve performance for minority classes. The results of our experiments show that our proposed framework can perform consistently well across different architectures and datasets. Overall, our study demonstrates a simple and effective approach to addressing the class imbalance problem in medical imaging datasets. We hope our work will inspire new research toward a more generalized approach to medical image classification.
comment: 21 pages, 4 figures, a detailed version of our previous submission with additional findings
♻ ☆ Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
♻ ☆ Integer-only Quantized Transformers for Embedded FPGA-based Time-series Forecasting in AIoT
This paper presents the design of a hardware accelerator for Transformers, optimized for on-device time-series forecasting in AIoT systems. It integrates integer-only quantization and Quantization-Aware Training with optimized hardware designs to realize 6-bit and 4-bit quantized Transformer models, which achieved precision comparable to 8-bit quantized models from related research. Utilizing a complete implementation on an embedded FPGA (Xilinx Spartan-7 XC7S15), we examine the feasibility of deploying Transformer models on embedded IoT devices. This includes a thorough analysis of achievable precision, resource utilization, timing, power, and energy consumption for on-device inference. Our results indicate that while sufficient performance can be attained, the optimization process is not trivial. For instance, reducing the quantization bitwidth does not consistently result in decreased latency or energy consumption, underscoring the necessity of systematically exploring various optimization combinations. Compared to an 8-bit quantized Transformer model in related studies, our 4-bit quantized Transformer model increases test loss by only 0.63%, operates up to 132.33x faster, and consumes 48.19x less energy.
comment: 7 pages, 3 figures, 4 tables. The paper was accepted by 2024 IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT) and got best paper award
♻ ☆ A Black-Box Physics-Informed Estimator based on Gaussian Process Regression for Robot Inverse Dynamics Identification
Learning the inverse dynamics of robots directly from data, adopting a black-box approach, is interesting for several real-world scenarios where limited knowledge about the system is available. In this paper, we propose a black-box model based on Gaussian Process (GP) Regression for the identification of the inverse dynamics of robotic manipulators. The proposed model relies on a novel multidimensional kernel, called \textit{Lagrangian Inspired Polynomial} (\kernelInitials{}) kernel. The \kernelInitials{} kernel is based on two main ideas. First, instead of directly modeling the inverse dynamics components, we model as GPs the kinetic and potential energy of the system. The GP prior on the inverse dynamics components is derived from those on the energies by applying the properties of GPs under linear operators. Second, as regards the energy prior definition, we prove a polynomial structure of the kinetic and potential energy, and we derive a polynomial kernel that encodes this property. As a consequence, the proposed model allows also to estimate the kinetic and potential energy without requiring any label on these quantities. Results on simulation and on two real robotic manipulators, namely a 7 DOF Franka Emika Panda, and a 6 DOF MELFA RV4FL, show that the proposed model outperforms state-of-the-art black-box estimators based both on Gaussian Processes and Neural Networks in terms of accuracy, generality and data efficiency. The experiments on the MELFA robot also demonstrate that our approach achieves performance comparable to fine-tuned model-based estimators, despite requiring less prior information.
♻ ☆ Enhancing AI-based Generation of Software Exploits with Contextual Information
This practical experience report explores Neural Machine Translation (NMT) models' capability to generate offensive security code from natural language (NL) descriptions, highlighting the significance of contextual understanding and its impact on model performance. Our study employs a dataset comprising real shellcodes to evaluate the models across various scenarios, including missing information, necessary context, and unnecessary context. The experiments are designed to assess the models' resilience against incomplete descriptions, their proficiency in leveraging context for enhanced accuracy, and their ability to discern irrelevant information. The findings reveal that the introduction of contextual data significantly improves performance. However, the benefits of additional context diminish beyond a certain point, indicating an optimal level of contextual information for model training. Moreover, the models demonstrate an ability to filter out unnecessary context, maintaining high levels of accuracy in the generation of offensive security code. This study paves the way for future research on optimizing context use in AI-driven code generation, particularly for applications requiring a high degree of technical precision such as the generation of offensive code.
comment: Accepted for publication at The 35th IEEE International Symposium on Software Reliability Engineering
♻ ☆ Enhancing Biomedical Knowledge Discovery for Diseases: An Open-Source Framework Applied on Rett Syndrome and Alzheimer's Disease
The ever-growing volume of biomedical publications creates a critical need for efficient knowledge discovery. In this context, we introduce an open-source end-to-end framework designed to construct knowledge around specific diseases directly from raw text. To facilitate research in disease-related knowledge discovery, we create two annotated datasets focused on Rett syndrome and Alzheimer's disease, enabling the identification of semantic relations between biomedical entities. Extensive benchmarking explores various ways to represent relations and entity representations, offering insights into optimal modeling strategies for semantic relation detection and highlighting language models' competence in knowledge discovery. We also conduct probing experiments using different layer representations and attention scores to explore transformers' ability to capture semantic relations.
comment: Under Review
♻ ☆ The Transformation Logics IJCAI 2024
We introduce a new family of temporal logics designed to finely balance the trade-off between expressivity and complexity. Their key feature is the possibility of defining operators of a new kind that we call transformation operators. Some of them subsume existing temporal operators, while others are entirely novel. Of particular interest are transformation operators based on semigroups. They enable logics to harness the richness of semigroup theory, and we show them to yield logics capable of creating hierarchies of increasing expressivity and complexity which are non-trivial to characterise in existing logics. The result is a genuinely novel and yet unexplored landscape of temporal logics, each of them with the potential of matching the trade-off between expressivity and complexity required by specific applications.
comment: Extended version with appendix of a paper with the same title that appears in the proceedings of IJCAI 2024
♻ ☆ MedPromptExtract (Medical Data Extraction Tool): Anonymization and Hi-fidelity Automated data extraction using NLP and prompt engineering
Introduction: The labour-intensive nature of data extraction from sources like discharge summaries (DS) poses significant obstacles to the digitisation of medical records particularly for low- and middle-income countries (LMICs). In this paper we present a completely automated method MedPromptExtract to efficiently extract data from DS while maintaining confidentiality. Methods: The source of data was Discharge Summaries (DS) from Kokilaben Dhirubhai Ambani Hospital (KDAH) of patients having Acute Kidney Injury (AKI). A pre-existing tool EIGEN which leverages semi-supervised learning techniques for high-fidelity information extraction was used to anonymize the DS, Natural Language Processing (NLP) was used to extract data from regular fields. We used Prompt Engineering and Large Language Model(LLM) to extract custom clinical information from free flowing text describing the patients stay in the hospital. Twelve features associated with occurrence of AKI were extracted. The LLM responses were validated against clinicians annotations. Results: The MedPromptExtracttool first subjected DS to the anonymization pipeline which took three seconds per summary. Successful anonymization was verified by clinicians, thereafter NLP pipeline extracted structured text from the anonymized pdfs at the rate of 0.2 seconds per summary with 100% accuracy.Finally DS were analysed by the LLM pipeline using Gemini Pro for the twelve features. Accuracy metrics were calculated by comparing model responses to clinicians annotations with seven features achieving AUCs above 0.9, indicating high fidelity of the extraction process. Conclusion: MedPromptExtract serves as an automated adaptable tool for efficient data extraction from medical records with a dynamic user interface. Keywords: Digitizing Medical Records, Automated Anonymisation, Information Retrieval, Large Language Models, Prompt Engineering
♻ ☆ EgoPoser: Robust Real-Time Egocentric Pose Estimation from Sparse and Intermittent Observations Everywhere ECCV 2024
Full-body egocentric pose estimation from head and hand poses alone has become an active area of research to power articulate avatar representations on headset-based platforms. However, existing methods over-rely on the indoor motion-capture spaces in which datasets were recorded, while simultaneously assuming continuous joint motion capture and uniform body dimensions. We propose EgoPoser to overcome these limitations with four main contributions. 1) EgoPoser robustly models body pose from intermittent hand position and orientation tracking only when inside a headset's field of view. 2) We rethink input representations for headset-based ego-pose estimation and introduce a novel global motion decomposition method that predicts full-body pose independent of global positions. 3) We enhance pose estimation by capturing longer motion time series through an efficient SlowFast module design that maintains computational efficiency. 4) EgoPoser generalizes across various body shapes for different users. We experimentally evaluate our method and show that it outperforms state-of-the-art methods both qualitatively and quantitatively while maintaining a high inference speed of over 600fps. EgoPoser establishes a robust baseline for future work where full-body pose estimation no longer needs to rely on outside-in capture and can scale to large-scale and unseen environments.
comment: Accepted by ECCV 2024, Code: https://siplab.org/projects/EgoPoser
♻ ☆ A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 200 benchmarks and evaluations for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
♻ ☆ Is my Data in your AI Model? Membership Inference Test with Application to Face Images
This article introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if given data was used during the training of AI/ML models. Specifically, we propose two MINT architectures designed to learn the distinct activation patterns that emerge when an Audited Model is exposed to data used during its training process. These architectures are based on Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The experimental framework focuses on the challenging task of Face Recognition, considering three state-of-the-art Face Recognition systems. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Different experimental scenarios are considered depending on the context of the AI model to test. Our proposed MINT approach achieves promising results, with up to 90% accuracy, indicating the potential to recognize if an AI model has been trained with specific data. The proposed MINT approach can serve to enforce privacy and fairness in several AI applications, e.g., revealing if sensitive or private data was used for training or tuning Large Language Models (LLMs).
comment: 12 pages including references and authors
♻ ☆ A Hypergraph-Based Machine Learning Ensemble Network Intrusion Detection System
Network intrusion detection systems (NIDS) to detect malicious attacks continue to meet challenges. NIDS are often developed offline while they face auto-generated port scan infiltration attempts, resulting in a significant time lag from adversarial adaption to NIDS response. To address these challenges, we use hypergraphs focused on internet protocol addresses and destination ports to capture evolving patterns of port scan attacks. The derived set of hypergraph-based metrics are then used to train an ensemble machine learning (ML) based NIDS that allows for real-time adaption in monitoring and detecting port scanning activities, other types of attacks, and adversarial intrusions at high accuracy, precision and recall performances. This ML adapting NIDS was developed through the combination of (1) intrusion examples, (2) NIDS update rules, (3) attack threshold choices to trigger NIDS retraining requests, and (4) a production environment with no prior knowledge of the nature of network traffic. 40 scenarios were auto-generated to evaluate the ML ensemble NIDS comprising three tree-based models. The resulting ML Ensemble NIDS was extended and evaluated with the CIC-IDS2017 dataset. Results show that under the model settings of an Update-ALL-NIDS rule (specifically retrain and update all the three models upon the same NIDS retraining request) the proposed ML ensemble NIDS evolved intelligently and produced the best results with nearly 100% detection performance throughout the simulation.
comment: in IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024. An updated version of this work has been accepted for publication in an IEEE journal available here: https://ieeexplore.ieee.org/document/10666746
♻ ☆ FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models
To thoroughly assess the mathematical reasoning abilities of Large Language Models (LLMs), we need to carefully curate evaluation datasets covering diverse mathematical concepts and mathematical problems at different difficulty levels. In pursuit of this objective, we propose FineMath in this paper, a fine-grained mathematical evaluation benchmark dataset for assessing Chinese LLMs. FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are further divided into 17 categories of math word problems, enabling in-depth analysis of mathematical reasoning abilities of LLMs. All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems. We conduct extensive experiments on a wide range of LLMs on FineMath and find that there is still considerable room for improvements in terms of mathematical reasoning capability of Chinese LLMs. We also carry out an in-depth analysis on the evaluation process and methods that have been overlooked previously. These two factors significantly influence the model results and our understanding of their mathematical reasoning capabilities. The dataset will be publicly available soon.
♻ ☆ Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning
Fetal health classification is a critical task in obstetrics, enabling early identification and management of potential health problems. However, it remains challenging due to data complexity and limited labeled samples. This research paper presents a novel machine-learning approach for fetal health classification, leveraging a LightGBM classifier trained on a comprehensive dataset. The proposed model achieves an impressive accuracy of 98.31% on a test set. Our findings demonstrate the potential of machine learning in enhancing fetal health classification, offering a more objective and accurate assessment. Notably, our approach combines various features, such as fetal heart rate, uterine contractions, and maternal blood pressure, to provide a comprehensive evaluation. This methodology holds promise for improving early detection and treatment of fetal health issues, ensuring better outcomes for both mothers and babies. Beyond the high accuracy achieved, the novelty of our approach lies in its comprehensive feature selection and assessment methodology. By incorporating multiple data points, our model offers a more holistic and reliable evaluation compared to traditional methods. This research has significant implications in the field of obstetrics, paving the way for advancements in early detection and intervention of fetal health concerns. Future work involves validating the model on a larger dataset and developing a clinical application. Ultimately, we anticipate that our research will revolutionize the assessment and management of fetal health, contributing to improved healthcare outcomes for expectant mothers and their babies.
♻ ☆ Pureformer-VC: Non-parallel One-Shot Voice Conversion with Pure Transformer Blocks and Triplet Discriminative Training ICASSP 2025
One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics effectively into the generated speech. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario.
comment: submmited to ICASSP 2025
♻ ☆ Large-scale Urban Facility Location Selection with Knowledge-informed Reinforcement Learning
The facility location problem (FLP) is a classical combinatorial optimization challenge aimed at strategically laying out facilities to maximize their accessibility. In this paper, we propose a reinforcement learning method tailored to solve large-scale urban FLP, capable of producing near-optimal solutions at superfast inference speed. We distill the essential swap operation from local search, and simulate it by intelligently selecting edges on a graph of urban regions, guided by a knowledge-informed graph neural network, thus sidestepping the need for heavy computation of local search. Extensive experiments on four US cities with different geospatial conditions demonstrate that our approach can achieve comparable performance to commercial solvers with less than 5\% accessibility loss, while displaying up to 1000 times speedup. We deploy our model as an online geospatial application at https://huggingface.co/spaces/randommmm/MFLP.
comment: Sigspatial2024
♻ ☆ PAGE: Parametric Generative Explainer for Graph Neural Network
This article introduces PAGE, a parameterized generative interpretive framework. PAGE is capable of providing faithful explanations for any graph neural network without necessitating prior knowledge or internal details. Specifically, we train the auto-encoder to generate explanatory substructures by designing appropriate training strategy. Due to the dimensionality reduction of features in the latent space of the auto-encoder, it becomes easier to extract causal features leading to the model's output, which can be easily employed to generate explanations. To accomplish this, we introduce an additional discriminator to capture the causality between latent causal features and the model's output. By designing appropriate optimization objectives, the well-trained discriminator can be employed to constrain the encoder in generating enhanced causal features. Finally, these features are mapped to substructures of the input graph through the decoder to serve as explanations. Compared to existing methods, PAGE operates at the sample scale rather than nodes or edges, eliminating the need for perturbation or encoding processes as seen in previous methods. Experimental results on both artificially synthesized and real-world datasets demonstrate that our approach not only exhibits the highest faithfulness and accuracy but also significantly outperforms baseline models in terms of efficiency.
♻ ☆ EmoAttack: Utilizing Emotional Voice Conversion for Speech Backdoor Attacks on Deep Speech Classification Models ICASSP 2025
Deep speech classification tasks, mainly including keyword spotting and speaker verification, play a crucial role in speech-based human-computer interaction. Recently, the security of these technologies has been demonstrated to be vulnerable to backdoor attacks. Specifically speaking, speech samples are attacked by noisy disruption and component modification in present triggers. We suggest that speech backdoor attacks can strategically focus on emotion, a higher-level subjective perceptual attribute inherent in speech. Furthermore, we proposed that emotional voice conversion technology can serve as the speech backdoor attack trigger, and the method is called EmoAttack. Based on this, we conducted attack experiments on two speech classification tasks, showcasing that EmoAttack method owns impactful trigger effectiveness and its remarkable attack success rate and accuracy variance. Additionally, the ablation experiments found that speech with intensive emotion is more suitable to be targeted for attacks.
comment: Submitted to ICASSP 2025
♻ ☆ Contrastive Graph Pooling for Explainable Classification of Brain Networks
Functional magnetic resonance imaging (fMRI) is a commonly used technique to measure neural activation. Its application has been particularly important in identifying underlying neurodegenerative conditions such as Parkinson's, Alzheimer's, and Autism. Recent analysis of fMRI data models the brain as a graph and extracts features by graph neural networks (GNNs). However, the unique characteristics of fMRI data require a special design of GNN. Tailoring GNN to generate effective and domain-explainable features remains challenging. In this paper, we propose a contrastive dual-attention block and a differentiable graph pooling method called ContrastPool to better utilize GNN for brain networks, meeting fMRI-specific requirements. We apply our method to 5 resting-state fMRI brain network datasets of 3 diseases and demonstrate its superiority over state-of-the-art baselines. Our case study confirms that the patterns extracted by our method match the domain knowledge in neuroscience literature, and disclose direct and interesting insights. Our contributions underscore the potential of ContrastPool for advancing the understanding of brain networks and neurodegenerative conditions. The source code is available at https://github.com/AngusMonroe/ContrastPool.
♻ ☆ Patched MOA: optimizing inference for diverse software development tasks
This paper introduces Patched MOA (Mixture of Agents), an inference optimization technique that significantly enhances the performance of large language models (LLMs) across diverse software development tasks. We evaluate three inference optimization algorithms - Best of N, Mixture of Agents, and Monte Carlo Tree Search and demonstrate that Patched MOA can boost the performance of smaller models to surpass that of larger, more expensive models. Notably, our approach improves the gpt-4o-mini model's performance on the Arena-Hard-Auto benchmark by 15.52%, outperforming gpt-4-turbo at a fraction of the cost. We also apply Patched MOA to various software development workflows, showing consistent improvements in task completion rates. Our method is model-agnostic, transparent to end-users, and can be easily integrated into existing LLM pipelines. This work contributes to the growing field of LLM optimization, offering a cost-effective solution for enhancing model performance without the need for fine-tuning or larger models. Our implementation is open-source and available at https://github.com/codelion/optillm.
♻ ☆ Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement
Low-light remote sensing images generally feature high resolution and high spatial complexity, with continuously distributed surface features in space. This continuity in scenes leads to extensive long-range correlations in spatial domains within remote sensing images. Convolutional Neural Networks, which rely on local correlations for long-distance modeling, struggle to establish long-range correlations in such images. On the other hand, transformer-based methods that focus on global information face high computational complexities when processing high-resolution remote sensing images. From another perspective, Fourier transform can compute global information without introducing a large number of parameters, enabling the network to more efficiently capture the overall image structure and establish long-range correlations. Therefore, we propose a Dual-Domain Feature Fusion Network (DFFN) for low-light remote sensing image enhancement. Specifically, this challenging task of low-light enhancement is divided into two more manageable sub-tasks: the first phase learns amplitude information to restore image brightness, and the second phase learns phase information to refine details. To facilitate information exchange between the two phases, we designed an information fusion affine block that combines data from different phases and scales. Additionally, we have constructed two dark light remote sensing datasets to address the current lack of datasets in dark light remote sensing image enhancement. Extensive evaluations show that our method outperforms existing state-of-the-art methods. The code is available at https://github.com/iijjlk/DFFN.
comment: 14 page
♻ ☆ Locally Convex Global Loss Network for Decision-Focused Learning
In decision-making problem under uncertainty, predicting unknown parameters is often considered independent of the optimization part. Decision-focused Learning (DFL) is a task-oriented framework to integrate prediction and optimization by adapting predictive model to give better decision for the corresponding task. Here, an inevitable challenge arises when computing gradients of the optimal decision with respect to the parameters. Existing researches cope this issue by smoothly reforming surrogate optimization or construct surrogate loss function that mimic task loss. However, they are applied to restricted optimization domain. In this paper, we propose Locally Convex Global Loss Network (LCGLN), a global surrogate loss model which can be implemented in a general DFL paradigm. LCGLN learns task loss via partial input convex neural network which is guaranteed to be convex for chosen inputs, while keeping the non-convex global structure for the other inputs. This enables LCGLN to admit general DFL through only a single surrogate loss without any sense for choosing appropriate parametric forms. We confirm effectiveness and flexibility of LCGLN by evaluating our proposed model with three stochastic decision-making problems.
♻ ☆ Innovative Speech-Based Deep Learning Approaches for Parkinson's Disease Classification: A Systematic Review
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder worldwide, frequently presents with early-stage speech impairments. Recent advancements in Artificial Intelligence (AI), particularly deep learning (DL), have significantly enhanced PD diagnosis through the analysis of speech data. Nevertheless, the progress of research is restricted by the limited availability of publicly accessible speech-based PD datasets, primarily due to privacy concerns. The goal of this systematic review is to explore the current landscape of speech-based DL approaches for PD classification, based on 33 scientific works published between January 2020 and March 2024. We discuss their available resources, capabilities, and potential limitations, and issues related to bias, explainability, and privacy. Furthermore, this review provides an overview of publicly accessible speech-based datasets and open-source material for PD. The DL approaches identified are categorized into end-to-end (E2E) learning, transfer learning (TL), and deep acoustic feature extraction (DAFE). Among E2E approaches, Convolutional Neural Networks (CNNs) are prevalent, though Transformers are increasingly popular. E2E approaches face challenges such as limited data and computational resources, especially with Transformers. TL addresses these issues by providing more robust PD diagnosis and better generalizability across languages. DAFE aims to improve the explainability and interpretability of results by examining the specific effects of deep features on both other DL approaches and more traditional machine learning (ML) methods. However, it often underperforms compared to E2E and TL approaches.
comment: van Gelderen, L., & Tejedor-Garc\'ia, C. (2024). Innovative Speech-Based Deep Learning Approaches for Parkinson's Disease Classification: A Systematic Review. Applied Sciences, 14(17). doi:10.3390/app14177873 This research was funded by the NWO research programme NGF AiNed Fellowship Grants under the project Responsible AI for Voice Diagnostics (RAIVD) - grant number NGF.1607.22.013
♻ ☆ LooGLE: Can Long-Context Language Models Understand Long Contexts?
Large language models (LLMs), despite their impressive performance in various language tasks, are typically limited to processing texts within context-window size. This limitation has spurred significant research efforts to enhance LLMs' long-context understanding with high-quality long-sequence benchmarks. However, prior datasets in this regard suffer from shortcomings, such as short context length compared to the context window of modern LLMs; outdated documents that have data leakage problems; and an emphasis on short dependency tasks rather than long dependency tasks. In this paper, we present LooGLE, a Long Context Generic Language Evaluation benchmark for LLMs' long context understanding. LooGLE features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains. Human annotators meticulously crafted more than 1,100 high-quality question-answer pairs to meet the long dependency requirements. These pairs underwent thorough cross-validation, yielding the most precise assessment of LLMs' long dependency capabilities. The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings: (i) commercial models outperformed open-sourced models; (ii) LLMs excelled in short dependency tasks like short question-answering and cloze tasks but struggled with more intricate long dependency tasks; (iii) in-context learning and chaining thoughts offered only marginal improvements; (iv) retrieval-based techniques demonstrated substantial benefits for short question-answering, while strategies for extending context window length had limited impact on long context understanding. As such, LooGLE not only provides a systematic and comprehensive evaluation schema on long-context LLMs, but also sheds light on future development of enhanced models towards "true long-context understanding".
♻ ☆ LLM-PBE: Assessing Data Privacy in Large Language Models
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis. Their profound capabilities in processing and interpreting complex language data, however, bring to light pressing concerns regarding data privacy, especially the risk of unintentional training data leakage. Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs. Addressing this gap, our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs. LLM-PBE is designed to analyze privacy across the entire lifecycle of LLMs, incorporating diverse attack and defense strategies, and handling various data types and metrics. Through detailed experimentation with multiple LLMs, LLM-PBE facilitates an in-depth exploration of data privacy concerns, shedding light on influential factors such as model size, data characteristics, and evolving temporal dimensions. This study not only enriches the understanding of privacy issues in LLMs but also serves as a vital resource for future research in the field. Aimed at enhancing the breadth of knowledge in this area, the findings, resources, and our full technical report are made available at https://llm-pbe.github.io/, providing an open platform for academic and practical advancements in LLM privacy assessment.
♻ ☆ Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects
Many sets of ethics principles for responsible AI have been proposed to allay concerns about misuse and abuse of AI/ML systems. The underlying aspects of such sets of principles include privacy, accuracy, fairness, robustness, explainability, and transparency. However, there are potential tensions between these aspects that pose difficulties for AI/ML developers seeking to follow these principles. For example, increasing the accuracy of an AI/ML system may reduce its explainability. As part of the ongoing effort to operationalise the principles into practice, in this work we compile and discuss a catalogue of 10 notable tensions, trade-offs and other interactions between the underlying aspects. We primarily focus on two-sided interactions, drawing on support spread across a diverse literature. This catalogue can be helpful in raising awareness of the possible interactions between aspects of ethics principles, as well as facilitating well-supported judgements by the designers and developers of AI/ML systems.
♻ ☆ Language Models Benefit from Preparation with Elicited Knowledge
The zero-shot chain of thought (CoT) approach is often used in question answering (QA) by language models (LMs) for tasks that require multiple reasoning steps, typically enhanced by the prompt "Let's think step by step." However, some QA tasks hinge more on accessing relevant knowledge than on chaining reasoning steps. We introduce a simple general prompting technique, called PREP, that involves using two instances of LMs: the first (LM1) generates relevant information, and the second (LM2) answers the question based on this information. PREP is designed to be general and independent of the user's domain knowledge, making it applicable across various QA tasks without the need for specialized prompt engineering. To evaluate the effectiveness of our prompting method, we create a dataset of 100 binary-choice questions, derived from an extensive schematic dataset on artifact parts and material composition. These questions ask which of two artifacts is less likely to share materials with another artifact. Such questions probe the LM's knowledge of shared materials in the part structure of different artifacts. We test our method on our dataset and three published commonsense reasoning datasets. The average accuracy of our method is consistently higher than that of all the other tested methods across all the tested datasets.
♻ ☆ Using GPT-4 to Augment Unbalanced Data for Automatic Scoring
Machine learning-based automatic scoring faces challenges with unbalanced student responses across scoring categories. To address this, we introduce a novel text data augmentation framework leveraging GPT-4, a generative large language model, specifically tailored for unbalanced datasets in automatic scoring. Our experimental dataset comprised student written responses to four science items. We crafted prompts for GPT-4 to generate responses, especially for minority scoring classes, enhancing the data set. We then finetuned DistillBERT for automatic scoring based on the augmented and original datasets. Model performance was assessed using accuracy, precision, recall, and F1 metrics. Our findings revealed that incorporating GPT-4-augmented data remarkedly improved model performance, particularly for precision and F1 scores. Interestingly, the extent of improvement varied depending on the specific dataset and the proportion of augmented data used. Notably, we found that a varying amount of augmented data (20%-40%) was needed to obtain stable improvement for automatic scoring. Comparisons with models trained on additional student-written responses suggest that GPT-4 augmented models match those trained with student data. This research underscores the potential and effectiveness of data augmentation techniques utilizing generative large language models like GPT-4 in addressing unbalanced datasets within automated assessment.
♻ ☆ MEDSAGE: Enhancing Robustness of Medical Dialogue Summarization to ASR Errors with LLM-generated Synthetic Dialogues
Automatic Speech Recognition (ASR) systems are pivotal in transcribing speech into text, yet the errors they introduce can significantly degrade the performance of downstream tasks like summarization. This issue is particularly pronounced in clinical dialogue summarization, a low-resource domain where supervised data for fine-tuning is scarce, necessitating the use of ASR models as black-box solutions. Employing conventional data augmentation for enhancing the noise robustness of summarization models is not feasible either due to the unavailability of sufficient medical dialogue audio recordings and corresponding ASR transcripts. To address this challenge, we propose MEDSAGE, an approach for generating synthetic samples for data augmentation using Large Language Models (LLMs). Specifically, we leverage the in-context learning capabilities of LLMs and instruct them to generate ASR-like errors based on a few available medical dialogue examples with audio recordings. Experimental results show that LLMs can effectively model ASR noise, and incorporating this noisy data into the training process significantly improves the robustness and accuracy of medical dialogue summarization systems. This approach addresses the challenges of noisy ASR outputs in critical applications, offering a robust solution to enhance the reliability of clinical dialogue summarization.
♻ ☆ Hidden in Plain Sight: Exploring Chat History Tampering in Interactive Language Models
Large Language Models (LLMs) such as ChatGPT and Llama have become prevalent in real-world applications, exhibiting impressive text generation performance. LLMs are fundamentally developed from a scenario where the input data remains static and unstructured. To behave interactively, LLM-based chat systems must integrate prior chat history as context into their inputs, following a pre-defined structure. However, LLMs cannot separate user inputs from context, enabling chat history tampering. This paper introduces a systematic methodology to inject user-supplied history into LLM conversations without any prior knowledge of the target model. The key is to utilize prompt templates that can well organize the messages to be injected, leading the target LLM to interpret them as genuine chat history. To automatically search for effective templates in a WebUI black-box setting, we propose the LLM-Guided Genetic Algorithm (LLMGA) that leverages an LLM to generate and iteratively optimize the templates. We apply the proposed method to popular real-world LLMs including ChatGPT and Llama-2/3. The results show that chat history tampering can enhance the malleability of the model's behavior over time and greatly influence the model output. For example, it can improve the success rate of disallowed response elicitation up to 97% on ChatGPT. Our findings provide insights into the challenges associated with the real-world deployment of interactive LLMs.
♻ ☆ Training Overhead Ratio: A Practical Reliability Metric for Large Language Model Training Systems
Large Language Models (LLMs) are revolutionizing the AI industry with their superior capabilities. Training these models requires large-scale GPU clusters and significant computing time, leading to frequent failures that significantly increase training costs. Despite its significance, this field lacks a metric for evaluating reliability. In this work, we introduce a novel reliability metric called \emph{Training Overhead Ratio} (TOR) to evaluate the reliability of fault-tolerant LLM training systems. TOR is defined as the ratio of optimal training time to the observed training time of a system, serving as a practical tool for users to estimate the actual time required to train an LLM on a given system. Furthermore, our investigation identifies the key factor for enhancing reliability and present TOR equations for various types of failures encountered in practice.
comment: To be published in: IEEE International Symposium on Software Reliability Engineering (ISSRE2024) workshop
♻ ☆ Trust the PRoC3S: Solving Long-Horizon Robotics Problems with LLMs and Constraint Satisfaction
Recent developments in pretrained large language models (LLMs) applied to robotics have demonstrated their capacity for sequencing a set of discrete skills to achieve open-ended goals in simple robotic tasks. In this paper, we examine the topic of LLM planning for a set of continuously parameterized skills whose execution must avoid violations of a set of kinematic, geometric, and physical constraints. We prompt the LLM to output code for a function with open parameters, which, together with environmental constraints, can be viewed as a Continuous Constraint Satisfaction Problem (CCSP). This CCSP can be solved through sampling or optimization to find a skill sequence and continuous parameter settings that achieve the goal while avoiding constraint violations. Additionally, we consider cases where the LLM proposes unsatisfiable CCSPs, such as those that are kinematically infeasible, dynamically unstable, or lead to collisions, and re-prompt the LLM to form a new CCSP accordingly. Experiments across three different simulated 3D domains demonstrate that our proposed strategy, PRoC3S, is capable of solving a wide range of complex manipulation tasks with realistic constraints on continuous parameters much more efficiently and effectively than existing baselines.
♻ ☆ Can Differentiable Decision Trees Enable Interpretable Reward Learning from Human Feedback?
Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for capturing human intent to alleviate the challenges of hand-crafting the reward values. Despite the increasing interest in RLHF, most works learn black box reward functions that while expressive are difficult to interpret and often require running the whole costly process of RL before we can even decipher if these frameworks are actually aligned with human preferences. We propose and evaluate a novel approach for learning expressive and interpretable reward functions from preferences using Differentiable Decision Trees (DDTs). Our experiments across several domains, including CartPole, Visual Gridworld environments and Atari games, provide evidence that the tree structure of our learned reward function is useful in determining the extent to which the reward function is aligned with human preferences. We also provide experimental evidence that not only shows that reward DDTs can often achieve competitive RL performance when compared with larger capacity deep neural network reward functions but also demonstrates the diagnostic utility of our framework in checking alignment of learned reward functions. We also observe that the choice between soft and hard (argmax) output of reward DDT reveals a tension between wanting highly shaped rewards to ensure good RL performance, while also wanting simpler, more interpretable rewards. Videos and code, are available at: https://sites.google.com/view/ddt-rlhf
comment: Accepted at RLC 2024
♻ ☆ Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings reveal that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies. To address this issue, we introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, our novel Primed Counterfactual Prompting with CoT approach effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies. Our contributions offer practical solutions for developing more robust and fair language models.
♻ ☆ AI Ethics Principles in Practice: Perspectives of Designers and Developers
As consensus across the various published AI ethics principles is approached, a gap remains between high-level principles and practical techniques that can be readily adopted to design and develop responsible AI systems. We examine the practices and experiences of researchers and engineers from Australia's national scientific research agency (CSIRO), who are involved in designing and developing AI systems for many application areas. Semi-structured interviews were used to examine how the practices of the participants relate to and align with a set of high-level AI ethics principles proposed by the Australian Government. The principles comprise: (1) privacy protection and security, (2) reliability and safety, (3) transparency and explainability, (4) fairness, (5) contestability, (6) accountability, (7) human-centred values, (8) human, social and environmental wellbeing. Discussions on the gained insights from the interviews include various tensions and trade-offs between the principles, and provide suggestions for implementing each high-level principle. We also present suggestions aiming to enhance associated support mechanisms.
comment: submitted to IEEE Transactions on Technology & Society
♻ ☆ AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways
An Artificial Intelligence (AI) agent is a software entity that autonomously performs tasks or makes decisions based on pre-defined objectives and data inputs. AI agents, capable of perceiving user inputs, reasoning and planning tasks, and executing actions, have seen remarkable advancements in algorithm development and task performance. However, the security challenges they pose remain under-explored and unresolved. This survey delves into the emerging security threats faced by AI agents, categorizing them into four critical knowledge gaps: unpredictability of multi-step user inputs, complexity in internal executions, variability of operational environments, and interactions with untrusted external entities. By systematically reviewing these threats, this paper highlights both the progress made and the existing limitations in safeguarding AI agents. The insights provided aim to inspire further research into addressing the security threats associated with AI agents, thereby fostering the development of more robust and secure AI agent applications.
comment: Submitted to ACM Computing Survey
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are organized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose $200+$ concrete research questions.
♻ ☆ PointLLM: Empowering Large Language Models to Understand Point Clouds ECCV 2024
The unprecedented advancements in Large Language Models (LLMs) have shown a profound impact on natural language processing but are yet to fully embrace the realm of 3D understanding. This paper introduces PointLLM, a preliminary effort to fill this gap, enabling LLMs to understand point clouds and offering a new avenue beyond 2D visual data. PointLLM understands colored object point clouds with human instructions and generates contextually appropriate responses, illustrating its grasp of point clouds and common sense. Specifically, it leverages a point cloud encoder with a powerful LLM to effectively fuse geometric, appearance, and linguistic information. We collect a novel dataset comprising 660K simple and 70K complex point-text instruction pairs to enable a two-stage training strategy: aligning latent spaces and subsequently instruction-tuning the unified model. To rigorously evaluate the perceptual and generalization capabilities of PointLLM, we establish two benchmarks: Generative 3D Object Classification and 3D Object Captioning, assessed through three different methods, including human evaluation, GPT-4/ChatGPT evaluation, and traditional metrics. Experimental results reveal PointLLM's superior performance over existing 2D and 3D baselines, with a notable achievement in human-evaluated object captioning tasks where it surpasses human annotators in over 50% of the samples. Codes, datasets, and benchmarks are available at https://github.com/OpenRobotLab/PointLLM .
comment: ECCV 2024 Oral Camera Ready. This version includes clearer writing and additional experimental results compared to previous versions. Project page: https://runsenxu.com/projects/PointLLM
♻ ☆ Beyond Words: On Large Language Models Actionability in Mission-Critical Risk Analysis
Context. Risk analysis assesses potential risks in specific scenarios. Risk analysis principles are context-less; the same methodology can be applied to a risk connected to health and information technology security. Risk analysis requires a vast knowledge of national and international regulations and standards and is time and effort-intensive. A large language model can quickly summarize information in less time than a human and can be fine-tuned to specific tasks. Aim. Our empirical study aims to investigate the effectiveness of Retrieval-Augmented Generation and fine-tuned LLM in risk analysis. To our knowledge, no prior study has explored its capabilities in risk analysis. Method. We manually curated 193 unique scenarios leading to 1283 representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years. We compared the base GPT-3.5 and GPT-4 models versus their Retrieval-Augmented Generation and fine-tuned counterparts. We employ two human experts as competitors of the models and three other human experts to review the models and the former human experts' analysis. The reviewers analyzed 5,000 scenario analyses. Results and Conclusions. Human experts demonstrated higher accuracy, but LLMs are quicker and more actionable. Moreover, our findings show that RAG-assisted LLMs have the lowest hallucination rates, effectively uncovering hidden risks and complementing human expertise. Thus, the choice of model depends on specific needs, with FTMs for accuracy, RAG for hidden risks discovery, and base models for comprehensiveness and actionability. Therefore, experts can leverage LLMs as an effective complementing companion in risk analysis within a condensed timeframe. They can also save costs by averting unnecessary expenses associated with implementing unwarranted countermeasures.
♻ ☆ Soft Prompts Go Hard: Steering Visual Language Models with Hidden Meta-Instructions
We introduce a new type of indirect injection attacks against language models that operate on images: hidden ''meta-instructions'' that influence how the model interprets the image and steer the model's outputs to express an adversary-chosen style, sentiment, or point of view. We explain how to create meta-instructions by generating images that act as soft prompts. In contrast to jailbreaking attacks and adversarial examples, outputs produced in response to these images are plausible and based on the visual content of the image, yet also satisfy the adversary's (meta-)objective. We evaluate the efficacy of meta-instructions for multiple visual language models and adversarial meta-objectives, and demonstrate how they can ''unlock'' capabilities of the underlying language models that are unavailable via explicit text instructions. We describe how meta-instruction attacks could cause harm by enabling creation of malicious, self-interpreting content that carries spam, misinformation, and spin. Finally, we discuss defenses.
♻ ☆ Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation
The incorporation of Artificial Intelligence (AI) models into various optimization systems is on the rise. Yet, addressing complex urban and environmental management problems normally requires in-depth domain science and informatics expertise. This expertise is essential for deriving data and simulation-driven for informed decision support. In this context, we investigate the potential of leveraging the pre-trained Large Language Models (LLMs). By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers. This workflow automates the creation of scenario-based ontology using existing research articles and technical manuals of urban datasets and simulations. The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL). These facilitate the development of urban decision support systems by enhancing the data and metadata modeling, the integration of complex datasets, the coupling of multi-domain simulation models, and the formulation of decision-making metrics and workflow. The feasibility of our methodology is evaluated through a comparative analysis that juxtaposes our AI-generated ontology with the well-known Pizza Ontology employed in tutorials for popular ontology software (e.g., prot\'eg\'e). We close with a real-world case study of optimizing the complex urban system of multi-modal freight transportation by generating anthologies of various domain data and simulations to support informed decision-making.
♻ ☆ Learning Generalizable Tool-use Skills through Trajectory Generation
Autonomous systems that efficiently utilize tools can assist humans in completing many common tasks such as cooking and cleaning. However, current systems fall short of matching human-level of intelligence in terms of adapting to novel tools. Prior works based on affordance often make strong assumptions about the environments and cannot scale to more complex, contact-rich tasks. In this work, we tackle this challenge and explore how agents can learn to use previously unseen tools to manipulate deformable objects. We propose to learn a generative model of the tool-use trajectories as a sequence of tool point clouds, which generalizes to different tool shapes. Given any novel tool, we first generate a tool-use trajectory and then optimize the sequence of tool poses to align with the generated trajectory. We train a single model on four different challenging deformable object manipulation tasks, using demonstration data from only one tool per task. The model generalizes to various novel tools, significantly outperforming baselines. We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human. Additional materials can be found on our project website: https://sites.google.com/view/toolgen.
Graphics 8
☆ Exploring Foundation Models for Synthetic Medical Imaging: A Study on Chest X-Rays and Fine-Tuning Techniques
Machine learning has significantly advanced healthcare by aiding in disease prevention and treatment identification. However, accessing patient data can be challenging due to privacy concerns and strict regulations. Generating synthetic, realistic data offers a potential solution for overcoming these limitations, and recent studies suggest that fine-tuning foundation models can produce such data effectively. In this study, we explore the potential of foundation models for generating realistic medical images, particularly chest x-rays, and assess how their performance improves with fine-tuning. We propose using a Latent Diffusion Model, starting with a pre-trained foundation model and refining it through various configurations. Additionally, we performed experiments with input from a medical professional to assess the realism of the images produced by each trained model.
☆ Casper DPM: Cascaded Perceptual Dynamic Projection Mapping onto Hands
We present a technique for dynamically projecting 3D content onto human hands with short perceived motion-to-photon latency. Computing the pose and shape of human hands accurately and quickly is a challenging task due to their articulated and deformable nature. We combine a slower 3D coarse estimation of the hand pose with high speed 2D correction steps which improve the alignment of the projection to the hands, increase the projected surface area, and reduce perceived latency. Since our approach leverages a full 3D reconstruction of the hands, any arbitrary texture or reasonably performant effect can be applied, which was not possible before. We conducted two user studies to assess the benefits of using our method. The results show subjects are less sensitive to latency artifacts and perform faster and with more ease a given associated task over the naive approach of directly projecting rendered frames from the 3D pose estimation. We demonstrate several novel use cases and applications.
comment: Project page: https://yoterel.github.io/casper-project-page/
☆ Efficient Analysis and Visualization of High-Resolution Computed Tomography Data for the Exploration of Enclosed Cuneiform Tablets
Cuneiform is the earliest known system of writing, first developed for the Sumerian language of southern Mesopotamia in the second half of the 4th millennium BC. Cuneiform signs are obtained by impressing a stylus on fresh clay tablets. For certain purposes, e.g. authentication by seal imprint, some cuneiform tablets were enclosed in clay envelopes, which cannot be opened without destroying them. The aim of our interdisciplinary project is the non-invasive study of clay tablets. A portable X-ray micro-CT scanner is developed to acquire density data of such artifacts on a high-resolution, regular 3D grid at collection sites. The resulting volume data is processed through feature-preserving denoising, extraction of high-accuracy surfaces using a manifold dual marching cubes algorithm and extraction of local features by enhanced curvature rendering and ambient occlusion. For the non-invasive study of cuneiform inscriptions, the tablet is virtually separated from its envelope by curvature-based segmentation. The computational- and data-intensive algorithms are optimized or near-real-time offline usage with limited resources at collection sites. To visualize the complexity-reduced and octree-based compressed representation of surfaces, we develop and implement an interactive application. To facilitate the analysis of such clay tablets, we implement shape-based feature extraction algorithms to enhance cuneiform recognition. Our workflow supports innovative 3D display and interaction techniques such as autostereoscopic displays and gesture control.
comment: Preprint of an accepted paper submitted to the 14th IEEE Symposium on Large Data Analysis and Visualization. 11 pages, 19 figures, 2 tables
☆ 3D Data Long-Term Preservation in Cultural Heritage
The report explores the challenges and strategies for preserving 3D digital data in cultural heritage. It discusses the issue of technological obsolescence, emphasising the need for ustainable storage solutions and ongoing data management strategies. Key topics include understanding technological obsolescence, the lifecycle of digital content, digital continuity, data management plans (DMP), FAIR principles, and the use of public repositories. The report also covers the importance of metadata in long-term digital preservation, including types of metadata and strategies for building valuable metadata. It examines the evolving standards and interoperability in 3D format preservation and the importance of managing metadata and paradata. The document provides a comprehensive overview of the challenges and solutions for preserving 3D cultural heritage data in the long term.
♻ ☆ Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
♻ ☆ DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.
♻ ☆ Beware of Validation by Eye: Visual Validation of Linear Trends in Scatterplots
Visual validation of regression models in scatterplots is a common practice for assessing model quality, yet its efficacy remains unquantified. We conducted two empirical experiments to investigate individuals' ability to visually validate linear regression models (linear trends) and to examine the impact of common visualization designs on validation quality. The first experiment showed that the level of accuracy for visual estimation of slope (i.e., fitting a line to data) is higher than for visual validation of slope (i.e., accepting a shown line). Notably, we found bias toward slopes that are "too steep" in both cases. This lead to novel insights that participants naturally assessed regression with orthogonal distances between the points and the line (i.e., ODR regression) rather than the common vertical distances (OLS regression). In the second experiment, we investigated whether incorporating common designs for regression visualization (error lines, bounding boxes, and confidence intervals) would improve visual validation. Even though error lines reduced validation bias, results failed to show the desired improvements in accuracy for any design. Overall, our findings suggest caution in using visual model validation for linear trends in scatterplots.
comment: Preprint and Author Version of a Full Paper, accepted to the 2024 IEEE Visualization Conference (VIS)
♻ ☆ EgoPoser: Robust Real-Time Egocentric Pose Estimation from Sparse and Intermittent Observations Everywhere ECCV 2024
Full-body egocentric pose estimation from head and hand poses alone has become an active area of research to power articulate avatar representations on headset-based platforms. However, existing methods over-rely on the indoor motion-capture spaces in which datasets were recorded, while simultaneously assuming continuous joint motion capture and uniform body dimensions. We propose EgoPoser to overcome these limitations with four main contributions. 1) EgoPoser robustly models body pose from intermittent hand position and orientation tracking only when inside a headset's field of view. 2) We rethink input representations for headset-based ego-pose estimation and introduce a novel global motion decomposition method that predicts full-body pose independent of global positions. 3) We enhance pose estimation by capturing longer motion time series through an efficient SlowFast module design that maintains computational efficiency. 4) EgoPoser generalizes across various body shapes for different users. We experimentally evaluate our method and show that it outperforms state-of-the-art methods both qualitatively and quantitatively while maintaining a high inference speed of over 600fps. EgoPoser establishes a robust baseline for future work where full-body pose estimation no longer needs to rely on outside-in capture and can scale to large-scale and unseen environments.
comment: Accepted by ECCV 2024, Code: https://siplab.org/projects/EgoPoser
Robotics 51
☆ Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks.
comment: Project page: https://yunzeman.github.io/lexicon3d , Github: https://github.com/YunzeMan/Lexicon3D
☆ Reprogrammable sequencing for physically intelligent under-actuated robots
Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator.
☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
☆ 1 Modular Parallel Manipulator for Long-Term Soft Robotic Data Collection
Performing long-term experimentation or large-scale data collection for machine learning in the field of soft robotics is challenging, due to the hardware robustness and experimental flexibility required. In this work, we propose a modular parallel robotic manipulation platform suitable for such large-scale data collection and compatible with various soft-robotic fabrication methods. Considering the computational and theoretical difficulty of replicating the high-fidelity, faster-than-real-time simulations that enable large-scale data collection in rigid robotic systems, a robust soft-robotic hardware platform becomes a high priority development task for the field. The platform's modules consist of a pair of off-the-shelf electrical motors which actuate a customizable finger consisting of a compliant parallel structure. The parallel mechanism of the finger can be as simple as a single 3D-printed urethane or molded silicone bulk structure, due to the motors being able to fully actuate a passive structure. This design flexibility allows experimentation with soft mechanism varied geometries, bulk properties and surface properties. Additionally, while the parallel mechanism does not require separate electronics or additional parts, these can be included, and it can be constructed using multi-functional soft materials to study compatible soft sensors and actuators in the learning process. In this work, we validate the platform's ability to be used for policy gradient reinforcement learning directly on hardware in a benchmark 2D manipulation task. We additionally demonstrate compatibility with multiple fingers and characterize the design constraints for compatible extensions.
☆ MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose Estimation
For the use of 6D pose estimation in robotic applications, reliable poses are of utmost importance to ensure a safe, reliable and predictable operational performance. Despite these requirements, state-of-the-art 6D pose estimators often do not provide any uncertainty quantification for their pose estimates at all, or if they do, it has been shown that the uncertainty provided is only weakly correlated with the actual true error. To address this issue, we investigate a simple but effective uncertainty quantification, that we call MaskVal, which compares the pose estimates with their corresponding instance segmentations by rendering and does not require any modification of the pose estimator itself. Despite its simplicity, MaskVal significantly outperforms a state-of-the-art ensemble method on both a dataset and a robotic setup. We show that by using MaskVal, the performance of a state-of-the-art 6D pose estimator is significantly improved towards a safe and reliable operation. In addition, we propose a new and specific approach to compare and evaluate uncertainty quantification methods for 6D pose estimation in the context of robotic manipulation.
☆ Interactive Surgical Liver Phantom for Cholecystectomy Training
Training and prototype development in robot-assisted surgery requires appropriate and safe environments for the execution of surgical procedures. Current dry lab laparoscopy phantoms often lack the ability to mimic complex, interactive surgical tasks. This work presents an interactive surgical phantom for the cholecystectomy. The phantom enables the removal of the gallbladder during cholecystectomy by allowing manipulations and cutting interactions with the synthetic tissue. The force-displacement behavior of the gallbladder is modelled based on retraction demonstrations. The force model is compared to the force model of ex-vivo porcine gallbladders and evaluated on its ability to estimate retraction forces.
comment: As presented at CURAC 2023
☆ FLAF: Focal Line and Feature-constrained Active View Planning for Visual Teach and Repeat
This paper presents FLAF, a focal line and feature-constrained active view planning method for tracking failure avoidance in feature-based visual navigation of mobile robots. Our FLAF-based visual navigation is built upon a feature-based visual teach and repeat (VT\&R) framework, which supports many robotic applications by teaching a robot to navigate on various paths that cover a significant portion of daily autonomous navigation requirements. However, tracking failure in feature-based visual simultaneous localization and mapping (VSLAM) caused by textureless regions in human-made environments is still limiting VT\&R to be adopted in the real world. To address this problem, the proposed view planner is integrated into a feature-based visual SLAM system to build up an active VT\&R system that avoids tracking failure. In our system, a pan-tilt unit (PTU)-based active camera is mounted on the mobile robot. Using FLAF, the active camera-based VSLAM operates during the teaching phase to construct a complete path map and in the repeat phase to maintain stable localization. FLAF orients the robot toward more map points to avoid mapping failures during path learning and toward more feature-identifiable map points beneficial for localization while following the learned trajectory. Experiments in real scenarios demonstrate that FLAF outperforms the methods that do not consider feature-identifiability, and our active VT\&R system performs well in complex environments by effectively dealing with low-texture regions.
☆ Neural HD Map Generation from Multiple Vectorized Tiles Locally Produced by Autonomous Vehicles
High-definition (HD) map is a fundamental component of autonomous driving systems, as it can provide precise environmental information about driving scenes. Recent work on vectorized map generation could produce merely 65% local map elements around the ego-vehicle at runtime by one tour with onboard sensors, leaving a puzzle of how to construct a global HD map projected in the world coordinate system under high-quality standards. To address the issue, we present GNMap as an end-to-end generative neural network to automatically construct HD maps with multiple vectorized tiles which are locally produced by autonomous vehicles through several tours. It leverages a multi-layer and attention-based autoencoder as the shared network, of which parameters are learned from two different tasks (i.e., pretraining and finetuning, respectively) to ensure both the completeness of generated maps and the correctness of element categories. Abundant qualitative evaluations are conducted on a real-world dataset and experimental results show that GNMap can surpass the SOTA method by more than 5% F1 score, reaching the level of industrial usage with a small amount of manual modification. We have already deployed it at Navinfo Co., Ltd., serving as an indispensable software to automatically build HD maps for autonomous driving systems.
comment: Accepted by SpatialDI'24
☆ KiloBot: A Programming Language for Deploying Perception-Guided Industrial Manipulators at Scale
We would like industrial robots to handle unstructured environments with cameras and perception pipelines. In contrast to traditional industrial robots that replay offline-crafted trajectories, online behavior planning is required for these perception-guided industrial applications. Aside from perception and planning algorithms, deploying perception-guided manipulators also requires substantial effort in integration. One approach is writing scripts in a traditional language (such as Python) to construct the planning problem and perform integration with other algorithmic modules & external devices. While scripting in Python is feasible for a handful of robots and applications, deploying perception-guided manipulation at scale (e.g., more than 10000 robot workstations in over 2000 customer sites) becomes intractable. To resolve this challenge, we propose a Domain-Specific Language (DSL) for perception-guided manipulation applications. To scale up the deployment,our DSL provides: 1) an easily accessible interface to construct & solve a sub-class of Task and Motion Planning (TAMP) problems that are important in practical applications; and 2) a mechanism to implement flexible control flow to perform integration and address customized requirements of distinct industrial application. Combined with an intuitive graphical programming frontend, our DSL is mainly used by machine operators without coding experience in traditional programming languages. Within hours of training, operators are capable of orchestrating interesting sophisticated manipulation behaviors with our DSL. Extensive practical deployments demonstrate the efficacy of our method.
Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection
High-precision surface defect detection in manufacturing is essential for ensuring quality control. Laser triangulation profilometric sensors are key to this process, providing detailed and accurate surface measurements over a line. To achieve a complete and precise surface scan, accurate relative motion between the sensor and the workpiece is required. It is crucial to control the sensor pose to maintain optimal distance and relative orientation to the surface. It is also important to ensure uniform profile distribution throughout the scanning process. This paper presents a novel Reinforcement Learning (RL) based approach to optimize robot inspection trajectories for profilometric sensors. Building upon the Boustrophedon scanning method, our technique dynamically adjusts the sensor position and tilt to maintain optimal orientation and distance from the surface, while also ensuring a consistent profile distance for uniform and high-quality scanning. Utilizing a simulated environment based on the CAD model of the part, we replicate real-world scanning conditions, including sensor noise and surface irregularities. This simulation-based approach enables offline trajectory planning based on CAD models. Key contributions include the modeling of the state space, action space, and reward function, specifically designed for inspection applications using profilometric sensors. We use Proximal Policy Optimization (PPO) algorithm to efficiently train the RL agent, demonstrating its capability to optimize inspection trajectories with profilometric sensors. To validate our approach, we conducted several experiments where a model trained on a specific training piece was tested on various parts in simulation. Also, we conducted a real-world experiment by executing the optimized trajectory, generated offline from a CAD model, to inspect a part using a UR3e robotic arm model.
☆ F3T: A soft tactile unit with 3D force and temperature mathematical decoupling ability for robots
The human skin exhibits remarkable capability to perceive contact forces and environmental temperatures, providing intricate information essential for nuanced manipulation. Despite recent advancements in soft tactile sensors, a significant challenge remains in accurately decoupling signals - specifically, separating force from directional orientation and temperature - resulting in fail to meet the advanced application requirements of robots. This research proposes a multi-layered soft sensor unit (F3T) designed to achieve isolated measurements and mathematical decoupling of normal pressure, omnidirectional tangential forces, and temperature. We developed a circular coaxial magnetic film featuring a floating-mountain multi-layer capacitor, facilitating the physical decoupling of normal and tangential forces in all directions. Additionally, we incorporated an ion gel-based temperature sensing film atop the tactile sensor. This sensor is resilient to external pressure and deformation, enabling it to measure temperature and, crucially, eliminate capacitor errors induced by environmental temperature changes. This innovative design allows for the decoupled measurement of multiple signals, paving the way for advancements in higher-level robot motion control, autonomous decision-making, and task planning.
☆ RoVi-Aug: Robot and Viewpoint Augmentation for Cross-Embodiment Robot Learning
Scaling up robot learning requires large and diverse datasets, and how to efficiently reuse collected data and transfer policies to new embodiments remains an open question. Emerging research such as the Open-X Embodiment (OXE) project has shown promise in leveraging skills by combining datasets including different robots. However, imbalances in the distribution of robot types and camera angles in many datasets make policies prone to overfit. To mitigate this issue, we propose RoVi-Aug, which leverages state-of-the-art image-to-image generative models to augment robot data by synthesizing demonstrations with different robots and camera views. Through extensive physical experiments, we show that, by training on robot- and viewpoint-augmented data, RoVi-Aug can zero-shot deploy on an unseen robot with significantly different camera angles. Compared to test-time adaptation algorithms such as Mirage, RoVi-Aug requires no extra processing at test time, does not assume known camera angles, and allows policy fine-tuning. Moreover, by co-training on both the original and augmented robot datasets, RoVi-Aug can learn multi-robot and multi-task policies, enabling more efficient transfer between robots and skills and improving success rates by up to 30%.
comment: CoRL 2024 (Oral)
☆ Game On: Towards Language Models as RL Experimenters
We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow, to enable automated mastery of control domains for embodied agents. To do so, it leverages a VLM to perform some of the capabilities normally required of a human experimenter, including the monitoring and analysis of experiment progress, the proposition of new tasks based on past successes and failures of the agent, decomposing tasks into a sequence of subtasks (skills), and retrieval of the skill to execute - enabling our system to build automated curricula for learning. We believe this is one of the first proposals for a system that leverages a VLM throughout the full experiment cycle of reinforcement learning. We provide a first prototype of this system, and examine the feasibility of current models and techniques for the desired level of automation. For this, we use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm, in order to steer data collection so as to aid learning new skills. Data collected in this way is shown to be useful for learning and iteratively improving control policies in a robotics domain. Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results, suggesting that the proposed architecture provides a potential recipe for fully automated mastery of tasks and domains for embodied agents.
☆ Fast Payload Calibration for Sensorless Contact Estimation Using Model Pre-training
Force and torque sensing is crucial in robotic manipulation across both collaborative and industrial settings. Traditional methods for dynamics identification enable the detection and control of external forces and torques without the need for costly sensors. However, these approaches show limitations in scenarios where robot dynamics, particularly the end-effector payload, are subject to changes. Moreover, existing calibration techniques face trade-offs between efficiency and accuracy due to concerns over joint space coverage. In this paper, we introduce a calibration scheme that leverages pre-trained Neural Network models to learn calibrated dynamics across a wide range of joint space in advance. This offline learning strategy significantly reduces the need for online data collection, whether for selection of the optimal model or identification of payload features, necessitating merely a 4-second trajectory for online calibration. This method is particularly effective in tasks that require frequent dynamics recalibration for precise contact estimation. We further demonstrate the efficacy of this approach through applications in sensorless joint and task compliance, accounting for payload variability.
comment: Accepted to Robotics and Automation Letters (RA-L), 8 pages
☆ MouseSIS: A Frames-and-Events Dataset for Space-Time Instance Segmentation of Mice ECCV
Enabled by large annotated datasets, tracking and segmentation of objects in videos has made remarkable progress in recent years. Despite these advancements, algorithms still struggle under degraded conditions and during fast movements. Event cameras are novel sensors with high temporal resolution and high dynamic range that offer promising advantages to address these challenges. However, annotated data for developing learning-based mask-level tracking algorithms with events is not available. To this end, we introduce: ($i$) a new task termed \emph{space-time instance segmentation}, similar to video instance segmentation, whose goal is to segment instances throughout the entire duration of the sensor input (here, the input are quasi-continuous events and optionally aligned frames); and ($ii$) \emph{\dname}, a dataset for the new task, containing aligned grayscale frames and events. It includes annotated ground-truth labels (pixel-level instance segmentation masks) of a group of up to seven freely moving and interacting mice. We also provide two reference methods, which show that leveraging event data can consistently improve tracking performance, especially when used in combination with conventional cameras. The results highlight the potential of event-aided tracking in difficult scenarios. We hope our dataset opens the field of event-based video instance segmentation and enables the development of robust tracking algorithms for challenging conditions.\url{https://github.com/tub-rip/MouseSIS}
comment: 18 pages, 5 figures, ECCV Workshops
☆ Masked Sensory-Temporal Attention for Sensor Generalization in Quadruped Locomotion
With the rising focus on quadrupeds, a generalized policy capable of handling different robot models and sensory inputs will be highly beneficial. Although several methods have been proposed to address different morphologies, it remains a challenge for learning-based policies to manage various combinations of proprioceptive information. This paper presents Masked Sensory-Temporal Attention (MSTA), a novel transformer-based model with masking for quadruped locomotion. It employs direct sensor-level attention to enhance sensory-temporal understanding and handle different combinations of sensor data, serving as a foundation for incorporating unseen information. This model can effectively understand its states even with a large portion of missing information, and is flexible enough to be deployed on a physical system despite the long input sequence.
comment: Project website for video: https://johnliudk.github.io/msta/
☆ Bringing the RT-1-X Foundation Model to a SCARA robot
Traditional robotic systems require specific training data for each task, environment, and robot form. While recent advancements in machine learning have enabled models to generalize across new tasks and environments, the challenge of adapting these models to entirely new settings remains largely unexplored. This study addresses this by investigating the generalization capabilities of the RT-1-X robotic foundation model to a type of robot unseen during its training: a SCARA robot from UMI-RTX. Initial experiments reveal that RT-1-X does not generalize zero-shot to the unseen type of robot. However, fine-tuning of the RT-1-X model by demonstration allows the robot to learn a pickup task which was part of the foundation model (but learned for another type of robot). When the robot is presented with an object that is included in the foundation model but not in the fine-tuning dataset, it demonstrates that only the skill, but not the object-specific knowledge, has been transferred.
comment: 14 pages, submitted to the joint Artificial Intelligence & Machine Learning conference for Belgium, Netherlands & Luxembourg (BNAIC/BeNeLearn)
OccLLaMA: An Occupancy-Language-Action Generative World Model for Autonomous Driving
The rise of multi-modal large language models(MLLMs) has spurred their applications in autonomous driving. Recent MLLM-based methods perform action by learning a direct mapping from perception to action, neglecting the dynamics of the world and the relations between action and world dynamics. In contrast, human beings possess world model that enables them to simulate the future states based on 3D internal visual representation and plan actions accordingly. To this end, we propose OccLLaMA, an occupancy-language-action generative world model, which uses semantic occupancy as a general visual representation and unifies vision-language-action(VLA) modalities through an autoregressive model. Specifically, we introduce a novel VQVAE-like scene tokenizer to efficiently discretize and reconstruct semantic occupancy scenes, considering its sparsity and classes imbalance. Then, we build a unified multi-modal vocabulary for vision, language and action. Furthermore, we enhance LLM, specifically LLaMA, to perform the next token/scene prediction on the unified vocabulary to complete multiple tasks in autonomous driving. Extensive experiments demonstrate that OccLLaMA achieves competitive performance across multiple tasks, including 4D occupancy forecasting, motion planning, and visual question answering, showcasing its potential as a foundation model in autonomous driving.
☆ Improving agent performance in fluid environments by perceptual pretraining
In this paper, we construct a pretraining framework for fluid environment perception, which includes an information compression model and the corresponding pretraining method. We test this framework in a two-cylinder problem through numerical simulation. The results show that after unsupervised pretraining with this framework, the intelligent agent can acquire key features of surrounding fluid environment, thereby adapting more quickly and effectively to subsequent multi-scenario tasks. In our research, these tasks include perceiving the position of the upstream obstacle and actively avoiding shedding vortices in the flow field to achieve drag reduction. Better performance of the pretrained agent is discussed in the sensitivity analysis.
☆ Upper-Limb Rehabilitation with a Dual-Mode Individualized Exoskeleton Robot: A Generative-Model-Based Solution
Several upper-limb exoskeleton robots have been developed for stroke rehabilitation, but their rather low level of individualized assistance typically limits their effectiveness and practicability. Individualized assistance involves an upper-limb exoskeleton robot continuously assessing feedback from a stroke patient and then meticulously adjusting interaction forces to suit specific conditions and online changes. This paper describes the development of a new upper-limb exoskeleton robot with a novel online generative capability that allows it to provide individualized assistance to support the rehabilitation training of stroke patients. Specifically, the upper-limb exoskeleton robot exploits generative models to customize the fine and fit trajectory for the patient, as medical conditions, responses, and comfort feedback during training generally differ between patients. This generative capability is integrated into the two working modes of the upper-limb exoskeleton robot: an active mirroring mode for patients who retain motor abilities on one side of the body and a passive following mode for patients who lack motor ability on both sides of the body. The performance of the upper-limb exoskeleton robot was illustrated in experiments involving healthy subjects and stroke patients.
☆ Solving Stochastic Orienteering Problems with Chance Constraints Using Monte Carlo Tree Search
We present a new Monte Carlo Tree Search (MCTS) algorithm to solve the stochastic orienteering problem with chance constraints, i.e., a version of the problem where travel costs are random, and one is assigned a bound on the tolerable probability of exceeding the budget. The algorithm we present is online and anytime, i.e., it alternates planning and execution, and the quality of the solution it produces increases as the allowed computational time increases. Differently from most former MCTS algorithms, for each action available in a state the algorithm maintains estimates of both its value and the probability that its execution will eventually result in a violation of the chance constraint. Then, at action selection time, our proposed solution prunes away trajectories that are estimated to violate the failure probability. Extensive simulation results show that this approach can quickly produce high-quality solutions and is competitive with the optimal but time-consuming solution.
comment: Paper to appear on the IEEE Transactions on Automation Science and Engineering
☆ Continual Skill and Task Learning via Dialogue
Continual and interactive robot learning is a challenging problem as the robot is present with human users who expect the robot to learn novel skills to solve novel tasks perpetually with sample efficiency. In this work we present a framework for robots to query and learn visuo-motor robot skills and task relevant information via natural language dialog interactions with human users. Previous approaches either focus on improving the performance of instruction following agents, or passively learn novel skills or concepts. Instead, we used dialog combined with a language-skill grounding embedding to query or confirm skills and/or tasks requested by a user. To achieve this goal, we developed and integrated three different components for our agent. Firstly, we propose a novel visual-motor control policy ACT with Low Rank Adaptation (ACT-LoRA), which enables the existing SoTA ACT model to perform few-shot continual learning. Secondly, we develop an alignment model that projects demonstrations across skill embodiments into a shared embedding allowing us to know when to ask questions and/or demonstrations from users. Finally, we integrated an existing LLM to interact with a human user to perform grounded interactive continual skill learning to solve a task. Our ACT-LoRA model learns novel fine-tuned skills with a 100% accuracy when trained with only five demonstrations for a novel skill while still maintaining a 74.75% accuracy on pre-trained skills in the RLBench dataset where other models fall significantly short. We also performed a human-subjects study with 8 subjects to demonstrate the continual learning capabilities of our combined framework. We achieve a success rate of 75% in the task of sandwich making with the real robot learning from participant data demonstrating that robots can learn novel skills or task knowledge from dialogue with non-expert users using our approach.
☆ Autonomous Drifting Based on Maximal Safety Probability Learning
This paper proposes a novel learning-based framework for autonomous driving based on the concept of maximal safety probability. Efficient learning requires rewards that are informative of desirable/undesirable states, but such rewards are challenging to design manually due to the difficulty of differentiating better states among many safe states. On the other hand, learning policies that maximize safety probability does not require laborious reward shaping but is numerically challenging because the algorithms must optimize policies based on binary rewards sparse in time. Here, we show that physics-informed reinforcement learning can efficiently learn this form of maximally safe policy. Unlike existing drift control methods, our approach does not require a specific reference trajectory or complex reward shaping, and can learn safe behaviors only from sparse binary rewards. This is enabled by the use of the physics loss that plays an analogous role to reward shaping. The effectiveness of the proposed approach is demonstrated through lane keeping in a normal cornering scenario and safe drifting in a high-speed racing scenario.
comment: arXiv admin note: text overlap with arXiv:2403.16391
☆ Can we enhance prosocial behavior? Using post-ride feedback to improve micromobility interactions
Micromobility devices, such as e-scooters and delivery robots, hold promise for eco-friendly and cost-effective alternatives for future urban transportation. However, their lack of societal acceptance remains a challenge. Therefore, we must consider ways to promote prosocial behavior in micromobility interactions. We investigate how post-ride feedback can encourage the prosocial behavior of e-scooter riders while interacting with sidewalk users, including pedestrians and delivery robots. Using a web-based platform, we measure the prosocial behavior of e-scooter riders. Results found that post-ride feedback can successfully promote prosocial behavior, and objective measures indicated better gap behavior, lower speeds at interaction, and longer stopping time around other sidewalk actors. The findings of this study demonstrate the efficacy of post-ride feedback and provide a step toward designing methodologies to improve the prosocial behavior of mobility users.
comment: In 16th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI'24), September 22-25, 2024, Stanford, CA, USA. 11 pages
☆ DRAL: Deep Reinforcement Adaptive Learning for Multi-UAVs Navigation in Unknown Indoor Environment
Autonomous indoor navigation of UAVs presents numerous challenges, primarily due to the limited precision of GPS in enclosed environments. Additionally, UAVs' limited capacity to carry heavy or power-intensive sensors, such as overheight packages, exacerbates the difficulty of achieving autonomous navigation indoors. This paper introduces an advanced system in which a drone autonomously navigates indoor spaces to locate a specific target, such as an unknown Amazon package, using only a single camera. Employing a deep learning approach, a deep reinforcement adaptive learning algorithm is trained to develop a control strategy that emulates the decision-making process of an expert pilot. We demonstrate the efficacy of our system through real-time simulations conducted in various indoor settings. We apply multiple visualization techniques to gain deeper insights into our trained network. Furthermore, we extend our approach to include an adaptive control algorithm for coordinating multiple drones to lift an object in an indoor environment collaboratively. Integrating our DRAL algorithm enables multiple UAVs to learn optimal control strategies that adapt to dynamic conditions and uncertainties. This innovation enhances the robustness and flexibility of indoor navigation and opens new possibilities for complex multi-drone operations in confined spaces. The proposed framework highlights significant advancements in adaptive control and deep reinforcement learning, offering robust solutions for complex multi-agent systems in real-world applications.
☆ Asymptotically-Optimal Multi-Query Path Planning for Moving A Convex Polygon in 2D
The classical shortest-path roadmaps, also known as reduced visibility graphs, provide a multi-query method for quickly computing optimal paths in two-dimensional environments. Combined with Minkowski sum computations, shortest-path roadmaps can compute optimal paths for a translating robot in 2D. In this study, we explore the intuitive idea of stacking up a set of reduced visibility graphs at different orientations for a convex-shaped holonomic robot, to support the fast computation of near-optimal paths allowing simultaneous 2D translation and rotation. The resulting algorithm, rotation-stacked visibility graph (RVG), is shown to be resolution-complete and asymptotically optimal. RVG out-performs SOTA single-query sampling-based methods including BIT* and AIT* on both computation time and solution optimality fronts.
☆ Achieving the Safety and Security of the End-to-End AV Pipeline SC
In the current landscape of autonomous vehicle (AV) safety and security research, there are multiple isolated problems being tackled by the community at large. Due to the lack of common evaluation criteria, several important research questions are at odds with one another. For instance, while much research has been conducted on physical attacks deceiving AV perception systems, there is often inadequate investigations on working defenses and on the downstream effects of safe vehicle control. This paper provides a thorough description of the current state of AV safety and security research. We provide individual sections for the primary research questions that concern this research area, including AV surveillance, sensor system reliability, security of the AV stack, algorithmic robustness, and safe environment interaction. We wrap up the paper with a discussion of the issues that concern the interactions of these separate problems. At the conclusion of each section, we propose future research questions that still lack conclusive answers. This position article will serve as an entry point to novice and veteran researchers seeking to partake in this research domain.
comment: Accepted to 1st Cyber Security in Cars Workshop (CSCS) at CCS
☆ Multi-agent Path Finding for Mixed Autonomy Traffic Coordination
In the evolving landscape of urban mobility, the prospective integration of Connected and Automated Vehicles (CAVs) with Human-Driven Vehicles (HDVs) presents a complex array of challenges and opportunities for autonomous driving systems. While recent advancements in robotics have yielded Multi-Agent Path Finding (MAPF) algorithms tailored for agent coordination task characterized by simplified kinematics and complete control over agent behaviors, these solutions are inapplicable in mixed-traffic environments where uncontrollable HDVs must coexist and interact with CAVs. Addressing this gap, we propose the Behavior Prediction Kinematic Priority Based Search (BK-PBS), which leverages an offline-trained conditional prediction model to forecast HDV responses to CAV maneuvers, integrating these insights into a Priority Based Search (PBS) where the A* search proceeds over motion primitives to accommodate kinematic constraints. We compare BK-PBS with CAV planning algorithms derived by rule-based car-following models, and reinforcement learning. Through comprehensive simulation on a highway merging scenario across diverse scenarios of CAV penetration rate and traffic density, BK-PBS outperforms these baselines in reducing collision rates and enhancing system-level travel delay. Our work is directly applicable to many scenarios of multi-human multi-robot coordination.
☆ Simplex-enabled Safe Continual Learning Machine
This paper proposes the SeC-Learning Machine: Simplex-enabled safe continual learning for safety-critical autonomous systems. The SeC-learning machine is built on Simplex logic (that is, ``using simplicity to control complexity'') and physics-regulated deep reinforcement learning (Phy-DRL). The SeC-learning machine thus constitutes HP (high performance)-Student, HA (high assurance)-Teacher, and Coordinator. Specifically, the HP-Student is a pre-trained high-performance but not fully verified Phy-DRL, continuing to learn in a real plant to tune the action policy to be safe. In contrast, the HA-Teacher is a mission-reduced, physics-model-based, and verified design. As a complementary, HA-Teacher has two missions: backing up safety and correcting unsafe learning. The Coordinator triggers the interaction and the switch between HP-Student and HA-Teacher. Powered by the three interactive components, the SeC-learning machine can i) assure lifetime safety (i.e., safety guarantee in any continual-learning stage, regardless of HP-Student's success or convergence), ii) address the Sim2Real gap, and iii) learn to tolerate unknown unknowns in real plants. The experiments on a cart-pole system and a real quadruped robot demonstrate the distinguished features of the SeC-learning machine, compared with continual learning built on state-of-the-art safe DRL frameworks with approaches to addressing the Sim2Real gap.
Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation
Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884{\deg}C (3.71%) and 0.0631 cm$^3$ (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.
comment: 9 pages, 9 figures, 7 tables
♻ ☆ Trustworthy Human-AI Collaboration: Reinforcement Learning with Human Feedback and Physics Knowledge for Safe Autonomous Driving
In the field of autonomous driving, developing safe and trustworthy autonomous driving policies remains a significant challenge. Recently, Reinforcement Learning with Human Feedback (RLHF) has attracted substantial attention due to its potential to enhance training safety and sampling efficiency. Nevertheless, existing RLHF-enabled methods often falter when faced with imperfect human demonstrations, potentially leading to training oscillations or even worse performance than rule-based approaches. Inspired by the human learning process, we propose Physics-enhanced Reinforcement Learning with Human Feedback (PE-RLHF). This novel framework synergistically integrates human feedback (e.g., human intervention and demonstration) and physics knowledge (e.g., traffic flow model) into the training loop of reinforcement learning. The key advantage of PE-RLHF is its guarantee that the learned policy will perform at least as well as the given physics-based policy, even when human feedback quality deteriorates, thus ensuring trustworthy safety improvements. PE-RLHF introduces a Physics-enhanced Human-AI (PE-HAI) collaborative paradigm for dynamic action selection between human and physics-based actions, employs a reward-free approach with a proxy value function to capture human preferences, and incorporates a minimal intervention mechanism to reduce the cognitive load on human mentors. Extensive experiments across diverse driving scenarios demonstrate that PE-RLHF significantly outperforms traditional methods, achieving state-of-the-art (SOTA) performance in safety, efficiency, and generalizability, even with varying quality of human feedback. The philosophy behind PE-RLHF not only advances autonomous driving technology but can also offer valuable insights for other safety-critical domains. Demo video and code are available at: \https://zilin-huang.github.io/PE-RLHF-website/
comment: 33 pages, 20 figures
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
♻ ☆ Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing SP
One of the main concerns in design and process planning for multi-axis additive and subtractive manufacturing is collision avoidance between moving objects (e.g., tool assemblies) and stationary objects (e.g., a part unified with fixtures). The collision measure for various pairs of relative rigid translations and rotations between the two pointsets can be conceptualized by a compactly supported scalar field over the 6D non-Euclidean configuration space. Explicit representation and computation of this field is costly in both time and space. If we fix $O(m)$ sparsely sampled rotations (e.g., tool orientations), computation of the collision measure field as a convolution of indicator functions of the 3D pointsets over a uniform grid (i.e., voxelized geometry) of resolution $O(n^3)$ via fast Fourier transforms (FFTs) scales as in $O(mn^3 \log n)$ in time and $O(mn^3)$ in space. In this paper, we develop an implicit representation of the collision measure field via deep neural networks (DNNs). We show that our approach is able to accurately interpolate the collision measure from a sparse sampling of rotations, and can represent the collision measure field with a small memory footprint. Moreover, we show that this representation can be efficiently updated through fine-tuning to more efficiently train the network on multi-resolution data, as well as accommodate incremental changes to the geometry (such as might occur in iterative processes such as topology optimization of the part subject to CNC tool accessibility constraints).
comment: Special Issue on symposium on Solid and Physical Modeling (SPM 2023)
♻ ☆ BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications. The code for this paper available at https://github.com/manueldiaz96/beval .
♻ ☆ Online Multi-Agent Pickup and Delivery with Task Deadlines IROS 2024
Managing delivery deadlines in automated warehouses and factories is crucial for maintaining customer satisfaction and ensuring seamless production. This study introduces the problem of online multi-agent pickup and delivery with task deadlines (MAPD-D), an advanced variant of the online MAPD problem incorporating delivery deadlines. In the MAPD problem, agents must manage a continuous stream of delivery tasks online. Tasks are added at any time. Agents must complete their tasks while avoiding collisions with each other. MAPD-D introduces a dynamic, deadline-driven approach that incorporates task deadlines, challenging the conventional MAPD frameworks. To tackle MAPD-D, we propose a novel algorithm named deadline-aware token passing (D-TP). The D-TP algorithm calculates pickup deadlines and assigns tasks while balancing execution cost and deadline proximity. Additionally, we introduce the D-TP with task swaps (D-TPTS) method to further reduce task tardiness, enhancing flexibility and efficiency through task-swapping strategies. Numerical experiments were conducted in simulated warehouse environments to showcase the effectiveness of the proposed methods. Both D-TP and D-TPTS demonstrated significant reductions in task tardiness compared to existing methods. Our methods contribute to efficient operations in automated warehouses and factories with delivery deadlines.
comment: 7 pages, 4 figures, IROS 2024
♻ ☆ Fast Decentralized State Estimation for Legged Robot Locomotion via EKF and MHE
In this paper, we present a fast and decentralized state estimation framework for the control of legged locomotion. The nonlinear estimation of the floating base states is decentralized to an orientation estimation via Extended Kalman Filter (EKF) and a linear velocity estimation via Moving Horizon Estimation (MHE). The EKF fuses the inertia sensor with vision to estimate the floating base orientation. The MHE uses the estimated orientation with all the sensors within a time window in the past to estimate the linear velocities based on a time-varying linear dynamics formulation of the interested states with state constraints. More importantly, a marginalization method based on the optimization structure of the full information filter (FIF) is proposed to convert the equality-constrained FIF to an equivalent MHE. This decoupling of state estimation promotes the desired balance of computation efficiency, accuracy of estimation, and the inclusion of state constraints. The proposed method is shown to be capable of providing accurate state estimation to several legged robots, including the highly dynamic hopping robot PogoX, the bipedal robot Cassie, and the quadrupedal robot Unitree Go1, with a frequency at 200 Hz and a window interval of 0.1s.
♻ ☆ Hierarchical Generative Adversarial Imitation Learning with Mid-level Input Generation for Autonomous Driving on Urban Environments
Deriving robust control policies for realistic urban navigation scenarios is not a trivial task. In an end-to-end approach, these policies must map high-dimensional images from the vehicle's cameras to low-level actions such as steering and throttle. While pure Reinforcement Learning (RL) approaches are based exclusively on engineered rewards, Generative Adversarial Imitation Learning (GAIL) agents learn from expert demonstrations while interacting with the environment, which favors GAIL on tasks for which a reward signal is difficult to derive, such as autonomous driving. However, training deep networks directly from raw images on RL tasks is known to be unstable and troublesome. To deal with that, this work proposes a hierarchical GAIL-based architecture (hGAIL) which decouples representation learning from the driving task to solve the autonomous navigation of a vehicle. The proposed architecture consists of two modules: a GAN (Generative Adversarial Net) which generates an abstract mid-level input representation, which is the Bird's-Eye View (BEV) from the surroundings of the vehicle; and the GAIL which learns to control the vehicle based on the BEV predictions from the GAN as input. hGAIL is able to learn both the policy and the mid-level representation simultaneously as the agent interacts with the environment. Our experiments made in the CARLA simulation environment have shown that GAIL exclusively from cameras (without BEV) fails to even learn the task, while hGAIL, after training exclusively on one city, was able to autonomously navigate successfully in 98% of the intersections of a new city not used in training phase. Videos and code available at: https://sites.google.com/view/hgail
♻ ☆ MimicTouch: Leveraging Multi-modal Human Tactile Demonstrations for Contact-rich Manipulation NeurIPS 2023
Tactile sensing is critical to fine-grained, contact-rich manipulation tasks, such as insertion and assembly. Prior research has shown the possibility of learning tactile-guided policy from teleoperated demonstration data. However, to provide the demonstration, human users often rely on visual feedback to control the robot. This creates a gap between the sensing modality used for controlling the robot (visual) and the modality of interest (tactile). To bridge this gap, we introduce "MimicTouch", a novel framework for learning policies directly from demonstrations provided by human users with their hands. The key innovations are i) a human tactile data collection system which collects multi-modal tactile dataset for learning human's tactile-guided control strategy, ii) an imitation learning-based framework for learning human's tactile-guided control strategy through such data, and iii) an online residual RL framework to bridge the embodiment gap between the human hand and the robot gripper. Through comprehensive experiments, we highlight the efficacy of utilizing human's tactile-guided control strategy to resolve contact-rich manipulation tasks. The project website is at https://sites.google.com/view/MimicTouch.
comment: Accepted by CoRL 2024, Best Paper Award at NeurIPS 2023 Touch Processing Workshop
♻ ☆ Automatic Robot Hand-Eye Calibration Enabled by Learning-Based 3D Vision
Hand-eye calibration, as a fundamental task in vision-based robotic systems, aims to estimate the transformation matrix between the coordinate frame of the camera and the robot flange. Most approaches to hand-eye calibration rely on external markers or human assistance. We proposed Look at Robot Base Once (LRBO), a novel methodology that addresses the hand-eye calibration problem without external calibration objects or human support, but with the robot base. Using point clouds of the robot base, a transformation matrix from the coordinate frame of the camera to the robot base is established as I=AXB. To this end, we exploit learning-based 3D detection and registration algorithms to estimate the location and orientation of the robot base. The robustness and accuracy of the method are quantified by ground-truth-based evaluation, and the accuracy result is compared with other 3D vision-based calibration methods. To assess the feasibility of our methodology, we carried out experiments utilizing a low-cost structured light scanner across varying joint configurations and groups of experiments. The proposed hand-eye calibration method achieved a translation deviation of 0.930 mm and a rotation deviation of 0.265 degrees according to the experimental results. Additionally, the 3D reconstruction experiments demonstrated a rotation error of 0.994 degrees and a position error of 1.697 mm. Moreover, our method offers the potential to be completed in 1 second, which is the fastest compared to other 3D hand-eye calibration methods. Code is released at github.com/leihui6/LRBO.
comment: Accepted by Journal of Intelligent & Robotic Systems
♻ ☆ Region-aware Grasp Framework with Normalized Grasp Space for Efficient 6-DoF Grasping
A series of region-based methods succeed in extracting regional features and enhancing grasp detection quality. However, faced with a cluttered scene with potential collision, the definition of the grasp-relevant region stays inconsistent, and the relationship between grasps and regional spaces remains incompletely investigated. In this paper, we propose Normalized Grasp Space (NGS) from a novel region-aware viewpoint, unifying the grasp representation within a normalized regional space and benefiting the generalizability of methods. Leveraging the NGS, we find that CNNs are underestimated for 3D feature extraction and 6-DoF grasp detection in clutter scenes and build a highly efficient Region-aware Normalized Grasp Network (RNGNet). Experiments on the public benchmark show that our method achieves significant >20% performance gains while attaining a real-time inference speed of approximately 50 FPS. Real-world cluttered scene clearance experiments underscore the effectiveness of our method. Further, human-to-robot handover and dynamic object grasping experiments demonstrate the potential of our proposed method for closed-loop grasping in dynamic scenarios.
comment: Accepted by CoRL2024, final camera-ready version will be updated soon
♻ ☆ Efficient Incremental Penetration Depth Estimation between Convex Geometries IROS 2024
Penetration depth (PD) is essential for robotics due to its extensive applications in dynamic simulation, motion planning, haptic rendering, etc. The Expanding Polytope Algorithm (EPA) is the de facto standard for this problem, which estimates PD by expanding an inner polyhedral approximation of an implicit set. In this paper, we propose a novel optimization-based algorithm that incrementally estimates minimum penetration depth and its direction. One major advantage of our method is that it can be warm-started by exploiting the spatial and temporal coherence, which emerges naturally in many robotic applications (e.g., the temporal coherence between adjacent simulation time knots). As a result, our algorithm achieves substantial speedup -- we demonstrate it is 5-30x faster than EPA on several benchmarks. Moreover, our approach is built upon the same implicit geometry representation as EPA, which enables easy integration and deployment into existing software stacks. We also provide an open-source implementation on: https://github.com/weigao95/mind-fcl
comment: IROS 2024
♻ ☆ Tightly-Coupled LiDAR-IMU-Wheel Odometry with Online Calibration of a Kinematic Model for Skid-Steering Robots
Tunnels and long corridors are challenging environments for mobile robots because a LiDAR point cloud should degenerate in these environments. To tackle point cloud degeneration, this study presents a tightly-coupled LiDAR-IMU-wheel odometry algorithm with an online calibration for skid-steering robots. We propose a full linear wheel odometry factor, which not only serves as a motion constraint but also performs the online calibration of kinematic models for skid-steering robots. Despite the dynamically changing kinematic model (e.g., wheel radii changes caused by tire pressures) and terrain conditions, our method can address the model error via online calibration. Moreover, our method enables an accurate localization in cases of degenerated environments, such as long and straight corridors, by calibration while the LiDAR-IMU fusion sufficiently operates. Furthermore, we estimate the uncertainty (i.e., covariance matrix) of the wheel odometry online for creating a reasonable constraint. The proposed method is validated through three experiments. The first indoor experiment shows that the proposed method is robust in severe degeneracy cases (long corridors) and changes in the wheel radii. The second outdoor experiment demonstrates that our method accurately estimates the sensor trajectory despite being in rough outdoor terrain owing to online uncertainty estimation of wheel odometry. The third experiment shows the proposed online calibration enables robust odometry estimation in changing terrains.
comment: open-source: https://github.com/TakuOkawara/full_linear_wheel_odometry_factor
♻ ☆ FREA: Feasibility-Guided Generation of Safety-Critical Scenarios with Reasonable Adversariality
Generating safety-critical scenarios, which are essential yet difficult to collect at scale, offers an effective method to evaluate the robustness of autonomous vehicles (AVs). Existing methods focus on optimizing adversariality while preserving the naturalness of scenarios, aiming to achieve a balance through data-driven approaches. However, without an appropriate upper bound for adversariality, the scenarios might exhibit excessive adversariality, potentially leading to unavoidable collisions. In this paper, we introduce FREA, a novel safety-critical scenarios generation method that incorporates the Largest Feasible Region (LFR) of AV as guidance to ensure the reasonableness of the adversarial scenarios. Concretely, FREA initially pre-calculates the LFR of AV from offline datasets. Subsequently, it learns a reasonable adversarial policy that controls the scene's critical background vehicles (CBVs) to generate adversarial yet AV-feasible scenarios by maximizing a novel feasibility-dependent adversarial objective function. Extensive experiments illustrate that FREA can effectively generate safety-critical scenarios, yielding considerable near-miss events while ensuring AV's feasibility. Generalization analysis also confirms the robustness of FREA in AV testing across various surrogate AV methods and traffic environments.
comment: Accepted by CoRL 2024
♻ ☆ MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion BMVC 2024
Autonomous systems, such as self-driving cars, rely on reliable semantic environment perception for decision making. Despite great advances in video semantic segmentation, existing approaches ignore important inductive biases and lack structured and interpretable internal representations. In this work, we propose MCDS-VSS, a structured filter model that learns in a self-supervised manner to estimate scene geometry and ego-motion of the camera, while also estimating the motion of external objects. Our model leverages these representations to improve the temporal consistency of semantic segmentation without sacrificing segmentation accuracy. MCDS-VSS follows a prediction-fusion approach in which scene geometry and camera motion are first used to compensate for ego-motion, then residual flow is used to compensate motion of dynamic objects, and finally the predicted scene features are fused with the current features to obtain a temporally consistent scene segmentation. Our model parses automotive scenes into multiple decoupled interpretable representations such as scene geometry, ego-motion, and object motion. Quantitative evaluation shows that MCDS-VSS achieves superior temporal consistency on video sequences while retaining competitive segmentation performance.
comment: Accepted for publication at BMVC 2024
♻ ☆ FRAC-Q-Learning: A Reinforcement Learning with Boredom Avoidance Processes for Social Robots
The reinforcement learning algorithms have often been applied to social robots. However, most reinforcement learning algorithms were not optimized for the use of social robots, and consequently they may bore users. We proposed a new reinforcement learning method specialized for the social robot, the FRAC-Q-learning, that can avoid user boredom. The proposed algorithm consists of a forgetting process in addition to randomizing and categorizing processes. This study evaluated interest and boredom hardness scores of the FRAC-Q-learning by a comparison with the traditional Q-learning. The FRAC-Q-learning showed significantly higher trend of interest score, and indicated significantly harder to bore users compared to the traditional Q-learning. Therefore, the FRAC-Q-learning can contribute to develop a social robot that will not bore users. The proposed algorithm has a potential to apply for Web-based communication and educational systems. This paper presents the entire process, detailed implementation and a detailed evaluation method of the of the FRAC-Q-learning for the first time.
♻ ☆ TransKD: Transformer Knowledge Distillation for Efficient Semantic Segmentation
Semantic segmentation benchmarks in the realm of autonomous driving are dominated by large pre-trained transformers, yet their widespread adoption is impeded by substantial computational costs and prolonged training durations. To lift this constraint, we look at efficient semantic segmentation from a perspective of comprehensive knowledge distillation and aim to bridge the gap between multi-source knowledge extractions and transformer-specific patch embeddings. We put forward the Transformer-based Knowledge Distillation (TransKD) framework which learns compact student transformers by distilling both feature maps and patch embeddings of large teacher transformers, bypassing the long pre-training process and reducing the FLOPs by >85.0%. Specifically, we propose two fundamental modules to realize feature map distillation and patch embedding distillation, respectively: (1) Cross Selective Fusion (CSF) enables knowledge transfer between cross-stage features via channel attention and feature map distillation within hierarchical transformers; (2) Patch Embedding Alignment (PEA) performs dimensional transformation within the patchifying process to facilitate the patch embedding distillation. Furthermore, we introduce two optimization modules to enhance the patch embedding distillation from different perspectives: (1) Global-Local Context Mixer (GL-Mixer) extracts both global and local information of a representative embedding; (2) Embedding Assistant (EA) acts as an embedding method to seamlessly bridge teacher and student models with the teacher's number of channels. Experiments on Cityscapes, ACDC, NYUv2, and Pascal VOC2012 datasets show that TransKD outperforms state-of-the-art distillation frameworks and rivals the time-consuming pre-training method. The source code is publicly available at https://github.com/RuipingL/TransKD.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code is publicly available at https://github.com/RuipingL/TransKD
♻ ☆ Quadrotor Manipulation System: Development of a Robust Contact Force Estimation and Impedance Control Scheme Based on DOb and FTRLS
The research on aerial manipulation systems has been increased rapidly in recent years. These systems are very attractive for a wide range of applications due to their unique features. However, dynamics, control and manipulation tasks of such systems are quite challenging because they are naturally unstable, have very fast dynamics, have strong nonlinearities, are very susceptible to parameters variations due to carrying a payload besides the external disturbances, and have complex inverse kinematics. In addition, the manipulation tasks require estimating (applying) a certain force of (at) the end-effector as well as the accurate positioning of it. Thus, in this article, a robust force estimation and impedance control scheme is proposed to address these issues. The robustness is achieved based on the Disturbance Observer (DOb) technique. Then, a tracking and performance low computational linear controller is used. For teleoperation purpose, the contact force needs to be identified. However, the current developed techniques for force estimation have limitations because they are based on ignoring some dynamics and/or requiring of an indicator of the environment contact. Unlike these techniques, we propose a technique based on linearization capabilities of DOb and a Fast Tracking Recursive Least Squares (FTRLS) algorithm. The complex inverse kinematics problem of such a system is solved by a Jacobin based algorithm. The stability analysis of the proposed scheme is presented. The algorithm is tested to achieve tracking of task space reference trajectories besides the impedance control. The efficiency of the proposed technique is enlightened via numerical simulation.
♻ ☆ OpenVLA: An Open-Source Vision-Language-Action Model
Large policies pretrained on a combination of Internet-scale vision-language data and diverse robot demonstrations have the potential to change how we teach robots new skills: rather than training new behaviors from scratch, we can fine-tune such vision-language-action (VLA) models to obtain robust, generalizable policies for visuomotor control. Yet, widespread adoption of VLAs for robotics has been challenging as 1) existing VLAs are largely closed and inaccessible to the public, and 2) prior work fails to explore methods for efficiently fine-tuning VLAs for new tasks, a key component for adoption. Addressing these challenges, we introduce OpenVLA, a 7B-parameter open-source VLA trained on a diverse collection of 970k real-world robot demonstrations. OpenVLA builds on a Llama 2 language model combined with a visual encoder that fuses pretrained features from DINOv2 and SigLIP. As a product of the added data diversity and new model components, OpenVLA demonstrates strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate across 29 tasks and multiple robot embodiments, with 7x fewer parameters. We further show that we can effectively fine-tune OpenVLA for new settings, with especially strong generalization results in multi-task environments involving multiple objects and strong language grounding abilities, and outperform expressive from-scratch imitation learning methods such as Diffusion Policy by 20.4%. We also explore compute efficiency; as a separate contribution, we show that OpenVLA can be fine-tuned on consumer GPUs via modern low-rank adaptation methods and served efficiently via quantization without a hit to downstream success rate. Finally, we release model checkpoints, fine-tuning notebooks, and our PyTorch codebase with built-in support for training VLAs at scale on Open X-Embodiment datasets.
comment: Website: https://openvla.github.io/
♻ ☆ An Open-source Hardware/Software Architecture and Supporting Simulation Environment to Perform Human FPV Flight Demonstrations for Unmanned Aerial Vehicle Autonomy
Small multi-rotor unmanned aerial vehicles (UAVs), mainly quadcopters, are nowadays ubiquitous in research on aerial autonomy, including serving as scaled-down models for much larger aircraft such as vertical-take-off-and-lift vehicles for urban air mobility. Among the various research use cases, first-person-view RC flight experiments allow for collecting data on how human pilots fly such aircraft, which could then be used to compare, contrast, validate, or train autonomous flight agents. While this could be uniquely beneficial, especially for studying UAV operation in contextually complex and safety-critical environments such as in human-UAV shared spaces, the lack of inexpensive and open-source hardware/software platforms that offer this capability along with low-level access to the underlying control software and data remains limited. To address this gap and significantly reduce barriers to human-guided autonomy research with UAVs, this paper presents an open-source software architecture implemented with an inexpensive in-house built quadcopter platform based on the F450 Quadcopter Frame. This setup uses two cameras to provide a dual-view FPV and an open-source flight controller, Pixhawk. The underlying software architecture, developed using the Python-based Kivy library, allows logging telemetry, GPS, control inputs, and camera frame data in a synchronized manner on the ground station computer. Since costs (time) and weather constraints typically limit numbers of physical outdoor flight experiments, this paper also presents a unique AirSim/Unreal Engine based simulation environment and graphical user interface aka digital twin, that provides a Hardware In The Loop setup via the Pixhawk flight controller. We demonstrate the usability and reliability of the overall framework through a set of diverse physical FPV flight experiments and corresponding flight tests in the digital twin.
comment: Presented at AIAA Aviation Forum 2024
♻ ☆ Demonstrating a Robust Walking Algorithm for Underactuated Bipedal Robots in Non-flat, Non-stationary Environments
This work explores an innovative algorithm designed to enhance the mobility of underactuated bipedal robots across challenging terrains, especially when navigating through spaces with constrained opportunities for foot support, like steps or stairs. By combining ankle torque with a refined angular momentum-based linear inverted pendulum model (ALIP), our method allows variability in the robot's center of mass height. We employ a dual-strategy controller that merges virtual constraints for precise motion regulation across essential degrees of freedom with an ALIP-centric model predictive control (MPC) framework, aimed at enforcing gait stability. The effectiveness of our feedback design is demonstrated through its application on the Cassie bipedal robot, which features 20 degrees of freedom. Key to our implementation is the development of tailored nominal trajectories and an optimized MPC that reduces the execution time to under 500 microseconds--and, hence, is compatible with Cassie's controller update frequency. This paper not only showcases the successful hardware deployment but also demonstrates a new capability, a bipedal robot using a moving walkway.
♻ ☆ CURE: Simulation-Augmented Auto-Tuning in Robotics
Robotic systems are typically composed of various subsystems, such as localization and navigation, each encompassing numerous configurable components (e.g., selecting different planning algorithms). Once an algorithm has been selected for a component, its associated configuration options must be set to the appropriate values. Configuration options across the system stack interact non-trivially. Finding optimal configurations for highly configurable robots to achieve desired performance poses a significant challenge due to the interactions between configuration options across software and hardware that result in an exponentially large and complex configuration space. These challenges are further compounded by the need for transferability between different environments and robotic platforms. Data efficient optimization algorithms (e.g., Bayesian optimization) have been increasingly employed to automate the tuning of configurable parameters in cyber-physical systems. However, such optimization algorithms converge at later stages, often after exhausting the allocated budget (e.g., optimization steps, allotted time) and lacking transferability. This paper proposes CURE -- a method that identifies causally relevant configuration options, enabling the optimization process to operate in a reduced search space, thereby enabling faster optimization of robot performance. CURE abstracts the causal relationships between various configuration options and robot performance objectives by learning a causal model in the source (a low-cost environment such as the Gazebo simulator) and applying the learned knowledge to perform optimization in the target (e.g., Turtlebot 3 physical robot). We demonstrate the effectiveness and transferability of CURE by conducting experiments that involve varying degrees of deployment changes in both physical robots and simulation.
comment: Revised submission in IEEE Transactions on Robotics (T-RO), 2024
Computer Vision 122
☆ Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks.
comment: Project page: https://yunzeman.github.io/lexicon3d , Github: https://github.com/YunzeMan/Lexicon3D
☆ DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation ECCV 2024
Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024$\times$1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
comment: Accepted by ECCV 2024
☆ Foundation Model or Finetune? Evaluation of few-shot semantic segmentation for river pollution ECCV 2024
Foundation models (FMs) are a popular topic of research in AI. Their ability to generalize to new tasks and datasets without retraining or needing an abundance of data makes them an appealing candidate for applications on specialist datasets. In this work, we compare the performance of FMs to finetuned pre-trained supervised models in the task of semantic segmentation on an entirely new dataset. We see that finetuned models consistently outperform the FMs tested, even in cases were data is scarce. We release the code and dataset for this work on GitHub.
comment: Accepted at ECCV 2024 Green Foundation Models workshop
☆ ArtiFade: Learning to Generate High-quality Subject from Blemished Images
Subject-driven text-to-image generation has witnessed remarkable advancements in its ability to learn and capture characteristics of a subject using only a limited number of images. However, existing methods commonly rely on high-quality images for training and may struggle to generate reasonable images when the input images are blemished by artifacts. This is primarily attributed to the inadequate capability of current techniques in distinguishing subject-related features from disruptive artifacts. In this paper, we introduce ArtiFade to tackle this issue and successfully generate high-quality artifact-free images from blemished datasets. Specifically, ArtiFade exploits fine-tuning of a pre-trained text-to-image model, aiming to remove artifacts. The elimination of artifacts is achieved by utilizing a specialized dataset that encompasses both unblemished images and their corresponding blemished counterparts during fine-tuning. ArtiFade also ensures the preservation of the original generative capabilities inherent within the diffusion model, thereby enhancing the overall performance of subject-driven methods in generating high-quality and artifact-free images. We further devise evaluation benchmarks tailored for this task. Through extensive qualitative and quantitative experiments, we demonstrate the generalizability of ArtiFade in effective artifact removal under both in-distribution and out-of-distribution scenarios.
☆ Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation
Generating high-quality 3D objects from textual descriptions remains a challenging problem due to computational cost, the scarcity of 3D data, and complex 3D representations. We introduce Geometry Image Diffusion (GIMDiffusion), a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images, thereby avoiding the need for complex 3D-aware architectures. By integrating a Collaborative Control mechanism, we exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion. This enables strong generalization even with limited 3D training data (allowing us to use only high-quality training data) as well as retaining compatibility with guidance techniques such as IPAdapter. In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models. The generated objects consist of semantically meaningful, separate parts and include internal structures, enhancing both usability and versatility.
comment: 11 pages, 9 figures, Project page: https://unity-research.github.io/Geometry-Image-Diffusion.github.io/
☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
☆ RealisHuman: A Two-Stage Approach for Refining Malformed Human Parts in Generated Images
In recent years, diffusion models have revolutionized visual generation, outperforming traditional frameworks like Generative Adversarial Networks (GANs). However, generating images of humans with realistic semantic parts, such as hands and faces, remains a significant challenge due to their intricate structural complexity. To address this issue, we propose a novel post-processing solution named RealisHuman. The RealisHuman framework operates in two stages. First, it generates realistic human parts, such as hands or faces, using the original malformed parts as references, ensuring consistent details with the original image. Second, it seamlessly integrates the rectified human parts back into their corresponding positions by repainting the surrounding areas to ensure smooth and realistic blending. The RealisHuman framework significantly enhances the realism of human generation, as demonstrated by notable improvements in both qualitative and quantitative metrics. Code is available at https://github.com/Wangbenzhi/RealisHuman.
☆ CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation
Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing the unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing a image-level rather than LaTex-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations.
comment: Project Website: https://github.com/opendatalab/UniMERNet/tree/main/cdm
☆ Surface-Centric Modeling for High-Fidelity Generalizable Neural Surface Reconstruction ECCV 2024
Reconstructing the high-fidelity surface from multi-view images, especially sparse images, is a critical and practical task that has attracted widespread attention in recent years. However, existing methods are impeded by the memory constraint or the requirement of ground-truth depths and cannot recover satisfactory geometric details. To this end, we propose SuRF, a new Surface-centric framework that incorporates a new Region sparsification based on a matching Field, achieving good trade-offs between performance, efficiency and scalability. To our knowledge, this is the first unsupervised method achieving end-to-end sparsification powered by the introduced matching field, which leverages the weight distribution to efficiently locate the boundary regions containing surface. Instead of predicting an SDF value for each voxel, we present a new region sparsification approach to sparse the volume by judging whether the voxel is inside the surface region. In this way, our model can exploit higher frequency features around the surface with less memory and computational consumption. Extensive experiments on multiple benchmarks containing complex large-scale scenes show that our reconstructions exhibit high-quality details and achieve new state-of-the-art performance, i.e., 46% improvements with 80% less memory consumption. Code is available at https://github.com/prstrive/SuRF.
comment: ECCV 2024 Accepted
☆ SegTalker: Segmentation-based Talking Face Generation with Mask-guided Local Editing
Audio-driven talking face generation aims to synthesize video with lip movements synchronized to input audio. However, current generative techniques face challenges in preserving intricate regional textures (skin, teeth). To address the aforementioned challenges, we propose a novel framework called SegTalker to decouple lip movements and image textures by introducing segmentation as intermediate representation. Specifically, given the mask of image employed by a parsing network, we first leverage the speech to drive the mask and generate talking segmentation. Then we disentangle semantic regions of image into style codes using a mask-guided encoder. Ultimately, we inject the previously generated talking segmentation and style codes into a mask-guided StyleGAN to synthesize video frame. In this way, most of textures are fully preserved. Moreover, our approach can inherently achieve background separation and facilitate mask-guided facial local editing. In particular, by editing the mask and swapping the region textures from a given reference image (e.g. hair, lip, eyebrows), our approach enables facial editing seamlessly when generating talking face video. Experiments demonstrate that our proposed approach can effectively preserve texture details and generate temporally consistent video while remaining competitive in lip synchronization. Quantitative and qualitative results on the HDTF and MEAD datasets illustrate the superior performance of our method over existing methods.
comment: 10 pages, 7 figures, 3 tables
☆ TCDiff: Triple Condition Diffusion Model with 3D Constraints for Stylizing Synthetic Faces
A robust face recognition model must be trained using datasets that include a large number of subjects and numerous samples per subject under varying conditions (such as pose, expression, age, noise, and occlusion). Due to ethical and privacy concerns, large-scale real face datasets have been discontinued, such as MS1MV3, and synthetic face generators have been proposed, utilizing GANs and Diffusion Models, such as SYNFace, SFace, DigiFace-1M, IDiff-Face, DCFace, and GANDiffFace, aiming to supply this demand. Some of these methods can produce high-fidelity realistic faces, but with low intra-class variance, while others generate high-variance faces with low identity consistency. In this paper, we propose a Triple Condition Diffusion Model (TCDiff) to improve face style transfer from real to synthetic faces through 2D and 3D facial constraints, enhancing face identity consistency while keeping the necessary high intra-class variance. Face recognition experiments using 1k, 2k, and 5k classes of our new dataset for training outperform state-of-the-art synthetic datasets in real face benchmarks such as LFW, CFP-FP, AgeDB, and BUPT. Our source code is available at: https://github.com/BOVIFOCR/tcdiff.
comment: SIBGRAPI 2024
☆ A practical approach to evaluating the adversarial distance for machine learning classifiers
Robustness is critical for machine learning (ML) classifiers to ensure consistent performance in real-world applications where models may encounter corrupted or adversarial inputs. In particular, assessing the robustness of classifiers to adversarial inputs is essential to protect systems from vulnerabilities and thus ensure safety in use. However, methods to accurately compute adversarial robustness have been challenging for complex ML models and high-dimensional data. Furthermore, evaluations typically measure adversarial accuracy on specific attack budgets, limiting the informative value of the resulting metrics. This paper investigates the estimation of the more informative adversarial distance using iterative adversarial attacks and a certification approach. Combined, the methods provide a comprehensive evaluation of adversarial robustness by computing estimates for the upper and lower bounds of the adversarial distance. We present visualisations and ablation studies that provide insights into how this evaluation method should be applied and parameterised. We find that our adversarial attack approach is effective compared to related implementations, while the certification method falls short of expectations. The approach in this paper should encourage a more informative way of evaluating the adversarial robustness of ML classifiers.
comment: Accepted manuscript at International Mechanical Engineering Congress and Exposition IMECE2024
☆ Text-Guided Mixup Towards Long-Tailed Image Categorization BMVC'24
In many real-world applications, the frequency distribution of class labels for training data can exhibit a long-tailed distribution, which challenges traditional approaches of training deep neural networks that require heavy amounts of balanced data. Gathering and labeling data to balance out the class label distribution can be both costly and time-consuming. Many existing solutions that enable ensemble learning, re-balancing strategies, or fine-tuning applied to deep neural networks are limited by the inert problem of few class samples across a subset of classes. Recently, vision-language models like CLIP have been observed as effective solutions to zero-shot or few-shot learning by grasping a similarity between vision and language features for image and text pairs. Considering that large pre-trained vision-language models may contain valuable side textual information for minor classes, we propose to leverage text supervision to tackle the challenge of long-tailed learning. Concretely, we propose a novel text-guided mixup technique that takes advantage of the semantic relations between classes recognized by the pre-trained text encoder to help alleviate the long-tailed problem. Our empirical study on benchmark long-tailed tasks demonstrates the effectiveness of our proposal with a theoretical guarantee. Our code is available at https://github.com/rsamf/text-guided-mixup.
comment: Accepted by BMVC'24, code is available at https://github.com/rsamf/text-guided-mixup
☆ MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose Estimation
For the use of 6D pose estimation in robotic applications, reliable poses are of utmost importance to ensure a safe, reliable and predictable operational performance. Despite these requirements, state-of-the-art 6D pose estimators often do not provide any uncertainty quantification for their pose estimates at all, or if they do, it has been shown that the uncertainty provided is only weakly correlated with the actual true error. To address this issue, we investigate a simple but effective uncertainty quantification, that we call MaskVal, which compares the pose estimates with their corresponding instance segmentations by rendering and does not require any modification of the pose estimator itself. Despite its simplicity, MaskVal significantly outperforms a state-of-the-art ensemble method on both a dataset and a robotic setup. We show that by using MaskVal, the performance of a state-of-the-art 6D pose estimator is significantly improved towards a safe and reliable operation. In addition, we propose a new and specific approach to compare and evaluate uncertainty quantification methods for 6D pose estimation in the context of robotic manipulation.
☆ Unified Framework for Neural Network Compression via Decomposition and Optimal Rank Selection
Despite their high accuracy, complex neural networks demand significant computational resources, posing challenges for deployment on resource-constrained devices such as mobile phones and embedded systems. Compression algorithms have been developed to address these challenges by reducing model size and computational demands while maintaining accuracy. Among these approaches, factorization methods based on tensor decomposition are theoretically sound and effective. However, they face difficulties in selecting the appropriate rank for decomposition. This paper tackles this issue by presenting a unified framework that simultaneously applies decomposition and optimal rank selection, employing a composite compression loss within defined rank constraints. Our approach includes an automatic rank search in a continuous space, efficiently identifying optimal rank configurations without the use of training data, making it computationally efficient. Combined with a subsequent fine-tuning step, our approach maintains the performance of highly compressed models on par with their original counterparts. Using various benchmark datasets, we demonstrate the efficacy of our method through a comprehensive analysis.
☆ Organized Grouped Discrete Representation for Object-Centric Learning
Object-Centric Learning (OCL) represents dense image or video pixels as sparse object features. Representative methods utilize discrete representation composed of Variational Autoencoder (VAE) template features to suppress pixel-level information redundancy and guide object-level feature aggregation. The most recent advancement, Grouped Discrete Representation (GDR), further decomposes these template features into attributes. However, its naive channel grouping as decomposition may erroneously group channels belonging to different attributes together and discretize them as sub-optimal template attributes, which losses information and harms expressivity. We propose Organized GDR (OGDR) to organize channels belonging to the same attributes together for correct decomposition from features into attributes. In unsupervised segmentation experiments, OGDR is fully superior to GDR in augmentating classical transformer-based OCL methods; it even improves state-of-the-art diffusion-based ones. Codebook PCA and representation similarity analyses show that compared with GDR, our OGDR eliminates redundancy and preserves information better for guiding object representation learning. The source code is available in the supplementary material.
☆ DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
Diffusion models (DMs) have demonstrated exceptional generative capabilities across various areas, while they are hindered by slow inference speeds and high computational demands during deployment. The most common way to accelerate DMs involves reducing the number of denoising steps during generation, achieved through faster sampling solvers or knowledge distillation (KD). In contrast to prior approaches, we propose a novel method that transfers the capability of large pretrained DMs to faster architectures. Specifically, we employ KD in a distinct manner to compress DMs by distilling their generative ability into more rapid variants. Furthermore, considering that the source data is either unaccessible or too enormous to store for current generative models, we introduce a new paradigm for their distillation without source data, termed Data-Free Knowledge Distillation for Diffusion Models (DKDM). Generally, our established DKDM framework comprises two main components: 1) a DKDM objective that uses synthetic denoising data produced by pretrained DMs to optimize faster DMs without source data, and 2) a dynamic iterative distillation method that flexibly organizes the synthesis of denoising data, preventing it from slowing down the optimization process as the generation is slow. To our knowledge, this is the first attempt at using KD to distill DMs into any architecture in a data-free manner. Importantly, our DKDM is orthogonal to most existing acceleration methods, such as denoising step reduction, quantization and pruning. Experiments show that our DKDM is capable of deriving 2x faster DMs with performance remaining on par with the baseline. Notably, our DKDM enables pretrained DMs to function as "datasets" for training new DMs.
☆ Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift
Natural distribution shift causes a deterioration in the perception performance of convolutional neural networks (CNNs). This comprehensive analysis for real-world traffic data addresses: 1) investigating the effect of natural distribution shift and weather augmentations on both detection quality and confidence estimation, 2) evaluating model performance for both classification and object localization, and 3) benchmarking two common uncertainty quantification methods - Ensembles and different variants of Monte-Carlo (MC) Dropout - under natural and close-to-natural distribution shift. For this purpose, a novel dataset has been curated from publicly available autonomous driving datasets. The in-distribution (ID) data is based on cutouts of a single object, for which both class and bounding box annotations are available. The six distribution-shift datasets cover adverse weather scenarios, simulated rain and fog, corner cases, and out-of-distribution data. A granular analysis of CNNs under distribution shift allows to quantize the impact of different types of shifts on both, task performance and confidence estimation: ConvNeXt-Tiny is more robust than EfficientNet-B0; heavy rain degrades classification stronger than localization, contrary to heavy fog; integrating MC-Dropout into selected layers only has the potential to enhance task performance and confidence estimation, whereby the identification of these layers depends on the type of distribution shift and the considered task.
comment: This preprint has not undergone any post-submission improvements or corrections
☆ Use of triplet loss for facial restoration in low-resolution images
In recent years, facial recognition (FR) models have become the most widely used biometric tool, achieving impressive results on numerous datasets. However, inherent hardware challenges or shooting distances often result in low-resolution images, which significantly impact the performance of FR models. To address this issue, several solutions have been proposed, including super-resolution (SR) models that generate highly realistic faces. Despite these efforts, significant improvements in FR algorithms have not been achieved. We propose a novel SR model FTLGAN, which focuses on generating high-resolution images that preserve individual identities rather than merely improving image quality, thereby maximizing the performance of FR models. The results are compelling, demonstrating a mean value of d' 21% above the best current state-of-the-art models, specifically having a value of d' = 1.099 and AUC = 0.78 for 14x14 pixels, d' = 2.112 and AUC = 0.92 for 28x28 pixels, and d' = 3.049 and AUC = 0.98 for 56x56 pixels. The contributions of this study are significant in several key areas. Firstly, a notable improvement in facial recognition performance has been achieved in low-resolution images, specifically at resolutions of 14x14, 28x28, and 56x56 pixels. Secondly, the enhancements demonstrated by FTLGAN show a consistent response across all resolutions, delivering outstanding performance uniformly, unlike other comparative models. Thirdly, an innovative approach has been implemented using triplet loss logic, enabling the training of the super-resolution model solely with real images, contrasting with current models, and expanding potential real-world applications. Lastly, this study introduces a novel model that specifically addresses the challenge of improving classification performance in facial recognition systems by integrating facial recognition quality as a loss during model training.
comment: 10 pages, 8 figures
☆ FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation
Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.
comment: 14 pages, 9 figures
☆ Have Large Vision-Language Models Mastered Art History?
The emergence of large Vision-Language Models (VLMs) has recently established new baselines in image classification across multiple domains. However, the performance of VLMs in the specific task of artwork classification, particularly art style classification of paintings - a domain traditionally mastered by art historians - has not been explored yet. Artworks pose a unique challenge compared to natural images due to their inherently complex and diverse structures, characterized by variable compositions and styles. Art historians have long studied the unique aspects of artworks, with style prediction being a crucial component of their discipline. This paper investigates whether large VLMs, which integrate visual and textual data, can effectively predict the art historical attributes of paintings. We conduct an in-depth analysis of four VLMs, namely CLIP, LLaVA, OpenFlamingo, and GPT-4o, focusing on zero-shot classification of art style, author and time period using two public benchmarks of artworks. Additionally, we present ArTest, a well-curated test set of artworks, including pivotal paintings studied by art historians.
☆ Tissue Concepts: supervised foundation models in computational pathology
Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential to improve generalizability within and across centers and serve as starting points for data efficient development of specialized yet robust AI models. However, the training foundation models themselves is usually very expensive in terms of data, computation, and time. This paper proposes a supervised training method that drastically reduces these expenses. The proposed method is based on multi-task learning to train a joint encoder, by combining 16 different classification, segmentation, and detection tasks on a total of 912,000 patches. Since the encoder is capable of capturing the properties of the samples, we term it the Tissue Concepts encoder. To evaluate the performance and generalizability of the Tissue Concepts encoder across centers, classification of whole slide images from four of the most prevalent solid cancers - breast, colon, lung, and prostate - was used. The experiments show that the Tissue Concepts model achieve comparable performance to models trained with self-supervision, while requiring only 6% of the amount of training patches. Furthermore, the Tissue Concepts encoder outperforms an ImageNet pre-trained encoder on both in-domain and out-of-domain data.
comment: 22 Pages, 3 Figures, submitted to and under revision at Computers in Biology and Medicine
☆ LMLT: Low-to-high Multi-Level Vision Transformer for Image Super-Resolution
Recent Vision Transformer (ViT)-based methods for Image Super-Resolution have demonstrated impressive performance. However, they suffer from significant complexity, resulting in high inference times and memory usage. Additionally, ViT models using Window Self-Attention (WSA) face challenges in processing regions outside their windows. To address these issues, we propose the Low-to-high Multi-Level Transformer (LMLT), which employs attention with varying feature sizes for each head. LMLT divides image features along the channel dimension, gradually reduces spatial size for lower heads, and applies self-attention to each head. This approach effectively captures both local and global information. By integrating the results from lower heads into higher heads, LMLT overcomes the window boundary issues in self-attention. Extensive experiments show that our model significantly reduces inference time and GPU memory usage while maintaining or even surpassing the performance of state-of-the-art ViT-based Image Super-Resolution methods. Our codes are availiable at https://github.com/jwgdmkj/LMLT.
☆ Blended Latent Diffusion under Attention Control for Real-World Video Editing
Due to lack of fully publicly available text-to-video models, current video editing methods tend to build on pre-trained text-to-image generation models, however, they still face grand challenges in dealing with the local editing of video with temporal information. First, although existing methods attempt to focus on local area editing by a pre-defined mask, the preservation of the outside-area background is non-ideal due to the spatially entire generation of each frame. In addition, specially providing a mask by user is an additional costly undertaking, so an autonomous masking strategy integrated into the editing process is desirable. Last but not least, image-level pretrained model hasn't learned temporal information across frames of a video which is vital for expressing the motion and dynamics. In this paper, we propose to adapt a image-level blended latent diffusion model to perform local video editing tasks. Specifically, we leverage DDIM inversion to acquire the latents as background latents instead of the randomly noised ones to better preserve the background information of the input video. We further introduce an autonomous mask manufacture mechanism derived from cross-attention maps in diffusion steps. Finally, we enhance the temporal consistency across video frames by transforming the self-attention blocks of U-Net into temporal-spatial blocks. Through extensive experiments, our proposed approach demonstrates effectiveness in different real-world video editing tasks.
☆ ScreenMark: Watermarking Arbitrary Visual Content on Screen
Digital watermarking has demonstrated its effectiveness in protecting multimedia content. However, existing watermarking are predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multimodal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage via screenshots, a vulnerability that current watermarking methods fail to adequately address.To tackle these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance.To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments across different datasets confirm the method's superior robustness, imperceptibility, and practical applicability.
☆ Improving Uncertainty-Error Correspondence in Deep Bayesian Medical Image Segmentation
Increased usage of automated tools like deep learning in medical image segmentation has alleviated the bottleneck of manual contouring. This has shifted manual labour to quality assessment (QA) of automated contours which involves detecting errors and correcting them. A potential solution to semi-automated QA is to use deep Bayesian uncertainty to recommend potentially erroneous regions, thus reducing time spent on error detection. Previous work has investigated the correspondence between uncertainty and error, however, no work has been done on improving the "utility" of Bayesian uncertainty maps such that it is only present in inaccurate regions and not in the accurate ones. Our work trains the FlipOut model with the Accuracy-vs-Uncertainty (AvU) loss which promotes uncertainty to be present only in inaccurate regions. We apply this method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and prostate MR scans. Uncertainty heatmaps (i.e. predictive entropy) are evaluated against voxel inaccuracies using Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves. Numerical results show that when compared to the Bayesian baseline the proposed method successfully suppresses uncertainty for accurate voxels, with similar presence of uncertainty for inaccurate voxels. Code to reproduce experiments is available at https://github.com/prerakmody/bayesuncertainty-error-correspondence
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:018
☆ LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones WACV 2025
Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks. A smart combination of both, architecture-wise and component-wise is mandatory to excel in the speedaccuracy trade-off. Most publications focus on maximizing accuracy and utilize MACs (multiply accumulate operations) as an efficiency metric. The latter however often do not measure accurately how fast a model actually is due to factors like memory access cost and degree of parallelism. We analyzed common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency, as the combination of the latter two is a better representation of the efficiency of models in real applications. We applied the conclusions taken from that analysis to create a recipe for increasing hardware-efficiency in macro design. Additionally we introduce a simple slimmed-down version of MultiHead Self-Attention, that aligns with our analysis. We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer. LowFormer achieves a remarkable speedup in terms of throughput and latency, while achieving similar or better accuracy than current state-of-the-art efficient backbones. In order to prove the generalizability of our hardware-efficient design, we evaluate our method on GPU, mobile GPU and ARM CPU. We further show that the downstream tasks object detection and semantic segmentation profit from our hardware-efficient architecture. Code and models are available at https://github.com/ altair199797/LowFormer.
comment: Accepted at WACV 2025. Features 11 pages in total
☆ Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have made remarkable strides; however, they remain susceptible to vulnerabilities, particularly in the face of minor image perturbations that humans can easily recognize. This weakness, often termed as 'attacks', underscores the limited robustness of CNNs and the need for research into fortifying their resistance against such manipulations. This study introduces a novel Non-Uniform Illumination (NUI) attack technique, where images are subtly altered using varying NUI masks. Extensive experiments are conducted on widely-accepted datasets including CIFAR10, TinyImageNet, and CalTech256, focusing on image classification with 12 different NUI attack models. The resilience of VGG, ResNet, MobilenetV3-small and InceptionV3 models against NUI attacks are evaluated. Our results show a substantial decline in the CNN models' classification accuracy when subjected to NUI attacks, indicating their vulnerability under non-uniform illumination. To mitigate this, a defense strategy is proposed, including NUI-attacked images, generated through the new NUI transformation, into the training set. The results demonstrate a significant enhancement in CNN model performance when confronted with perturbed images affected by NUI attacks. This strategy seeks to bolster CNN models' resilience against NUI attacks.
☆ LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
comment: Project page: https://hanyangyu1021.github.io/lm-gaussian.github.io/
☆ Data-free Distillation with Degradation-prompt Diffusion for Multi-weather Image Restoration
Multi-weather image restoration has witnessed incredible progress, while the increasing model capacity and expensive data acquisition impair its applications in memory-limited devices. Data-free distillation provides an alternative for allowing to learn a lightweight student model from a pre-trained teacher model without relying on the original training data. The existing data-free learning methods mainly optimize the models with the pseudo data generated by GANs or the real data collected from the Internet. However, they inevitably suffer from the problems of unstable training or domain shifts with the original data. In this paper, we propose a novel Data-free Distillation with Degradation-prompt Diffusion framework for multi-weather Image Restoration (D4IR). It replaces GANs with pre-trained diffusion models to avoid model collapse and incorporates a degradation-aware prompt adapter to facilitate content-driven conditional diffusion for generating domain-related images. Specifically, a contrast-based degradation prompt adapter is firstly designed to capture degradation-aware prompts from web-collected degraded images. Then, the collected unpaired clean images are perturbed to latent features of stable diffusion, and conditioned with the degradation-aware prompts to synthesize new domain-related degraded images for knowledge distillation. Experiments illustrate that our proposal achieves comparable performance to the model distilled with original training data, and is even superior to other mainstream unsupervised methods.
☆ Automatic occlusion removal from 3D maps for maritime situational awareness SP
We introduce a novel method for updating 3D geospatial models, specifically targeting occlusion removal in large-scale maritime environments. Traditional 3D reconstruction techniques often face problems with dynamic objects, like cars or vessels, that obscure the true environment, leading to inaccurate models or requiring extensive manual editing. Our approach leverages deep learning techniques, including instance segmentation and generative inpainting, to directly modify both the texture and geometry of 3D meshes without the need for costly reprocessing. By selectively targeting occluding objects and preserving static elements, the method enhances both geometric and visual accuracy. This approach not only preserves structural and textural details of map data but also maintains compatibility with current geospatial standards, ensuring robust performance across diverse datasets. The results demonstrate significant improvements in 3D model fidelity, making this method highly applicable for maritime situational awareness and the dynamic display of auxiliary information.
comment: Preprint of SPIE Sensor + Imaging 2024 conference paper
☆ Shuffle Vision Transformer: Lightweight, Fast and Efficient Recognition of Driver Facial Expression
Existing methods for driver facial expression recognition (DFER) are often computationally intensive, rendering them unsuitable for real-time applications. In this work, we introduce a novel transfer learning-based dual architecture, named ShuffViT-DFER, which elegantly combines computational efficiency and accuracy. This is achieved by harnessing the strengths of two lightweight and efficient models using convolutional neural network (CNN) and vision transformers (ViT). We efficiently fuse the extracted features to enhance the performance of the model in accurately recognizing the facial expressions of the driver. Our experimental results on two benchmarking and public datasets, KMU-FED and KDEF, highlight the validity of our proposed method for real-time application with superior performance when compared to state-of-the-art methods.
comment: Accepted for publication in The 6th IEEE International Conference on Artificial Intelligence Circuits and Systems (IEEE AICAS 2024), 5 pages, 3 figures
☆ A Key-Driven Framework for Identity-Preserving Face Anonymization NDSS
Virtual faces are crucial content in the metaverse. Recently, attempts have been made to generate virtual faces for privacy protection. Nevertheless, these virtual faces either permanently remove the identifiable information or map the original identity into a virtual one, which loses the original identity forever. In this study, we first attempt to address the conflict between privacy and identifiability in virtual faces, where a key-driven face anonymization and authentication recognition (KFAAR) framework is proposed. Concretely, the KFAAR framework consists of a head posture-preserving virtual face generation (HPVFG) module and a key-controllable virtual face authentication (KVFA) module. The HPVFG module uses a user key to project the latent vector of the original face into a virtual one. Then it maps the virtual vectors to obtain an extended encoding, based on which the virtual face is generated. By simultaneously adding a head posture and facial expression correction module, the virtual face has the same head posture and facial expression as the original face. During the authentication, we propose a KVFA module to directly recognize the virtual faces using the correct user key, which can obtain the original identity without exposing the original face image. We also propose a multi-task learning objective to train HPVFG and KVFA. Extensive experiments demonstrate the advantages of the proposed HPVFG and KVFA modules, which effectively achieve both facial anonymity and identifiability.
comment: Accepted by NDSS Symposium 2025. Please cite this paper as "Miaomiao Wang, Guang Hua, Sheng Li, and Guorui Feng. A Key-Driven Framework for Identity-Preserving Face Anonymization. In the 32nd Annual Network and Distributed System Security Symposium (NDSS 2025)."
☆ UV-Mamba: A DCN-Enhanced State Space Model for Urban Village Boundary Identification in High-Resolution Remote Sensing Images
Owing to the diverse geographical environments, intricate landscapes, and high-density settlements, the automatic identification of urban village boundaries using remote sensing images is a highly challenging task. This paper proposes a novel and efficient neural network model called UV-Mamba for accurate boundary detection in high-resolution remote sensing images. UV-Mamba mitigates the memory loss problem in long sequence modeling, which arises in state space model (SSM) with increasing image size, by incorporating deformable convolutions (DCN). Its architecture utilizes an encoder-decoder framework, includes an encoder with four deformable state space augmentation (DSSA) blocks for efficient multi-level semantic extraction and a decoder to integrate the extracted semantic information. We conducted experiments on the Beijing and Xi'an datasets, and the results show that UV-Mamba achieves state-of-the-art performance. Specifically, our model achieves 73.3% and 78.1% IoU on the Beijing and Xi'an datasets, respectively, representing improvements of 1.2% and 3.4% IoU over the previous best model, while also being 6x faster in inference speed and 40x smaller in parameter count. Source code and pre-trained models are available in the supplementary material.
comment: 5 pages, 4 figures, 2 tables
☆ Weight Conditioning for Smooth Optimization of Neural Networks ECCV 2024
In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
comment: ECCV 2024
☆ mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding
Multimodel Large Language Models(MLLMs) have achieved promising OCR-free Document Understanding performance by increasing the supported resolution of document images. However, this comes at the cost of generating thousands of visual tokens for a single document image, leading to excessive GPU memory and slower inference times, particularly in multi-page document comprehension. In this work, to address these challenges, we propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens, guided by low-resolution global visual features. With this compression module, to strengthen multi-page document comprehension ability and balance both token efficiency and question-answering performance, we develop the DocOwl2 under a three-stage training framework: Single-image Pretraining, Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%, demonstrating advanced capabilities in multi-page questioning answering, explanation with evidence pages, and cross-page structure understanding. Additionally, compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens. Our codes, models, and data are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl2.
comment: 15 pages, 7 figures
☆ TG-LMM: Enhancing Medical Image Segmentation Accuracy through Text-Guided Large Multi-Modal Model
We propose TG-LMM (Text-Guided Large Multi-Modal Model), a novel approach that leverages textual descriptions of organs to enhance segmentation accuracy in medical images. Existing medical image segmentation methods face several challenges: current medical automatic segmentation models do not effectively utilize prior knowledge, such as descriptions of organ locations; previous text-visual models focus on identifying the target rather than improving the segmentation accuracy; prior models attempt to use prior knowledge to enhance accuracy but do not incorporate pre-trained models. To address these issues, TG-LMM integrates prior knowledge, specifically expert descriptions of the spatial locations of organs, into the segmentation process. Our model utilizes pre-trained image and text encoders to reduce the number of training parameters and accelerate the training process. Additionally, we designed a comprehensive image-text information fusion structure to ensure thorough integration of the two modalities of data. We evaluated TG-LMM on three authoritative medical image datasets, encompassing the segmentation of various parts of the human body. Our method demonstrated superior performance compared to existing approaches, such as MedSAM, SAM and nnUnet.
comment: 11 pages, 2 figures
☆ KAN See In the Dark
Existing low-light image enhancement methods are difficult to fit the complex nonlinear relationship between normal and low-light images due to uneven illumination and noise effects. The recently proposed Kolmogorov-Arnold networks (KANs) feature spline-based convolutional layers and learnable activation functions, which can effectively capture nonlinear dependencies. In this paper, we design a KAN-Block based on KANs and innovatively apply it to low-light image enhancement. This method effectively alleviates the limitations of current methods constrained by linear network structures and lack of interpretability, further demonstrating the potential of KANs in low-level vision tasks. Given the poor perception of current low-light image enhancement methods and the stochastic nature of the inverse diffusion process, we further introduce frequency-domain perception for visually oriented enhancement. Extensive experiments demonstrate the competitive performance of our method on benchmark datasets. The code will be available at: https://github.com/AXNing/KSID}{https://github.com/AXNing/KSID.
☆ Make Graph-based Referring Expression Comprehension Great Again through Expression-guided Dynamic Gating and Regression
One common belief is that with complex models and pre-training on large-scale datasets, transformer-based methods for referring expression comprehension (REC) perform much better than existing graph-based methods. We observe that since most graph-based methods adopt an off-the-shelf detector to locate candidate objects (i.e., regions detected by the object detector), they face two challenges that result in subpar performance: (1) the presence of significant noise caused by numerous irrelevant objects during reasoning, and (2) inaccurate localization outcomes attributed to the provided detector. To address these issues, we introduce a plug-and-adapt module guided by sub-expressions, called dynamic gate constraint (DGC), which can adaptively disable irrelevant proposals and their connections in graphs during reasoning. We further introduce an expression-guided regression strategy (EGR) to refine location prediction. Extensive experimental results on the RefCOCO, RefCOCO+, RefCOCOg, Flickr30K, RefClef, and Ref-reasoning datasets demonstrate the effectiveness of the DGC module and the EGR strategy in consistently boosting the performances of various graph-based REC methods. Without any pretaining, the proposed graph-based method achieves better performance than the state-of-the-art (SOTA) transformer-based methods.
comment: 12 pages to appear in IEEE Transactions on Multimedia
☆ TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation
Deep learning has shown great potential for automated medical image segmentation to improve the precision and speed of disease diagnostics. However, the task presents significant difficulties due to variations in the scale, shape, texture, and contrast of the pathologies. Traditional convolutional neural network (CNN) models have certain limitations when it comes to effectively modelling multiscale context information and facilitating information interaction between skip connections across levels. To overcome these limitations, a novel deep learning architecture is introduced for medical image segmentation, taking advantage of CNNs and vision transformers. Our proposed model, named TBConvL-Net, involves a hybrid network that combines the local features of a CNN encoder-decoder architecture with long-range and temporal dependencies using biconvolutional long-short-term memory (LSTM) networks and vision transformers (ViT). This enables the model to capture contextual channel relationships in the data and account for the uncertainty of segmentation over time. Additionally, we introduce a novel composite loss function that considers both the segmentation robustness and the boundary agreement of the predicted output with the gold standard. Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets of seven different medical imaging modalities.
☆ MouseSIS: A Frames-and-Events Dataset for Space-Time Instance Segmentation of Mice ECCV
Enabled by large annotated datasets, tracking and segmentation of objects in videos has made remarkable progress in recent years. Despite these advancements, algorithms still struggle under degraded conditions and during fast movements. Event cameras are novel sensors with high temporal resolution and high dynamic range that offer promising advantages to address these challenges. However, annotated data for developing learning-based mask-level tracking algorithms with events is not available. To this end, we introduce: ($i$) a new task termed \emph{space-time instance segmentation}, similar to video instance segmentation, whose goal is to segment instances throughout the entire duration of the sensor input (here, the input are quasi-continuous events and optionally aligned frames); and ($ii$) \emph{\dname}, a dataset for the new task, containing aligned grayscale frames and events. It includes annotated ground-truth labels (pixel-level instance segmentation masks) of a group of up to seven freely moving and interacting mice. We also provide two reference methods, which show that leveraging event data can consistently improve tracking performance, especially when used in combination with conventional cameras. The results highlight the potential of event-aided tracking in difficult scenarios. We hope our dataset opens the field of event-based video instance segmentation and enables the development of robust tracking algorithms for challenging conditions.\url{https://github.com/tub-rip/MouseSIS}
comment: 18 pages, 5 figures, ECCV Workshops
☆ Few-Shot Continual Learning for Activity Recognition in Classroom Surveillance Images
The application of activity recognition in the "AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. In real classroom settings, normal teaching activities such as reading, account for a large proportion of samples, while rare non-teaching activities such as eating, continue to appear. This requires a model that can learn non-teaching activities from few samples without forgetting the normal teaching activities, which necessitates fewshot continual learning (FSCL) capability. To address this gap, we constructed a continual learning dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition in Classroom). The dataset has advantages such as multiple perspectives, a wide variety of activities, and real-world scenarios, but it also presents challenges like similar activities and imbalanced sample distribution. To overcome these challenges, we designed a few-shot continual learning method that combines supervised contrastive learning (SCL) and an adaptive covariance classifier (ACC). During the base phase, we proposed a SCL approach based on feature augmentation to enhance the model's generalization ability. In the incremental phase, we employed an ACC to more accurately describe the distribution of new classes. Experimental results demonstrate that our method outperforms other existing methods on the ARIC dataset.
☆ Eetimating Indoor Scene Depth Maps from Ultrasonic Echoes ICIP 2024
Measuring 3D geometric structures of indoor scenes requires dedicated depth sensors, which are not always available. Echo-based depth estimation has recently been studied as a promising alternative solution. All previous studies have assumed the use of echoes in the audible range. However, one major problem is that audible echoes cannot be used in quiet spaces or other situations where producing audible sounds is prohibited. In this paper, we consider echo-based depth estimation using inaudible ultrasonic echoes. While ultrasonic waves provide high measurement accuracy in theory, the actual depth estimation accuracy when ultrasonic echoes are used has remained unclear, due to its disadvantage of being sensitive to noise and susceptible to attenuation. We first investigate the depth estimation accuracy when the frequency of the sound source is restricted to the high-frequency band, and found that the accuracy decreased when the frequency was limited to ultrasonic ranges. Based on this observation, we propose a novel deep learning method to improve the accuracy of ultrasonic echo-based depth estimation by using audible echoes as auxiliary data only during training. Experimental results with a public dataset demonstrate that our method improves the estimation accuracy.
comment: ICIP 2024
☆ Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning
In the realm of multimedia data analysis, the extensive use of image datasets has escalated concerns over privacy protection within such data. Current research predominantly focuses on privacy protection either in data sharing or upon the release of trained machine learning models. Our study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication. We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level and employs machine unlearning algorithms for the privacy preservation of model parameters. This user-interactive framework allows for adjustments in privacy protection intensity based on user feedback on generated images, striking a balance between maximal privacy safeguarding and maintaining model performance. Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset. Our approach demonstrated superiority over existing methods on facial datasets across various attribute classifications.
☆ YOLO-PPA based Efficient Traffic Sign Detection for Cruise Control in Autonomous Driving
It is very important to detect traffic signs efficiently and accurately in autonomous driving systems. However, the farther the distance, the smaller the traffic signs. Existing object detection algorithms can hardly detect these small scaled signs.In addition, the performance of embedded devices on vehicles limits the scale of detection models.To address these challenges, a YOLO PPA based traffic sign detection algorithm is proposed in this paper.The experimental results on the GTSDB dataset show that compared to the original YOLO, the proposed method improves inference efficiency by 11.2%. The mAP 50 is also improved by 93.2%, which demonstrates the effectiveness of the proposed YOLO PPA.
☆ Improving Robustness to Multiple Spurious Correlations by Multi-Objective Optimization
We study the problem of training an unbiased and accurate model given a dataset with multiple biases. This problem is challenging since the multiple biases cause multiple undesirable shortcuts during training, and even worse, mitigating one may exacerbate the other. We propose a novel training method to tackle this challenge. Our method first groups training data so that different groups induce different shortcuts, and then optimizes a linear combination of group-wise losses while adjusting their weights dynamically to alleviate conflicts between the groups in performance; this approach, rooted in the multi-objective optimization theory, encourages to achieve the minimax Pareto solution. We also present a new benchmark with multiple biases, dubbed MultiCelebA, for evaluating debiased training methods under realistic and challenging scenarios. Our method achieved the best on three datasets with multiple biases, and also showed superior performance on conventional single-bias datasets.
comment: International Conference on Machine Learning 2024
☆ ChartMoE: Mixture of Expert Connector for Advanced Chart Understanding
Automatic chart understanding is crucial for content comprehension and document parsing. Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in chart understanding through domain-specific alignment and fine-tuning. However, the application of alignment training within the chart domain is still underexplored. To address this, we propose ChartMoE, which employs the mixture of expert (MoE) architecture to replace the traditional linear projector to bridge the modality gap. Specifically, we train multiple linear connectors through distinct alignment tasks, which are utilized as the foundational initialization parameters for different experts. Additionally, we introduce ChartMoE-Align, a dataset with over 900K chart-table-JSON-code quadruples to conduct three alignment tasks (chart-table/JSON/code). Combined with the vanilla connector, we initialize different experts in four distinct ways and adopt high-quality knowledge learning to further refine the MoE connector and LLM parameters. Extensive experiments demonstrate the effectiveness of the MoE connector and our initialization strategy, e.g., ChartMoE improves the accuracy of the previous state-of-the-art from 80.48% to 84.64% on the ChartQA benchmark.
OccLLaMA: An Occupancy-Language-Action Generative World Model for Autonomous Driving
The rise of multi-modal large language models(MLLMs) has spurred their applications in autonomous driving. Recent MLLM-based methods perform action by learning a direct mapping from perception to action, neglecting the dynamics of the world and the relations between action and world dynamics. In contrast, human beings possess world model that enables them to simulate the future states based on 3D internal visual representation and plan actions accordingly. To this end, we propose OccLLaMA, an occupancy-language-action generative world model, which uses semantic occupancy as a general visual representation and unifies vision-language-action(VLA) modalities through an autoregressive model. Specifically, we introduce a novel VQVAE-like scene tokenizer to efficiently discretize and reconstruct semantic occupancy scenes, considering its sparsity and classes imbalance. Then, we build a unified multi-modal vocabulary for vision, language and action. Furthermore, we enhance LLM, specifically LLaMA, to perform the next token/scene prediction on the unified vocabulary to complete multiple tasks in autonomous driving. Extensive experiments demonstrate that OccLLaMA achieves competitive performance across multiple tasks, including 4D occupancy forecasting, motion planning, and visual question answering, showcasing its potential as a foundation model in autonomous driving.
☆ SVP: Style-Enhanced Vivid Portrait Talking Head Diffusion Model
Talking Head Generation (THG), typically driven by audio, is an important and challenging task with broad application prospects in various fields such as digital humans, film production, and virtual reality. While diffusion model-based THG methods present high quality and stable content generation, they often overlook the intrinsic style which encompasses personalized features such as speaking habits and facial expressions of a video. As consequence, the generated video content lacks diversity and vividness, thus being limited in real life scenarios. To address these issues, we propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG. Specifically, we first introduce the novel probabilistic style prior learning to model the intrinsic style as a Gaussian distribution using facial expressions and audio embedding. The distribution is learned through the 'bespoked' contrastive objective, effectively capturing the dynamic style information in each video. Then we finetune a pretrained Stable Diffusion (SD) model to inject the learned intrinsic style as a controlling signal via cross attention. Experiments show that our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
☆ Bones Can't Be Triangles: Accurate and Efficient Vertebrae Keypoint Estimation through Collaborative Error Revision ECCV 2024
Recent advances in interactive keypoint estimation methods have enhanced accuracy while minimizing user intervention. However, these methods require user input for error correction, which can be costly in vertebrae keypoint estimation where inaccurate keypoints are densely clustered or overlap. We introduce a novel approach, KeyBot, specifically designed to identify and correct significant and typical errors in existing models, akin to user revision. By characterizing typical error types and using simulated errors for training, KeyBot effectively corrects these errors and significantly reduces user workload. Comprehensive quantitative and qualitative evaluations on three public datasets confirm that KeyBot significantly outperforms existing methods, achieving state-of-the-art performance in interactive vertebrae keypoint estimation. The source code and demo video are available at: https://ts-kim.github.io/KeyBot/
comment: 33 pages, ECCV 2024, Project Page: https://ts-kim.github.io/KeyBot/
☆ Granular-ball Representation Learning for Deep CNN on Learning with Label Noise
In actual scenarios, whether manually or automatically annotated, label noise is inevitably generated in the training data, which can affect the effectiveness of deep CNN models. The popular solutions require data cleaning or designing additional optimizations to punish the data with mislabeled data, thereby enhancing the robustness of models. However, these methods come at the cost of weakening or even losing some data during the training process. As we know, content is the inherent attribute of an image that does not change with changes in annotations. In this study, we propose a general granular-ball computing (GBC) module that can be embedded into a CNN model, where the classifier finally predicts the label of granular-ball ($gb$) samples instead of each individual samples. Specifically, considering the classification task: (1) in forward process, we split the input samples as $gb$ samples at feature-level, each of which can correspond to multiple samples with varying numbers and share one single label; (2) during the backpropagation process, we modify the gradient allocation strategy of the GBC module to enable it to propagate normally; and (3) we develop an experience replay policy to ensure the stability of the training process. Experiments demonstrate that the proposed method can improve the robustness of CNN models with no additional data or optimization.
☆ Gr-IoU: Ground-Intersection over Union for Robust Multi-Object Tracking with 3D Geometric Constraints ECCV 2024
We propose a Ground IoU (Gr-IoU) to address the data association problem in multi-object tracking. When tracking objects detected by a camera, it often occurs that the same object is assigned different IDs in consecutive frames, especially when objects are close to each other or overlapping. To address this issue, we introduce Gr-IoU, which takes into account the 3D structure of the scene. Gr-IoU transforms traditional bounding boxes from the image space to the ground plane using the vanishing point geometry. The IoU calculated with these transformed bounding boxes is more sensitive to the front-to-back relationships of objects, thereby improving data association accuracy and reducing ID switches. We evaluated our Gr-IoU method on the MOT17 and MOT20 datasets, which contain diverse tracking scenarios including crowded scenes and sequences with frequent occlusions. Experimental results demonstrated that Gr-IoU outperforms conventional real-time methods without appearance features.
comment: Accepted for the ECCV 2024 Workshop on Affective Behavior Analysis in-the-wild(ABAW)
☆ Multiple weather images restoration using the task transformer and adaptive mixup strategy
The current state-of-the-art in severe weather removal predominantly focuses on single-task applications, such as rain removal, haze removal, and snow removal. However, real-world weather conditions often consist of a mixture of several weather types, and the degree of weather mixing in autonomous driving scenarios remains unknown. In the presence of complex and diverse weather conditions, a single weather removal model often encounters challenges in producing clear images from severe weather images. Therefore, there is a need for the development of multi-task severe weather removal models that can effectively handle mixed weather conditions and improve image quality in autonomous driving scenarios. In this paper, we introduce a novel multi-task severe weather removal model that can effectively handle complex weather conditions in an adaptive manner. Our model incorporates a weather task sequence generator, enabling the self-attention mechanism to selectively focus on features specific to different weather types. To tackle the challenge of repairing large areas of weather degradation, we introduce Fast Fourier Convolution (FFC) to increase the receptive field. Additionally, we propose an adaptive upsampling technique that effectively processes both the weather task information and underlying image features by selectively retaining relevant information. Our proposed model has achieved state-of-the-art performance on the publicly available dataset.
comment: 10 pages, 5 figures and 2 table
UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking
Unmanned Aerial Vehicles (UAVs), have greatly revolutionized the process of gathering and analyzing data in diverse research domains, providing unmatched adaptability and effectiveness. This paper presents a thorough examination of Unmanned Aerial Vehicle (UAV) datasets, emphasizing their wide range of applications and progress. UAV datasets consist of various types of data, such as satellite imagery, images captured by drones, and videos. These datasets can be categorized as either unimodal or multimodal, offering a wide range of detailed and comprehensive information. These datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and tracking. They facilitate the development of sophisticated models for tasks like semantic segmentation, pose estimation, vehicle re-identification, and gesture recognition. By leveraging UAV datasets, researchers can significantly enhance the capabilities of computer vision models, thereby advancing technology and improving our understanding of complex, dynamic environments from an aerial perspective. This review aims to encapsulate the multifaceted utility of UAV datasets, emphasizing their pivotal role in driving innovation and practical applications in multiple domains.
☆ Unveiling Context-Related Anomalies: Knowledge Graph Empowered Decoupling of Scene and Action for Human-Related Video Anomaly Detection
Detecting anomalies in human-related videos is crucial for surveillance applications. Current methods primarily include appearance-based and action-based techniques. Appearance-based methods rely on low-level visual features such as color, texture, and shape. They learn a large number of pixel patterns and features related to known scenes during training, making them effective in detecting anomalies within these familiar contexts. However, when encountering new or significantly changed scenes, i.e., unknown scenes, they often fail because existing SOTA methods do not effectively capture the relationship between actions and their surrounding scenes, resulting in low generalization. In contrast, action-based methods focus on detecting anomalies in human actions but are usually less informative because they tend to overlook the relationship between actions and their scenes, leading to incorrect detection. For instance, the normal event of running on the beach and the abnormal event of running on the street might both be considered normal due to the lack of scene information. In short, current methods struggle to integrate low-level visual and high-level action features, leading to poor anomaly detection in varied and complex scenes. To address this challenge, we propose a novel decoupling-based architecture for human-related video anomaly detection (DecoAD). DecoAD significantly improves the integration of visual and action features through the decoupling and interweaving of scenes and actions, thereby enabling a more intuitive and accurate understanding of complex behaviors and scenes. DecoAD supports fully supervised, weakly supervised, and unsupervised settings.
comment: 13pages, 9 figures
☆ Labeled-to-Unlabeled Distribution Alignment for Partially-Supervised Multi-Organ Medical Image Segmentation
Partially-supervised multi-organ medical image segmentation aims to develop a unified semantic segmentation model by utilizing multiple partially-labeled datasets, with each dataset providing labels for a single class of organs. However, the limited availability of labeled foreground organs and the absence of supervision to distinguish unlabeled foreground organs from the background pose a significant challenge, which leads to a distribution mismatch between labeled and unlabeled pixels. Although existing pseudo-labeling methods can be employed to learn from both labeled and unlabeled pixels, they are prone to performance degradation in this task, as they rely on the assumption that labeled and unlabeled pixels have the same distribution. In this paper, to address the problem of distribution mismatch, we propose a labeled-to-unlabeled distribution alignment (LTUDA) framework that aligns feature distributions and enhances discriminative capability. Specifically, we introduce a cross-set data augmentation strategy, which performs region-level mixing between labeled and unlabeled organs to reduce distribution discrepancy and enrich the training set. Besides, we propose a prototype-based distribution alignment method that implicitly reduces intra-class variation and increases the separation between the unlabeled foreground and background. This can be achieved by encouraging consistency between the outputs of two prototype classifiers and a linear classifier. Extensive experimental results on the AbdomenCT-1K dataset and a union of four benchmark datasets (including LiTS, MSD-Spleen, KiTS, and NIH82) demonstrate that our method outperforms the state-of-the-art partially-supervised methods by a considerable margin, and even surpasses the fully-supervised methods. The source code is publicly available at https://github.com/xjiangmed/LTUDA.
comment: Accepted by Medical Image Analysis
☆ Why mamba is effective? Exploit Linear Transformer-Mamba Network for Multi-Modality Image Fusion
Multi-modality image fusion aims to integrate the merits of images from different sources and render high-quality fusion images. However, existing feature extraction and fusion methods are either constrained by inherent local reduction bias and static parameters during inference (CNN) or limited by quadratic computational complexity (Transformers), and cannot effectively extract and fuse features. To solve this problem, we propose a dual-branch image fusion network called Tmamba. It consists of linear Transformer and Mamba, which has global modeling capabilities while maintaining linear complexity. Due to the difference between the Transformer and Mamba structures, the features extracted by the two branches carry channel and position information respectively. T-M interaction structure is designed between the two branches, using global learnable parameters and convolutional layers to transfer position and channel information respectively. We further propose cross-modal interaction at the attention level to obtain cross-modal attention. Experiments show that our Tmamba achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. Code with checkpoints will be available after the peer-review process.
☆ Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction
3D Gaussian Splatting (3DGS) has emerged as a promising approach for 3D scene representation, offering a reduction in computational overhead compared to Neural Radiance Fields (NeRF). However, 3DGS is susceptible to high-frequency artifacts and demonstrates suboptimal performance under sparse viewpoint conditions, thereby limiting its applicability in robotics and computer vision. To address these limitations, we introduce SVS-GS, a novel framework for Sparse Viewpoint Scene reconstruction that integrates a 3D Gaussian smoothing filter to suppress artifacts. Furthermore, our approach incorporates a Depth Gradient Profile Prior (DGPP) loss with a dynamic depth mask to sharpen edges and 2D diffusion with Score Distillation Sampling (SDS) loss to enhance geometric consistency in novel view synthesis. Experimental evaluations on the MipNeRF-360 and SeaThru-NeRF datasets demonstrate that SVS-GS markedly improves 3D reconstruction from sparse viewpoints, offering a robust and efficient solution for scene understanding in robotics and computer vision applications.
☆ Bi-capacity Choquet Integral for Sensor Fusion with Label Uncertainty
Sensor fusion combines data from multiple sensor sources to improve reliability, robustness, and accuracy of data interpretation. The Fuzzy Integral (FI), in particular, the Choquet integral (ChI), is often used as a powerful nonlinear aggregator for fusion across multiple sensors. However, existing supervised ChI learning algorithms typically require precise training labels for each input data point, which can be difficult or impossible to obtain. Additionally, prior work on ChI fusion is often based only on the normalized fuzzy measures, which bounds the fuzzy measure values between [0, 1]. This can be limiting in cases where the underlying scales of input data sources are bipolar (i.e., between [-1, 1]). To address these challenges, this paper proposes a novel Choquet integral-based fusion framework, named Bi-MIChI (pronounced "bi-mi-kee"), which uses bi-capacities to represent the interactions between pairs of subsets of the input sensor sources on a bi-polar scale. This allows for extended non-linear interactions between the sensor sources and can lead to interesting fusion results. Bi-MIChI also addresses label uncertainty through Multiple Instance Learning, where training labels are applied to "bags" (sets) of data instead of per-instance. Our proposed Bi-MIChI framework shows effective classification and detection performance on both synthetic and real-world experiments for sensor fusion with label uncertainty. We also provide detailed analyses on the behavior of the fuzzy measures to demonstrate our fusion process.
comment: 10 pages, 7 figures, 7 tables; Accepted to 2024 FUZZ-IEEE and presented at 2024 IEEE WCCI; Code available at https://github.com/hvak/Bi-MIChI
☆ iSeg: An Iterative Refinement-based Framework for Training-free Segmentation
Stable diffusion has demonstrated strong image synthesis ability to given text descriptions, suggesting it to contain strong semantic clue for grouping objects. Inspired by this, researchers have explored employing stable diffusion for trainingfree segmentation. Most existing approaches either simply employ cross-attention map or refine it by self-attention map, to generate segmentation masks. We believe that iterative refinement with self-attention map would lead to better results. However, we mpirically demonstrate that such a refinement is sub-optimal likely due to the self-attention map containing irrelevant global information which hampers accurately refining cross-attention map with multiple iterations. To address this, we propose an iterative refinement framework for training-free segmentation, named iSeg, having an entropy-reduced self-attention module which utilizes a gradient descent scheme to reduce the entropy of self-attention map, thereby suppressing the weak responses corresponding to irrelevant global information. Leveraging the entropy-reduced self-attention module, our iSeg stably improves refined crossattention map with iterative refinement. Further, we design a category-enhanced cross-attention module to generate accurate cross-attention map, providing a better initial input for iterative refinement. Extensive experiments across different datasets and diverse segmentation tasks reveal the merits of proposed contributions, leading to promising performance on diverse segmentation tasks. For unsupervised semantic segmentation on Cityscapes, our iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature. Moreover, our proposed iSeg can support segmentation with different kind of images and interactions.
☆ TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations
Multimodal Large Language Models (MLLMs) have significantly improved performance across various image-language applications. Recently, there has been a growing interest in adapting image pre-trained MLLMs for video-related tasks. However, most efforts concentrate on enhancing the vision encoder and projector components, while the core part, Large Language Models (LLMs), remains comparatively under-explored. In this paper, we propose two strategies to enhance the model's capability in video understanding tasks by improving inter-layer attention computation in LLMs. Specifically, the first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE, which introduces temporal position information to strengthen the MLLM's temporal modeling capabilities while preserving the relative position relationships of both visual and text tokens. The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask, a simple yet effective method that broadens visual token interactions within and across video frames while maintaining the causal inference mechanism. Based on these proposed methods, we adapt LLaVA for video understanding tasks, naming it Temporal-Considered LLaVA (TC-LLaVA). Our TC-LLaVA achieves new state-of-the-art performance across various video understanding benchmarks with only supervised fine-tuning (SFT) on video-related datasets.
☆ Active Fake: DeepFake Camouflage
DeepFake technology has gained significant attention due to its ability to manipulate facial attributes with high realism, raising serious societal concerns. Face-Swap DeepFake is the most harmful among these techniques, which fabricates behaviors by swapping original faces with synthesized ones. Existing forensic methods, primarily based on Deep Neural Networks (DNNs), effectively expose these manipulations and have become important authenticity indicators. However, these methods mainly concentrate on capturing the blending inconsistency in DeepFake faces, raising a new security issue, termed Active Fake, emerges when individuals intentionally create blending inconsistency in their authentic videos to evade responsibility. This tactic is called DeepFake Camouflage. To achieve this, we introduce a new framework for creating DeepFake camouflage that generates blending inconsistencies while ensuring imperceptibility, effectiveness, and transferability. This framework, optimized via an adversarial learning strategy, crafts imperceptible yet effective inconsistencies to mislead forensic detectors. Extensive experiments demonstrate the effectiveness and robustness of our method, highlighting the need for further research in active fake detection.
☆ RoomDiffusion: A Specialized Diffusion Model in the Interior Design Industry
Recent advancements in text-to-image diffusion models have significantly transformed visual content generation, yet their application in specialized fields such as interior design remains underexplored. In this paper, we present RoomDiffusion, a pioneering diffusion model meticulously tailored for the interior design industry. To begin with, we build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. Subsequently, techniques such as multiaspect training, multi-stage fine-tune and model fusion are applied to enhance both the visual appeal and precision of the generated results. Lastly, leveraging the latent consistency Distillation method, we distill and expedite the model for optimal efficiency. Unlike existing models optimized for general scenarios, RoomDiffusion addresses specific challenges in interior design, such as lack of fashion, high furniture duplication rate, and inaccurate style. Through our holistic human evaluation protocol with more than 20 professional human evaluators, RoomDiffusion demonstrates industry-leading performance in terms of aesthetics, accuracy, and efficiency, surpassing all existing open source models such as stable diffusion and SDXL.
☆ PEPL: Precision-Enhanced Pseudo-Labeling for Fine-Grained Image Classification in Semi-Supervised Learning
Fine-grained image classification has witnessed significant advancements with the advent of deep learning and computer vision technologies. However, the scarcity of detailed annotations remains a major challenge, especially in scenarios where obtaining high-quality labeled data is costly or time-consuming. To address this limitation, we introduce Precision-Enhanced Pseudo-Labeling(PEPL) approach specifically designed for fine-grained image classification within a semi-supervised learning framework. Our method leverages the abundance of unlabeled data by generating high-quality pseudo-labels that are progressively refined through two key phases: initial pseudo-label generation and semantic-mixed pseudo-label generation. These phases utilize Class Activation Maps (CAMs) to accurately estimate the semantic content and generate refined labels that capture the essential details necessary for fine-grained classification. By focusing on semantic-level information, our approach effectively addresses the limitations of standard data augmentation and image-mixing techniques in preserving critical fine-grained features. We achieve state-of-the-art performance on benchmark datasets, demonstrating significant improvements over existing semi-supervised strategies, with notable boosts in accuracy and robustness.Our code has been open sourced at https://github.com/TianSuya/SemiFG.
comment: Under review
☆ Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem
Training Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores (e.g., PSNR and SSIM), but often results in blurry images due to insufficient recovery of high-frequency details. Conversely, using GAN or perceptual losses can produce sharp images with high perceptual metric scores (e.g., LPIPS), but may introduce artifacts and incorrect textures. Balancing these two types of losses can help achieve a trade-off between distortion and perception, but the challenge lies in tuning the loss function weights. To address this issue, we propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion. We conceptualize the relationship between loss weights and image quality assessment (IQA) metrics as black-box objective functions to be optimized within our Multi-Objective Bayesian Optimization Super-Resolution (MOBOSR) framework. This approach automates the hyperparameter tuning process, reduces overall computational cost, and enables the use of numerous loss functions simultaneously. Extensive experiments demonstrate that MOBOSR outperforms state-of-the-art methods in terms of both perceptual quality and distortion, significantly advancing the perception-distortion Pareto frontier. Our work points towards a new direction for future research on balancing perceptual quality and fidelity in nearly all image restoration tasks. The source code and pretrained models are available at: https://github.com/ZhuKeven/MOBOSR.
☆ TropNNC: Structured Neural Network Compression Using Tropical Geometry
We present TropNNC, a structured pruning framework for compressing neural networks with linear and convolutional layers and ReLU activations. Our approximation is based on a geometrical approach to machine/deep learning, using tropical geometry and extending the work of Misiakos et al. (2022). We use the Hausdorff distance of zonotopes in its standard continuous form to achieve a tighter approximation bound for tropical polynomials compared to Misiakos et al. (2022). This enhancement allows for superior functional approximations of neural networks, leading to a more effective compression algorithm. Our method is significantly easier to implement compared to other frameworks, and does not depend on the availability of training data samples. We validate our framework through extensive empirical evaluations on the MNIST, CIFAR, and ImageNet datasets. Our results demonstrate that TropNNC achieves performance on par with the state-of-the-art method ThiNet, even surpassing it in compressing linear layers, and to the best of our knowledge, it is the first method that achieves this using tropical geometry.
☆ HUMOS: Human Motion Model Conditioned on Body Shape ECCV'24
Generating realistic human motion is essential for many computer vision and graphics applications. The wide variety of human body shapes and sizes greatly impacts how people move. However, most existing motion models ignore these differences, relying on a standardized, average body. This leads to uniform motion across different body types, where movements don't match their physical characteristics, limiting diversity. To solve this, we introduce a new approach to develop a generative motion model based on body shape. We show that it's possible to train this model using unpaired data by applying cycle consistency, intuitive physics, and stability constraints, which capture the relationship between identity and movement. The resulting model generates diverse, physically plausible, and dynamically stable human motions that are both quantitatively and qualitatively more realistic than current state-of-the-art methods. More details are available on our project page https://CarstenEpic.github.io/humos/.
comment: Accepted in ECCV'24. Project page: https://CarstenEpic.github.io/humos/
☆ Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
This paper proposes a method for unsupervised whole-image clustering of a target dataset of remote sensing scenes with no labels. The method consists of three main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a labelled source remote sensing imagery dataset and using it to extract a feature vector from each image in the target dataset, (2) reducing the dimension of these deep features via manifold projection into a low-dimensional Euclidean space, and (3) clustering the embedded features using a Bayesian nonparametric technique to infer the number and membership of clusters simultaneously. The method takes advantage of heterogeneous transfer learning to cluster unseen data with different feature and label distributions. We demonstrate the performance of this approach outperforming state-of-the-art zero-shot classification methods on several remote sensing scene classification datasets.
☆ Data-Efficient Generation for Dataset Distillation
While deep learning techniques have proven successful in image-related tasks, the exponentially increased data storage and computation costs become a significant challenge. Dataset distillation addresses these challenges by synthesizing only a few images for each class that encapsulate all essential information. Most current methods focus on matching. The problems lie in the synthetic images not being human-readable and the dataset performance being insufficient for downstream learning tasks. Moreover, the distillation time can quickly get out of bounds when the number of synthetic images per class increases even slightly. To address this, we train a class conditional latent diffusion model capable of generating realistic synthetic images with labels. The sampling time can be reduced to several tens of images per seconds. We demonstrate that models can be effectively trained using only a small set of synthetic images and evaluated on a large real test set. Our approach achieved rank \(1\) in The First Dataset Distillation Challenge at ECCV 2024 on the CIFAR100 and TinyImageNet datasets.
comment: 13 pages, 7 figures
☆ Image Recognition for Garbage Classification Based on Pixel Distribution Learning
The exponential growth in waste production due to rapid economic and industrial development necessitates efficient waste management strategies to mitigate environmental pollution and resource depletion. Leveraging advancements in computer vision, this study proposes a novel approach inspired by pixel distribution learning techniques to enhance automated garbage classification. The method aims to address limitations of conventional convolutional neural network (CNN)-based approaches, including computational complexity and vulnerability to image variations. We will conduct experiments using the Kaggle Garbage Classification dataset, comparing our approach with existing models to demonstrate the strength and efficiency of pixel distribution learning in automated garbage classification technologies.
☆ The Role of Generative Systems in Historical Photography Management: A Case Study on Catalan Archives ECCV
The use of image analysis in automated photography management is an increasing trend in heritage institutions. Such tools alleviate the human cost associated with the manual and expensive annotation of new data sources while facilitating fast access to the citizenship through online indexes and search engines. However, available tagging and description tools are usually designed around modern photographs in English, neglecting historical corpora in minoritized languages, each of which exhibits intrinsic particularities. The primary objective of this research is to study the quantitative contribution of generative systems in the description of historical sources. This is done by contextualizing the task of captioning historical photographs from the Catalan archives as a case study. Our findings provide practitioners with tools and directions on transfer learning for captioning models based on visual adaptation and linguistic proximity.
comment: Accepted at ECCV workshop AI4DH
☆ On-board Satellite Image Classification for Earth Observation: A Comparative Study of Pre-Trained Vision Transformer Models
Remote sensing image classification is a critical component of Earth observation (EO) systems, traditionally dominated by convolutional neural networks (CNNs) and other deep learning techniques. However, the advent of Transformer-based architectures and large-scale pre-trained models has significantly shifted, offering enhanced performance and efficiency. This study focuses on identifying the most effective pre-trained model for land use classification in onboard satellite processing, emphasizing achieving high accuracy, computational efficiency, and robustness against noisy data conditions commonly encountered during satellite-based inference. Through extensive experimentation, we compared traditional CNN-based models, ResNet-based models, and various pre-trained vision Transformer models. Our findings demonstrate that pre-trained Transformer models, particularly MobileViTV2 and EfficientViT-M2, outperform models trained from scratch in accuracy and efficiency. These models achieve high performance with reduced computational requirements and exhibit greater resilience during inference under noisy conditions. While MobileViTV2 excelled on clean validation data, EfficientViT-M2 proved more robust when handling noise, making it the most suitable model for onboard satellite Earth observation tasks. In conclusion, EfficientViT-M2 is the optimal choice for reliable and efficient remote sensing image classification in satellite operations, achieving 98.76\% accuracy, precision, and recall. Specifically, EfficientViT-M2 delivered the highest performance across all metrics, excelled in training efficiency (1,000s) and inference time (10s), and demonstrated greater robustness (overall robustness score at 0.79).
☆ MVTN: A Multiscale Video Transformer Network for Hand Gesture Recognition
In this paper, we introduce a novel Multiscale Video Transformer Network (MVTN) for dynamic hand gesture recognition, since multiscale features can extract features with variable size, pose, and shape of hand which is a challenge in hand gesture recognition. The proposed model incorporates a multiscale feature hierarchy to capture diverse levels of detail and context within hand gestures which enhances the model's ability. This multiscale hierarchy is obtained by extracting different dimensions of attention in different transformer stages with initial stages to model high-resolution features and later stages to model low-resolution features. Our approach also leverages multimodal data, utilizing depth maps, infrared data, and surface normals along with RGB images from NVGesture and Briareo datasets. Experiments show that the proposed MVTN achieves state-of-the-art results with less computational complexity and parameters. The source code is available at https://github.com/mallikagarg/MVTN.
☆ Recon-all-clinical: Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI
Surface-based analysis of the cerebral cortex is ubiquitous in human neuroimaging with MRI. It is crucial for cortical registration, parcellation, and thickness estimation. Traditionally, these analyses require high-resolution, isotropic scans with good gray-white matter contrast, typically a 1mm T1-weighted scan. This excludes most clinical MRI scans, which are often anisotropic and lack the necessary T1 contrast. To enable large-scale neuroimaging studies using vast clinical data, we introduce recon-all-clinical, a novel method for cortical reconstruction, registration, parcellation, and thickness estimation in brain MRI scans of any resolution and contrast. Our approach employs a hybrid analysis method that combines a convolutional neural network (CNN) trained with domain randomization to predict signed distance functions (SDFs) and classical geometry processing for accurate surface placement while maintaining topological and geometric constraints. The method does not require retraining for different acquisitions, thus simplifying the analysis of heterogeneous clinical datasets. We tested recon-all-clinical on multiple datasets, including over 19,000 clinical scans. The method consistently produced precise cortical reconstructions and high parcellation accuracy across varied MRI contrasts and resolutions. Cortical thickness estimates are precise enough to capture aging effects independently of MRI contrast, although accuracy varies with slice thickness. Our method is publicly available at https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical, enabling researchers to perform detailed cortical analysis on the huge amounts of already existing clinical MRI scans. This advancement may be particularly valuable for studying rare diseases and underrepresented populations where research-grade MRI data is scarce.
comment: 16 pages in the manuscript with 11 page supplementary material
☆ Multi-Camera Industrial Open-Set Person Re-Identification and Tracking ECCV 2024
In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.
comment: Accepted at T-CAP workshop at ECCV 2024
☆ Ground-roll Separation From Land Seismic Records Based on Convolutional Neural Network
Ground-roll wave is a common coherent noise in land field seismic data. This Rayleigh-type surface wave usually has low frequency, low apparent velocity, and high amplitude, therefore obscures the reflection events of seismic shot gathers. Commonly used techniques focus on the differences of ground-roll and reflection in transformed domain such as $f-k$ domain, wavelet domain, or curvelet domain. These approaches use a series of fixed atoms or bases to transform the data in time-space domain into transformed domain to separate different waveforms, thus tend to suffer from the complexity for a delicate design of the parameters of the transform domain filter. To deal with these problems, a novel way is proposed to separate ground-roll from reflections using convolutional neural network (CNN) model based method to learn to extract the features of ground-roll and reflections automatically based on training data. In the proposed method, low-pass filtered seismic data which is contaminated by ground-roll wave is used as input of CNN, and then outputs both ground-roll component and low-frequency part of reflection component simultaneously. Discriminative loss is applied together with similarity loss in the training process to enhance the similarity to their train labels as well as the difference between the two outputs. Experiments are conducted on both synthetic and real data, showing that CNN based method can separate ground roll from reflections effectively, and has generalization ability to a certain extent.
☆ Few-shot Adaptation of Medical Vision-Language Models MICCAI 2024
Integrating image and text data through multi-modal learning has emerged as a new approach in medical imaging research, following its successful deployment in computer vision. While considerable efforts have been dedicated to establishing medical foundation models and their zero-shot transfer to downstream tasks, the popular few-shot setting remains relatively unexplored. Following on from the currently strong emergence of this setting in computer vision, we introduce the first structured benchmark for adapting medical vision-language models (VLMs) in a strict few-shot regime and investigate various adaptation strategies commonly used in the context of natural images. Furthermore, we evaluate a simple generalization of the linear-probe adaptation baseline, which seeks an optimal blending of the visual prototypes and text embeddings via learnable class-wise multipliers. Surprisingly, such a text-informed linear probe yields competitive performances in comparison to convoluted prompt-learning and adapter-based strategies, while running considerably faster and accommodating the black-box setting. Our extensive experiments span three different medical modalities and specialized foundation models, nine downstream tasks, and several state-of-the-art few-shot adaptation methods. We made our benchmark and code publicly available to trigger further developments in this emergent subject: \url{https://github.com/FereshteShakeri/few-shot-MedVLMs}.
comment: MICCAI 2024 (Spotlight) - Code is available at https://github.com/FereshteShakeri/few-shot-MedVLMs.git
♻ ☆ Q-Seg: Quantum Annealing-Based Unsupervised Image Segmentation
We present Q-Seg, a novel unsupervised image segmentation method based on quantum annealing, tailored for existing quantum hardware. We formulate the pixel-wise segmentation problem, which assimilates spectral and spatial information of the image, as a graph-cut optimization task. Our method efficiently leverages the interconnected qubit topology of the D-Wave Advantage device, offering superior scalability over existing quantum approaches and outperforming several tested state-of-the-art classical methods. Empirical evaluations on synthetic datasets have shown that Q-Seg has better runtime performance than the state-of-the-art classical optimizer Gurobi. The method has also been tested on earth observation image segmentation, a critical area with noisy and unreliable annotations. In the era of noisy intermediate-scale quantum, Q-Seg emerges as a reliable contender for real-world applications in comparison to advanced techniques like Segment Anything. Consequently, Q-Seg offers a promising solution using available quantum hardware, especially in situations constrained by limited labeled data and the need for efficient computational runtime.
comment: 12 pages, 9 figures, 1 table
♻ ☆ Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
comment: Homepage: https://loopyavatar.github.io/
♻ ☆ LinFusion: 1 GPU, 1 Minute, 16K Image
Modern diffusion models, particularly those utilizing a Transformer-based UNet for denoising, rely heavily on self-attention operations to manage complex spatial relationships, thus achieving impressive generation performance. However, this existing paradigm faces significant challenges in generating high-resolution visual content due to its quadratic time and memory complexity with respect to the number of spatial tokens. To address this limitation, we aim at a novel linear attention mechanism as an alternative in this paper. Specifically, we begin our exploration from recently introduced models with linear complexity, e.g., Mamba2, RWKV6, Gated Linear Attention, etc, and identify two key features-attention normalization and non-causal inference-that enhance high-resolution visual generation performance. Building on these insights, we introduce a generalized linear attention paradigm, which serves as a low-rank approximation of a wide spectrum of popular linear token mixers. To save the training cost and better leverage pre-trained models, we initialize our models and distill the knowledge from pre-trained StableDiffusion (SD). We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD after only modest training, while significantly reducing time and memory complexity. Extensive experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion delivers satisfactory zero-shot cross-resolution generation performance, generating high-resolution images like 16K resolution. Moreover, it is highly compatible with pre-trained SD components, such as ControlNet and IP-Adapter, requiring no adaptation efforts. Codes are available at https://github.com/Huage001/LinFusion.
comment: Work in Progress. Codes are available at https://github.com/Huage001/LinFusion
♻ ☆ Segment Beyond View: Handling Partially Missing Modality for Audio-Visual Semantic Segmentation AAAI-24
Augmented Reality (AR) devices, emerging as prominent mobile interaction platforms, face challenges in user safety, particularly concerning oncoming vehicles. While some solutions leverage onboard camera arrays, these cameras often have limited field-of-view (FoV) with front or downward perspectives. Addressing this, we propose a new out-of-view semantic segmentation task and Segment Beyond View (SBV), a novel audio-visual semantic segmentation method. SBV supplements the visual modality, which miss the information beyond FoV, with the auditory information using a teacher-student distillation model (Omni2Ego). The model consists of a vision teacher utilising panoramic information, an auditory teacher with 8-channel audio, and an audio-visual student that takes views with limited FoV and binaural audio as input and produce semantic segmentation for objects outside FoV. SBV outperforms existing models in comparative evaluations and shows a consistent performance across varying FoV ranges and in monaural audio settings.
comment: AAAI-24 (Fixed some erros)
♻ ☆ Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation ECCV 2024
We present Mesh2NeRF, an approach to derive ground-truth radiance fields from textured meshes for 3D generation tasks. Many 3D generative approaches represent 3D scenes as radiance fields for training. Their ground-truth radiance fields are usually fitted from multi-view renderings from a large-scale synthetic 3D dataset, which often results in artifacts due to occlusions or under-fitting issues. In Mesh2NeRF, we propose an analytic solution to directly obtain ground-truth radiance fields from 3D meshes, characterizing the density field with an occupancy function featuring a defined surface thickness, and determining view-dependent color through a reflection function considering both the mesh and environment lighting. Mesh2NeRF extracts accurate radiance fields which provides direct supervision for training generative NeRFs and single scene representation. We validate the effectiveness of Mesh2NeRF across various tasks, achieving a noteworthy 3.12dB improvement in PSNR for view synthesis in single scene representation on the ABO dataset, a 0.69 PSNR enhancement in the single-view conditional generation of ShapeNet Cars, and notably improved mesh extraction from NeRF in the unconditional generation of Objaverse Mugs.
comment: Accepted to ECCV 2024, Project page: https://terencecyj.github.io/projects/Mesh2NeRF/ Video: https://youtu.be/SsFkhSuQYGM
♻ ☆ UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition
The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at https://github.com/opendatalab/UniMERNet.
comment: Project Website: https://github.com/opendatalab/UniMERNet
♻ ☆ FDNet: Feature Decoupled Segmentation Network for Tooth CBCT Image
Precise Tooth Cone Beam Computed Tomography (CBCT) image segmentation is crucial for orthodontic treatment planning. In this paper, we propose FDNet, a Feature Decoupled Segmentation Network, to excel in the face of the variable dental conditions encountered in CBCT scans, such as complex artifacts and indistinct tooth boundaries. The Low-Frequency Wavelet Transform (LF-Wavelet) is employed to enrich the semantic content by emphasizing the global structural integrity of the teeth, while the SAM encoder is leveraged to refine the boundary delineation, thus improving the contrast between adjacent dental structures. By integrating these dual aspects, FDNet adeptly addresses the semantic gap, providing a detailed and accurate segmentation. The framework's effectiveness is validated through rigorous benchmarks, achieving the top Dice and IoU scores of 85.28% and 75.23%, respectively. This innovative decoupling of semantic and boundary features capitalizes on the unique strengths of each element to elevate the quality of segmentation performance.
comment: IEEE ISBI 2024, Oral
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding ACM MM 2024
Visual grounding, which aims to ground a visual region via natural language, is a task that heavily relies on cross-modal alignment. Existing works utilized uni-modal pre-trained models to transfer visual or linguistic knowledge separately while ignoring the multimodal corresponding information. Motivated by recent advancements in contrastive language-image pre-training and low-rank adaptation (LoRA) methods, we aim to solve the grounding task based on multimodal pre-training. However, there exists significant task gaps between pre-training and grounding. Therefore, to address these gaps, we propose a concise and efficient hierarchical multimodal fine-grained modulation framework, namely HiVG. Specifically, HiVG consists of a multi-layer adaptive cross-modal bridge and a hierarchical multimodal low-rank adaptation (HiLoRA) paradigm. The cross-modal bridge can address the inconsistency between visual features and those required for grounding, and establish a connection between multi-level visual and text features. HiLoRA prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner. Experimental results on five datasets demonstrate the effectiveness of our approach and showcase the significant grounding capabilities as well as promising energy efficiency advantages. The project page: https://github.com/linhuixiao/HiVG.
comment: Accepted by ACM MM 2024. The project page: https://github.com/linhuixiao/HiVG
♻ ☆ Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection
As a sub-field of object detection, moving infrared small target detection presents significant challenges due to tiny target sizes and low contrast against backgrounds. Currently-existing methods primarily rely on the features extracted only from spatio-temporal domain. Frequency domain has hardly been concerned yet, although it has been widely applied in image processing. To extend feature source domains and enhance feature representation, we propose a new Triple-domain Strategy (Tridos) with the frequency-aware memory enhancement on spatio-temporal domain for infrared small target detection. In this scheme, it effectively detaches and enhances frequency features by a local-global frequency-aware module with Fourier transform. Inspired by human visual system, our memory enhancement is designed to capture the spatial relations of infrared targets among video frames. Furthermore, it encodes temporal dynamics motion features via differential learning and residual enhancing. Additionally, we further design a residual compensation to reconcile possible cross-domain feature mismatches. To our best knowledge, proposed Tridos is the first work to explore infrared target feature learning comprehensively in spatio-temporal-frequency domains. The extensive experiments on three datasets (i.e., DAUB, ITSDT-15K and IRDST) validate that our triple-domain infrared feature learning scheme could often be obviously superior to state-of-the-art ones. Source codes are available at https://github.com/UESTC-nnLab/Tridos.
comment: This paper has accepted IEEE TGRS
♻ ☆ GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns ECCV 2024
Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/
comment: Accepted to ECCV 2024. Sept 4th, 2024: release of GarmentCodeData(v2)
♻ ☆ EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting
3D deblurring reconstruction techniques have recently seen significant advancements with the development of Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although these techniques can recover relatively clear 3D reconstructions from blurry image inputs, they still face limitations in handling severe blurring and complex camera motion. To address these issues, we propose Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS), which integrates event camera data to enhance the robustness of 3DGS against motion blur. By employing an Adaptive Deviation Estimator (ADE) network to estimate Gaussian center deviations and using novel loss functions, EaDeblur-GS achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
♻ ☆ Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole Slide Image Classification
In computational pathology, whole-slide image (WSI) classification presents a formidable challenge due to its gigapixel resolution and limited fine-grained annotations. Multiple-instance learning (MIL) offers a weakly supervised solution, yet refining instance-level information from bag-level labels remains challenging. While most of the conventional MIL methods use attention scores to estimate instance importance scores (IIS) which contribute to the prediction of the slide labels, these often lead to skewed attention distributions and inaccuracies in identifying crucial instances. To address these issues, we propose a new approach inspired by cooperative game theory: employing Shapley values to assess each instance's contribution, thereby improving IIS estimation. The computation of the Shapley value is then accelerated using attention, meanwhile retaining the enhanced instance identification and prioritization. We further introduce a framework for the progressive assignment of pseudo bags based on estimated IIS, encouraging more balanced attention distributions in MIL models. Our extensive experiments on CAMELYON-16, BRACS, TCGA-LUNG, and TCGA-BRCA datasets show our method's superiority over existing state-of-the-art approaches, offering enhanced interpretability and class-wise insights. Our source code is available at https://github.com/RenaoYan/PMIL.
comment: IEEE TRANSACTIONS ON MEDICAL IMAGING 2024
♻ ☆ EgoHDM: An Online Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System
We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. Our key idea is integrating camera localization and mapping information with inertial human motion capture bidirectionally in our system. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild.
comment: Project Page: https://handiyin.github.io/EgoHDM/
♻ ☆ Enhancing Facial Expression Recognition through Dual-Direction Attention Mixed Feature Networks: Application to 7th ABAW Challenge
We present our contribution to the 7th ABAW challenge at ECCV 2024, by utilizing a Dual-Direction Attention Mixed Feature Network (DDAMFN) for multitask facial expression recognition, we achieve results far beyond the proposed baseline for the Multi-Task ABAW challenge. Our proposal uses the well-known DDAMFN architecture as base to effectively predict valence-arousal, emotion recognition, and facial action units. We demonstrate the architecture ability to handle these tasks simultaneously, providing insights into its architecture and the rationale behind its design. Additionally, we compare our results for a multitask solution with independent single-task performance.
comment: 11 pages
♻ ☆ Human-AI Collaborative Multi-modal Multi-rater Learning for Endometriosis Diagnosis
Endometriosis, affecting about 10\% of individuals assigned female at birth, is challenging to diagnose and manage. Diagnosis typically involves the identification of various signs of the disease using either laparoscopic surgery or the analysis of T1/T2 MRI images, with the latter being quicker and cheaper but less accurate. A key diagnostic sign of endometriosis is the obliteration of the Pouch of Douglas (POD). However, even experienced clinicians struggle with accurately classifying POD obliteration from MRI images, which complicates the training of reliable AI models. In this paper, we introduce the \underline{H}uman-\underline{AI} \underline{Co}llaborative \underline{M}ulti-modal \underline{M}ulti-rater Learning (HAICOMM) methodology to address the challenge above. HAICOMM is the first method that explores three important aspects of this problem: 1) multi-rater learning to extract a cleaner label from the multiple ``noisy'' labels available per training sample; 2) multi-modal learning to leverage the presence of T1/T2 MRI images for training and testing; and 3) human-AI collaboration to build a system that leverages the predictions from clinicians and the AI model to provide more accurate classification than standalone clinicians and AI models. Presenting results on the multi-rater T1/T2 MRI endometriosis dataset that we collected to validate our methodology, the proposed HAICOMM model outperforms an ensemble of clinicians, noisy-label learning models, and multi-rater learning methods.
♻ ☆ Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning ECCV 2024
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes. It is vital to address the specific (feature/parameter) needs of each task, especially in computationally constrained environments. This work, therefore, introduces Layer-Optimized Multi-Task (LOMT) models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario. Structured or group sparsity systematically eliminates parameters from trivial channels and, sometimes, eventually, entire layers within a convolution neural network during training. Consequently, the remaining layers provide the most optimal features for a given task. In this two-step approach, we subsequently leverage this sparsity-induced optimal layer information to build the LOMT models by connecting task-specific decoders to these strategically identified layers, deviating from conventional approaches that uniformly connect decoders at the end of the network. This tailored architecture optimizes the network, focusing on essential features while reducing redundancy. We validate the efficacy of the proposed approach on two datasets, i.e., NYU-v2 and CelebAMask-HD datasets, for multiple heterogeneous tasks. A detailed performance analysis of the LOMT models, in contrast to the conventional MTL models, reveals that the LOMT models outperform for most task combinations. The excellent qualitative and quantitative outcomes highlight the effectiveness of employing structured sparsity for optimal layer (or feature) selection.
comment: Accepted at ECCV 2024 workshop - Computational Aspects of Deep Learning
♻ ☆ Kernel Adversarial Learning for Real-world Image Super-resolution
Current deep image super-resolution (SR) approaches aim to restore high-resolution images from down-sampled images or by assuming degradation from simple Gaussian kernels and additive noises. However, these techniques only assume crude approximations of the real-world image degradation process, which should involve complex kernels and noise patterns that are difficult to model using simple assumptions. In this paper, we propose a more realistic process to synthesise low-resolution images for real-world image SR by introducing a new Kernel Adversarial Learning Super-resolution (KASR) framework. In the proposed framework, degradation kernels and noises are adaptively modelled rather than explicitly specified. Moreover, we also propose a high-frequency selective objective and an iterative supervision process to further boost the model SR reconstruction accuracy. Extensive experiments validate the effectiveness of the proposed framework on real-world datasets.
♻ ☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
♻ ☆ MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion BMVC 2024
Autonomous systems, such as self-driving cars, rely on reliable semantic environment perception for decision making. Despite great advances in video semantic segmentation, existing approaches ignore important inductive biases and lack structured and interpretable internal representations. In this work, we propose MCDS-VSS, a structured filter model that learns in a self-supervised manner to estimate scene geometry and ego-motion of the camera, while also estimating the motion of external objects. Our model leverages these representations to improve the temporal consistency of semantic segmentation without sacrificing segmentation accuracy. MCDS-VSS follows a prediction-fusion approach in which scene geometry and camera motion are first used to compensate for ego-motion, then residual flow is used to compensate motion of dynamic objects, and finally the predicted scene features are fused with the current features to obtain a temporally consistent scene segmentation. Our model parses automotive scenes into multiple decoupled interpretable representations such as scene geometry, ego-motion, and object motion. Quantitative evaluation shows that MCDS-VSS achieves superior temporal consistency on video sequences while retaining competitive segmentation performance.
comment: Accepted for publication at BMVC 2024
♻ ☆ BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications. The code for this paper available at https://github.com/manueldiaz96/beval .
♻ ☆ Adaptive Explicit Knowledge Transfer for Knowledge Distillation
Logit-based knowledge distillation (KD) for classification is cost-efficient compared to feature-based KD but often subject to inferior performance. Recently, it was shown that the performance of logit-based KD can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model, which is known as `implicit (dark) knowledge', to the student model. Through gradient analysis, we first show that this actually has an effect of adaptively controlling the learning of implicit knowledge. Then, we propose a new loss that enables the student to learn explicit knowledge (i.e., the teacher's confidence about the target class) along with implicit knowledge in an adaptive manner. Furthermore, we propose to separate the classification and distillation tasks for effective distillation and inter-class relationship modeling. Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods on the CIFAR-100 and ImageNet datasets.
comment: 19 pages, 5 figures
♻ ☆ Boosting Adversarial Transferability for Skeleton-based Action Recognition via Exploring the Model Posterior Space
Skeletal motion plays a pivotal role in human activity recognition (HAR). Recently, attack methods have been proposed to identify the universal vulnerability of skeleton-based HAR(S-HAR). However, the research of adversarial transferability on S-HAR is largely missing. More importantly, existing attacks all struggle in transfer across unknown S-HAR models. We observed that the key reason is that the loss landscape of the action recognizers is rugged and sharp. Given the established correlation in prior studies~\cite{qin2022boosting,wu2020towards} between loss landscape and adversarial transferability, we assume and empirically validate that smoothing the loss landscape could potentially improve adversarial transferability on S-HAR. This is achieved by proposing a new post-train Dual Bayesian strategy, which can effectively explore the model posterior space for a collection of surrogates without the need for re-training. Furthermore, to craft adversarial examples along the motion manifold, we incorporate the attack gradient with information of the motion dynamics in a Bayesian manner. Evaluated on benchmark datasets, e.g. HDM05 and NTU 60, the average transfer success rate can reach as high as 35.9\% and 45.5\% respectively. In comparison, current state-of-the-art skeletal attacks achieve only 3.6\% and 9.8\%. The high adversarial transferability remains consistent across various surrogate, victim, and even defense models. Through a comprehensive analysis of the results, we provide insights on what surrogates are more likely to exhibit transferability, to shed light on future research.
comment: We have submitted a new version of our work at arXiv:2409.02483. This version, arXiv:2407.08572, is no longer valid. Any update for this work will be conducted in arXiv:2409.02483
♻ ☆ 3D Single-object Tracking in Point Clouds with High Temporal Variation ECCV24
The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
comment: Accepted by ECCV24
♻ ☆ More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
♻ ☆ Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry
This study investigated the use of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis for rapid soil fertility assessment, with a focus on key indicators such as available boron (B), organic carbon (OC), available manganese (Mn), available sulfur (S), and the sulfur availability index (SAI). A total of 1,133 soil samples from diverse agro-climatic zones in Eastern India were analyzed. The research integrated color and texture features from microscopic soil images, PXRF data, and auxiliary soil variables (AVs) using a Random Forest model. Results showed that combining image features (IFs) with AVs significantly improved prediction accuracy for available B (R2 = 0.80) and OC (R2 = 0.88). A data fusion approach, incorporating IFs, AVs, and PXRF data, further enhanced predictions for available Mn and SAI, with R2 values of 0.72 and 0.70, respectively. The study highlights the potential of integrating these technologies to offer rapid, cost-effective soil testing methods, paving the way for more advanced predictive models and a deeper understanding of soil fertility. Future work should explore the application of deep learning models on a larger dataset, incorporating soils from a wider range of agro-climatic zones under field conditions.
comment: Published in 'Soil Advances'
♻ ☆ D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction ECCV 2024
Reconstructing hand-held objects from a single RGB image is a challenging task in computer vision. In contrast to prior works that utilize deterministic modeling paradigms, we employ a point cloud denoising diffusion model to account for the probabilistic nature of this problem. In the core, we introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction (D-SCo), tackling two predominant challenges. First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm, enhancing the stability of diffusion and reverse processes and the precision of feature projection. Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions with a novel unified hand-object semantic embedding, enhancing the reconstruction performance of the hand-occluded region of the object. Experiments on the synthetic ObMan dataset and three real-world datasets HO3D, MOW and DexYCB demonstrate that our approach can surpass all other state-of-the-art methods.
comment: ECCV 2024
♻ ☆ AICAttack: Adversarial Image Captioning Attack with Attention-Based Optimization
Recent advances in deep learning research have shown remarkable achievements across many tasks in computer vision (CV) and natural language processing (NLP). At the intersection of CV and NLP is the problem of image captioning, where the related models' robustness against adversarial attacks has not been well studied. This paper presents a novel adversarial attack strategy, AICAttack (Attention-based Image Captioning Attack), designed to attack image captioning models through subtle perturbations on images. Operating within a black-box attack scenario, our algorithm requires no access to the target model's architecture, parameters, or gradient information. We introduce an attention-based candidate selection mechanism that identifies the optimal pixels to attack, followed by a customised differential evolution method to optimise the perturbations of pixels' RGB values. We demonstrate AICAttack's effectiveness through extensive experiments on benchmark datasets against multiple victim models. The experimental results demonstrate that our method outperforms current leading-edge techniques by achieving consistently higher attack success rates.
♻ ☆ UVL2: A Unified Framework for Video Tampering Localization
With the advancement of deep learning-driven video editing technology, security risks have emerged. Malicious video tampering can lead to public misunderstanding, property losses, and legal disputes. Currently, detection methods are mostly limited to specific datasets, with limited detection performance for unknown forgeries, and lack of robustness for processed data. This paper proposes an effective video tampering localization network that significantly improves the detection performance of video inpainting and splicing by extracting more generalized features of forgery traces. Considering the inherent differences between tampered videos and original videos, such as edge artifacts, pixel distribution, texture features, and compress information, we have specifically designed four modules to independently extract these features. Furthermore, to seamlessly integrate these features, we employ a two-stage approach utilizing both a Convolutional Neural Network and a Vision Transformer, enabling us to learn these features in a local-to-global manner. Experimental results demonstrate that the method significantly outperforms the existing state-of-the-art methods and exhibits robustness.
♻ ☆ LuSNAR:A Lunar Segmentation, Navigation and Reconstruction Dataset based on Muti-sensor for Autonomous Exploration
With the complexity of lunar exploration missions, the moon needs to have a higher level of autonomy. Environmental perception and navigation algorithms are the foundation for lunar rovers to achieve autonomous exploration. The development and verification of algorithms require highly reliable data support. Most of the existing lunar datasets are targeted at a single task, lacking diverse scenes and high-precision ground truth labels. To address this issue, we propose a multi-task, multi-scene, and multi-label lunar benchmark dataset LuSNAR. This dataset can be used for comprehensive evaluation of autonomous perception and navigation systems, including high-resolution stereo image pairs, panoramic semantic labels, dense depth maps, LiDAR point clouds, and the position of rover. In order to provide richer scene data, we built 9 lunar simulation scenes based on Unreal Engine. Each scene is divided according to topographic relief and the density of objects. To verify the usability of the dataset, we evaluated and analyzed the algorithms of semantic segmentation, 3D reconstruction, and autonomous navigation. The experiment results prove that the dataset proposed in this paper can be used for ground verification of tasks such as autonomous environment perception and navigation, and provides a lunar benchmark dataset for testing the accessibility of algorithm metrics. We make LuSNAR publicly available at: https://github.com/autumn999999/LuSNAR-dataset.
comment: 19 pages, 13 figures, 11 tables
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
♻ ☆ CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention
Diffusion-based video generation technology has advanced significantly, catalyzing a proliferation of research in human animation. However, the majority of these studies are confined to same-modality driving settings, with cross-modality human body animation remaining relatively underexplored. In this paper, we introduce, an end-to-end audio-driven human animation framework that ensures hand integrity, identity consistency, and natural motion. The key design of CyberHost is the Region Codebook Attention mechanism, which improves the generation quality of facial and hand animations by integrating fine-grained local features with learned motion pattern priors. Furthermore, we have developed a suite of human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, to improve synthesis results. To our knowledge, CyberHost is the first end-to-end audio-driven human diffusion model capable of facilitating zero-shot video generation within the scope of human body. Extensive experiments demonstrate that CyberHost surpasses previous works in both quantitative and qualitative aspects.
comment: Homepage: https://cyberhost.github.io/
♻ ☆ PointCloud-Text Matching: Benchmark Datasets and a Baseline
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
comment: Upon further consideration, we have concluded that the current version requires significant revision and may not yet be ready for publication. We plan to conduct additional experiments and make the necessary improvements to ensure the paper meets the standards for future submission
♻ ☆ Zero-Shot Character Identification and Speaker Prediction in Comics via Iterative Multimodal Fusion
Recognizing characters and predicting speakers of dialogue are critical for comic processing tasks, such as voice generation or translation. However, because characters vary by comic title, supervised learning approaches like training character classifiers which require specific annotations for each comic title are infeasible. This motivates us to propose a novel zero-shot approach, allowing machines to identify characters and predict speaker names based solely on unannotated comic images. In spite of their importance in real-world applications, these task have largely remained unexplored due to challenges in story comprehension and multimodal integration. Recent large language models (LLMs) have shown great capability for text understanding and reasoning, while their application to multimodal content analysis is still an open problem. To address this problem, we propose an iterative multimodal framework, the first to employ multimodal information for both character identification and speaker prediction tasks. Our experiments demonstrate the effectiveness of the proposed framework, establishing a robust baseline for these tasks. Furthermore, since our method requires no training data or annotations, it can be used as-is on any comic series.
comment: Accepted to ACM Multimedia 2024. Project page: https://liyingxuan1012.github.io/zeroshot-speaker-prediction ; Github repo: https://github.com/liyingxuan1012/zeroshot-speaker-prediction
♻ ☆ Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding TIM
Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale Subjective Response Indicators for Advertisement Videos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a Hypergraph Multi-modal Large Language Model (HMLLM) to explore the associations among different demographics, video elements, EEG, and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at https://github.com/mininglamp-MLLM/HMLLM.
comment: Accepted by ACM MULTIMEDIA 2024
♻ ☆ Open-Vocabulary SAM3D: Towards Training-free Open-Vocabulary 3D Scene Understanding
Open-vocabulary 3D scene understanding presents a significant challenge in the field. Recent works have sought to transfer knowledge embedded in vision-language models from 2D to 3D domains. However, these approaches often require prior knowledge from specific 3D scene datasets, limiting their applicability in open-world scenarios. The Segment Anything Model (SAM) has demonstrated remarkable zero-shot segmentation capabilities, prompting us to investigate its potential for comprehending 3D scenes without training. In this paper, we introduce OV-SAM3D, a training-free method that contains a universal framework for understanding open-vocabulary 3D scenes. This framework is designed to perform understanding tasks for any 3D scene without requiring prior knowledge of the scene. Specifically, our method is composed of two key sub-modules: First, we initiate the process by generating superpoints as the initial 3D prompts and refine these prompts using segment masks derived from SAM. Moreover, we then integrate a specially designed overlapping score table with open tags from the Recognize Anything Model (RAM) to produce final 3D instances with open-world labels. Empirical evaluations on the ScanNet200 and nuScenes datasets demonstrate that our approach surpasses existing open-vocabulary methods in unknown open-world environments.
comment: Project page: https://hithqd.github.io/projects/OV-SAM3D
♻ ☆ An Efficient Instance Segmentation Framework Using Segmentation Foundation Models with Oriented Bounding Box Prompts
Instance segmentation in unmanned aerial vehicle measurement is a long-standing challenge. Since horizontal bounding boxes introduce many interference objects, oriented bounding boxes (OBBs) are usually used for instance identification. However, based on ``segmentation within bounding box'' paradigm, current instance segmentation methods using OBBs are overly dependent on bounding box detection performance. To tackle this, this paper proposes OBSeg, an efficient instance segmentation framework using OBBs. OBSeg is based on box prompt-based segmentation foundation models (BSMs), e.g., Segment Anything Model. Specifically, OBSeg first detects OBBs to distinguish instances and provide coarse localization information. Then, it predicts OBB prompt-related masks for fine segmentation. Since OBBs only serve as prompts, OBSeg alleviates the over-dependence on bounding box detection performance of current instance segmentation methods using OBBs. In addition, to enable BSMs to handle OBB prompts, we propose a novel OBB prompt encoder. To make OBSeg more lightweight and further improve the performance of lightweight distilled BSMs, a Gaussian smoothing-based knowledge distillation method is introduced. Experiments demonstrate that OBSeg outperforms current instance segmentation methods on multiple public datasets. The code is available at https://github.com/zhen6618/OBBInstanceSegmentation.
Diff-IP2D: Diffusion-Based Hand-Object Interaction Prediction on Egocentric Videos
Understanding how humans would behave during hand-object interaction is vital for applications in service robot manipulation and extended reality. To achieve this, some recent works have been proposed to simultaneously forecast hand trajectories and object affordances on human egocentric videos. The joint prediction serves as a comprehensive representation of future hand-object interactions in 2D space, indicating potential human motion and motivation. However, the existing approaches mostly adopt the autoregressive paradigm for unidirectional prediction, which lacks mutual constraints within the holistic future sequence, and accumulates errors along the time axis. Meanwhile, these works basically overlook the effect of camera egomotion on first-person view predictions. To address these limitations, we propose a novel diffusion-based interaction prediction method, namely Diff-IP2D, to forecast future hand trajectories and object affordances concurrently in an iterative non-autoregressive manner. We transform the sequential 2D images into latent feature space and design a denoising diffusion model to predict future latent interaction features conditioned on past ones. Motion features are further integrated into the conditional denoising process to enable Diff-IP2D aware of the camera wearer's dynamics for more accurate interaction prediction. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art baselines on both the off-the-shelf metrics and our newly proposed evaluation protocol. This highlights the efficacy of leveraging a generative paradigm for 2D hand-object interaction prediction. The code of Diff-IP2D will be released at https://github.com/IRMVLab/Diff-IP2D.
♻ ☆ TransKD: Transformer Knowledge Distillation for Efficient Semantic Segmentation
Semantic segmentation benchmarks in the realm of autonomous driving are dominated by large pre-trained transformers, yet their widespread adoption is impeded by substantial computational costs and prolonged training durations. To lift this constraint, we look at efficient semantic segmentation from a perspective of comprehensive knowledge distillation and aim to bridge the gap between multi-source knowledge extractions and transformer-specific patch embeddings. We put forward the Transformer-based Knowledge Distillation (TransKD) framework which learns compact student transformers by distilling both feature maps and patch embeddings of large teacher transformers, bypassing the long pre-training process and reducing the FLOPs by >85.0%. Specifically, we propose two fundamental modules to realize feature map distillation and patch embedding distillation, respectively: (1) Cross Selective Fusion (CSF) enables knowledge transfer between cross-stage features via channel attention and feature map distillation within hierarchical transformers; (2) Patch Embedding Alignment (PEA) performs dimensional transformation within the patchifying process to facilitate the patch embedding distillation. Furthermore, we introduce two optimization modules to enhance the patch embedding distillation from different perspectives: (1) Global-Local Context Mixer (GL-Mixer) extracts both global and local information of a representative embedding; (2) Embedding Assistant (EA) acts as an embedding method to seamlessly bridge teacher and student models with the teacher's number of channels. Experiments on Cityscapes, ACDC, NYUv2, and Pascal VOC2012 datasets show that TransKD outperforms state-of-the-art distillation frameworks and rivals the time-consuming pre-training method. The source code is publicly available at https://github.com/RuipingL/TransKD.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code is publicly available at https://github.com/RuipingL/TransKD
♻ ☆ Refusing Safe Prompts for Multi-modal Large Language Models
Multimodal large language models (MLLMs) have become the cornerstone of today's generative AI ecosystem, sparking intense competition among tech giants and startups. In particular, an MLLM generates a text response given a prompt consisting of an image and a question. While state-of-the-art MLLMs use safety filters and alignment techniques to refuse unsafe prompts, in this work, we introduce MLLM-Refusal, the first method that induces refusals for safe prompts. In particular, our MLLM-Refusal optimizes a nearly-imperceptible refusal perturbation and adds it to an image, causing target MLLMs to likely refuse a safe prompt containing the perturbed image and a safe question. Specifically, we formulate MLLM-Refusal as a constrained optimization problem and propose an algorithm to solve it. Our method offers competitive advantages for MLLM model providers by potentially disrupting user experiences of competing MLLMs, since competing MLLM's users will receive unexpected refusals when they unwittingly use these perturbed images in their prompts. We evaluate MLLM-Refusal on four MLLMs across four datasets, demonstrating its effectiveness in causing competing MLLMs to refuse safe prompts while not affecting non-competing MLLMs. Furthermore, we explore three potential countermeasures-adding Gaussian noise, DiffPure, and adversarial training. Our results show that though they can mitigate MLLM-Refusal's effectiveness, they also sacrifice the accuracy and/or efficiency of the competing MLLM. The code is available at https://github.com/Sadcardation/MLLM-Refusal.
♻ ☆ Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective
The rapid development of large-scale deep learning models questions the affordability of hardware platforms, which necessitates the pruning to reduce their computational and memory footprints. Sparse neural networks as the product, have demonstrated numerous favorable benefits like low complexity, undamaged generalization, etc. Most of the prominent pruning strategies are invented from a model-centric perspective, focusing on searching and preserving crucial weights by analyzing network topologies. However, the role of data and its interplay with model-centric pruning has remained relatively unexplored. In this research, we introduce a novel data-model co-design perspective: to promote superior weight sparsity by learning important model topology and adequate input data in a synergetic manner. Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework. As a pioneering effort, this paper conducts systematic investigations about the impact of different visual prompts on model pruning and suggests an effective joint optimization approach. Extensive experiments with 3 network architectures and 8 datasets evidence the substantial performance improvements from VPNs over existing start-of-the-art pruning algorithms. Furthermore, we find that subnetworks discovered by VPNs from pre-trained models enjoy better transferability across diverse downstream scenarios. These insights shed light on new promising possibilities of data-model co-designs for vision model sparsification.
♻ ☆ UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images
With the advent of text-to-image models and concerns about their misuse, developers are increasingly relying on image safety classifiers to moderate their generated unsafe images. Yet, the performance of current image safety classifiers remains unknown for both real-world and AI-generated images. In this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers, with a particular focus on the impact of AI-generated images on their performance. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough to mitigate the multifaceted problem of unsafe images. Also, there exists a distribution shift between real-world and AI-generated images in image qualities, styles, and layouts, leading to degraded effectiveness and robustness. Motivated by these findings, we build a comprehensive image moderation tool called PerspectiveVision, which addresses the main drawbacks of existing classifiers with improved effectiveness and robustness, especially on AI-generated images. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
♻ ☆ Less is More: Fewer Interpretable Region via Submodular Subset Selection ICLR 2024
Image attribution algorithms aim to identify important regions that are highly relevant to model decisions. Although existing attribution solutions can effectively assign importance to target elements, they still face the following challenges: 1) existing attribution methods generate inaccurate small regions thus misleading the direction of correct attribution, and 2) the model cannot produce good attribution results for samples with wrong predictions. To address the above challenges, this paper re-models the above image attribution problem as a submodular subset selection problem, aiming to enhance model interpretability using fewer regions. To address the lack of attention to local regions, we construct a novel submodular function to discover more accurate small interpretation regions. To enhance the attribution effect for all samples, we also impose four different constraints on the selection of sub-regions, i.e., confidence, effectiveness, consistency, and collaboration scores, to assess the importance of various subsets. Moreover, our theoretical analysis substantiates that the proposed function is in fact submodular. Extensive experiments show that the proposed method outperforms SOTA methods on two face datasets (Celeb-A and VGG-Face2) and one fine-grained dataset (CUB-200-2011). For correctly predicted samples, the proposed method improves the Deletion and Insertion scores with an average of 4.9% and 2.5% gain relative to HSIC-Attribution. For incorrectly predicted samples, our method achieves gains of 81.0% and 18.4% compared to the HSIC-Attribution algorithm in the average highest confidence and Insertion score respectively. The code is released at https://github.com/RuoyuChen10/SMDL-Attribution.
comment: Accepted to ICLR 2024 (Oral)
♻ ☆ Continual Learning Approaches for Anomaly Detection
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
♻ ☆ RadCLIP: Enhancing Radiologic Image Analysis through Contrastive Language-Image Pre-training
The integration of artificial intelligence (AI) with radiology marks a transformative era in medicine. Vision foundation models have been adopted to enhance radiologic imaging analysis. However, the distinct complexities of radiologic 2D and 3D radiologic data pose unique challenges that existing models, pre-trained on general non-medical images, fail to address adequately. To bridge this gap and capitalize on the diagnostic precision required in radiologic imaging, we introduce Radiologic Contrastive Language-Image Pre-training (RadCLIP): a cross-modal vision-language foundational model that harnesses Vision Language Pre-training (VLP) framework to improve radiologic image analysis. Building upon Contrastive Language-Image Pre-training (CLIP), RadCLIP incorporates a slice pooling mechanism tailored for volumetric image analysis and is pre-trained using a large and diverse dataset of radiologic image-text pairs. The RadCLIP was pre-trained to effectively align radiologic images with their corresponding text annotations, creating a robust vision backbone for radiologic images. Extensive experiments demonstrate RadCLIP's superior performance in both uni-modal radiologic image classification and cross-modal image-text matching, highlighting its significant promise for improving diagnostic accuracy and efficiency in clinical settings. Our Key contributions include curating a large dataset with diverse radiologic 2D/3D radiologic image-text pairs, a slice pooling adapter using an attention mechanism for integrating 2D images, and comprehensive evaluations of RadCLIP on various radiologic downstream tasks.
Artificial Intelligence 109
☆ Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks.
comment: Project page: https://yunzeman.github.io/lexicon3d , Github: https://github.com/YunzeMan/Lexicon3D
☆ WildVis: Open Source Visualizer for Million-Scale Chat Logs in the Wild
The increasing availability of real-world conversation data offers exciting opportunities for researchers to study user-chatbot interactions. However, the sheer volume of this data makes manually examining individual conversations impractical. To overcome this challenge, we introduce WildVis, an interactive tool that enables fast, versatile, and large-scale conversation analysis. WildVis provides search and visualization capabilities in the text and embedding spaces based on a list of criteria. To manage million-scale datasets, we implemented optimizations including search index construction, embedding precomputation and compression, and caching to ensure responsive user interactions within seconds. We demonstrate WildVis's utility through three case studies: facilitating chatbot misuse research, visualizing and comparing topic distributions across datasets, and characterizing user-specific conversation patterns. WildVis is open-source and designed to be extendable, supporting additional datasets and customized search and visualization functionalities.
☆ LLM-CI: Assessing Contextual Integrity Norms in Language Models
Large language models (LLMs), while memorizing parts of their training data scraped from the Internet, may also inadvertently encode societal preferences and norms. As these models are integrated into sociotechnical systems, it is crucial that the norms they encode align with societal expectations. These norms could vary across models, hyperparameters, optimization techniques, and datasets. This is especially challenging due to prompt sensitivity$-$small variations in prompts yield different responses, rendering existing assessment methodologies unreliable. There is a need for a comprehensive framework covering various models, optimization, and datasets, along with a reliable methodology to assess encoded norms. We present LLM-CI, the first open-sourced framework to assess privacy norms encoded in LLMs. LLM-CI uses a Contextual Integrity-based factorial vignette methodology to assess the encoded norms across different contexts and LLMs. We propose the multi-prompt assessment methodology to address prompt sensitivity by assessing the norms from only the prompts that yield consistent responses across multiple variants. Using LLM-CI and our proposed methodology, we comprehensively evaluate LLMs using IoT and COPPA vignettes datasets from prior work, examining the impact of model properties (e.g., hyperparameters, capacity) and optimization strategies (e.g., alignment, quantization).
comment: 20 pages, 8 Figures, 4 Tables
Planning In Natural Language Improves LLM Search For Code Generation
While scaling training compute has led to remarkable improvements in large language models (LLMs), scaling inference compute has not yet yielded analogous gains. We hypothesize that a core missing component is a lack of diverse LLM outputs, leading to inefficient search due to models repeatedly sampling highly similar, yet incorrect generations. We empirically demonstrate that this lack of diversity can be mitigated by searching over candidate plans for solving a problem in natural language. Based on this insight, we propose PLANSEARCH, a novel search algorithm which shows strong results across HumanEval+, MBPP+, and LiveCodeBench (a contamination-free benchmark for competitive coding). PLANSEARCH generates a diverse set of observations about the problem and then uses these observations to construct plans for solving the problem. By searching over plans in natural language rather than directly over code solutions, PLANSEARCH explores a significantly more diverse range of potential solutions compared to baseline search methods. Using PLANSEARCH on top of Claude 3.5 Sonnet achieves a state-of-the-art pass@200 of 77.0% on LiveCodeBench, outperforming both the best score achieved without search (pass@1 = 41.4%) and using standard repeated sampling (pass@200 = 60.6%). Finally, we show that, across all models, search algorithms, and benchmarks analyzed, we can accurately predict performance gains due to search as a direct function of the diversity over generated ideas.
☆ A Different Level Text Protection Mechanism With Differential Privacy
The article introduces a method for extracting words of different degrees of importance based on the BERT pre-training model and proves the effectiveness of this method. The article also discusses the impact of maintaining the same perturbation results for words of different importance on the overall text utility. This method can be applied to long text protection.
☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
☆ TRACE-cs: Trustworthy Reasoning for Contrastive Explanations in Course Scheduling Problems
We present TRACE-cs, a novel hybrid system that combines symbolic reasoning with large language models (LLMs) to address contrastive queries in scheduling problems. TRACE-cs leverages SAT solving techniques to encode scheduling constraints and generate explanations for user queries, while utilizing an LLM to process the user queries into logical clauses as well as refine the explanations generated by the symbolic solver to natural language sentences. By integrating these components, our approach demonstrates the potential of combining symbolic methods with LLMs to create explainable AI agents with correctness guarantees.
☆ A method to benchmark high-dimensional process drift detection
Process curves are multi-variate finite time series data coming from manufacturing processes. This paper studies machine learning methods for drifts of process curves. A theoretic framework to synthetically generate process curves in a controlled way is introduced in order to benchmark machine learning algorithms for process drift detection. A evaluation score, called the temporal area under the curve, is introduced, which allows to quantify how well machine learning models unveil curves belonging to drift segments. Finally, a benchmark study comparing popular machine learning approaches on synthetic data generated with the introduced framework shown.
☆ Limited but consistent gains in adversarial robustness by co-training object recognition models with human EEG
In contrast to human vision, artificial neural networks (ANNs) remain relatively susceptible to adversarial attacks. To address this vulnerability, efforts have been made to transfer inductive bias from human brains to ANNs, often by training the ANN representations to match their biological counterparts. Previous works relied on brain data acquired in rodents or primates using invasive techniques, from specific regions of the brain, under non-natural conditions (anesthetized animals), and with stimulus datasets lacking diversity and naturalness. In this work, we explored whether aligning model representations to human EEG responses to a rich set of real-world images increases robustness to ANNs. Specifically, we trained ResNet50-backbone models on a dual task of classification and EEG prediction; and evaluated their EEG prediction accuracy and robustness to adversarial attacks. We observed significant correlation between the networks' EEG prediction accuracy, often highest around 100 ms post stimulus onset, and their gains in adversarial robustness. Although effect size was limited, effects were consistent across different random initializations and robust for architectural variants. We further teased apart the data from individual EEG channels and observed strongest contribution from electrodes in the parieto-occipital regions. The demonstrated utility of human EEG for such tasks opens up avenues for future efforts that scale to larger datasets under diverse stimuli conditions with the promise of stronger effects.
☆ Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Cord Paralysis
This paper presents the Multimodal Analyzing System for Laryngoscope (MASL), a system that combines audio and video data to automatically extract key segments and metrics from laryngeal videostroboscopic videos for clinical assessment. MASL integrates glottis detection with keyword spotting to analyze patient vocalizations and refine video highlights for better inspection of vocal cord movements. The system includes a strobing video extraction module that identifies frames by analyzing hue, saturation, and value fluctuations. MASL also provides effective metrics for vocal cord paralysis detection, employing a two-stage glottis segmentation process using U-Net followed by diffusion-based refinement to reduce false positives. Instead of glottal area waveforms, MASL estimates anterior glottic angle waveforms (AGAW) from glottis masks, evaluating both left and right vocal cords to detect unilateral vocal cord paralysis (UVFP). By comparing AGAW variances, MASL distinguishes between left and right paralysis. Ablation studies and experiments on public and real-world datasets validate MASL's segmentation module and demonstrate its ability to provide reliable metrics for UVFP diagnosis.
☆ 100 instances is all you need: predicting the success of a new LLM on unseen data by testing on a few instances KDD
Predicting the performance of LLMs on individual task instances is essential to ensure their reliability in high-stakes applications. To do so, a possibility is to evaluate the considered LLM on a set of task instances and train an assessor to predict its performance based on features of the instances. However, this approach requires evaluating each new LLM on a sufficiently large set of task instances to train an assessor specific to it. In this work, we leverage the evaluation results of previously tested LLMs to reduce the number of evaluations required to predict the performance of a new LLM. In practice, we propose to test the new LLM on a small set of reference instances and train a generic assessor which predicts the performance of the LLM on an instance based on the performance of the former on the reference set and features of the instance of interest. We conduct empirical studies on HELM-Lite and KindsOfReasoning, a collection of existing reasoning datasets that we introduce, where we evaluate all instruction-fine-tuned OpenAI models until the January 2024 version of GPT4. When predicting performance on instances with the same distribution as those used to train the generic assessor, we find this achieves performance comparable to the LLM-specific assessors trained on the full set of instances. Additionally, we find that randomly selecting the reference instances performs as well as some advanced selection methods we tested. For out of distribution, however, no clear winner emerges and the overall performance is worse, suggesting that the inherent predictability of LLMs is low.
comment: Presented at the 2024 KDD workshop on Evaluation and Trustworthiness of Generative AI Models
☆ DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
Diffusion models (DMs) have demonstrated exceptional generative capabilities across various areas, while they are hindered by slow inference speeds and high computational demands during deployment. The most common way to accelerate DMs involves reducing the number of denoising steps during generation, achieved through faster sampling solvers or knowledge distillation (KD). In contrast to prior approaches, we propose a novel method that transfers the capability of large pretrained DMs to faster architectures. Specifically, we employ KD in a distinct manner to compress DMs by distilling their generative ability into more rapid variants. Furthermore, considering that the source data is either unaccessible or too enormous to store for current generative models, we introduce a new paradigm for their distillation without source data, termed Data-Free Knowledge Distillation for Diffusion Models (DKDM). Generally, our established DKDM framework comprises two main components: 1) a DKDM objective that uses synthetic denoising data produced by pretrained DMs to optimize faster DMs without source data, and 2) a dynamic iterative distillation method that flexibly organizes the synthesis of denoising data, preventing it from slowing down the optimization process as the generation is slow. To our knowledge, this is the first attempt at using KD to distill DMs into any architecture in a data-free manner. Importantly, our DKDM is orthogonal to most existing acceleration methods, such as denoising step reduction, quantization and pruning. Experiments show that our DKDM is capable of deriving 2x faster DMs with performance remaining on par with the baseline. Notably, our DKDM enables pretrained DMs to function as "datasets" for training new DMs.
☆ Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift
Natural distribution shift causes a deterioration in the perception performance of convolutional neural networks (CNNs). This comprehensive analysis for real-world traffic data addresses: 1) investigating the effect of natural distribution shift and weather augmentations on both detection quality and confidence estimation, 2) evaluating model performance for both classification and object localization, and 3) benchmarking two common uncertainty quantification methods - Ensembles and different variants of Monte-Carlo (MC) Dropout - under natural and close-to-natural distribution shift. For this purpose, a novel dataset has been curated from publicly available autonomous driving datasets. The in-distribution (ID) data is based on cutouts of a single object, for which both class and bounding box annotations are available. The six distribution-shift datasets cover adverse weather scenarios, simulated rain and fog, corner cases, and out-of-distribution data. A granular analysis of CNNs under distribution shift allows to quantize the impact of different types of shifts on both, task performance and confidence estimation: ConvNeXt-Tiny is more robust than EfficientNet-B0; heavy rain degrades classification stronger than localization, contrary to heavy fog; integrating MC-Dropout into selected layers only has the potential to enhance task performance and confidence estimation, whereby the identification of these layers depends on the type of distribution shift and the considered task.
comment: This preprint has not undergone any post-submission improvements or corrections
☆ LMLT: Low-to-high Multi-Level Vision Transformer for Image Super-Resolution
Recent Vision Transformer (ViT)-based methods for Image Super-Resolution have demonstrated impressive performance. However, they suffer from significant complexity, resulting in high inference times and memory usage. Additionally, ViT models using Window Self-Attention (WSA) face challenges in processing regions outside their windows. To address these issues, we propose the Low-to-high Multi-Level Transformer (LMLT), which employs attention with varying feature sizes for each head. LMLT divides image features along the channel dimension, gradually reduces spatial size for lower heads, and applies self-attention to each head. This approach effectively captures both local and global information. By integrating the results from lower heads into higher heads, LMLT overcomes the window boundary issues in self-attention. Extensive experiments show that our model significantly reduces inference time and GPU memory usage while maintaining or even surpassing the performance of state-of-the-art ViT-based Image Super-Resolution methods. Our codes are availiable at https://github.com/jwgdmkj/LMLT.
☆ Disclosure of AI-Generated News Increases Engagement but Does Not Reduce Aversion, Despite Positive Quality Ratings
The advancement of artificial intelligence (AI) has led to its application in many areas, including journalism. One key issue is the public's perception of AI-generated content. This preregistered study investigates (i) the perceived quality of AI-assisted and AI-generated versus human-generated news articles, (ii) whether disclosure of AI's involvement in generating these news articles influences engagement with them, and (iii) whether such awareness affects the willingness to read AI-generated articles in the future. We employed a between-subjects survey experiment with 599 participants from the German-speaking part of Switzerland, who evaluated the credibility, readability, and expertise of news articles. These articles were either written by journalists (control group), rewritten by AI (AI-assisted group), or entirely generated by AI (AI-generated group). Our results indicate that all news articles, regardless of whether they were written by journalists or AI, were perceived to be of equal quality. When participants in the treatment groups were subsequently made aware of AI's involvement in generating the articles, they expressed a higher willingness to engage with (i.e., continue reading) the articles than participants in the control group. However, they were not more willing to read AI-generated news in the future. These results suggest that aversion to AI usage in news media is not primarily rooted in a perceived lack of quality, and that by disclosing using AI, journalists could attract more immediate engagement with their content, at least in the short term.
☆ Improving Uncertainty-Error Correspondence in Deep Bayesian Medical Image Segmentation
Increased usage of automated tools like deep learning in medical image segmentation has alleviated the bottleneck of manual contouring. This has shifted manual labour to quality assessment (QA) of automated contours which involves detecting errors and correcting them. A potential solution to semi-automated QA is to use deep Bayesian uncertainty to recommend potentially erroneous regions, thus reducing time spent on error detection. Previous work has investigated the correspondence between uncertainty and error, however, no work has been done on improving the "utility" of Bayesian uncertainty maps such that it is only present in inaccurate regions and not in the accurate ones. Our work trains the FlipOut model with the Accuracy-vs-Uncertainty (AvU) loss which promotes uncertainty to be present only in inaccurate regions. We apply this method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and prostate MR scans. Uncertainty heatmaps (i.e. predictive entropy) are evaluated against voxel inaccuracies using Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves. Numerical results show that when compared to the Bayesian baseline the proposed method successfully suppresses uncertainty for accurate voxels, with similar presence of uncertainty for inaccurate voxels. Code to reproduce experiments is available at https://github.com/prerakmody/bayesuncertainty-error-correspondence
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:018
☆ Characterizing Massive Activations of Attention Mechanism in Graph Neural Networks
Graph Neural Networks (GNNs) have become increasingly popular for effectively modeling data with graph structures. Recently, attention mechanisms have been integrated into GNNs to improve their ability to capture complex patterns. This paper presents the first comprehensive study revealing a critical, unexplored consequence of this integration: the emergence of Massive Activations (MAs) within attention layers. We introduce a novel method for detecting and analyzing MAs, focusing on edge features in different graph transformer architectures. Our study assesses various GNN models using benchmark datasets, including ZINC, TOX21, and PROTEINS. Key contributions include (1) establishing the direct link between attention mechanisms and MAs generation in GNNs, (2) developing a robust definition and detection method for MAs based on activation ratio distributions, (3) introducing the Explicit Bias Term (EBT) as a potential countermeasure and exploring it as an adversarial framework to assess models robustness based on the presence or absence of MAs. Our findings highlight the prevalence and impact of attention-induced MAs across different architectures, such as GraphTransformer, GraphiT, and SAN. The study reveals the complex interplay between attention mechanisms, model architecture, dataset characteristics, and MAs emergence, providing crucial insights for developing more robust and reliable graph models.
☆ How Much Data is Enough Data? Fine-Tuning Large Language Models for In-House Translation: Performance Evaluation Across Multiple Dataset Sizes
Decoder-only LLMs have shown impressive performance in MT due to their ability to learn from extensive datasets and generate high-quality translations. However, LLMs often struggle with the nuances and style required for organisation-specific translation. In this study, we explore the effectiveness of fine-tuning Large Language Models (LLMs), particularly Llama 3 8B Instruct, leveraging translation memories (TMs), as a valuable resource to enhance accuracy and efficiency. We investigate the impact of fine-tuning the Llama 3 model using TMs from a specific organisation in the software sector. Our experiments cover five translation directions across languages of varying resource levels (English to Brazilian Portuguese, Czech, German, Finnish, and Korean). We analyse diverse sizes of training datasets (1k to 207k segments) to evaluate their influence on translation quality. We fine-tune separate models for each training set and evaluate their performance based on automatic metrics, BLEU, chrF++, TER, and COMET. Our findings reveal improvement in translation performance with larger datasets across all metrics. On average, BLEU and COMET scores increase by 13 and 25 points, respectively, on the largest training set against the baseline model. Notably, there is a performance deterioration in comparison with the baseline model when fine-tuning on only 1k and 2k examples; however, we observe a substantial improvement as the training dataset size increases. The study highlights the potential of integrating TMs with LLMs to create bespoke translation models tailored to the specific needs of businesses, thus enhancing translation quality and reducing turn-around times. This approach offers a valuable insight for organisations seeking to leverage TMs and LLMs for optimal translation outcomes, especially in narrower domains.
☆ Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities
The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.
☆ KiloBot: A Programming Language for Deploying Perception-Guided Industrial Manipulators at Scale
We would like industrial robots to handle unstructured environments with cameras and perception pipelines. In contrast to traditional industrial robots that replay offline-crafted trajectories, online behavior planning is required for these perception-guided industrial applications. Aside from perception and planning algorithms, deploying perception-guided manipulators also requires substantial effort in integration. One approach is writing scripts in a traditional language (such as Python) to construct the planning problem and perform integration with other algorithmic modules & external devices. While scripting in Python is feasible for a handful of robots and applications, deploying perception-guided manipulation at scale (e.g., more than 10000 robot workstations in over 2000 customer sites) becomes intractable. To resolve this challenge, we propose a Domain-Specific Language (DSL) for perception-guided manipulation applications. To scale up the deployment,our DSL provides: 1) an easily accessible interface to construct & solve a sub-class of Task and Motion Planning (TAMP) problems that are important in practical applications; and 2) a mechanism to implement flexible control flow to perform integration and address customized requirements of distinct industrial application. Combined with an intuitive graphical programming frontend, our DSL is mainly used by machine operators without coding experience in traditional programming languages. Within hours of training, operators are capable of orchestrating interesting sophisticated manipulation behaviors with our DSL. Extensive practical deployments demonstrate the efficacy of our method.
Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection
High-precision surface defect detection in manufacturing is essential for ensuring quality control. Laser triangulation profilometric sensors are key to this process, providing detailed and accurate surface measurements over a line. To achieve a complete and precise surface scan, accurate relative motion between the sensor and the workpiece is required. It is crucial to control the sensor pose to maintain optimal distance and relative orientation to the surface. It is also important to ensure uniform profile distribution throughout the scanning process. This paper presents a novel Reinforcement Learning (RL) based approach to optimize robot inspection trajectories for profilometric sensors. Building upon the Boustrophedon scanning method, our technique dynamically adjusts the sensor position and tilt to maintain optimal orientation and distance from the surface, while also ensuring a consistent profile distance for uniform and high-quality scanning. Utilizing a simulated environment based on the CAD model of the part, we replicate real-world scanning conditions, including sensor noise and surface irregularities. This simulation-based approach enables offline trajectory planning based on CAD models. Key contributions include the modeling of the state space, action space, and reward function, specifically designed for inspection applications using profilometric sensors. We use Proximal Policy Optimization (PPO) algorithm to efficiently train the RL agent, demonstrating its capability to optimize inspection trajectories with profilometric sensors. To validate our approach, we conducted several experiments where a model trained on a specific training piece was tested on various parts in simulation. Also, we conducted a real-world experiment by executing the optimized trajectory, generated offline from a CAD model, to inspect a part using a UR3e robotic arm model.
☆ KAN See In the Dark
Existing low-light image enhancement methods are difficult to fit the complex nonlinear relationship between normal and low-light images due to uneven illumination and noise effects. The recently proposed Kolmogorov-Arnold networks (KANs) feature spline-based convolutional layers and learnable activation functions, which can effectively capture nonlinear dependencies. In this paper, we design a KAN-Block based on KANs and innovatively apply it to low-light image enhancement. This method effectively alleviates the limitations of current methods constrained by linear network structures and lack of interpretability, further demonstrating the potential of KANs in low-level vision tasks. Given the poor perception of current low-light image enhancement methods and the stochastic nature of the inverse diffusion process, we further introduce frequency-domain perception for visually oriented enhancement. Extensive experiments demonstrate the competitive performance of our method on benchmark datasets. The code will be available at: https://github.com/AXNing/KSID}{https://github.com/AXNing/KSID.
☆ Game On: Towards Language Models as RL Experimenters
We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow, to enable automated mastery of control domains for embodied agents. To do so, it leverages a VLM to perform some of the capabilities normally required of a human experimenter, including the monitoring and analysis of experiment progress, the proposition of new tasks based on past successes and failures of the agent, decomposing tasks into a sequence of subtasks (skills), and retrieval of the skill to execute - enabling our system to build automated curricula for learning. We believe this is one of the first proposals for a system that leverages a VLM throughout the full experiment cycle of reinforcement learning. We provide a first prototype of this system, and examine the feasibility of current models and techniques for the desired level of automation. For this, we use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm, in order to steer data collection so as to aid learning new skills. Data collected in this way is shown to be useful for learning and iteratively improving control policies in a robotics domain. Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results, suggesting that the proposed architecture provides a potential recipe for fully automated mastery of tasks and domains for embodied agents.
☆ Hardware Acceleration of LLMs: A comprehensive survey and comparison
Large Language Models (LLMs) have emerged as powerful tools for natural language processing tasks, revolutionizing the field with their ability to understand and generate human-like text. In this paper, we present a comprehensive survey of the several research efforts that have been presented for the acceleration of transformer networks for Large Language Models using hardware accelerators. The survey presents the frameworks that have been proposed and then performs a qualitative and quantitative comparison regarding the technology, the processing platform (FPGA, ASIC, In-Memory, GPU), the speedup, the energy efficiency, the performance (GOPs), and the energy efficiency (GOPs/W) of each framework. The main challenge in comparison is that every proposed scheme is implemented on a different process technology making hard a fair comparison. The main contribution of this paper is that we extrapolate the results of the performance and the energy efficiency on the same technology to make a fair comparison; one theoretical and one more practical. We implement part of the LLMs on several FPGA chips to extrapolate the results to the same process technology and then we make a fair comparison of the performance.
comment: https://airtable.com/appC2VwR6X4EeZ50s/shrKwchys0iktvDwk
☆ CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
Cognitive psychology investigates perception, attention, memory, language, problem-solving, decision-making, and reasoning. Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2. Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks. Nonetheless, the presence of a dual-system framework analogous to human cognition in LLMs remains unexplored. This study introduces the \textbf{CogniDual Framework for LLMs} (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses, thereby emulating the human process of acquiring and mastering new information. Our findings reveal the cognitive mechanisms behind LLMs' response generation, enhancing our understanding of their capabilities in cognitive psychology. Practically, self-trained models can provide faster responses to certain queries, reducing computational demands during inference.
☆ Raw Speech Enhancement with Deep State Space Modeling
We present aTENNuate, a simple deep state-space autoencoder configured for efficient online raw speech enhancement in an end-to-end fashion. The network's performance is primarily evaluated on raw speech denoising, with additional assessments on tasks such as super-resolution and de-quantization. We benchmark aTENNuate on the VoiceBank + DEMAND and the Microsoft DNS1 synthetic test sets. The network outperforms previous real-time denoising models in terms of PESQ score, parameter count, MACs, and latency. Even as a raw waveform processing model, the model maintains high fidelity to the clean signal with minimal audible artifacts. In addition, the model remains performant even when the noisy input is compressed down to 4000Hz and 4 bits, suggesting general speech enhancement capabilities in low-resource environments.
comment: 7 pages, 2 figures
☆ Leveraging Large Language Models through Natural Language Processing to provide interpretable Machine Learning predictions of mental deterioration in real time
Based on official estimates, 50 million people worldwide are affected by dementia, and this number increases by 10 million new patients every year. Without a cure, clinical prognostication and early intervention represent the most effective ways to delay its progression. To this end, Artificial Intelligence and computational linguistics can be exploited for natural language analysis, personalized assessment, monitoring, and treatment. However, traditional approaches need more semantic knowledge management and explicability capabilities. Moreover, using Large Language Models (LLMs) for cognitive decline diagnosis is still scarce, even though these models represent the most advanced way for clinical-patient communication using intelligent systems. Consequently, we leverage an LLM using the latest Natural Language Processing (NLP) techniques in a chatbot solution to provide interpretable Machine Learning prediction of cognitive decline in real-time. Linguistic-conceptual features are exploited for appropriate natural language analysis. Through explainability, we aim to fight potential biases of the models and improve their potential to help clinical workers in their diagnosis decisions. More in detail, the proposed pipeline is composed of (i) data extraction employing NLP-based prompt engineering; (ii) stream-based data processing including feature engineering, analysis, and selection; (iii) real-time classification; and (iv) the explainability dashboard to provide visual and natural language descriptions of the prediction outcome. Classification results exceed 80 % in all evaluation metrics, with a recall value for the mental deterioration class about 85 %. To sum up, we contribute with an affordable, flexible, non-invasive, personalized diagnostic system to this work.
☆ Sketch: A Toolkit for Streamlining LLM Operations
Large language models (LLMs) represented by GPT family have achieved remarkable success. The characteristics of LLMs lie in their ability to accommodate a wide range of tasks through a generative approach. However, the flexibility of their output format poses challenges in controlling and harnessing the model's outputs, thereby constraining the application of LLMs in various domains. In this work, we present Sketch, an innovative toolkit designed to streamline LLM operations across diverse fields. Sketch comprises the following components: (1) a suite of task description schemas and prompt templates encompassing various NLP tasks; (2) a user-friendly, interactive process for building structured output LLM services tailored to various NLP tasks; (3) an open-source dataset for output format control, along with tools for dataset construction; and (4) an open-source model based on LLaMA3-8B-Instruct that adeptly comprehends and adheres to output formatting instructions. We anticipate this initiative to bring considerable convenience to LLM users, achieving the goal of ''plug-and-play'' for various applications. The components of Sketch will be progressively open-sourced at https://github.com/cofe-ai/Sketch.
☆ YOLO-PPA based Efficient Traffic Sign Detection for Cruise Control in Autonomous Driving
It is very important to detect traffic signs efficiently and accurately in autonomous driving systems. However, the farther the distance, the smaller the traffic signs. Existing object detection algorithms can hardly detect these small scaled signs.In addition, the performance of embedded devices on vehicles limits the scale of detection models.To address these challenges, a YOLO PPA based traffic sign detection algorithm is proposed in this paper.The experimental results on the GTSDB dataset show that compared to the original YOLO, the proposed method improves inference efficiency by 11.2%. The mAP 50 is also improved by 93.2%, which demonstrates the effectiveness of the proposed YOLO PPA.
☆ N-gram Prediction and Word Difference Representations for Language Modeling
Causal language modeling (CLM) serves as the foundational framework underpinning remarkable successes of recent large language models (LLMs). Despite its success, the training approach for next word prediction poses a potential risk of causing the model to overly focus on local dependencies within a sentence. While prior studies have been introduced to predict future N words simultaneously, they were primarily applied to tasks such as masked language modeling (MLM) and neural machine translation (NMT). In this study, we introduce a simple N-gram prediction framework for the CLM task. Moreover, we introduce word difference representation (WDR) as a surrogate and contextualized target representation during model training on the basis of N-gram prediction framework. To further enhance the quality of next word prediction, we propose an ensemble method that incorporates the future N words' prediction results. Empirical evaluations across multiple benchmark datasets encompassing CLM and NMT tasks demonstrate the significant advantages of our proposed methods over the conventional CLM.
☆ LLM Detectors Still Fall Short of Real World: Case of LLM-Generated Short News-Like Posts EMNLP
With the emergence of widely available powerful LLMs, disinformation generated by large Language Models (LLMs) has become a major concern. Historically, LLM detectors have been touted as a solution, but their effectiveness in the real world is still to be proven. In this paper, we focus on an important setting in information operations -- short news-like posts generated by moderately sophisticated attackers. We demonstrate that existing LLM detectors, whether zero-shot or purpose-trained, are not ready for real-world use in that setting. All tested zero-shot detectors perform inconsistently with prior benchmarks and are highly vulnerable to sampling temperature increase, a trivial attack absent from recent benchmarks. A purpose-trained detector generalizing across LLMs and unseen attacks can be developed, but it fails to generalize to new human-written texts. We argue that the former indicates domain-specific benchmarking is needed, while the latter suggests a trade-off between the adversarial evasion resilience and overfitting to the reference human text, with both needing evaluation in benchmarks and currently absent. We believe this suggests a re-consideration of current LLM detector benchmarking approaches and provides a dynamically extensible benchmark to allow it (https://github.com/Reliable-Information-Lab-HEVS/dynamic_llm_detector_benchmark).
comment: 20 pages, 7 tables, 13 figures, under consideration for EMNLP
☆ iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models
Most available data is unstructured, making it challenging to access valuable information. Automatically building Knowledge Graphs (KGs) is crucial for structuring data and making it accessible, allowing users to search for information effectively. KGs also facilitate insights, inference, and reasoning. Traditional NLP methods, such as named entity recognition and relation extraction, are key in information retrieval but face limitations, including the use of predefined entity types and the need for supervised learning. Current research leverages large language models' capabilities, such as zero- or few-shot learning. However, unresolved and semantically duplicated entities and relations still pose challenges, leading to inconsistent graphs and requiring extensive post-processing. Additionally, most approaches are topic-dependent. In this paper, we propose iText2KG, a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Document Distiller, Incremental Entity Extractor, Incremental Relation Extractor, and Graph Integrator and Visualization. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.
comment: Accepted at The International Web Information Systems Engineering conference (the WISE conference) 2024
☆ ChartMoE: Mixture of Expert Connector for Advanced Chart Understanding
Automatic chart understanding is crucial for content comprehension and document parsing. Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in chart understanding through domain-specific alignment and fine-tuning. However, the application of alignment training within the chart domain is still underexplored. To address this, we propose ChartMoE, which employs the mixture of expert (MoE) architecture to replace the traditional linear projector to bridge the modality gap. Specifically, we train multiple linear connectors through distinct alignment tasks, which are utilized as the foundational initialization parameters for different experts. Additionally, we introduce ChartMoE-Align, a dataset with over 900K chart-table-JSON-code quadruples to conduct three alignment tasks (chart-table/JSON/code). Combined with the vanilla connector, we initialize different experts in four distinct ways and adopt high-quality knowledge learning to further refine the MoE connector and LLM parameters. Extensive experiments demonstrate the effectiveness of the MoE connector and our initialization strategy, e.g., ChartMoE improves the accuracy of the previous state-of-the-art from 80.48% to 84.64% on the ChartQA benchmark.
☆ Recent Advances in Attack and Defense Approaches of Large Language Models
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities. However, their widespread deployment has raised significant safety and reliability concerns. Established vulnerabilities in deep neural networks, coupled with emerging threat models, may compromise security evaluations and create a false sense of security. Given the extensive research in the field of LLM security, we believe that summarizing the current state of affairs will help the research community better understand the present landscape and inform future developments. This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms. We analyze recent studies on attack vectors and model weaknesses, providing insights into attack mechanisms and the evolving threat landscape. We also examine current defense strategies, highlighting their strengths and limitations. By contrasting advancements in attack and defense methodologies, we identify research gaps and propose future directions to enhance LLM security. Our goal is to advance the understanding of LLM safety challenges and guide the development of more robust security measures.
☆ Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation
The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs). However, despite their widespread adoption and success, CoT methods often exhibit instability due to their inability to consistently ensure the quality of generated reasoning paths, leading to sub-optimal reasoning performance. To address this challenge, we propose the \textbf{Strategic Chain-of-Thought} (SCoT), a novel methodology designed to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps. SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers. Our experiments across eight challenging reasoning datasets demonstrate significant improvements, including a 21.05\% increase on the GSM8K dataset and 24.13\% on the Tracking\_Objects dataset, respectively, using the Llama3-8b model. Additionally, we extend the SCoT framework to develop a few-shot method with automatically matched demonstrations, yielding even stronger results. These findings underscore the efficacy of SCoT, highlighting its potential to substantially enhance LLM performance in complex reasoning tasks.
☆ Bones Can't Be Triangles: Accurate and Efficient Vertebrae Keypoint Estimation through Collaborative Error Revision ECCV 2024
Recent advances in interactive keypoint estimation methods have enhanced accuracy while minimizing user intervention. However, these methods require user input for error correction, which can be costly in vertebrae keypoint estimation where inaccurate keypoints are densely clustered or overlap. We introduce a novel approach, KeyBot, specifically designed to identify and correct significant and typical errors in existing models, akin to user revision. By characterizing typical error types and using simulated errors for training, KeyBot effectively corrects these errors and significantly reduces user workload. Comprehensive quantitative and qualitative evaluations on three public datasets confirm that KeyBot significantly outperforms existing methods, achieving state-of-the-art performance in interactive vertebrae keypoint estimation. The source code and demo video are available at: https://ts-kim.github.io/KeyBot/
comment: 33 pages, ECCV 2024, Project Page: https://ts-kim.github.io/KeyBot/
☆ In Search of Trees: Decision-Tree Policy Synthesis for Black-Box Systems via Search
Decision trees, owing to their interpretability, are attractive as control policies for (dynamical) systems. Unfortunately, constructing, or synthesising, such policies is a challenging task. Previous approaches do so by imitating a neural-network policy, approximating a tabular policy obtained via formal synthesis, employing reinforcement learning, or modelling the problem as a mixed-integer linear program. However, these works may require access to a hard-to-obtain accurate policy or a formal model of the environment (within reach of formal synthesis), and may not provide guarantees on the quality or size of the final tree policy. In contrast, we present an approach to synthesise optimal decision-tree policies given a black-box environment and specification, and a discretisation of the tree predicates, where optimality is defined with respect to the number of steps to achieve the goal. Our approach is a specialised search algorithm which systematically explores the (exponentially large) space of decision trees under the given discretisation. The key component is a novel pruning mechanism that significantly reduces the search space. Our approach represents a conceptually novel way of synthesising small decision-tree policies with optimality guarantees even for black-box environments with black-box specifications.
comment: 8 pages main text incl. references, 1 page appendix
☆ Understanding LLM Development Through Longitudinal Study: Insights from the Open Ko-LLM Leaderboard
This paper conducts a longitudinal study over eleven months to address the limitations of prior research on the Open Ko-LLM Leaderboard, which have relied on empirical studies with restricted observation periods of only five months. By extending the analysis duration, we aim to provide a more comprehensive understanding of the progression in developing Korean large language models (LLMs). Our study is guided by three primary research questions: (1) What are the specific challenges in improving LLM performance across diverse tasks on the Open Ko-LLM Leaderboard over time? (2) How does model size impact task performance correlations across various benchmarks? (3) How have the patterns in leaderboard rankings shifted over time on the Open Ko-LLM Leaderboard?. By analyzing 1,769 models over this period, our research offers a comprehensive examination of the ongoing advancements in LLMs and the evolving nature of evaluation frameworks.
☆ E2CL: Exploration-based Error Correction Learning for Embodied Agents
Language models are exhibiting increasing capability in knowledge utilization and reasoning. However, when applied as agents in embodied environments, they often suffer from misalignment between their intrinsic knowledge and environmental knowledge, leading to infeasible actions. Traditional environment alignment methods, such as supervised learning on expert trajectories and reinforcement learning, face limitations in covering environmental knowledge and achieving efficient convergence, respectively. Inspired by human learning, we propose Exploration-based Error Correction Learning (E2CL), a novel framework that leverages exploration-induced errors and environmental feedback to enhance environment alignment for LM-based agents. E2CL incorporates teacher-guided and teacher-free exploration to gather environmental feedback and correct erroneous actions. The agent learns to provide feedback and self-correct, thereby enhancing its adaptability to target environments. Evaluations in the Virtualhome environment demonstrate that E2CL-trained agents outperform those trained by baseline methods and exhibit superior self-correction capabilities.
☆ Granular-ball Representation Learning for Deep CNN on Learning with Label Noise
In actual scenarios, whether manually or automatically annotated, label noise is inevitably generated in the training data, which can affect the effectiveness of deep CNN models. The popular solutions require data cleaning or designing additional optimizations to punish the data with mislabeled data, thereby enhancing the robustness of models. However, these methods come at the cost of weakening or even losing some data during the training process. As we know, content is the inherent attribute of an image that does not change with changes in annotations. In this study, we propose a general granular-ball computing (GBC) module that can be embedded into a CNN model, where the classifier finally predicts the label of granular-ball ($gb$) samples instead of each individual samples. Specifically, considering the classification task: (1) in forward process, we split the input samples as $gb$ samples at feature-level, each of which can correspond to multiple samples with varying numbers and share one single label; (2) during the backpropagation process, we modify the gradient allocation strategy of the GBC module to enable it to propagate normally; and (3) we develop an experience replay policy to ensure the stability of the training process. Experiments demonstrate that the proposed method can improve the robustness of CNN models with no additional data or optimization.
☆ DiffGrad for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) are regarded as state-of-the-art tools for addressing highly nonlinear problems based on partial differential equations. Despite their broad range of applications, PINNs encounter several performance challenges, including issues related to efficiency, minimization of computational cost, and enhancement of accuracy. Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adam optimizer that does not account for past gradients. This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs, a method that leverages the difference between current and immediately preceding gradients to enhance performance. A comprehensive computational analysis is conducted using optimizers such as Adam, Adamax, RMSprop, and DiffGrad to evaluate and compare their effectiveness. Our approach includes visualizing the solutions over space at various time intervals to demonstrate the accuracy of the network. The results show that DiffGrad not only improves the accuracy of the solution but also reduces training time compared to the other optimizers.
comment: 20 pages, 14 figures
☆ Content Moderation by LLM: From Accuracy to Legitimacy
One trending application of LLM (large language model) is to use it for content moderation in online platforms. Most current studies on this application have focused on the metric of accuracy - the extent to which LLM makes correct decisions about content. This article argues that accuracy is insufficient and misleading, because it fails to grasp the distinction between easy cases and hard cases as well as the inevitable trade-offs in achieving higher accuracy. Closer examination reveals that content moderation is a constitutive part of platform governance, the key of which is to gain and enhance legitimacy. Instead of making moderation decisions correct, the chief goal of LLM is to make them legitimate. In this regard, this article proposes a paradigm shift from the single benchmark of accuracy towards a legitimacy-based framework of evaluating the performance of LLM moderators. The framework suggests that for easy cases, the key is to ensure accuracy, speed and transparency, while for hard cases, what matters is reasoned justification and user participation. Examined under this framework, LLM's real potential in moderation is not accuracy improvement. Rather, LLM can better contribute in four other aspects: to conduct screening of hard cases from easy cases, to provide quality explanations for moderation decisions, to assist human reviewers in getting more contextual information, and to facilitate user participation in a more interactive way. Using normative theories from law and social sciences to critically assess the new technological application, this article seeks to redefine LLM's role in content moderation and redirect relevant research in this field.
☆ xLAM: A Family of Large Action Models to Empower AI Agent Systems
Autonomous agents powered by large language models (LLMs) have attracted significant research interest. However, the open-source community faces many challenges in developing specialized models for agent tasks, driven by the scarcity of high-quality agent datasets and the absence of standard protocols in this area. We introduce and publicly release xLAM, a series of large action models designed for AI agent tasks. The xLAM series includes five models with both dense and mixture-of-expert architectures, ranging from 1B to 8x22B parameters, trained using a scalable, flexible pipeline that unifies, augments, and synthesizes diverse datasets to enhance AI agents' generalizability and performance across varied environments. Our experimental results demonstrate that xLAM consistently delivers exceptional performance across multiple agent ability benchmarks, notably securing the 1st position on the Berkeley Function-Calling Leaderboard, outperforming GPT-4, Claude-3, and many other models in terms of tool use. By releasing the xLAM series, we aim to advance the performance of open-source LLMs for autonomous AI agents, potentially accelerating progress and democratizing access to high-performance models for agent tasks. Models are available at https://huggingface.co/collections/Salesforce/xlam-models-65f00e2a0a63bbcd1c2dade4
comment: Technical report for the Salesforce xLAM model series
☆ TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations
Multimodal Large Language Models (MLLMs) have significantly improved performance across various image-language applications. Recently, there has been a growing interest in adapting image pre-trained MLLMs for video-related tasks. However, most efforts concentrate on enhancing the vision encoder and projector components, while the core part, Large Language Models (LLMs), remains comparatively under-explored. In this paper, we propose two strategies to enhance the model's capability in video understanding tasks by improving inter-layer attention computation in LLMs. Specifically, the first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE, which introduces temporal position information to strengthen the MLLM's temporal modeling capabilities while preserving the relative position relationships of both visual and text tokens. The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask, a simple yet effective method that broadens visual token interactions within and across video frames while maintaining the causal inference mechanism. Based on these proposed methods, we adapt LLaVA for video understanding tasks, naming it Temporal-Considered LLaVA (TC-LLaVA). Our TC-LLaVA achieves new state-of-the-art performance across various video understanding benchmarks with only supervised fine-tuning (SFT) on video-related datasets.
☆ An Effective Deployment of Diffusion LM for Data Augmentation in Low-Resource Sentiment Classification
Sentiment classification (SC) often suffers from low-resource challenges such as domain-specific contexts, imbalanced label distributions, and few-shot scenarios. The potential of the diffusion language model (LM) for textual data augmentation (DA) remains unexplored, moreover, textual DA methods struggle to balance the diversity and consistency of new samples. Most DA methods either perform logical modifications or rephrase less important tokens in the original sequence with the language model. In the context of SC, strong emotional tokens could act critically on the sentiment of the whole sequence. Therefore, contrary to rephrasing less important context, we propose DiffusionCLS to leverage a diffusion LM to capture in-domain knowledge and generate pseudo samples by reconstructing strong label-related tokens. This approach ensures a balance between consistency and diversity, avoiding the introduction of noise and augmenting crucial features of datasets. DiffusionCLS also comprises a Noise-Resistant Training objective to help the model generalize. Experiments demonstrate the effectiveness of our method in various low-resource scenarios including domain-specific and domain-general problems. Ablation studies confirm the effectiveness of our framework's modules, and visualization studies highlight optimal deployment conditions, reinforcing our conclusions.
☆ Bypassing DARCY Defense: Indistinguishable Universal Adversarial Triggers
Neural networks (NN) classification models for Natural Language Processing (NLP) are vulnerable to the Universal Adversarial Triggers (UAT) attack that triggers a model to produce a specific prediction for any input. DARCY borrows the "honeypot" concept to bait multiple trapdoors, effectively detecting the adversarial examples generated by UAT. Unfortunately, we find a new UAT generation method, called IndisUAT, which produces triggers (i.e., tokens) and uses them to craft adversarial examples whose feature distribution is indistinguishable from that of the benign examples in a randomly-chosen category at the detection layer of DARCY. The produced adversarial examples incur the maximal loss of predicting results in the DARCY-protected models. Meanwhile, the produced triggers are effective in black-box models for text generation, text inference, and reading comprehension. Finally, the evaluation results under NN models for NLP tasks indicate that the IndisUAT method can effectively circumvent DARCY and penetrate other defenses. For example, IndisUAT can reduce the true positive rate of DARCY's detection by at least 40.8% and 90.6%, and drop the accuracy by at least 33.3% and 51.6% in the RNN and CNN models, respectively. IndisUAT reduces the accuracy of the BERT's adversarial defense model by at least 34.0%, and makes the GPT-2 language model spew racist outputs even when conditioned on non-racial context.
comment: 13 pages, 5 figures
☆ InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
Efficient management of infrastructure systems is crucial for economic stability, sustainability, and public safety. However, infrastructure management is challenging due to the vast scale of systems, stochastic deterioration of components, partial observability, and resource constraints. While data-driven approaches like reinforcement learning (RL) offer a promising avenue for optimizing management policies, their application to infrastructure has been limited by the lack of suitable simulation environments. We introduce InfraLib, a comprehensive framework for modeling and analyzing infrastructure management problems. InfraLib employs a hierarchical, stochastic approach to realistically model infrastructure systems and their deterioration. It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures. To facilitate research, InfraLib provides tools for expert data collection, simulation-driven analysis, and visualization. We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
☆ Continual Skill and Task Learning via Dialogue
Continual and interactive robot learning is a challenging problem as the robot is present with human users who expect the robot to learn novel skills to solve novel tasks perpetually with sample efficiency. In this work we present a framework for robots to query and learn visuo-motor robot skills and task relevant information via natural language dialog interactions with human users. Previous approaches either focus on improving the performance of instruction following agents, or passively learn novel skills or concepts. Instead, we used dialog combined with a language-skill grounding embedding to query or confirm skills and/or tasks requested by a user. To achieve this goal, we developed and integrated three different components for our agent. Firstly, we propose a novel visual-motor control policy ACT with Low Rank Adaptation (ACT-LoRA), which enables the existing SoTA ACT model to perform few-shot continual learning. Secondly, we develop an alignment model that projects demonstrations across skill embodiments into a shared embedding allowing us to know when to ask questions and/or demonstrations from users. Finally, we integrated an existing LLM to interact with a human user to perform grounded interactive continual skill learning to solve a task. Our ACT-LoRA model learns novel fine-tuned skills with a 100% accuracy when trained with only five demonstrations for a novel skill while still maintaining a 74.75% accuracy on pre-trained skills in the RLBench dataset where other models fall significantly short. We also performed a human-subjects study with 8 subjects to demonstrate the continual learning capabilities of our combined framework. We achieve a success rate of 75% in the task of sandwich making with the real robot learning from participant data demonstrating that robots can learn novel skills or task knowledge from dialogue with non-expert users using our approach.
☆ Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge. In contrast, knowledge graphs encompass extensive, multi-relational structures that store a vast array of symbolic facts. Consequently, integrating LLMs with knowledge graphs has been extensively explored, with Knowledge Graph Question Answering (KGQA) serving as a critical touchstone for the integration. This task requires LLMs to answer natural language questions by retrieving relevant triples from knowledge graphs. However, existing methods face two significant challenges: \textit{excessively long reasoning paths distracting from the answer generation}, and \textit{false-positive relations hindering the path refinement}. In this paper, we propose an iterative interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG). Specifically, DoG employs a subgraph-focusing mechanism, allowing LLMs to perform answer trying after each reasoning step, thereby mitigating the impact of lengthy reasoning paths. On the other hand, DoG utilizes a multi-role debate team to gradually simplify complex questions, reducing the influence of false-positive relations. This debate mechanism ensures the reliability of the reasoning process. Experimental results on five public datasets demonstrate the effectiveness and superiority of our architecture. Notably, DoG outperforms the state-of-the-art method ToG by 23.7\% and 9.1\% in accuracy on WebQuestions and GrailQA, respectively. Furthermore, the integration experiments with various LLMs on the mentioned datasets highlight the flexibility of DoG. Code is available at \url{https://github.com/reml-group/DoG}.
comment: 12 pages
☆ Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning
The rapid global aging trend has led to an increase in dementia cases, including Alzheimer's disease, underscoring the urgent need for early and accurate diagnostic methods. Traditional diagnostic techniques, such as cognitive tests, neuroimaging, and biomarker analysis, face significant limitations in sensitivity, accessibility, and cost, particularly in the early stages. This study explores the potential of machine learning (ML) as a transformative approach to enhance early dementia detection by leveraging ML models to analyze and integrate complex multimodal datasets, including cognitive assessments, neuroimaging, and genetic information. A comprehensive review of existing literature was conducted to evaluate various ML models, including supervised learning, deep learning, and advanced techniques such as ensemble learning and transformer models, assessing their accuracy, interpretability, and potential for clinical integration. The findings indicate that while ML models show significant promise in improving diagnostic precision and enabling earlier interventions, challenges remain in their generalizability, interpretability, and ethical deployment. This research concludes by outlining future directions aimed at enhancing the clinical utility of ML models in dementia detection, emphasizing interdisciplinary collaboration and ethically sound frameworks to improve early detection and intervention strategies for Alzheimer's disease and other forms of dementia.
☆ HUMOS: Human Motion Model Conditioned on Body Shape ECCV'24
Generating realistic human motion is essential for many computer vision and graphics applications. The wide variety of human body shapes and sizes greatly impacts how people move. However, most existing motion models ignore these differences, relying on a standardized, average body. This leads to uniform motion across different body types, where movements don't match their physical characteristics, limiting diversity. To solve this, we introduce a new approach to develop a generative motion model based on body shape. We show that it's possible to train this model using unpaired data by applying cycle consistency, intuitive physics, and stability constraints, which capture the relationship between identity and movement. The resulting model generates diverse, physically plausible, and dynamically stable human motions that are both quantitatively and qualitatively more realistic than current state-of-the-art methods. More details are available on our project page https://CarstenEpic.github.io/humos/.
comment: Accepted in ECCV'24. Project page: https://CarstenEpic.github.io/humos/
☆ Harnessing LLMs for Cross-City OD Flow Prediction
Understanding and predicting Origin-Destination (OD) flows is crucial for urban planning and transportation management. Traditional OD prediction models, while effective within single cities, often face limitations when applied across different cities due to varied traffic conditions, urban layouts, and socio-economic factors. In this paper, by employing Large Language Models (LLMs), we introduce a new method for cross-city OD flow prediction. Our approach leverages the advanced semantic understanding and contextual learning capabilities of LLMs to bridge the gap between cities with different characteristics, providing a robust and adaptable solution for accurate OD flow prediction that can be transferred from one city to another. Our novel framework involves four major components: collecting OD training datasets from a source city, instruction-tuning the LLMs, predicting destination POIs in a target city, and identifying the locations that best match the predicted destination POIs. We introduce a new loss function that integrates POI semantics and trip distance during training. By extracting high-quality semantic features from human mobility and POI data, the model understands spatial and functional relationships within urban spaces and captures interactions between individuals and various POIs. Extensive experimental results demonstrate the superiority of our approach over the state-of-the-art learning-based methods in cross-city OD flow prediction.
comment: 12 pages, 18 figures
☆ A deep learning approach to wall-shear stress quantification: From numerical training to zero-shot experimental application
The accurate quantification of wall-shear stress dynamics is of substantial importance for various applications in fundamental and applied research, spanning areas from human health to aircraft design and optimization. Despite significant progress in experimental measurement techniques and post-processing algorithms, temporally resolved wall-shear stress dynamics with adequate spatial resolution and within a suitable spatial domain remain an elusive goal. To address this gap, we introduce a deep learning architecture that ingests wall-parallel velocity fields from the logarithmic layer of turbulent wall-bounded flows and outputs the corresponding 2D wall-shear stress fields with identical spatial resolution and domain size. From a physical perspective, our framework acts as a surrogate model encapsulating the various mechanisms through which highly energetic outer-layer flow structures influence the governing wall-shear stress dynamics. The network is trained in a supervised fashion on a unified dataset comprising direct numerical simulations of statistically 1D turbulent channel and spatially developing turbulent boundary layer flows at friction Reynolds numbers ranging from 390 to 1,500. We demonstrate a zero-shot applicability to experimental velocity fields obtained from Particle-Image Velocimetry measurements and verify the physical accuracy of the wall-shear stress estimates with synchronized wall-shear stress measurements using the Micro-Pillar Shear-Stress Sensor for Reynolds numbers up to 2,000. In summary, the presented framework lays the groundwork for extracting inaccessible experimental wall-shear stress information from readily available velocity measurements and thus, facilitates advancements in a variety of experimental applications.
☆ The Role of Generative Systems in Historical Photography Management: A Case Study on Catalan Archives ECCV
The use of image analysis in automated photography management is an increasing trend in heritage institutions. Such tools alleviate the human cost associated with the manual and expensive annotation of new data sources while facilitating fast access to the citizenship through online indexes and search engines. However, available tagging and description tools are usually designed around modern photographs in English, neglecting historical corpora in minoritized languages, each of which exhibits intrinsic particularities. The primary objective of this research is to study the quantitative contribution of generative systems in the description of historical sources. This is done by contextualizing the task of captioning historical photographs from the Catalan archives as a case study. Our findings provide practitioners with tools and directions on transfer learning for captioning models based on visual adaptation and linguistic proximity.
comment: Accepted at ECCV workshop AI4DH
☆ Multi-agent Path Finding for Mixed Autonomy Traffic Coordination
In the evolving landscape of urban mobility, the prospective integration of Connected and Automated Vehicles (CAVs) with Human-Driven Vehicles (HDVs) presents a complex array of challenges and opportunities for autonomous driving systems. While recent advancements in robotics have yielded Multi-Agent Path Finding (MAPF) algorithms tailored for agent coordination task characterized by simplified kinematics and complete control over agent behaviors, these solutions are inapplicable in mixed-traffic environments where uncontrollable HDVs must coexist and interact with CAVs. Addressing this gap, we propose the Behavior Prediction Kinematic Priority Based Search (BK-PBS), which leverages an offline-trained conditional prediction model to forecast HDV responses to CAV maneuvers, integrating these insights into a Priority Based Search (PBS) where the A* search proceeds over motion primitives to accommodate kinematic constraints. We compare BK-PBS with CAV planning algorithms derived by rule-based car-following models, and reinforcement learning. Through comprehensive simulation on a highway merging scenario across diverse scenarios of CAV penetration rate and traffic density, BK-PBS outperforms these baselines in reducing collision rates and enhancing system-level travel delay. Our work is directly applicable to many scenarios of multi-human multi-robot coordination.
☆ Cost-Control in Display Advertising: Theory vs Practice
In display advertising, advertisers want to achieve a marketing objective with constraints on budget and cost-per-outcome. This is usually formulated as an optimization problem that maximizes the total utility under constraints. The optimization is carried out in an online fashion in the dual space - for an incoming Ad auction, a bid is placed using an optimal bidding formula, assuming optimal values for the dual variables; based on the outcome of the previous auctions, the dual variables are updated in an online fashion. While this approach is theoretically sound, in practice, the dual variables are not optimal from the beginning, but rather converge over time. Specifically, for the cost-constraint, the convergence is asymptotic. As a result, we find that cost-control is ineffective. In this work, we analyse the shortcomings of the optimal bidding formula and propose a modification that deviates from the theoretical derivation. We simulate various practical scenarios and study the cost-control behaviors of the two algorithms. Through a large-scale evaluation on the real-word data, we show that the proposed modification reduces the cost violations by 50%, thereby achieving a better cost-control than the theoretical bidding formula.
☆ MetaBGM: Dynamic Soundtrack Transformation For Continuous Multi-Scene Experiences With Ambient Awareness And Personalization
This paper introduces MetaBGM, a groundbreaking framework for generating background music that adapts to dynamic scenes and real-time user interactions. We define multi-scene as variations in environmental contexts, such as transitions in game settings or movie scenes. To tackle the challenge of converting backend data into music description texts for audio generation models, MetaBGM employs a novel two-stage generation approach that transforms continuous scene and user state data into these texts, which are then fed into an audio generation model for real-time soundtrack creation. Experimental results demonstrate that MetaBGM effectively generates contextually relevant and dynamic background music for interactive applications.
☆ AI forecasting of higher-order wave modes of spinning binary black hole mergers
We present a physics-inspired transformer model that predicts the non-linear dynamics of higher-order wave modes emitted by quasi-circular, spinning, non-precessing binary black hole mergers. The model forecasts the waveform evolution from the pre-merger phase through the ringdown, starting with an input time-series spanning $ t \in [-5000\textrm{M}, -100\textrm{M}) $. The merger event, defined as the peak amplitude of waveforms that include the $l = |m| = 2$ modes, occurs at $ t = 0\textrm{M} $. The transformer then generates predictions over the time range $ t \in [-100\textrm{M}, 130\textrm{M}] $. We produced training, evaluation and test sets using the NRHybSur3dq8 model, considering a signal manifold defined by mass ratios $ q \in [1, 8] $; spin components $ s^z_{\{1,2\}} \in [-0.8, 0.8] $; modes up to $l \leq 4$, including the $(5,5)$ mode but excluding the $(4,0)$ and $(4,1)$ modes; and inclination angles $\theta \in [0, \pi]$. We trained the model on 14,440,761 waveforms, completing the training in 15 hours using 16 NVIDIA A100 GPUs in the Delta supercomputer. We used 4 H100 GPUs in the DeltaAI supercomputer to compute, within 7 hours, the overlap between ground truth and predicted waveforms using a test set of 840,000 waveforms, finding that the mean and median overlaps over the test set are 0.996 and 0.997, respectively. Additionally, we conducted interpretability studies to elucidate the waveform features utilized by our transformer model to produce accurate predictions. The scientific software used for this work is released with this manuscript.
comment: 27 pages, 1 appendix, 10 figures
☆ PARCO: Learning Parallel Autoregressive Policies for Efficient Multi-Agent Combinatorial Optimization
Multi-agent combinatorial optimization problems such as routing and scheduling have great practical relevance but present challenges due to their NP-hard combinatorial nature, hard constraints on the number of possible agents, and hard-to-optimize objective functions. This paper introduces PARCO (Parallel AutoRegressive Combinatorial Optimization), a novel approach that learns fast surrogate solvers for multi-agent combinatorial problems with reinforcement learning by employing parallel autoregressive decoding. We propose a model with a Multiple Pointer Mechanism to efficiently decode multiple decisions simultaneously by different agents, enhanced by a Priority-based Conflict Handling scheme. Moreover, we design specialized Communication Layers that enable effective agent collaboration, thus enriching decision-making. We evaluate PARCO in representative multi-agent combinatorial problems in routing and scheduling and demonstrate that our learned solvers offer competitive results against both classical and neural baselines in terms of both solution quality and speed. We make our code openly available at https://github.com/ai4co/parco.
☆ How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data
Recently, there has been a growing interest in studying how to construct better code instruction tuning data. However, we observe Code models trained with these datasets exhibit high performance on HumanEval but perform worse on other benchmarks such as LiveCodeBench. Upon further investigation, we find that many datasets suffer from severe data leakage. After cleaning up most of the leaked data, some well-known high-quality datasets perform poorly. This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data. To address this, we propose an efficient code data pruning strategy for selecting good samples. Our approach is based on three dimensions: instruction complexity, response quality, and instruction diversity. Based on our selected data, we present XCoder, a family of models finetuned from LLaMA3. Our experiments show XCoder achieves new state-of-the-art performance using fewer training data, which verify the effectiveness of our data strategy. Moreover, we perform a comprehensive analysis on the data composition and find existing code datasets have different characteristics according to their construction methods, which provide new insights for future code LLMs. Our models and dataset are released in https://github.com/banksy23/XCoder
comment: Working in progress
☆ Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response
Background: The 2024 Mpox outbreak, particularly severe in Africa with clade 1b emergence, has highlighted critical gaps in diagnostic capabilities in resource-limited settings. This study aimed to develop and validate an artificial intelligence (AI)-driven, on-device screening tool for Mpox, designed to function offline in low-resource environments. Methods: We developed a YOLOv8n-based deep learning model trained on 2,700 images (900 each of Mpox, other skin conditions, and normal skin), including synthetic data. The model was validated on 360 images and tested on 540 images. A larger external validation was conducted using 1,500 independent images. Performance metrics included accuracy, precision, recall, F1-score, sensitivity, and specificity. Findings: The model demonstrated high accuracy (96%) in the final test set. For Mpox detection, it achieved 93% precision, 97% recall, and an F1-score of 95%. Sensitivity and specificity for Mpox detection were 97% and 96%, respectively. Performance remained consistent in the larger external validation, confirming the model's robustness and generalizability. Interpretation: This AI-driven screening tool offers a rapid, accurate, and scalable solution for Mpox detection in resource-constrained settings. Its offline functionality and high performance across diverse datasets suggest significant potential for improving Mpox surveillance and management, particularly in areas lacking traditional diagnostic infrastructure.
comment: 11 Pages, 2 Figures, 3 Tables
☆ Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects
We present experiences and lessons learned from increasing data readiness of heterogeneous data for artificial intelligence projects using visual analysis methods. Increasing the data readiness level involves understanding both the data as well as the context in which it is used, which are challenges well suitable to visual analysis. For this purpose, we contribute a mapping between data readiness aspects and visual analysis techniques suitable for different data types. We use the defined mapping to increase data readiness levels in use cases involving time-varying data, including numerical, categorical, and text. In addition to the mapping, we extend the data readiness concept to better take aspects of the task and solution into account and explicitly address distribution shifts during data collection time. We report on our experiences in using the presented visual analysis techniques to aid future artificial intelligence projects in raising the data readiness level.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
♻ ☆ OpenFact at CheckThat! 2024: Combining Multiple Attack Methods for Effective Adversarial Text Generation
This paper presents the experiments and results for the CheckThat! Lab at CLEF 2024 Task 6: Robustness of Credibility Assessment with Adversarial Examples (InCrediblAE). The primary objective of this task was to generate adversarial examples in five problem domains in order to evaluate the robustness of widely used text classification methods (fine-tuned BERT, BiLSTM, and RoBERTa) when applied to credibility assessment issues. This study explores the application of ensemble learning to enhance adversarial attacks on natural language processing (NLP) models. We systematically tested and refined several adversarial attack methods, including BERT-Attack, Genetic algorithms, TextFooler, and CLARE, on five datasets across various misinformation tasks. By developing modified versions of BERT-Attack and hybrid methods, we achieved significant improvements in attack effectiveness. Our results demonstrate the potential of modification and combining multiple methods to create more sophisticated and effective adversarial attack strategies, contributing to the development of more robust and secure systems.
comment: CLEF 2024 - Conference and Labs of the Evaluation Forum
♻ ☆ A Sequential Decision-Making Model for Perimeter Identification
Perimeter identification involves ascertaining the boundaries of a designated area or zone, requiring traffic flow monitoring, control, or optimization. Various methodologies and technologies exist for accurately defining these perimeters; however, they often necessitate specialized equipment, precise mapping, or comprehensive data for effective problem delineation. In this study, we propose a sequential decision-making framework for perimeter search, designed to operate efficiently in real-time and require only publicly accessible information. We conceptualize the perimeter search as a game between a playing agent and an artificial environment, where the agent's objective is to identify the optimal perimeter by sequentially improving the current perimeter. We detail the model for the game and discuss its adaptability in determining the definition of an optimal perimeter. Ultimately, we showcase the model's efficacy through a real-world scenario, highlighting the identification of corresponding optimal perimeters.
♻ ☆ Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges
This comprehensive review explores the intersection of Large Language Models (LLMs) and cognitive science, examining similarities and differences between LLMs and human cognitive processes. We analyze methods for evaluating LLMs cognitive abilities and discuss their potential as cognitive models. The review covers applications of LLMs in various cognitive fields, highlighting insights gained for cognitive science research. We assess cognitive biases and limitations of LLMs, along with proposed methods for improving their performance. The integration of LLMs with cognitive architectures is examined, revealing promising avenues for enhancing artificial intelligence (AI) capabilities. Key challenges and future research directions are identified, emphasizing the need for continued refinement of LLMs to better align with human cognition. This review provides a balanced perspective on the current state and future potential of LLMs in advancing our understanding of both artificial and human intelligence.
comment: 10 pages, 1 figure
♻ ☆ Temporal Order Preserved Optimal Transport-based Cross-modal Knowledge Transfer Learning for ASR
Transferring linguistic knowledge from a pretrained language model (PLM) to an acoustic model has been shown to greatly improve the performance of automatic speech recognition (ASR). However, due to the heterogeneous feature distributions in cross-modalities, designing an effective model for feature alignment and knowledge transfer between linguistic and acoustic sequences remains a challenging task. Optimal transport (OT), which efficiently measures probability distribution discrepancies, holds great potential for aligning and transferring knowledge between acoustic and linguistic modalities. Nonetheless, the original OT treats acoustic and linguistic feature sequences as two unordered sets in alignment and neglects temporal order information during OT coupling estimation. Consequently, a time-consuming pretraining stage is required to learn a good alignment between the acoustic and linguistic representations. In this paper, we propose a Temporal Order Preserved OT (TOT)-based Cross-modal Alignment and Knowledge Transfer (CAKT) (TOT-CAKT) for ASR. In the TOT-CAKT, local neighboring frames of acoustic sequences are smoothly mapped to neighboring regions of linguistic sequences, preserving their temporal order relationship in feature alignment and matching. With the TOT-CAKT model framework, we conduct Mandarin ASR experiments with a pretrained Chinese PLM for linguistic knowledge transfer. Our results demonstrate that the proposed TOT-CAKT significantly improves ASR performance compared to several state-of-the-art models employing linguistic knowledge transfer, and addresses the weaknesses of the original OT-based method in sequential feature alignment for ASR.
comment: Accepted to IEEE SLT 2024
♻ ☆ On the design space between molecular mechanics and machine learning force fields
A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like.
♻ ☆ CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention
Diffusion-based video generation technology has advanced significantly, catalyzing a proliferation of research in human animation. However, the majority of these studies are confined to same-modality driving settings, with cross-modality human body animation remaining relatively underexplored. In this paper, we introduce, an end-to-end audio-driven human animation framework that ensures hand integrity, identity consistency, and natural motion. The key design of CyberHost is the Region Codebook Attention mechanism, which improves the generation quality of facial and hand animations by integrating fine-grained local features with learned motion pattern priors. Furthermore, we have developed a suite of human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, to improve synthesis results. To our knowledge, CyberHost is the first end-to-end audio-driven human diffusion model capable of facilitating zero-shot video generation within the scope of human body. Extensive experiments demonstrate that CyberHost surpasses previous works in both quantitative and qualitative aspects.
comment: Homepage: https://cyberhost.github.io/
♻ ☆ Adaptive Explicit Knowledge Transfer for Knowledge Distillation
Logit-based knowledge distillation (KD) for classification is cost-efficient compared to feature-based KD but often subject to inferior performance. Recently, it was shown that the performance of logit-based KD can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model, which is known as `implicit (dark) knowledge', to the student model. Through gradient analysis, we first show that this actually has an effect of adaptively controlling the learning of implicit knowledge. Then, we propose a new loss that enables the student to learn explicit knowledge (i.e., the teacher's confidence about the target class) along with implicit knowledge in an adaptive manner. Furthermore, we propose to separate the classification and distillation tasks for effective distillation and inter-class relationship modeling. Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods on the CIFAR-100 and ImageNet datasets.
comment: 19 pages, 5 figures
♻ ☆ The Role of Transformer Models in Advancing Blockchain Technology: A Systematic Survey
As blockchain technology rapidly evolves, the demand for enhanced efficiency, security, and scalability grows.Transformer models, as powerful deep learning architectures,have shown unprecedented potential in addressing various blockchain challenges. However, a systematic review of Transformer applications in blockchain is lacking. This paper aims to fill this research gap by surveying over 200 relevant papers, comprehensively reviewing practical cases and research progress of Transformers in blockchain applications. Our survey covers key areas including anomaly detection, smart contract security analysis, cryptocurrency prediction and trend analysis, and code summary generation. To clearly articulate the advancements of Transformers across various blockchain domains, we adopt a domain-oriented classification system, organizing and introducing representative methods based on major challenges in current blockchain research. For each research domain,we first introduce its background and objectives, then review previous representative methods and analyze their limitations,and finally introduce the advancements brought by Transformer models. Furthermore, we explore the challenges of utilizing Transformer, such as data privacy, model complexity, and real-time processing requirements. Finally, this article proposes future research directions, emphasizing the importance of exploring the Transformer architecture in depth to adapt it to specific blockchain applications, and discusses its potential role in promoting the development of blockchain technology. This review aims to provide new perspectives and a research foundation for the integrated development of blockchain technology and machine learning, supporting further innovation and application expansion of blockchain technology.
♻ ☆ Explanation Space: A New Perspective into Time Series Interpretability
Human understandable explanation of deep learning models is necessary for many critical and sensitive applications. Unlike image or tabular data where the importance of each input feature (for the classifier's decision) can be directly projected into the input, time series distinguishable features (e.g. dominant frequency) are often hard to manifest in time domain for a user to easily understand. Moreover, most explanation methods require a baseline value as an indication of the absence of any feature. However, the notion of lack of feature, which is often defined as black pixels for vision tasks or zero/mean values for tabular data, is not well-defined in time series. Despite the adoption of explainable AI methods (XAI) from tabular and vision domain into time series domain, these differences limit the application of these XAI methods in practice. In this paper, we propose a simple yet effective method that allows a model originally trained on time domain to be interpreted in other explanation spaces using existing methods. We suggest four explanation spaces that each can potentially alleviate these issues in certain types of time series. Our method can be readily adopted in existing platforms without any change to trained models or XAI methods. The code is available at https://github.com/shrezaei/TS-X-spaces.
♻ ☆ PESTS: Persian_English Cross Lingual Corpus for Semantic Textual Similarity
One of the components of natural language processing that has received a lot of investigation recently is semantic textual similarity. In computational linguistics and natural language processing, assessing the semantic similarity of words, phrases, paragraphs, and texts is crucial. Calculating the degree of semantic resemblance between two textual pieces, paragraphs, or phrases provided in both monolingual and cross-lingual versions is known as semantic similarity. Cross lingual semantic similarity requires corpora in which there are sentence pairs in both the source and target languages with a degree of semantic similarity between them. Many existing cross lingual semantic similarity models use a machine translation due to the unavailability of cross lingual semantic similarity dataset, which the propagation of the machine translation error reduces the accuracy of the model. On the other hand, when we want to use semantic similarity features for machine translation the same machine translations should not be used for semantic similarity. For Persian, which is one of the low resource languages, no effort has been made in this regard and the need for a model that can understand the context of two languages is felt more than ever. In this article, the corpus of semantic textual similarity between sentences in Persian and English languages has been produced for the first time by using linguistic experts. We named this dataset PESTS (Persian English Semantic Textual Similarity). This corpus contains 5375 sentence pairs. Also, different models based on transformers have been fine-tuned using this dataset. The results show that using the PESTS dataset, the Pearson correlation of the XLM ROBERTa model increases from 85.87% to 95.62%.
♻ ☆ SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner
Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs) and has evolved into multiple categories: human-based, optimization-based, generation-based, and the recent indirect and multilingual jailbreaks. However, delivering a practical jailbreak defense is challenging because it needs to not only handle all the above jailbreak attacks but also incur negligible delays to user prompts, as well as be compatible with both open-source and closed-source LLMs. Inspired by how the traditional security concept of shadow stacks defends against memory overflow attacks, this paper introduces a generic LLM jailbreak defense framework called SelfDefend, which establishes a shadow LLM as a defense instance to concurrently protect the target LLM instance in the normal stack and collaborate with it for checkpoint-based access control. The effectiveness of SelfDefend builds upon our observation that existing LLMs (both target and defense LLMs) have the capability to identify harmful prompts or intentions in user queries, which we empirically validate using the commonly used GPT-3.5/4 models across all major jailbreak attacks. To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models. These models outperform six state-of-the-art defenses and match the performance of GPT-4-based SelfDefend, with significantly lower extra delays. We also empirically show that the tuned models are robust to adaptive jailbreaks and prompt injections.
comment: This paper completes its earlier vision paper, available at arXiv:2402.15727. Updated to the latest analysis and results
♻ ☆ Kun: Answer Polishment for Chinese Self-Alignment with Instruction Back-Translation
In this paper, we introduce Kun, a novel approach for creating high-quality instruction-tuning datasets for large language models (LLMs) without relying on manual annotations. Adapting a self-training algorithm based on instruction back-translation and answer polishment, Kun leverages unlabelled data from diverse sources such as Wudao, Wanjuan, and SkyPile to generate a substantial dataset of over a million Chinese instructional data points. This approach significantly deviates from traditional methods by using a self-curation process to refine and select the most effective instruction-output pairs. Our experiments with the 6B-parameter Yi model across various benchmarks demonstrate Kun's robustness and scalability. Our method's core contributions lie in its algorithmic advancement, which enhances data retention and clarity, and its innovative data generation approach that substantially reduces the reliance on costly and time-consuming manual annotations. This methodology presents a scalable and efficient solution for improving the instruction-following capabilities of LLMs, with significant implications for their application across diverse fields. The code and dataset can be found at https://github.com/Zheng0428/COIG-Kun
comment: 12 pages, 12 figures
♻ ☆ How to Train your Antivirus: RL-based Hardening through the Problem-Space
ML-based malware detection on dynamic analysis reports is vulnerable to both evasion and spurious correlations. In this work, we investigate a specific ML architecture employed in the pipeline of a widely-known commercial antivirus company, with the goal to harden it against adversarial malware. Adversarial training, the sole defensive technique that can confer empirical robustness, is not applicable out of the box in this domain, for the principal reason that gradient-based perturbations rarely map back to feasible problem-space programs. We introduce a novel Reinforcement Learning approach for constructing adversarial examples, a constituent part of adversarially training a model against evasion. Our approach comes with multiple advantages. It performs modifications that are feasible in the problem-space, and only those; thus it circumvents the inverse mapping problem. It also makes possible to provide theoretical guarantees on the robustness of the model against a particular set of adversarial capabilities. Our empirical exploration validates our theoretical insights, where we can consistently reach 0% Attack Success Rate after a few adversarial retraining iterations.
comment: 20 pages,4 figures
♻ ☆ A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility
The advent of Urban Air Mobility (UAM) presents the scope for a transformative shift in the domain of urban transportation. However, its widespread adoption and economic viability depends in part on the ability to optimally schedule the fleet of aircraft across vertiports in a UAM network, under uncertainties attributed to airspace congestion, changing weather conditions, and varying demands. This paper presents a comprehensive optimization formulation of the fleet scheduling problem, while also identifying the need for alternate solution approaches, since directly solving the resulting integer nonlinear programming problem is computationally prohibitive for daily fleet scheduling. Previous work has shown the effectiveness of using (graph) reinforcement learning (RL) approaches to train real-time executable policy models for fleet scheduling. However, such policies can often be brittle on out-of-distribution scenarios or edge cases. Moreover, training performance also deteriorates as the complexity (e.g., number of constraints) of the problem increases. To address these issues, this paper presents an imitation learning approach where the RL-based policy exploits expert demonstrations yielded by solving the exact optimization using a Genetic Algorithm. The policy model comprises Graph Neural Network (GNN) based encoders that embed the space of vertiports and aircraft, Transformer networks to encode demand, passenger fare, and transport cost profiles, and a Multi-head attention (MHA) based decoder. Expert demonstrations are used through the Generative Adversarial Imitation Learning (GAIL) algorithm. Interfaced with a UAM simulation environment involving 8 vertiports and 40 aircrafts, in terms of the daily profits earned reward, the new imitative approach achieves better mean performance and remarkable improvement in the case of unseen worst-case scenarios, compared to pure RL results.
comment: Presented at the AIAA Aviation Forum 2024
♻ ☆ Decision Theoretic Foundations for Experiments Evaluating Human Decisions
DeHow well people use information displays to make decisions is of primary interest in human-centered AI, model explainability, data visualization, and related areas. However, what constitutes a decision problem, and what is required for a study to establish that human decisions could be improved remain open to speculation. We propose a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics as a standard for establishing when human decisions can be improved in HCI. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the utility-maximizing decision. As a demonstration, we evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve these criteria. We find that only 10 (26\%) of 39 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making in at least one treatment condition. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.
♻ ☆ Serialized Speech Information Guidance with Overlapped Encoding Separation for Multi-Speaker Automatic Speech Recognition
Serialized output training (SOT) attracts increasing attention due to its convenience and flexibility for multi-speaker automatic speech recognition (ASR). However, it is not easy to train with attention loss only. In this paper, we propose the overlapped encoding separation (EncSep) to fully utilize the benefits of the connectionist temporal classification (CTC) and attention hybrid loss. This additional separator is inserted after the encoder to extract the multi-speaker information with CTC losses. Furthermore, we propose the serialized speech information guidance SOT (GEncSep) to further utilize the separated encodings. The separated streams are concatenated to provide single-speaker information to guide attention during decoding. The experimental results on LibriMix show that the single-speaker encoding can be separated from the overlapped encoding. The CTC loss helps to improve the encoder representation under complex scenarios. GEncSep further improved performance.
comment: something wrong with input data
♻ ☆ Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions
This paper considers a scenario in city navigation: an AI agent is provided with language descriptions of the goal location with respect to some well-known landmarks; By only observing the scene around, including recognizing landmarks and road network connections, the agent has to make decisions to navigate to the goal location without instructions. This problem is very challenging, because it requires agent to establish self-position and acquire spatial representation of complex urban environment, where landmarks are often invisible. In the absence of navigation instructions, such abilities are vital for the agent to make high-quality decisions in long-range city navigation. With the emergent reasoning ability of large language models (LLMs), a tempting baseline is to prompt LLMs to "react" on each observation and make decisions accordingly. However, this baseline has very poor performance that the agent often repeatedly visits same locations and make short-sighted, inconsistent decisions. To address these issues, this paper introduces a novel agentic workflow featured by its abilities to perceive, reflect and plan. Specifically, we find LLaVA-7B can be fine-tuned to perceive the direction and distance of landmarks with sufficient accuracy for city navigation. Moreover, reflection is achieved through a memory mechanism, where past experiences are stored and can be retrieved with current perception for effective decision argumentation. Planning uses reflection results to produce long-term plans, which can avoid short-sighted decisions in long-range navigation. We show the designed workflow significantly improves navigation ability of the LLM agent compared with the state-of-the-art baselines.
comment: The experiment and dataset are not enough, and we need more experiments to verify our model
♻ ☆ Hierarchical Generative Adversarial Imitation Learning with Mid-level Input Generation for Autonomous Driving on Urban Environments
Deriving robust control policies for realistic urban navigation scenarios is not a trivial task. In an end-to-end approach, these policies must map high-dimensional images from the vehicle's cameras to low-level actions such as steering and throttle. While pure Reinforcement Learning (RL) approaches are based exclusively on engineered rewards, Generative Adversarial Imitation Learning (GAIL) agents learn from expert demonstrations while interacting with the environment, which favors GAIL on tasks for which a reward signal is difficult to derive, such as autonomous driving. However, training deep networks directly from raw images on RL tasks is known to be unstable and troublesome. To deal with that, this work proposes a hierarchical GAIL-based architecture (hGAIL) which decouples representation learning from the driving task to solve the autonomous navigation of a vehicle. The proposed architecture consists of two modules: a GAN (Generative Adversarial Net) which generates an abstract mid-level input representation, which is the Bird's-Eye View (BEV) from the surroundings of the vehicle; and the GAIL which learns to control the vehicle based on the BEV predictions from the GAN as input. hGAIL is able to learn both the policy and the mid-level representation simultaneously as the agent interacts with the environment. Our experiments made in the CARLA simulation environment have shown that GAIL exclusively from cameras (without BEV) fails to even learn the task, while hGAIL, after training exclusively on one city, was able to autonomously navigate successfully in 98% of the intersections of a new city not used in training phase. Videos and code available at: https://sites.google.com/view/hgail
♻ ☆ Implementation of The Future of Drug Discovery: QuantumBased Machine Learning Simulation (QMLS)
The Research & Development (R&D) phase of drug development is a lengthy and costly process. To revolutionize this process, we introduce our new concept QMLS to shorten the whole R&D phase to three to six months and decrease the cost to merely fifty to eighty thousand USD. For Hit Generation, Machine Learning Molecule Generation (MLMG) generates possible hits according to the molecular structure of the target protein while the Quantum Simulation (QS) filters molecules from the primary essay based on the reaction and binding effectiveness with the target protein. Then, For Lead Optimization, the resultant molecules generated and filtered from MLMG and QS are compared, and molecules that appear as a result of both processes will be made into dozens of molecular variations through Machine Learning Molecule Variation (MLMV), while others will only be made into a few variations. Lastly, all optimized molecules would undergo multiple rounds of QS filtering with a high standard for reaction effectiveness and safety, creating a few dozen pre-clinical-trail-ready drugs. This paper is based on our first paper, where we pitched the concept of machine learning combined with quantum simulations. In this paper we will go over the detailed design and framework of QMLS, including MLMG, MLMV, and QS.
comment: 13 pages, 6 figures
♻ ☆ LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs' Vulnerability Reasoning
Large language models (LLMs) have demonstrated significant potential in various tasks, including vulnerability detection. However, current efforts in this area are preliminary, lacking clarity on whether LLMs' vulnerability reasoning capabilities stem from the models themselves or external aids such as knowledge retrieval and tooling support. This paper aims to isolate LLMs' vulnerability reasoning from other capabilities, such as vulnerability knowledge adoption, context information retrieval, and structured output generation. We introduce LLM4Vuln, a unified evaluation framework that separates and assesses LLMs' vulnerability reasoning capabilities and examines improvements when combined with other enhancements. We conducted controlled experiments with 97 ground-truth vulnerabilities and 97 non-vulnerable cases in Solidity and Java, testing them in a total of 9,312 scenarios across four LLMs (GPT-4, GPT-3.5, Mixtral, and Llama 3). Our findings reveal the varying impacts of knowledge enhancement, context supplementation, prompt schemes, and models. Additionally, we identified 14 zero-day vulnerabilities in four pilot bug bounty programs, resulting in \$3,576 in bounties.
comment: This is a technical report by Nanyang Technological University. Updated to support both Solidity and Java
♻ ☆ Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Bayesian optimization (BO) provides a powerful framework for optimizing black-box, expensive-to-evaluate functions. It is therefore an attractive tool for engineering design problems, typically involving multiple objectives. Thanks to the rapid advances in fabrication and measurement methods as well as parallel computing infrastructure, querying many design problems can be heavily parallelized. This class of problems challenges BO with an unprecedented setup where it has to deal with very large batches, shifting its focus from sample efficiency to iteration efficiency. We present a novel Bayesian optimization framework specifically tailored to address these limitations. Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of not only the objectives but also their associated uncertainty. We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations. We demonstrate the superiority of our method by comparing it with state-of-the-art multi-objective optimizations. We perform our evaluation on two real-world problems -- airfoil design and 3D printing -- showcasing the applicability and efficiency of our approach. Our code is available at: https://github.com/an-on-ym-ous/lbn_mobo
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection
As a sub-field of object detection, moving infrared small target detection presents significant challenges due to tiny target sizes and low contrast against backgrounds. Currently-existing methods primarily rely on the features extracted only from spatio-temporal domain. Frequency domain has hardly been concerned yet, although it has been widely applied in image processing. To extend feature source domains and enhance feature representation, we propose a new Triple-domain Strategy (Tridos) with the frequency-aware memory enhancement on spatio-temporal domain for infrared small target detection. In this scheme, it effectively detaches and enhances frequency features by a local-global frequency-aware module with Fourier transform. Inspired by human visual system, our memory enhancement is designed to capture the spatial relations of infrared targets among video frames. Furthermore, it encodes temporal dynamics motion features via differential learning and residual enhancing. Additionally, we further design a residual compensation to reconcile possible cross-domain feature mismatches. To our best knowledge, proposed Tridos is the first work to explore infrared target feature learning comprehensively in spatio-temporal-frequency domains. The extensive experiments on three datasets (i.e., DAUB, ITSDT-15K and IRDST) validate that our triple-domain infrared feature learning scheme could often be obviously superior to state-of-the-art ones. Source codes are available at https://github.com/UESTC-nnLab/Tridos.
comment: This paper has accepted IEEE TGRS
♻ ☆ AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN)
The integration of digital devices in modern vehicles has revolutionized automotive technology, enhancing safety and the overall driving experience. The Controller Area Network (CAN) bus is a central system for managing in-vehicle communication between the electronic control units (ECUs). However, the CAN protocol poses security challenges due to inherent vulnerabilities, lacking encryption and authentication, which, combined with an expanding attack surface, necessitates robust security measures. In response to this challenge, numerous Intrusion Detection Systems (IDS) have been developed and deployed. Nonetheless, an open, comprehensive, and realistic dataset to test the effectiveness of such IDSs remains absent in the existing literature. This paper addresses this gap by considering the latest ROAD dataset, containing stealthy and sophisticated injections. The methodology involves dataset labelling and the implementation of both state-of-the-art deep learning models and traditional machine learning models to show the discrepancy in performance between the datasets most commonly used in the literature and the ROAD dataset, a more realistic alternative.
♻ ☆ On the Impact of Data Heterogeneity in Federated Learning Environments with Application to Healthcare Networks
Federated Learning (FL) allows multiple privacy-sensitive applications to leverage their dataset for a global model construction without any disclosure of the information. One of those domains is healthcare, where groups of silos collaborate in order to generate a global predictor with improved accuracy and generalization. However, the inherent challenge lies in the high heterogeneity of medical data, necessitating sophisticated techniques for assessment and compensation. This paper presents a comprehensive exploration of the mathematical formalization and taxonomy of heterogeneity within FL environments, focusing on the intricacies of medical data. In particular, we address the evaluation and comparison of the most popular FL algorithms with respect to their ability to cope with quantity-based, feature and label distribution-based heterogeneity. The goal is to provide a quantitative evaluation of the impact of data heterogeneity in FL systems for healthcare networks as well as a guideline on FL algorithm selection. Our research extends beyond existing studies by benchmarking seven of the most common FL algorithms against the unique challenges posed by medical data use cases. The paper targets the prediction of the risk of stroke recurrence through a set of tabular clinical reports collected by different federated hospital silos: data heterogeneity frequently encountered in this scenario and its impact on FL performance are discussed.
♻ ☆ CyclicFL: A Cyclic Model Pre-Training Approach to Efficient Federated Learning
Federated learning (FL) has been proposed to enable distributed learning on Artificial Intelligence Internet of Things (AIoT) devices with guarantees of high-level data privacy. Since random initial models in FL can easily result in unregulated Stochastic Gradient Descent (SGD) processes, existing FL methods greatly suffer from both slow convergence and poor accuracy, especially in non-IID scenarios. To address this problem, we propose a novel method named CyclicFL, which can quickly derive effective initial models to guide the SGD processes, thus improving the overall FL training performance. We formally analyze the significance of data consistency between the pre-training and training stages of CyclicFL, showing the limited Lipschitzness of loss for the pre-trained models by CyclicFL. Moreover, we systematically prove that our method can achieve faster convergence speed under various convexity assumptions. Unlike traditional centralized pre-training methods that require public proxy data, CyclicFL pre-trains initial models on selected AIoT devices cyclically without exposing their local data. Therefore, they can be easily integrated into any security-critical FL methods. Comprehensive experimental results show that CyclicFL can not only improve the maximum classification accuracy by up to $14.11\%$ but also significantly accelerate the overall FL training process.
♻ ☆ Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
This comprehensive review delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). The development of Artificial Intelligence (AI), from its inception in the 1950s to the emergence of advanced neural networks and deep learning architectures, has made a breakthrough in LLMs, with models such as GPT-4o and Claude-3, and in Vision-Language Models (VLMs), with models such as CLIP and ALIGN. Prompt engineering is the process of structuring inputs, which has emerged as a crucial technique to maximize the utility and accuracy of these models. This paper explores both foundational and advanced methodologies of prompt engineering, including techniques such as self-consistency, chain-of-thought, and generated knowledge, which significantly enhance model performance. Additionally, it examines the prompt method of VLMs through innovative approaches such as Context Optimization (CoOp), Conditional Context Optimization (CoCoOp), and Multimodal Prompt Learning (MaPLe). Critical to this discussion is the aspect of AI security, particularly adversarial attacks that exploit vulnerabilities in prompt engineering. Strategies to mitigate these risks and enhance model robustness are thoroughly reviewed. The evaluation of prompt methods is also addressed, through both subjective and objective metrics, ensuring a robust analysis of their efficacy. This review also reflects the essential role of prompt engineering in advancing AI capabilities, providing a structured framework for future research and application.
♻ ☆ Exposing and Explaining Fake News On-the-Fly
Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80 % accuracy and macro F-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.
♻ ☆ A review on the use of large language models as virtual tutors
Transformer architectures contribute to managing long-term dependencies for Natural Language Processing, representing one of the most recent changes in the field. These architectures are the basis of the innovative, cutting-edge Large Language Models (LLMs) that have produced a huge buzz in several fields and industrial sectors, among the ones education stands out. Accordingly, these generative Artificial Intelligence-based solutions have directed the change in techniques and the evolution in educational methods and contents, along with network infrastructure, towards high-quality learning. Given the popularity of LLMs, this review seeks to provide a comprehensive overview of those solutions designed specifically to generate and evaluate educational materials and which involve students and teachers in their design or experimental plan. To the best of our knowledge, this is the first review of educational applications (e.g., student assessment) of LLMs. As expected, the most common role of these systems is as virtual tutors for automatic question generation. Moreover, the most popular models are GTP-3 and BERT. However, due to the continuous launch of new generative models, new works are expected to be published shortly.
♻ ☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
♻ ☆ Tightly-Coupled LiDAR-IMU-Wheel Odometry with Online Calibration of a Kinematic Model for Skid-Steering Robots
Tunnels and long corridors are challenging environments for mobile robots because a LiDAR point cloud should degenerate in these environments. To tackle point cloud degeneration, this study presents a tightly-coupled LiDAR-IMU-wheel odometry algorithm with an online calibration for skid-steering robots. We propose a full linear wheel odometry factor, which not only serves as a motion constraint but also performs the online calibration of kinematic models for skid-steering robots. Despite the dynamically changing kinematic model (e.g., wheel radii changes caused by tire pressures) and terrain conditions, our method can address the model error via online calibration. Moreover, our method enables an accurate localization in cases of degenerated environments, such as long and straight corridors, by calibration while the LiDAR-IMU fusion sufficiently operates. Furthermore, we estimate the uncertainty (i.e., covariance matrix) of the wheel odometry online for creating a reasonable constraint. The proposed method is validated through three experiments. The first indoor experiment shows that the proposed method is robust in severe degeneracy cases (long corridors) and changes in the wheel radii. The second outdoor experiment demonstrates that our method accurately estimates the sensor trajectory despite being in rough outdoor terrain owing to online uncertainty estimation of wheel odometry. The third experiment shows the proposed online calibration enables robust odometry estimation in changing terrains.
comment: open-source: https://github.com/TakuOkawara/full_linear_wheel_odometry_factor
♻ ☆ FREA: Feasibility-Guided Generation of Safety-Critical Scenarios with Reasonable Adversariality
Generating safety-critical scenarios, which are essential yet difficult to collect at scale, offers an effective method to evaluate the robustness of autonomous vehicles (AVs). Existing methods focus on optimizing adversariality while preserving the naturalness of scenarios, aiming to achieve a balance through data-driven approaches. However, without an appropriate upper bound for adversariality, the scenarios might exhibit excessive adversariality, potentially leading to unavoidable collisions. In this paper, we introduce FREA, a novel safety-critical scenarios generation method that incorporates the Largest Feasible Region (LFR) of AV as guidance to ensure the reasonableness of the adversarial scenarios. Concretely, FREA initially pre-calculates the LFR of AV from offline datasets. Subsequently, it learns a reasonable adversarial policy that controls the scene's critical background vehicles (CBVs) to generate adversarial yet AV-feasible scenarios by maximizing a novel feasibility-dependent adversarial objective function. Extensive experiments illustrate that FREA can effectively generate safety-critical scenarios, yielding considerable near-miss events while ensuring AV's feasibility. Generalization analysis also confirms the robustness of FREA in AV testing across various surrogate AV methods and traffic environments.
comment: Accepted by CoRL 2024
♻ ☆ SynthAI: A Multi Agent Generative AI Framework for Automated Modular HLS Design Generation
In this paper, we introduce SynthAI, a new method for the automated creation of High-Level Synthesis (HLS) designs. SynthAI integrates ReAct agents, Chain-of-Thought (CoT) prompting, web search technologies, and the Retrieval-Augmented Generation (RAG) framework within a structured decision graph. This innovative approach enables the systematic decomposition of complex hardware design tasks into multiple stages and smaller, manageable modules. As a result, SynthAI produces synthesizable designs that closely adhere to user-specified design objectives and functional requirements. We further validate the capabilities of SynthAI through several case studies, highlighting its proficiency in generating complex, multi-module logic designs from a single initial prompt. The SynthAI code is provided via the following repo: \url{https://github.com/sarashs/FPGA_AGI}
comment: This work is in progress and we will be updating it
♻ ☆ Trustworthy Human-AI Collaboration: Reinforcement Learning with Human Feedback and Physics Knowledge for Safe Autonomous Driving
In the field of autonomous driving, developing safe and trustworthy autonomous driving policies remains a significant challenge. Recently, Reinforcement Learning with Human Feedback (RLHF) has attracted substantial attention due to its potential to enhance training safety and sampling efficiency. Nevertheless, existing RLHF-enabled methods often falter when faced with imperfect human demonstrations, potentially leading to training oscillations or even worse performance than rule-based approaches. Inspired by the human learning process, we propose Physics-enhanced Reinforcement Learning with Human Feedback (PE-RLHF). This novel framework synergistically integrates human feedback (e.g., human intervention and demonstration) and physics knowledge (e.g., traffic flow model) into the training loop of reinforcement learning. The key advantage of PE-RLHF is its guarantee that the learned policy will perform at least as well as the given physics-based policy, even when human feedback quality deteriorates, thus ensuring trustworthy safety improvements. PE-RLHF introduces a Physics-enhanced Human-AI (PE-HAI) collaborative paradigm for dynamic action selection between human and physics-based actions, employs a reward-free approach with a proxy value function to capture human preferences, and incorporates a minimal intervention mechanism to reduce the cognitive load on human mentors. Extensive experiments across diverse driving scenarios demonstrate that PE-RLHF significantly outperforms traditional methods, achieving state-of-the-art (SOTA) performance in safety, efficiency, and generalizability, even with varying quality of human feedback. The philosophy behind PE-RLHF not only advances autonomous driving technology but can also offer valuable insights for other safety-critical domains. Demo video and code are available at: \https://zilin-huang.github.io/PE-RLHF-website/
comment: 33 pages, 20 figures
♻ ☆ Painful intelligence: What AI can tell us about human suffering
This book uses the modern theory of artificial intelligence (AI) to understand human suffering or mental pain. Both humans and sophisticated AI agents process information about the world in order to achieve goals and obtain rewards, which is why AI can be used as a model of the human brain and mind. This book intends to make the theory accessible to a relatively general audience, requiring only some relevant scientific background. The book starts with the assumption that suffering is mainly caused by frustration. Frustration means the failure of an agent (whether AI or human) to achieve a goal or a reward it wanted or expected. Frustration is inevitable because of the overwhelming complexity of the world, limited computational resources, and scarcity of good data. In particular, such limitations imply that an agent acting in the real world must cope with uncontrollability, unpredictability, and uncertainty, which all lead to frustration. Fundamental in such modelling is the idea of learning, or adaptation to the environment. While AI uses machine learning, humans and animals adapt by a combination of evolutionary mechanisms and ordinary learning. Even frustration is fundamentally an error signal that the system uses for learning. This book explores various aspects and limitations of learning algorithms and their implications regarding suffering. At the end of the book, the computational theory is used to derive various interventions or training methods that will reduce suffering in humans. The amount of frustration is expressed by a simple equation which indicates how it can be reduced. The ensuing interventions are very similar to those proposed by Buddhist and Stoic philosophy, and include mindfulness meditation. Therefore, this book can be interpreted as an exposition of a computational theory justifying why such philosophies and meditation reduce human suffering.
comment: Second Edition of this book with 258 pages
♻ ☆ 3D Single-object Tracking in Point Clouds with High Temporal Variation ECCV24
The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
comment: Accepted by ECCV24
♻ ☆ CAVE: Controllable Authorship Verification Explanations
Authorship Verification (AV) (do two documents have the same author?) is essential in many sensitive real-life applications. AV is often used in proprietary domains that require a private, offline model, making SOTA online models like ChatGPT undesirable. Current offline models however have lower downstream utility due to low accuracy/scalability (eg: traditional stylometry AV systems) and lack of accessible post-hoc explanations. In this work, we take the first step to address the above challenges with our trained, offline Llama-3-8B model CAVE (Controllable Authorship Verification Explanations): CAVE generates free-text AV explanations that are controlled to be (1) structured (can be decomposed into sub-explanations in terms of relevant linguistic features), and (2) easily verified for explanation-label consistency (via intermediate labels in sub-explanations). We first engineer a prompt that can generate silver training data from a SOTA teacher model in the desired CAVE output format. We then filter and distill this data into a pretrained Llama-3-8B, our carefully selected student model. Results on three difficult AV datasets IMDb62, Blog-Auth, and Fanfiction show that CAVE generates high quality explanations (as measured by automatic and human evaluation) as well as competitive task accuracies.
♻ ☆ Aligning Large Language Models to a Domain-specific Graph Database for NL2GQL
Graph Databases (Graph DB) find extensive application across diverse domains such as finance, social networks, and medicine. Yet, the translation of Natural Language (NL) into the Graph Query Language (GQL), referred to as NL2GQL, poses significant challenges owing to its intricate and specialized nature. Some approaches have sought to utilize Large Language Models (LLMs) to address analogous tasks like text2SQL. Nonetheless, in the realm of NL2GQL tasks tailored to a particular domain, the absence of domain-specific NL-GQL data pairs adds complexity to aligning LLMs with the graph DB. To tackle this challenge, we present a well-defined pipeline. Initially, we utilize ChatGPT to generate NL-GQL data pairs, leveraging the provided graph DB with self-instruction. Subsequently, we employ the generated data to fine-tune LLMs, ensuring alignment between LLMs and the graph DB. Moreover, we find the importance of relevant schema in efficiently generating accurate GQLs. Thus, we introduce a method to extract relevant schema as the input context. We evaluate our method using two carefully constructed datasets derived from graph DBs in the finance and medicine domains, named FinGQL and MediGQL. Experimental results reveal that our approach significantly outperforms a set of baseline methods, with improvements of 5.90 and 6.36 absolute points on EM, and 6.00 and 7.09 absolute points on EX for FinGQL and MediGQL, respectively.
comment: 13 pages,2 figures
♻ ☆ More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
♻ ☆ LuSNAR:A Lunar Segmentation, Navigation and Reconstruction Dataset based on Muti-sensor for Autonomous Exploration
With the complexity of lunar exploration missions, the moon needs to have a higher level of autonomy. Environmental perception and navigation algorithms are the foundation for lunar rovers to achieve autonomous exploration. The development and verification of algorithms require highly reliable data support. Most of the existing lunar datasets are targeted at a single task, lacking diverse scenes and high-precision ground truth labels. To address this issue, we propose a multi-task, multi-scene, and multi-label lunar benchmark dataset LuSNAR. This dataset can be used for comprehensive evaluation of autonomous perception and navigation systems, including high-resolution stereo image pairs, panoramic semantic labels, dense depth maps, LiDAR point clouds, and the position of rover. In order to provide richer scene data, we built 9 lunar simulation scenes based on Unreal Engine. Each scene is divided according to topographic relief and the density of objects. To verify the usability of the dataset, we evaluated and analyzed the algorithms of semantic segmentation, 3D reconstruction, and autonomous navigation. The experiment results prove that the dataset proposed in this paper can be used for ground verification of tasks such as autonomous environment perception and navigation, and provides a lunar benchmark dataset for testing the accessibility of algorithm metrics. We make LuSNAR publicly available at: https://github.com/autumn999999/LuSNAR-dataset.
comment: 19 pages, 13 figures, 11 tables
♻ ☆ PointCloud-Text Matching: Benchmark Datasets and a Baseline
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
comment: Upon further consideration, we have concluded that the current version requires significant revision and may not yet be ready for publication. We plan to conduct additional experiments and make the necessary improvements to ensure the paper meets the standards for future submission
♻ ☆ UserSumBench: A Benchmark Framework for Evaluating User Summarization Approaches
Large language models (LLMs) have shown remarkable capabilities in generating user summaries from a long list of raw user activity data. These summaries capture essential user information such as preferences and interests, and therefore are invaluable for LLM-based personalization applications, such as explainable recommender systems. However, the development of new summarization techniques is hindered by the lack of ground-truth labels, the inherent subjectivity of user summaries, and human evaluation which is often costly and time-consuming. To address these challenges, we introduce \UserSumBench, a benchmark framework designed to facilitate iterative development of LLM-based summarization approaches. This framework offers two key components: (1) A reference-free summary quality metric. We show that this metric is effective and aligned with human preferences across three diverse datasets (MovieLens, Yelp and Amazon Review). (2) A novel robust summarization method that leverages time-hierarchical summarizer and self-critique verifier to produce high-quality summaries while eliminating hallucination. This method serves as a strong baseline for further innovation in summarization techniques.
♻ ☆ Refusing Safe Prompts for Multi-modal Large Language Models
Multimodal large language models (MLLMs) have become the cornerstone of today's generative AI ecosystem, sparking intense competition among tech giants and startups. In particular, an MLLM generates a text response given a prompt consisting of an image and a question. While state-of-the-art MLLMs use safety filters and alignment techniques to refuse unsafe prompts, in this work, we introduce MLLM-Refusal, the first method that induces refusals for safe prompts. In particular, our MLLM-Refusal optimizes a nearly-imperceptible refusal perturbation and adds it to an image, causing target MLLMs to likely refuse a safe prompt containing the perturbed image and a safe question. Specifically, we formulate MLLM-Refusal as a constrained optimization problem and propose an algorithm to solve it. Our method offers competitive advantages for MLLM model providers by potentially disrupting user experiences of competing MLLMs, since competing MLLM's users will receive unexpected refusals when they unwittingly use these perturbed images in their prompts. We evaluate MLLM-Refusal on four MLLMs across four datasets, demonstrating its effectiveness in causing competing MLLMs to refuse safe prompts while not affecting non-competing MLLMs. Furthermore, we explore three potential countermeasures-adding Gaussian noise, DiffPure, and adversarial training. Our results show that though they can mitigate MLLM-Refusal's effectiveness, they also sacrifice the accuracy and/or efficiency of the competing MLLM. The code is available at https://github.com/Sadcardation/MLLM-Refusal.
♻ ☆ A Survey on Efficient Federated Learning Methods for Foundation Model Training IJCAI 2024
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients. However, new approaches to FL often discuss their contributions involving small deep-learning models only and focus on training full models on clients. In the wake of Foundation Models (FM), the reality is different for many deep learning applications. Typically, FMs have already been pre-trained across a wide variety of tasks and can be fine-tuned to specific downstream tasks over significantly smaller datasets than required for full model training. However, access to such datasets is often challenging. By its design, FL can help to open data silos. With this survey, we introduce a novel taxonomy focused on computational and communication efficiency, the vital elements to make use of FMs in FL systems. We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications, elaborate on the readiness of FL frameworks to work with FMs, and provide future research opportunities on how to evaluate generative models in FL as well as the interplay of privacy and PEFT.
comment: Accepted for publication at IJCAI 2024. Please cite the published paper via https://doi.org/10.24963/ijcai.2024/919
♻ ☆ RadCLIP: Enhancing Radiologic Image Analysis through Contrastive Language-Image Pre-training
The integration of artificial intelligence (AI) with radiology marks a transformative era in medicine. Vision foundation models have been adopted to enhance radiologic imaging analysis. However, the distinct complexities of radiologic 2D and 3D radiologic data pose unique challenges that existing models, pre-trained on general non-medical images, fail to address adequately. To bridge this gap and capitalize on the diagnostic precision required in radiologic imaging, we introduce Radiologic Contrastive Language-Image Pre-training (RadCLIP): a cross-modal vision-language foundational model that harnesses Vision Language Pre-training (VLP) framework to improve radiologic image analysis. Building upon Contrastive Language-Image Pre-training (CLIP), RadCLIP incorporates a slice pooling mechanism tailored for volumetric image analysis and is pre-trained using a large and diverse dataset of radiologic image-text pairs. The RadCLIP was pre-trained to effectively align radiologic images with their corresponding text annotations, creating a robust vision backbone for radiologic images. Extensive experiments demonstrate RadCLIP's superior performance in both uni-modal radiologic image classification and cross-modal image-text matching, highlighting its significant promise for improving diagnostic accuracy and efficiency in clinical settings. Our Key contributions include curating a large dataset with diverse radiologic 2D/3D radiologic image-text pairs, a slice pooling adapter using an attention mechanism for integrating 2D images, and comprehensive evaluations of RadCLIP on various radiologic downstream tasks.
♻ ☆ CURE: Simulation-Augmented Auto-Tuning in Robotics
Robotic systems are typically composed of various subsystems, such as localization and navigation, each encompassing numerous configurable components (e.g., selecting different planning algorithms). Once an algorithm has been selected for a component, its associated configuration options must be set to the appropriate values. Configuration options across the system stack interact non-trivially. Finding optimal configurations for highly configurable robots to achieve desired performance poses a significant challenge due to the interactions between configuration options across software and hardware that result in an exponentially large and complex configuration space. These challenges are further compounded by the need for transferability between different environments and robotic platforms. Data efficient optimization algorithms (e.g., Bayesian optimization) have been increasingly employed to automate the tuning of configurable parameters in cyber-physical systems. However, such optimization algorithms converge at later stages, often after exhausting the allocated budget (e.g., optimization steps, allotted time) and lacking transferability. This paper proposes CURE -- a method that identifies causally relevant configuration options, enabling the optimization process to operate in a reduced search space, thereby enabling faster optimization of robot performance. CURE abstracts the causal relationships between various configuration options and robot performance objectives by learning a causal model in the source (a low-cost environment such as the Gazebo simulator) and applying the learned knowledge to perform optimization in the target (e.g., Turtlebot 3 physical robot). We demonstrate the effectiveness and transferability of CURE by conducting experiments that involve varying degrees of deployment changes in both physical robots and simulation.
comment: Revised submission in IEEE Transactions on Robotics (T-RO), 2024
Graphics 7
☆ Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation
Generating high-quality 3D objects from textual descriptions remains a challenging problem due to computational cost, the scarcity of 3D data, and complex 3D representations. We introduce Geometry Image Diffusion (GIMDiffusion), a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images, thereby avoiding the need for complex 3D-aware architectures. By integrating a Collaborative Control mechanism, we exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion. This enables strong generalization even with limited 3D training data (allowing us to use only high-quality training data) as well as retaining compatibility with guidance techniques such as IPAdapter. In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models. The generated objects consist of semantically meaningful, separate parts and include internal structures, enhancing both usability and versatility.
comment: 11 pages, 9 figures, Project page: https://unity-research.github.io/Geometry-Image-Diffusion.github.io/
☆ A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers
The high performance of tree ensemble classifiers benefits from a large set of rules, which, in turn, makes the models hard to understand. To improve interpretability, existing methods extract a subset of rules for approximation using model reduction techniques. However, by focusing on the reduced rule set, these methods often lose fidelity and ignore anomalous rules that, despite their infrequency, play crucial roles in real-world applications. This paper introduces a scalable visual analysis method to explain tree ensemble classifiers that contain tens of thousands of rules. The key idea is to address the issue of losing fidelity by adaptively organizing the rules as a hierarchy rather than reducing them. To ensure the inclusion of anomalous rules, we develop an anomaly-biased model reduction method to prioritize these rules at each hierarchical level. Synergized with this hierarchical organization of rules, we develop a matrix-based hierarchical visualization to support exploration at different levels of detail. Our quantitative experiments and case studies demonstrate how our method fosters a deeper understanding of both common and anomalous rules, thereby enhancing interpretability without sacrificing comprehensiveness.
comment: 15 pages, 10 figures
☆ Large Étendue 3D Holographic Display with Content-adpative Dynamic Fourier Modulation SIGGRAPH
Emerging holographic display technology offers unique capabilities for next-generation virtual reality systems. Current holographic near-eye displays, however, only support a small \'etendue, which results in a direct tradeoff between achievable field of view and eyebox size. \'Etendue expansion has recently been explored, but existing approaches are either fundamentally limited in the image quality that can be achieved or they require extremely high-speed spatial light modulators. We describe a new \'etendue expansion approach that combines multiple coherent sources with content-adaptive amplitude modulation of the hologram spectrum in the Fourier plane. To generate time-multiplexed phase and amplitude patterns for our spatial light modulators, we devise a pupil-aware gradient-descent-based computer-generated holography algorithm that is supervised by a large-baseline target light field. Compared with relevant baseline approaches, our method demonstrates significant improvements in image quality and \'etendue in simulation and with an experimental holographic display prototype.
comment: 12 pages, 7 figures, to be published in SIGGRAPH Asia 2024. Project website: https://bchao1.github.io/holo_dfm/
☆ Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization
Reduced-order simulation is an emerging method for accelerating physical simulations with high DOFs, and recently developed neural-network-based methods with nonlinear subspaces have been proven effective in diverse applications as more concise subspaces can be detected. However, the complexity and landscape of simulation objectives within the subspace have not been optimized, which leaves room for enhancement of the convergence speed. This work focuses on this point by proposing a general method for finding optimized subspace mappings, enabling further acceleration of neural reduced-order simulations while capturing comprehensive representations of the configuration manifolds. We achieve this by optimizing the Lipschitz energy of the elasticity term in the simulation objective, and incorporating the cubature approximation into the training process to manage the high memory and time demands associated with optimizing the newly introduced energy. Our method is versatile and applicable to both supervised and unsupervised settings for optimizing the parameterizations of the configuration manifolds. We demonstrate the effectiveness of our approach through general cases in both quasi-static and dynamics simulations. Our method achieves acceleration factors of up to 6.83 while consistently preserving comparable simulation accuracy in various cases, including large twisting, bending, and rotational deformations with collision handling. This novel approach offers significant potential for accelerating physical simulations, and can be a good add-on to existing neural-network-based solutions in modeling complex deformable objects.
♻ ☆ Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing SP
One of the main concerns in design and process planning for multi-axis additive and subtractive manufacturing is collision avoidance between moving objects (e.g., tool assemblies) and stationary objects (e.g., a part unified with fixtures). The collision measure for various pairs of relative rigid translations and rotations between the two pointsets can be conceptualized by a compactly supported scalar field over the 6D non-Euclidean configuration space. Explicit representation and computation of this field is costly in both time and space. If we fix $O(m)$ sparsely sampled rotations (e.g., tool orientations), computation of the collision measure field as a convolution of indicator functions of the 3D pointsets over a uniform grid (i.e., voxelized geometry) of resolution $O(n^3)$ via fast Fourier transforms (FFTs) scales as in $O(mn^3 \log n)$ in time and $O(mn^3)$ in space. In this paper, we develop an implicit representation of the collision measure field via deep neural networks (DNNs). We show that our approach is able to accurately interpolate the collision measure from a sparse sampling of rotations, and can represent the collision measure field with a small memory footprint. Moreover, we show that this representation can be efficiently updated through fine-tuning to more efficiently train the network on multi-resolution data, as well as accommodate incremental changes to the geometry (such as might occur in iterative processes such as topology optimization of the part subject to CNC tool accessibility constraints).
comment: Special Issue on symposium on Solid and Physical Modeling (SPM 2023)
♻ ☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
♻ ☆ GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns ECCV 2024
Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/
comment: Accepted to ECCV 2024. Sept 4th, 2024: release of GarmentCodeData(v2)
Robotics 42
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
Effective collaboration of dual-arm robots and their tool use capabilities are increasingly important areas in the advancement of robotics. These skills play a significant role in expanding robots' ability to operate in diverse real-world environments. However, progress is impeded by the scarcity of specialized training data. This paper introduces RoboTwin, a novel benchmark dataset combining real-world teleoperated data with synthetic data from digital twins, designed for dual-arm robotic scenarios. Using the COBOT Magic platform, we have collected diverse data on tool usage and human-robot interaction. We present a innovative approach to creating digital twins using AI-generated content, transforming 2D images into detailed 3D models. Furthermore, we utilize large language models to generate expert-level training data and task-specific pose sequences oriented toward functionality. Our key contributions are: 1) the RoboTwin benchmark dataset, 2) an efficient real-to-simulation pipeline, and 3) the use of language models for automatic expert-level data generation. These advancements are designed to address the shortage of robotic training data, potentially accelerating the development of more capable and versatile robotic systems for a wide range of real-world applications. The project page is available at https://robotwin-benchmark.github.io/early-version/
comment: Project page: https://robotwin-benchmark.github.io/early-version/
☆ Hybrid Imitation-Learning Motion Planner for Urban Driving
With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.
☆ CONClave -- Secure and Robust Cooperative Perception for CAVs Using Authenticated Consensus and Trust Scoring
Connected Autonomous Vehicles have great potential to improve automobile safety and traffic flow, especially in cooperative applications where perception data is shared between vehicles. However, this cooperation must be secured from malicious intent and unintentional errors that could cause accidents. Previous works typically address singular security or reliability issues for cooperative driving in specific scenarios rather than the set of errors together. In this paper, we propose CONClave, a tightly coupled authentication, consensus, and trust scoring mechanism that provides comprehensive security and reliability for cooperative perception in autonomous vehicles. CONClave benefits from the pipelined nature of the steps such that faults can be detected significantly faster and with less compute. Overall, CONClave shows huge promise in preventing security flaws, detecting even relatively minor sensing faults, and increasing the robustness and accuracy of cooperative perception in CAVs while adding minimal overhead.
comment: 6 pages, 6 figures, Design Automation Conference June 2024
SOAR: Simultaneous Exploration and Photographing with Heterogeneous UAVs for Fast Autonomous Reconstruction IROS2024
Unmanned Aerial Vehicles (UAVs) have gained significant popularity in scene reconstruction. This paper presents SOAR, a LiDAR-Visual heterogeneous multi-UAV system specifically designed for fast autonomous reconstruction of complex environments. Our system comprises a LiDAR-equipped explorer with a large field-of-view (FoV), alongside photographers equipped with cameras. To ensure rapid acquisition of the scene's surface geometry, we employ a surface frontier-based exploration strategy for the explorer. As the surface is progressively explored, we identify the uncovered areas and generate viewpoints incrementally. These viewpoints are then assigned to photographers through solving a Consistent Multiple Depot Multiple Traveling Salesman Problem (Consistent-MDMTSP), which optimizes scanning efficiency while ensuring task consistency. Finally, photographers utilize the assigned viewpoints to determine optimal coverage paths for acquiring images. We present extensive benchmarks in the realistic simulator, which validates the performance of SOAR compared with classical and state-of-the-art methods. For more details, please see our project page at https://sysu-star.github.io/SOAR}{sysu-star.github.io/SOAR.
comment: Accepted to IROS2024. Code: https://github.com/SYSU-STAR/SOAR. Project page: http://sysu-star.com/SOAR/
☆ Surgical Task Automation Using Actor-Critic Frameworks and Self-Supervised Imitation Learning
Surgical robot task automation has recently attracted great attention due to its potential to benefit both surgeons and patients. Reinforcement learning (RL) based approaches have demonstrated promising ability to provide solutions to automated surgical manipulations on various tasks. To address the exploration challenge, expert demonstrations can be utilized to enhance the learning efficiency via imitation learning (IL) approaches. However, the successes of such methods normally rely on both states and action labels. Unfortunately action labels can be hard to capture or their manual annotation is prohibitively expensive owing to the requirement for expert knowledge. It therefore remains an appealing and open problem to leverage expert demonstrations composed of pure states in RL. In this work, we present an actor-critic RL framework, termed AC-SSIL, to overcome this challenge of learning with state-only demonstrations collected by following an unknown expert policy. It adopts a self-supervised IL method, dubbed SSIL, to effectively incorporate demonstrated states into RL paradigms by retrieving from demonstrates the nearest neighbours of the query state and utilizing the bootstrapping of actor networks. We showcase through experiments on an open-source surgical simulation platform that our method delivers remarkable improvements over the RL baseline and exhibits comparable performance against action based IL methods, which implies the efficacy and potential of our method for expert demonstration-guided learning scenarios.
comment: 8 pages,7 figures, 62 conferences
☆ A Low-Cost Real-Time Spiking System for Obstacle Detection based on Ultrasonic Sensors and Rate Coding
Since the advent of mobile robots, obstacle detection has been a topic of great interest. It has also been a subject of study in neuroscience, where flying insects and bats could be considered two of the most interesting cases in terms of vision-based and sound-based mechanisms for obstacle detection, respectively. Currently, many studies focus on vision-based obstacle detection, but not many can be found regarding sound-based obstacle detection. This work focuses on the latter approach, which also makes use of a Spiking Neural Network to exploit the advantages of these architectures and achieve an approach closer to biology. The complete system was tested through a series of experiments that confirm the validity of the spiking architecture for obstacle detection. It is empirically demonstrated that, when the distance between the robot and the obstacle decreases, the output firing rate of the system increases in response as expected, and vice versa. Therefore, there is a direct relation between the two. Furthermore, there is a distance threshold between detectable and undetectable objects which is also empirically measured in this work. An in-depth study on how this system works at low level based on the Inter-Spike Interval concept was performed, which may be useful in the future development of applications based on spiking filters.
comment: 22 pages, 8 figures
☆ Causality-Aware Transformer Networks for Robotic Navigation
Recent advances in machine learning algorithms have garnered growing interest in developing versatile Embodied AI systems. However, current research in this domain reveals opportunities for improvement. First, the direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling, potentially limiting its performance in Embodied AI tasks. Second, the reliance on task-specific configurations, such as pre-trained modules and dataset-specific logic, compromises the generalizability of these methods. We address these constraints by initially exploring the unique differences between Embodied AI tasks and other sequential data tasks through the lens of Causality, presenting a causal framework to elucidate the inadequacies of conventional sequential methods for Embodied AI. By leveraging this causal perspective, we propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module to enhance the models's Environmental Understanding capability. Meanwhile, our method is devoid of task-specific inductive biases and can be trained in an End-to-End manner, which enhances the method's generalizability across various contexts. Empirical evaluations demonstrate that our methodology consistently surpasses benchmark performances across a spectrum of settings, tasks and simulation environments. Extensive ablation studies reveal that the performance gains can be attributed to the Causal Understanding Module, which demonstrates effectiveness and efficiency in both Reinforcement Learning and Supervised Learning settings.
☆ Learning-Based Error Detection System for Advanced Vehicle Instrument Cluster Rendering
The automotive industry is currently expanding digital display options with every new model that comes onto the market. This entails not just an expansion in dimensions, resolution, and customization choices, but also the capability to employ novel display effects like overlays while assembling the content of the display cluster. Unfortunately, this raises the need for appropriate monitoring systems that can detect rendering errors and apply appropriate countermeasures when required. Classical solutions such as Cyclic Redundancy Checks (CRC) will soon be no longer viable as any sort of alpha blending, warping of scaling of content can cause unwanted CRC violations. Therefore, we propose a novel monitoring approach to verify correctness of displayed content using telltales (e.g. warning signs) as example. It uses a learning-based approach to separate "good" telltales, i.e. those that a human driver will understand correctly, and "corrupted" telltales, i.e. those that will not be visible or perceived correctly. As a result, it possesses inherent resilience against individual pixel errors and implicitly supports changing backgrounds, overlay or scaling effects. This is underlined by our experimental study where all "corrupted" test patterns were correctly classified, while no false alarms were triggered.
comment: 9 pages
☆ Mamba as a motion encoder for robotic imitation learning
Recent advancements in imitation learning, particularly with the integration of LLM techniques, are set to significantly improve robots' dexterity and adaptability. In this study, we propose using Mamba, a state-of-the-art architecture with potential applications in LLMs, for robotic imitation learning, highlighting its ability to function as an encoder that effectively captures contextual information. By reducing the dimensionality of the state space, Mamba operates similarly to an autoencoder. It effectively compresses the sequential information into state variables while preserving the essential temporal dynamics necessary for accurate motion prediction. Experimental results in tasks such as cup placing and case loading demonstrate that despite exhibiting higher estimation errors, Mamba achieves superior success rates compared to Transformers in practical task execution. This performance is attributed to Mamba's structure, which encompasses the state space model. Additionally, the study investigates Mamba's capacity to serve as a real-time motion generator with a limited amount of training data.
comment: 7 pages, 7 figures
☆ Modelling, Design Optimization and Prototype development of Knee Exoskeleton
This study focuses on enhancing the design of an existing knee exoskeleton by addressing limitations in the range of motion (ROM) during Sit-to-Stand (STS) motions. While current knee exoskeletons emphasize toughness and rehabilitation, their closed-loop mechanisms hinder optimal ROM, which is crucial for effective rehabilitation. This research aims to optimize the exoskeleton design to achieve the necessary ROM, improving its functionality in rehabilitation. This can be achieved by utilizing kinematic modeling and formulation, the existing design was represented in the non-linear and non-convex mathematical functions. Optimization techniques, considering constraints based on human leg measurements, were applied to determine the best dimensions for the exoskeleton. This resulted in a significant increase in ROM compared to existing models. A MATLAB program was developed to compare the ROM of the optimized exoskeleton with the original design. To validate the practicality of the optimized design, analysis was conducted using a mannequin with average human dimensions, followed by constructing a cardboard dummy model to confirm simulation results. The STS motion of an average human was captured using a camera and TRACKER software, and the motion was compared with that of the dummy model to identify any misalignments between the human and exoskeleton knee joints. Furthermore, a prototype of the knee joint exoskeleton is being developed to further investigate misalignments and improve the design. Future work includes the use of EMG sensors for more detailed analysis and better results.
☆ SurgTrack: CAD-Free 3D Tracking of Real-world Surgical Instruments
Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
☆ Vision-Language Navigation with Continual Learning
Vision-language navigation (VLN) is a critical domain within embedded intelligence, requiring agents to navigate 3D environments based on natural language instructions. Traditional VLN research has focused on improving environmental understanding and decision accuracy. However, these approaches often exhibit a significant performance gap when agents are deployed in novel environments, mainly due to the limited diversity of training data. Expanding datasets to cover a broader range of environments is impractical and costly. We propose the Vision-Language Navigation with Continual Learning (VLNCL) paradigm to address this challenge. In this paradigm, agents incrementally learn new environments while retaining previously acquired knowledge. VLNCL enables agents to maintain an environmental memory and extract relevant knowledge, allowing rapid adaptation to new environments while preserving existing information. We introduce a novel dual-loop scenario replay method (Dual-SR) inspired by brain memory replay mechanisms integrated with VLN agents. This method facilitates consolidating past experiences and enhances generalization across new tasks. By utilizing a multi-scenario memory buffer, the agent efficiently organizes and replays task memories, thereby bolstering its ability to adapt quickly to new environments and mitigating catastrophic forgetting. Our work pioneers continual learning in VLN agents, introducing a novel experimental setup and evaluation metrics. We demonstrate the effectiveness of our approach through extensive evaluations and establish a benchmark for the VLNCL paradigm. Comparative experiments with existing continual learning and VLN methods show significant improvements, achieving state-of-the-art performance in continual learning ability and highlighting the potential of our approach in enabling rapid adaptation while preserving prior knowledge.
☆ Want a Ride? Attitudes Towards Autonomous Driving and Behavior in Autonomous Vehicles
Research conducted previously has focused on either attitudes toward or behaviors associated with autonomous driving. In this paper, we bridge these two dimensions by exploring how attitudes towards autonomous driving influence behavior in an autonomous car. We conducted a field experiment with twelve participants engaged in non-driving related tasks. Our findings indicate that attitudes towards autonomous driving do not affect participants' driving interventions in vehicle control and eye glance behavior. Therefore, studies on autonomous driving technology lacking field tests might be unreliable for assessing the potential behaviors, attitudes, and acceptance of autonomous vehicles.
comment: 12 pages
☆ Modular pipeline for small bodies gravity field modeling: an efficient representation of variable density spherical harmonics coefficients
Proximity operations to small bodies, such as asteroids and comets, demand high levels of autonomy to achieve cost-effective, safe, and reliable Guidance, Navigation and Control (GNC) solutions. Enabling autonomous GNC capabilities in the vicinity of these targets is thus vital for future space applications. However, the highly non-linear and uncertain environment characterizing their vicinity poses unique challenges that need to be assessed to grant robustness against unknown shapes and gravity fields. In this paper, a pipeline designed to generate variable density gravity field models is proposed, allowing the generation of a coherent set of scenarios that can be used for design, validation, and testing of GNC algorithms. The proposed approach consists in processing a polyhedral shape model of the body with a given density distribution to compute the coefficients of the spherical harmonics expansion associated with the gravity field. To validate the approach, several comparison are conducted against analytical solutions, literature results, and higher fidelity models, across a diverse set of targets with varying morphological and physical properties. Simulation results demonstrate the effectiveness of the methodology, showing good performances in terms of modeling accuracy and computational efficiency. This research presents a faster and more robust framework for generating environmental models to be used in simulation and hardware-in-the-loop testing of onboard GNC algorithms.
☆ Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI, demanding agents to navigate freely in unbounded 3D spaces solely guided by natural language instructions. This task introduces distinct challenges in multimodal comprehension, spatial reasoning, and decision-making. To address these challenges, we introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks. Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes. Firstly, it constructs a cognitive map, integrating temporal, spatial, and semantic elements, thereby facilitating the development of spatial memory within LLMs. Secondly, Cog-GA employs a predictive mechanism for waypoints, strategically optimizing the exploration trajectory to maximize navigational efficiency. Each waypoint is accompanied by a dual-channel scene description, categorizing environmental cues into 'what' and 'where' streams as the brain. This segregation enhances the agent's attentional focus, enabling it to discern pertinent spatial information for navigation. A reflective mechanism complements these strategies by capturing feedback from prior navigation experiences, facilitating continual learning and adaptive replanning. Extensive evaluations conducted on VLN-CE benchmarks validate Cog-GA's state-of-the-art performance and ability to simulate human-like navigation behaviors. This research significantly contributes to the development of strategic and interpretable VLN-CE agents.
☆ eRSS-RAMP: A Rule-Adherence Motion Planner Based on Extended Responsibility-Sensitive Safety for Autonomous Driving
Driving safety and responsibility determination are indispensable pieces of the puzzle for autonomous driving. They are also deeply related to the allocation of right-of-way and the determination of accident liability. Therefore, Intel/Mobileye designed the responsibility-sensitive safety (RSS) framework to further enhance the safety regulation of autonomous driving, which mathematically defines rules for autonomous vehicles (AVs) behaviors in various traffic scenarios. However, the RSS framework's rules are relatively rudimentary in certain scenarios characterized by interaction uncertainty, especially those requiring collaborative driving during emergency collision avoidance. Besides, the integration of the RSS framework with motion planning is rarely discussed in current studies. Therefore, we proposed a rule-adherence motion planner (RAMP) based on the extended RSS (eRSS) regulation for non-connected and connected AVs in merging and emergency-avoiding scenarios. The simulation results indicate that the proposed method can achieve faster and safer lane merging performance (53.0% shorter merging length and a 73.5% decrease in merging time), and allows for more stable steering maneuvers in emergency collision avoidance, resulting in smoother paths for ego vehicle and surrounding vehicles.
comment: 12 pages, 19 figures, submitted to an IEEE journal
☆ Dispelling Four Challenges in Inertial Motion Tracking with One Recurrent Inertial Graph-based Estimator (RING)
In this paper, we extend the Recurrent Inertial Graph-based Estimator (RING), a novel neural-network-based solution for Inertial Motion Tracking (IMT), to generalize across a large range of sampling rates, and we demonstrate that it can overcome four real-world challenges: inhomogeneous magnetic fields, sensor-to-segment misalignment, sparse sensor setups, and nonrigid sensor attachment. RING can estimate the rotational state of a three-segment kinematic chain with double hinge joints from inertial data, and achieves an experimental mean-absolute-(tracking)-error of 8.10 +/- 1.19 degrees if all four challenges are present simultaneously. The network is trained on simulated data yet evaluated on experimental data, highlighting its remarkable ability to zero-shot generalize from simulation to experiment. We conduct an ablation study to analyze the impact of each of the four challenges on RING's performance, we showcase its robustness to varying sampling rates, and we demonstrate that RING is capable of real-time operation. This research not only advances IMT technology by making it more accessible and versatile but also enhances its potential for new application domains including non-expert use of sparse IMT with nonrigid sensor attachments in unconstrained environments.
comment: Submitted to 12th IFAC Symposium on Biological and Medical Systems
☆ USV-AUV Collaboration Framework for Underwater Tasks under Extreme Sea Conditions
Autonomous underwater vehicles (AUVs) are valuable for ocean exploration due to their flexibility and ability to carry communication and detection units. Nevertheless, AUVs alone often face challenges in harsh and extreme sea conditions. This study introduces a unmanned surface vehicle (USV)-AUV collaboration framework, which includes high-precision multi-AUV positioning using USV path planning via Fisher information matrix optimization and reinforcement learning for multi-AUV cooperative tasks. Applied to a multi-AUV underwater data collection task scenario, extensive simulations validate the framework's feasibility and superior performance, highlighting exceptional coordination and robustness under extreme sea conditions. The simulation code will be made available as open-source to foster future research in this area.
☆ Fuzzy Logic Control for Indoor Navigation of Mobile Robots
Autonomous mobile robots have many applications in indoor unstructured environment, wherein optimal movement of the robot is needed. The robot therefore needs to navigate in unknown and dynamic environments. This paper presents an implementation of fuzzy logic controller for navigation of mobile robot in an unknown dynamically cluttered environment. Fuzzy logic controller is used here as it is capable of making inferences even under uncertainties. It helps in rule generation and decision making process in order to reach the goal position under various situations. Sensor readings from the robot and the desired direction of motion are inputs to the fuzz logic controllers and the acceleration of the respective wheels are the output of the controller. Hence, the mobile robot avoids obstacles and reaches the goal position. Keywords: Fuzzy Logic Controller, Membership Functions, Takagi-Sugeno-Kang FIS, Centroid Defuzzification
☆ Occlusion-Based Cooperative Transport for Concave Objects with a Swarm of Miniature Mobile Robots
An occlusion based strategy for collective transport of a concave object using a swarm of mobile robots has been proposed in this paper. We aim to overcome the challenges of transporting concave objects using decentralized approach. The interesting aspect of this task is that the agents have no prior knowledge about the geometry of the object and do not explicitly communicate with each other. The concept is to eliminate the concavity of the object by filling a number of robots in its cavity and then carry out an occlusion based transport strategy on the newly formed convex object or "pseudo object". We divide our work into two parts: concavity filling of various concave objects and occlusion based collective transport of convex objects.
☆ Multi-modal Situated Reasoning in 3D Scenes
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding are limited in data modality, diversity, scale, and task scope. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated question-answering pairs across 9 distinct question categories, covering complex scenarios within 3D scenes. We introduce a novel interleaved multi-modal input setting in our benchmark to provide text, image, and point cloud for situation and question description, resolving ambiguity in previous single-modality convention (e.g., text). Additionally, we devise the Multi-modal Situated Next-step Navigation (MSNN) benchmark to evaluate models' situated reasoning for navigation. Comprehensive evaluations on MSQA and MSNN highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and cross-domain transfer further demonstrate the efficacy of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models.
comment: Project page: https://msr3d.github.io/
Reinforcement Learning for Wheeled Mobility on Vertically Challenging Terrain
Off-road navigation on vertically challenging terrain, involving steep slopes and rugged boulders, presents significant challenges for wheeled robots both at the planning level to achieve smooth collision-free trajectories and at the control level to avoid rolling over or getting stuck. Considering the complex model of wheel-terrain interactions, we develop an end-to-end Reinforcement Learning (RL) system for an autonomous vehicle to learn wheeled mobility through simulated trial-and-error experiences. Using a custom-designed simulator built on the Chrono multi-physics engine, our approach leverages Proximal Policy Optimization (PPO) and a terrain difficulty curriculum to refine a policy based on a reward function to encourage progress towards the goal and penalize excessive roll and pitch angles, which circumvents the need of complex and expensive kinodynamic modeling, planning, and control. Additionally, we present experimental results in the simulator and deploy our approach on a physical Verti-4-Wheeler (V4W) platform, demonstrating that RL can equip conventional wheeled robots with previously unrealized potential of navigating vertically challenging terrain.
☆ Approximate Environment Decompositions for Robot Coverage Planning using Submodular Set Cover
In this paper, we investigate the problem of decomposing 2D environments for robot coverage planning. Coverage path planning (CPP) involves computing a cost-minimizing path for a robot equipped with a coverage or sensing tool so that the tool visits all points in the environment. CPP is an NP-Hard problem, so existing approaches simplify the problem by decomposing the environment into the minimum number of sectors. Sectors are sub-regions of the environment that can each be covered using a lawnmower path (i.e., along parallel straight-line paths) oriented at an angle. However, traditional methods either limit the coverage orientations to be axis-parallel (horizontal/vertical) or provide no guarantees on the number of sectors in the decomposition. We introduce an approach to decompose the environment into possibly overlapping rectangular sectors. We provide an approximation guarantee on the number of sectors computed using our approach for a given environment. We do this by leveraging the submodular property of the sector coverage function, which enables us to formulate the decomposition problem as a submodular set cover (SSC) problem with well-known approximation guarantees for the greedy algorithm. Our approach improves upon existing coverage planning methods, as demonstrated through an evaluation using maps of complex real-world environments.
comment: Extended version of the 2024 IEEE CDC paper, 8 pages, 3 figures
☆ Developing, Analyzing, and Evaluating Self-Drive Algorithms Using Drive-by-Wire Electric Vehicles
Reliable lane-following algorithms are essential for safe and effective autonomous driving. This project was primarily focused on developing and evaluating different lane-following programs to find the most reliable algorithm for a Vehicle to Everything (V2X) project. The algorithms were first tested on a simulator and then with real vehicles equipped with a drive-by-wire system using ROS (Robot Operating System). Their performance was assessed through reliability, comfort, speed, and adaptability metrics. The results show that the two most reliable approaches detect both lane lines and use unsupervised learning to separate them. These approaches proved to be robust in various driving scenarios, making them suitable candidates for integration into the V2X project.
comment: Supported by the National Science Foundation under Grants No. 2150292 and 2150096
☆ RoboKoop: Efficient Control Conditioned Representations from Visual Input in Robotics using Koopman Operator
Developing agents that can perform complex control tasks from high-dimensional observations is a core ability of autonomous agents that requires underlying robust task control policies and adapting the underlying visual representations to the task. Most existing policies need a lot of training samples and treat this problem from the lens of two-stage learning with a controller learned on top of pre-trained vision models. We approach this problem from the lens of Koopman theory and learn visual representations from robotic agents conditioned on specific downstream tasks in the context of learning stabilizing control for the agent. We introduce a Contrastive Spectral Koopman Embedding network that allows us to learn efficient linearized visual representations from the agent's visual data in a high dimensional latent space and utilizes reinforcement learning to perform off-policy control on top of the extracted representations with a linear controller. Our method enhances stability and control in gradient dynamics over time, significantly outperforming existing approaches by improving efficiency and accuracy in learning task policies over extended horizons.
comment: Accepted to the $8^{th}$ Conference on Robot Learning (CoRL 2024)
☆ Incorporating dense metric depth into neural 3D representations for view synthesis and relighting
Synthesizing accurate geometry and photo-realistic appearance of small scenes is an active area of research with compelling use cases in gaming, virtual reality, robotic-manipulation, autonomous driving, convenient product capture, and consumer-level photography. When applying scene geometry and appearance estimation techniques to robotics, we found that the narrow cone of possible viewpoints due to the limited range of robot motion and scene clutter caused current estimation techniques to produce poor quality estimates or even fail. On the other hand, in robotic applications, dense metric depth can often be measured directly using stereo and illumination can be controlled. Depth can provide a good initial estimate of the object geometry to improve reconstruction, while multi-illumination images can facilitate relighting. In this work we demonstrate a method to incorporate dense metric depth into the training of neural 3D representations and address an artifact observed while jointly refining geometry and appearance by disambiguating between texture and geometry edges. We also discuss a multi-flash stereo camera system developed to capture the necessary data for our pipeline and show results on relighting and view synthesis with a few training views.
comment: Project webpage: https://stereomfc.github.io
☆ PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain
Self-supervised learning is a powerful approach for developing traversability models for off-road navigation, but these models often struggle with inputs unseen during training. Existing methods utilize techniques like evidential deep learning to quantify model uncertainty, helping to identify and avoid out-of-distribution terrain. However, always avoiding out-of-distribution terrain can be overly conservative, e.g., when novel terrain can be effectively analyzed using a physics-based model. To overcome this challenge, we introduce Physics-Informed Evidential Traversability (PIETRA), a self-supervised learning framework that integrates physics priors directly into the mathematical formulation of evidential neural networks and introduces physics knowledge implicitly through an uncertainty-aware, physics-informed training loss. Our evidential network seamlessly transitions between learned and physics-based predictions for out-of-distribution inputs. Additionally, the physics-informed loss regularizes the learned model, ensuring better alignment with the physics model. Extensive simulations and hardware experiments demonstrate that PIETRA improves both learning accuracy and navigation performance in environments with significant distribution shifts.
comment: Submitted to RA-L. Video: https://youtu.be/OTnNZ96oJRk
♻ ☆ Augmented Reality without Borders: Achieving Precise Localization Without Maps
Visual localization is crucial for Computer Vision and Augmented Reality (AR) applications, where determining the camera or device's position and orientation is essential to accurately interact with the physical environment. Traditional methods rely on detailed 3D maps constructed using Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM), which is computationally expensive and impractical for dynamic or large-scale environments. We introduce MARLoc, a novel localization framework for AR applications that uses known relative transformations within image sequences to perform intra-sequence triangulation, generating 3D-2D correspondences for pose estimation and refinement. MARLoc eliminates the need for pre-built SfM maps, providing accurate and efficient localization suitable for dynamic outdoor environments. Evaluation with benchmark datasets and real-world experiments demonstrates MARLoc's state-of-the-art performance and robustness. By integrating MARLoc into an AR device, we highlight its capability to achieve precise localization in real-world outdoor scenarios, showcasing its practical effectiveness and potential to enhance visual localization in AR applications.
♻ ☆ Efficient Multi-agent Navigation with Lightweight DRL Policy
In this article, we present an end-to-end collision avoidance policy based on deep reinforcement learning (DRL) for multi-agent systems, demonstrating encouraging outcomes in real-world applications. In particular, our policy calculates the control commands of the agent based on the raw LiDAR observation. In addition, the number of parameters of the proposed basic model is 140,000, and the size of the parameter file is 3.5 MB, which allows the robot to calculate the actions from the CPU alone. We propose a multi-agent training platform based on a physics-based simulator to further bridge the gap between simulation and the real world. The policy is trained on a policy-gradients-based RL algorithm in a dense and messy training environment. A novel reward function is introduced to address the issue of agents choosing suboptimal actions in some common scenarios. Although the data used for training is exclusively from the simulation platform, the policy can be successfully transferred and deployed in real-world robots. Finally, our policy effectively responds to intentional obstructions and avoids collisions. The website is available at \url{https://sites.google.com/view/xingrong2024efficient/%E9%A6%96%E9%A1%B5}.
♻ ☆ Accelerating Model Predictive Control for Legged Robots through Distributed Optimization IROS
This paper presents a novel approach to enhance Model Predictive Control (MPC) for legged robots through Distributed Optimization. Our method focuses on decomposing the robot dynamics into smaller, parallelizable subsystems, and utilizing the Alternating Direction Method of Multipliers (ADMM) to ensure consensus among them. Each subsystem is managed by its own Optimal Control Problem, with ADMM facilitating consistency between their optimizations. This approach not only decreases the computational time but also allows for effective scaling with more complex robot configurations, facilitating the integration of additional subsystems such as articulated arms on a quadruped robot. We demonstrate, through numerical evaluations, the convergence of our approach on two systems with increasing complexity. In addition, we showcase that our approach converges towards the same solution when compared to a state-of-the-art centralized whole-body MPC implementation. Moreover, we quantitatively compare the computational efficiency of our method to the centralized approach, revealing up to a 75% reduction in computational time. Overall, our approach offers a promising avenue for accelerating MPC solutions for legged robots, paving the way for more effective utilization of the computational performance of modern hardware.
comment: Accepted for publication at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ On the Benefits of GPU Sample-Based Stochastic Predictive Controllers for Legged Locomotion IROS
Quadrupedal robots excel in mobility, navigating complex terrains with agility. However, their complex control systems present challenges that are still far from being fully addressed. In this paper, we introduce the use of Sample-Based Stochastic control strategies for quadrupedal robots, as an alternative to traditional optimal control laws. We show that Sample-Based Stochastic methods, supported by GPU acceleration, can be effectively applied to real quadruped robots. In particular, in this work, we focus on achieving gait frequency adaptation, a notable challenge in quadrupedal locomotion for gradient-based methods. To validate the effectiveness of Sample-Based Stochastic controllers we test two distinct approaches for quadrupedal robots and compare them against a conventional gradient-based Model Predictive Control system. Our findings, validated both in simulation and on a real 21Kg Aliengo quadruped, demonstrate that our method is on par with a traditional Model Predictive Control strategy when the robot is subject to zero or moderate disturbance, while it surpasses gradient-based methods in handling sustained external disturbances, thanks to the straightforward gait adaptation strategy that is possible to achieve within their formulation.
comment: Accepted for publication at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Can Vehicle Motion Planning Generalize to Realistic Long-tail Scenarios?
Real-world autonomous driving systems must make safe decisions in the face of rare and diverse traffic scenarios. Current state-of-the-art planners are mostly evaluated on real-world datasets like nuScenes (open-loop) or nuPlan (closed-loop). In particular, nuPlan seems to be an expressive evaluation method since it is based on real-world data and closed-loop, yet it mostly covers basic driving scenarios. This makes it difficult to judge a planner's capabilities to generalize to rarely-seen situations. Therefore, we propose a novel closed-loop benchmark interPlan containing several edge cases and challenging driving scenarios. We assess existing state-of-the-art planners on our benchmark and show that neither rule-based nor learning-based planners can safely navigate the interPlan scenarios. A recently evolving direction is the usage of foundation models like large language models (LLM) to handle generalization. We evaluate an LLM-only planner and introduce a novel hybrid planner that combines an LLM-based behavior planner with a rule-based motion planner that achieves state-of-the-art performance on our benchmark.
♻ ☆ Evaluating the precision of the HTC VIVE Ultimate Tracker with robotic and human movements under varied environmental conditions
The HTC VIVE Ultimate Tracker, utilizing inside-out tracking with internal stereo cameras providing 6 DoF tracking without external cameras, offers a cost-efficient and straightforward setup for motion tracking. Initially designed for the gaming and VR industry, we explored its application beyond VR, providing source code for data capturing in both C++ and Python without requiring a VR headset. This study is the first to evaluate the tracker's precision across various experimental scenarios. To assess the robustness of the tracking precision, we employed a robotic arm as a precise and repeatable source of motion. Using the OptiTrack system as a reference, we conducted tests under varying experimental conditions: lighting, movement velocity, environmental changes caused by displacing objects in the scene, and human movement in front of the trackers, as well as varying the displacement size relative to the calibration center. On average, the HTC VIVE Ultimate Tracker achieved a precision of 4.98 mm +/- 4 mm across various conditions. The most critical factors affecting accuracy were lighting conditions, movement velocity, and range of motion relative to the calibration center. For practical evaluation, we captured human movements with 5 trackers in realistic motion capture scenarios. Our findings indicate sufficient precision for capturing human movements, validated through two tasks: a low-dynamic pick-and-place task and high-dynamic fencing movements performed by an elite athlete. Even though its precision is lower than that of conventional fixed-camera-based motion capture systems and its performance is influenced by several factors, the HTC VIVE Ultimate Tracker demonstrates adequate accuracy for a variety of motion tracking applications. Its ability to capture human or object movements outside of VR or MOCAP environments makes it particularly versatile.
♻ ☆ A unified theory and statistical learning approach for traffic conflict detection
This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerging in road user interactions. The proposed theory assumes context-dependent probabilistic collision risk and frames conflict detection as assessing this risk by statistical learning of extreme events in daily interactions. Experiments using real-world trajectory data are conducted for demonstration. Firstly, a unified metric for indicating conflicts is trained with lane-changing interactions on German highways. This metric and other existing metrics are then applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. for performance comparison. Results of the experiments show that the trained metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflict types, and delivers a long-tailed distribution of conflict intensity. Reflecting on these results, the proposed theory ensures consistent evaluation by a generic formulation that encompasses varying assumptions of traffic conflicts; the statistical learning approach then enables a comprehensive consideration of influencing factors such as motion states of road users, environment conditions, and participant characteristics. Therefore, the theory and learning approach jointly provide an explainable and adaptable methodology for conflict detection among different road users and across various interaction scenarios. This promises to reduce accidents and improve overall traffic safety, by enhanced safety assessment of traffic infrastructures, more effective collision warning systems for autonomous driving, and a deeper understanding of road user behaviour in different traffic conditions.
comment: 21 pages, 9 figures, in submission
♻ ☆ Invariant Smoothing for Localization: Including the IMU Biases
In this article we investigate smoothing (i.e., optimisation-based) estimation techniques for robot localization using an IMU aided by other localization sensors. We more particularly focus on Invariant Smoothing (IS), a variant based on the use of nontrivial Lie groups from robotics. We study the recently introduced Two Frames Group (TFG), and prove it can fit into the framework of Invariant Smoothing in order to better take into account the IMU biases, as compared to the state-of-the-art in robotics. Experiments based on the KITTI dataset show the proposed framework compares favorably to the state-of-the-art smoothing methods in terms of robustness in some challenging situations.
♻ ☆ BiKC: Keypose-Conditioned Consistency Policy for Bimanual Robotic Manipulation
Bimanual manipulation tasks typically involve multiple stages which require efficient interactions between two arms, posing step-wise and stage-wise challenges for imitation learning systems. Specifically, failure and delay of one step will broadcast through time, hinder success and efficiency of each sub-stage task, and thereby overall task performance. Although recent works have made strides in addressing certain challenges, few approaches explicitly consider the multi-stage nature of bimanual tasks while simultaneously emphasizing the importance of inference speed. In this paper, we introduce a novel keypose-conditioned consistency policy tailored for bimanual manipulation. It is a hierarchical imitation learning framework that consists of a high-level keypose predictor and a low-level trajectory generator. The predicted keyposes provide guidance for trajectory generation and also mark the completion of one sub-stage task. The trajectory generator is designed as a consistency model trained from scratch without distillation, which generates action sequences conditioning on current observations and predicted keyposes with fast inference speed. Simulated and real-world experimental results demonstrate that the proposed approach surpasses baseline methods in terms of success rate and operational efficiency. Codes are available at https://github.com/ManUtdMoon/BiKC.
comment: Accepted by The 16th International Workshop on the Algorithmic Foundations of Robotics (WAFR 2024)
♻ ☆ Closed-Loop Magnetic Control of Medical Soft Continuum Robots for Deflection
Magnetic soft continuum robots (MSCRs) have emerged as powerful devices in endovascular interventions owing to their hyperelastic fibre matrix and enhanced magnetic manipulability. Effective closed-loop control of tethered magnetic devices contributes to the achievement of autonomous vascular robotic surgery. In this article, we employ a magnetic actuation system equipped with a single rotatable permanent magnet to achieve closed-loop deflection control of the MSCR. To this end, we establish a differential kinematic model of MSCRs exposed to non-uniform magnetic fields. The relationship between the existence and uniqueness of Jacobian and the geometric position between robots is deduced. The control direction induced by Jacobian is demonstrated to be crucial in simulations. Then, the corresponding quasi-static control (QSC) framework integrates a linear extended state observer to estimate model uncertainties. Finally, the effectiveness of the proposed QSC framework is validated through comparative trajectory tracking experiments with the PD controller under external disturbances. Further extensions are made for the Jacobian to path-following control at the distal end position. The proposed control framework prevents the actuator from reaching the joint limit and achieves fast and low error-tracking performance without overshooting.
♻ ☆ OpenVLA: An Open-Source Vision-Language-Action Model
Large policies pretrained on a combination of Internet-scale vision-language data and diverse robot demonstrations have the potential to change how we teach robots new skills: rather than training new behaviors from scratch, we can fine-tune such vision-language-action (VLA) models to obtain robust, generalizable policies for visuomotor control. Yet, widespread adoption of VLAs for robotics has been challenging as 1) existing VLAs are largely closed and inaccessible to the public, and 2) prior work fails to explore methods for efficiently fine-tuning VLAs for new tasks, a key component for adoption. Addressing these challenges, we introduce OpenVLA, a 7B-parameter open-source VLA trained on a diverse collection of 970k real-world robot demonstrations. OpenVLA builds on a Llama 2 language model combined with a visual encoder that fuses pretrained features from DINOv2 and SigLIP. As a product of the added data diversity and new model components, OpenVLA demonstrates strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate across 29 tasks and multiple robot embodiments, with 7x fewer parameters. We further show that we can effectively fine-tune OpenVLA for new settings, with especially strong generalization results in multi-task environments involving multiple objects and strong language grounding abilities, and outperform expressive from-scratch imitation learning methods such as Diffusion Policy by 20.4%. We also explore compute efficiency; as a separate contribution, we show that OpenVLA can be fine-tuned on consumer GPUs via modern low-rank adaptation methods and served efficiently via quantization without a hit to downstream success rate. Finally, we release model checkpoints, fine-tuning notebooks, and our PyTorch codebase with built-in support for training VLAs at scale on Open X-Embodiment datasets.
comment: Website: https://openvla.github.io/
♻ ☆ MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting
Open-world generalization requires robotic systems to have a profound understanding of the physical world and the user command to solve diverse and complex tasks. While the recent advancement in vision-language models (VLMs) has offered unprecedented opportunities to solve open-world problems, how to leverage their capabilities to control robots remains a grand challenge. In this paper, we introduce Marking Open-world Keypoint Affordances (MOKA), an approach that employs VLMs to solve robotic manipulation tasks specified by free-form language instructions. Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world. By prompting the pre-trained VLM, our approach utilizes the VLM's commonsense knowledge and concept understanding acquired from broad data sources to predict affordances and generate motions. To facilitate the VLM's reasoning in zero-shot and few-shot manners, we propose a visual prompting technique that annotates marks on images, converting affordance reasoning into a series of visual question-answering problems that are solvable by the VLM. We further explore methods to enhance performance with robot experiences collected by MOKA through in-context learning and policy distillation. We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
♻ ☆ Extending Structural Causal Models for Autonomous Embodied Systems
In this work we aim to bridge the divide between autonomous embodied systems and causal reasoning. Autonomous embodied systems have come to increasingly interact with humans, and in many cases may pose risks to the physical or mental well-being of those they interact with. Meanwhile causal models, despite their inherent transparency and ability to offer contrastive explanations, have found limited usage within such systems. As such, we first identify the challenges that have limited the integration of structural causal models within autonomous embodied systems. We then introduce a number of theoretical extensions to the structural causal model formalism in order to tackle these challenges. This augments these models to possess greater levels of modularisation and encapsulation, as well presenting a constant space temporal causal model representation. While not an extension itself, we also prove through the extensions we have introduced that dynamically mutable sets can be captured within structural causal models while maintaining a form of causal stationarity. Finally we introduce two case study architectures demonstrating the application of these extensions along with a discussion of where these extensions could be utilised in future work.
comment: 33 Pages = 7 Pages (Main Content) + 2 Pages (References) + 24 Pages (Appendix), 17 Figures = 2 Figures (Main Content) + 15 (Appendix), Oxford Robotics Institute Preprint; Significantly updated based upon feedback
♻ ☆ Human-Like Implicit Intention Expression for Autonomous Driving Motion Planning: A Method Based on Learning Human Intention Priors
One of the key factors determining whether autonomous vehicles (AVs) can be seamlessly integrated into existing traffic systems is their ability to interact smoothly and efficiently with human drivers and communicate their intentions. While many studies have focused on enhancing AVs' human-like interaction and communication capabilities at the behavioral decision-making level, a significant gap remains between the actual motion trajectories of AVs and the psychological expectations of human drivers. This discrepancy can seriously affect the safety and efficiency of AV-HV (Autonomous Vehicle-Human Vehicle) interactions. To address these challenges, we propose a motion planning method for AVs that incorporates implicit intention expression. First, we construct a trajectory space constraint based on human implicit intention priors, compressing and pruning the trajectory space to generate candidate motion trajectories that consider intention expression. We then apply maximum entropy inverse reinforcement learning to learn and estimate human trajectory preferences, constructing a reward function that represents the cognitive characteristics of drivers. Finally, using a Boltzmann distribution, we establish a probabilistic distribution of candidate trajectories based on the reward obtained, selecting human-like trajectory actions. We validated our approach on a real trajectory dataset and compared it with several baseline methods. The results demonstrate that our method excels in human-likeness, intention expression capability, and computational efficiency.
♻ ☆ VANP: Learning Where to See for Navigation with Self-Supervised Vision-Action Pre-Training IROS 2024
Humans excel at efficiently navigating through crowds without collision by focusing on specific visual regions relevant to navigation. However, most robotic visual navigation methods rely on deep learning models pre-trained on vision tasks, which prioritize salient objects -- not necessarily relevant to navigation and potentially misleading. Alternative approaches train specialized navigation models from scratch, requiring significant computation. On the other hand, self-supervised learning has revolutionized computer vision and natural language processing, but its application to robotic navigation remains underexplored due to the difficulty of defining effective self-supervision signals. Motivated by these observations, in this work, we propose a Self-Supervised Vision-Action Model for Visual Navigation Pre-Training (VANP). Instead of detecting salient objects that are beneficial for tasks such as classification or detection, VANP learns to focus only on specific visual regions that are relevant to the navigation task. To achieve this, VANP uses a history of visual observations, future actions, and a goal image for self-supervision, and embeds them using two small Transformer Encoders. Then, VANP maximizes the information between the embeddings by using a mutual information maximization objective function. We demonstrate that most VANP-extracted features match with human navigation intuition. VANP achieves comparable performance as models learned end-to-end with half the training time and models trained on a large-scale, fully supervised dataset, i.e., ImageNet, with only 0.08% data.
comment: Extended version of the paper accepted at IROS 2024. Code: https://github.com/mhnazeri/VANP
Computer Vision 134
☆ HiPrompt: Tuning-free Higher-Resolution Generation with Hierarchical MLLM Prompts
The potential for higher-resolution image generation using pretrained diffusion models is immense, yet these models often struggle with issues of object repetition and structural artifacts especially when scaling to 4K resolution and higher. We figure out that the problem is caused by that, a single prompt for the generation of multiple scales provides insufficient efficacy. In response, we propose HiPrompt, a new tuning-free solution that tackles the above problems by introducing hierarchical prompts. The hierarchical prompts offer both global and local guidance. Specifically, the global guidance comes from the user input that describes the overall content, while the local guidance utilizes patch-wise descriptions from MLLMs to elaborately guide the regional structure and texture generation. Furthermore, during the inverse denoising process, the generated noise is decomposed into low- and high-frequency spatial components. These components are conditioned on multiple prompt levels, including detailed patch-wise descriptions and broader image-level prompts, facilitating prompt-guided denoising under hierarchical semantic guidance. It further allows the generation to focus more on local spatial regions and ensures the generated images maintain coherent local and global semantics, structures, and textures with high definition. Extensive experiments demonstrate that HiPrompt outperforms state-of-the-art works in higher-resolution image generation, significantly reducing object repetition and enhancing structural quality.
☆ UC-NeRF: Uncertainty-aware Conditional Neural Radiance Fields from Endoscopic Sparse Views
Visualizing surgical scenes is crucial for revealing internal anatomical structures during minimally invasive procedures. Novel View Synthesis is a vital technique that offers geometry and appearance reconstruction, enhancing understanding, planning, and decision-making in surgical scenes. Despite the impressive achievements of Neural Radiance Field (NeRF), its direct application to surgical scenes produces unsatisfying results due to two challenges: endoscopic sparse views and significant photometric inconsistencies. In this paper, we propose uncertainty-aware conditional NeRF for novel view synthesis to tackle the severe shape-radiance ambiguity from sparse surgical views. The core of UC-NeRF is to incorporate the multi-view uncertainty estimation to condition the neural radiance field for modeling the severe photometric inconsistencies adaptively. Specifically, our UC-NeRF first builds a consistency learner in the form of multi-view stereo network, to establish the geometric correspondence from sparse views and generate uncertainty estimation and feature priors. In neural rendering, we design a base-adaptive NeRF network to exploit the uncertainty estimation for explicitly handling the photometric inconsistencies. Furthermore, an uncertainty-guided geometry distillation is employed to enhance geometry learning. Experiments on the SCARED and Hamlyn datasets demonstrate our superior performance in rendering appearance and geometry, consistently outperforming the current state-of-the-art approaches. Our code will be released at \url{https://github.com/wrld/UC-NeRF}.
☆ Can LVLMs Obtain a Driver's License? A Benchmark Towards Reliable AGI for Autonomous Driving
Large Vision-Language Models (LVLMs) have recently garnered significant attention, with many efforts aimed at harnessing their general knowledge to enhance the interpretability and robustness of autonomous driving models. However, LVLMs typically rely on large, general-purpose datasets and lack the specialized expertise required for professional and safe driving. Existing vision-language driving datasets focus primarily on scene understanding and decision-making, without providing explicit guidance on traffic rules and driving skills, which are critical aspects directly related to driving safety. To bridge this gap, we propose IDKB, a large-scale dataset containing over one million data items collected from various countries, including driving handbooks, theory test data, and simulated road test data. Much like the process of obtaining a driver's license, IDKB encompasses nearly all the explicit knowledge needed for driving from theory to practice. In particular, we conducted comprehensive tests on 15 LVLMs using IDKB to assess their reliability in the context of autonomous driving and provided extensive analysis. We also fine-tuned popular models, achieving notable performance improvements, which further validate the significance of our dataset. The project page can be found at: \url{https://4dvlab.github.io/project_page/idkb.html}
☆ SITAR: Semi-supervised Image Transformer for Action Recognition ICPR 2024
Recognizing actions from a limited set of labeled videos remains a challenge as annotating visual data is not only tedious but also can be expensive due to classified nature. Moreover, handling spatio-temporal data using deep $3$D transformers for this can introduce significant computational complexity. In this paper, our objective is to address video action recognition in a semi-supervised setting by leveraging only a handful of labeled videos along with a collection of unlabeled videos in a compute efficient manner. Specifically, we rearrange multiple frames from the input videos in row-column form to construct super images. Subsequently, we capitalize on the vast pool of unlabeled samples and employ contrastive learning on the encoded super images. Our proposed approach employs two pathways to generate representations for temporally augmented super images originating from the same video. Specifically, we utilize a 2D image-transformer to generate representations and apply a contrastive loss function to minimize the similarity between representations from different videos while maximizing the representations of identical videos. Our method demonstrates superior performance compared to existing state-of-the-art approaches for semi-supervised action recognition across various benchmark datasets, all while significantly reducing computational costs.
comment: Accepted at ICPR 2024
☆ LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture
Expanding the long-context capabilities of Multi-modal Large Language Models~(MLLMs) is crucial for video understanding, high-resolution image understanding, and multi-modal agents. This involves a series of systematic optimizations, including model architecture, data construction and training strategy, particularly addressing challenges such as \textit{degraded performance with more images} and \textit{high computational costs}. In this paper, we adapt the model architecture to a hybrid of Mamba and Transformer blocks, approach data construction with both temporal and spatial dependencies among multiple images and employ a progressive training strategy. The released model \textbf{LongLLaVA}~(\textbf{Long}-Context \textbf{L}arge \textbf{L}anguage \textbf{a}nd \textbf{V}ision \textbf{A}ssistant) is the first hybrid MLLM, which achieved a better balance between efficiency and effectiveness. LongLLaVA not only achieves competitive results across various benchmarks, but also maintains high throughput and low memory consumption. Especially, it could process nearly a thousand images on a single A100 80GB GPU, showing promising application prospects for a wide range of tasks.
comment: 19 pages, 7 figures, 6 tables
☆ CanvOI, an Oncology Intelligence Foundation Model: Scaling FLOPS Differently
The rapidly evolving field of digital oncopathology faces significant challenges, including the need to address diverse and complex clinical questions, often involving rare conditions, with limited availability of labeled data. These limitations hinder the development of robust AI-driven tools in the biomedical space, where accuracy in probabilistic determinations is of utmost importance. To address this, digital pathology foundation models have begun to emerge, typically developed with the size and diversity of the pre-training dataset and model parameters in mind. Here, we present CanvOI, a ViT-g/10-based foundation model designed to enhance the capabilities of digital pathology by addressing these challenges through a different approach. Considering the unique nature of oncologic histopathological images and the requirements from the embeddings to provide meaningful representations for Multiple Instance Learning (MIL) downstream models, we chose to modify the input image characteristics. By introducing larger tile sizes (380 x 380 pixels) and smaller patch sizes (10 x 10 pixels), we were able to optimize the model's performance, pushing computational resources in a new direction and achieving state-of-the-art performance on cancer-related benchmarks. CanvOI demonstrated a 1.5-7.4% improvement in averaged AUC compared to other leading foundation models built for digital pathology. Moreover, our results demonstrate that CanvOI significantly outperformed the other models, with the performance gap widening substantially when trained on just 10% of the initial cohort. This work highlights an alternative approach that, if integrated with traditional development approaches, has the potential to advance Oncology Intelligence (OI), overcome some of the current barriers and ultimately improve the clinical outcome of cancer patients.
comment: 12 pages, 5 figures
☆ Multi-stream deep learning framework to predict mild cognitive impairment with Rey Complex Figure Test
Drawing tests like the Rey Complex Figure Test (RCFT) are widely used to assess cognitive functions such as visuospatial skills and memory, making them valuable tools for detecting mild cognitive impairment (MCI). Despite their utility, existing predictive models based on these tests often suffer from limitations like small sample sizes and lack of external validation, which undermine their reliability. We developed a multi-stream deep learning framework that integrates two distinct processing streams: a multi-head self-attention based spatial stream using raw RCFT images and a scoring stream employing a previously developed automated scoring system. Our model was trained on data from 1,740 subjects in the Korean cohort and validated on an external hospital dataset of 222 subjects from Korea. The proposed multi-stream model demonstrated superior performance over baseline models (AUC = 0.872, Accuracy = 0.781) in external validation. The integration of both spatial and scoring streams enables the model to capture intricate visual details from the raw images while also incorporating structured scoring data, which together enhance its ability to detect subtle cognitive impairments. This dual approach not only improves predictive accuracy but also increases the robustness of the model, making it more reliable in diverse clinical settings. Our model has practical implications for clinical settings, where it could serve as a cost-effective tool for early MCI screening.
comment: 20 pages, 3 figures, 2 tables
☆ Benchmarking Spurious Bias in Few-Shot Image Classifiers ECCV 2024
Few-shot image classifiers are designed to recognize and classify new data with minimal supervision and limited data but often show reliance on spurious correlations between classes and spurious attributes, known as spurious bias. Spurious correlations commonly hold in certain samples and few-shot classifiers can suffer from spurious bias induced from them. There is an absence of an automatic benchmarking system to assess the robustness of few-shot classifiers against spurious bias. In this paper, we propose a systematic and rigorous benchmark framework, termed FewSTAB, to fairly demonstrate and quantify varied degrees of robustness of few-shot classifiers to spurious bias. FewSTAB creates few-shot evaluation tasks with biased attributes so that using them for predictions can demonstrate poor performance. To construct these tasks, we propose attribute-based sample selection strategies based on a pre-trained vision-language model, eliminating the need for manual dataset curation. This allows FewSTAB to automatically benchmark spurious bias using any existing test data. FewSTAB offers evaluation results in a new dimension along with a new design guideline for building robust classifiers. Moreover, it can benchmark spurious bias in varied degrees and enable designs for varied degrees of robustness. Its effectiveness is demonstrated through experiments on ten few-shot learning methods across three datasets. We hope our framework can inspire new designs of robust few-shot classifiers. Our code is available at https://github.com/gtzheng/FewSTAB.
comment: Accepted to ECCV 2024
☆ The Impact of Balancing Real and Synthetic Data on Accuracy and Fairness in Face Recognition ECCV 2024
Over the recent years, the advancements in deep face recognition have fueled an increasing demand for large and diverse datasets. Nevertheless, the authentic data acquired to create those datasets is typically sourced from the web, which, in many cases, can lead to significant privacy issues due to the lack of explicit user consent. Furthermore, obtaining a demographically balanced, large dataset is even more difficult because of the natural imbalance in the distribution of images from different demographic groups. In this paper, we investigate the impact of demographically balanced authentic and synthetic data, both individually and in combination, on the accuracy and fairness of face recognition models. Initially, several generative methods were used to balance the demographic representations of the corresponding synthetic datasets. Then a state-of-the-art face encoder was trained and evaluated using (combinations of) synthetic and authentic images. Our findings emphasized two main points: (i) the increased effectiveness of training data generated by diffusion-based models in enhancing accuracy, whether used alone or combined with subsets of authentic data, and (ii) the minimal impact of incorporating balanced data from pre-trained generative methods on fairness (in nearly all tested scenarios using combined datasets, fairness scores remained either unchanged or worsened, even when compared to unbalanced authentic datasets). Source code and data are available at \url{https://cutt.ly/AeQy1K5G} for reproducibility.
comment: Accepted at Synthetic Data for Computer Vision Workshop - Side Event at ECCV 2024
☆ Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure
Detecting and segmenting cracks in infrastructure, such as roads and buildings, is crucial for safety and cost-effective maintenance. In spite of the potential of deep learning, there are challenges in achieving precise results and handling diverse crack types. With the proposed dataset and model, we aim to enhance crack detection and infrastructure maintenance. We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features. This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks. To keep the computational performances low for practical purposes, while maintaining the high the generalization capabilities of the model, we incorporate a self-attention model at the encoder level, while reducing the complexity of the decoder component. The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
comment: 25 pages, 6 figures
☆ Human-VDM: Learning Single-Image 3D Human Gaussian Splatting from Video Diffusion Models
Generating lifelike 3D humans from a single RGB image remains a challenging task in computer vision, as it requires accurate modeling of geometry, high-quality texture, and plausible unseen parts. Existing methods typically use multi-view diffusion models for 3D generation, but they often face inconsistent view issues, which hinder high-quality 3D human generation. To address this, we propose Human-VDM, a novel method for generating 3D human from a single RGB image using Video Diffusion Models. Human-VDM provides temporally consistent views for 3D human generation using Gaussian Splatting. It consists of three modules: a view-consistent human video diffusion module, a video augmentation module, and a Gaussian Splatting module. First, a single image is fed into a human video diffusion module to generate a coherent human video. Next, the video augmentation module applies super-resolution and video interpolation to enhance the textures and geometric smoothness of the generated video. Finally, the 3D Human Gaussian Splatting module learns lifelike humans under the guidance of these high-resolution and view-consistent images. Experiments demonstrate that Human-VDM achieves high-quality 3D human from a single image, outperforming state-of-the-art methods in both generation quality and quantity. Project page: https://human-vdm.github.io/Human-VDM/
comment: 14 Pages, 8 figures, Project page: https://human-vdm.github.io/Human-VDM/
☆ MaDis-Stereo: Enhanced Stereo Matching via Distilled Masked Image Modeling
In stereo matching, CNNs have traditionally served as the predominant architectures. Although Transformer-based stereo models have been studied recently, their performance still lags behind CNN-based stereo models due to the inherent data scarcity issue in the stereo matching task. In this paper, we propose Masked Image Modeling Distilled Stereo matching model, termed MaDis-Stereo, that enhances locality inductive bias by leveraging Masked Image Modeling (MIM) in training Transformer-based stereo model. Given randomly masked stereo images as inputs, our method attempts to conduct both image reconstruction and depth prediction tasks. While this strategy is beneficial to resolving the data scarcity issue, the dual challenge of reconstructing masked tokens and subsequently performing stereo matching poses significant challenges, particularly in terms of training stability. To address this, we propose to use an auxiliary network (teacher), updated via Exponential Moving Average (EMA), along with the original stereo model (student), where teacher predictions serve as pseudo supervisory signals to effectively distill knowledge into the student model. State-of-the-arts performance is achieved with the proposed method on several stereo matching such as ETH3D and KITTI 2015. Additionally, to demonstrate that our model effectively leverages locality inductive bias, we provide the attention distance measurement.
☆ iConFormer: Dynamic Parameter-Efficient Tuning with Input-Conditioned Adaptation
Transfer learning based on full fine-tuning (FFT) of the pre-trained encoder and task-specific decoder becomes increasingly complex as deep models grow exponentially. Parameter efficient fine-tuning (PEFT) approaches using adapters consisting of small learnable layers have emerged as an alternative to FFT, achieving comparable performance while maintaining high training efficiency. However, the inflexibility of the adapter with respect to input instances limits its capability of learning task-specific information in diverse downstream tasks. In this paper, we propose a novel PEFT approach, input-Conditioned transFormer, termed iConFormer, that leverages a dynamic adapter conditioned on the input instances. To secure flexible learning ability on input instances in various downstream tasks, we introduce an input-Conditioned Network (iCoN) in the dynamic adapter that enables instance-level feature transformation. To be specific, iCoN generates channel-wise convolutional kernels for each feature and transform it using adaptive convolution process to effectively capture task-specific and fine-grained details tailor to downstream tasks. Experimental results demonstrate that by tuning just 1.6% to 2.8% of the Transformer backbone parameters, iConFormer achieves performance comparable to FFT in monocular depth estimation and semantic segmentation, while outperforming it in image classification and instance segmentation. Also, the proposed method consistently outperforms recent PEFT methods for all the tasks mentioned above.
☆ ExpLLM: Towards Chain of Thought for Facial Expression Recognition
Facial expression recognition (FER) is a critical task in multimedia with significant implications across various domains. However, analyzing the causes of facial expressions is essential for accurately recognizing them. Current approaches, such as those based on facial action units (AUs), typically provide AU names and intensities but lack insight into the interactions and relationships between AUs and the overall expression. In this paper, we propose a novel method called ExpLLM, which leverages large language models to generate an accurate chain of thought (CoT) for facial expression recognition. Specifically, we have designed the CoT mechanism from three key perspectives: key observations, overall emotional interpretation, and conclusion. The key observations describe the AU's name, intensity, and associated emotions. The overall emotional interpretation provides an analysis based on multiple AUs and their interactions, identifying the dominant emotions and their relationships. Finally, the conclusion presents the final expression label derived from the preceding analysis. Furthermore, we also introduce the Exp-CoT Engine, designed to construct this expression CoT and generate instruction-description data for training our ExpLLM. Extensive experiments on the RAF-DB and AffectNet datasets demonstrate that ExpLLM outperforms current state-of-the-art FER methods. ExpLLM also surpasses the latest GPT-4o in expression CoT generation, particularly in recognizing micro-expressions where GPT-4o frequently fails.
comment: project page: https://starhiking.github.io/ExpLLM_Page/
☆ Automatic facial axes standardization of 3D fetal ultrasound images
Craniofacial anomalies indicate early developmental disturbances and are usually linked to many genetic syndromes. Early diagnosis is critical, yet ultrasound (US) examinations often fail to identify these features. This study presents an AI-driven tool to assist clinicians in standardizing fetal facial axes/planes in 3D US, reducing sonographer workload and facilitating the facial evaluation. Our network, structured into three blocks-feature extractor, rotation and translation regression, and spatial transformer-processes three orthogonal 2D slices to estimate the necessary transformations for standardizing the facial planes in the 3D US. These transformations are applied to the original 3D US using a differentiable module (the spatial transformer block), yielding a standardized 3D US and the corresponding 2D facial standard planes. The dataset used consists of 1180 fetal facial 3D US images acquired between weeks 20 and 35 of gestation. Results show that our network considerably reduces inter-observer rotation variability in the test set, with a mean geodesic angle difference of 14.12$^{\circ}$ $\pm$ 18.27$^{\circ}$ and an Euclidean angle error of 7.45$^{\circ}$ $\pm$ 14.88$^{\circ}$. These findings demonstrate the network's ability to effectively standardize facial axes, crucial for consistent fetal facial assessments. In conclusion, the proposed network demonstrates potential for improving the consistency and accuracy of fetal facial assessments in clinical settings, facilitating early evaluation of craniofacial anomalies.
☆ Deep Learning Meets Satellite Images -- An Evaluation on Handcrafted and Learning-based Features for Multi-date Satellite Stereo Images ECCV2024
A critical step in the digital surface models(DSM) generation is feature matching. Off-track (or multi-date) satellite stereo images, in particular, can challenge the performance of feature matching due to spectral distortions between images, long baseline, and wide intersection angles. Feature matching methods have evolved over the years from handcrafted methods (e.g., SIFT) to learning-based methods (e.g., SuperPoint and SuperGlue). In this paper, we compare the performance of different features, also known as feature extraction and matching methods, applied to satellite imagery. A wide range of stereo pairs(~500) covering two separate study sites are used. SIFT, as a widely used classic feature extraction and matching algorithm, is compared with seven deep-learning matching methods: SuperGlue, LightGlue, LoFTR, ASpanFormer, DKM, GIM-LightGlue, and GIM-DKM. Results demonstrate that traditional matching methods are still competitive in this age of deep learning, although for particular scenarios learning-based methods are very promising.
comment: ECCV2024 Workshop - TradiCV
☆ MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding Benchmark
This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models' true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly "see" and "read" simultaneously, testing a fundamental human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future research in multimodal AI.
☆ UnLearning from Experience to Avoid Spurious Correlations
While deep neural networks can achieve state-of-the-art performance in many tasks, these models are more fragile than they appear. They are prone to learning spurious correlations in their training data, leading to surprising failure cases. In this paper, we propose a new approach that addresses the issue of spurious correlations: UnLearning from Experience (ULE). Our method is based on using two classification models trained in parallel: student and teacher models. Both models receive the same batches of training data. The student model is trained with no constraints and pursues the spurious correlations in the data. The teacher model is trained to solve the same classification problem while avoiding the mistakes of the student model. As training is done in parallel, the better the student model learns the spurious correlations, the more robust the teacher model becomes. The teacher model uses the gradient of the student's output with respect to its input to unlearn mistakes made by the student. We show that our method is effective on the Waterbirds, CelebA, Spawrious and UrbanCars datasets.
comment: 10 pages
☆ Validation of musculoskeletal segmentation model with uncertainty estimation for bone and muscle assessment in hip-to-knee clinical CT images
Deep learning-based image segmentation has allowed for the fully automated, accurate, and rapid analysis of musculoskeletal (MSK) structures from medical images. However, current approaches were either applied only to 2D cross-sectional images, addressed few structures, or were validated on small datasets, which limit the application in large-scale databases. This study aimed to validate an improved deep learning model for volumetric MSK segmentation of the hip and thigh with uncertainty estimation from clinical computed tomography (CT) images. Databases of CT images from multiple manufacturers/scanners, disease status, and patient positioning were used. The segmentation accuracy, and accuracy in estimating the structures volume and density, i.e., mean HU, were evaluated. An approach for segmentation failure detection based on predictive uncertainty was also investigated. The model has shown an overall improvement with respect to all segmentation accuracy and structure volume/density evaluation metrics. The predictive uncertainty yielded large areas under the receiver operating characteristic (AUROC) curves (AUROCs>=.95) in detecting inaccurate and failed segmentations. The high segmentation and muscle volume/density estimation accuracy, along with the high accuracy in failure detection based on the predictive uncertainty, exhibited the model's reliability for analyzing individual MSK structures in large-scale CT databases.
comment: 29 pages, 7+10supp figures, 8 tables
☆ CLDA: Collaborative Learning for Enhanced Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) endeavors to bridge the gap between a model trained on a labeled source domain and its deployment in an unlabeled target domain. However, current high-performance models demand significant resources, resulting in prohibitive deployment costs and highlighting the need for small yet effective models. For UDA of lightweight models, Knowledge Distillation (KD) in a Teacher-Student framework can be a common approach, but we find that domain shift in UDA leads to a significant increase in non-salient parameters in the teacher model, degrading model's generalization ability and transferring misleading information to the student model. Interestingly, we observed that this phenomenon occurs considerably less in the student model. Driven by this insight, we introduce Collaborative Learning, a method that updates the teacher's non-salient parameters using the student model and at the same time enhance the student's performance using the updated teacher model. Experiments across various tasks and datasets show consistent performance improvements for both student and teacher models. For example, in semantic segmentation, CLDA achieves an improvement of +0.7% mIoU for teacher and +1.4% mIoU for student compared to the baseline model in the GTA to Cityscapes. In the Synthia to Cityscapes, it achieves an improvement of +0.8% mIoU for teacher and +2.0% mIoU for student.
☆ Rethinking HTG Evaluation: Bridging Generation and Recognition
The evaluation of generative models for natural image tasks has been extensively studied. Similar protocols and metrics are used in cases with unique particularities, such as Handwriting Generation, even if they might not be completely appropriate. In this work, we introduce three measures tailored for HTG evaluation, $ \text{HTG}_{\text{HTR}} $, $ \text{HTG}_{\text{style}} $, and $ \text{HTG}_{\text{OOV}} $, and argue that they are more expedient to evaluate the quality of generated handwritten images. The metrics rely on the recognition error/accuracy of Handwriting Text Recognition and Writer Identification models and emphasize writing style, textual content, and diversity as the main aspects that adhere to the content of handwritten images. We conduct comprehensive experiments on the IAM handwriting database, showcasing that widely used metrics such as FID fail to properly quantify the diversity and the practical utility of generated handwriting samples. Our findings show that our metrics are richer in information and underscore the necessity of standardized evaluation protocols in HTG. The proposed metrics provide a more robust and informative protocol for assessing HTG quality, contributing to improved performance in HTR. Code for the evaluation protocol is available at: https://github.com/koninik/HTG_evaluation.
☆ Improved Single Camera BEV Perception Using Multi-Camera Training SC 2024
Bird's Eye View (BEV) map prediction is essential for downstream autonomous driving tasks like trajectory prediction. In the past, this was accomplished through the use of a sophisticated sensor configuration that captured a surround view from multiple cameras. However, in large-scale production, cost efficiency is an optimization goal, so that using fewer cameras becomes more relevant. But the consequence of fewer input images correlates with a performance drop. This raises the problem of developing a BEV perception model that provides a sufficient performance on a low-cost sensor setup. Although, primarily relevant for inference time on production cars, this cost restriction is less problematic on a test vehicle during training. Therefore, the objective of our approach is to reduce the aforementioned performance drop as much as possible using a modern multi-camera surround view model reduced for single-camera inference. The approach includes three features, a modern masking technique, a cyclic Learning Rate (LR) schedule, and a feature reconstruction loss for supervising the transition from six-camera inputs to one-camera input during training. Our method outperforms versions trained strictly with one camera or strictly with six-camera surround view for single-camera inference resulting in reduced hallucination and better quality of the BEV map.
comment: This Paper has been accepted to the 27th IEEE International Conference on Intelligent Transportation Systems (ITSC 2024)
☆ Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening
The objective of pansharpening and hypersharpening is to accurately combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (MS) or hyperspectral (HS) image, respectively. Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches. These techniques involve unrolling the steps of the optimization scheme derived from the minimization of an energy into a deep learning framework, resulting in efficient and highly interpretable architectures. In this paper, we propose a model-based deep unfolded method for satellite image fusion. Our approach is based on a variational formulation that incorporates the classic observation model for MS/HS data, a high-frequency injection constraint based on the PAN image, and an arbitrary convex prior. For the unfolding stage, we introduce upsampling and downsampling layers that use geometric information encoded in the PAN image through residual networks. The backbone of our method is a multi-head attention residual network (MARNet), which replaces the proximity operator in the optimization scheme and combines multiple head attentions with residual learning to exploit image self-similarities via nonlocal operators defined in terms of patches. Additionally, we incorporate a post-processing module based on the MARNet architecture to further enhance the quality of the fused images. Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method and its ability to generalize across different sensor configurations and varying spatial and spectral resolutions. The source code will be available at https://github.com/TAMI-UIB/MARNet.
☆ Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection
The proliferation of deepfake faces poses huge potential negative impacts on our daily lives. Despite substantial advancements in deepfake detection over these years, the generalizability of existing methods against forgeries from unseen datasets or created by emerging generative models remains constrained. In this paper, inspired by the zero-shot advantages of Vision-Language Models (VLMs), we propose a novel approach that repurposes a well-trained VLM for general deepfake detection. Motivated by the model reprogramming paradigm that manipulates the model prediction via data perturbations, our method can reprogram a pretrained VLM model (e.g., CLIP) solely based on manipulating its input without tuning the inner parameters. Furthermore, we insert a pseudo-word guided by facial identity into the text prompt. Extensive experiments on several popular benchmarks demonstrate that (1) the cross-dataset and cross-manipulation performances of deepfake detection can be significantly and consistently improved (e.g., over 88% AUC in cross-dataset setting from FF++ to WildDeepfake) using a pre-trained CLIP model with our proposed reprogramming method; (2) our superior performances are at less cost of trainable parameters, making it a promising approach for real-world applications.
☆ PoseTalk: Text-and-Audio-based Pose Control and Motion Refinement for One-Shot Talking Head Generation
While previous audio-driven talking head generation (THG) methods generate head poses from driving audio, the generated poses or lips cannot match the audio well or are not editable. In this study, we propose \textbf{PoseTalk}, a THG system that can freely generate lip-synchronized talking head videos with free head poses conditioned on text prompts and audio. The core insight of our method is using head pose to connect visual, linguistic, and audio signals. First, we propose to generate poses from both audio and text prompts, where the audio offers short-term variations and rhythm correspondence of the head movements and the text prompts describe the long-term semantics of head motions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to generate motion latent from text prompts and audio cues in a pose latent space. Second, we observe a loss-imbalance problem: the loss for the lip region contributes less than 4\% of the total reconstruction loss caused by both pose and lip, making optimization lean towards head movements rather than lip shapes. To address this issue, we propose a refinement-based learning strategy to synthesize natural talking videos using two cascaded networks, i.e., CoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce animated images in novel poses and the RefineNet focuses on learning finer lip motions by progressively estimating lip motions from low-to-high resolutions, yielding improved lip-synchronization performance. Experiments demonstrate our pose prediction strategy achieves better pose diversity and realness compared to text-only or audio-only, and our video generator model outperforms state-of-the-art methods in synthesizing talking videos with natural head motions. Project: https://junleen.github.io/projects/posetalk.
comment: 7+5 pages, 15 figures
☆ Skip-and-Play: Depth-Driven Pose-Preserved Image Generation for Any Objects
The emergence of diffusion models has enabled the generation of diverse high-quality images solely from text, prompting subsequent efforts to enhance the controllability of these models. Despite the improvement in controllability, pose control remains limited to specific objects (e.g., humans) or poses (e.g., frontal view) due to the fact that pose is generally controlled via camera parameters (e.g., rotation angle) or keypoints (e.g., eyes, nose). Specifically, camera parameters-conditional pose control models generate unrealistic images depending on the object, owing to the small size of 3D datasets for training. Also, keypoint-based approaches encounter challenges in acquiring reliable keypoints for various objects (e.g., church) or poses (e.g., back view). To address these limitations, we propose depth-based pose control, as depth maps are easily obtainable from a single depth estimation model regardless of objects and poses, unlike camera parameters and keypoints. However, depth-based pose control confronts issues of shape dependency, as depth maps influence not only the pose but also the shape of the generated images. To tackle this issue, we propose Skip-and-Play (SnP), designed via analysis of the impact of three components of depth-conditional ControlNet on the pose and the shape of the generated images. To be specific, based on the analysis, we selectively skip parts of the components to mitigate shape dependency on the depth map while preserving the pose. Through various experiments, we demonstrate the superiority of SnP over baselines and showcase the ability of SnP to generate images of diverse objects and poses. Remarkably, SnP exhibits the ability to generate images even when the objects in the condition (e.g., a horse) and the prompt (e.g., a hedgehog) differ from each other.
☆ Creating a Microstructure Latent Space with Rich Material Information for Multiphase Alloy Design
The intricate microstructure serves as the cornerstone for the composition/processing-structure-property (CPSP) connection in multiphase alloys. Traditional alloy design methods often overlook microstructural details, which diminishes the reliability and effectiveness of the outcomes. This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships. The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space, enabling the prediction of composition, processing steps, and material properties from the latent space vector. By integrating this deep learning model with a specific sampling strategy in the latent space, a novel, microstructure-centered algorithm for multiphase alloy design is developed. This algorithm is demonstrated through the design of a unified dual-phase steel, and the results are assessed at three performance levels. Moreover, an exploration into the latent vector space of the model highlights its seamless interpolation ability and its rich material information content. Notably, the current configuration of the latent space is particularly advantageous for alloy design, offering an exhaustive representation of microstructure, composition, processing, and property variations essential for multiphase alloys.
☆ Learning-Based Error Detection System for Advanced Vehicle Instrument Cluster Rendering
The automotive industry is currently expanding digital display options with every new model that comes onto the market. This entails not just an expansion in dimensions, resolution, and customization choices, but also the capability to employ novel display effects like overlays while assembling the content of the display cluster. Unfortunately, this raises the need for appropriate monitoring systems that can detect rendering errors and apply appropriate countermeasures when required. Classical solutions such as Cyclic Redundancy Checks (CRC) will soon be no longer viable as any sort of alpha blending, warping of scaling of content can cause unwanted CRC violations. Therefore, we propose a novel monitoring approach to verify correctness of displayed content using telltales (e.g. warning signs) as example. It uses a learning-based approach to separate "good" telltales, i.e. those that a human driver will understand correctly, and "corrupted" telltales, i.e. those that will not be visible or perceived correctly. As a result, it possesses inherent resilience against individual pixel errors and implicitly supports changing backgrounds, overlay or scaling effects. This is underlined by our experimental study where all "corrupted" test patterns were correctly classified, while no false alarms were triggered.
comment: 9 pages
MADiff: Motion-Aware Mamba Diffusion Models for Hand Trajectory Prediction on Egocentric Videos
Understanding human intentions and actions through egocentric videos is important on the path to embodied artificial intelligence. As a branch of egocentric vision techniques, hand trajectory prediction plays a vital role in comprehending human motion patterns, benefiting downstream tasks in extended reality and robot manipulation. However, capturing high-level human intentions consistent with reasonable temporal causality is challenging when only egocentric videos are available. This difficulty is exacerbated under camera egomotion interference and the absence of affordance labels to explicitly guide the optimization of hand waypoint distribution. In this work, we propose a novel hand trajectory prediction method dubbed MADiff, which forecasts future hand waypoints with diffusion models. The devised denoising operation in the latent space is achieved by our proposed motion-aware Mamba, where the camera wearer's egomotion is integrated to achieve motion-driven selective scan (MDSS). To discern the relationship between hands and scenarios without explicit affordance supervision, we leverage a foundation model that fuses visual and language features to capture high-level semantics from video clips. Comprehensive experiments conducted on five public datasets with the existing and our proposed new evaluation metrics demonstrate that MADiff predicts comparably reasonable hand trajectories compared to the state-of-the-art baselines, and achieves real-time performance. We will release our code and pretrained models of MADiff at the project page: https://irmvlab.github.io/madiff.github.io.
☆ AdvSecureNet: A Python Toolkit for Adversarial Machine Learning
Machine learning models are vulnerable to adversarial attacks. Several tools have been developed to research these vulnerabilities, but they often lack comprehensive features and flexibility. We introduce AdvSecureNet, a PyTorch based toolkit for adversarial machine learning that is the first to natively support multi-GPU setups for attacks, defenses, and evaluation. It is the first toolkit that supports both CLI and API interfaces and external YAML configuration files to enhance versatility and reproducibility. The toolkit includes multiple attacks, defenses and evaluation metrics. Rigiorous software engineering practices are followed to ensure high code quality and maintainability. The project is available as an open-source project on GitHub at https://github.com/melihcatal/advsecurenet and installable via PyPI.
☆ GoT-CQA: Graph-of-Thought Guided Compositional Reasoning for Chart Question Answering
Chart Question Answering (CQA) aims at answering questions based on the visual chart content, which plays an important role in chart sumarization, business data analysis, and data report generation. CQA is a challenging multi-modal task because of the strong context dependence and complex reasoning requirement. The former refers to answering this question strictly based on the analysis of the visual content or internal data of the given chart, while the latter emphasizes the various logical and numerical reasoning involved in answer prediction process. In this paper, we pay more attention on the complex reasoning in CQA task, and propose a novel Graph-of-Thought (GoT) guided compositional reasoning model called GoT-CQA to overcome this problem. At first, we transform the chart-oriented question into a directed acyclic GoT composed of multiple operator nodes, including localization, numerical and logical operator. It intuitively reflects the human brain's solution process to this question. After that, we design an efficient auto-compositional reasoning framework guided by the GoT, to excute the multi-step reasoning operations in various types of questions. Comprehensive experiments on ChartQA and PlotQA-D datasets show that GoT-CQA achieves outstanding performance, especially in complex human-written and reasoning questions, comparing with the latest popular baselines.
☆ A Medical Multimodal Large Language Model for Pediatric Pneumonia
Pediatric pneumonia is the leading cause of death among children under five years worldwide, imposing a substantial burden on affected families. Currently, there are three significant hurdles in diagnosing and treating pediatric pneumonia. Firstly, pediatric pneumonia shares similar symptoms with other respiratory diseases, making rapid and accurate differential diagnosis challenging. Secondly, primary hospitals often lack sufficient medical resources and experienced doctors. Lastly, providing personalized diagnostic reports and treatment recommendations is labor-intensive and time-consuming. To tackle these challenges, we proposed a Medical Multimodal Large Language Model for Pediatric Pneumonia (P2Med-MLLM). It was capable of handling diverse clinical tasks, such as generating free-text radiology reports and medical records within a unified framework. Specifically, P2Med-MLLM can process both pure text and image-text data, trained on an extensive and large-scale dataset (P2Med-MD), including real clinical information from 163,999 outpatient and 8,684 inpatient cases. This dataset comprised 2D chest X-ray images, 3D chest CT images, corresponding radiology reports, and outpatient and inpatient records. We designed a three-stage training strategy to enable P2Med-MLLM to comprehend medical knowledge and follow instructions for various clinical tasks. To rigorously evaluate P2Med-MLLM's performance, we developed P2Med-MBench, a benchmark consisting of 642 meticulously verified samples by pediatric pulmonology specialists, covering six clinical decision-support tasks and a balanced variety of diseases. The automated scoring results demonstrated the superiority of P2Med-MLLM. This work plays a crucial role in assisting primary care doctors with prompt disease diagnosis and treatment planning, reducing severe symptom mortality rates, and optimizing the allocation of medical resources.
comment: 18 pages, 10 figures
☆ A Fashion Item Recommendation Model in Hyperbolic Space CVPR 2024
In this work, we propose a fashion item recommendation model that incorporates hyperbolic geometry into user and item representations. Using hyperbolic space, our model aims to capture implicit hierarchies among items based on their visual data and users' purchase history. During training, we apply a multi-task learning framework that considers both hyperbolic and Euclidean distances in the loss function. Our experiments on three data sets show that our model performs better than previous models trained in Euclidean space only, confirming the effectiveness of our model. Our ablation studies show that multi-task learning plays a key role, and removing the Euclidean loss substantially deteriorates the model performance.
comment: This work was presented at the CVFAD Workshop at CVPR 2024
☆ SurgTrack: CAD-Free 3D Tracking of Real-world Surgical Instruments
Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
☆ BMI Prediction from Handwritten English Characters Using a Convolutional Neural Network
A person's Body Mass Index, or BMI, is the most widely used parameter for assessing their health. BMI is a crucial predictor of potential diseases that may arise at higher body fat levels because it is correlated with body fat. Conversely, a community's or an individual's nutritional status can be determined using the BMI. Although deep learning models are used in several studies to estimate BMI from face photos and other data, no previous research established a clear connection between deep learning techniques for handwriting analysis and BMI prediction. This article addresses this research gap with a deep learning approach to estimating BMI from handwritten characters by developing a convolutional neural network (CNN). A dataset containing samples from 48 people in lowercase English scripts is successfully captured for the BMI prediction task. The proposed CNN-based approach reports a commendable accuracy of 99.92%. Performance comparison with other popular CNN architectures reveals that AlexNet and InceptionV3 achieve the second and third-best performance, with the accuracy of 99.69% and 99.53%, respectively.
☆ Object Gaussian for Monocular 6D Pose Estimation from Sparse Views
Monocular object pose estimation, as a pivotal task in computer vision and robotics, heavily depends on accurate 2D-3D correspondences, which often demand costly CAD models that may not be readily available. Object 3D reconstruction methods offer an alternative, among which recent advancements in 3D Gaussian Splatting (3DGS) afford a compelling potential. Yet its performance still suffers and tends to overfit with fewer input views. Embracing this challenge, we introduce SGPose, a novel framework for sparse view object pose estimation using Gaussian-based methods. Given as few as ten views, SGPose generates a geometric-aware representation by starting with a random cuboid initialization, eschewing reliance on Structure-from-Motion (SfM) pipeline-derived geometry as required by traditional 3DGS methods. SGPose removes the dependence on CAD models by regressing dense 2D-3D correspondences between images and the reconstructed model from sparse input and random initialization, while the geometric-consistent depth supervision and online synthetic view warping are key to the success. Experiments on typical benchmarks, especially on the Occlusion LM-O dataset, demonstrate that SGPose outperforms existing methods even under sparse view constraints, under-scoring its potential in real-world applications.
☆ Solving Video Inverse Problems Using Image Diffusion Models
Recently, diffusion model-based inverse problem solvers (DIS) have emerged as state-of-the-art approaches for addressing inverse problems, including image super-resolution, deblurring, inpainting, etc. However, their application to video inverse problems arising from spatio-temporal degradation remains largely unexplored due to the challenges in training video diffusion models. To address this issue, here we introduce an innovative video inverse solver that leverages only image diffusion models. Specifically, by drawing inspiration from the success of the recent decomposed diffusion sampler (DDS), our method treats the time dimension of a video as the batch dimension of image diffusion models and solves spatio-temporal optimization problems within denoised spatio-temporal batches derived from each image diffusion model. Moreover, we introduce a batch-consistent diffusion sampling strategy that encourages consistency across batches by synchronizing the stochastic noise components in image diffusion models. Our approach synergistically combines batch-consistent sampling with simultaneous optimization of denoised spatio-temporal batches at each reverse diffusion step, resulting in a novel and efficient diffusion sampling strategy for video inverse problems. Experimental results demonstrate that our method effectively addresses various spatio-temporal degradations in video inverse problems, achieving state-of-the-art reconstructions. Project page: https://solving-video-inverse.github.io/main/
comment: 22 pages, 16 figures
☆ Evaluation Study on SAM 2 for Class-agnostic Instance-level Segmentation
Segment Anything Model (SAM) has demonstrated powerful zero-shot segmentation performance in natural scenes. The recently released Segment Anything Model 2 (SAM2) has further heightened researchers' expectations towards image segmentation capabilities. To evaluate the performance of SAM2 on class-agnostic instance-level segmentation tasks, we adopt different prompt strategies for SAM2 to cope with instance-level tasks for three relevant scenarios: Salient Instance Segmentation (SIS), Camouflaged Instance Segmentation (CIS), and Shadow Instance Detection (SID). In addition, to further explore the effectiveness of SAM2 in segmenting granular object structures, we also conduct detailed tests on the high-resolution Dichotomous Image Segmentation (DIS) benchmark to assess the fine-grained segmentation capability. Qualitative and quantitative experimental results indicate that the performance of SAM2 varies significantly across different scenarios. Besides, SAM2 is not particularly sensitive to segmenting high-resolution fine details. We hope this technique report can drive the emergence of SAM2-based adapters, aiming to enhance the performance ceiling of large vision models on class-agnostic instance segmentation tasks.
☆ How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations
Facial expression perception in humans inherently relies on prior knowledge and contextual cues, contributing to efficient and flexible processing. For instance, multi-modal emotional context (such as voice color, affective text, body pose, etc.) can prompt people to perceive emotional expressions in objectively neutral faces. Drawing inspiration from this, we introduce a novel approach for facial expression classification that goes beyond simple classification tasks. Our model accurately classifies a perceived face and synthesizes the corresponding mental representation perceived by a human when observing a face in context. With this, our model offers visual insights into its internal decision-making process. We achieve this by learning two independent representations of content and context using a VAE-GAN architecture. Subsequently, we propose a novel attention mechanism for context-dependent feature adaptation. The adapted representation is used for classification and to generate a context-augmented expression. We evaluate synthesized expressions in a human study, showing that our model effectively produces approximations of human mental representations. We achieve State-of-the-Art classification accuracies of 81.01% on the RAVDESS dataset and 79.34% on the MEAD dataset. We make our code publicly available.
comment: GCPR 2024
☆ Interacting Multiple Model-based Joint Homography Matrix and Multiple Object State Estimation
A novel MOT algorithm, IMM Joint Homography State Estimation (IMM-JHSE), is proposed. By jointly modelling the camera projection matrix as part of track state vectors, IMM-JHSE removes the explicit influence of camera motion compensation techniques on predicted track position states, which was prevalent in previous approaches. Expanding upon this, static and dynamic camera motion models are combined through the use of an IMM filter. A simple bounding box motion model is used to predict bounding box positions to incorporate image plane information. In addition to applying an IMM to camera motion, a non-standard IMM approach is applied where bounding-box-based BIoU scores are mixed with ground-plane-based Mahalanobis distances in an IMM-like fashion to perform association only. Finally, IMM-JHSE makes use of dynamic process and measurement noise estimation techniques. IMM-JHSE improves upon related techniques on the DanceTrack and KITTI-car datasets, increasing HOTA by 2.64 and 2.11, respectively, while offering competitive performance on the MOT17, MOT20 and KITTI-pedestrian datasets.
comment: Preprint submitted to Information Fusion
☆ Low-Resolution Object Recognition with Cross-Resolution Relational Contrastive Distillation
Recognizing objects in low-resolution images is a challenging task due to the lack of informative details. Recent studies have shown that knowledge distillation approaches can effectively transfer knowledge from a high-resolution teacher model to a low-resolution student model by aligning cross-resolution representations. However, these approaches still face limitations in adapting to the situation where the recognized objects exhibit significant representation discrepancies between training and testing images. In this study, we propose a cross-resolution relational contrastive distillation approach to facilitate low-resolution object recognition. Our approach enables the student model to mimic the behavior of a well-trained teacher model which delivers high accuracy in identifying high-resolution objects. To extract sufficient knowledge, the student learning is supervised with contrastive relational distillation loss, which preserves the similarities in various relational structures in contrastive representation space. In this manner, the capability of recovering missing details of familiar low-resolution objects can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on low-resolution object classification and low-resolution face recognition clearly demonstrate the effectiveness and adaptability of our approach.
comment: This paper is accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
☆ Real-Time Dynamic Scale-Aware Fusion Detection Network: Take Road Damage Detection as an example
Unmanned Aerial Vehicle (UAV)-based Road Damage Detection (RDD) is important for daily maintenance and safety in cities, especially in terms of significantly reducing labor costs. However, current UAV-based RDD research is still faces many challenges. For example, the damage with irregular size and direction, the masking of damage by the background, and the difficulty of distinguishing damage from the background significantly affect the ability of UAV to detect road damage in daily inspection. To solve these problems and improve the performance of UAV in real-time road damage detection, we design and propose three corresponding modules: a feature extraction module that flexibly adapts to shape and background; a module that fuses multiscale perception and adapts to shape and background ; an efficient downsampling module. Based on these modules, we designed a multi-scale, adaptive road damage detection model with the ability to automatically remove background interference, called Dynamic Scale-Aware Fusion Detection Model (RT-DSAFDet). Experimental results on the UAV-PDD2023 public dataset show that our model RT-DSAFDet achieves a mAP50 of 54.2%, which is 11.1% higher than that of YOLOv10-m, an efficient variant of the latest real-time object detection model YOLOv10, while the amount of parameters is reduced to 1.8M and FLOPs to 4.6G, with a decreased by 88% and 93%, respectively. Furthermore, on the large generalized object detection public dataset MS COCO2017 also shows the superiority of our model with mAP50-95 is the same as YOLOv9-t, but with 0.5% higher mAP50, 10% less parameters volume, and 40% less FLOPs.
☆ UniTT-Stereo: Unified Training of Transformer for Enhanced Stereo Matching
Unlike other vision tasks where Transformer-based approaches are becoming increasingly common, stereo depth estimation is still dominated by convolution-based approaches. This is mainly due to the limited availability of real-world ground truth for stereo matching, which is a limiting factor in improving the performance of Transformer-based stereo approaches. In this paper, we propose UniTT-Stereo, a method to maximize the potential of Transformer-based stereo architectures by unifying self-supervised learning used for pre-training with stereo matching framework based on supervised learning. To be specific, we explore the effectiveness of reconstructing features of masked portions in an input image and at the same time predicting corresponding points in another image from the perspective of locality inductive bias, which is crucial in training models with limited training data. Moreover, to address these challenging tasks of reconstruction-and-prediction, we present a new strategy to vary a masking ratio when training the stereo model with stereo-tailored losses. State-of-the-art performance of UniTT-Stereo is validated on various benchmarks such as ETH3D, KITTI 2012, and KITTI 2015 datasets. Lastly, to investigate the advantages of the proposed approach, we provide a frequency analysis of feature maps and the analysis of locality inductive bias based on attention maps.
☆ StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models ECCV2024
Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.
comment: Accepted by ECCV2024
☆ Sample what you cant compress
For learned image representations, basic autoencoders often produce blurry results. Reconstruction quality can be improved by incorporating additional penalties such as adversarial (GAN) and perceptual losses. Arguably, these approaches lack a principled interpretation. Concurrently, in generative settings diffusion has demonstrated a remarkable ability to create crisp, high quality results and has solid theoretical underpinnings (from variational inference to direct study as the Fisher Divergence). Our work combines autoencoder representation learning with diffusion and is, to our knowledge, the first to demonstrate the efficacy of jointly learning a continuous encoder and decoder under a diffusion-based loss. We demonstrate that this approach yields better reconstruction quality as compared to GAN-based autoencoders while being easier to tune. We also show that the resulting representation is easier to model with a latent diffusion model as compared to the representation obtained from a state-of-the-art GAN-based loss. Since our decoder is stochastic, it can generate details not encoded in the otherwise deterministic latent representation; we therefore name our approach "Sample what you can't compress", or SWYCC for short.
☆ SG-MIM: Structured Knowledge Guided Efficient Pre-training for Dense Prediction
Masked Image Modeling (MIM) techniques have redefined the landscape of computer vision, enabling pre-trained models to achieve exceptional performance across a broad spectrum of tasks. Despite their success, the full potential of MIM-based methods in dense prediction tasks, particularly in depth estimation, remains untapped. Existing MIM approaches primarily rely on single-image inputs, which makes it challenging to capture the crucial structured information, leading to suboptimal performance in tasks requiring fine-grained feature representation. To address these limitations, we propose SG-MIM, a novel Structured knowledge Guided Masked Image Modeling framework designed to enhance dense prediction tasks by utilizing structured knowledge alongside images. SG-MIM employs a lightweight relational guidance framework, allowing it to guide structured knowledge individually at the feature level rather than naively combining at the pixel level within the same architecture, as is common in traditional multi-modal pre-training methods. This approach enables the model to efficiently capture essential information while minimizing discrepancies between pre-training and downstream tasks. Furthermore, SG-MIM employs a selective masking strategy to incorporate structured knowledge, maximizing the synergy between general representation learning and structured knowledge-specific learning. Our method requires no additional annotations, making it a versatile and efficient solution for a wide range of applications. Our evaluations on the KITTI, NYU-v2, and ADE20k datasets demonstrate SG-MIM's superiority in monocular depth estimation and semantic segmentation.
☆ TLD: A Vehicle Tail Light signal Dataset and Benchmark
Understanding other drivers' intentions is crucial for safe driving. The role of taillights in conveying these intentions is underemphasized in current autonomous driving systems. Accurately identifying taillight signals is essential for predicting vehicle behavior and preventing collisions. Open-source taillight datasets are scarce, often small and inconsistently annotated. To address this gap, we introduce a new large-scale taillight dataset called TLD. Sourced globally, our dataset covers diverse traffic scenarios. To our knowledge, TLD is the first dataset to separately annotate brake lights and turn signals in real driving scenarios. We collected 17.78 hours of driving videos from the internet. This dataset consists of 152k labeled image frames sampled at a rate of 2 Hz, along with 1.5 million unlabeled frames interspersed throughout. Additionally, we have developed a two-stage vehicle light detection model consisting of two primary modules: a vehicle detector and a taillight classifier. Initially, YOLOv10 and DeepSORT captured consecutive vehicle images over time. Subsequently, the two classifiers work simultaneously to determine the states of the brake lights and turn signals. A post-processing procedure is then used to eliminate noise caused by misidentifications and provide the taillight states of the vehicle within a given time frame. Our method shows exceptional performance on our dataset, establishing a benchmark for vehicle taillight detection. The dataset is available at https://huggingface.co/datasets/ChaiJohn/TLD/tree/main
☆ A Learnable Color Correction Matrix for RAW Reconstruction BMVC2024
Autonomous driving algorithms usually employ sRGB images as model input due to their compatibility with the human visual system. However, visually pleasing sRGB images are possibly sub-optimal for downstream tasks when compared to RAW images. The availability of RAW images is constrained by the difficulties in collecting real-world driving data and the associated challenges of annotation. To address this limitation and support research in RAW-domain driving perception, we design a novel and ultra-lightweight RAW reconstruction method. The proposed model introduces a learnable color correction matrix (CCM), which uses only a single convolutional layer to approximate the complex inverse image signal processor (ISP). Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods when pretraining RAW-domain object detectors, which highlights the effectiveness and practicality of our approach.
comment: Accepted by BMVC2024
☆ Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation
Monocular depth estimation aims to infer a dense depth map from a single image, which is a fundamental and prevalent task in computer vision. Many previous works have shown impressive depth estimation results through carefully designed network structures, but they usually ignore the planar information and therefore perform poorly in low-texture areas of indoor scenes. In this paper, we propose Plane2Depth, which adaptively utilizes plane information to improve depth prediction within a hierarchical framework. Specifically, in the proposed plane guided depth generator (PGDG), we design a set of plane queries as prototypes to softly model planes in the scene and predict per-pixel plane coefficients. Then the predicted plane coefficients can be converted into metric depth values with the pinhole camera model. In the proposed adaptive plane query aggregation (APGA) module, we introduce a novel feature interaction approach to improve the aggregation of multi-scale plane features in a top-down manner. Extensive experiments show that our method can achieve outstanding performance, especially in low-texture or repetitive areas. Furthermore, under the same backbone network, our method outperforms the state-of-the-art methods on the NYU-Depth-v2 dataset, achieves competitive results with state-of-the-art methods KITTI dataset and can be generalized to unseen scenes effectively.
comment: 14 pages, 12 figures, 8 tables
Reliable Deep Diffusion Tensor Estimation: Rethinking the Power of Data-Driven Optimization Routine
Diffusion tensor imaging (DTI) holds significant importance in clinical diagnosis and neuroscience research. However, conventional model-based fitting methods often suffer from sensitivity to noise, leading to decreased accuracy in estimating DTI parameters. While traditional data-driven deep learning methods have shown potential in terms of accuracy and efficiency, their limited generalization to out-of-training-distribution data impedes their broader application due to the diverse scan protocols used across centers, scanners, and studies. This work aims to tackle these challenges and promote the use of DTI by introducing a data-driven optimization-based method termed DoDTI. DoDTI combines the weighted linear least squares fitting algorithm and regularization by denoising technique. The former fits DW images from diverse acquisition settings into diffusion tensor field, while the latter applies a deep learning-based denoiser to regularize the diffusion tensor field instead of the DW images, which is free from the limitation of fixed-channel assignment of the network. The optimization object is solved using the alternating direction method of multipliers and then unrolled to construct a deep neural network, leveraging a data-driven strategy to learn network parameters. Extensive validation experiments are conducted utilizing both internally simulated datasets and externally obtained in-vivo datasets. The results, encompassing both qualitative and quantitative analyses, showcase that the proposed method attains state-of-the-art performance in DTI parameter estimation. Notably, it demonstrates superior generalization, accuracy, and efficiency, rendering it highly reliable for widespread application in the field.
☆ TP-GMOT: Tracking Generic Multiple Object by Textual Prompt with Motion-Appearance Cost (MAC) SORT
While Multi-Object Tracking (MOT) has made substantial advancements, it is limited by heavy reliance on prior knowledge and limited to predefined categories. In contrast, Generic Multiple Object Tracking (GMOT), tracking multiple objects with similar appearance, requires less prior information about the targets but faces challenges with variants like viewpoint, lighting, occlusion, and resolution. Our contributions commence with the introduction of the \textbf{\text{Refer-GMOT dataset}} a collection of videos, each accompanied by fine-grained textual descriptions of their attributes. Subsequently, we introduce a novel text prompt-based open-vocabulary GMOT framework, called \textbf{\text{TP-GMOT}}, which can track never-seen object categories with zero training examples. Within \text{TP-GMOT} framework, we introduce two novel components: (i) {\textbf{\text{TP-OD}}, an object detection by a textual prompt}, for accurately detecting unseen objects with specific characteristics. (ii) Motion-Appearance Cost SORT \textbf{\text{MAC-SORT}}, a novel object association approach that adeptly integrates motion and appearance-based matching strategies to tackle the complex task of tracking multiple generic objects with high similarity. Our contributions are benchmarked on the \text{Refer-GMOT} dataset for GMOT task. Additionally, to assess the generalizability of the proposed \text{TP-GMOT} framework and the effectiveness of \text{MAC-SORT} tracker, we conduct ablation studies on the DanceTrack and MOT20 datasets for the MOT task. Our dataset, code, and models will be publicly available at: https://fsoft-aic.github.io/TP-GMOT
☆ Boosting Generalizability towards Zero-Shot Cross-Dataset Single-Image Indoor Depth by Meta-Initialization IROS 2024
Indoor robots rely on depth to perform tasks like navigation or obstacle detection, and single-image depth estimation is widely used to assist perception. Most indoor single-image depth prediction focuses less on model generalizability to unseen datasets, concerned with in-the-wild robustness for system deployment. This work leverages gradient-based meta-learning to gain higher generalizability on zero-shot cross-dataset inference. Unlike the most-studied meta-learning of image classification associated with explicit class labels, no explicit task boundaries exist for continuous depth values tied to highly varying indoor environments regarding object arrangement and scene composition. We propose fine-grained task that treats each RGB-D mini-batch as a task in our meta-learning formulation. We first show that our method on limited data induces a much better prior (max 27.8% in RMSE). Then, finetuning on meta-learned initialization consistently outperforms baselines without the meta approach. Aiming at generalization, we propose zero-shot cross-dataset protocols and validate higher generalizability induced by our meta-initialization, as a simple and useful plugin to many existing depth estimation methods. The work at the intersection of depth and meta-learning potentially drives both research to step closer to practical robotic and machine perception usage.
comment: IROS 2024. The version supersedes 2305.07269. arXiv admin note: text overlap with arXiv:2305.07269
☆ TASAR: Transferable Attack on Skeletal Action Recognition
Skeletal sequences, as well-structured representations of human behaviors, are crucial in Human Activity Recognition (HAR). The transferability of adversarial skeletal sequences enables attacks in real-world HAR scenarios, such as autonomous driving, intelligent surveillance, and human-computer interactions. However, existing Skeleton-based HAR (S-HAR) attacks exhibit weak adversarial transferability and, therefore, cannot be considered true transfer-based S-HAR attacks. More importantly, the reason for this failure remains unclear. In this paper, we study this phenomenon through the lens of loss surface, and find that its sharpness contributes to the poor transferability in S-HAR. Inspired by this observation, we assume and empirically validate that smoothening the rugged loss landscape could potentially improve adversarial transferability in S-HAR. To this end, we propose the first Transfer-based Attack on Skeletal Action Recognition, TASAR. TASAR explores the smoothed model posterior without re-training the pre-trained surrogates, which is achieved by a new post-train Dual Bayesian optimization strategy. Furthermore, unlike previous transfer-based attacks that treat each frame independently and overlook temporal coherence within sequences, TASAR incorporates motion dynamics into the Bayesian attack gradient, effectively disrupting the spatial-temporal coherence of S-HARs. To exhaustively evaluate the effectiveness of existing methods and our method, we build the first large-scale robust S-HAR benchmark, comprising 7 S-HAR models, 10 attack methods, 3 S-HAR datasets and 2 defense models. Extensive results demonstrate the superiority of TASAR. Our benchmark enables easy comparisons for future studies, with the code available in the supplementary material.
comment: arXiv admin note: text overlap with arXiv:2407.08572
☆ Volumetric Surfaces: Representing Fuzzy Geometries with Multiple Meshes
High-quality real-time view synthesis methods are based on volume rendering, splatting, or surface rendering. While surface-based methods generally are the fastest, they cannot faithfully model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). These problems are exacerbated on low-performance graphics hardware, e.g. on mobile devices. We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes, rendered in fixed layer order from outermost to innermost. We model mesh layers as SDF shells with optimal spacing learned during training. After baking, we fit UV textures to the corresponding meshes. We show that our method can represent challenging fuzzy objects while achieving higher frame rates than volume-based and splatting-based methods on low-end and mobile devices.
☆ FrameCorr: Adaptive, Autoencoder-based Neural Compression for Video Reconstruction in Resource and Timing Constrained Network Settings
Despite the growing adoption of video processing via Internet of Things (IoT) devices due to their cost-effectiveness, transmitting captured data to nearby servers poses challenges due to varying timing constraints and scarcity of network bandwidth. Existing video compression methods face difficulties in recovering compressed data when incomplete data is provided. Here, we introduce \emph{\project}, a deep-learning based solution that utilizes previously received data to predict the missing segments of a frame, enabling the reconstruction of a frame from partially received data.
Detecting Korean Food Using Image using Hierarchical Model
A solution was made available for Korean Food lovers who have dietary restrictions to identify the Korean food before consuming. Just by uploading a clear photo of the dish, people can get to know what they are eating. Image processing techniques together with machine learning helped to come up with this solution.
☆ Non-target Divergence Hypothesis: Toward Understanding Domain Gaps in Cross-Modal Knowledge Distillation
Compared to single-modal knowledge distillation, cross-modal knowledge distillation faces more severe challenges due to domain gaps between modalities. Although various methods have proposed various solutions to overcome these challenges, there is still limited research on how domain gaps affect cross-modal knowledge distillation. This paper provides an in-depth analysis and evaluation of this issue. We first introduce the Non-Target Divergence Hypothesis (NTDH) to reveal the impact of domain gaps on cross-modal knowledge distillation. Our key finding is that domain gaps between modalities lead to distribution differences in non-target classes, and the smaller these differences, the better the performance of cross-modal knowledge distillation. Subsequently, based on Vapnik-Chervonenkis (VC) theory, we derive the upper and lower bounds of the approximation error for cross-modal knowledge distillation, thereby theoretically validating the NTDH. Finally, experiments on five cross-modal datasets further confirm the validity, generalisability, and applicability of the NTDH.
☆ Training-free Color-Style Disentanglement for Constrained Text-to-Image Synthesis
We consider the problem of independently, in a disentangled fashion, controlling the outputs of text-to-image diffusion models with color and style attributes of a user-supplied reference image. We present the first training-free, test-time-only method to disentangle and condition text-to-image models on color and style attributes from reference image. To realize this, we propose two key innovations. Our first contribution is to transform the latent codes at inference time using feature transformations that make the covariance matrix of current generation follow that of the reference image, helping meaningfully transfer color. Next, we observe that there exists a natural disentanglement between color and style in the LAB image space, which we exploit to transform the self-attention feature maps of the image being generated with respect to those of the reference computed from its L channel. Both these operations happen purely at test time and can be done independently or merged. This results in a flexible method where color and style information can come from the same reference image or two different sources, and a new generation can seamlessly fuse them in either scenario.
comment: 16 pages, 17 figures
☆ Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering
Recent empirical studies have demonstrated that diffusion models can effectively learn the image distribution and generate new samples. Remarkably, these models can achieve this even with a small number of training samples despite a large image dimension, circumventing the curse of dimensionality. In this work, we provide theoretical insights into this phenomenon by leveraging key empirical observations: (i) the low intrinsic dimensionality of image data, (ii) a union of manifold structure of image data, and (iii) the low-rank property of the denoising autoencoder in trained diffusion models. These observations motivate us to assume the underlying data distribution of image data as a mixture of low-rank Gaussians and to parameterize the denoising autoencoder as a low-rank model according to the score function of the assumed distribution. With these setups, we rigorously show that optimizing the training loss of diffusion models is equivalent to solving the canonical subspace clustering problem over the training samples. Based on this equivalence, we further show that the minimal number of samples required to learn the underlying distribution scales linearly with the intrinsic dimensions under the above data and model assumptions. This insight sheds light on why diffusion models can break the curse of dimensionality and exhibit the phase transition in learning distributions. Moreover, we empirically establish a correspondence between the subspaces and the semantic representations of image data, facilitating image editing. We validate these results with corroborated experimental results on both simulated distributions and image datasets.
comment: 39 pages, 9 figures
☆ MOSMOS: Multi-organ segmentation facilitated by medical report supervision
Owing to a large amount of multi-modal data in modern medical systems, such as medical images and reports, Medical Vision-Language Pre-training (Med-VLP) has demonstrated incredible achievements in coarse-grained downstream tasks (i.e., medical classification, retrieval, and visual question answering). However, the problem of transferring knowledge learned from Med-VLP to fine-grained multi-organ segmentation tasks has barely been investigated. Multi-organ segmentation is challenging mainly due to the lack of large-scale fully annotated datasets and the wide variation in the shape and size of the same organ between individuals with different diseases. In this paper, we propose a novel pre-training & fine-tuning framework for Multi-Organ Segmentation by harnessing Medical repOrt Supervision (MOSMOS). Specifically, we first introduce global contrastive learning to maximally align the medical image-report pairs in the pre-training stage. To remedy the granularity discrepancy, we further leverage multi-label recognition to implicitly learn the semantic correspondence between image pixels and organ tags. More importantly, our pre-trained models can be transferred to any segmentation model by introducing the pixel-tag attention maps. Different network settings, i.e., 2D U-Net and 3D UNETR, are utilized to validate the generalization. We have extensively evaluated our approach using different diseases and modalities on BTCV, AMOS, MMWHS, and BRATS datasets. Experimental results in various settings demonstrate the effectiveness of our framework. This framework can serve as the foundation to facilitate future research on automatic annotation tasks under the supervision of medical reports.
comment: 14 pages, 7 figures
☆ Local map Construction Methods with SD map: A Novel Survey
In recent years, significant academic advancements have been made in the field of autonomous vehicles, with Local maps emerging as a crucial component of autonomous driving technology. Local maps not only provide intricate details of road networks but also serve as fundamental inputs for critical tasks such as vehicle localization, navigation, and decision-making. Given the characteristics of SD map (Standard Definition Map), which include low cost, ease of acquisition, and high versatility, perception methods that integrate SD map as prior information have demonstrated significant potential in the field of Local map perception. The purpose of this paper is to provide researchers with a comprehensive overview and summary of the latest advancements in the integration of SD map as prior information for Local map perception methods. This review begins by introducing the task definition and general pipeline of local map perception methods that incorporate SD maps as prior information, along with relevant public datasets. And then it focuses on the representation and encoding methods of multi-source information, as well as the methods for fusing multi-source information. In response to this burgeoning trend, this article presents a comprehensive and meticulous overview of the diverse research efforts in this particular field. Finally, the article addresses pertinent issues and future challenges with the aim of guiding researchers in understanding the current trends and methodologies prevalent in the field.
comment: 14 pages, 11 figures
☆ Hadamard Row-Wise Generation Algorithm
In this paper, we introduce an efficient algorithm for generating specific Hadamard rows, addressing the memory demands of pre-computing the entire matrix. Leveraging Sylvester's recursive construction, our method generates the required $i$-th row on demand, significantly reducing computational resources. The algorithm uses the Kronecker product to construct the desired row from the binary representation of the index, without creating the full matrix. This approach is particularly useful for single-pixel imaging systems that need only one row at a time.
☆ Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts
Uncovering the fundamental neural correlates of biological intelligence, developing mathematical models, and conducting computational simulations are critical for advancing new paradigms in artificial intelligence (AI). In this study, we implemented a comprehensive visual decision-making model that spans from visual input to behavioral output, using a neural dynamics modeling approach. Drawing inspiration from the key components of the dorsal visual pathway in primates, our model not only aligns closely with human behavior but also reflects neural activities in primates, and achieving accuracy comparable to convolutional neural networks (CNNs). Moreover, magnetic resonance imaging (MRI) identified key neuroimaging features such as structural connections and functional connectivity that are associated with performance in perceptual decision-making tasks. A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements that paralleled the behavioral variations observed among subjects. Compared to classical deep learning models, our model more accurately replicates the behavioral performance of biological intelligence, relying on the structural characteristics of biological neural networks rather than extensive training data, and demonstrating enhanced resilience to perturbation.
☆ Multi-modal Situated Reasoning in 3D Scenes
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding are limited in data modality, diversity, scale, and task scope. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated question-answering pairs across 9 distinct question categories, covering complex scenarios within 3D scenes. We introduce a novel interleaved multi-modal input setting in our benchmark to provide text, image, and point cloud for situation and question description, resolving ambiguity in previous single-modality convention (e.g., text). Additionally, we devise the Multi-modal Situated Next-step Navigation (MSNN) benchmark to evaluate models' situated reasoning for navigation. Comprehensive evaluations on MSQA and MSNN highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and cross-domain transfer further demonstrate the efficacy of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models.
comment: Project page: https://msr3d.github.io/
☆ Unified Framework with Consistency across Modalities for Human Activity Recognition BMVC 2024
Recognizing human activities in videos is challenging due to the spatio-temporal complexity and context-dependence of human interactions. Prior studies often rely on single input modalities, such as RGB or skeletal data, limiting their ability to exploit the complementary advantages across modalities. Recent studies focus on combining these two modalities using simple feature fusion techniques. However, due to the inherent disparities in representation between these input modalities, designing a unified neural network architecture to effectively leverage their complementary information remains a significant challenge. To address this, we propose a comprehensive multimodal framework for robust video-based human activity recognition. Our key contribution is the introduction of a novel compositional query machine, called COMPUTER ($\textbf{COMP}ositional h\textbf{U}man-cen\textbf{T}ric qu\textbf{ER}y$ machine), a generic neural architecture that models the interactions between a human of interest and its surroundings in both space and time. Thanks to its versatile design, COMPUTER can be leveraged to distill distinctive representations for various input modalities. Additionally, we introduce a consistency loss that enforces agreement in prediction between modalities, exploiting the complementary information from multimodal inputs for robust human movement recognition. Through extensive experiments on action localization and group activity recognition tasks, our approach demonstrates superior performance when compared with state-of-the-art methods. Our code is available at: https://github.com/tranxuantuyen/COMPUTER.
comment: Accepted to BMVC 2024
☆ GGS: Generalizable Gaussian Splatting for Lane Switching in Autonomous Driving
We propose GGS, a Generalizable Gaussian Splatting method for Autonomous Driving which can achieve realistic rendering under large viewpoint changes. Previous generalizable 3D gaussian splatting methods are limited to rendering novel views that are very close to the original pair of images, which cannot handle large differences in viewpoint. Especially in autonomous driving scenarios, images are typically collected from a single lane. The limited training perspective makes rendering images of a different lane very challenging. To further improve the rendering capability of GGS under large viewpoint changes, we introduces a novel virtual lane generation module into GSS method to enables high-quality lane switching even without a multi-lane dataset. Besides, we design a diffusion loss to supervise the generation of virtual lane image to further address the problem of lack of data in the virtual lanes. Finally, we also propose a depth refinement module to optimize depth estimation in the GSS model. Extensive validation of our method, compared to existing approaches, demonstrates state-of-the-art performance.
☆ Coral Model Generation from Single Images for Virtual Reality Applications
With the rapid development of VR technology, the demand for high-quality 3D models is increasing. Traditional methods struggle with efficiency and quality in large-scale customization. This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image. Using the Coral dataset, the framework extracts geometric and texture features, performs 3D reconstruction, and optimizes design and material blending. Advanced optimization and polygon count control ensure shape accuracy, detail retention, and flexible output for various complexities, catering to high-quality rendering and real-time interaction needs.The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks," best viewed in VR and XR. This enhances model interpretability and human-machine collaboration. Real-time feedback in VR interactions displays information like coral species and habitat, enriching user experience. The generated models surpass traditional methods in detail, visual quality, and efficiency. This research offers an intelligent approach to 3D content creation for VR, lowering production barriers, and promoting widespread VR applications. Additionally, integrating XAI provides new insights into AI-generated visual content and advances research in 3D vision interpretability.
comment: In Proceedings of Explainable AI for the Arts Workshop 2024 (XAIxArts 2024) arXiv:2406.14485
☆ Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing
Recently, diffusion models have emerged as a powerful class of generative models. Despite their success, there is still limited understanding of their semantic spaces. This makes it challenging to achieve precise and disentangled image generation without additional training, especially in an unsupervised way. In this work, we improve the understanding of their semantic spaces from intriguing observations: among a certain range of noise levels, (1) the learned posterior mean predictor (PMP) in the diffusion model is locally linear, and (2) the singular vectors of its Jacobian lie in low-dimensional semantic subspaces. We provide a solid theoretical basis to justify the linearity and low-rankness in the PMP. These insights allow us to propose an unsupervised, single-step, training-free LOw-rank COntrollable image editing (LOCO Edit) method for precise local editing in diffusion models. LOCO Edit identified editing directions with nice properties: homogeneity, transferability, composability, and linearity. These properties of LOCO Edit benefit greatly from the low-dimensional semantic subspace. Our method can further be extended to unsupervised or text-supervised editing in various text-to-image diffusion models (T-LOCO Edit). Finally, extensive empirical experiments demonstrate the effectiveness and efficiency of LOCO Edit. The codes will be released at https://github.com/ChicyChen/LOCO-Edit.
Unfolding Videos Dynamics via Taylor Expansion
Taking inspiration from physical motion, we present a new self-supervised dynamics learning strategy for videos: Video Time-Differentiation for Instance Discrimination (ViDiDi). ViDiDi is a simple and data-efficient strategy, readily applicable to existing self-supervised video representation learning frameworks based on instance discrimination. At its core, ViDiDi observes different aspects of a video through various orders of temporal derivatives of its frame sequence. These derivatives, along with the original frames, support the Taylor series expansion of the underlying continuous dynamics at discrete times, where higher-order derivatives emphasize higher-order motion features. ViDiDi learns a single neural network that encodes a video and its temporal derivatives into consistent embeddings following a balanced alternating learning algorithm. By learning consistent representations for original frames and derivatives, the encoder is steered to emphasize motion features over static backgrounds and uncover the hidden dynamics in original frames. Hence, video representations are better separated by dynamic features. We integrate ViDiDi into existing instance discrimination frameworks (VICReg, BYOL, and SimCLR) for pretraining on UCF101 or Kinetics and test on standard benchmarks including video retrieval, action recognition, and action detection. The performances are enhanced by a significant margin without the need for large models or extensive datasets.
☆ Pluralistic Salient Object Detection
We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image. Unlike conventional SOD methods that produce a single segmentation mask for salient objects, this new setting recognizes the inherent complexity of real-world images, comprising multiple objects, and the ambiguity in defining salient objects due to different user intentions. To study this task, we present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics. DUTS-MM builds upon the DUTS dataset but enriches the ground-truth mask annotations from three aspects which 1) improves the mask quality especially for boundary and fine-grained structures; 2) alleviates the annotation inconsistency issue; and 3) provides multiple ground-truth masks for images with saliency ambiguity. DUTS-MQ consists of approximately 100K image-mask pairs with human-annotated preference scores, enabling the learning of real human preferences in measuring mask quality. Building upon these two datasets, we propose a simple yet effective pluralistic SOD baseline based on a Mixture-of-Experts (MOE) design. Equipped with two prediction heads, it simultaneously predicts multiple masks using different query prompts and predicts human preference scores for each mask candidate. Extensive experiments and analyses underscore the significance of our proposed datasets and affirm the effectiveness of our PSOD framework.
☆ Developing, Analyzing, and Evaluating Self-Drive Algorithms Using Drive-by-Wire Electric Vehicles
Reliable lane-following algorithms are essential for safe and effective autonomous driving. This project was primarily focused on developing and evaluating different lane-following programs to find the most reliable algorithm for a Vehicle to Everything (V2X) project. The algorithms were first tested on a simulator and then with real vehicles equipped with a drive-by-wire system using ROS (Robot Operating System). Their performance was assessed through reliability, comfort, speed, and adaptability metrics. The results show that the two most reliable approaches detect both lane lines and use unsupervised learning to separate them. These approaches proved to be robust in various driving scenarios, making them suitable candidates for integration into the V2X project.
comment: Supported by the National Science Foundation under Grants No. 2150292 and 2150096
☆ MSTT-199: MRI Dataset for Musculoskeletal Soft Tissue Tumor Segmentation
Accurate musculoskeletal soft tissue tumor segmentation is vital for assessing tumor size, location, diagnosis, and response to treatment, thereby influencing patient outcomes. However, segmentation of these tumors requires clinical expertise, and an automated segmentation model would save valuable time for both clinician and patient. Training an automatic model requires a large dataset of annotated images. In this work, we describe the collection of an MR imaging dataset of 199 musculoskeletal soft tissue tumors from 199 patients. We trained segmentation models on this dataset and then benchmarked them on a publicly available dataset. Our model achieved the state-of-the-art dice score of 0.79 out of the box without any fine tuning, which shows the diversity and utility of our curated dataset. We analyzed the model predictions and found that its performance suffered on fibrous and vascular tumors due to their diverse anatomical location, size, and intensity heterogeneity. The code and models are available in the following github repository, https://github.com/Reasat/mstt
comment: Dataset will be made publicly available after the acceptance of the paper
☆ Spatial Diffusion for Cell Layout Generation MICCAI 2024
Generative models, such as GANs and diffusion models, have been used to augment training sets and boost performances in different tasks. We focus on generative models for cell detection instead, i.e., locating and classifying cells in given pathology images. One important information that has been largely overlooked is the spatial patterns of the cells. In this paper, we propose a spatial-pattern-guided generative model for cell layout generation. Specifically, a novel diffusion model guided by spatial features and generates realistic cell layouts has been proposed. We explore different density models as spatial features for the diffusion model. In downstream tasks, we show that the generated cell layouts can be used to guide the generation of high-quality pathology images. Augmenting with these images can significantly boost the performance of SOTA cell detection methods. The code is available at https://github.com/superlc1995/Diffusion-cell.
comment: 12 pages, 4 figures, accepted by MICCAI 2024
☆ Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation
Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.
☆ MobileUNETR: A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation ECCV 2024
Skin cancer segmentation poses a significant challenge in medical image analysis. Numerous existing solutions, predominantly CNN-based, face issues related to a lack of global contextual understanding. Alternatively, some approaches resort to large-scale Transformer models to bridge the global contextual gaps, but at the expense of model size and computational complexity. Finally many Transformer based approaches rely primarily on CNN based decoders overlooking the benefits of Transformer based decoding models. Recognizing these limitations, we address the need efficient lightweight solutions by introducing MobileUNETR, which aims to overcome the performance constraints associated with both CNNs and Transformers while minimizing model size, presenting a promising stride towards efficient image segmentation. MobileUNETR has 3 main features. 1) MobileUNETR comprises of a lightweight hybrid CNN-Transformer encoder to help balance local and global contextual feature extraction in an efficient manner; 2) A novel hybrid decoder that simultaneously utilizes low-level and global features at different resolutions within the decoding stage for accurate mask generation; 3) surpassing large and complex architectures, MobileUNETR achieves superior performance with 3 million parameters and a computational complexity of 1.3 GFLOP resulting in 10x and 23x reduction in parameters and FLOPS, respectively. Extensive experiments have been conducted to validate the effectiveness of our proposed method on four publicly available skin lesion segmentation datasets, including ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. The code will be publicly available at: https://github.com/OSUPCVLab/MobileUNETR.git
comment: Accepted at ECCV 2024 - BioImage Computing Workshop (Oral)
☆ Incorporating dense metric depth into neural 3D representations for view synthesis and relighting
Synthesizing accurate geometry and photo-realistic appearance of small scenes is an active area of research with compelling use cases in gaming, virtual reality, robotic-manipulation, autonomous driving, convenient product capture, and consumer-level photography. When applying scene geometry and appearance estimation techniques to robotics, we found that the narrow cone of possible viewpoints due to the limited range of robot motion and scene clutter caused current estimation techniques to produce poor quality estimates or even fail. On the other hand, in robotic applications, dense metric depth can often be measured directly using stereo and illumination can be controlled. Depth can provide a good initial estimate of the object geometry to improve reconstruction, while multi-illumination images can facilitate relighting. In this work we demonstrate a method to incorporate dense metric depth into the training of neural 3D representations and address an artifact observed while jointly refining geometry and appearance by disambiguating between texture and geometry edges. We also discuss a multi-flash stereo camera system developed to capture the necessary data for our pipeline and show results on relighting and view synthesis with a few training views.
comment: Project webpage: https://stereomfc.github.io
☆ Can Your Generative Model Detect Out-of-Distribution Covariate Shift? ECCV 2024
Detecting Out-of-Distribution~(OOD) sensory data and covariate distribution shift aims to identify new test examples with different high-level image statistics to the captured, normal and In-Distribution (ID) set. Existing OOD detection literature largely focuses on semantic shift with little-to-no consensus over covariate shift. Generative models capture the ID data in an unsupervised manner, enabling them to effectively identify samples that deviate significantly from this learned distribution, irrespective of the downstream task. In this work, we elucidate the ability of generative models to detect and quantify domain-specific covariate shift through extensive analyses that involves a variety of models. To this end, we conjecture that it is sufficient to detect most occurring sensory faults (anomalies and deviations in global signals statistics) by solely modeling high-frequency signal-dependent and independent details. We propose a novel method, CovariateFlow, for OOD detection, specifically tailored to covariate heteroscedastic high-frequency image-components using conditional Normalizing Flows (cNFs). Our results on CIFAR10 vs. CIFAR10-C and ImageNet200 vs. ImageNet200-C demonstrate the effectiveness of the method by accurately detecting OOD covariate shift. This work contributes to enhancing the fidelity of imaging systems and aiding machine learning models in OOD detection in the presence of covariate shift.
comment: ECCV 2024
☆ MDNF: Multi-Diffusion-Nets for Neural Fields on Meshes
We propose a novel framework for representing neural fields on triangle meshes that is multi-resolution across both spatial and frequency domains. Inspired by the Neural Fourier Filter Bank (NFFB), our architecture decomposes the spatial and frequency domains by associating finer spatial resolution levels with higher frequency bands, while coarser resolutions are mapped to lower frequencies. To achieve geometry-aware spatial decomposition we leverage multiple DiffusionNet components, each associated with a different spatial resolution level. Subsequently, we apply a Fourier feature mapping to encourage finer resolution levels to be associated with higher frequencies. The final signal is composed in a wavelet-inspired manner using a sine-activated MLP, aggregating higher-frequency signals on top of lower-frequency ones. Our architecture attains high accuracy in learning complex neural fields and is robust to discontinuities, exponential scale variations of the target field, and mesh modification. We demonstrate the effectiveness of our approach through its application to diverse neural fields, such as synthetic RGB functions, UV texture coordinates, and vertex normals, illustrating different challenges. To validate our method, we compare its performance against two alternatives, showcasing the advantages of our multi-resolution architecture.
☆ A General Albedo Recovery Approach for Aerial Photogrammetric Images through Inverse Rendering SP
Modeling outdoor scenes for the synthetic 3D environment requires the recovery of reflectance/albedo information from raw images, which is an ill-posed problem due to the complicated unmodeled physics in this process (e.g., indirect lighting, volume scattering, specular reflection). The problem remains unsolved in a practical context. The recovered albedo can facilitate model relighting and shading, which can further enhance the realism of rendered models and the applications of digital twins. Typically, photogrammetric 3D models simply take the source images as texture materials, which inherently embed unwanted lighting artifacts (at the time of capture) into the texture. Therefore, these polluted textures are suboptimal for a synthetic environment to enable realistic rendering. In addition, these embedded environmental lightings further bring challenges to photo-consistencies across different images that cause image-matching uncertainties. This paper presents a general image formation model for albedo recovery from typical aerial photogrammetric images under natural illuminations and derives the inverse model to resolve the albedo information through inverse rendering intrinsic image decomposition. Our approach builds on the fact that both the sun illumination and scene geometry are estimable in aerial photogrammetry, thus they can provide direct inputs for this ill-posed problem. This physics-based approach does not require additional input other than data acquired through the typical drone-based photogrammetric collection and was shown to favorably outperform existing approaches. We also demonstrate that the recovered albedo image can in turn improve typical image processing tasks in photogrammetry such as feature and dense matching, edge, and line extraction.
comment: ISPRS Journal of Photogrammetry and Remote Sensing
☆ No Detail Left Behind: Revisiting Self-Retrieval for Fine-Grained Image Captioning
Image captioning systems are unable to generate fine-grained captions as they are trained on data that is either noisy (alt-text) or generic (human annotations). This is further exacerbated by maximum likelihood training that encourages generation of frequently occurring phrases. Previous works have tried to address this limitation by fine-tuning captioners with a self-retrieval (SR) reward. However, we find that SR fine-tuning has a tendency to reduce caption faithfulness and even hallucinate. In this work, we circumvent this bottleneck by improving the MLE initialization of the captioning system and designing a curriculum for the SR fine-tuning process. To this extent, we present (1) Visual Caption Boosting, a novel framework to instill fine-grainedness in generic image captioning datasets while remaining anchored in human annotations; and (2) BagCurri, a carefully designed training curriculum that more optimally leverages the contrastive nature of the self-retrieval reward. Jointly, they enable the captioner to describe fine-grained aspects in the image while preserving faithfulness to ground-truth captions. Our approach outperforms previous work by +8.9% on SR against 99 random distractors (RD100) (Dessi et al., 2023); and +7.6% on ImageCoDe. Additionally, existing metrics to evaluate captioning systems fail to reward diversity or evaluate a model's fine-grained understanding ability. Our third contribution addresses this by proposing self-retrieval from the lens of evaluation. We introduce TrueMatch, a benchmark comprising bags of highly similar images that uses SR to assess the captioner's ability to capture subtle visual distinctions. We evaluate and compare several state-of-the-art open-source MLLMs on TrueMatch, and find that our SR approach outperforms them all by a significant margin (e.g. +4.8% - 7.1% over Cambrian) while having 1-2 orders of magnitude fewer parameters.
☆ Boundless: Generating Photorealistic Synthetic Data for Object Detection in Urban Streetscapes
We introduce Boundless, a photo-realistic synthetic data generation system for enabling highly accurate object detection in dense urban streetscapes. Boundless can replace massive real-world data collection and manual ground-truth object annotation (labeling) with an automated and configurable process. Boundless is based on the Unreal Engine 5 (UE5) City Sample project with improvements enabling accurate collection of 3D bounding boxes across different lighting and scene variability conditions. We evaluate the performance of object detection models trained on the dataset generated by Boundless when used for inference on a real-world dataset acquired from medium-altitude cameras. We compare the performance of the Boundless-trained model against the CARLA-trained model and observe an improvement of 7.8 mAP. The results we achieved support the premise that synthetic data generation is a credible methodology for training/fine-tuning scalable object detection models for urban scenes.
☆ Design and Evaluation of Camera-Centric Mobile Crowdsourcing Applications
The data that underlies automated methods in computer vision and machine learning, such as image retrieval and fine-grained recognition, often comes from crowdsourcing. In contexts that rely on the intrinsic motivation of users, we seek to understand how the application design affects a user's willingness to contribute and the quantity and quality of the data they capture. In this project, we designed three versions of a camera-based mobile crowdsourcing application, which varied in the amount of labeling effort requested of the user and conducted a user study to evaluate the trade-off between the level of user-contributed information requested and the quantity and quality of labeled images collected. The results suggest that higher levels of user labeling do not lead to reduced contribution. Users collected and annotated the most images using the application version with the highest requested level of labeling with no decrease in user satisfaction. In preliminary experiments, the additional labeled data supported increased performance on an image retrieval task.
☆ Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors
This paper studies how to synthesize face images of non-existent persons, to create a dataset that allows effective training of face recognition (FR) models. Two important goals are (1) the ability to generate a large number of distinct identities (inter-class separation) with (2) a wide variation in appearance of each identity (intra-class variation). However, existing works 1) are typically limited in how many well-separated identities can be generated and 2) either neglect or use a separate editing model for attribute augmentation. We propose Vec2Face, a holistic model that uses only a sampled vector as input and can flexibly generate and control face images and their attributes. Composed of a feature masked autoencoder and a decoder, Vec2Face is supervised by face image reconstruction and can be conveniently used in inference. Using vectors with low similarity among themselves as inputs, Vec2Face generates well-separated identities. Randomly perturbing an input identity vector within a small range allows Vec2Face to generate faces of the same identity with robust variation in face attributes. It is also possible to generate images with designated attributes by adjusting vector values with a gradient descent method. Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images, whereas 60K is the largest number of identities created in the previous works. FR models trained with the generated HSFace datasets, from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%, on five real-world test sets. For the first time, our model created using a synthetic training set achieves higher accuracy than the model created using a same-scale training set of real face images (on the CALFW test set).
♻ ☆ Asynchronous Blob Tracker for Event Cameras
Event-based cameras are popular for tracking fast-moving objects due to their high temporal resolution, low latency, and high dynamic range. In this paper, we propose a novel algorithm for tracking event blobs using raw events asynchronously in real time. We introduce the concept of an event blob as a spatio-temporal likelihood of event occurrence where the conditional spatial likelihood is blob-like. Many real-world objects such as car headlights or any quickly moving foreground objects generate event blob data. The proposed algorithm uses a nearest neighbour classifier with a dynamic threshold criteria for data association coupled with an extended Kalman filter to track the event blob state. Our algorithm achieves highly accurate blob tracking, velocity estimation, and shape estimation even under challenging lighting conditions and high-speed motions (> 11000 pixels/s). The microsecond time resolution achieved means that the filter output can be used to derive secondary information such as time-to-contact or range estimation, that will enable applications to real-world problems such as collision avoidance in autonomous driving.
comment: 18 pages, 16 figures. The manuscript was accepted on August 7, 2024, by IEEE Transactions on Robotics
♻ ☆ Rethinking Barely-Supervised Volumetric Medical Image Segmentation from an Unsupervised Domain Adaptation Perspective
This paper investigates an extremely challenging problem: barely-supervised volumetric medical image segmentation (BSS). A BSS training dataset consists of two parts: 1) a barely-annotated labeled set, where each labeled image contains only a single-slice annotation, and 2) an unlabeled set comprising numerous unlabeled volumetric images. State-of-the-art BSS methods employ a registration-based paradigm, which uses inter-slice image registration to propagate single-slice annotations into volumetric pseudo labels, constructing a completely annotated labeled set, to which a semi-supervised segmentation scheme can be applied. However, the paradigm has a critical limitation: the pseudo-labels generated by image registration are unreliable and noisy. Motivated by this, we propose a new perspective: instead of solving BSS within a semi-supervised learning scheme, this work formulates BSS as an unsupervised domain adaptation problem. To this end, we propose a novel BSS framework, \textbf{B}arely-supervised learning \textbf{via} unsupervised domain \textbf{A}daptation (BvA), as an alternative to the dominant registration paradigm. Specifically, we first design a novel noise-free labeled data construction algorithm (NFC) for slice-to-volume labeled data synthesis. Then, we introduce a frequency and spatial Mix-Up strategy (FSX) to mitigate the domain shifts. Extensive experiments demonstrate that our method provides a promising alternative for BSS. Remarkably, the proposed method, trained on the left atrial segmentation dataset with \textbf{only one} barely-labeled image, achieves a Dice score of 81.20%, outperforming the state-of-the-art by 61.71%. The code is available at https://github.com/Senyh/BvA.
♻ ☆ MCDubber: Multimodal Context-Aware Expressive Video Dubbing SC2024
Automatic Video Dubbing (AVD) aims to take the given script and generate speech that aligns with lip motion and prosody expressiveness. Current AVD models mainly utilize visual information of the current sentence to enhance the prosody of synthesized speech. However, it is crucial to consider whether the prosody of the generated dubbing aligns with the multimodal context, as the dubbing will be combined with the original context in the final video. This aspect has been overlooked in previous studies. To address this issue, we propose a Multimodal Context-aware video Dubbing model, termed \textbf{MCDubber}, to convert the modeling object from a single sentence to a longer sequence with context information to ensure the consistency of the global context prosody. MCDubber comprises three main components: (1) A context duration aligner aims to learn the context-aware alignment between the text and lip frames; (2) A context prosody predictor seeks to read the global context visual sequence and predict the context-aware global energy and pitch; (3) A context acoustic decoder ultimately predicts the global context mel-spectrogram with the assistance of adjacent ground-truth mel-spectrograms of the target sentence. Through this process, MCDubber fully considers the influence of multimodal context on the prosody expressiveness of the current sentence when dubbing. The extracted mel-spectrogram belonging to the target sentence from the output context mel-spectrograms is the final required dubbing audio. Extensive experiments on the Chem benchmark dataset demonstrate that our MCDubber significantly improves dubbing expressiveness compared to all advanced baselines. The code and demos are available at https://github.com/XiaoYuanJun-zy/MCDubber.
comment: Accepted by NCMMSC2024
♻ ☆ LADDER: Language Driven Slice Discovery and Error Rectification
Error slice discovery associates structured patterns with model errors. Existing methods discover error slices by clustering the error-prone samples with similar patterns or assigning discrete attributes to each sample for post-hoc analysis. While these methods aim for interpretability and easier mitigation through reweighting or rebalancing, they may not capture the full complexity of error patterns due to incomplete or missing attributes. Contrary to the existing approach, this paper utilizes the reasoning capabilities of the Large Language Model (LLM) to analyze complex error patterns and generate testable hypotheses. This paper proposes LADDER: Language Driven slice Discovery and Error Rectification. It first projects the model's representation into a language-aligned feature space (eg CLIP) to preserve semantics in the original model feature space. This ensures the accurate retrieval of sentences that highlight the model's errors. Next, the LLM utilizes the sentences and generates hypotheses to discover error slices. Finally, we mitigate the error by fine-tuning the classification head by creating a group-balanced dataset using the hypotheses. Our entire method does not require any attribute annotation, either explicitly or through external tagging models. We validate our method with \textbf{five} image classification datasets. The code is available (https://github.com/batmanlab/Ladder).
♻ ☆ Quantifying uncertainty in lung cancer segmentation with foundation models applied to mixed-domain datasets
Medical image foundation models have shown the ability to segment organs and tumors with minimal fine-tuning. These models are typically evaluated on task-specific in-distribution (ID) datasets. However, reliable performance on ID dataset does not guarantee robust generalization on out-of-distribution (OOD) datasets. Importantly, once deployed for clinical use, it is impractical to have `ground truth' delineations to assess ongoing performance drifts, especially when images fall into OOD category due to different imaging protocols. Hence, we introduced a comprehensive set of computationally fast metrics to evaluate the performance of multiple foundation models (Swin UNETR, SimMIM, iBOT, SMIT) trained with self-supervised learning (SSL). SSL pretraining was selected as this approach is applicable for large, diverse, and unlabeled image sets. All models were fine-tuned on identical datasets for lung tumor segmentation from computed tomography (CT) scans. SimMIM, iBOT, and SMIT used identical architecture, pretraining, and fine-tuning datasets to assess performance variations with the choice of pretext tasks used in SSL. Evaluation was performed on two public lung cancer datasets (LRAD: n = 140, 5Rater: n = 21) with different image acquisitions and tumor stage compared to training data (n = 317 public resource with stage III-IV lung cancers) and a public non-cancer dataset containing volumetric CT scans of patients with pulmonary embolism (n = 120). All models produced similarly accurate tumor segmentation on the lung cancer testing datasets. SMIT produced a highest F1-score (LRAD: 0.60, 5Rater: 0.64) and lowest entropy (LRAD: 0.06, 5Rater: 0.12), indicating higher tumor detection rate and confident segmentations. In the OOD dataset, SMIT misdetected least number of tumors, indicated by median volume occupancy of 5.67 cc compared to second best method SimMIM of 9.97 cc.
♻ ☆ Multi-task Learning Approach for Intracranial Hemorrhage Prognosis MICCAI 2024
Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.
comment: 16 pages. Accepted at Machine Learning in Medical Imaging Workshop @ MICCAI 2024 (MLMI2024). This is the submitted manuscript with added link to github repo, funding acknowledgements and authors' names and affiliations. No further post submission improvements or corrections were integrated. Final version not published yet
♻ ☆ SDE-based Multiplicative Noise Removal
Multiplicative noise, also known as speckle or pepper noise, commonly affects images produced by synthetic aperture radar (SAR), lasers, or optical lenses. Unlike additive noise, which typically arises from thermal processes or external factors, multiplicative noise is inherent to the system, originating from the fluctuation in diffuse reflections. These fluctuations result in multiple copies of the same signal with varying magnitudes being combined. Consequently, despeckling, or removing multiplicative noise, necessitates different techniques compared to those used for additive noise removal. In this paper, we propose a novel approach using Stochastic Differential Equations based diffusion models to address multiplicative noise. We demonstrate that multiplicative noise can be effectively modeled as a Geometric Brownian Motion process in the logarithmic domain. Utilizing the Fokker-Planck equation, we derive the corresponding reverse process for image denoising. To validate our method, we conduct extensive experiments on two different datasets, comparing our approach to both classical signal processing techniques and contemporary CNN-based noise removal models. Our results indicate that the proposed method significantly outperforms existing methods on perception-based metrics such as FID and LPIPS, while maintaining competitive performance on traditional metrics like PSNR and SSIM.
comment: 9 pages, 4 figures
♻ ☆ Learning Local Pattern Modularization for Point Cloud Reconstruction from Unseen Classes ECCV 2024
It is challenging to reconstruct 3D point clouds in unseen classes from single 2D images. Instead of object-centered coordinate system, current methods generalized global priors learned in seen classes to reconstruct 3D shapes from unseen classes in viewer-centered coordinate system. However, the reconstruction accuracy and interpretability are still eager to get improved. To resolve this issue, we introduce to learn local pattern modularization for reconstructing 3D shapes in unseen classes, which achieves both good generalization ability and high reconstruction accuracy. Our insight is to learn a local prior which is class-agnostic and easy to generalize in object-centered coordinate system. Specifically, the local prior is learned via a process of learning and customizing local pattern modularization in seen classes. During this process, we first learn a set of patterns in local regions, which is the basis in the object-centered coordinate system to represent an arbitrary region on shapes across different classes. Then, we modularize each region on an initially reconstructed shape using the learned local patterns. Based on that, we customize the local pattern modularization using the input image by refining the reconstruction with more details. Our method enables to reconstruct high fidelity point clouds from unseen classes in object-centered coordinate system without requiring a large number of patterns or any additional information, such as segmentation supervision or camera poses. Our experimental results under widely used benchmarks show that our method achieves the state-of-the-art reconstruction accuracy for shapes from unseen classes. The code is available at https://github.com/chenchao15/Unseen.
comment: 14pages, 11figures, accepted by ECCV 2024
♻ ☆ CONDA: Condensed Deep Association Learning for Co-Salient Object Detection
Inter-image association modeling is crucial for co-salient object detection. Despite satisfactory performance, previous methods still have limitations on sufficient inter-image association modeling. Because most of them focus on image feature optimization under the guidance of heuristically calculated raw inter-image associations. They directly rely on raw associations which are not reliable in complex scenarios, and their image feature optimization approach is not explicit for inter-image association modeling. To alleviate these limitations, this paper proposes a deep association learning strategy that deploys deep networks on raw associations to explicitly transform them into deep association features. Specifically, we first create hyperassociations to collect dense pixel-pair-wise raw associations and then deploys deep aggregation networks on them. We design a progressive association generation module for this purpose with additional enhancement of the hyperassociation calculation. More importantly, we propose a correspondence-induced association condensation module that introduces a pretext task, i.e. semantic correspondence estimation, to condense the hyperassociations for computational burden reduction and noise elimination. We also design an object-aware cycle consistency loss for high-quality correspondence estimations. Experimental results in three benchmark datasets demonstrate the remarkable effectiveness of our proposed method with various training settings.
comment: There is an error. In Sec 4.1, the number of images in some dataset is incorrect and needs to be revised
♻ ☆ Open Gaze: Open Source eye tracker for smartphone devices using Deep Learning
Eye tracking has been a pivotal tool in diverse fields such as vision research, language analysis, and usability assessment. The majority of prior investigations, however, have concentrated on expansive desktop displays employing specialized, costly eye tracking hardware that lacks scalability. Remarkably little insight exists into ocular movement patterns on smartphones, despite their widespread adoption and significant usage. In this manuscript, we present an open-source implementation of a smartphone-based gaze tracker that emulates the methodology proposed by a GooglePaper (whose source code remains proprietary). Our focus is on attaining accuracy comparable to that attained through the GooglePaper's methodology, without the necessity for supplementary hardware. Through the integration of machine learning techniques, we unveil an accurate eye tracking solution that is native to smartphones. Our approach demonstrates precision akin to the state-of-the-art mobile eye trackers, which are characterized by a cost that is two orders of magnitude higher. Leveraging the vast MIT GazeCapture dataset, which is available through registration on the dataset's website, we successfully replicate crucial findings from previous studies concerning ocular motion behavior in oculomotor tasks and saliency analyses during natural image observation. Furthermore, we emphasize the applicability of smartphone-based gaze tracking in discerning reading comprehension challenges. Our findings exhibit the inherent potential to amplify eye movement research by significant proportions, accommodating participation from thousands of subjects with explicit consent. This scalability not only fosters advancements in vision research, but also extends its benefits to domains such as accessibility enhancement and healthcare applications.
comment: This paper results are incorrectly reported. The paper is not authentic and conclusions are not correct
♻ ☆ Enhancing the vision-language foundation model with key semantic knowledge-emphasized report refinement
Recently, vision-language representation learning has made remarkable advancements in building up medical foundation models, holding immense potential for transforming the landscape of clinical research and medical care. The underlying hypothesis is that the rich knowledge embedded in radiology reports can effectively assist and guide the learning process, reducing the need for additional labels. However, these reports tend to be complex and sometimes even consist of redundant descriptions that make the representation learning too challenging to capture the key semantic information. This paper develops a novel iterative vision-language representation learning framework by proposing a key semantic knowledge-emphasized report refinement method. Particularly, raw radiology reports are refined to highlight the key information according to a constructed clinical dictionary and two model-optimized knowledge-enhancement metrics. The iterative framework is designed to progressively learn, starting from gaining a general understanding of the patient's condition based on raw reports and gradually refines and extracts critical information essential to the fine-grained analysis tasks. The effectiveness of the proposed framework is validated on various downstream medical image analysis tasks, including disease classification, region-of-interest segmentation, and phrase grounding. Our framework surpasses seven state-of-the-art methods in both fine-tuning and zero-shot settings, demonstrating its encouraging potential for different clinical applications.
♻ ☆ Pre-processing and Compression: Understanding Hidden Representation Refinement Across Imaging Domains via Intrinsic Dimension
In recent years, there has been interest in how geometric properties such as intrinsic dimension (ID) of a neural network's hidden representations change through its layers, and how such properties are predictive of important model behavior such as generalization ability. However, evidence has begun to emerge that such behavior can change significantly depending on the domain of the network's training data, such as natural versus medical images. Here, we further this inquiry by exploring how the ID of a network's learned representations changes through its layers, in essence, characterizing how the network successively refines the information content of input data to be used for predictions. Analyzing eleven natural and medical image datasets across six network architectures, we find that how ID changes through the network differs noticeably between natural and medical image models. Specifically, medical image models peak in representation ID earlier in the network, implying a difference in the image features and their abstractness that are typically used for downstream tasks in these domains. Additionally, we discover a strong correlation of this peak representation ID with the ID of the data in its input space, implying that the intrinsic information content of a model's learned representations is guided by that of the data it was trained on. Overall, our findings emphasize notable discrepancies in network behavior between natural and non-natural imaging domains regarding hidden representation information content, and provide further insights into how a network's learned features are shaped by its training data.
♻ ☆ CHOTA: A Higher Order Accuracy Metric for Cell Tracking
The evaluation of cell tracking results steers the development of tracking methods, significantly impacting biomedical research. This is quantitatively achieved by means of evaluation metrics. Unfortunately, current metrics favor local correctness and weakly reward global coherence, impeding high-level biological analysis. To also foster global coherence, we propose the CHOTA metric (Cell-specific Higher Order Tracking Accuracy) which unifies the evaluation of all relevant aspects of cell tracking: cell detections and local associations, global coherence, and lineage tracking. We achieve this by introducing a new definition of the term 'trajectory' that includes the entire cell lineage and by including this into the well-established HOTA metric from general multiple object tracking. Furthermore, we provide a detailed survey of contemporary cell tracking metrics to compare our novel CHOTA metric and to show its advantages. All metrics are extensively evaluated on state-of-the-art real-data cell tracking results and synthetic results that simulate specific tracking errors. We show that CHOTA is sensitive to all tracking errors and gives a good indication of the biologically relevant capability of a method to reconstruct the full lineage of cells. It introduces a robust and comprehensive alternative to the currently used metrics in cell tracking. Python code is available at https://github.com/CellTrackingChallenge/py-ctcmetrics .
comment: Accepted at BIC Workshop at European Conference on Computer Vision 2024, 14 pages, 4 figures, 2 tables
♻ ☆ Large Scale Unsupervised Brain MRI Image Registration Solution for Learn2Reg 2024 MICCAI
In this paper, we summarize the methods and experimental results we proposed for Task 2 in the learn2reg 2024 Challenge. This task focuses on unsupervised registration of anatomical structures in brain MRI images between different patients. The difficulty lies in: (1) without segmentation labels, and (2) a large amount of data. To address these challenges, we built an efficient backbone network and explored several schemes to further enhance registration accuracy. Under the guidance of the NCC loss function and smoothness regularization loss function, we obtained a smooth and reasonable deformation field. According to the leaderboard, our method achieved a Dice coefficient of 77.34%, which is 1.4% higher than the TransMorph. Overall, we won second place on the leaderboard for Task 2.
comment: MICCAI Learn2Reg 2024 Challenge & WBIR 2024 Workshop on Biomedical Imaging Registration
♻ ☆ Nickel and Diming Your GAN: A Dual-Method Approach to Enhancing GAN Efficiency via Knowledge Distillation
In this paper, we address the challenge of compressing generative adversarial networks (GANs) for deployment in resource-constrained environments by proposing two novel methodologies: Distribution Matching for Efficient compression (DiME) and Network Interactive Compression via Knowledge Exchange and Learning (NICKEL). DiME employs foundation models as embedding kernels for efficient distribution matching, leveraging maximum mean discrepancy to facilitate effective knowledge distillation. Simultaneously, NICKEL employs an interactive compression method that enhances the communication between the student generator and discriminator, achieving a balanced and stable compression process. Our comprehensive evaluation on the StyleGAN2 architecture with the FFHQ dataset shows the effectiveness of our approach, with NICKEL & DiME achieving FID scores of 10.45 and 15.93 at compression rates of 95.73% and 98.92%, respectively. Remarkably, our methods sustain generative quality even at an extreme compression rate of 99.69%, surpassing the previous state-of-the-art performance by a large margin. These findings not only demonstrate our methodologies' capacity to significantly lower GANs' computational demands but also pave the way for deploying high-quality GAN models in settings with limited resources. Our code will be released soon.
♻ ☆ When Does Visual Prompting Outperform Linear Probing for Vision-Language Models? A Likelihood Perspective
Adapting pre-trained models to new tasks can exhibit varying effectiveness across datasets. Visual prompting, a state-of-the-art parameter-efficient transfer learning method, can significantly improve the performance of out-of-distribution tasks. On the other hand, linear probing, a standard transfer learning method, can sometimes become the best approach. We propose a log-likelihood ratio (LLR) approach to analyze the comparative benefits of visual prompting and linear probing. By employing the LLR score alongside resource-efficient visual prompts approximations, our cost-effective measure attains up to a 100-fold reduction in run time compared to full training, while achieving prediction accuracies up to 91%. The source code is available at https://github.com/IBM/VP-LLR.
♻ ☆ MMA-MRNNet: Harnessing Multiple Models of Affect and Dynamic Masked RNN for Precise Facial Expression Intensity Estimation
This paper presents MMA-MRNNet, a novel deep learning architecture for dynamic multi-output Facial Expression Intensity Estimation (FEIE) from video data. Traditional approaches to this task often rely on complex 3-D CNNs, which require extensive pre-training and assume that facial expressions are uniformly distributed across all frames of a video. These methods struggle to handle videos of varying lengths, often resorting to ad-hoc strategies that either discard valuable information or introduce bias. MMA-MRNNet addresses these challenges through a two-stage process. First, the Multiple Models of Affect (MMA) extractor component is a Multi-Task Learning CNN that concurrently estimates valence-arousal, recognizes basic facial expressions, and detects action units in each frame. These representations are then processed by a Masked RNN component, which captures temporal dependencies and dynamically updates weights according to the true length of the input video, ensuring that only the most relevant features are used for the final prediction. The proposed unimodal non-ensemble learning MMA-MRNNet was evaluated on the Hume-Reaction dataset and demonstrated significantly superior performance, surpassing state-of-the-art methods by a wide margin, regardless of whether they were unimodal, multimodal, or ensemble approaches. Finally, we demonstrated the effectiveness of the MMA component of our proposed method across multiple in-the-wild datasets, where it consistently outperformed all state-of-the-art methods across various metrics.
♻ ☆ In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.
comment: submitted to journal
♻ ☆ Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation ACL
Multi-sensor ML models for EO aim to enhance prediction accuracy by integrating data from various sources. However, the presence of missing data poses a significant challenge, particularly in non-persistent sensors that can be affected by external factors. Existing literature has explored strategies like temporal dropout and sensor-invariant models to address the generalization to missing data issues. Inspired by these works, we study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI). Through experimentation on three multi-sensor temporal EO datasets, we demonstrate that these methods effectively increase the robustness of model predictions to missing sensors. Particularly, we focus on how the predictive performance of models drops when sensors are missing at different levels. We observe that ensemble multi-sensor models are the most robust to the lack of sensors. In addition, the sensor dropout component in ISensD shows promising robustness results.
comment: Accepted at the MACLEAN workshop in the ECML/PKDD 2024
♻ ☆ Scalable Glacier Mapping using Deep Learning and Open Earth Observation Data Matches the Accuracy of Manual Delineation
Accurate global glacier mapping is critical for understanding climate change impacts. Despite its importance, automated glacier mapping at a global scale remains largely unexplored. Here we address this gap and propose Glacier-VisionTransformer-U-Net (GlaViTU), a convolutional-transformer deep learning model, and five strategies for multitemporal global-scale glacier mapping using open satellite imagery. Assessing the spatial, temporal and cross-sensor generalisation shows that our best strategy achieves intersection over union >0.85 on previously unobserved images in most cases, which drops to >0.75 for debris-rich areas such as High-Mountain Asia and increases to >0.90 for regions dominated by clean ice. A comparative validation against human expert uncertainties in terms of area and distance deviations underscores GlaViTU performance, approaching or matching expert-level delineation. Adding synthetic aperture radar data, namely, backscatter and interferometric coherence, increases the accuracy in all regions where available. The calibrated confidence for glacier extents is reported making the predictions more reliable and interpretable. We also release a benchmark dataset that covers 9% of glaciers worldwide. Our results support efforts towards automated multitemporal and global glacier mapping.
comment: after major revision, expanded validation
♻ ☆ CSGO: Content-Style Composition in Text-to-Image Generation
The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: \url{https://csgo-gen.github.io/}.
♻ ☆ Object-Size-Driven Design of Convolutional Neural Networks: Virtual Axle Detection based on Raw Data
As infrastructure ages, the need for efficient monitoring methods becomes increasingly critical. Bridge Weigh-In-Motion (BWIM) systems are crucial for cost-efficient load and thus residual service life determination of road and railway infrastructure. However, conventional BWIM systems require additional sensors for axle detection, which have to be installed in potentially inaccessible locations or in locations that interfere with bridge operation. This study addresses this challenge by replacing dedicated axle detectors with a novel approach to real-time detection of train axles using sensors arbitrarily placed on bridges. The proposed Virtual Axle Detector with Enhanced Receptive Field (VADER) has been validated on a single-track railway bridge, demonstrating that it achieves to detect 99.9% of axles with a spatial error of 3.69cm using only acceleration measurements. Using raw data as input outperforms the state-of-the-art spectrogram-based method in both speed and memory usage by 99%, making real-time application feasible for the first time. Additionally, we introduce the Maximum Receptive Field (MRF) rule, a novel approach to optimise hyperparameters of Convolutional Neural Networks (CNNs) based on the size of objects, which in this case relates to the fundamental frequency of a bridge. The MRF rule effectively narrows the hyperparameter search space, potentially replacing the need for extensive hyperparameter tuning. Since the MRF rule is theoretically applicable to all unstructured data, it could have implications for a wide range of deep learning problems from earthquake prediction to object recognition.
♻ ☆ Filter & Align: Leveraging Human Knowledge to Curate Image-Text Data
The increasing availability of image-text pairs has largely fueled the rapid advancement in vision-language foundation models. However, the vast scale of these datasets inevitably introduces significant variability in data quality, which can adversely affect the model performance. This highlights the critical role of data filtering, not only to enhance training efficiency but also to improve overall data quality. Existing methods typically rely on metrics such as CLIP Score and BLIP Score, which are derived from pre-trained models. However, these models are often trained on uncurated, noisy datasets, which can perpetuate errors and misalignments in the filtered dataset. We present a novel algorithm that incorporates human knowledge on image-text alignment to guide filtering vast corpus of web-crawled image-text datasets into a compact and high-quality form. To systemically capture human preferences on image-text alignments, we collect a diverse image-text dataset where each image is associated with multiple captions from various sources, and establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Additionally, we train a reward model on these human-preference annotations to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter image-text pairs. Extensive experiments demonstrate that we can maintain, sometimes even improve, model performance while compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to only 15.5M, our BLIP-B/16 models consistently show an average improvement of 2.9% on retrieval tasks and 11.5% on captioning tasks compared to full-size-dataset counterparts.
♻ ☆ Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition CVPR 2024
Human communication is multi-modal; e.g., face-to-face interaction involves auditory signals (speech) and visual signals (face movements and hand gestures). Hence, it is essential to exploit multiple modalities when designing machine learning-based facial expression recognition systems. In addition, given the ever-growing quantities of video data that capture human facial expressions, such systems should utilize raw unlabeled videos without requiring expensive annotations. Therefore, in this work, we employ a multitask multi-modal self-supervised learning method for facial expression recognition from in-the-wild video data. Our model combines three self-supervised objective functions: First, a multi-modal contrastive loss, that pulls diverse data modalities of the same video together in the representation space. Second, a multi-modal clustering loss that preserves the semantic structure of input data in the representation space. Finally, a multi-modal data reconstruction loss. We conduct a comprehensive study on this multimodal multi-task self-supervised learning method on three facial expression recognition benchmarks. To that end, we examine the performance of learning through different combinations of self-supervised tasks on the facial expression recognition downstream task. Our model ConCluGen outperforms several multi-modal self-supervised and fully supervised baselines on the CMU-MOSEI dataset. Our results generally show that multi-modal self-supervision tasks offer large performance gains for challenging tasks such as facial expression recognition, while also reducing the amount of manual annotations required. We release our pre-trained models as well as source code publicly
comment: The paper will appear in the CVPR 2024 workshops proceedings
♻ ☆ UHD-IQA Benchmark Database: Pushing the Boundaries of Blind Photo Quality Assessment
We introduce a novel Image Quality Assessment (IQA) dataset comprising 6073 UHD-1 (4K) images, annotated at a fixed width of 3840 pixels. Contrary to existing No-Reference (NR) IQA datasets, ours focuses on highly aesthetic photos of high technical quality, filling a gap in the literature. The images, carefully curated to exclude synthetic content, are sufficiently diverse to train general NR-IQA models. Importantly, the dataset is annotated with perceptual quality ratings obtained through a crowdsourcing study. Ten expert raters, comprising photographers and graphics artists, assessed each image at least twice in multiple sessions spanning several days, resulting in 20 highly reliable ratings per image. Annotators were rigorously selected based on several metrics, including self-consistency, to ensure their reliability. The dataset includes rich metadata with user and machine-generated tags from over 5,000 categories and popularity indicators such as favorites, likes, downloads, and views. With its unique characteristics, such as its focus on high-quality images, reliable crowdsourced annotations, and high annotation resolution, our dataset opens up new opportunities for advancing perceptual image quality assessment research and developing practical NR-IQA models that apply to modern photos. Our dataset is available at https://database.mmsp-kn.de/uhd-iqa-benchmark-database.html
♻ ☆ Model-agnostic explainable artificial intelligence for object detection in image data
In recent years, deep neural networks have been widely used for building high-performance Artificial Intelligence (AI) systems for computer vision applications. Object detection is a fundamental task in computer vision, which has been greatly progressed through developing large and intricate AI models. However, the lack of transparency is a big challenge that may not allow the widespread adoption of these models. Explainable artificial intelligence is a field of research where methods are developed to help users understand the behavior, decision logics, and vulnerabilities of AI systems. Previously, few explanation methods were developed for object detection based on random masking. However, random masks may raise some issues regarding the actual importance of pixels within an image. In this paper, we design and implement a black-box explanation method named Black-box Object Detection Explanation by Masking (BODEM) through adopting a hierarchical random masking approach for object detection systems. We propose a hierarchical random masking framework in which coarse-grained masks are used in lower levels to find salient regions within an image, and fine-grained mask are used to refine the salient regions in higher levels. Experimentations on various object detection datasets and models showed that BODEM can effectively explain the behavior of object detectors. Moreover, our method outperformed Detector Randomized Input Sampling for Explanation (D-RISE) and Local Interpretable Model-agnostic Explanations (LIME) with respect to different quantitative measures of explanation effectiveness. The experimental results demonstrate that BODEM can be an effective method for explaining and validating object detection systems in black-box testing scenarios.
♻ ☆ Map-Free Visual Relocalization Enhanced by Instance Knowledge and Depth Knowledge
Map-free relocalization technology is crucial for applications in autonomous navigation and augmented reality, but relying on pre-built maps is often impractical. It faces significant challenges due to limitations in matching methods and the inherent lack of scale in monocular images. These issues lead to substantial rotational and metric errors and even localization failures in real-world scenarios. Large matching errors significantly impact the overall relocalization process, affecting both rotational and translational accuracy. Due to the inherent limitations of the camera itself, recovering the metric scale from a single image is crucial, as this significantly impacts the translation error. To address these challenges, we propose a map-free relocalization method enhanced by instance knowledge and depth knowledge. By leveraging instance-based matching information to improve global matching results, our method significantly reduces the possibility of mismatching across different objects. The robustness of instance knowledge across the scene helps the feature point matching model focus on relevant regions and enhance matching accuracy. Additionally, we use estimated metric depth from a single image to reduce metric errors and improve scale recovery accuracy. By integrating methods dedicated to mitigating large translational and rotational errors, our approach demonstrates superior performance in map-free relocalization techniques.
comment: 17 pages,6 figures
♻ ☆ CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
comment: 15 pages, 9 figures, submitted to ISBI 2025
♻ ☆ Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation
The semantic segmentation task in pathology plays an indispensable role in assisting physicians in determining the condition of tissue lesions. With the proposal of Segment Anything Model (SAM), more and more foundation models have seen rapid development in the field of image segmentation. Recently, SAM2 has garnered widespread attention in both natural image and medical image segmentation. Compared to SAM, it has significantly improved in terms of segmentation accuracy and generalization performance. We compared the foundational models based on SAM and found that their performance in semantic segmentation of pathological images was hardly satisfactory. In this paper, we propose Path-SAM2, which for the first time adapts the SAM2 model to cater to the task of pathological semantic segmentation. We integrate the largest pretrained vision encoder for histopathology (UNI) with the original SAM2 encoder, adding more pathology-based prior knowledge. Additionally, we introduce a learnable Kolmogorov-Arnold Networks (KAN) classification module to replace the manual prompt process. In three adenoma pathological datasets, Path-SAM2 has achieved state-of-the-art performance.This study demonstrates the great potential of adapting SAM2 to pathology image segmentation tasks. We plan to release the code and model weights for this paper at: https://github.com/simzhangbest/SAM2PATH
comment: 5 pages , 5 figures
♻ ☆ Bayesian Evidential Learning for Few-Shot Classification
Few-Shot Classification(FSC) aims to generalize from base classes to novel classes given very limited labeled samples, which is an important step on the path toward human-like machine learning. State-of-the-art solutions involve learning to find a good metric and representation space to compute the distance between samples. Despite the promising accuracy performance, how to model uncertainty for metric-based FSC methods effectively is still a challenge. To model uncertainty, We place a distribution over class probability based on the theory of evidence. As a result, uncertainty modeling and metric learning can be decoupled. To reduce the uncertainty of classification, we propose a Bayesian evidence fusion theorem. Given observed samples, the network learns to get posterior distribution parameters given the prior parameters produced by the pre-trained network. Detailed gradient analysis shows that our method provides a smooth optimization target and can capture the uncertainty. The proposed method is agnostic to metric learning strategies and can be implemented as a plug-and-play module. We integrate our method into several newest FSC methods and demonstrate the improved accuracy and uncertainty quantification on standard FSC benchmarks.
comment: 15 pages
♻ ☆ AI-Assisted Cervical Cancer Screening
Visual Inspection with Acetic Acid (VIA) remains the most feasible cervical cancer screening test in resource-constrained settings of low- and middle-income countries (LMICs), which are often performed screening camps or primary/community health centers by nurses instead of the preferred but unavailable expert Gynecologist. To address the highly subjective nature of the test, various handheld devices integrating cameras or smartphones have been recently explored to capture cervical images during VIA and aid decision-making via telemedicine or AI models. Most studies proposing AI models retrospectively use a relatively small number of already collected images from specific devices, digital cameras, or smartphones; the challenges and protocol for quality image acquisition during VIA in resource-constrained camp settings, challenges in getting gold standard, data imbalance, etc. are often overlooked. We present a novel approach and describe the end-to-end design process to build a robust smartphone-based AI-assisted system that does not require buying a separate integrated device: the proposed protocol for quality image acquisition in resource-constrained settings, dataset collected from 1,430 women during VIA performed by nurses in screening camps, preprocessing pipeline, and training and evaluation of a deep-learning-based classification model aimed to identify (pre)cancerous lesions. Our work shows that the readily available smartphones and a suitable protocol can capture the cervix images with the required details for the VIA test well; the deep-learning-based classification model provides promising results to assist nurses in VIA screening; and provides a direction for large-scale data collection and validation in resource-constrained settings.
♻ ☆ Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality. Result videos are also available on our project page: https://haruolabs.github.io/style-n2n/
comment: 16 pages, 9 figures
♻ ☆ Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2: Adapting Video Tracking Capabilities for 3D Medical Imaging
Purpose: To evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, and to investigate the effects of prompt settings on segmentation results. Materials and Methods: Using a subset of the TotalSegmentator CT dataset (n = 123) from eight institutions, we assessed SAM 2's ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed the impact of "negative prompts," which explicitly exclude certain regions from the segmentation process, on accuracy. Additionally, we analyzed organ volumes to contextualize the segmentation performance. Results: As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean(median) DSCs as follows: liver 0.821(0.898), left kidney 0.870(0.921), right kidney 0.862(0.935), and spleen 0.891(0.932). Smaller organs showed lower performance: gallbladder 0.531(0.590), pancreas 0.361(0.359), and adrenal glands, right 0.203(0.109), left 0.308(0.231). The initial slice for segmentation and the use of negative prompts significantly influenced the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs. Moderate positive correlations were observed between volume sizes and DSCs. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs with clear boundaries. Performance was significantly influenced by input negative prompts and initial slice selection, highlighting the importance of optimizing these factors for effective segmentation.
comment: 20 pages, 7 figures (including 2 supplemental figure), 4 tables
♻ ☆ RMT-BVQA: Recurrent Memory Transformer-based Blind Video Quality Assessment for Enhanced Video Content ECCV 2024
With recent advances in deep learning, numerous algorithms have been developed to enhance video quality, reduce visual artifacts, and improve perceptual quality. However, little research has been reported on the quality assessment of enhanced content - the evaluation of enhancement methods is often based on quality metrics that were designed for compression applications. In this paper, we propose a novel blind deep video quality assessment (VQA) method specifically for enhanced video content. It employs a new Recurrent Memory Transformer (RMT) based network architecture to obtain video quality representations, which is optimized through a novel content-quality-aware contrastive learning strategy based on a new database containing 13K training patches with enhanced content. The extracted quality representations are then combined through linear regression to generate video-level quality indices. The proposed method, RMT-BVQA, has been evaluated on the VDPVE (VQA Dataset for Perceptual Video Enhancement) database through a five-fold cross validation. The results show its superior correlation performance when compared to ten existing no-reference quality metrics.
comment: This paper has been accepted by the ECCV 2024 AIM Advances in Image Manipulation workshop
♻ ☆ Group-aware Parameter-efficient Updating for Content-Adaptive Neural Video Compression ACM MM 2024
Content-adaptive compression is crucial for enhancing the adaptability of the pre-trained neural codec for various contents. Although these methods have been very practical in neural image compression (NIC), their application in neural video compression (NVC) is still limited due to two main aspects: 1), video compression relies heavily on temporal redundancy, therefore updating just one or a few frames can lead to significant errors accumulating over time; 2), NVC frameworks are generally more complex, with many large components that are not easy to update quickly during encoding. To address the previously mentioned challenges, we have developed a content-adaptive NVC technique called Group-aware Parameter-Efficient Updating (GPU). Initially, to minimize error accumulation, we adopt a group-aware approach for updating encoder parameters. This involves adopting a patch-based Group of Pictures (GoP) training strategy to segment a video into patch-based GoPs, which will be updated to facilitate a globally optimized domain-transferable solution. Subsequently, we introduce a parameter-efficient delta-tuning strategy, which is achieved by integrating several light-weight adapters into each coding component of the encoding process by both serial and parallel configuration. Such architecture-agnostic modules stimulate the components with large parameters, thereby reducing both the update cost and the encoding time. We incorporate our GPU into the latest NVC framework and conduct comprehensive experiments, whose results showcase outstanding video compression efficiency across four video benchmarks and adaptability of one medical image benchmark.
comment: Accepted by ACM MM 2024, Melbourne, Australia
♻ ☆ CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition
Deepfake technology poses a significant threat to security and social trust. Although existing detection methods have shown high performance in identifying forgeries within datasets that use the same deepfake techniques for both training and testing, they suffer from sharp performance degradation when faced with cross-dataset scenarios where unseen deepfake techniques are tested. To address this challenge, we propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF). Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts. Specifically, it adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination. Moreover, it optimizes these two kinds of information to be independent with a de-correlation learning module, thereby enhancing the model's robustness against various irrelevant information changes and generalization ability to unseen forgery methods. Our extensive experimental evaluation and comparison with existing state-of-the-art detection methods validate the effectiveness and superiority of the DID framework on cross-dataset deepfake detection.
♻ ☆ Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior
Image compression at extremely low bitrates (below 0.1 bits per pixel (bpp)) is a significant challenge due to substantial information loss. In this work, we propose a novel two-stage extreme image compression framework that exploits the powerful generative capability of pre-trained diffusion models to achieve realistic image reconstruction at extremely low bitrates. In the first stage, we treat the latent representation of images in the diffusion space as guidance, employing a VAE-based compression approach to compress images and initially decode the compressed information into content variables. The second stage leverages pre-trained stable diffusion to reconstruct images under the guidance of content variables. Specifically, we introduce a small control module to inject content information while keeping the stable diffusion model fixed to maintain its generative capability. Furthermore, we design a space alignment loss to force the content variables to align with the diffusion space and provide the necessary constraints for optimization. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art approaches in terms of visual performance at extremely low bitrates. The source code and trained models are available at https://github.com/huai-chang/DiffEIC.
comment: Accepted by IEEE TCSVT
♻ ☆ Robust Semi-supervised Multimodal Medical Image Segmentation via Cross Modality Collaboration
Multimodal learning leverages complementary information derived from different modalities, thereby enhancing performance in medical image segmentation. However, prevailing multimodal learning methods heavily rely on extensive well-annotated data from various modalities to achieve accurate segmentation performance. This dependence often poses a challenge in clinical settings due to limited availability of such data. Moreover, the inherent anatomical misalignment between different imaging modalities further complicates the endeavor to enhance segmentation performance. To address this problem, we propose a novel semi-supervised multimodal segmentation framework that is robust to scarce labeled data and misaligned modalities. Our framework employs a novel cross modality collaboration strategy to distill modality-independent knowledge, which is inherently associated with each modality, and integrates this information into a unified fusion layer for feature amalgamation. With a channel-wise semantic consistency loss, our framework ensures alignment of modality-independent information from a feature-wise perspective across modalities, thereby fortifying it against misalignments in multimodal scenarios. Furthermore, our framework effectively integrates contrastive consistent learning to regulate anatomical structures, facilitating anatomical-wise prediction alignment on unlabeled data in semi-supervised segmentation tasks. Our method achieves competitive performance compared to other multimodal methods across three tasks: cardiac, abdominal multi-organ, and thyroid-associated orbitopathy segmentations. It also demonstrates outstanding robustness in scenarios involving scarce labeled data and misaligned modalities.
♻ ☆ Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model
Intracranial hemorrhage (ICH) is a life-threatening condition that requires rapid and accurate diagnosis to improve treatment outcomes and patient survival rates. Recent advancements in supervised deep learning have greatly improved the analysis of medical images, but often rely on extensive datasets with high-quality annotations, which are costly, time-consuming, and require medical expertise to prepare. To mitigate the need for large amounts of expert-prepared segmentation data, we have developed a novel weakly supervised ICH segmentation method that utilizes the YOLO object detection model and an uncertainty-rectified Segment Anything Model (SAM). In addition, we have proposed a novel point prompt generator for this model to further improve segmentation results with YOLO-predicted bounding box prompts. Our approach achieved a high accuracy of 0.933 and an AUC of 0.796 in ICH detection, along with a mean Dice score of 0.629 for ICH segmentation, outperforming existing weakly supervised and popular supervised (UNet and Swin-UNETR) approaches. Overall, the proposed method provides a robust and accurate alternative to the more commonly used supervised techniques for ICH quantification without requiring refined segmentation ground truths during model training.
comment: Manuscript was accepted at SWITCH2024. 10 pages, 2 figures
♻ ☆ Learned Image Transmission with Hierarchical Variational Autoencoder
In this paper, we introduce an innovative hierarchical joint source-channel coding (HJSCC) framework for image transmission, utilizing a hierarchical variational autoencoder (VAE). Our approach leverages a combination of bottom-up and top-down paths at the transmitter to autoregressively generate multiple hierarchical representations of the original image. These representations are then directly mapped to channel symbols for transmission by the JSCC encoder. We extend this framework to scenarios with a feedback link, modeling transmission over a noisy channel as a probabilistic sampling process and deriving a novel generative formulation for JSCC with feedback. Compared with existing approaches, our proposed HJSCC provides enhanced adaptability by dynamically adjusting transmission bandwidth, encoding these representations into varying amounts of channel symbols. Additionally, we introduce a rate attention module to guide the JSCC encoder in optimizing its encoding strategy based on prior information. Extensive experiments on images of varying resolutions demonstrate that our proposed model outperforms existing baselines in rate-distortion performance and maintains robustness against channel noise.
♻ ☆ A Novel Approach to Classify Power Quality Signals Using Vision Transformers
With the rapid integration of electronically interfaced renewable energy resources and loads into smart grids, there is increasing interest in power quality disturbances (PQD) classification to enhance the security and efficiency of these grids. This paper introduces a new approach to PQD classification based on the Vision Transformer (ViT) model. When a PQD occurs, the proposed approach first converts the power quality signal into an image and then utilizes a pre-trained ViT to accurately determine the class of the PQD. Unlike most previous works, which were limited to a few disturbance classes or small datasets, the proposed method is trained and tested on a large dataset with 17 disturbance classes. Our experimental results show that the proposed ViT-based approach achieves PQD classification precision and recall of 98.28% and 97.98%, respectively, outperforming recently proposed techniques applied to the same dataset.
comment: IECON 2024-50th Annual Conference of the IEEE Industrial Electronics Society, Chicago, U.S.A, 2024, pp. 1-6
♻ ☆ Hand1000: Generating Realistic Hands from Text with Only 1,000 Images
Text-to-image generation models have achieved remarkable advancements in recent years, aiming to produce realistic images from textual descriptions. However, these models often struggle with generating anatomically accurate representations of human hands. The resulting images frequently exhibit issues such as incorrect numbers of fingers, unnatural twisting or interlacing of fingers, or blurred and indistinct hands. These issues stem from the inherent complexity of hand structures and the difficulty in aligning textual descriptions with precise visual depictions of hands. To address these challenges, we propose a novel approach named Hand1000 that enables the generation of realistic hand images with target gesture using only 1,000 training samples. The training of Hand1000 is divided into three stages with the first stage aiming to enhance the model's understanding of hand anatomy by using a pre-trained hand gesture recognition model to extract gesture representation. The second stage further optimizes text embedding by incorporating the extracted hand gesture representation, to improve alignment between the textual descriptions and the generated hand images. The third stage utilizes the optimized embedding to fine-tune the Stable Diffusion model to generate realistic hand images. In addition, we construct the first publicly available dataset specifically designed for text-to-hand image generation. Based on the existing hand gesture recognition dataset, we adopt advanced image captioning models and LLaMA3 to generate high-quality textual descriptions enriched with detailed gesture information. Extensive experiments demonstrate that Hand1000 significantly outperforms existing models in producing anatomically correct hand images while faithfully representing other details in the text, such as faces, clothing, and colors.
comment: Project page https://haozhuo-zhang.github.io/Hand1000-project-page/
♻ ☆ MV-VTON: Multi-View Virtual Try-On with Diffusion Models
The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results from multiple views using the given clothes. Given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. Moreover, we adopt diffusion models that have demonstrated superior abilities to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest joint attention blocks to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset MVG, in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets. Codes and datasets are publicly released at https://github.com/hywang2002/MV-VTON .
comment: Project url: https://hywang2002.github.io/MV-VTON/
♻ ☆ Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning ECCV 2024
Federated Class Continual Learning (FCCL) merges the challenges of distributed client learning with the need for seamless adaptation to new classes without forgetting old ones. The key challenge in FCCL is catastrophic forgetting, an issue that has been explored to some extent in Continual Learning (CL). However, due to privacy preservation requirements, some conventional methods, such as experience replay, are not directly applicable to FCCL. Existing FCCL methods mitigate forgetting by generating historical data through federated training of GANs or data-free knowledge distillation. However, these approaches often suffer from unstable training of generators or low-quality generated data, limiting their guidance for the model. To address this challenge, we propose a novel method of data replay based on diffusion models. Instead of training a diffusion model, we employ a pre-trained conditional diffusion model to reverse-engineer each class, searching the corresponding input conditions for each class within the model's input space, significantly reducing computational resources and time consumption while ensuring effective generation. Furthermore, we enhance the classifier's domain generalization ability on generated and real data through contrastive learning, indirectly improving the representational capability of generated data for real data. Comprehensive experiments demonstrate that our method significantly outperforms existing baselines. Code is available at https://github.com/jinglin-liang/DDDR.
comment: Accepted by ECCV 2024 Oral
♻ ☆ ORMNet: Object-centric Relationship Modeling for Egocentric Hand-object Segmentation
Egocentric hand-object segmentation (EgoHOS) is a promising new task aiming at segmenting hands and interacting objects in egocentric images. Although EgoHOS has the potential to enable various applications, current methods struggle to achieve both high performance and end-to-end optimization simultaneously. Moreover, existing approaches fail to fully leverage hand cues to assist the interacting-object segmentation and overlook the coupled relationships between diverse interacting-object categories, resulting in performance deficiencies. To address these limitations, this paper proposes a novel Object-centric Relationship Modeling Network (ORMNet) to fulfill end-to-end and effective EgoHOS by modeling relationships between hands and objects as well as objects and objects. Specifically, a Hand-Object Relation (HOR) module is introduced to capture the correlation between hands and objects, which uses hand features to guide the network to extract more distinguishing interacting-object features. Besides, we find the coupling relations between diverse interacting-object categories and design the Object Relation Decoupling (ORD) strategy to disentangle them, emphasizing learning of the interaction between hands and objects and reducing the confusion of interacting-object classification. In-domain experiments show that ORMNet has notably exceptional segmentation performance compared with state-of-the-art methods, while out-of-domain experiments further exhibit its robust generalization capability. The project is available at https://github.com/yuggiehk/ORMNet/
♻ ☆ MADE-for-ASD: A Multi-Atlas Deep Ensemble Network for Diagnosing Autism Spectrum Disorder
In response to the global need for efficient early diagnosis of Autism Spectrum Disorder (ASD), this paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions. We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data through a weighted deep ensemble network. Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance and offers a more holistic perspective on patient profiling. We experiment with the well-known publicly available ABIDE (Autism Brain Imaging Data Exchange) I dataset, consisting of resting state fMRI data from 17 different laboratories around the globe. Our proposed system achieves 75.20% accuracy on the entire dataset and 96.40% on a specific subset $-$ both surpassing reported ASD diagnosis accuracy in ABIDE I fMRI studies. Specifically, our model improves by 4.4 percentage points over prior works on the same amount of data. The model exhibits a sensitivity of 82.90% and a specificity of 69.70% on the entire dataset, and 91.00% and 99.50%, respectively, on the specific subset. We leverage the F-score to pinpoint the top 10 ROI in ASD diagnosis, such as precuneus and anterior cingulate/ventromedial. The proposed system can potentially pave the way for more cost-effective, efficient and scalable strategies in ASD diagnosis. Codes and evaluations are publicly available at https://github.com/hasan-rakibul/MADE-for-ASD.
comment: Xuehan Liu and Md Rakibul Hasan contributed equally to this work
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ Depth-guided NeRF Training via Earth Mover's Distance ECCV 2024
Neural Radiance Fields (NeRFs) are trained to minimize the rendering loss of predicted viewpoints. However, the photometric loss often does not provide enough information to disambiguate between different possible geometries yielding the same image. Previous work has thus incorporated depth supervision during NeRF training, leveraging dense predictions from pre-trained depth networks as pseudo-ground truth. While these depth priors are assumed to be perfect once filtered for noise, in practice, their accuracy is more challenging to capture. This work proposes a novel approach to uncertainty in depth priors for NeRF supervision. Instead of using custom-trained depth or uncertainty priors, we use off-the-shelf pretrained diffusion models to predict depth and capture uncertainty during the denoising process. Because we know that depth priors are prone to errors, we propose to supervise the ray termination distance distribution with Earth Mover's Distance instead of enforcing the rendered depth to replicate the depth prior exactly through L2-loss. Our depth-guided NeRF outperforms all baselines on standard depth metrics by a large margin while maintaining performance on photometric measures.
comment: Accepted to ECCV 2024
♻ ☆ VANP: Learning Where to See for Navigation with Self-Supervised Vision-Action Pre-Training IROS 2024
Humans excel at efficiently navigating through crowds without collision by focusing on specific visual regions relevant to navigation. However, most robotic visual navigation methods rely on deep learning models pre-trained on vision tasks, which prioritize salient objects -- not necessarily relevant to navigation and potentially misleading. Alternative approaches train specialized navigation models from scratch, requiring significant computation. On the other hand, self-supervised learning has revolutionized computer vision and natural language processing, but its application to robotic navigation remains underexplored due to the difficulty of defining effective self-supervision signals. Motivated by these observations, in this work, we propose a Self-Supervised Vision-Action Model for Visual Navigation Pre-Training (VANP). Instead of detecting salient objects that are beneficial for tasks such as classification or detection, VANP learns to focus only on specific visual regions that are relevant to the navigation task. To achieve this, VANP uses a history of visual observations, future actions, and a goal image for self-supervision, and embeds them using two small Transformer Encoders. Then, VANP maximizes the information between the embeddings by using a mutual information maximization objective function. We demonstrate that most VANP-extracted features match with human navigation intuition. VANP achieves comparable performance as models learned end-to-end with half the training time and models trained on a large-scale, fully supervised dataset, i.e., ImageNet, with only 0.08% data.
comment: Extended version of the paper accepted at IROS 2024. Code: https://github.com/mhnazeri/VANP
♻ ☆ Contrastive Learning with Consistent Representations
Contrastive learning demonstrates great promise for representation learning. Data augmentations play a critical role in contrastive learning by providing informative views of the data without necessitating explicit labels. Nonetheless, the efficacy of current methodologies heavily hinges on the quality of employed data augmentation (DA) functions, often chosen manually from a limited set of options. While exploiting diverse data augmentations is appealing, the complexities inherent in both DAs and representation learning can lead to performance deterioration. Addressing this challenge and facilitating the systematic incorporation of diverse data augmentations, this paper proposes Contrastive Learning with Consistent Representations CoCor. At the heart of CoCor is a novel consistency metric termed DA consistency. This metric governs the mapping of augmented input data to the representation space, ensuring that these instances are positioned optimally in a manner consistent with the applied intensity of the DA. Moreover, we propose to learn the optimal mapping locations as a function of DA, all while preserving a desired monotonic property relative to DA intensity. Experimental results demonstrate that CoCor notably enhances the generalizability and transferability of learned representations in comparison to baseline methods.
comment: Accepted by TMLR
♻ ☆ ConGeo: Robust Cross-view Geo-localization across Ground View Variations ECCV2024
Cross-view geo-localization aims at localizing a ground-level query image by matching it to its corresponding geo-referenced aerial view. In real-world scenarios, the task requires accommodating diverse ground images captured by users with varying orientations and reduced field of views (FoVs). However, existing learning pipelines are orientation-specific or FoV-specific, demanding separate model training for different ground view variations. Such models heavily depend on the North-aligned spatial correspondence and predefined FoVs in the training data, compromising their robustness across different settings. To tackle this challenge, we propose ConGeo, a single- and cross-view Contrastive method for Geo-localization: it enhances robustness and consistency in feature representations to improve a model's invariance to orientation and its resilience to FoV variations, by enforcing proximity between ground view variations of the same location. As a generic learning objective for cross-view geo-localization, when integrated into state-of-the-art pipelines, ConGeo significantly boosts the performance of three base models on four geo-localization benchmarks for diverse ground view variations and outperforms competing methods that train separate models for each ground view variation.
comment: ECCV2024. Project page at https://eceo-epfl.github.io/ConGeo/
Artificial Intelligence 125
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
Effective collaboration of dual-arm robots and their tool use capabilities are increasingly important areas in the advancement of robotics. These skills play a significant role in expanding robots' ability to operate in diverse real-world environments. However, progress is impeded by the scarcity of specialized training data. This paper introduces RoboTwin, a novel benchmark dataset combining real-world teleoperated data with synthetic data from digital twins, designed for dual-arm robotic scenarios. Using the COBOT Magic platform, we have collected diverse data on tool usage and human-robot interaction. We present a innovative approach to creating digital twins using AI-generated content, transforming 2D images into detailed 3D models. Furthermore, we utilize large language models to generate expert-level training data and task-specific pose sequences oriented toward functionality. Our key contributions are: 1) the RoboTwin benchmark dataset, 2) an efficient real-to-simulation pipeline, and 3) the use of language models for automatic expert-level data generation. These advancements are designed to address the shortage of robotic training data, potentially accelerating the development of more capable and versatile robotic systems for a wide range of real-world applications. The project page is available at https://robotwin-benchmark.github.io/early-version/
comment: Project page: https://robotwin-benchmark.github.io/early-version/
☆ UC-NeRF: Uncertainty-aware Conditional Neural Radiance Fields from Endoscopic Sparse Views
Visualizing surgical scenes is crucial for revealing internal anatomical structures during minimally invasive procedures. Novel View Synthesis is a vital technique that offers geometry and appearance reconstruction, enhancing understanding, planning, and decision-making in surgical scenes. Despite the impressive achievements of Neural Radiance Field (NeRF), its direct application to surgical scenes produces unsatisfying results due to two challenges: endoscopic sparse views and significant photometric inconsistencies. In this paper, we propose uncertainty-aware conditional NeRF for novel view synthesis to tackle the severe shape-radiance ambiguity from sparse surgical views. The core of UC-NeRF is to incorporate the multi-view uncertainty estimation to condition the neural radiance field for modeling the severe photometric inconsistencies adaptively. Specifically, our UC-NeRF first builds a consistency learner in the form of multi-view stereo network, to establish the geometric correspondence from sparse views and generate uncertainty estimation and feature priors. In neural rendering, we design a base-adaptive NeRF network to exploit the uncertainty estimation for explicitly handling the photometric inconsistencies. Furthermore, an uncertainty-guided geometry distillation is employed to enhance geometry learning. Experiments on the SCARED and Hamlyn datasets demonstrate our superior performance in rendering appearance and geometry, consistently outperforming the current state-of-the-art approaches. Our code will be released at \url{https://github.com/wrld/UC-NeRF}.
☆ Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling
Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20$\times$ speedup. In addition, our investigation challenges previous claims that MDMs can surpass ARMs in generative perplexity. We identify, for the first time, an underlying numerical issue, even with the 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, leading to unfair assessments of MDMs' generation results in the previous literature.
comment: 40 pages
☆ LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture
Expanding the long-context capabilities of Multi-modal Large Language Models~(MLLMs) is crucial for video understanding, high-resolution image understanding, and multi-modal agents. This involves a series of systematic optimizations, including model architecture, data construction and training strategy, particularly addressing challenges such as \textit{degraded performance with more images} and \textit{high computational costs}. In this paper, we adapt the model architecture to a hybrid of Mamba and Transformer blocks, approach data construction with both temporal and spatial dependencies among multiple images and employ a progressive training strategy. The released model \textbf{LongLLaVA}~(\textbf{Long}-Context \textbf{L}arge \textbf{L}anguage \textbf{a}nd \textbf{V}ision \textbf{A}ssistant) is the first hybrid MLLM, which achieved a better balance between efficiency and effectiveness. LongLLaVA not only achieves competitive results across various benchmarks, but also maintains high throughput and low memory consumption. Especially, it could process nearly a thousand images on a single A100 80GB GPU, showing promising application prospects for a wide range of tasks.
comment: 19 pages, 7 figures, 6 tables
☆ Multi-stream deep learning framework to predict mild cognitive impairment with Rey Complex Figure Test
Drawing tests like the Rey Complex Figure Test (RCFT) are widely used to assess cognitive functions such as visuospatial skills and memory, making them valuable tools for detecting mild cognitive impairment (MCI). Despite their utility, existing predictive models based on these tests often suffer from limitations like small sample sizes and lack of external validation, which undermine their reliability. We developed a multi-stream deep learning framework that integrates two distinct processing streams: a multi-head self-attention based spatial stream using raw RCFT images and a scoring stream employing a previously developed automated scoring system. Our model was trained on data from 1,740 subjects in the Korean cohort and validated on an external hospital dataset of 222 subjects from Korea. The proposed multi-stream model demonstrated superior performance over baseline models (AUC = 0.872, Accuracy = 0.781) in external validation. The integration of both spatial and scoring streams enables the model to capture intricate visual details from the raw images while also incorporating structured scoring data, which together enhance its ability to detect subtle cognitive impairments. This dual approach not only improves predictive accuracy but also increases the robustness of the model, making it more reliable in diverse clinical settings. Our model has practical implications for clinical settings, where it could serve as a cost-effective tool for early MCI screening.
comment: 20 pages, 3 figures, 2 tables
☆ Configurable Foundation Models: Building LLMs from a Modular Perspective
Advancements in LLMs have recently unveiled challenges tied to computational efficiency and continual scalability due to their requirements of huge parameters, making the applications and evolution of these models on devices with limited computation resources and scenarios requiring various abilities increasingly cumbersome. Inspired by modularity within the human brain, there is a growing tendency to decompose LLMs into numerous functional modules, allowing for inference with part of modules and dynamic assembly of modules to tackle complex tasks, such as mixture-of-experts. To highlight the inherent efficiency and composability of the modular approach, we coin the term brick to represent each functional module, designating the modularized structure as configurable foundation models. In this paper, we offer a comprehensive overview and investigation of the construction, utilization, and limitation of configurable foundation models. We first formalize modules into emergent bricks - functional neuron partitions that emerge during the pre-training phase, and customized bricks - bricks constructed via additional post-training to improve the capabilities and knowledge of LLMs. Based on diverse functional bricks, we further present four brick-oriented operations: retrieval and routing, merging, updating, and growing. These operations allow for dynamic configuration of LLMs based on instructions to handle complex tasks. To verify our perspective, we conduct an empirical analysis on widely-used LLMs. We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions. Finally, we highlight several open issues and directions for future research. Overall, this paper aims to offer a fresh modular perspective on existing LLM research and inspire the future creation of more efficient and scalable foundational models.
☆ Hybrid Imitation-Learning Motion Planner for Urban Driving
With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.
☆ Bioinformatics Retrieval Augmentation Data (BRAD) Digital Assistant
We present a prototype for a Bioinformatics Retrieval Augmentation Data (BRAD) digital assistant. BRAD integrates a suite of tools to handle a wide range of bioinformatics tasks, from code execution to online search. We demonstrate BRAD's capabilities through (1) improved question-and-answering with retrieval augmented generation (RAG), (2) BRAD's ability to run and write complex software pipelines, and (3) BRAD's ability to organize and distribute tasks across individual and teams of agents. We use BRAD for automation of bioinformatics workflows, performing tasks ranging from gene enrichment and searching the archive to automatic code generation and running biomarker identification pipelines. BRAD is a step toward the ultimate goal to develop a digital twin of laboratories driven by self-contained loops for hypothesis generation and testing of digital biology experiments.
☆ Oops, I Sampled it Again: Reinterpreting Confidence Intervals in Few-Shot Learning
The predominant method for computing confidence intervals (CI) in few-shot learning (FSL) is based on sampling the tasks with replacement, i.e.\ allowing the same samples to appear in multiple tasks. This makes the CI misleading in that it takes into account the randomness of the sampler but not the data itself. To quantify the extent of this problem, we conduct a comparative analysis between CIs computed with and without replacement. These reveal a notable underestimation by the predominant method. This observation calls for a reevaluation of how we interpret confidence intervals and the resulting conclusions in FSL comparative studies. Our research demonstrates that the use of paired tests can partially address this issue. Additionally, we explore methods to further reduce the (size of the) CI by strategically sampling tasks of a specific size. We also introduce a new optimized benchmark, which can be accessed at https://github.com/RafLaf/FSL-benchmark-again
☆ R2GQA: Retriever-Reader-Generator Question Answering System to Support Students Understanding Legal Regulations in Higher Education
In this article, we propose the R2GQA system, a Retriever-Reader-Generator Question Answering system, consisting of three main components: Document Retriever, Machine Reader, and Answer Generator. The Retriever module employs advanced information retrieval techniques to extract the context of articles from a dataset of legal regulation documents. The Machine Reader module utilizes state-of-the-art natural language understanding algorithms to comprehend the retrieved documents and extract answers. Finally, the Generator module synthesizes the extracted answers into concise and informative responses to questions of students regarding legal regulations. Furthermore, we built the ViRHE4QA dataset in the domain of university training regulations, comprising 9,758 question-answer pairs with a rigorous construction process. This is the first Vietnamese dataset in the higher regulations domain with various types of answers, both extractive and abstractive. In addition, the R2GQA system is the first system to offer abstractive answers in Vietnamese. This paper discusses the design and implementation of each module within the R2GQA system on the ViRHE4QA dataset, highlighting their functionalities and interactions. Furthermore, we present experimental results demonstrating the effectiveness and utility of the proposed system in supporting the comprehension of students of legal regulations in higher education settings. In general, the R2GQA system and the ViRHE4QA dataset promise to contribute significantly to related research and help students navigate complex legal documents and regulations, empowering them to make informed decisions and adhere to institutional policies effectively. Our dataset is available for research purposes.
☆ Exploring Sentiment Dynamics and Predictive Behaviors in Cryptocurrency Discussions by Few-Shot Learning with Large Language Models
This study performs analysis of Predictive statements, Hope speech, and Regret Detection behaviors within cryptocurrency-related discussions, leveraging advanced natural language processing techniques. We introduce a novel classification scheme named "Prediction statements," categorizing comments into Predictive Incremental, Predictive Decremental, Predictive Neutral, or Non-Predictive categories. Employing GPT-4o, a cutting-edge large language model, we explore sentiment dynamics across five prominent cryptocurrencies: Cardano, Binance, Matic, Fantom, and Ripple. Our analysis reveals distinct patterns in predictive sentiments, with Matic demonstrating a notably higher propensity for optimistic predictions. Additionally, we investigate hope and regret sentiments, uncovering nuanced interplay between these emotions and predictive behaviors. Despite encountering limitations related to data volume and resource availability, our study reports valuable discoveries concerning investor behavior and sentiment trends within the cryptocurrency market, informing strategic decision-making and future research endeavors.
☆ A hybrid FEM-PINN method for time-dependent partial differential equations
In this work, we present a hybrid numerical method for solving evolution partial differential equations (PDEs) by merging the time finite element method with deep neural networks. In contrast to the conventional deep learning-based formulation where the neural network is defined on a spatiotemporal domain, our methodology utilizes finite element basis functions in the time direction where the space-dependent coefficients are defined as the output of a neural network. We then apply the Galerkin or collocation projection in the time direction to obtain a system of PDEs for the space-dependent coefficients which is approximated in the framework of PINN. The advantages of such a hybrid formulation are twofold: statistical errors are avoided for the integral in the time direction, and the neural network's output can be regarded as a set of reduced spatial basis functions. To further alleviate the difficulties from high dimensionality and low regularity, we have developed an adaptive sampling strategy that refines the training set. More specifically, we use an explicit density model to approximate the distribution induced by the PDE residual and then augment the training set with new time-dependent random samples given by the learned density model. The effectiveness and efficiency of our proposed method have been demonstrated through a series of numerical experiments.
comment: 25pages
☆ Towards Edge-Based Data Lake Architecture for Intelligent Transportation System
The rapid urbanization growth has underscored the need for innovative solutions to enhance transportation efficiency and safety. Intelligent Transportation Systems (ITS) have emerged as a promising solution in this context. However, analyzing and processing the massive and intricate data generated by ITS presents significant challenges for traditional data processing systems. This work proposes an Edge-based Data Lake Architecture to integrate and analyze the complex data from ITS efficiently. The architecture offers scalability, fault tolerance, and performance, improving decision-making and enhancing innovative services for a more intelligent transportation ecosystem. We demonstrate the effectiveness of the architecture through an analysis of three different use cases: (i) Vehicular Sensor Network, (ii) Mobile Network, and (iii) Driver Identification applications.
☆ Governing dual-use technologies: Case studies of international security agreements and lessons for AI governance
International AI governance agreements and institutions may play an important role in reducing global security risks from advanced AI. To inform the design of such agreements and institutions, we conducted case studies of historical and contemporary international security agreements. We focused specifically on those arrangements around dual-use technologies, examining agreements in nuclear security, chemical weapons, biosecurity, and export controls. For each agreement, we examined four key areas: (a) purpose, (b) core powers, (c) governance structure, and (d) instances of non-compliance. From these case studies, we extracted lessons for the design of international AI agreements and governance institutions. We discuss the importance of robust verification methods, strategies for balancing power between nations, mechanisms for adapting to rapid technological change, approaches to managing trade-offs between transparency and security, incentives for participation, and effective enforcement mechanisms.
☆ An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting
This paper introduces a novel incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting (MCS) problems, enabling decision makers to progressively provide assignment example preference information. Specifically, we first construct a max-margin optimization-based model to model potentially non-monotonic preferences and inconsistent assignment example preference information in each iteration of the incremental preference elicitation process. Using the optimal objective function value of the max-margin optimization-based model, we devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration within the framework of uncertainty sampling in active learning. Once the termination criterion is satisfied, the sorting result for non-reference alternatives can be determined through the use of two optimization models, i.e., the max-margin optimization-based model and the complexity controlling optimization model. Subsequently, two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences, considering different termination criteria. Ultimately, we apply the proposed approach to a credit rating problem to elucidate the detailed implementation steps, and perform computational experiments on both artificial and real-world data sets to compare the proposed question selection strategies with several benchmark strategies.
comment: 37 pages, 22 figures
☆ Tractable Offline Learning of Regular Decision Processes
This work studies offline Reinforcement Learning (RL) in a class of non-Markovian environments called Regular Decision Processes (RDPs). In RDPs, the unknown dependency of future observations and rewards from the past interactions can be captured by some hidden finite-state automaton. For this reason, many RDP algorithms first reconstruct this unknown dependency using automata learning techniques. In this paper, we show that it is possible to overcome two strong limitations of previous offline RL algorithms for RDPs, notably RegORL. This can be accomplished via the introduction of two original techniques: the development of a new pseudometric based on formal languages, which removes a problematic dependency on $L_\infty^\mathsf{p}$-distinguishability parameters, and the adoption of Count-Min-Sketch (CMS), instead of naive counting. The former reduces the number of samples required in environments that are characterized by a low complexity in language-theoretic terms. The latter alleviates the memory requirements for long planning horizons. We derive the PAC sample complexity bounds associated to each of these techniques, and we validate the approach experimentally.
comment: To appear in EWRL 2024
☆ Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL
The developments in the field of generative AI has brought a lot of opportunities for companies, for instance to improve efficiency in customer service and automating tasks. PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels. During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies, to enhance parcel tracking, analyzing the parcel's journey and being able to communicate about it in an easy to understand manner. The primary goal was to develop an in-house LLM-based system, reducing dependency on external platforms and establishing the feasibility of a dedicated generative AI team within the company. This multi-agent LLM based system aimed to construct parcel journey stories and identify logistical disruptions with heightened efficiency and accuracy. The research involved deploying a sophisticated AI-driven communication system, employing Retrieval-Augmented Generation (RAG) for enhanced response precision, and optimizing large language models (LLMs) tailored to domain specific tasks. The MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy. SuperTracy is capable of autonomously managing a broad spectrum of user inquiries and improving internal knowledge handling. Results and evaluation demonstrated technological innovation and feasibility, notably in communication about the track and trace of a parcel, which exceeded initial expectations. These advancements highlight the potential of AI-driven solutions in logistics, suggesting many opportunities for further refinement and broader implementation within PostNL operational framework.
☆ Incorporating Like-Minded Peers to Overcome Friend Data Sparsity in Session-Based Social Recommendations
Session-based Social Recommendation (SSR) leverages social relationships within online networks to enhance the performance of Session-based Recommendation (SR). However, existing SSR algorithms often encounter the challenge of ``friend data sparsity''. Moreover, significant discrepancies can exist between the purchase preferences of social network friends and those of the target user, reducing the influence of friends relative to the target user's own preferences. To address these challenges, this paper introduces the concept of ``Like-minded Peers'' (LMP), representing users whose preferences align with the target user's current session based on their historical sessions. This is the first work, to our knowledge, that uses LMP to enhance the modeling of social influence in SSR. This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user. We propose a novel model named Transformer Encoder with Graph Attention Aggregator Recommendation (TEGAARec), which includes the TEGAA module and the GAT-based social aggregation module. The TEGAA module captures and merges both long-term and short-term interests for target users and LMP users. Concurrently, the GAT-based social aggregation module is designed to aggregate the target users' dynamic interests and social influence in a weighted manner. Extensive experiments on four real-world datasets demonstrate the efficacy and superiority of our proposed model and ablation studies are done to illustrate the contributions of each component in TEGAARec.
comment: None
Decision Transformer for Enhancing Neural Local Search on the Job Shop Scheduling Problem
The job shop scheduling problem (JSSP) and its solution algorithms have been of enduring interest in both academia and industry for decades. In recent years, machine learning (ML) is playing an increasingly important role in advancing existing and building new heuristic solutions for the JSSP, aiming to find better solutions in shorter computation times. In this paper we build on top of a state-of-the-art deep reinforcement learning (DRL) agent, called Neural Local Search (NLS), which can efficiently and effectively control a large local neighborhood search on the JSSP. In particular, we develop a method for training the decision transformer (DT) algorithm on search trajectories taken by a trained NLS agent to further improve upon the learned decision-making sequences. Our experiments show that the DT successfully learns local search strategies that are different and, in many cases, more effective than those of the NLS agent itself. In terms of the tradeoff between solution quality and acceptable computational time needed for the search, the DT is particularly superior in application scenarios where longer computational times are acceptable. In this case, it makes up for the longer inference times required per search step, which are caused by the larger neural network architecture, through better quality decisions per step. Thereby, the DT achieves state-of-the-art results for solving the JSSP with ML-enhanced search.
comment: currently under review for IEEE Transactions on Cybernetics
☆ The Role of Artificial Intelligence and Machine Learning in Software Testing
Artificial Intelligence (AI) and Machine Learning (ML) have significantly impacted various industries, including software development. Software testing, a crucial part of the software development lifecycle (SDLC), ensures the quality and reliability of software products. Traditionally, software testing has been a labor-intensive process requiring significant manual effort. However, the advent of AI and ML has transformed this landscape by introducing automation and intelligent decision-making capabilities. AI and ML technologies enhance the efficiency and effectiveness of software testing by automating complex tasks such as test case generation, test execution, and result analysis. These technologies reduce the time required for testing and improve the accuracy of defect detection, ultimately leading to higher quality software. AI can predict potential areas of failure by analyzing historical data and identifying patterns, which allows for more targeted and efficient testing. This paper explores the role of AI and ML in software testing by reviewing existing literature, analyzing current tools and techniques, and presenting case studies that demonstrate the practical benefits of these technologies. The literature review provides a comprehensive overview of the advancements in AI and ML applications in software testing, highlighting key methodologies and findings from various studies. The analysis of current tools showcases the capabilities of popular AI-driven testing tools such as Eggplant AI, Test.ai, Selenium, Appvance, Applitools Eyes, Katalon Studio, and Tricentis Tosca, each offering unique features and advantages. Case studies included in this paper illustrate real-world applications of AI and ML in software testing, showing significant improvements in testing efficiency, accuracy, and overall software quality.
☆ LLM-Assisted Visual Analytics: Opportunities and Challenges
We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
comment: Accepted at EG UK Computer Graphics & Visual Computing 2024
☆ Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions, but recent studies reveal that these models often fail to achieve satisfactory results on questions involving reasoning, such as mathematics or physics questions. This phenomenon is usually attributed to the uncertainty regarding whether these models could genuinely comprehend the knowledge embedded in the text or merely learn to replicate the token distribution without a true understanding of the content. In this paper, we delve into this problem and aim to enhance the reasoning capabilities of LLMs. First, we investigate if the model has genuine reasoning capabilities by visualizing the text generation process at the attention and representation level. Then, we formulate the reasoning process of LLMs into a causal framework, which provides a formal explanation of the problems we observe in the visualization. Finally, building upon this causal framework, we propose Deconfounded Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities by encouraging the model to extract the general problem-solving skills and apply these skills to different questions. Experiments show that our method outperforms the baseline consistently across multiple benchmarks, and with only 1.2M tunable parameters, we achieve better or comparable results to other fine-tuning methods. This demonstrates the effectiveness and efficiency of our method in improving the overall accuracy and reliability of LLMs.
☆ RouterRetriever: Exploring the Benefits of Routing over Multiple Expert Embedding Models
Information retrieval methods often rely on a single embedding model trained on large, general-domain datasets like MSMARCO. While this approach can produce a retriever with reasonable overall performance, models trained on domain-specific data often yield better results within their respective domains. While prior work in information retrieval has tackled this through multi-task training, the topic of combining multiple domain-specific expert retrievers remains unexplored, despite its popularity in language model generation. In this work, we introduce RouterRetriever, a retrieval model that leverages multiple domain-specific experts along with a routing mechanism to select the most appropriate expert for each query. It is lightweight and allows easy addition or removal of experts without additional training. Evaluation on the BEIR benchmark demonstrates that RouterRetriever outperforms both MSMARCO-trained (+2.1 absolute nDCG@10) and multi-task trained (+3.2) models. This is achieved by employing our routing mechanism, which surpasses other routing techniques (+1.8 on average) commonly used in language modeling. Furthermore, the benefit generalizes well to other datasets, even in the absence of a specific expert on the dataset. To our knowledge, RouterRetriever is the first work to demonstrate the advantages of using multiple domain-specific expert embedding models with effective routing over a single, general-purpose embedding model in retrieval tasks.
☆ Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon
This study presents a comprehensive methodology for modeling and forecasting the historical time series of fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil. The approach utilizes a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict monthly accumulations of daily detected fire spots. A summary of the data revealed a consistent seasonality over time, with annual maximum and minimum fire spot values tending to repeat at the same periods each year. The primary objective is to verify whether the forecasts capture this inherent seasonality through rigorous statistical analysis. The methodology involved careful data preparation, model configuration, and training using cross-validation with two seeds, ensuring that the data generalizes well to the test and validation sets, and confirming the convergence of the model parameters. The results indicate that the mixed LSTM and GRU model offers improved accuracy in forecasting 12 months ahead, demonstrating its effectiveness in capturing complex temporal patterns and modeling the observed time series. This research significantly contributes to the application of deep learning techniques in environmental monitoring, specifically in fire spot forecasting. In addition to improving forecast accuracy, the proposed approach highlights the potential for adaptation to other time series forecasting challenges, opening new avenues for research and development in machine learning and natural phenomenon prediction. Keywords: Time Series Forecasting, Recurrent Neural Networks, Deep Learning.
comment: 16 pages, in Portuguese language, 24 figures
☆ Independence Constrained Disentangled Representation Learning from Epistemological Perspective
Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process. Nevertheless, there is no consensus regarding a universally accepted definition for the objective of disentangled representation learning. In particular, there is a considerable amount of discourse regarding whether should the latent variables be mutually independent or not. In this paper, we first investigate these arguments on the interrelationships between latent variables by establishing a conceptual bridge between Epistemology and Disentangled Representation Learning. Then, inspired by these interdisciplinary concepts, we introduce a two-level latent space framework to provide a general solution to the prior arguments on this issue. Finally, we propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint within the Generative Adversarial Network (GAN) framework. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches in both quantitative and qualitative evaluations. The method exhibits strong performance across multiple commonly used metrics and demonstrates a great capability in disentangling various semantic factors, leading to an improved quality of controllable generation, which consequently benefits the explainability of the algorithm.
☆ Causality-Aware Transformer Networks for Robotic Navigation
Recent advances in machine learning algorithms have garnered growing interest in developing versatile Embodied AI systems. However, current research in this domain reveals opportunities for improvement. First, the direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling, potentially limiting its performance in Embodied AI tasks. Second, the reliance on task-specific configurations, such as pre-trained modules and dataset-specific logic, compromises the generalizability of these methods. We address these constraints by initially exploring the unique differences between Embodied AI tasks and other sequential data tasks through the lens of Causality, presenting a causal framework to elucidate the inadequacies of conventional sequential methods for Embodied AI. By leveraging this causal perspective, we propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module to enhance the models's Environmental Understanding capability. Meanwhile, our method is devoid of task-specific inductive biases and can be trained in an End-to-End manner, which enhances the method's generalizability across various contexts. Empirical evaluations demonstrate that our methodology consistently surpasses benchmark performances across a spectrum of settings, tasks and simulation environments. Extensive ablation studies reveal that the performance gains can be attributed to the Causal Understanding Module, which demonstrates effectiveness and efficiency in both Reinforcement Learning and Supervised Learning settings.
☆ PoseTalk: Text-and-Audio-based Pose Control and Motion Refinement for One-Shot Talking Head Generation
While previous audio-driven talking head generation (THG) methods generate head poses from driving audio, the generated poses or lips cannot match the audio well or are not editable. In this study, we propose \textbf{PoseTalk}, a THG system that can freely generate lip-synchronized talking head videos with free head poses conditioned on text prompts and audio. The core insight of our method is using head pose to connect visual, linguistic, and audio signals. First, we propose to generate poses from both audio and text prompts, where the audio offers short-term variations and rhythm correspondence of the head movements and the text prompts describe the long-term semantics of head motions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to generate motion latent from text prompts and audio cues in a pose latent space. Second, we observe a loss-imbalance problem: the loss for the lip region contributes less than 4\% of the total reconstruction loss caused by both pose and lip, making optimization lean towards head movements rather than lip shapes. To address this issue, we propose a refinement-based learning strategy to synthesize natural talking videos using two cascaded networks, i.e., CoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce animated images in novel poses and the RefineNet focuses on learning finer lip motions by progressively estimating lip motions from low-to-high resolutions, yielding improved lip-synchronization performance. Experiments demonstrate our pose prediction strategy achieves better pose diversity and realness compared to text-only or audio-only, and our video generator model outperforms state-of-the-art methods in synthesizing talking videos with natural head motions. Project: https://junleen.github.io/projects/posetalk.
comment: 7+5 pages, 15 figures
☆ Evaluating Environments Using Exploratory Agents
Exploration is a key part of many video games. We investigate the using an exploratory agent to provide feedback on the design of procedurally generated game levels, 5 engaging levels and 5 unengaging levels. We expand upon a framework introduced in previous research which models motivations for exploration and introduce a fitness function for evaluating an environment's potential for exploration. Our study showed that our exploratory agent can clearly distinguish between engaging and unengaging levels. The findings suggest that our agent has the potential to serve as an effective tool for assessing procedurally generated levels, in terms of exploration. This work contributes to the growing field of AI-driven game design by offering new insights into how game environments can be evaluated and optimised for player exploration.
comment: 9 Pages, 9 figures, 2 tables, work in progress
☆ AdvSecureNet: A Python Toolkit for Adversarial Machine Learning
Machine learning models are vulnerable to adversarial attacks. Several tools have been developed to research these vulnerabilities, but they often lack comprehensive features and flexibility. We introduce AdvSecureNet, a PyTorch based toolkit for adversarial machine learning that is the first to natively support multi-GPU setups for attacks, defenses, and evaluation. It is the first toolkit that supports both CLI and API interfaces and external YAML configuration files to enhance versatility and reproducibility. The toolkit includes multiple attacks, defenses and evaluation metrics. Rigiorous software engineering practices are followed to ensure high code quality and maintainability. The project is available as an open-source project on GitHub at https://github.com/melihcatal/advsecurenet and installable via PyPI.
☆ SurgTrack: CAD-Free 3D Tracking of Real-world Surgical Instruments
Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
☆ AlignGroup: Learning and Aligning Group Consensus with Member Preferences for Group Recommendation CIKM 2024
Group activities are important behaviors in human society, providing personalized recommendations for groups is referred to as the group recommendation task. Existing methods can usually be categorized into two strategies to infer group preferences: 1) determining group preferences by aggregating members' personalized preferences, and 2) inferring group consensus by capturing group members' coherent decisions after common compromises. However, the former would suffer from the lack of group-level considerations, and the latter overlooks the fine-grained preferences of individual users. To this end, we propose a novel group recommendation method AlignGroup, which focuses on both group consensus and individual preferences of group members to infer the group decision-making. Specifically, AlignGroup explores group consensus through a well-designed hypergraph neural network that efficiently learns intra- and inter-group relationships. Moreover, AlignGroup innovatively utilizes a self-supervised alignment task to capture fine-grained group decision-making by aligning the group consensus with members' common preferences. Extensive experiments on two real-world datasets validate that our AlignGroup outperforms the state-of-the-art on both the group recommendation task and the user recommendation task, as well as outperforms the efficiency of most baselines.
comment: 10 pages, accepted by CIKM 2024
☆ Solving Video Inverse Problems Using Image Diffusion Models
Recently, diffusion model-based inverse problem solvers (DIS) have emerged as state-of-the-art approaches for addressing inverse problems, including image super-resolution, deblurring, inpainting, etc. However, their application to video inverse problems arising from spatio-temporal degradation remains largely unexplored due to the challenges in training video diffusion models. To address this issue, here we introduce an innovative video inverse solver that leverages only image diffusion models. Specifically, by drawing inspiration from the success of the recent decomposed diffusion sampler (DDS), our method treats the time dimension of a video as the batch dimension of image diffusion models and solves spatio-temporal optimization problems within denoised spatio-temporal batches derived from each image diffusion model. Moreover, we introduce a batch-consistent diffusion sampling strategy that encourages consistency across batches by synchronizing the stochastic noise components in image diffusion models. Our approach synergistically combines batch-consistent sampling with simultaneous optimization of denoised spatio-temporal batches at each reverse diffusion step, resulting in a novel and efficient diffusion sampling strategy for video inverse problems. Experimental results demonstrate that our method effectively addresses various spatio-temporal degradations in video inverse problems, achieving state-of-the-art reconstructions. Project page: https://solving-video-inverse.github.io/main/
comment: 22 pages, 16 figures
☆ Advancing Cyber Incident Timeline Analysis Through Rule Based AI and Large Language Models
Timeline Analysis (TA) is a key part of Timeline Forensics (TF) in Digital Forensics (DF), focusing primarily on examining and analysing temporal digital artefacts such as timestamps, derived from event logs, file metadata, and other related data to correlate events resulting from cyber incidents and reconstruct their chronological timeline. Traditional tools often struggle to efficiently process the vast volume and variety of data acquired during DF investigations and Incident Response (IR) processes. This paper presents a novel framework, GenDFIR, that combines Rule-Based Artificial Intelligence (R-BAI) algorithms with Large Language Models (LLMs) to advance and automate the TA process. Our approach consists of two main stages (1) We use R-BAI to identify and select anomalous digital artefacts based on predefined rules. (2) The selected artefacts are then converted into embeddings for processing by an LLM with the help of a Retrieval-Augmented Generation (RAG) agent. The LLM consequently leverages its capabilities to perform automated TA on the artefacts and predict potential incident scenarios. To validate our framework, we evaluate GenDFIR performance, efficiency, and reliability using various metrics across synthetic cyber incident simulation scenarios. This paper presents a proof of concept, where the findings demonstrate the significant potential of integrating R-BAI and LLMs for TA. This novel approach highlights the power of Generative AI (GenAI), specifically LLMs, and opens new avenues for advanced threat detection and incident reconstruction, representing a significant step forward in the field.
comment: 25 pages
☆ More is More: Addition Bias in Large Language Models
In this paper, we investigate the presence of additive bias in Large Language Models (LLMs), drawing a parallel to the cognitive bias observed in humans where individuals tend to favor additive over subtractive changes. Using a series of controlled experiments, we tested various LLMs, including GPT-3.5 Turbo, Claude 3.5 Sonnet, Mistral, Math$\Sigma$tral, and Llama 3.1, on tasks designed to measure their propensity for additive versus subtractive modifications. Our findings demonstrate a significant preference for additive changes across all tested models. For example, in a palindrome creation task, Llama 3.1 favored adding letters 97.85% of the time over removing them. Similarly, in a Lego tower balancing task, GPT-3.5 Turbo chose to add a brick 76.38% of the time rather than remove one. In a text summarization task, Mistral 7B produced longer summaries in 59.40% to 75.10% of cases when asked to improve its own or others' writing. These results indicate that, similar to humans, LLMs exhibit a marked additive bias, which might have implications when LLMs are used on a large scale. Addittive bias might increase resource use and environmental impact, leading to higher economic costs due to overconsumption and waste. This bias should be considered in the development and application of LLMs to ensure balanced and efficient problem-solving approaches.
comment: 25 pages, 8 figures
☆ Vision-Language Navigation with Continual Learning
Vision-language navigation (VLN) is a critical domain within embedded intelligence, requiring agents to navigate 3D environments based on natural language instructions. Traditional VLN research has focused on improving environmental understanding and decision accuracy. However, these approaches often exhibit a significant performance gap when agents are deployed in novel environments, mainly due to the limited diversity of training data. Expanding datasets to cover a broader range of environments is impractical and costly. We propose the Vision-Language Navigation with Continual Learning (VLNCL) paradigm to address this challenge. In this paradigm, agents incrementally learn new environments while retaining previously acquired knowledge. VLNCL enables agents to maintain an environmental memory and extract relevant knowledge, allowing rapid adaptation to new environments while preserving existing information. We introduce a novel dual-loop scenario replay method (Dual-SR) inspired by brain memory replay mechanisms integrated with VLN agents. This method facilitates consolidating past experiences and enhances generalization across new tasks. By utilizing a multi-scenario memory buffer, the agent efficiently organizes and replays task memories, thereby bolstering its ability to adapt quickly to new environments and mitigating catastrophic forgetting. Our work pioneers continual learning in VLN agents, introducing a novel experimental setup and evaluation metrics. We demonstrate the effectiveness of our approach through extensive evaluations and establish a benchmark for the VLNCL paradigm. Comparative experiments with existing continual learning and VLN methods show significant improvements, achieving state-of-the-art performance in continual learning ability and highlighting the potential of our approach in enabling rapid adaptation while preserving prior knowledge.
☆ Low-Resolution Object Recognition with Cross-Resolution Relational Contrastive Distillation
Recognizing objects in low-resolution images is a challenging task due to the lack of informative details. Recent studies have shown that knowledge distillation approaches can effectively transfer knowledge from a high-resolution teacher model to a low-resolution student model by aligning cross-resolution representations. However, these approaches still face limitations in adapting to the situation where the recognized objects exhibit significant representation discrepancies between training and testing images. In this study, we propose a cross-resolution relational contrastive distillation approach to facilitate low-resolution object recognition. Our approach enables the student model to mimic the behavior of a well-trained teacher model which delivers high accuracy in identifying high-resolution objects. To extract sufficient knowledge, the student learning is supervised with contrastive relational distillation loss, which preserves the similarities in various relational structures in contrastive representation space. In this manner, the capability of recovering missing details of familiar low-resolution objects can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on low-resolution object classification and low-resolution face recognition clearly demonstrate the effectiveness and adaptability of our approach.
comment: This paper is accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
☆ Understanding eGFR Trajectories and Kidney Function Decline via Large Multimodal Models
The estimated Glomerular Filtration Rate (eGFR) is an essential indicator of kidney function in clinical practice. Although traditional equations and Machine Learning (ML) models using clinical and laboratory data can estimate eGFR, accurately predicting future eGFR levels remains a significant challenge for nephrologists and ML researchers. Recent advances demonstrate that Large Language Models (LLMs) and Large Multimodal Models (LMMs) can serve as robust foundation models for diverse applications. This study investigates the potential of LMMs to predict future eGFR levels with a dataset consisting of laboratory and clinical values from 50 patients. By integrating various prompting techniques and ensembles of LMMs, our findings suggest that these models, when combined with precise prompts and visual representations of eGFR trajectories, offer predictive performance comparable to existing ML models. This research extends the application of foundation models and suggests avenues for future studies to harness these models in addressing complex medical forecasting challenges.
comment: This preprint version includes corrections of typographical errors related to numerical values in Table 2, which were present in the version published at the BDH workshop in MIPR 2024. These corrections do not affect the overall conclusions of the study
☆ Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI, demanding agents to navigate freely in unbounded 3D spaces solely guided by natural language instructions. This task introduces distinct challenges in multimodal comprehension, spatial reasoning, and decision-making. To address these challenges, we introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks. Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes. Firstly, it constructs a cognitive map, integrating temporal, spatial, and semantic elements, thereby facilitating the development of spatial memory within LLMs. Secondly, Cog-GA employs a predictive mechanism for waypoints, strategically optimizing the exploration trajectory to maximize navigational efficiency. Each waypoint is accompanied by a dual-channel scene description, categorizing environmental cues into 'what' and 'where' streams as the brain. This segregation enhances the agent's attentional focus, enabling it to discern pertinent spatial information for navigation. A reflective mechanism complements these strategies by capturing feedback from prior navigation experiences, facilitating continual learning and adaptive replanning. Extensive evaluations conducted on VLN-CE benchmarks validate Cog-GA's state-of-the-art performance and ability to simulate human-like navigation behaviors. This research significantly contributes to the development of strategic and interpretable VLN-CE agents.
☆ Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal
Artificial neural networks, especially recent diffusion-based models, have shown remarkable superiority in gaming, control, and QA systems, where the training tasks' datasets are usually static. However, in real-world applications, such as robotic control of reinforcement learning (RL), the tasks are changing, and new tasks arise in a sequential order. This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge. In view of this, we propose a rehearsal-based continual diffusion model, called Continual Diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability). Specifically, we first construct an offline benchmark that contains 90 tasks from multiple domains. Then, we train the CoD on each task with sequential modeling and conditional generation for making decisions. Next, we preserve a small portion of previous datasets as the rehearsal buffer and replay it to retain the acquired knowledge. Extensive experiments on a series of tasks show CoD can achieve a promising plasticity-stability trade-off and outperform existing diffusion-based methods and other representative baselines on most tasks.
☆ CoAst: Validation-Free Contribution Assessment for Federated Learning based on Cross-Round Valuation
In the federated learning (FL) process, since the data held by each participant is different, it is necessary to figure out which participant has a higher contribution to the model performance. Effective contribution assessment can help motivate data owners to participate in the FL training. Research works in this field can be divided into two directions based on whether a validation dataset is required. Validation-based methods need to use representative validation data to measure the model accuracy, which is difficult to obtain in practical FL scenarios. Existing validation-free methods assess the contribution based on the parameters and gradients of local models and the global model in a single training round, which is easily compromised by the stochasticity of model training. In this work, we propose CoAst, a practical method to assess the FL participants' contribution without access to any validation data. The core idea of CoAst involves two aspects: one is to only count the most important part of model parameters through a weights quantization, and the other is a cross-round valuation based on the similarity between the current local parameters and the global parameter updates in several subsequent communication rounds. Extensive experiments show that CoAst has comparable assessment reliability to existing validation-based methods and outperforms existing validation-free methods.
☆ NeuroSpex: Neuro-Guided Speaker Extraction with Cross-Modal Attention
In the study of auditory attention, it has been revealed that there exists a robust correlation between attended speech and elicited neural responses, measurable through electroencephalography (EEG). Therefore, it is possible to use the attention information available within EEG signals to guide the extraction of the target speaker in a cocktail party computationally. In this paper, we present a neuro-guided speaker extraction model, i.e. NeuroSpex, using the EEG response of the listener as the sole auxiliary reference cue to extract attended speech from monaural speech mixtures. We propose a novel EEG signal encoder that captures the attention information. Additionally, we propose a cross-attention (CA) mechanism to enhance the speech feature representations, generating a speaker extraction mask. Experimental results on a publicly available dataset demonstrate that our proposed model outperforms two baseline models across various evaluation metrics.
☆ Boosting Generalizability towards Zero-Shot Cross-Dataset Single-Image Indoor Depth by Meta-Initialization IROS 2024
Indoor robots rely on depth to perform tasks like navigation or obstacle detection, and single-image depth estimation is widely used to assist perception. Most indoor single-image depth prediction focuses less on model generalizability to unseen datasets, concerned with in-the-wild robustness for system deployment. This work leverages gradient-based meta-learning to gain higher generalizability on zero-shot cross-dataset inference. Unlike the most-studied meta-learning of image classification associated with explicit class labels, no explicit task boundaries exist for continuous depth values tied to highly varying indoor environments regarding object arrangement and scene composition. We propose fine-grained task that treats each RGB-D mini-batch as a task in our meta-learning formulation. We first show that our method on limited data induces a much better prior (max 27.8% in RMSE). Then, finetuning on meta-learned initialization consistently outperforms baselines without the meta approach. Aiming at generalization, we propose zero-shot cross-dataset protocols and validate higher generalizability induced by our meta-initialization, as a simple and useful plugin to many existing depth estimation methods. The work at the intersection of depth and meta-learning potentially drives both research to step closer to practical robotic and machine perception usage.
comment: IROS 2024. The version supersedes 2305.07269. arXiv admin note: text overlap with arXiv:2305.07269
☆ Adversarial Attacks on Machine Learning-Aided Visualizations
Research in ML4VIS investigates how to use machine learning (ML) techniques to generate visualizations, and the field is rapidly growing with high societal impact. However, as with any computational pipeline that employs ML processes, ML4VIS approaches are susceptible to a range of ML-specific adversarial attacks. These attacks can manipulate visualization generations, causing analysts to be tricked and their judgments to be impaired. Due to a lack of synthesis from both visualization and ML perspectives, this security aspect is largely overlooked by the current ML4VIS literature. To bridge this gap, we investigate the potential vulnerabilities of ML-aided visualizations from adversarial attacks using a holistic lens of both visualization and ML perspectives. We first identify the attack surface (i.e., attack entry points) that is unique in ML-aided visualizations. We then exemplify five different adversarial attacks. These examples highlight the range of possible attacks when considering the attack surface and multiple different adversary capabilities. Our results show that adversaries can induce various attacks, such as creating arbitrary and deceptive visualizations, by systematically identifying input attributes that are influential in ML inferences. Based on our observations of the attack surface characteristics and the attack examples, we underline the importance of comprehensive studies of security issues and defense mechanisms as a call of urgency for the ML4VIS community.
comment: This is the author's version of the article that has been accepted by the Journal of Visualization
☆ TASAR: Transferable Attack on Skeletal Action Recognition
Skeletal sequences, as well-structured representations of human behaviors, are crucial in Human Activity Recognition (HAR). The transferability of adversarial skeletal sequences enables attacks in real-world HAR scenarios, such as autonomous driving, intelligent surveillance, and human-computer interactions. However, existing Skeleton-based HAR (S-HAR) attacks exhibit weak adversarial transferability and, therefore, cannot be considered true transfer-based S-HAR attacks. More importantly, the reason for this failure remains unclear. In this paper, we study this phenomenon through the lens of loss surface, and find that its sharpness contributes to the poor transferability in S-HAR. Inspired by this observation, we assume and empirically validate that smoothening the rugged loss landscape could potentially improve adversarial transferability in S-HAR. To this end, we propose the first Transfer-based Attack on Skeletal Action Recognition, TASAR. TASAR explores the smoothed model posterior without re-training the pre-trained surrogates, which is achieved by a new post-train Dual Bayesian optimization strategy. Furthermore, unlike previous transfer-based attacks that treat each frame independently and overlook temporal coherence within sequences, TASAR incorporates motion dynamics into the Bayesian attack gradient, effectively disrupting the spatial-temporal coherence of S-HARs. To exhaustively evaluate the effectiveness of existing methods and our method, we build the first large-scale robust S-HAR benchmark, comprising 7 S-HAR models, 10 attack methods, 3 S-HAR datasets and 2 defense models. Extensive results demonstrate the superiority of TASAR. Our benchmark enables easy comparisons for future studies, with the code available in the supplementary material.
comment: arXiv admin note: text overlap with arXiv:2407.08572
☆ Fast, High-Quality and Parameter-Efficient Articulatory Synthesis using Differentiable DSP
Articulatory trajectories like electromagnetic articulography (EMA) provide a low-dimensional representation of the vocal tract filter and have been used as natural, grounded features for speech synthesis. Differentiable digital signal processing (DDSP) is a parameter-efficient framework for audio synthesis. Therefore, integrating low-dimensional EMA features with DDSP can significantly enhance the computational efficiency of speech synthesis. In this paper, we propose a fast, high-quality, and parameter-efficient DDSP articulatory vocoder that can synthesize speech from EMA, F0, and loudness. We incorporate several techniques to solve the harmonics / noise imbalance problem, and add a multi-resolution adversarial loss for better synthesis quality. Our model achieves a transcription word error rate (WER) of 6.67% and a mean opinion score (MOS) of 3.74, with an improvement of 1.63% and 0.16 compared to the state-of-the-art (SOTA) baseline. Our DDSP vocoder is 4.9x faster than the baseline on CPU during inference, and can generate speech of comparable quality with only 0.4M parameters, in contrast to the 9M parameters required by the SOTA.
comment: accepted for Spoken Language Technology Workshop 2024
☆ What is lost in Normalization? Exploring Pitfalls in Multilingual ASR Model Evaluations EMNLP 2024
This paper explores the pitfalls in evaluating multilingual automatic speech recognition (ASR) models, with a particular focus on Indic language scripts. We investigate the text normalization routine employed by leading ASR models, including OpenAI Whisper, Meta's MMS, Seamless, and Assembly AI's Conformer, and their unintended consequences on performance metrics. Our research reveals that current text normalization practices, while aiming to standardize ASR outputs for fair comparison, by removing inconsistencies such as variations in spelling, punctuation, and special characters, are fundamentally flawed when applied to Indic scripts. Through empirical analysis using text similarity scores and in-depth linguistic examination, we demonstrate that these flaws lead to artificially inflated performance metrics for Indic languages. We conclude by proposing a shift towards developing normalization routines that leverage native linguistic expertise, ensuring more robust and accurate evaluations of multilingual ASR models.
comment: Sumbitted to EMNLP 2024
Detecting Korean Food Using Image using Hierarchical Model
A solution was made available for Korean Food lovers who have dietary restrictions to identify the Korean food before consuming. Just by uploading a clear photo of the dish, people can get to know what they are eating. Image processing techniques together with machine learning helped to come up with this solution.
☆ Large Language Models as Efficient Reward Function Searchers for Custom-Environment Multi-Objective Reinforcement Learning
Leveraging large language models (LLMs) for designing reward functions demonstrates significant potential. However, achieving effective design and improvement of reward functions in reinforcement learning (RL) tasks with complex custom environments and multiple requirements presents considerable challenges. In this paper, we enable LLMs to be effective white-box searchers, highlighting their advanced semantic understanding capabilities. Specifically, we generate reward components for each explicit user requirement and employ the reward critic to identify the correct code form. Then, LLMs assign weights to the reward components to balance their values and iteratively search and optimize these weights based on the context provided by the training log analyzer, while adaptively determining the search step size. We applied the framework to an underwater information collection RL task without direct human feedback or reward examples (zero-shot). The reward critic successfully correct the reward code with only one feedback for each requirement, effectively preventing irreparable errors that can occur when reward function feedback is provided in aggregate. The effective initialization of weights enables the acquisition of different reward functions within the Pareto solution set without weight search. Even in the case where a weight is 100 times off, fewer than four iterations are needed to obtain solutions that meet user requirements. The framework also works well with most prompts utilizing GPT-3.5 Turbo, since it does not require advanced numerical understanding or calculation.
☆ Accelerating Large Language Model Training with Hybrid GPU-based Compression
Data Parallelism (DP), Tensor Parallelism (TP), and Pipeline Parallelism (PP) are the three strategies widely adopted to enable fast and efficient Large Language Model (LLM) training. However, these approaches rely on data-intensive communication routines to collect, aggregate, and re-distribute gradients, activations, and other important model information, which pose significant overhead. Co-designed with GPU-based compression libraries, MPI libraries have been proven to reduce message size significantly, and leverage interconnect bandwidth, thus increasing training efficiency while maintaining acceptable accuracy. In this work, we investigate the efficacy of compression-assisted MPI collectives under the context of distributed LLM training using 3D parallelism and ZeRO optimizations. We scaled up to 192 V100 GPUs on the Lassen supercomputer. First, we enabled a na\"ive compression scheme across all collectives and observed a 22.5\% increase in TFLOPS per GPU and a 23.6\% increase in samples per second for GPT-NeoX-20B training. Nonetheless, such a strategy ignores the sparsity discrepancy among messages communicated in each parallelism degree, thus introducing more errors and causing degradation in training loss. Therefore, we incorporated hybrid compression settings toward each parallel dimension and adjusted the compression intensity accordingly. Given their low-rank structure (arXiv:2301.02654), we apply aggressive compression on gradients when performing DP All-reduce. We adopt milder compression to preserve precision while communicating activations, optimizer states, and model parameters in TP and PP. Using the adjusted hybrid compression scheme, we demonstrate a 17.3\% increase in TFLOPS per GPU and a 12.7\% increase in samples per second while reaching baseline loss convergence.
☆ Abstractive Text Summarization: State of the Art, Challenges, and Improvements
Specifically focusing on the landscape of abstractive text summarization, as opposed to extractive techniques, this survey presents a comprehensive overview, delving into state-of-the-art techniques, prevailing challenges, and prospective research directions. We categorize the techniques into traditional sequence-to-sequence models, pre-trained large language models, reinforcement learning, hierarchical methods, and multi-modal summarization. Unlike prior works that did not examine complexities, scalability and comparisons of techniques in detail, this review takes a comprehensive approach encompassing state-of-the-art methods, challenges, solutions, comparisons, limitations and charts out future improvements - providing researchers an extensive overview to advance abstractive summarization research. We provide vital comparison tables across techniques categorized - offering insights into model complexity, scalability and appropriate applications. The paper highlights challenges such as inadequate meaning representation, factual consistency, controllable text summarization, cross-lingual summarization, and evaluation metrics, among others. Solutions leveraging knowledge incorporation and other innovative strategies are proposed to address these challenges. The paper concludes by highlighting emerging research areas like factual inconsistency, domain-specific, cross-lingual, multilingual, and long-document summarization, as well as handling noisy data. Our objective is to provide researchers and practitioners with a structured overview of the domain, enabling them to better understand the current landscape and identify potential areas for further research and improvement.
comment: 9 Tables, 7 Figures
☆ Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation
While deep models have proved successful in learning rich knowledge from massive well-annotated data, they may pose a privacy leakage risk in practical deployment. It is necessary to find an effective trade-off between high utility and strong privacy. In this work, we propose a discriminative-generative distillation approach to learn privacy-preserving deep models. Our key idea is taking models as bridge to distill knowledge from private data and then transfer it to learn a student network via two streams. First, discriminative stream trains a baseline classifier on private data and an ensemble of teachers on multiple disjoint private subsets, respectively. Then, generative stream takes the classifier as a fixed discriminator and trains a generator in a data-free manner. After that, the generator is used to generate massive synthetic data which are further applied to train a variational autoencoder (VAE). Among these synthetic data, a few of them are fed into the teacher ensemble to query labels via differentially private aggregation, while most of them are embedded to the trained VAE for reconstructing synthetic data. Finally, a semi-supervised student learning is performed to simultaneously handle two tasks: knowledge transfer from the teachers with distillation on few privately labeled synthetic data, and knowledge enhancement with tangent-normal adversarial regularization on many triples of reconstructed synthetic data. In this way, our approach can control query cost over private data and mitigate accuracy degradation in a unified manner, leading to a privacy-preserving student model. Extensive experiments and analysis clearly show the effectiveness of the proposed approach.
comment: This paper is accepted by IEEE Transactions on Image Processing (TIP)
☆ Scaling Laws for Economic Productivity: Experimental Evidence in LLM-Assisted Translation
This paper derives 'scaling laws' -- empirical relationships between the amount of training compute used for a Large Language Model (LLM) and its performance -- for economic outcomes. In a preregistered experiment, 300 professional translators completed 1800 tasks with access to one of thirteen LLMs with differing model training compute sizes (or a control). Our results show that model scaling substantially raises productivity: for every 10x increase in model compute, translators completed tasks 12.3% quicker, received 0.18 s.d. higher grades, and earned 16.1% more per minute (including bonus payments). Further, the gains from model scaling are much higher for lower-skilled workers who gain a 4x larger improvement in task completion speed. These results imply further frontier model scaling -- which is currently estimated at 4x increase per year -- may have significant economic implications.
☆ Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts
Uncovering the fundamental neural correlates of biological intelligence, developing mathematical models, and conducting computational simulations are critical for advancing new paradigms in artificial intelligence (AI). In this study, we implemented a comprehensive visual decision-making model that spans from visual input to behavioral output, using a neural dynamics modeling approach. Drawing inspiration from the key components of the dorsal visual pathway in primates, our model not only aligns closely with human behavior but also reflects neural activities in primates, and achieving accuracy comparable to convolutional neural networks (CNNs). Moreover, magnetic resonance imaging (MRI) identified key neuroimaging features such as structural connections and functional connectivity that are associated with performance in perceptual decision-making tasks. A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements that paralleled the behavioral variations observed among subjects. Compared to classical deep learning models, our model more accurately replicates the behavioral performance of biological intelligence, relying on the structural characteristics of biological neural networks rather than extensive training data, and demonstrating enhanced resilience to perturbation.
☆ Multi-modal Situated Reasoning in 3D Scenes
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding are limited in data modality, diversity, scale, and task scope. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated question-answering pairs across 9 distinct question categories, covering complex scenarios within 3D scenes. We introduce a novel interleaved multi-modal input setting in our benchmark to provide text, image, and point cloud for situation and question description, resolving ambiguity in previous single-modality convention (e.g., text). Additionally, we devise the Multi-modal Situated Next-step Navigation (MSNN) benchmark to evaluate models' situated reasoning for navigation. Comprehensive evaluations on MSQA and MSNN highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and cross-domain transfer further demonstrate the efficacy of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models.
comment: Project page: https://msr3d.github.io/
☆ Coral Model Generation from Single Images for Virtual Reality Applications
With the rapid development of VR technology, the demand for high-quality 3D models is increasing. Traditional methods struggle with efficiency and quality in large-scale customization. This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image. Using the Coral dataset, the framework extracts geometric and texture features, performs 3D reconstruction, and optimizes design and material blending. Advanced optimization and polygon count control ensure shape accuracy, detail retention, and flexible output for various complexities, catering to high-quality rendering and real-time interaction needs.The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks," best viewed in VR and XR. This enhances model interpretability and human-machine collaboration. Real-time feedback in VR interactions displays information like coral species and habitat, enriching user experience. The generated models surpass traditional methods in detail, visual quality, and efficiency. This research offers an intelligent approach to 3D content creation for VR, lowering production barriers, and promoting widespread VR applications. Additionally, integrating XAI provides new insights into AI-generated visual content and advances research in 3D vision interpretability.
comment: In Proceedings of Explainable AI for the Arts Workshop 2024 (XAIxArts 2024) arXiv:2406.14485
☆ Do Large Language Models Possess Sensitive to Sentiment?
Large Language Models (LLMs) have recently displayed their extraordinary capabilities in language understanding. However, how to comprehensively assess the sentiment capabilities of LLMs continues to be a challenge. This paper investigates the ability of LLMs to detect and react to sentiment in text modal. As the integration of LLMs into diverse applications is on the rise, it becomes highly critical to comprehend their sensitivity to emotional tone, as it can influence the user experience and the efficacy of sentiment-driven tasks. We conduct a series of experiments to evaluate the performance of several prominent LLMs in identifying and responding appropriately to sentiments like positive, negative, and neutral emotions. The models' outputs are analyzed across various sentiment benchmarks, and their responses are compared with human evaluations. Our discoveries indicate that although LLMs show a basic sensitivity to sentiment, there are substantial variations in their accuracy and consistency, emphasizing the requirement for further enhancements in their training processes to better capture subtle emotional cues. Take an example in our findings, in some cases, the models might wrongly classify a strongly positive sentiment as neutral, or fail to recognize sarcasm or irony in the text. Such misclassifications highlight the complexity of sentiment analysis and the areas where the models need to be refined. Another aspect is that different LLMs might perform differently on the same set of data, depending on their architecture and training datasets. This variance calls for a more in-depth study of the factors that contribute to the performance differences and how they can be optimized.
comment: 10 pages, 2 figures
☆ NUDGE: Lightweight Non-Parametric Fine-Tuning of Embeddings for Retrieval
$k$-Nearest Neighbor search on dense vector embeddings ($k$-NN retrieval) from pre-trained embedding models is the predominant retrieval method for text and images, as well as Retrieval-Augmented Generation (RAG) pipelines. In practice, application developers often fine-tune the embeddings to improve their accuracy on the dataset and query workload in hand. Existing approaches either fine-tune the pre-trained model itself or, more efficiently, but at the cost of accuracy, train adaptor models to transform the output of the pre-trained model. We present NUDGE, a family of novel non-parametric embedding fine-tuning approaches that are significantly more accurate and efficient than both sets of existing approaches. NUDGE directly modifies the embeddings of data records to maximize the accuracy of $k$-NN retrieval. We present a thorough theoretical and experimental study of NUDGE's non-parametric approach. We show that even though the underlying problem is NP-Hard, constrained variations can be solved efficiently. These constraints additionally ensure that the changes to the embeddings are modest, avoiding large distortions to the semantics learned during pre-training. In experiments across five pre-trained models and nine standard text and image retrieval datasets, NUDGE runs in minutes and often improves NDCG@10 by more than 10% over existing fine-tuning methods. On average, NUDGE provides 3.3x and 4.3x higher increase in accuracy and runs 200x and 3x faster, respectively, over fine-tuning the pre-trained model and training adaptors.
☆ Backdoor defense, learnability and obfuscation
We introduce a formal notion of defendability against backdoors using a game between an attacker and a defender. In this game, the attacker modifies a function to behave differently on a particular input known as the "trigger", while behaving the same almost everywhere else. The defender then attempts to detect the trigger at evaluation time. If the defender succeeds with high enough probability, then the function class is said to be defendable. The key constraint on the attacker that makes defense possible is that the attacker's strategy must work for a randomly-chosen trigger. Our definition is simple and does not explicitly mention learning, yet we demonstrate that it is closely connected to learnability. In the computationally unbounded setting, we use a voting algorithm of Hanneke et al. (2022) to show that defendability is essentially determined by the VC dimension of the function class, in much the same way as PAC learnability. In the computationally bounded setting, we use a similar argument to show that efficient PAC learnability implies efficient defendability, but not conversely. On the other hand, we use indistinguishability obfuscation to show that the class of polynomial size circuits is not efficiently defendable. Finally, we present polynomial size decision trees as a natural example for which defense is strictly easier than learning. Thus, we identify efficient defendability as a notable intermediate concept in between efficient learnability and obfuscation.
comment: 29 pages
☆ MobileUNETR: A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation ECCV 2024
Skin cancer segmentation poses a significant challenge in medical image analysis. Numerous existing solutions, predominantly CNN-based, face issues related to a lack of global contextual understanding. Alternatively, some approaches resort to large-scale Transformer models to bridge the global contextual gaps, but at the expense of model size and computational complexity. Finally many Transformer based approaches rely primarily on CNN based decoders overlooking the benefits of Transformer based decoding models. Recognizing these limitations, we address the need efficient lightweight solutions by introducing MobileUNETR, which aims to overcome the performance constraints associated with both CNNs and Transformers while minimizing model size, presenting a promising stride towards efficient image segmentation. MobileUNETR has 3 main features. 1) MobileUNETR comprises of a lightweight hybrid CNN-Transformer encoder to help balance local and global contextual feature extraction in an efficient manner; 2) A novel hybrid decoder that simultaneously utilizes low-level and global features at different resolutions within the decoding stage for accurate mask generation; 3) surpassing large and complex architectures, MobileUNETR achieves superior performance with 3 million parameters and a computational complexity of 1.3 GFLOP resulting in 10x and 23x reduction in parameters and FLOPS, respectively. Extensive experiments have been conducted to validate the effectiveness of our proposed method on four publicly available skin lesion segmentation datasets, including ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. The code will be publicly available at: https://github.com/OSUPCVLab/MobileUNETR.git
comment: Accepted at ECCV 2024 - BioImage Computing Workshop (Oral)
☆ Better Verified Explanations with Applications to Incorrectness and Out-of-Distribution Detection
Building on VeriX (Verified eXplainability, arXiv:2212.01051), a system for producing optimal verified explanations for machine learning model outputs, we present VeriX+, which significantly improves both the size and the generation time of verified explanations. We introduce a bound propagation-based sensitivity technique to improve the size, and a binary search-based traversal with confidence ranking for improving time -- the two techniques are orthogonal and can be used independently or together. We also show how to adapt the QuickXplain (Junker 2004) algorithm to our setting to provide a trade-off between size and time. Experimental evaluations on standard benchmarks demonstrate significant improvements on both metrics, e.g., a size reduction of 38% on the GTSRB dataset and a time reduction of 90% on MNIST. We also explore applications of our verified explanations and show that explanation size is a useful proxy for both incorrectness detection and out-of-distribution detection.
☆ Can Your Generative Model Detect Out-of-Distribution Covariate Shift? ECCV 2024
Detecting Out-of-Distribution~(OOD) sensory data and covariate distribution shift aims to identify new test examples with different high-level image statistics to the captured, normal and In-Distribution (ID) set. Existing OOD detection literature largely focuses on semantic shift with little-to-no consensus over covariate shift. Generative models capture the ID data in an unsupervised manner, enabling them to effectively identify samples that deviate significantly from this learned distribution, irrespective of the downstream task. In this work, we elucidate the ability of generative models to detect and quantify domain-specific covariate shift through extensive analyses that involves a variety of models. To this end, we conjecture that it is sufficient to detect most occurring sensory faults (anomalies and deviations in global signals statistics) by solely modeling high-frequency signal-dependent and independent details. We propose a novel method, CovariateFlow, for OOD detection, specifically tailored to covariate heteroscedastic high-frequency image-components using conditional Normalizing Flows (cNFs). Our results on CIFAR10 vs. CIFAR10-C and ImageNet200 vs. ImageNet200-C demonstrate the effectiveness of the method by accurately detecting OOD covariate shift. This work contributes to enhancing the fidelity of imaging systems and aiding machine learning models in OOD detection in the presence of covariate shift.
comment: ECCV 2024
☆ Large Language Model-Based Agents for Software Engineering: A Survey
The recent advance in Large Language Models (LLMs) has shaped a new paradigm of AI agents, i.e., LLM-based agents. Compared to standalone LLMs, LLM-based agents substantially extend the versatility and expertise of LLMs by enhancing LLMs with the capabilities of perceiving and utilizing external resources and tools. To date, LLM-based agents have been applied and shown remarkable effectiveness in Software Engineering (SE). The synergy between multiple agents and human interaction brings further promise in tackling complex real-world SE problems. In this work, we present a comprehensive and systematic survey on LLM-based agents for SE. We collect 106 papers and categorize them from two perspectives, i.e., the SE and agent perspectives. In addition, we discuss open challenges and future directions in this critical domain. The repository of this survey is at https://github.com/FudanSELab/Agent4SE-Paper-List.
☆ Hallucination Detection in LLMs: Fast and Memory-Efficient Finetuned Models
Uncertainty estimation is a necessary component when implementing AI in high-risk settings, such as autonomous cars, medicine, or insurances. Large Language Models (LLMs) have seen a surge in popularity in recent years, but they are subject to hallucinations, which may cause serious harm in high-risk settings. Despite their success, LLMs are expensive to train and run: they need a large amount of computations and memory, preventing the use of ensembling methods in practice. In this work, we present a novel method that allows for fast and memory-friendly training of LLM ensembles. We show that the resulting ensembles can detect hallucinations and are a viable approach in practice as only one GPU is needed for training and inference.
comment: 5 pages, 3 figures
☆ NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
Autonomous agent applications powered by large language models (LLMs) have recently risen to prominence as effective tools for addressing complex real-world tasks. At their core, agentic workflows rely on LLMs to plan and execute the use of tools and external Application Programming Interfaces (APIs) in sequence to arrive at the answer to a user's request. Various benchmarks and leaderboards have emerged to evaluate an LLM's capabilities for tool and API use; however, most of these evaluations only track single or multiple isolated API calling capabilities. In this paper, we present NESTFUL, a benchmark to evaluate LLMs on nested sequences of API calls, i.e., sequences where the output of one API call is passed as input to a subsequent call. NESTFUL has a total of 300 human annotated samples divided into two types - executable and non-executable. The executable samples are curated manually by crawling Rapid-APIs whereas the non-executable samples are hand picked by human annotators from data synthetically generated using an LLM. We evaluate state-of-the-art LLMs with function calling abilities on NESTFUL. Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
☆ Protecting Activity Sensing Data Privacy Using Hierarchical Information Dissociation
Smartphones and wearable devices have been integrated into our daily lives, offering personalized services. However, many apps become overprivileged as their collected sensing data contains unnecessary sensitive information. For example, mobile sensing data could reveal private attributes (e.g., gender and age) and unintended sensitive features (e.g., hand gestures when entering passwords). To prevent sensitive information leakage, existing methods must obtain private labels and users need to specify privacy policies. However, they only achieve limited control over information disclosure. In this work, we present Hippo to dissociate hierarchical information including private metadata and multi-grained activity information from the sensing data. Hippo achieves fine-grained control over the disclosure of sensitive information without requiring private labels. Specifically, we design a latent guidance-based diffusion model, which generates multi-grained versions of raw sensor data conditioned on hierarchical latent activity features. Hippo enables users to control the disclosure of sensitive information in sensing data, ensuring their privacy while preserving the necessary features to meet the utility requirements of applications. Hippo is the first unified model that achieves two goals: perturbing the sensitive attributes and controlling the disclosure of sensitive information in mobile sensing data. Extensive experiments show that Hippo can anonymize personal attributes and transform activity information at various resolutions across different types of sensing data.
☆ Security Implications and Mitigation Strategies in MPLS Networks
Multiprotocol Label Switching (MPLS) is a high-performance telecommunications technology that directs data from one network node to another based on short path labels rather than long network addresses. Its efficiency and scalability have made it a popular choice for large-scale and enterprise networks. However, as MPLS networks grow and evolve, they encounter various security challenges. This paper explores the security implications associated with MPLS networks, including risks such as label spoofing, traffic interception, and denial of service attacks. Additionally, it evaluates advanced mitigation strategies to address these vulnerabilities, leveraging mathematical models and security protocols to enhance MPLS network resilience. By integrating theoretical analysis with practical solutions, this paper aims to provide a comprehensive understanding of MPLS security and propose effective methods for safeguarding network infrastructure.
♻ ☆ Different Victims, Same Layout: Email Visual Similarity Detection for Enhanced Email Protection CCS 2024
In the pursuit of an effective spam detection system, the focus has often been on identifying known spam patterns either through rule-based detection systems or machine learning (ML) solutions that rely on keywords. However, both systems are susceptible to evasion techniques and zero-day attacks that can be achieved at low cost. Therefore, an email that bypassed the defense system once can do it again in the following days, even though rules are updated or the ML models are retrained. The recurrence of failures to detect emails that exhibit layout similarities to previously undetected spam is concerning for customers and can erode their trust in a company. Our observations show that threat actors reuse email kits extensively and can bypass detection with little effort, for example, by making changes to the content of emails. In this work, we propose an email visual similarity detection approach, named Pisco, to improve the detection capabilities of an email threat defense system. We apply our proof of concept to some real-world samples received from different sources. Our results show that email kits are being reused extensively and visually similar emails are sent to our customers at various time intervals. Therefore, this method could be very helpful in situations where detection engines that rely on textual features and keywords are bypassed, an occurrence our observations show happens frequently.
comment: To be published in the proceedings of the ACM Conference on Computer and Communications Security (ACM CCS 2024)
♻ ☆ Sentinel: An Aggregation Function to Secure Decentralized Federated Learning
Decentralized Federated Learning (DFL) emerges as an innovative paradigm to train collaborative models, addressing the single point of failure limitation. However, the security and trustworthiness of FL and DFL are compromised by poisoning attacks, negatively impacting its performance. Existing defense mechanisms have been designed for centralized FL and they do not adequately exploit the particularities of DFL. Thus, this work introduces Sentinel, a defense strategy to counteract poisoning attacks in DFL. Sentinel leverages the accessibility of local data and defines a three-step aggregation protocol consisting of similarity filtering, bootstrap validation, and normalization to safeguard against malicious model updates. Sentinel has been evaluated with diverse datasets and data distributions. Besides, various poisoning attack types and threat levels have been verified. The results improve the state-of-the-art performance against both untargeted and targeted poisoning attacks when data follows an IID (Independent and Identically Distributed) configuration. Besides, under non-IID configuration, it is analyzed how performance degrades both for Sentinel and other state-of-the-art robust aggregation methods.
♻ ☆ Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever EMNLP
Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT's late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,
comment: 8 pages, references at pp7,8; EMNLP workshop submission
♻ ☆ Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment
Large Language Models (LLMs) are often aligned using contrastive alignment objectives and preference pair datasets. The interaction between model, paired data, and objective makes alignment a complicated procedure, sometimes producing subpar results. We study this and find that (i) preference data gives a better learning signal when the underlying responses are contrastive, and (ii) alignment objectives lead to better performance when they specify more control over the model during training. Based on these insights, we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation method which leads to more contrastive preference pairs, and Anchored Preference Optimization (APO), a controllable and more stable alignment objective. We align Llama-3-8B-Instruct using various comparable datasets and alignment objectives and measure MixEval-Hard scores, which correlate highly with human judgments. The CLAIR preferences lead to the strongest performance out of all datasets, and APO consistently outperforms less controllable objectives. Our best model, trained on 32K CLAIR preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the gap with GPT4-turbo by 45%. Our code is available at https://github.com/ContextualAI/CLAIR_and_APO.
♻ ☆ Enhancing Dialogue Generation in Werewolf Game Through Situation Analysis and Persuasion Strategies
Recent advancements in natural language processing, particularly with large language models (LLMs) like GPT-4, have significantly enhanced dialogue systems, enabling them to generate more natural and fluent conversations. Despite these improvements, challenges persist, such as managing continuous dialogues, memory retention, and minimizing hallucinations. The AIWolfDial2024 addresses these challenges by employing the Werewolf Game, an incomplete information game, to test the capabilities of LLMs in complex interactive environments. This paper introduces a LLM-based Werewolf Game AI, where each role is supported by situation analysis to aid response generation. Additionally, for the werewolf role, various persuasion strategies, including logical appeal, credibility appeal, and emotional appeal, are employed to effectively persuade other players to align with its actions.
comment: Accepted to the AIWolfDial2024 workshop at INLG 2024
♻ ☆ Decentralized Health Intelligence Network (DHIN)
Decentralized Health Intelligence Network (DHIN) extends the Decentralized Intelligence Network (DIN) framework to address challenges in healthcare data sovereignty and AI utilization. Building upon DIN's core principles, DHIN introduces healthcare-specific components to tackle data fragmentation across providers and institutions, establishing a sovereign architecture for healthcare provision. It facilitates effective AI utilization by overcoming barriers to accessing diverse health data sources. This comprehensive framework leverages: 1) self-sovereign identity architecture coupled with a personal health record (PHR), extending DIN's personal data stores concept to ensure health data sovereignty; 2) a scalable federated learning (FL) protocol implemented on a public blockchain for decentralized AI training in healthcare, tailored for medical data; and 3) a scalable, trustless rewards mechanism adapted from DIN to incentivize participation in healthcare AI development. DHIN operates on a public blockchain with an immutable record, ensuring that no entity can control access to health data or determine financial benefits. It supports effective AI training while allowing patients to maintain control over their health data, benefit financially, and contribute to a decentralized ecosystem. Unique to DHIN, patients receive rewards in digital wallets as an incentive to opt into the FL protocol, with a long-term roadmap to fund decentralized insurance solutions. This approach introduces a novel, self-financed healthcare model that adapts to individual needs, complements existing systems, and redefines universal coverage, showcasing how DIN principles can transform healthcare data management and AI utilization while empowering patients.
comment: 13 pages, 6 figures
♻ ☆ Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models
Graphs are pervasive in the real-world, such as social network analysis, bioinformatics, and knowledge graphs. Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs. Unfortunately, conventional GNNs still face challenges in scenarios with few labeled nodes, despite the prevalence of few-shot node classification tasks in real-world applications. To address this challenge, various approaches have been proposed, including graph meta-learning, transfer learning, and methods based on Large Language Models (LLMs). However, traditional meta-learning and transfer learning methods often require prior knowledge from base classes or fail to exploit the potential advantages of unlabeled nodes. Meanwhile, LLM-based methods may overlook the zero-shot capabilities of LLMs and rely heavily on the quality of generated contexts. In this paper, we propose a novel approach that integrates LLMs and GNNs, leveraging the zero-shot inference and reasoning capabilities of LLMs and employing a Graph-LLM-based active learning paradigm to enhance GNNs' performance. Extensive experiments demonstrate the effectiveness of our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
comment: 10 pages, 3 Figures
♻ ☆ The Need for Guardrails with Large Language Models in Medical Safety-Critical Settings: An Artificial Intelligence Application in the Pharmacovigilance Ecosystem
Large language models (LLMs) are useful tools with the capacity for performing specific types of knowledge work at an effective scale. However, LLM deployments in high-risk and safety-critical domains pose unique challenges, notably the issue of ``hallucination,'' where LLMs can generate fabricated information. This is particularly concerning in settings such as drug safety, where inaccuracies could lead to patient harm. To mitigate these risks, we have developed and demonstrated a proof of concept suite of guardrails specifically designed to mitigate certain types of hallucinations and errors for drug safety, and potentially applicable to other medical safety-critical contexts. These guardrails include mechanisms to detect anomalous documents to prevent the ingestion of inappropriate data, identify incorrect drug names or adverse event terms, and convey uncertainty in generated content. We integrated these guardrails with an LLM fine-tuned for a text-to-text task, which involves converting both structured and unstructured data within adverse event reports into natural language. This method was applied to translate individual case safety reports, demonstrating effective application in a pharmacovigilance processing task. Our guardrail framework offers a set of tools with broad applicability across various domains, ensuring LLMs can be safely used in high-risk situations by eliminating the occurrence of key errors, including the generation of incorrect pharmacovigilance-related terms, thus adhering to stringent regulatory and quality standards in medical safety-critical environments.
comment: 27 pages, 6 figures, 4 tables and supplementary material provided
♻ ☆ Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL
Objective: To enhance the efficiency and accuracy of information retrieval from pharmacovigilance (PV) databases by employing Large Language Models (LLMs) to convert natural language queries (NLQs) into Structured Query Language (SQL) queries, leveraging a business context document. Materials and Methods: We utilized OpenAI's GPT-4 model within a retrieval-augmented generation (RAG) framework, enriched with a business context document, to transform NLQs into syntactically precise SQL queries. Each NLQ was presented to the LLM randomly and independently to prevent memorization. The study was conducted in three phases, varying query complexity, and assessing the LLM's performance both with and without the business context document. Results: Our approach significantly improved NLQ-to-SQL accuracy, increasing from 8.3\% with the database schema alone to 78.3\% with the business context document. This enhancement was consistent across low, medium, and high complexity queries, indicating the critical role of contextual knowledge in query generation. Discussion: The integration of a business context document markedly improved the LLM's ability to generate accurate and contextually relevant SQL queries. Performance achieved a maximum of 85\% when high complexity queries are excluded, suggesting promise for routine deployment. Conclusion: This study presents a novel approach to employing LLMs for safety data retrieval and analysis, demonstrating significant advancements in query generation accuracy. The methodology offers a framework applicable to various data-intensive domains, enhancing the accessibility and efficiency of information retrieval for non-technical users.
comment: 15 pages, 3 tables, 5 figures
♻ ☆ The Design of an LLM-powered Unstructured Analytics System
LLMs demonstrate an uncanny ability to process unstructured data, and as such, have the potential to go beyond search and run complex, semantic analyses at scale. We describe the design of an unstructured analytics system, Aryn, and the tenets and use cases that motivate its design. With Aryn, users can specify queries in natural language and the system automatically determines a semantic plan and executes it to compute an answer from a large collection of unstructured documents using LLMs. At the core of Aryn is Sycamore, a declarative document processing engine, built using Ray, that provides a reliable distributed abstraction called DocSets. Sycamore allows users to analyze, enrich, and transform complex documents at scale. Aryn also comprises Luna, a query planner that translates natural language queries to Sycamore scripts, and the Aryn Partitioner, which takes raw PDFs and document images, and converts them to DocSets for downstream processing. Using Aryn, we demonstrate a real world use case for analyzing accident reports from the National Transportation Safety Board (NTSB), and discuss some of the major challenges we encountered in deploying Aryn in the wild.
comment: 6 pages, 3 figures, fixed typos
♻ ☆ Simple and Scalable Strategies to Continually Pre-train Large Language Models
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by the final loss and the average score on several language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (English$\rightarrow$English) and a stronger distribution shift (English$\rightarrow$German) at the $405$M parameter model scale with large dataset sizes (hundreds of billions of tokens). Selecting the weak but realistic shift for larger-scale experiments, we also find that our continual learning strategies match the re-training baseline for a 10B parameter LLM. Our results demonstrate that LLMs can be successfully updated via simple and scalable continual learning strategies, matching the re-training baseline using only a fraction of the compute. Finally, inspired by previous work, we propose alternatives to the cosine learning rate schedule that help circumvent forgetting induced by LR re-warming and that are not bound to a fixed token budget.
♻ ☆ Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques
We initiate the study of Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations. We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective MARLHF, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We utilize imitation learning to approximate the reference policy, ensuring stability and effectiveness in training. Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
♻ ☆ Revisiting Character-level Adversarial Attacks for Language Models ICML 2024
Adversarial attacks in Natural Language Processing apply perturbations in the character or token levels. Token-level attacks, gaining prominence for their use of gradient-based methods, are susceptible to altering sentence semantics, leading to invalid adversarial examples. While character-level attacks easily maintain semantics, they have received less attention as they cannot easily adopt popular gradient-based methods, and are thought to be easy to defend. Challenging these beliefs, we introduce Charmer, an efficient query-based adversarial attack capable of achieving high attack success rate (ASR) while generating highly similar adversarial examples. Our method successfully targets both small (BERT) and large (Llama 2) models. Specifically, on BERT with SST-2, Charmer improves the ASR in 4.84% points and the USE similarity in 8% points with respect to the previous art. Our implementation is available in https://github.com/LIONS-EPFL/Charmer.
comment: Accepted in ICML 2024
♻ ☆ The Future of Open Human Feedback
Human feedback on conversations with language language models (LLMs) is central to how these systems learn about the world, improve their capabilities, and are steered toward desirable and safe behaviors. However, this feedback is mostly collected by frontier AI labs and kept behind closed doors. In this work, we bring together interdisciplinary experts to assess the opportunities and challenges to realizing an open ecosystem of human feedback for AI. We first look for successful practices in peer production, open source, and citizen science communities. We then characterize the main challenges for open human feedback. For each, we survey current approaches and offer recommendations. We end by envisioning the components needed to underpin a sustainable and open human feedback ecosystem. In the center of this ecosystem are mutually beneficial feedback loops, between users and specialized models, incentivizing a diverse stakeholders community of model trainers and feedback providers to support a general open feedback pool.
♻ ☆ Open Gaze: Open Source eye tracker for smartphone devices using Deep Learning
Eye tracking has been a pivotal tool in diverse fields such as vision research, language analysis, and usability assessment. The majority of prior investigations, however, have concentrated on expansive desktop displays employing specialized, costly eye tracking hardware that lacks scalability. Remarkably little insight exists into ocular movement patterns on smartphones, despite their widespread adoption and significant usage. In this manuscript, we present an open-source implementation of a smartphone-based gaze tracker that emulates the methodology proposed by a GooglePaper (whose source code remains proprietary). Our focus is on attaining accuracy comparable to that attained through the GooglePaper's methodology, without the necessity for supplementary hardware. Through the integration of machine learning techniques, we unveil an accurate eye tracking solution that is native to smartphones. Our approach demonstrates precision akin to the state-of-the-art mobile eye trackers, which are characterized by a cost that is two orders of magnitude higher. Leveraging the vast MIT GazeCapture dataset, which is available through registration on the dataset's website, we successfully replicate crucial findings from previous studies concerning ocular motion behavior in oculomotor tasks and saliency analyses during natural image observation. Furthermore, we emphasize the applicability of smartphone-based gaze tracking in discerning reading comprehension challenges. Our findings exhibit the inherent potential to amplify eye movement research by significant proportions, accommodating participation from thousands of subjects with explicit consent. This scalability not only fosters advancements in vision research, but also extends its benefits to domains such as accessibility enhancement and healthcare applications.
comment: This paper results are incorrectly reported. The paper is not authentic and conclusions are not correct
♻ ☆ Negation Blindness in Large Language Models: Unveiling the NO Syndrome in Image Generation
Foundational Large Language Models (LLMs) have changed the way we perceive technology. They have been shown to excel in tasks ranging from poem writing and coding to essay generation and puzzle solving. With the incorporation of image generation capability, they have become more comprehensive and versatile AI tools. At the same time, researchers are striving to identify the limitations of these tools to improve them further. Currently identified flaws include hallucination, biases, and bypassing restricted commands to generate harmful content. In the present work, we have identified a fundamental limitation related to the image generation ability of LLMs, and termed it The NO Syndrome. This negation blindness refers to LLMs inability to correctly comprehend NO related natural language prompts to generate the desired images. Interestingly, all tested LLMs including GPT-4, Gemini, and Copilot were found to be suffering from this syndrome. To demonstrate the generalization of this limitation, we carried out simulation experiments and conducted entropy-based and benchmark statistical analysis tests on various LLMs in multiple languages, including English, Hindi, and French. We conclude that the NO syndrome is a significant flaw in current LLMs that needs to be addressed. A related finding of this study showed a consistent discrepancy between image and textual responses as a result of this NO syndrome. We posit that the introduction of a negation context-aware reinforcement learning based feedback loop between the LLMs textual response and generated image could help ensure the generated text is based on both the LLMs correct contextual understanding of the negation query and the generated visual output.
comment: 15 pages, 7 figures
♻ ☆ Multi-Modal Experience Inspired AI Creation
AI creation, such as poem or lyrics generation, has attracted increasing attention from both industry and academic communities, with many promising models proposed in the past few years. Existing methods usually estimate the outputs based on single and independent visual or textual information. However, in reality, humans usually make creations according to their experiences, which may involve different modalities and be sequentially correlated. To model such human capabilities, in this paper, we define and solve a novel AI creation problem based on human experiences. More specifically, we study how to generate texts based on sequential multi-modal information. Compared with the previous works, this task is much more difficult because the designed model has to well understand and adapt the semantics among different modalities and effectively convert them into the output in a sequential manner. To alleviate these difficulties, we firstly design a multi-channel sequence-to-sequence architecture equipped with a multi-modal attention network. For more effective optimization, we then propose a curriculum negative sampling strategy tailored for the sequential inputs. To benchmark this problem and demonstrate the effectiveness of our model, we manually labeled a new multi-modal experience dataset. With this dataset, we conduct extensive experiments by comparing our model with a series of representative baselines, where we can demonstrate significant improvements in our model based on both automatic and human-centered metrics. The code and data are available at: \url{https://github.com/Aman-4-Real/MMTG}.
comment: Accepted by ACM Multimedia 2022
♻ ☆ Seeing Like an AI: How LLMs Apply (and Misapply) Wikipedia Neutrality Norms
Large language models (LLMs) are trained on broad corpora and then used in communities with specialized norms. Is providing LLMs with community rules enough for models to follow these norms? We evaluate LLMs' capacity to detect (Task 1) and correct (Task 2) biased Wikipedia edits according to Wikipedia's Neutral Point of View (NPOV) policy. LLMs struggled with bias detection, achieving only 64% accuracy on a balanced dataset. Models exhibited contrasting biases (some under- and others over-predicted bias), suggesting distinct priors about neutrality. LLMs performed better at generation, removing 79% of words removed by Wikipedia editors. However, LLMs made additional changes beyond Wikipedia editors' simpler neutralizations, resulting in high-recall but low-precision editing. Interestingly, crowdworkers rated AI rewrites as more neutral (70%) and fluent (61%) than Wikipedia-editor rewrites. Qualitative analysis found LLMs sometimes applied NPOV more comprehensively than Wikipedia editors but often made extraneous non-NPOV-related changes (such as grammar). LLMs may apply rules in ways that resonate with the public but diverge from community experts. While potentially effective for generation, LLMs may reduce editor agency and increase moderation workload (e.g., verifying additions). Even when rules are easy to articulate, having LLMs apply them like community members may still be difficult.
♻ ☆ Multimodal Recommender Systems: A Survey
The recommender system (RS) has been an integral toolkit of online services. They are equipped with various deep learning techniques to model user preference based on identifier and attribute information. With the emergence of multimedia services, such as short videos, news and etc., understanding these contents while recommending becomes critical. Besides, multimodal features are also helpful in alleviating the problem of data sparsity in RS. Thus, Multimodal Recommender System (MRS) has attracted much attention from both academia and industry recently. In this paper, we will give a comprehensive survey of the MRS models, mainly from technical views. First, we conclude the general procedures and major challenges for MRS. Then, we introduce the existing MRS models according to four categories, i.e., Modality Encoder, Feature Interaction, Feature Enhancement and Model Optimization. Besides, to make it convenient for those who want to research this field, we also summarize the dataset and code resources. Finally, we discuss some promising future directions of MRS and conclude this paper. To access more details of the surveyed papers, such as implementation code, we open source a repository.
comment: accepted by CSUR
♻ ☆ Comprehensive Review and Empirical Evaluation of Causal Discovery Algorithms for Numerical Data
Causal analysis has become an essential component in understanding the underlying causes of phenomena across various fields. Despite its significance, existing literature on causal discovery algorithms is fragmented, with inconsistent methodologies, i.e., there is no universal classification standard for existing methods, and a lack of comprehensive evaluations, i.e., data characteristics are often ignored to be jointly analyzed when benchmarking algorithms. This study addresses these gaps by conducting an exhaustive review and empirical evaluation for causal discovery methods on numerical data, aiming to provide a clearer and more structured understanding of the field. Our research begins with a comprehensive literature review spanning over two decades, analyzing over 200 academic articles and identifying more than 40 representative algorithms. This extensive analysis leads to the development of a structured taxonomy tailored to the complexities of causal discovery, categorizing methods into six main types. To address the lack of comprehensive evaluations, our study conducts an extensive empirical assessment of 29 causal discovery algorithms on multiple synthetic and real-world datasets. We categorize synthetic datasets based on size, linearity, and noise distribution, employing five evaluation metrics, and summarize the top-3 algorithm recommendations, providing guidelines for users in various data scenarios. Our results highlight a significant impact of dataset characteristics on algorithm performance. Moreover, a metadata extraction strategy with an accuracy exceeding 80% is developed to assist users in algorithm selection on unknown datasets. Based on these insights, we offer professional and practical guidelines to help users choose the most suitable causal discovery methods for their specific dataset.
♻ ☆ HIRO: Hierarchical Information Retrieval Optimization
Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by dynamically integrating external knowledge into Large Language Models (LLMs), addressing their limitation of static training datasets. Recent implementations of RAG leverage hierarchical data structures, which organize documents at various levels of summarization and information density. This complexity, however, can cause LLMs to "choke" on information overload, necessitating more sophisticated querying mechanisms. In this context, we introduce Hierarchical Information Retrieval Optimization (HIRO), a novel querying approach that employs a Depth-First Search (DFS)-based recursive similarity score calculation and branch pruning. This method uniquely minimizes the context delivered to the LLM without informational loss, effectively managing the challenge of excessive data. HIRO's refined approach is validated by a 10.85% improvement in performance on the NarrativeQA dataset.
♻ ☆ DNN-GDITD: Out-of-distribution detection via Deep Neural Network based Gaussian Descriptor for Imbalanced Tabular Data
Classification tasks present challenges due to class imbalances and evolving data distributions. Addressing these issues requires a robust method to handle imbalances while effectively detecting out-of-distribution (OOD) samples not encountered during training. This study introduces a novel OOD detection algorithm designed for tabular datasets, titled Deep Neural Network-based Gaussian Descriptor for Imbalanced Tabular Data (DNN-GDITD). The DNN-GDITD algorithm can be placed on top of any DNN to facilitate better classification of imbalanced data and OOD detection using spherical decision boundaries. Using a combination of Push, Score-based, and focal losses, DNN-GDITD assigns confidence scores to test data points, categorizing them as known classes or as an OOD sample. Extensive experimentation on tabular datasets demonstrates the effectiveness of DNN-GDITD compared to three OOD algorithms. Evaluation encompasses imbalanced and balanced scenarios on diverse tabular datasets, including a synthetic financial dispute dataset and publicly available tabular datasets like Gas Sensor, Drive Diagnosis, and MNIST, showcasing DNN-GDITD's versatility.
comment: 17 pages
♻ ☆ Graph Retrieval Augmented Trustworthiness Reasoning
Trustworthiness reasoning is crucial in multiplayer games with incomplete information, enabling agents to identify potential allies and adversaries, thereby enhancing reasoning and decision-making processes. Traditional approaches relying on pre-trained models necessitate extensive domain-specific data and considerable reward feedback, with their lack of real-time adaptability hindering their effectiveness in dynamic environments. In this paper, we introduce the Graph Retrieval Augmented Reasoning (GRATR) framework, leveraging the Retrieval-Augmented Generation (RAG) technique to bolster trustworthiness reasoning in agents. GRATR constructs a dynamic trustworthiness graph, updating it in real-time with evidential information, and retrieves relevant trust data to augment the reasoning capabilities of Large Language Models (LLMs). We validate our approach through experiments on the multiplayer game "Werewolf," comparing GRATR against baseline LLM and LLM enhanced with Native RAG and Rerank RAG. Our results demonstrate that GRATR surpasses the baseline methods by over 30\% in winning rate, with superior reasoning performance. Moreover, GRATR effectively mitigates LLM hallucinations, such as identity and objective amnesia, and crucially, it renders the reasoning process more transparent and traceable through the use of the trustworthiness graph.
♻ ☆ Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. Code and benchmark: https://github.com/PredOpt/predopt-benchmarks
comment: Experimental Survey and Benchmarking
♻ ☆ Can Vehicle Motion Planning Generalize to Realistic Long-tail Scenarios?
Real-world autonomous driving systems must make safe decisions in the face of rare and diverse traffic scenarios. Current state-of-the-art planners are mostly evaluated on real-world datasets like nuScenes (open-loop) or nuPlan (closed-loop). In particular, nuPlan seems to be an expressive evaluation method since it is based on real-world data and closed-loop, yet it mostly covers basic driving scenarios. This makes it difficult to judge a planner's capabilities to generalize to rarely-seen situations. Therefore, we propose a novel closed-loop benchmark interPlan containing several edge cases and challenging driving scenarios. We assess existing state-of-the-art planners on our benchmark and show that neither rule-based nor learning-based planners can safely navigate the interPlan scenarios. A recently evolving direction is the usage of foundation models like large language models (LLM) to handle generalization. We evaluate an LLM-only planner and introduce a novel hybrid planner that combines an LLM-based behavior planner with a rule-based motion planner that achieves state-of-the-art performance on our benchmark.
♻ ☆ In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.
comment: submitted to journal
♻ ☆ Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation ACL
Multi-sensor ML models for EO aim to enhance prediction accuracy by integrating data from various sources. However, the presence of missing data poses a significant challenge, particularly in non-persistent sensors that can be affected by external factors. Existing literature has explored strategies like temporal dropout and sensor-invariant models to address the generalization to missing data issues. Inspired by these works, we study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI). Through experimentation on three multi-sensor temporal EO datasets, we demonstrate that these methods effectively increase the robustness of model predictions to missing sensors. Particularly, we focus on how the predictive performance of models drops when sensors are missing at different levels. We observe that ensemble multi-sensor models are the most robust to the lack of sensors. In addition, the sensor dropout component in ISensD shows promising robustness results.
comment: Accepted at the MACLEAN workshop in the ECML/PKDD 2024
♻ ☆ Smart E-commerce Recommendations with Semantic AI
In e-commerce, web mining for page recommendations is widely used but often fails to meet user needs. To address this, we propose a novel solution combining semantic web mining with BP neural networks. We process user search logs to extract five key features: content priority, time spent, user feedback, recommendation semantics, and input deviation. These features are then fed into a BP neural network to classify and prioritize web pages. The prioritized pages are recommended to users. Using book sales pages for testing, our results demonstrate that this solution can quickly and accurately identify the pages users need. Our approach ensures that recommendations are more relevant and tailored to individual preferences, enhancing the online shopping experience. By leveraging advanced semantic analysis and neural network techniques, we bridge the gap between user expectations and actual recommendations. This innovative method not only improves accuracy but also speeds up the recommendation process, making it a valuable tool for e-commerce platforms aiming to boost user satisfaction and engagement. Additionally, our system ability to handle large datasets and provide real-time recommendations makes it a scalable and efficient solution for modern e-commerce challenges.
comment: 8 pages
♻ ☆ A Hybrid Framework for Spatial Interpolation: Merging Data-driven with Domain Knowledge
Estimating spatially distributed information through the interpolation of scattered observation datasets often overlooks the critical role of domain knowledge in understanding spatial dependencies. Additionally, the features of these data sets are typically limited to the spatial coordinates of the scattered observation locations. In this paper, we propose a hybrid framework that integrates data-driven spatial dependency feature extraction with rule-assisted spatial dependency function mapping to augment domain knowledge. We demonstrate the superior performance of our framework in two comparative application scenarios, highlighting its ability to capture more localized spatial features in the reconstructed distribution fields. Furthermore, we underscore its potential to enhance nonlinear estimation capabilities through the application of transformed fuzzy rules and to quantify the inherent uncertainties associated with the observation data sets. Our framework introduces an innovative approach to spatial information estimation by synergistically combining observational data with rule-assisted domain knowledge.
comment: 21 pages, 13 figures; typos corrected, references updated
♻ ☆ Moderate Adaptive Linear Units (MoLU)
We propose a new high-performance activation function, Moderate Adaptive Linear Units (MoLU), for the deep neural network. The MoLU is a simple, beautiful and powerful activation function that can be a good main activation function among hundreds of activation functions. Because the MoLU is made up of the elementary functions, not only it is a diffeomorphism (i.e. analytic over whole domains), but also it reduces the training time.
comment: 4 pages, 5 figures
♻ ☆ Simultaneous Training of First- and Second-Order Optimizers in Population-Based Reinforcement Learning
The tuning of hyperparameters in reinforcement learning (RL) is critical, as these parameters significantly impact an agent's performance and learning efficiency. Dynamic adjustment of hyperparameters during the training process can significantly enhance both the performance and stability of learning. Population-based training (PBT) provides a method to achieve this by continuously tuning hyperparameters throughout the training. This ongoing adjustment enables models to adapt to different learning stages, resulting in faster convergence and overall improved performance. In this paper, we propose an enhancement to PBT by simultaneously utilizing both first- and second-order optimizers within a single population. We conducted a series of experiments using the TD3 algorithm across various MuJoCo environments. Our results, for the first time, empirically demonstrate the potential of incorporating second-order optimizers within PBT-based RL. Specifically, the combination of the K-FAC optimizer with Adam led to up to a 10% improvement in overall performance compared to PBT using only Adam. Additionally, in environments where Adam occasionally fails, such as the Swimmer environment, the mixed population with K-FAC exhibited more reliable learning outcomes, offering a significant advantage in training stability without a substantial increase in computational time.
comment: 8 pages, 5 figures
♻ ☆ Genesis: Towards the Automation of Systems Biology Research
The cutting edge of applying AI to science is the closed-loop automation of scientific research: robot scientists. We have previously developed two robot scientists: `Adam' (for yeast functional biology), and `Eve' (for early-stage drug design)). We are now developing a next generation robot scientist Genesis. With Genesis we aim to demonstrate that an area of science can be investigated using robot scientists unambiguously faster, and at lower cost, than with human scientists. Here we report progress on the Genesis project. Genesis is designed to automatically improve system biology models with thousands of interacting causal components. When complete Genesis will be able to initiate and execute in parallel one thousand hypothesis-led closed-loop cycles of experiment per-day. Here we describe the core Genesis hardware: the one thousand computer-controlled $\mu$-bioreactors. For the integrated Mass Spectrometry platform we have developed AutonoMS, a system to automatically run, process, and analyse high-throughput experiments. We have also developed Genesis-DB, a database system designed to enable software agents access to large quantities of structured domain information. We have developed RIMBO (Revisions for Improvements of Models in Biology Ontology) to describe the planned hundreds of thousands of changes to the models. We have demonstrated the utility of this infrastructure by developed two relational learning bioinformatic projects. Finally, we describe LGEM+ a relational learning system for the automated abductive improvement of genome-scale metabolic models.
♻ ☆ Model-agnostic explainable artificial intelligence for object detection in image data
In recent years, deep neural networks have been widely used for building high-performance Artificial Intelligence (AI) systems for computer vision applications. Object detection is a fundamental task in computer vision, which has been greatly progressed through developing large and intricate AI models. However, the lack of transparency is a big challenge that may not allow the widespread adoption of these models. Explainable artificial intelligence is a field of research where methods are developed to help users understand the behavior, decision logics, and vulnerabilities of AI systems. Previously, few explanation methods were developed for object detection based on random masking. However, random masks may raise some issues regarding the actual importance of pixels within an image. In this paper, we design and implement a black-box explanation method named Black-box Object Detection Explanation by Masking (BODEM) through adopting a hierarchical random masking approach for object detection systems. We propose a hierarchical random masking framework in which coarse-grained masks are used in lower levels to find salient regions within an image, and fine-grained mask are used to refine the salient regions in higher levels. Experimentations on various object detection datasets and models showed that BODEM can effectively explain the behavior of object detectors. Moreover, our method outperformed Detector Randomized Input Sampling for Explanation (D-RISE) and Local Interpretable Model-agnostic Explanations (LIME) with respect to different quantitative measures of explanation effectiveness. The experimental results demonstrate that BODEM can be an effective method for explaining and validating object detection systems in black-box testing scenarios.
♻ ☆ Dynamic PDB: A New Dataset and a SE(3) Model Extension by Integrating Dynamic Behaviors and Physical Properties in Protein Structures
Despite significant progress in static protein structure collection and prediction, the dynamic behavior of proteins, one of their most vital characteristics, has been largely overlooked in prior research. This oversight can be attributed to the limited availability, diversity, and heterogeneity of dynamic protein datasets. To address this gap, we propose to enhance existing prestigious static 3D protein structural databases, such as the Protein Data Bank (PDB), by integrating dynamic data and additional physical properties. Specifically, we introduce a large-scale dataset, Dynamic PDB, encompassing approximately 12.6K proteins, each subjected to all-atom molecular dynamics (MD) simulations lasting 1 microsecond to capture conformational changes. Furthermore, we provide a comprehensive suite of physical properties, including atomic velocities and forces, potential and kinetic energies of proteins, and the temperature of the simulation environment, recorded at 1 picosecond intervals throughout the simulations. For benchmarking purposes, we evaluate state-of-the-art methods on the proposed dataset for the task of trajectory prediction. To demonstrate the value of integrating richer physical properties in the study of protein dynamics and related model design, we base our approach on the SE(3) diffusion model and incorporate these physical properties into the trajectory prediction process. Preliminary results indicate that this straightforward extension of the SE(3) model yields improved accuracy, as measured by MAE and RMSD, when the proposed physical properties are taken into consideration. https://fudan-generative-vision.github.io/dynamicPDB/ .
♻ ☆ Map-Free Visual Relocalization Enhanced by Instance Knowledge and Depth Knowledge
Map-free relocalization technology is crucial for applications in autonomous navigation and augmented reality, but relying on pre-built maps is often impractical. It faces significant challenges due to limitations in matching methods and the inherent lack of scale in monocular images. These issues lead to substantial rotational and metric errors and even localization failures in real-world scenarios. Large matching errors significantly impact the overall relocalization process, affecting both rotational and translational accuracy. Due to the inherent limitations of the camera itself, recovering the metric scale from a single image is crucial, as this significantly impacts the translation error. To address these challenges, we propose a map-free relocalization method enhanced by instance knowledge and depth knowledge. By leveraging instance-based matching information to improve global matching results, our method significantly reduces the possibility of mismatching across different objects. The robustness of instance knowledge across the scene helps the feature point matching model focus on relevant regions and enhance matching accuracy. Additionally, we use estimated metric depth from a single image to reduce metric errors and improve scale recovery accuracy. By integrating methods dedicated to mitigating large translational and rotational errors, our approach demonstrates superior performance in map-free relocalization techniques.
comment: 17 pages,6 figures
♻ ☆ Vision-Language and Large Language Model Performance in Gastroenterology: GPT, Claude, Llama, Phi, Mistral, Gemma, and Quantized Models
Background and Aims: This study evaluates the medical reasoning performance of large language models (LLMs) and vision language models (VLMs) in gastroenterology. Methods: We used 300 gastroenterology board exam-style multiple-choice questions, 138 of which contain images to systematically assess the impact of model configurations and parameters and prompt engineering strategies utilizing GPT-3.5. Next, we assessed the performance of proprietary and open-source LLMs (versions), including GPT (3.5, 4, 4o, 4omini), Claude (3, 3.5), Gemini (1.0), Mistral, Llama (2, 3, 3.1), Mixtral, and Phi (3), across different interfaces (web and API), computing environments (cloud and local), and model precisions (with and without quantization). Finally, we assessed accuracy using a semiautomated pipeline. Results: Among the proprietary models, GPT-4o (73.7%) and Claude3.5-Sonnet (74.0%) achieved the highest accuracy, outperforming the top open-source models: Llama3.1-405b (64%), Llama3.1-70b (58.3%), and Mixtral-8x7b (54.3%). Among the quantized open-source models, the 6-bit quantized Phi3-14b (48.7%) performed best. The scores of the quantized models were comparable to those of the full-precision models Llama2-7b, Llama2--13b, and Gemma2-9b. Notably, VLM performance on image-containing questions did not improve when the images were provided and worsened when LLM-generated captions were provided. In contrast, a 10% increase in accuracy was observed when images were accompanied by human-crafted image descriptions. Conclusion: In conclusion, while LLMs exhibit robust zero-shot performance in medical reasoning, the integration of visual data remains a challenge for VLMs. Effective deployment involves carefully determining optimal model configurations, encouraging users to consider either the high performance of proprietary models or the flexible adaptability of open-source models.
comment: Manuscript Pages: 34, Figures: 7, Tables: 2, Supplementary File Pages: 35, Data Transparency Statement: Code is available at: https://github.com/Sdamirsa/LLM-VLM-in-Gastroenterology . Study data from American College of Gastroenterology (ACG) are restricted and available upon request with ACG permission. Correction: updated abstract considering Llama3.1 results
♻ ☆ A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and sleep disorders is crucial to enhancing our knowledge about individuals' health status. This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on "sleep stages classification" and "sleep disorder detection" using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies (almost 29% of the research used brain activity signals exclusively, and 77% combined with the other signals). The convolutional neural network (CNN), the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory (LSTM), support vector machine (SVM), random forest (RF), and recurrent neural network (RNN), which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.
comment: 39 pages, 11 Figures, 8 Tables
♻ ☆ Jailbreaking Prompt Attack: A Controllable Adversarial Attack against Diffusion Models
Text-to-image (T2I) models can be maliciously used to generate harmful content such as sexually explicit, unfaithful, and misleading or Not-Safe-for-Work (NSFW) images. Previous attacks largely depend on the availability of the diffusion model or involve a lengthy optimization process. In this work, we investigate a more practical and universal attack that does not require the presence of a target model and demonstrate that the high-dimensional text embedding space inherently contains NSFW concepts that can be exploited to generate harmful images. We present the Jailbreaking Prompt Attack (JPA). JPA first searches for the target malicious concepts in the text embedding space using a group of antonyms generated by ChatGPT. Subsequently, a prefix prompt is optimized in the discrete vocabulary space to align malicious concepts semantically in the text embedding space. We further introduce a soft assignment with gradient masking technique that allows us to perform gradient ascent in the discrete vocabulary space. We perform extensive experiments with open-sourced T2I models, e.g. stable-diffusion-v1-4 and closed-sourced online services, e.g. DALLE2, Midjourney with black-box safety checkers. Results show that (1) JPA bypasses both text and image safety checkers (2) while preserving high semantic alignment with the target prompt. (3) JPA demonstrates a much faster speed than previous methods and can be executed in a fully automated manner. These merits render it a valuable tool for robustness evaluation in future text-to-image generation research.
♻ ☆ Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models
This paper evaluates Few-Shot Prompting with Large Language Models for Named Entity Recognition (NER). Traditional NER systems rely on extensive labeled datasets, which are costly and time-consuming to obtain. Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples. We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks. Results show that while there is a performance gap, large models excel in adapting to new entity types and domains with very limited data. We also explore the effects of prompt engineering, guided output format and context length on performance. This study underscores Few-Shot Learning's potential to reduce the need for large labeled datasets, enhancing NER scalability and accessibility.
comment: Github repo: https://github.com/GEODE-project/ner-llm
MarsCode Agent: AI-native Automated Bug Fixing
Recent advances in large language models (LLMs) have shown significant potential to automate various software development tasks, including code completion, test generation, and bug fixing. However, the application of LLMs for automated bug fixing remains challenging due to the complexity and diversity of real-world software systems. In this paper, we introduce MarsCode Agent, a novel framework that leverages LLMs to automatically identify and repair bugs in software code. MarsCode Agent combines the power of LLMs with advanced code analysis techniques to accurately localize faults and generate patches. Our approach follows a systematic process of planning, bug reproduction, fault localization, candidate patch generation, and validation to ensure high-quality bug fixes. We evaluated MarsCode Agent on SWE-bench, a comprehensive benchmark of real-world software projects, and our results show that MarsCode Agent achieves a high success rate in bug fixing compared to most of the existing automated approaches.
comment: Yizhou Liu and Pengfei Gao contributed equally and the order is determined by rolling the dice. Chao Peng is the corresponding author
♻ ☆ Large Language Models for Explainable Decisions in Dynamic Digital Twins
Dynamic data-driven Digital Twins (DDTs) can enable informed decision-making and provide an optimisation platform for the underlying system. By leveraging principles of Dynamic Data-Driven Applications Systems (DDDAS), DDTs can formulate computational modalities for feedback loops, model updates and decision-making, including autonomous ones. However, understanding autonomous decision-making often requires technical and domain-specific knowledge. This paper explores using large language models (LLMs) to provide an explainability platform for DDTs, generating natural language explanations of the system's decision-making by leveraging domain-specific knowledge bases. A case study from smart agriculture is presented.
comment: 9 pages, 3 figures, accepted by DDDAS2024 -- the 5th International Conference on Dynamic Data Driven Applications Systems
♻ ☆ Towards Measuring and Modeling "Culture" in LLMs: A Survey
We present a survey of more than 90 recent papers that aim to study cultural representation and inclusion in large language models (LLMs). We observe that none of the studies explicitly define "culture, which is a complex, multifaceted concept; instead, they probe the models on some specially designed datasets which represent certain aspects of "culture". We call these aspects the proxies of culture, and organize them across two dimensions of demographic and semantic proxies. We also categorize the probing methods employed. Our analysis indicates that only certain aspects of ``culture,'' such as values and objectives, have been studied, leaving several other interesting and important facets, especially the multitude of semantic domains (Thompson et al., 2020) and aboutness (Hershcovich et al., 2022), unexplored. Two other crucial gaps are the lack of robustness of probing techniques and situated studies on the impact of cultural mis- and under-representation in LLM-based applications.
♻ ☆ Robust Semi-supervised Multimodal Medical Image Segmentation via Cross Modality Collaboration
Multimodal learning leverages complementary information derived from different modalities, thereby enhancing performance in medical image segmentation. However, prevailing multimodal learning methods heavily rely on extensive well-annotated data from various modalities to achieve accurate segmentation performance. This dependence often poses a challenge in clinical settings due to limited availability of such data. Moreover, the inherent anatomical misalignment between different imaging modalities further complicates the endeavor to enhance segmentation performance. To address this problem, we propose a novel semi-supervised multimodal segmentation framework that is robust to scarce labeled data and misaligned modalities. Our framework employs a novel cross modality collaboration strategy to distill modality-independent knowledge, which is inherently associated with each modality, and integrates this information into a unified fusion layer for feature amalgamation. With a channel-wise semantic consistency loss, our framework ensures alignment of modality-independent information from a feature-wise perspective across modalities, thereby fortifying it against misalignments in multimodal scenarios. Furthermore, our framework effectively integrates contrastive consistent learning to regulate anatomical structures, facilitating anatomical-wise prediction alignment on unlabeled data in semi-supervised segmentation tasks. Our method achieves competitive performance compared to other multimodal methods across three tasks: cardiac, abdominal multi-organ, and thyroid-associated orbitopathy segmentations. It also demonstrates outstanding robustness in scenarios involving scarce labeled data and misaligned modalities.
♻ ☆ Can AI Replace Human Subjects? A Large-Scale Replication of Psychological Experiments with LLMs
Artificial Intelligence (AI) is increasingly being integrated into scientific research, particularly in the social sciences, where understanding human behavior is critical. Large Language Models (LLMs) like GPT-4 have shown promise in replicating human-like responses in various psychological experiments. However, the extent to which LLMs can effectively replace human subjects across diverse experimental contexts remains unclear. Here, we conduct a large-scale study replicating 154 psychological experiments from top social science journals with 618 main effects and 138 interaction effects using GPT-4 as a simulated participant. We find that GPT-4 successfully replicates 76.0 percent of main effects and 47.0 percent of interaction effects observed in the original studies, closely mirroring human responses in both direction and significance. However, only 19.44 percent of GPT-4's replicated confidence intervals contain the original effect sizes, with the majority of replicated effect sizes exceeding the 95 percent confidence interval of the original studies. Additionally, there is a 71.6 percent rate of unexpected significant results where the original studies reported null findings, suggesting potential overestimation or false positives. Our results demonstrate the potential of LLMs as powerful tools in psychological research but also emphasize the need for caution in interpreting AI-driven findings. While LLMs can complement human studies, they cannot yet fully replace the nuanced insights provided by human subjects.
comment: 5 figures, 2 tables
♻ ☆ CCPL: Cross-modal Contrastive Protein Learning ICPR 2024
Effective protein representation learning is crucial for predicting protein functions. Traditional methods often pretrain protein language models on large, unlabeled amino acid sequences, followed by finetuning on labeled data. While effective, these methods underutilize the potential of protein structures, which are vital for function determination. Common structural representation techniques rely heavily on annotated data, limiting their generalizability. Moreover, structural pretraining methods, similar to natural language pretraining, can distort actual protein structures. In this work, we introduce a novel unsupervised protein structure representation pretraining method, cross-modal contrastive protein learning (CCPL). CCPL leverages a robust protein language model and uses unsupervised contrastive alignment to enhance structure learning, incorporating self-supervised structural constraints to maintain intrinsic structural information. We evaluated our model across various benchmarks, demonstrating the framework's superiority.
comment: Accepted to ICPR 2024
♻ ☆ SELF-[IN]CORRECT: LLMs Struggle with Discriminating Self-Generated Responses
Can LLMs consistently improve their previous outputs for better results? For this to be true, LLMs would need to be better at discriminating among previously-generated alternatives, than generating initial responses. We explore the validity of this hypothesis in practice. We first formulate a unified framework that allows us to compare the generative and discriminative capability of any model on any task. In our resulting experimental analysis of several open-source and industrial LLMs, we observe that models are not reliably better at discriminating among previously-generated alternatives than generating initial responses. This finding challenges the notion that LLMs may be able to enhance their performance only through their own judgment.
♻ ☆ MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting
Open-world generalization requires robotic systems to have a profound understanding of the physical world and the user command to solve diverse and complex tasks. While the recent advancement in vision-language models (VLMs) has offered unprecedented opportunities to solve open-world problems, how to leverage their capabilities to control robots remains a grand challenge. In this paper, we introduce Marking Open-world Keypoint Affordances (MOKA), an approach that employs VLMs to solve robotic manipulation tasks specified by free-form language instructions. Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world. By prompting the pre-trained VLM, our approach utilizes the VLM's commonsense knowledge and concept understanding acquired from broad data sources to predict affordances and generate motions. To facilitate the VLM's reasoning in zero-shot and few-shot manners, we propose a visual prompting technique that annotates marks on images, converting affordance reasoning into a series of visual question-answering problems that are solvable by the VLM. We further explore methods to enhance performance with robot experiences collected by MOKA through in-context learning and policy distillation. We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
♻ ☆ Thresholded Lexicographic Ordered Multiobjective Reinforcement Learning
Lexicographic multi-objective problems, which impose a lexicographic importance order over the objectives, arise in many real-life scenarios. Existing Reinforcement Learning work directly addressing lexicographic tasks has been scarce. The few proposed approaches were all noted to be heuristics without theoretical guarantees as the Bellman equation is not applicable to them. Additionally, the practical applicability of these prior approaches also suffers from various issues such as not being able to reach the goal state. While some of these issues have been known before, in this work we investigate further shortcomings, and propose fixes for improving practical performance in many cases. We also present a policy optimization approach using our Lexicographic Projection Optimization (LPO) algorithm that has the potential to address these theoretical and practical concerns. Finally, we demonstrate our proposed algorithms on benchmark problems.
comment: Full version of ECAI 2024 paper
♻ ☆ Extending Structural Causal Models for Autonomous Embodied Systems
In this work we aim to bridge the divide between autonomous embodied systems and causal reasoning. Autonomous embodied systems have come to increasingly interact with humans, and in many cases may pose risks to the physical or mental well-being of those they interact with. Meanwhile causal models, despite their inherent transparency and ability to offer contrastive explanations, have found limited usage within such systems. As such, we first identify the challenges that have limited the integration of structural causal models within autonomous embodied systems. We then introduce a number of theoretical extensions to the structural causal model formalism in order to tackle these challenges. This augments these models to possess greater levels of modularisation and encapsulation, as well presenting a constant space temporal causal model representation. While not an extension itself, we also prove through the extensions we have introduced that dynamically mutable sets can be captured within structural causal models while maintaining a form of causal stationarity. Finally we introduce two case study architectures demonstrating the application of these extensions along with a discussion of where these extensions could be utilised in future work.
comment: 33 Pages = 7 Pages (Main Content) + 2 Pages (References) + 24 Pages (Appendix), 17 Figures = 2 Figures (Main Content) + 15 (Appendix), Oxford Robotics Institute Preprint; Significantly updated based upon feedback
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming
Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem producing a definition given a formal specification expressed as an F* type. We provide a program fragment checker that queries F* to check the correctness of candidate solutions. We also report on an extended version of our dataset containing a total of 940K lines of programs and proofs, with a total of 54k top-level F* definitions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.
comment: 47th International Conference on Software Engineering
♻ ☆ Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation
Harmful fine-tuning issue \citep{qi2023fine} poses serious safety concerns for Large language models' fine-tuning-as-a-service. While existing defenses \citep{huang2024vaccine,rosati2024representation} have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. For the first time in the literature, we in this paper show that \textit{harmful perturbation} over the model weights should be the root cause of alignment-broken of harmful fine-tuning. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction before/after simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at \url{https://github.com/git-disl/Booster}.
♻ ☆ RT-Surv: Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records
Accurate patient selection is critical in radiotherapy (RT) to prevent ineffective treatments. Traditional survival prediction models, relying on structured data, often lack precision. This study explores the potential of large language models (LLMs) to structure unstructured electronic health record (EHR) data, thereby improving survival prediction accuracy through comprehensive clinical information integration. Data from 34,276 patients treated with RT at Yonsei Cancer Center between 2013 and 2023 were analyzed, encompassing both structured and unstructured data. An open-source LLM was used to structure the unstructured EHR data via single-shot learning, with its performance compared against a domain-specific medical LLM and a smaller variant. Survival prediction models were developed using statistical, machine learning, and deep learning approaches, incorporating both structured and LLM-structured data. Clinical experts evaluated the accuracy of the LLM-structured data. The open-source LLM achieved 87.5% accuracy in structuring unstructured EHR data without additional training, significantly outperforming the domain-specific medical LLM, which reached only 35.8% accuracy. Larger LLMs were more effective, particularly in extracting clinically relevant features like general condition and disease extent, which closely correlated with patient survival. Incorporating LLM-structured clinical features into survival prediction models significantly improved accuracy, with the C-index of deep learning models increasing from 0.737 to 0.820. These models also became more interpretable by emphasizing clinically significant factors. This study shows that general-domain LLMs, even without specific medical training, can effectively structure large-scale unstructured EHR data, substantially enhancing the accuracy and interpretability of clinical predictive models.
comment: 23 pages, 2 tables, 4 figures
♻ ☆ SALLM: Security Assessment of Generated Code
With the growing popularity of Large Language Models (LLMs) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate LLMs do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Therefore, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, configurable assessment techniques to evaluate the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
comment: Accepted at the 6th International Workshop on Automated and verifiable Software sYstem DEvelopment (ASYDE) with ASE Conference 2024
♻ ☆ Depth-guided NeRF Training via Earth Mover's Distance ECCV 2024
Neural Radiance Fields (NeRFs) are trained to minimize the rendering loss of predicted viewpoints. However, the photometric loss often does not provide enough information to disambiguate between different possible geometries yielding the same image. Previous work has thus incorporated depth supervision during NeRF training, leveraging dense predictions from pre-trained depth networks as pseudo-ground truth. While these depth priors are assumed to be perfect once filtered for noise, in practice, their accuracy is more challenging to capture. This work proposes a novel approach to uncertainty in depth priors for NeRF supervision. Instead of using custom-trained depth or uncertainty priors, we use off-the-shelf pretrained diffusion models to predict depth and capture uncertainty during the denoising process. Because we know that depth priors are prone to errors, we propose to supervise the ray termination distance distribution with Earth Mover's Distance instead of enforcing the rendered depth to replicate the depth prior exactly through L2-loss. Our depth-guided NeRF outperforms all baselines on standard depth metrics by a large margin while maintaining performance on photometric measures.
comment: Accepted to ECCV 2024
♻ ☆ OceanNet: A principled neural operator-based digital twin for regional oceans
While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill by outperforming SSH predictions by an uncoupled, state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate the potential of physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models.
comment: Supplementary information can be found in: https://drive.google.com/file/d/1NoxJLa967naJT787a5-IfZ7f_MmRuZMP/view?usp=sharing
♻ ☆ Learning to Ask: When LLMs Meet Unclear Instruction
Equipped with the capability to call functions, modern large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone. However, the effective execution of these tools relies heavily not just on the advanced capabilities of LLMs but also on precise user instructions, which often cannot be ensured in the real world. To evaluate the performance of LLMs tool-use under imperfect instructions, we meticulously examine the real-world instructions queried from users, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench (NoisyToolBench). We find that due to the next-token prediction training objective, LLMs tend to arbitrarily generate the missed argument, which may lead to hallucinations and risks. To address this issue, we propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions. Moreover, to reduce the manual labor involved in user-LLM interaction and assess LLMs performance in tool utilization from both accuracy and efficiency perspectives, we design an automated evaluation tool named ToolEvaluator. Our experiments demonstrate that the AwN significantly outperforms existing frameworks for tool learning in the NoisyToolBench. We will release all related code and datasets to support future research.
♻ ☆ Language-Guided World Models: A Model-Based Approach to AI Control ACL 2024
This paper introduces the concept of Language-Guided World Models (LWMs) -- probabilistic models that can simulate environments by reading texts. Agents equipped with these models provide humans with more extensive and efficient control, allowing them to simultaneously alter agent behaviors in multiple tasks via natural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our experiments reveal the lack of generalizability of the state-of-the-art Transformer model, as it offers marginal improvements in simulation quality over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the performance of a model with an oracle semantic parsing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to revise plans based on their language feedback.
comment: SpLU-RoboNLP workshop at ACL 2024
♻ ☆ GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems
Leveraging recent advances in generative AI, multi-agent systems are increasingly being developed to enhance the functionality and efficiency of smart city applications. This paper explores the transformative potential of large language models (LLMs) and emerging Retrieval-Augmented Generation (RAG) technologies in Intelligent Transportation Systems (ITS), paving the way for innovative solutions to address critical challenges in urban mobility. We begin by providing a comprehensive overview of the current state-of-the-art in mobility data, ITS, and Connected Vehicles (CV) applications. Building on this review, we discuss the rationale behind RAG and examine the opportunities for integrating these Generative AI (GenAI) technologies into the smart mobility sector. We propose a conceptual framework aimed at developing multi-agent systems capable of intelligently and conversationally delivering smart mobility services to urban commuters, transportation operators, and decision-makers. Our approach seeks to foster an autonomous and intelligent approach that (a) promotes science-based advisory to reduce traffic congestion, accidents, and carbon emissions at multiple scales, (b) facilitates public education and engagement in participatory mobility management, and (c) automates specialized transportation management tasks and the development of critical ITS platforms, such as data analytics and interpretation, knowledge representation, and traffic simulations. By integrating LLM and RAG, our approach seeks to overcome the limitations of traditional rule-based multi-agent systems, which rely on fixed knowledge bases and limited reasoning capabilities. This integration paves the way for a more scalable, intuitive, and automated multi-agent paradigm, driving advancements in ITS and urban mobility.
Graphics 6
☆ CoolerSpace: A Language for Physically Correct and Computationally Efficient Color Programming
Color programmers manipulate lights, materials, and the resulting colors from light-material interactions. Existing libraries for color programming provide only a thin layer of abstraction around matrix operations. Color programs are, thus, vulnerable to bugs arising from mathematically permissible but physically meaningless matrix computations. Correct implementations are difficult to write and optimize. We introduce CoolerSpace to facilitate physically correct and computationally efficient color programming. CoolerSpace raises the level of abstraction of color programming by allowing programmers to focus on describing the logic of color physics. Correctness and efficiency are handled by CoolerSpace. The type system in CoolerSpace assigns physical meaning and dimensions to user-defined objects. The typing rules permit only legal computations informed by color physics and perception. Along with type checking, CoolerSpace also generates performance-optimized programs using equality saturation. CoolerSpace is implemented as a Python library and compiles to ONNX, a common intermediate representation for tensor computations. CoolerSpace not only prevents common errors in color programming, but also does so without run-time overhead: even unoptimized CoolerSpace programs out-perform existing Python-based color programming systems by up to 5.7 times; our optimizations provide up to an additional 1.4 times speed-up.
☆ Volumetric Surfaces: Representing Fuzzy Geometries with Multiple Meshes
High-quality real-time view synthesis methods are based on volume rendering, splatting, or surface rendering. While surface-based methods generally are the fastest, they cannot faithfully model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). These problems are exacerbated on low-performance graphics hardware, e.g. on mobile devices. We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes, rendered in fixed layer order from outermost to innermost. We model mesh layers as SDF shells with optimal spacing learned during training. After baking, we fit UV textures to the corresponding meshes. We show that our method can represent challenging fuzzy objects while achieving higher frame rates than volume-based and splatting-based methods on low-end and mobile devices.
☆ Coral Model Generation from Single Images for Virtual Reality Applications
With the rapid development of VR technology, the demand for high-quality 3D models is increasing. Traditional methods struggle with efficiency and quality in large-scale customization. This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image. Using the Coral dataset, the framework extracts geometric and texture features, performs 3D reconstruction, and optimizes design and material blending. Advanced optimization and polygon count control ensure shape accuracy, detail retention, and flexible output for various complexities, catering to high-quality rendering and real-time interaction needs.The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks," best viewed in VR and XR. This enhances model interpretability and human-machine collaboration. Real-time feedback in VR interactions displays information like coral species and habitat, enriching user experience. The generated models surpass traditional methods in detail, visual quality, and efficiency. This research offers an intelligent approach to 3D content creation for VR, lowering production barriers, and promoting widespread VR applications. Additionally, integrating XAI provides new insights into AI-generated visual content and advances research in 3D vision interpretability.
comment: In Proceedings of Explainable AI for the Arts Workshop 2024 (XAIxArts 2024) arXiv:2406.14485
☆ Incorporating dense metric depth into neural 3D representations for view synthesis and relighting
Synthesizing accurate geometry and photo-realistic appearance of small scenes is an active area of research with compelling use cases in gaming, virtual reality, robotic-manipulation, autonomous driving, convenient product capture, and consumer-level photography. When applying scene geometry and appearance estimation techniques to robotics, we found that the narrow cone of possible viewpoints due to the limited range of robot motion and scene clutter caused current estimation techniques to produce poor quality estimates or even fail. On the other hand, in robotic applications, dense metric depth can often be measured directly using stereo and illumination can be controlled. Depth can provide a good initial estimate of the object geometry to improve reconstruction, while multi-illumination images can facilitate relighting. In this work we demonstrate a method to incorporate dense metric depth into the training of neural 3D representations and address an artifact observed while jointly refining geometry and appearance by disambiguating between texture and geometry edges. We also discuss a multi-flash stereo camera system developed to capture the necessary data for our pipeline and show results on relighting and view synthesis with a few training views.
comment: Project webpage: https://stereomfc.github.io
☆ A General Albedo Recovery Approach for Aerial Photogrammetric Images through Inverse Rendering SP
Modeling outdoor scenes for the synthetic 3D environment requires the recovery of reflectance/albedo information from raw images, which is an ill-posed problem due to the complicated unmodeled physics in this process (e.g., indirect lighting, volume scattering, specular reflection). The problem remains unsolved in a practical context. The recovered albedo can facilitate model relighting and shading, which can further enhance the realism of rendered models and the applications of digital twins. Typically, photogrammetric 3D models simply take the source images as texture materials, which inherently embed unwanted lighting artifacts (at the time of capture) into the texture. Therefore, these polluted textures are suboptimal for a synthetic environment to enable realistic rendering. In addition, these embedded environmental lightings further bring challenges to photo-consistencies across different images that cause image-matching uncertainties. This paper presents a general image formation model for albedo recovery from typical aerial photogrammetric images under natural illuminations and derives the inverse model to resolve the albedo information through inverse rendering intrinsic image decomposition. Our approach builds on the fact that both the sun illumination and scene geometry are estimable in aerial photogrammetry, thus they can provide direct inputs for this ill-posed problem. This physics-based approach does not require additional input other than data acquired through the typical drone-based photogrammetric collection and was shown to favorably outperform existing approaches. We also demonstrate that the recovered albedo image can in turn improve typical image processing tasks in photogrammetry such as feature and dense matching, edge, and line extraction.
comment: ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality. Result videos are also available on our project page: https://haruolabs.github.io/style-n2n/
comment: 16 pages, 9 figures
Robotics 35
☆ Coaching a Robotic Sonographer: Learning Robotic Ultrasound with Sparse Expert's Feedback
Ultrasound is widely employed for clinical intervention and diagnosis, due to its advantages of offering non-invasive, radiation-free, and real-time imaging. However, the accessibility of this dexterous procedure is limited due to the substantial training and expertise required of operators. The robotic ultrasound (RUS) offers a viable solution to address this limitation; nonetheless, achieving human-level proficiency remains challenging. Learning from demonstrations (LfD) methods have been explored in RUS, which learns the policy prior from a dataset of offline demonstrations to encode the mental model of the expert sonographer. However, active engagement of experts, i.e. Coaching, during the training of RUS has not been explored thus far. Coaching is known for enhancing efficiency and performance in human training. This paper proposes a coaching framework for RUS to amplify its performance. The framework combines DRL (self-supervised practice) with sparse expert's feedback through coaching. The DRL employs an off-policy Soft Actor-Critic (SAC) network, with a reward based on image quality rating. The coaching by experts is modeled as a Partially Observable Markov Decision Process (POMDP), which updates the policy parameters based on the correction by the expert. The validation study on phantoms showed that coaching increases the learning rate by $25\%$ and the number of high-quality image acquisition by $74.5\%$.
comment: Accepted in IEEE Transactions on Medical Robotics and Bionics (TMRB) 2024
☆ YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
By harnessing fiducial markers as visual landmarks in the environment, Unmanned Aerial Vehicles (UAVs) can rapidly build precise maps and navigate spaces safely and efficiently, unlocking their potential for fluent collaboration and coexistence with humans. Existing fiducial marker methods rely on handcrafted feature extraction, which sacrifices accuracy. On the other hand, deep learning pipelines for marker detection fail to meet real-time runtime constraints crucial for navigation applications. In this work, we propose YoloTag \textemdash a real-time fiducial marker-based localization system. YoloTag uses a lightweight YOLO v8 object detector to accurately detect fiducial markers in images while meeting the runtime constraints needed for navigation. The detected markers are then used by an efficient perspective-n-point algorithm to estimate UAV states. However, this localization system introduces noise, causing instability in trajectory tracking. To suppress noise, we design a higher-order Butterworth filter that effectively eliminates noise through frequency domain analysis. We evaluate our algorithm through real-robot experiments in an indoor environment, comparing the trajectory tracking performance of our method against other approaches in terms of several distance metrics.
☆ Visual Servoing for Robotic On-Orbit Servicing: A Survey
On-orbit servicing (OOS) activities will power the next big step for sustainable exploration and commercialization of space. Developing robotic capabilities for autonomous OOS operations is a priority for the space industry. Visual Servoing (VS) enables robots to achieve the precise manoeuvres needed for critical OOS missions by utilizing visual information for motion control. This article presents an overview of existing VS approaches for autonomous OOS operations with space manipulator systems (SMS). We divide the approaches according to their contribution to the typical phases of a robotic OOS mission: a) Recognition, b) Approach, and c) Contact. We also present a discussion on the reviewed VS approaches, identifying current trends. Finally, we highlight the challenges and areas for future research on VS techniques for robotic OOS.
comment: Accepted for publication at the 2024 International Conference on Space Robotics (iSpaRo)
☆ Investigating Mixed Reality for Communication Between Humans and Mobile Manipulators
This article investigates mixed reality (MR) to enhance human-robot collaboration (HRC). The proposed solution adopts MR as a communication layer to convey a mobile manipulator's intentions and upcoming actions to the humans with whom it interacts, thus improving their collaboration. A user study involving 20 participants demonstrated the effectiveness of this MR-focused approach in facilitating collaborative tasks, with a positive effect on overall collaboration performances and human satisfaction.
comment: This paper has been published in the Proceedings of the 2024 IEEE International Conference on Human and Robot Interactive Communication (RO-MAN), Pasadena, CA, USA, August 2024
☆ Kinesthetic Teaching in Robotics: a Mixed Reality Approach
As collaborative robots become more common in manufacturing scenarios and adopted in hybrid human-robot teams, we should develop new interaction and communication strategies to ensure smooth collaboration between agents. In this paper, we propose a novel communicative interface that uses Mixed Reality as a medium to perform Kinesthetic Teaching (KT) on any robotic platform. We evaluate our proposed approach in a user study involving multiple subjects and two different robots, comparing traditional physical KT with holographic-based KT through user experience questionnaires and task-related metrics.
comment: This paper has been published in the Proceedings of the 2024 IEEE International Conference on Human and Robot Interactive Communication (RO-MAN), Pasadena, CA, USA, August 2024
☆ Unsupervised Welding Defect Detection Using Audio And Video
In this work we explore the application of AI to robotic welding. Robotic welding is a widely used technology in many industries, but robots currently do not have the capability to detect welding defects which get introduced due to various reasons in the welding process. We describe how deep-learning methods can be applied to detect weld defects in real-time by recording the welding process with microphones and a camera. Our findings are based on a large database with more than 4000 welding samples we collected which covers different weld types, materials and various defect categories. All deep learning models are trained in an unsupervised fashion because the space of possible defects is large and the defects in our data may contain biases. We demonstrate that a reliable real-time detection of most categories of weld defects is feasible both from audio and video, with improvements achieved by combining both modalities. Specifically, the multi-modal approach achieves an average Area-under-ROC-Curve (AUC) of 0.92 over all eleven defect types in our data. We conclude the paper with an analysis of the results by defect type and a discussion of future work.
comment: 21 pages
☆ SlipNet: Slip Cost Map for Autonomous Navigation on Heterogeneous Deformable Terrains
Autonomous space rovers face significant challenges when navigating deformable and heterogeneous terrains during space exploration. The variability in terrain types, influenced by different soil properties, often results in severe wheel slip, compromising navigation efficiency and potentially leading to entrapment. This paper proposes SlipNet, an approach for predicting slip in segmented regions of heterogeneous deformable terrain surfaces to enhance navigation algorithms. Unlike previous methods, SlipNet does not depend on prior terrain classification, reducing prediction errors and misclassifications through dynamic terrain segmentation and slip assignment during deployment while maintaining a history of terrain classes. This adaptive reclassification mechanism has improved prediction performance. Extensive simulation results demonstrate that our model (DeepLab v3+ + SlipNet) achieves better slip prediction performance than the TerrainNet, with a lower mean absolute error (MAE) in five terrain sample tests.
☆ GraspSplats: Efficient Manipulation with 3D Feature Splatting
The ability for robots to perform efficient and zero-shot grasping of object parts is crucial for practical applications and is becoming prevalent with recent advances in Vision-Language Models (VLMs). To bridge the 2D-to-3D gap for representations to support such a capability, existing methods rely on neural fields (NeRFs) via differentiable rendering or point-based projection methods. However, we demonstrate that NeRFs are inappropriate for scene changes due to their implicitness and point-based methods are inaccurate for part localization without rendering-based optimization. To amend these issues, we propose GraspSplats. Using depth supervision and a novel reference feature computation method, GraspSplats generates high-quality scene representations in under 60 seconds. We further validate the advantages of Gaussian-based representation by showing that the explicit and optimized geometry in GraspSplats is sufficient to natively support (1) real-time grasp sampling and (2) dynamic and articulated object manipulation with point trackers. With extensive experiments on a Franka robot, we demonstrate that GraspSplats significantly outperforms existing methods under diverse task settings. In particular, GraspSplats outperforms NeRF-based methods like F3RM and LERF-TOGO, and 2D detection methods.
comment: Project webpage: https://graspsplats.github.io/
☆ A Modern Take on Visual Relationship Reasoning for Grasp Planning
Interacting with real-world cluttered scenes pose several challenges to robotic agents that need to understand complex spatial dependencies among the observed objects to determine optimal pick sequences or efficient object retrieval strategies. Existing solutions typically manage simplified scenarios and focus on predicting pairwise object relationships following an initial object detection phase, but often overlook the global context or struggle with handling redundant and missing object relations. In this work, we present a modern take on visual relational reasoning for grasp planning. We introduce D3GD, a novel testbed that includes bin picking scenes with up to 35 objects from 97 distinct categories. Additionally, we propose D3G, a new end-to-end transformer-based dependency graph generation model that simultaneously detects objects and produces an adjacency matrix representing their spatial relationships. Recognizing the limitations of standard metrics, we employ the Average Precision of Relationships for the first time to evaluate model performance, conducting an extensive experimental benchmark. The obtained results establish our approach as the new state-of-the-art for this task, laying the foundation for future research in robotic manipulation. We publicly release the code and dataset at https://paolotron.github.io/d3g.github.io.
Planning to avoid ambiguous states through Gaussian approximations to non-linear sensors in active inference agents
In nature, active inference agents must learn how observations of the world represent the state of the agent. In engineering, the physics behind sensors is often known reasonably accurately and measurement functions can be incorporated into generative models. When a measurement function is non-linear, the transformed variable is typically approximated with a Gaussian distribution to ensure tractable inference. We show that Gaussian approximations that are sensitive to the curvature of the measurement function, such as a second-order Taylor approximation, produce a state-dependent ambiguity term. This induces a preference over states, based on how accurately the state can be inferred from the observation. We demonstrate this preference with a robot navigation experiment where agents plan trajectories.
comment: 13 pages, 3 figures. Accepted to the International Workshop on Active Inference 2024
☆ Learning Resilient Formation Control of Drones with Graph Attention Network
The rapid advancement of drone technology has significantly impacted various sectors, including search and rescue, environmental surveillance, and industrial inspection. Multidrone systems offer notable advantages such as enhanced efficiency, scalability, and redundancy over single-drone operations. Despite these benefits, ensuring resilient formation control in dynamic and adversarial environments, such as under communication loss or cyberattacks, remains a significant challenge. Classical approaches to resilient formation control, while effective in certain scenarios, often struggle with complex modeling and the curse of dimensionality, particularly as the number of agents increases. This paper proposes a novel, learning-based formation control for enhancing the adaptability and resilience of multidrone formations using graph attention networks (GATs). By leveraging GAT's dynamic capabilities to extract internode relationships based on the attention mechanism, this GAT-based formation controller significantly improves the robustness of drone formations against various threats, such as Denial of Service (DoS) attacks. Our approach not only improves formation performance in normal conditions but also ensures the resilience of multidrone systems in variable and adversarial environments. Extensive simulation results demonstrate the superior performance of our method over baseline formation controllers. Furthermore, the physical experiments validate the effectiveness of the trained control policy in real-world flights.
comment: This work has been submitted to the IEEE for possible publication
☆ Integration of Augmented Reality and Mobile Robot Indoor SLAM for Enhanced Spatial Awareness
This research explores the integration of indoor Simultaneous Localization and Mapping (SLAM) with Augmented Reality (AR) to enhance situational awareness, improving safety in hazardous or emergency situations. The main contribution of this work is to enable mobile robots to provide real-time spatial perception to users who are not co-located with the robot. This is a comprehensive approach, including selecting suitable sensors for indoor SLAM, designing and building a platform, developing methods to display maps on AR devices, implementing this into software on an AR device, and improving the robustness of communication and localization between the robot and AR device in real-world testing. By taking this approach and analyzing each component of the integrated system, this paper highlights numerous areas for future research that can further advance the integration of SLAM and AR technologies. These advancements aim to significantly improve safety and efficiency during rescue operations.
comment: 8 pages
☆ Securing Federated Learning in Robot Swarms using Blockchain Technology
Federated learning is a new approach to distributed machine learning that offers potential advantages such as reducing communication requirements and distributing the costs of training algorithms. Therefore, it could hold great promise in swarm robotics applications. However, federated learning usually requires a centralized server for the aggregation of the models. In this paper, we present a proof-of-concept implementation of federated learning in a robot swarm that does not compromise decentralization. To do so, we use blockchain technology to enable our robot swarm to securely synchronize a shared model that is the aggregation of the individual models without relying on a central server. We then show that introducing a single malfunctioning robot can, however, heavily disrupt the training process. To prevent such situations, we devise protection mechanisms that are implemented through secure and tamper-proof blockchain smart contracts. Our experiments are conducted in ARGoS, a physics-based simulator for swarm robotics, using the Ethereum blockchain protocol which is executed by each simulated robot.
comment: To be published in the Proceedings of the 17th International Symposium on Distributed Autonomous Robotic Systems (DARS 2024)
☆ Three-dimensional geometric resolution of the inverse kinematics of a 7 degree of freedom articulated arm
This work presents a three-dimensional geometric resolution method to calculate the complete inverse kinematics of a 7-degree-of-freedom articulated arm, including the hand itself. The method is classified as an analytical method with geometric solution, since it obtains a precise solution in a closed number of steps, converting the inverse kinematic problem into a three-dimensional geometric model. To simplify the problem, the kinematic decoupling method is used, so that the position of the wrist is calculated independently on one hand with information on the orientation of the hand, and the angles of the rest of the arm are calculated from the wrist.
comment: in Spanish language
☆ Mapping Safe Zones for Co-located Human-UAV Interaction
Recent advances in robotics bring us closer to the reality of living, co-habiting, and sharing personal spaces with robots. However, it is not clear how close a co-located robot can be to a human in a shared environment without making the human uncomfortable or anxious. This research aims to map safe and comfortable zones for co-located aerial robots. The objective is to identify the distances at which a drone causes discomfort to a co-located human and to create a map showing no-fly, moderate-fly, and safe-fly zones. We recruited a total of 18 participants and conducted two indoor laboratory experiments, one with a single drone and the other set with two drones. Our results show that multiple drones cause more discomfort when close to a co-located human than a single drone. We observed that distances below 200 cm caused discomfort, the moderate fly zone was 200 - 300 cm, and the safe-fly zone was any distance greater than 300 cm in single drone experiments. The safe zones were pushed further away by 100 cm for the multiple drone experiments. In this paper, we present the preliminary findings on safe-fly zones for multiple drones. Further work would investigate the impact of a higher number of aerial robots, the speed of approach, direction of travel, and noise level on co-located humans, and autonomously develop 3D models of trust zones and safe zones for co-located aerial swarms.
comment: This paper has been accepted for presentation at the Second International Symposium on Trustworthy Autonomous Systems (TAS '24), being held from September 16-18, 2024, at Austin, TX, USA. It consists of 10 pages, 9 figures, and 1 table
☆ ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation
Representing robotic manipulation tasks as constraints that associate the robot and the environment is a promising way to encode desired robot behaviors. However, it remains unclear how to formulate the constraints such that they are 1) versatile to diverse tasks, 2) free of manual labeling, and 3) optimizable by off-the-shelf solvers to produce robot actions in real-time. In this work, we introduce Relational Keypoint Constraints (ReKep), a visually-grounded representation for constraints in robotic manipulation. Specifically, ReKep is expressed as Python functions mapping a set of 3D keypoints in the environment to a numerical cost. We demonstrate that by representing a manipulation task as a sequence of Relational Keypoint Constraints, we can employ a hierarchical optimization procedure to solve for robot actions (represented by a sequence of end-effector poses in SE(3)) with a perception-action loop at a real-time frequency. Furthermore, in order to circumvent the need for manual specification of ReKep for each new task, we devise an automated procedure that leverages large vision models and vision-language models to produce ReKep from free-form language instructions and RGB-D observations. We present system implementations on a wheeled single-arm platform and a stationary dual-arm platform that can perform a large variety of manipulation tasks, featuring multi-stage, in-the-wild, bimanual, and reactive behaviors, all without task-specific data or environment models. Website at https://rekep-robot.github.io.
☆ BEVNav: Robot Autonomous Navigation Via Spatial-Temporal Contrastive Learning in Bird's-Eye View
Goal-driven mobile robot navigation in map-less environments requires effective state representations for reliable decision-making. Inspired by the favorable properties of Bird's-Eye View (BEV) in point clouds for visual perception, this paper introduces a novel navigation approach named BEVNav. It employs deep reinforcement learning to learn BEV representations and enhance decision-making reliability. First, we propose a self-supervised spatial-temporal contrastive learning approach to learn BEV representations. Spatially, two randomly augmented views from a point cloud predict each other, enhancing spatial features. Temporally, we combine the current observation with consecutive frames' actions to predict future features, establishing the relationship between observation transitions and actions to capture temporal cues. Then, incorporating this spatial-temporal contrastive learning in the Soft Actor-Critic reinforcement learning framework, our BEVNav offers a superior navigation policy. Extensive experiments demonstrate BEVNav's robustness in environments with dense pedestrians, outperforming state-of-the-art methods across multiple benchmarks. \rev{The code will be made publicly available at https://github.com/LanrenzzzZ/BEVNav.
☆ SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced by Large Language Models (LLMs), which enable robots to better understand complex language commands and perform advanced tasks with enhanced comprehension and adaptability, highlighting their potential to improve embodied AI capabilities. However, this advancement also introduces safety challenges, particularly in robotic navigation tasks. Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections, resulting in unsafe behaviours such as detours or collisions. To address these issues, we propose \textit{SafeEmbodAI}, a safety framework for integrating mobile robots into embodied AI systems. \textit{SafeEmbodAI} incorporates secure prompting, state management, and safety validation mechanisms to secure and assist LLMs in reasoning through multi-modal data and validating responses. We designed a metric to evaluate mission-oriented exploration, and evaluations in simulated environments demonstrate that our framework effectively mitigates threats from malicious commands and improves performance in various environment settings, ensuring the safety of embodied AI systems. Notably, In complex environments with mixed obstacles, our method demonstrates a significant performance increase of 267\% compared to the baseline in attack scenarios, highlighting its robustness in challenging conditions.
☆ High Precision Positioning System
SAPPO is a high-precision, low-cost and highly scalable indoor localization system. The system is designed using modified HC-SR04 ultrasound transducers as a base to be used as distance meters between beacons and mobile robots. Additionally, it has a very unusual arrangement of its elements, such that the beacons and the array of transmitters of the mobile robot are located in very close planes, in a horizontal emission arrangement, parallel to the ground, achieving a range per transducer of almost 12 meters. SAPPO represents a significant leap forward in ultrasound localization systems, in terms of reducing the density of beacons while maintaining average precision in the millimeter range.
comment: in Spanish language
☆ GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting
Dense colored point clouds enhance visual perception and are of significant value in various robotic applications. However, existing learning-based point cloud upsampling methods are constrained by computational resources and batch processing strategies, which often require subdividing point clouds into smaller patches, leading to distortions that degrade perceptual quality. To address this challenge, we propose a novel 2D-3D hybrid colored point cloud upsampling framework (GaussianPU) based on 3D Gaussian Splatting (3DGS) for robotic perception. This approach leverages 3DGS to bridge 3D point clouds with their 2D rendered images in robot vision systems. A dual scale rendered image restoration network transforms sparse point cloud renderings into dense representations, which are then input into 3DGS along with precise robot camera poses and interpolated sparse point clouds to reconstruct dense 3D point clouds. We have made a series of enhancements to the vanilla 3DGS, enabling precise control over the number of points and significantly boosting the quality of the upsampled point cloud for robotic scene understanding. Our framework supports processing entire point clouds on a single consumer-grade GPU, such as the NVIDIA GeForce RTX 3090, eliminating the need for segmentation and thus producing high-quality, dense colored point clouds with millions of points for robot navigation and manipulation tasks. Extensive experimental results on generating million-level point cloud data validate the effectiveness of our method, substantially improving the quality of colored point clouds and demonstrating significant potential for applications involving large-scale point clouds in autonomous robotics and human-robot interaction scenarios.
comment: 7 pages, 5 figures
☆ PR2: A Physics- and Photo-realistic Testbed for Embodied AI and Humanoid Robots
This paper presents the development of a Physics-realistic and Photo-\underline{r}ealistic humanoid robot testbed, PR2, to facilitate collaborative research between Embodied Artificial Intelligence (Embodied AI) and robotics. PR2 offers high-quality scene rendering and robot dynamic simulation, enabling (i) the creation of diverse scenes using various digital assets, (ii) the integration of advanced perception or foundation models, and (iii) the implementation of planning and control algorithms for dynamic humanoid robot behaviors based on environmental feedback. The beta version of PR2 has been deployed for the simulation track of a nationwide full-size humanoid robot competition for college students, attracting 137 teams and over 400 participants within four months. This competition covered traditional tasks in bipedal walking, as well as novel challenges in loco-manipulation and language-instruction-based object search, marking a first for public college robotics competitions. A retrospective analysis of the competition suggests that future events should emphasize the integration of locomotion with manipulation and perception. By making the PR2 testbed publicly available at https://github.com/pr2-humanoid/PR2-Platform, we aim to further advance education and training in humanoid robotics.
☆ DOB-based Wind Estimation of A UAV Using Its Onboard Sensor
Unmanned Aerial Vehicles (UAVs) play a crucial role in meteorological research, particularly in environmental wind field measurements. However, several challenges exist in current wind measurement methods using UAVs that need to be addressed. Firstly, the accuracy of measurement is low, and the measurement range is limited. Secondly, the algorithms employed lack robustness and adaptability across different UAV platforms. Thirdly, there are limited approaches available for wind estimation during dynamic flight. Finally, while horizontal plane measurements are feasible, vertical direction estimation is often missing. To tackle these challenges, we present and implement a comprehensive wind estimation algorithm. Our algorithm offers several key features, including the capability to estimate the 3-D wind vector, enabling wind estimation even during dynamic flight of the UAV. Furthermore, our algorithm exhibits adaptability across various UAV platforms. Experimental results in the wind tunnel validate the effectiveness of our algorithm, showcasing improvements such as wind speed accuracy of $0.11$ m/s and wind direction errors of less than $2.8^\circ$. Additionally, our approach extends the measurement range to $10$ m/s.
☆ Situation-aware Autonomous Driving Decision Making with Cooperative Perception on Demand
This paper investigates the impact of cooperative perception on autonomous driving decision making on urban roads. The extended perception range contributed by the cooperative perception can be properly leveraged to address the implicit dependencies within the vehicles, thereby the vehicle decision making performance can be improved. Meanwhile, we acknowledge the inherent limitation of wireless communication and propose a Cooperative Perception on Demand (CPoD) strategy, where the cooperative perception will only be activated when the extended perception range is necessary for proper situation-awareness. The situation-aware decision making with CPoD is modeled as a Partially Observable Markov Decision Process (POMDP) and solved in an online manner. The evaluation results demonstrate that the proposed approach can function safely and efficiently for autonomous driving on urban roads.
♻ ☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos. A sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/.
comment: 7 pages, 5 figures, 4 tables. Last updated on September 3rd, 2024
♻ ☆ Expansion-GRR: Efficient Generation of Smooth Global Redundancy Resolution Roadmaps IROS
Global redundancy resolution (GRR) roadmaps is a novel concept in robotics that facilitates the mapping from task space paths to configuration space paths in a legible, predictable, and repeatable way. Such roadmaps could find widespread utility in applications such as safe teleoperation, consistent path planning, and motion primitives generation. However, previous methods to compute GRR roadmaps often necessitate a lengthy computation time and produce non-smooth paths, limiting their practical efficacy. To address this challenge, we introduce a novel method Expansion-GRR that leverages efficient configuration space projections and enables rapid generation of smooth roadmaps that satisfy the task constraints. Additionally, we propose a simple multi-seed strategy that further enhances the final quality. We conducted experiments in simulation with a 5-link planar manipulator and a Kinova arm. We were able to generate the Expansion-GRR roadmaps up to 2 orders of magnitude faster while achieving higher smoothness. We also demonstrate the utility of the GRR roadmaps in teleoperation tasks where our method outperformed prior methods and reactive IK solvers in terms of success rate and solution quality.
comment: Accepted by International Conference on Intelligent Robots and Systems (IROS), 2024
♻ ☆ Behavioral Learning of Dish Rinsing and Scrubbing based on Interruptive Direct Teaching Considering Assistance Rate
Robots are expected to manipulate objects in a safe and dexterous way. For example, washing dishes is a dexterous operation that involves scrubbing the dishes with a sponge and rinsing them with water. It is necessary to learn it safely without splashing water and without dropping the dishes. In this study, we propose a safe and dexterous manipulation system. The robot learns a dynamics model of the object by estimating the state of the object and the robot itself, the control input, and the amount of human assistance required (assistance rate) after the human corrects the initial trajectory of the robot's hands by interruptive direct teaching. By backpropagating the error between the estimated and the reference value using the acquired dynamics model, the robot can generate a control input that approaches the reference value, for example, so that human assistance is not required and the dish does not move excessively. This allows for adaptive rinsing and scrubbing of dishes with unknown shapes and properties. As a result, it is possible to generate safe actions that require less human assistance.
comment: Accepted at Advanced Robotics
♻ ☆ OceanGPT: A Large Language Model for Ocean Science Tasks ACL2024
Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet's surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reasons are the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever large language model in the ocean domain, which is expert in various ocean science tasks. We also propose OceanGPT, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.
comment: ACL2024. Project Website: http://oceangpt.zjukg.cn/
♻ ☆ FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning IJRR 2024
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io
comment: IJRR 2024
♻ ☆ PIE: Parkour with Implicit-Explicit Learning Framework for Legged Robots
Parkour presents a highly challenging task for legged robots, requiring them to traverse various terrains with agile and smooth locomotion. This necessitates comprehensive understanding of both the robot's own state and the surrounding terrain, despite the inherent unreliability of robot perception and actuation. Current state-of-the-art methods either rely on complex pre-trained high-level terrain reconstruction modules or limit the maximum potential of robot parkour to avoid failure due to inaccurate perception. In this paper, we propose a one-stage end-to-end learning-based parkour framework: Parkour with Implicit-Explicit learning framework for legged robots (PIE) that leverages dual-level implicit-explicit estimation. With this mechanism, even a low-cost quadruped robot equipped with an unreliable egocentric depth camera can achieve exceptional performance on challenging parkour terrains using a relatively simple training process and reward function. While the training process is conducted entirely in simulation, our real-world validation demonstrates successful zero-shot deployment of our framework, showcasing superior parkour performance on harsh terrains.
comment: Accepted for IEEE Robotics and Automation Letters (RA-L)
♻ ☆ GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
In autonomous robotics, measurement of the robot's internal state and perception of its environment, including interaction with other agents such as collaborative robots, are essential. Estimating the pose of the robot arm from a single view has the potential to replace classical eye-to-hand calibration approaches and is particularly attractive for online estimation and dynamic environments. In addition to its pose, recovering the robot configuration provides a complete spatial understanding of the observed robot that can be used to anticipate the actions of other agents in advanced robotics use cases. Furthermore, this additional redundancy enables the planning and execution of recovery protocols in case of sensor failures or external disturbances. We introduce GISR - a deep configuration and robot-to-camera pose estimation method that prioritizes execution in real-time. GISR consists of two modules: (i) a geometric initialization module that efficiently computes an approximate robot pose and configuration, and (ii) a deep iterative silhouette-based refinement module that arrives at a final solution in just a few iterations. We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy, and can compete with approaches that rely on ground-truth proprioception and recover only the pose.
comment: IEEE Robotics and Automation Letters (under revision), code available at http://github.com/iwhitey/GISR-robot
♻ ☆ Joint Pedestrian Trajectory Prediction through Posterior Sampling
Joint pedestrian trajectory prediction has long grappled with the inherent unpredictability of human behaviors. Recent investigations employing variants of conditional diffusion models in trajectory prediction have exhibited notable success. Nevertheless, the heavy dependence on accurate historical data results in their vulnerability to noise disturbances and data incompleteness. To improve the robustness and reliability, we introduce the Guided Full Trajectory Diffuser (GFTD), a novel diffusion model framework that captures the joint full (historical and future) trajectory distribution. By learning from the full trajectory, GFTD can recover the noisy and missing data, hence improving the robustness. In addition, GFTD can adapt to data imperfections without additional training requirements, leveraging posterior sampling for reliable prediction and controllable generation. Our approach not only simplifies the prediction process but also enhances generalizability in scenarios with noise and incomplete inputs. Through rigorous experimental evaluation, GFTD exhibits superior performance in both trajectory prediction and controllable generation.
♻ ☆ Learning Symbolic and Subsymbolic Temporal Task Constraints from Bimanual Human Demonstrations IROS 2024
Learning task models of bimanual manipulation from human demonstration and their execution on a robot should take temporal constraints between actions into account. This includes constraints on (i) the symbolic level such as precedence relations or temporal overlap in the execution, and (ii) the subsymbolic level such as the duration of different actions, or their starting and end points in time. Such temporal constraints are crucial for temporal planning, reasoning, and the exact timing for the execution of bimanual actions on a bimanual robot. In our previous work, we addressed the learning of temporal task constraints on the symbolic level and demonstrated how a robot can leverage this knowledge to respond to failures during execution. In this work, we propose a novel model-driven approach for the combined learning of symbolic and subsymbolic temporal task constraints from multiple bimanual human demonstrations. Our main contributions are a subsymbolic foundation of a temporal task model that describes temporal nexuses of actions in the task based on distributions of temporal differences between semantic action keypoints, as well as a method based on fuzzy logic to derive symbolic temporal task constraints from this representation. This complements our previous work on learning comprehensive temporal task models by integrating symbolic and subsymbolic information based on a subsymbolic foundation, while still maintaining the symbolic expressiveness of our previous approach. We compare our proposed approach with our previous pure-symbolic approach and show that we can reproduce and even outperform it. Additionally, we show how the subsymbolic temporal task constraints can synchronize otherwise unimanual movement primitives for bimanual behavior on a humanoid robot.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. 8 pages, submitted to IROS 2024
Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving IROS 2024
Active traffic management with autonomous vehicles offers the potential for reduced congestion and improved traffic flow. However, developing effective algorithms for real-world scenarios requires overcoming challenges related to infinite-horizon traffic flow and partial observability. To address these issues and further decentralize traffic management, we propose an asymmetric actor-critic model that learns decentralized cooperative driving policies for autonomous vehicles using single-agent reinforcement learning. By employing attention neural networks with masking, our approach efficiently manages real-world traffic dynamics and partial observability, eliminating the need for predefined agents or agent-specific experience buffers in multi-agent reinforcement learning. Extensive evaluations across various traffic scenarios demonstrate our method's significant potential in improving traffic flow at critical bottleneck points. Moreover, we address the challenges posed by conservative autonomous vehicle driving behaviors that adhere strictly to traffic rules, showing that our cooperative policy effectively alleviates potential slowdowns without compromising safety.
comment: accepted by IROS 2024
♻ ☆ Distilling Knowledge for Short-to-Long Term Trajectory Prediction IROS 2024
Long-term trajectory forecasting is an important and challenging problem in the fields of computer vision, machine learning, and robotics. One fundamental difficulty stands in the evolution of the trajectory that becomes more and more uncertain and unpredictable as the time horizon grows, subsequently increasing the complexity of the problem. To overcome this issue, in this paper, we propose Di-Long, a new method that employs the distillation of a short-term trajectory model forecaster that guides a student network for long-term trajectory prediction during the training process. Given a total sequence length that comprehends the allowed observation for the student network and the complementary target sequence, we let the student and the teacher solve two different related tasks defined over the same full trajectory: the student observes a short sequence and predicts a long trajectory, whereas the teacher observes a longer sequence and predicts the remaining short target trajectory. The teacher's task is less uncertain, and we use its accurate predictions to guide the student through our knowledge distillation framework, reducing long-term future uncertainty. Our experiments show that our proposed Di-Long method is effective for long-term forecasting and achieves state-of-the-art performance on the Intersection Drone Dataset (inD) and the Stanford Drone Dataset (SDD).
comment: Accepted to IROS 2024
♻ ☆ Aerostack2: A Software Framework for Developing Multi-robot Aerial Systems
The development of autonomous aerial systems, particularly for multi-robot configurations, is a complex challenge requiring multidisciplinary expertise. Unlike ground robotics, aerial robotics has seen limited standardization, leading to fragmented development efforts. To address this gap, we introduce Aerostack2, a comprehensive, open-source ROS 2 based framework designed for creating versatile and robust multi-robot aerial systems. Aerostack2 features platform independence, a modular plugin architecture, and behavior-based mission control, enabling easy customization and integration across various platforms. In this paper, we detail the full architecture of Aerostack2, which has been tested with several platforms in both simulation and real flights. We demonstrate its effectiveness through multiple validation scenarios, highlighting its potential to accelerate innovation and enhance collaboration in the aerial robotics community.
comment: Submitted to IEEE Robotics and Automation Letters
Computer Vision 64
☆ Coaching a Robotic Sonographer: Learning Robotic Ultrasound with Sparse Expert's Feedback
Ultrasound is widely employed for clinical intervention and diagnosis, due to its advantages of offering non-invasive, radiation-free, and real-time imaging. However, the accessibility of this dexterous procedure is limited due to the substantial training and expertise required of operators. The robotic ultrasound (RUS) offers a viable solution to address this limitation; nonetheless, achieving human-level proficiency remains challenging. Learning from demonstrations (LfD) methods have been explored in RUS, which learns the policy prior from a dataset of offline demonstrations to encode the mental model of the expert sonographer. However, active engagement of experts, i.e. Coaching, during the training of RUS has not been explored thus far. Coaching is known for enhancing efficiency and performance in human training. This paper proposes a coaching framework for RUS to amplify its performance. The framework combines DRL (self-supervised practice) with sparse expert's feedback through coaching. The DRL employs an off-policy Soft Actor-Critic (SAC) network, with a reward based on image quality rating. The coaching by experts is modeled as a Partially Observable Markov Decision Process (POMDP), which updates the policy parameters based on the correction by the expert. The validation study on phantoms showed that coaching increases the learning rate by $25\%$ and the number of high-quality image acquisition by $74.5\%$.
comment: Accepted in IEEE Transactions on Medical Robotics and Bionics (TMRB) 2024
☆ What Do You See in Common? Learning Hierarchical Prototypes over Tree-of-Life to Discover Evolutionary Traits
A grand challenge in biology is to discover evolutionary traits - features of organisms common to a group of species with a shared ancestor in the tree of life (also referred to as phylogenetic tree). With the growing availability of image repositories in biology, there is a tremendous opportunity to discover evolutionary traits directly from images in the form of a hierarchy of prototypes. However, current prototype-based methods are mostly designed to operate over a flat structure of classes and face several challenges in discovering hierarchical prototypes, including the issue of learning over-specific features at internal nodes. To overcome these challenges, we introduce the framework of Hierarchy aligned Commonality through Prototypical Networks (HComP-Net). We empirically show that HComP-Net learns prototypes that are accurate, semantically consistent, and generalizable to unseen species in comparison to baselines on birds, butterflies, and fishes datasets. The code and datasets are available at https://github.com/Imageomics/HComPNet.
comment: 34 pages, 27 figures
☆ YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
By harnessing fiducial markers as visual landmarks in the environment, Unmanned Aerial Vehicles (UAVs) can rapidly build precise maps and navigate spaces safely and efficiently, unlocking their potential for fluent collaboration and coexistence with humans. Existing fiducial marker methods rely on handcrafted feature extraction, which sacrifices accuracy. On the other hand, deep learning pipelines for marker detection fail to meet real-time runtime constraints crucial for navigation applications. In this work, we propose YoloTag \textemdash a real-time fiducial marker-based localization system. YoloTag uses a lightweight YOLO v8 object detector to accurately detect fiducial markers in images while meeting the runtime constraints needed for navigation. The detected markers are then used by an efficient perspective-n-point algorithm to estimate UAV states. However, this localization system introduces noise, causing instability in trajectory tracking. To suppress noise, we design a higher-order Butterworth filter that effectively eliminates noise through frequency domain analysis. We evaluate our algorithm through real-robot experiments in an indoor environment, comparing the trajectory tracking performance of our method against other approaches in terms of several distance metrics.
☆ Visual Servoing for Robotic On-Orbit Servicing: A Survey
On-orbit servicing (OOS) activities will power the next big step for sustainable exploration and commercialization of space. Developing robotic capabilities for autonomous OOS operations is a priority for the space industry. Visual Servoing (VS) enables robots to achieve the precise manoeuvres needed for critical OOS missions by utilizing visual information for motion control. This article presents an overview of existing VS approaches for autonomous OOS operations with space manipulator systems (SMS). We divide the approaches according to their contribution to the typical phases of a robotic OOS mission: a) Recognition, b) Approach, and c) Contact. We also present a discussion on the reviewed VS approaches, identifying current trends. Finally, we highlight the challenges and areas for future research on VS techniques for robotic OOS.
comment: Accepted for publication at the 2024 International Conference on Space Robotics (iSpaRo)
☆ Geometry-aware Feature Matching for Large-Scale Structure from Motion
Establishing consistent and dense correspondences across multiple images is crucial for Structure from Motion (SfM) systems. Significant view changes, such as air-to-ground with very sparse view overlap, pose an even greater challenge to the correspondence solvers. We present a novel optimization-based approach that significantly enhances existing feature matching methods by introducing geometry cues in addition to color cues. This helps fill gaps when there is less overlap in large-scale scenarios. Our method formulates geometric verification as an optimization problem, guiding feature matching within detector-free methods and using sparse correspondences from detector-based methods as anchor points. By enforcing geometric constraints via the Sampson Distance, our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate. This hybrid strategy significantly improves correspondence density and accuracy, mitigates multi-view inconsistencies, and leads to notable advancements in camera pose accuracy and point cloud density. It outperforms state-of-the-art feature matching methods on benchmark datasets and enables feature matching in challenging extreme large-scale settings.
☆ QID$^2$: An Image-Conditioned Diffusion Model for Q-space Up-sampling of DWI Data MICCAI 2024
We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID$^2$, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID$^2$ on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID$^2$ to reconstruct the missing high angular resolution samples. We compare QID$^2$ with two state-of-the-art GAN models. Our results demonstrate that QID$^2$ not only achieves higher-quality generated images, but it consistently outperforms the GAN models in downstream tensor estimation across multiple metrics. Taken together, this study highlights the potential of diffusion models, and QID$^2$ in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.
comment: Accepted at MICCAI 2024 International Workshop on Computational Diffusion MRI. Zijian Chen and Jueqi Wang contributed equally to this work
☆ Unsupervised Welding Defect Detection Using Audio And Video
In this work we explore the application of AI to robotic welding. Robotic welding is a widely used technology in many industries, but robots currently do not have the capability to detect welding defects which get introduced due to various reasons in the welding process. We describe how deep-learning methods can be applied to detect weld defects in real-time by recording the welding process with microphones and a camera. Our findings are based on a large database with more than 4000 welding samples we collected which covers different weld types, materials and various defect categories. All deep learning models are trained in an unsupervised fashion because the space of possible defects is large and the defects in our data may contain biases. We demonstrate that a reliable real-time detection of most categories of weld defects is feasible both from audio and video, with improvements achieved by combining both modalities. Specifically, the multi-modal approach achieves an average Area-under-ROC-Curve (AUC) of 0.92 over all eleven defect types in our data. We conclude the paper with an analysis of the results by defect type and a discussion of future work.
comment: 21 pages
☆ Biochemical Prostate Cancer Recurrence Prediction: Thinking Fast & Slow
Time to biochemical recurrence in prostate cancer is essential for prognostic monitoring of the progression of patients after prostatectomy, which assesses the efficacy of the surgery. In this work, we proposed to leverage multiple instance learning through a two-stage ``thinking fast \& slow'' strategy for the time to recurrence (TTR) prediction. The first (``thinking fast'') stage finds the most relevant WSI area for biochemical recurrence and the second (``thinking slow'') stage leverages higher resolution patches to predict TTR. Our approach reveals a mean C-index ($Ci$) of 0.733 ($\theta=0.059$) on our internal validation and $Ci=0.603$ on the LEOPARD challenge validation set. Post hoc attention visualization shows that the most attentive area contributes to the TTR prediction.
comment: 8 pages, 3 figures, methodology paper for LEOPRARD Challenge
☆ K-Origins: Better Colour Quantification for Neural Networks
K-Origins is a neural network layer designed to improve image-based network performances when learning colour, or intensities, is beneficial. Over 250 encoder-decoder convolutional networks are trained and tested on 16-bit synthetic data, demonstrating that K-Origins improves semantic segmentation accuracy in two scenarios: object detection with low signal-to-noise ratios, and segmenting multiple objects that are identical in shape but vary in colour. K-Origins generates output features from the input features, $\textbf{X}$, by the equation $\textbf{Y}_k = \textbf{X}-\textbf{J}\cdot w_k$ for each trainable parameter $w_k$, where $\textbf{J}$ is a matrix of ones. Additionally, networks with varying receptive fields were trained to determine optimal network depths based on the dimensions of target classes, suggesting that receptive field lengths should exceed object sizes. By ensuring a sufficient receptive field length and incorporating K-Origins, we can achieve better semantic network performance.
comment: 16 pages, 13 figures, 1 table
☆ Evaluation and Comparison of Visual Language Models for Transportation Engineering Problems
Recent developments in vision language models (VLM) have shown great potential for diverse applications related to image understanding. In this study, we have explored state-of-the-art VLM models for vision-based transportation engineering tasks such as image classification and object detection. The image classification task involves congestion detection and crack identification, whereas, for object detection, helmet violations were identified. We have applied open-source models such as CLIP, BLIP, OWL-ViT, Llava-Next, and closed-source GPT-4o to evaluate the performance of these state-of-the-art VLM models to harness the capabilities of language understanding for vision-based transportation tasks. These tasks were performed by applying zero-shot prompting to the VLM models, as zero-shot prompting involves performing tasks without any training on those tasks. It eliminates the need for annotated datasets or fine-tuning for specific tasks. Though these models gave comparative results with benchmark Convolutional Neural Networks (CNN) models in the image classification tasks, for object localization tasks, it still needs improvement. Therefore, this study provides a comprehensive evaluation of the state-of-the-art VLM models highlighting the advantages and limitations of the models, which can be taken as the baseline for future improvement and wide-scale implementation.
☆ ADHD diagnosis based on action characteristics recorded in videos using machine learning
Demand for ADHD diagnosis and treatment is increasing significantly and the existing services are unable to meet the demand in a timely manner. In this work, we introduce a novel action recognition method for ADHD diagnosis by identifying and analysing raw video recordings. Our main contributions include 1) designing and implementing a test focusing on the attention and hyperactivity/impulsivity of participants, recorded through three cameras; 2) implementing a novel machine learning ADHD diagnosis system based on action recognition neural networks for the first time; 3) proposing classification criteria to provide diagnosis results and analysis of ADHD action characteristics.
comment: Neuroscience Applied
☆ Action-Based ADHD Diagnosis in Video
Attention Deficit Hyperactivity Disorder (ADHD) causes significant impairment in various domains. Early diagnosis of ADHD and treatment could significantly improve the quality of life and functioning. Recently, machine learning methods have improved the accuracy and efficiency of the ADHD diagnosis process. However, the cost of the equipment and trained staff required by the existing methods are generally huge. Therefore, we introduce the video-based frame-level action recognition network to ADHD diagnosis for the first time. We also record a real multi-modal ADHD dataset and extract three action classes from the video modality for ADHD diagnosis. The whole process data have been reported to CNTW-NHS Foundation Trust, which would be reviewed by medical consultants/professionals and will be made public in due course.
comment: 31st European Symposium on Artificial Neural Networks
☆ Optimal L-Systems for Stochastic L-system Inference Problems
This paper presents two novel theorems that address two open problems in stochastic Lindenmayer-system (L-system) inference, specifically focusing on the construction of an optimal stochastic L-system capable of generating a given sequence of strings. The first theorem delineates a method for crafting a stochastic L-system that maximizes the likelihood of producing a given sequence of words through a singular derivation. Furthermore, the second theorem determines the stochastic L-systems with the highest probability of producing a given sequence of words with multiple possible derivations. From these, we introduce an algorithm to infer an optimal stochastic L-system from a given sequence. This algorithm incorporates sophisticated optimization techniques, such as interior point methods, ensuring production of a stochastically optimal stochastic L-system suitable for generating the given sequence. This allows for the use of using stochastic L-systems as model for machine learning using only positive data for training.
☆ How to Determine the Preferred Image Distribution of a Black-Box Vision-Language Model?
Large foundation models have revolutionized the field, yet challenges remain in optimizing multi-modal models for specialized visual tasks. We propose a novel, generalizable methodology to identify preferred image distributions for black-box Vision-Language Models (VLMs) by measuring output consistency across varied input prompts. Applying this to different rendering types of 3D objects, we demonstrate its efficacy across various domains requiring precise interpretation of complex structures, with a focus on Computer-Aided Design (CAD) as an exemplar field. We further refine VLM outputs using in-context learning with human feedback, significantly enhancing explanation quality. To address the lack of benchmarks in specialized domains, we introduce CAD-VQA, a new dataset for evaluating VLMs on CAD-related visual question answering tasks. Our evaluation of state-of-the-art VLMs on CAD-VQA establishes baseline performance levels, providing a framework for advancing VLM capabilities in complex visual reasoning tasks across various fields requiring expert-level visual interpretation. We release the dataset and evaluation codes at \url{https://github.com/asgsaeid/cad_vqa}.
☆ NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise
Backdoor attacks pose a significant threat when using third-party data for deep learning development. In these attacks, data can be manipulated to cause a trained model to behave improperly when a specific trigger pattern is applied, providing the adversary with unauthorized advantages. While most existing works focus on designing trigger patterns in both visible and invisible to poison the victim class, they typically result in a single targeted class upon the success of the backdoor attack, meaning that the victim class can only be converted to another class based on the adversary predefined value. In this paper, we address this issue by introducing a novel sample-specific multi-targeted backdoor attack, namely NoiseAttack. Specifically, we adopt White Gaussian Noise (WGN) with various Power Spectral Densities (PSD) as our underlying triggers, coupled with a unique training strategy to execute the backdoor attack. This work is the first of its kind to launch a vision backdoor attack with the intent to generate multiple targeted classes with minimal input configuration. Furthermore, our extensive experimental results demonstrate that NoiseAttack can achieve a high attack success rate against popular network architectures and datasets, as well as bypass state-of-the-art backdoor detection methods. Our source code and experiments are available at https://github.com/SiSL-URI/NoiseAttack/tree/main.
☆ A Novel Audio-Visual Information Fusion System for Mental Disorders Detection
Mental disorders are among the foremost contributors to the global healthcare challenge. Research indicates that timely diagnosis and intervention are vital in treating various mental disorders. However, the early somatization symptoms of certain mental disorders may not be immediately evident, often resulting in their oversight and misdiagnosis. Additionally, the traditional diagnosis methods incur high time and cost. Deep learning methods based on fMRI and EEG have improved the efficiency of the mental disorder detection process. However, the cost of the equipment and trained staff are generally huge. Moreover, most systems are only trained for a specific mental disorder and are not general-purpose. Recently, physiological studies have shown that there are some speech and facial-related symptoms in a few mental disorders (e.g., depression and ADHD). In this paper, we focus on the emotional expression features of mental disorders and introduce a multimodal mental disorder diagnosis system based on audio-visual information input. Our proposed system is based on spatial-temporal attention networks and innovative uses a less computationally intensive pre-train audio recognition network to fine-tune the video recognition module for better results. We also apply the unified system for multiple mental disorders (ADHD and depression) for the first time. The proposed system achieves over 80\% accuracy on the real multimodal ADHD dataset and achieves state-of-the-art results on the depression dataset AVEC 2014.
comment: 27th International Conference on Information (FUSION)
☆ What makes a face looks like a hat: Decoupling low-level and high-level Visual Properties with Image Triplets ECCV2024
In visual decision making, high-level features, such as object categories, have a strong influence on choice. However, the impact of low-level features on behavior is less understood partly due to the high correlation between high- and low-level features in the stimuli presented (e.g., objects of the same category are more likely to share low-level features). To disentangle these effects, we propose a method that de-correlates low- and high-level visual properties in a novel set of stimuli. Our method uses two Convolutional Neural Networks (CNNs) as candidate models of the ventral visual stream: the CORnet-S that has high neural predictivity in high-level, IT-like responses and the VGG-16 that has high neural predictivity in low-level responses. Triplets (root, image1, image2) of stimuli are parametrized by the level of low- and high-level similarity of images extracted from the different layers. These stimuli are then used in a decision-making task where participants are tasked to choose the most similar-to-the-root image. We found that different networks show differing abilities to predict the effects of low-versus-high-level similarity: while CORnet-S outperforms VGG-16 in explaining human choices based on high-level similarity, VGG-16 outperforms CORnet-S in explaining human choices based on low-level similarity. Using Brain-Score, we observed that the behavioral prediction abilities of different layers of these networks qualitatively corresponded to their ability to explain neural activity at different levels of the visual hierarchy. In summary, our algorithm for stimulus set generation enables the study of how different representations in the visual stream affect high-level cognitive behaviors.
comment: Accepted at Workshop on Human-inspired Computer Vision @ ECCV2024
EgoPressure: A Dataset for Hand Pressure and Pose Estimation in Egocentric Vision
Estimating touch contact and pressure in egocentric vision is a central task for downstream applications in Augmented Reality, Virtual Reality, as well as many robotic applications, because it provides precise physical insights into hand-object interaction and object manipulation. However, existing contact pressure datasets lack egocentric views and hand poses, which are essential for accurate estimation during in-situ operation, both for AR/VR interaction and robotic manipulation. In this paper, we introduce EgoPressure,a novel dataset of touch contact and pressure interaction from an egocentric perspective, complemented with hand pose meshes and fine-grained pressure intensities for each contact. The hand poses in our dataset are optimized using our proposed multi-view sequence-based method that processes footage from our capture rig of 8 accurately calibrated RGBD cameras. EgoPressure comprises 5.0 hours of touch contact and pressure interaction from 21 participants captured by a moving egocentric camera and 7 stationary Kinect cameras, which provided RGB images and depth maps at 30 Hz. In addition, we provide baselines for estimating pressure with different modalities, which will enable future developments and benchmarking on the dataset. Overall, we demonstrate that pressure and hand poses are complementary, which supports our intention to better facilitate the physical understanding of hand-object interactions in AR/VR and robotics research.
☆ Visually Grounded Speech Models for Low-resource Languages and Cognitive Modelling
This dissertation examines visually grounded speech (VGS) models that learn from unlabelled speech paired with images. It focuses on applications for low-resource languages and understanding human language acquisition. We introduce a task called visually prompted keyword localisation to detect and localise keywords in speech using images. We demonstrate the effectiveness of VGS models in few-shot learning scenarios for low-resource languages like Yoruba. Additionally, we examine the mutual exclusivity bias in VGS models. Our monolingual VGS model exhibits this bias, but we found that multilingualism does not affect the bias in this VGS model similarly to what is observed in children.
comment: PhD Dissertation
☆ Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning
Shadows are formed when light encounters obstacles, leading to areas of diminished illumination. In computer vision, shadow detection, removal, and generation are crucial for enhancing scene understanding, refining image quality, ensuring visual consistency in video editing, and improving virtual environments. This paper presents a comprehensive survey of shadow detection, removal, and generation in images and videos within the deep learning landscape over the past decade, covering tasks, deep models, datasets, and evaluation metrics. Our key contributions include a comprehensive survey of shadow analysis, standardization of experimental comparisons, exploration of the relationships among model size, speed, and performance, a cross-dataset generalization study, identification of open issues and future directions, and provision of publicly available resources to support further research.
comment: Publicly available results, trained models, and evaluation metrics at https://github.com/xw-hu/Unveiling-Deep-Shadows
☆ DynOMo: Online Point Tracking by Dynamic Online Monocular Gaussian Reconstruction
Reconstructing scenes and tracking motion are two sides of the same coin. Tracking points allow for geometric reconstruction [14], while geometric reconstruction of (dynamic) scenes allows for 3D tracking of points over time [24, 39]. The latter was recently also exploited for 2D point tracking to overcome occlusion ambiguities by lifting tracking directly into 3D [38]. However, above approaches either require offline processing or multi-view camera setups both unrealistic for real-world applications like robot navigation or mixed reality. We target the challenge of online 2D and 3D point tracking from unposed monocular camera input introducing Dynamic Online Monocular Reconstruction (DynOMo). We leverage 3D Gaussian splatting to reconstruct dynamic scenes in an online fashion. Our approach extends 3D Gaussians to capture new content and object motions while estimating camera movements from a single RGB frame. DynOMo stands out by enabling emergence of point trajectories through robust image feature reconstruction and a novel similarity-enhanced regularization term, without requiring any correspondence-level supervision. It sets the first baseline for online point tracking with monocular unposed cameras, achieving performance on par with existing methods. We aim to inspire the community to advance online point tracking and reconstruction, expanding the applicability to diverse real-world scenarios.
☆ Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models ECCV 2024
This paper addresses the limitations of adverse weather image restoration approaches trained on synthetic data when applied to real-world scenarios. We formulate a semi-supervised learning framework employing vision-language models to enhance restoration performance across diverse adverse weather conditions in real-world settings. Our approach involves assessing image clearness and providing semantics using vision-language models on real data, serving as supervision signals for training restoration models. For clearness enhancement, we use real-world data, utilizing a dual-step strategy with pseudo-labels assessed by vision-language models and weather prompt learning. For semantic enhancement, we integrate real-world data by adjusting weather conditions in vision-language model descriptions while preserving semantic meaning. Additionally, we introduce an effective training strategy to bootstrap restoration performance. Our approach achieves superior results in real-world adverse weather image restoration, demonstrated through qualitative and quantitative comparisons with state-of-the-art works.
comment: Accepted by ECCV 2024
☆ DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos
Despite significant advancements in monocular depth estimation for static images, estimating video depth in the open world remains challenging, since open-world videos are extremely diverse in content, motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. DepthCrafter achieves generalization ability to open-world videos by training a video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy with the compiled paired video-depth datasets. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that processes extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
comment: Project webpage: https://depthcrafter.github.io
☆ GraspSplats: Efficient Manipulation with 3D Feature Splatting
The ability for robots to perform efficient and zero-shot grasping of object parts is crucial for practical applications and is becoming prevalent with recent advances in Vision-Language Models (VLMs). To bridge the 2D-to-3D gap for representations to support such a capability, existing methods rely on neural fields (NeRFs) via differentiable rendering or point-based projection methods. However, we demonstrate that NeRFs are inappropriate for scene changes due to their implicitness and point-based methods are inaccurate for part localization without rendering-based optimization. To amend these issues, we propose GraspSplats. Using depth supervision and a novel reference feature computation method, GraspSplats generates high-quality scene representations in under 60 seconds. We further validate the advantages of Gaussian-based representation by showing that the explicit and optimized geometry in GraspSplats is sufficient to natively support (1) real-time grasp sampling and (2) dynamic and articulated object manipulation with point trackers. With extensive experiments on a Franka robot, we demonstrate that GraspSplats significantly outperforms existing methods under diverse task settings. In particular, GraspSplats outperforms NeRF-based methods like F3RM and LERF-TOGO, and 2D detection methods.
comment: Project webpage: https://graspsplats.github.io/
☆ Physical Rule-Guided Convolutional Neural Network
The black-box nature of Convolutional Neural Networks (CNNs) and their reliance on large datasets limit their use in complex domains with limited labeled data. Physics-Guided Neural Networks (PGNNs) have emerged to address these limitations by integrating scientific principles and real-world knowledge, enhancing model interpretability and efficiency. This paper proposes a novel Physics-Guided CNN (PGCNN) architecture that incorporates dynamic, trainable, and automated LLM-generated, widely recognized rules integrated into the model as custom layers to address challenges like limited data and low confidence scores. The PGCNN is evaluated on multiple datasets, demonstrating superior performance compared to a baseline CNN model. Key improvements include a significant reduction in false positives and enhanced confidence scores for true detection. The results highlight the potential of PGCNNs to improve CNN performance for broader application areas.
♻ ☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos. A sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/.
comment: 7 pages, 5 figures, 4 tables. Last updated on September 3rd, 2024
A Multiscale Gradient Fusion Method for Edge Detection in Color Images Utilizing the CBM3D Filter
In this paper, a color edge detection strategy based on collaborative filtering combined with multiscale gradient fusion is proposed. The block-matching and 3D (BM3D) filter are used to enhance the sparse representation in the transform domain and achieve the effect of denoising, whereas the multiscale gradient fusion makes up for the defect of loss of details in single-scale edge detection and improves the edge detection resolution and quality. First, the RGB images in the dataset are converted to XYZ color space images through mathematical operations. Second, the colored block-matching and 3D (CBM3D) filter are used on the sparse images and to remove noise interference. Then, the vector gradients of the color image and the anisotropic Gaussian directional derivative of the two scale parameters are calculated and averaged pixel-by-pixel to obtain a new edge strength map. Finally, the edge features are enhanced by image normalization and non-maximum suppression technology, and on that basis, the edge contour is obtained by double threshold selection and a new morphological refinement method. Through an experimental analysis of the edge detection dataset, the method proposed has good noise robustness and high edge quality, which is better than the Color Sobel, Color Canny, SE and Color AGDD as shown by the PR curve, AUC, PSNR, MSE, and FOM indicators.
comment: 1 figure, 2 tables
♻ ☆ IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology
Histopathological image analysis is crucial for accurate cancer diagnosis and treatment planning. While deep learning models, especially convolutional neural networks, have advanced this field, their "black-box" nature raises concerns about interpretability and trustworthiness. Explainable Artificial Intelligence (XAI) techniques aim to address these concerns, but evaluating their effectiveness remains challenging. A significant issue with current occlusion-based XAI methods is that they often generate Out-of-Distribution (OoD) samples, leading to inaccurate evaluations. In this paper, we introduce Inpainting-Based Occlusion (IBO), a novel occlusion strategy that utilizes a Denoising Diffusion Probabilistic Model to inpaint occluded regions in histopathological images. By replacing cancerous areas with realistic, non-cancerous tissue, IBO minimizes OoD artifacts and preserves data integrity. We evaluate our method on the CAMELYON16 dataset through two phases: first, by assessing perceptual similarity using the Learned Perceptual Image Patch Similarity (LPIPS) metric, and second, by quantifying the impact on model predictions through Area Under the Curve (AUC) analysis. Our results demonstrate that IBO significantly improves perceptual fidelity, achieving nearly twice the improvement in LPIPS scores compared to the best existing occlusion strategy. Additionally, IBO increased the precision of XAI performance prediction from 42% to 71% compared to traditional methods. These results demonstrate IBO's potential to provide more reliable evaluations of XAI techniques, benefiting histopathology and other applications. The source code for this study is available at https://github.com/a-fsh-r/IBO.
comment: 19 pages, 6 figures
♻ ☆ Learning a Generalized Physical Face Model From Data
Physically-based simulation is a powerful approach for 3D facial animation as the resulting deformations are governed by physical constraints, allowing to easily resolve self-collisions, respond to external forces and perform realistic anatomy edits. Today's methods are data-driven, where the actuations for finite elements are inferred from captured skin geometry. Unfortunately, these approaches have not been widely adopted due to the complexity of initializing the material space and learning the deformation model for each character separately, which often requires a skilled artist followed by lengthy network training. In this work, we aim to make physics-based facial animation more accessible by proposing a generalized physical face model that we learn from a large 3D face dataset. Once trained, our model can be quickly fit to any unseen identity and produce a ready-to-animate physical face model automatically. Fitting is as easy as providing a single 3D face scan, or even a single face image. After fitting, we offer intuitive animation controls, as well as the ability to retarget animations across characters. All the while, the resulting animations allow for physical effects like collision avoidance, gravity, paralysis, bone reshaping and more.
♻ ☆ $OC^4-ReID$: Occluded Cloth-Changing Person Re-Identification
The study of Cloth-Changing Person Re-identification (CC-ReID) focuses on retrieving specific pedestrians when their clothing has changed, typically under the assumption that the entire pedestrian images are visible. Pedestrian images in real-world scenarios, however, are often partially obscured by obstacles, presenting a significant challenge to existing CC-ReID systems. In this paper, we introduce a more challenging task termed Occluded Cloth-Changing Person Re-Identification ($OC^4-ReID$), which simultaneously addresses two challenges of clothing changes and occlusion. Concretely, we construct two new datasets, Occ-LTCC and Occ-PRCC, based on original CC-ReID datasets to include random occlusions of key pedestrians components (e.g., head, torso). Moreover, a novel benchmark is proposed for $OC^4-ReID$ incorporating a Train-Test Micro Granularity Screening ($T^2MGS$) module to mitigate the influence of occlusion and proposing a Part-Robust Triplet (PRT) loss for partial features learning. Comprehensive experiments on the proposed datasets, as well as on two CC-ReID benchmark datasets demonstrate the superior performance of proposed method against other state-of-the-art methods. The codes and datasets are available at: https://github.com/1024AILab/OC4-ReID.
♻ ☆ Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance
There are many excellent solutions in image restoration.However, most methods require on training separate models to restore images with different types of degradation.Although existing all-in-one models effectively address multiple types of degradation simultaneously, their performance in real-world scenarios is still constrained by the task confusion problem.In this work, we attempt to address this issue by introducing \textbf{Restorer}, a novel Transformer-based all-in-one image restoration model.To effectively address the complex degradation present in real-world images, we propose All-Axis Attention (AAA), a mechanism that simultaneously models long-range dependencies across both spatial and channel dimensions, capturing potential correlations along all axes.Additionally, we introduce textual prompts in Restorer to incorporate explicit task priors, enabling the removal of specific degradation types based on user instructions. By iterating over these prompts, Restorer can handle composite degradation in real-world scenarios without requiring additional training.Based on these designs, Restorer with one set of parameters demonstrates state-of-the-art performance in multiple image restoration tasks compared to existing all-in-one and even single-task models.Additionally, Restorer is efficient during inference, suggesting the potential in real-world applications.
♻ ☆ On the Federated Learning Framework for Cooperative Perception
Cooperative perception is essential to enhance the efficiency and safety of future transportation systems, requiring extensive data sharing among vehicles on the road, which raises significant privacy concerns. Federated learning offers a promising solution by enabling data privacy-preserving collaborative enhancements in perception, decision-making, and planning among connected and autonomous vehicles (CAVs). However, federated learning is impeded by significant challenges arising from data heterogeneity across diverse clients, potentially diminishing model accuracy and prolonging convergence periods. This study introduces a specialized federated learning framework for CP, termed the federated dynamic weighted aggregation (FedDWA) algorithm, facilitated by dynamic adjusting loss (DALoss) function. This framework employs dynamic client weighting to direct model convergence and integrates a novel loss function that utilizes Kullback-Leibler divergence (KLD) to counteract the detrimental effects of non-independently and identically distributed (Non-IID) and unbalanced data. Utilizing the BEV transformer as the primary model, our rigorous testing on the OpenV2V dataset, augmented with FedBEVT data, demonstrates significant improvements in the average intersection over union (IoU). These results highlight the substantial potential of our federated learning framework to address data heterogeneity challenges in CP, thereby enhancing the accuracy of environmental perception models and facilitating more robust and efficient collaborative learning solutions in the transportation sector.
comment: accepted by IEEE RA-L
♻ ☆ 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods
We present a work-in-progress survey on 3D Gaussian Splatting compression methods, focusing on their statistical performance across various benchmarks. This survey aims to facilitate comparability by summarizing key statistics of different compression approaches in a tabulated format. The datasets evaluated include TanksAndTemples, MipNeRF360, DeepBlending, and SyntheticNeRF. For each method, we report the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and the resultant size in megabytes (MB), as provided by the respective authors. This is an ongoing, open project, and we invite contributions from the research community as GitHub issues or pull requests. Please visit http://w-m.github.io/3dgs-compression-survey/ for more information and a sortable version of the table.
comment: 3D Gaussian Splatting compression survey; 3DGS compression; new approaches added
♻ ☆ SUMix: Mixup with Semantic and Uncertain Information ECCV2024
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio $\lambda$ by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
comment: Accepted by ECCV2024 [Camera Ready] (19 pages, 7 figures) with the source code at https://github.com/JinXins/SUMix
♻ ☆ SPIdepth: Strengthened Pose Information for Self-supervised Monocular Depth Estimation
Self-supervised monocular depth estimation has garnered considerable attention for its applications in autonomous driving and robotics. While recent methods have made strides in leveraging techniques like the Self Query Layer (SQL) to infer depth from motion, they often overlook the potential of strengthening pose information. In this paper, we introduce SPIdepth, a novel approach that prioritizes enhancing the pose network for improved depth estimation. Building upon the foundation laid by SQL, SPIdepth emphasizes the importance of pose information in capturing fine-grained scene structures. By enhancing the pose network's capabilities, SPIdepth achieves remarkable advancements in scene understanding and depth estimation. Experimental results on benchmark datasets such as KITTI, Cityscapes, and Make3D showcase SPIdepth's state-of-the-art performance, surpassing previous methods by significant margins. Specifically, SPIdepth tops the self-supervised KITTI benchmark. Additionally, SPIdepth achieves the lowest AbsRel (0.029), SqRel (0.069), and RMSE (1.394) on KITTI, establishing new state-of-the-art results. On Cityscapes, SPIdepth shows improvements over SQLdepth of 21.7% in AbsRel, 36.8% in SqRel, and 16.5% in RMSE, even without using motion masks. On Make3D, SPIdepth in zero-shot outperforms all other models. Remarkably, SPIdepth achieves these results using only a single image for inference, surpassing even methods that utilize video sequences for inference, thus demonstrating its efficacy and efficiency in real-world applications. Our approach represents a significant leap forward in self-supervised monocular depth estimation, underscoring the importance of strengthening pose information for advancing scene understanding in real-world applications. The code and pre-trained models are publicly available at https://github.com/Lavreniuk/SPIdepth.
♻ ☆ Realigned Softmax Warping for Deep Metric Learning
Deep Metric Learning (DML) loss functions traditionally aim to control the forces of separability and compactness within an embedding space so that the same class data points are pulled together and different class ones are pushed apart. Within the context of DML, a softmax operation will typically normalize distances into a probability for optimization, thus coupling all the push/pull forces together. This paper proposes a potential new class of loss functions that operate within a euclidean domain and aim to take full advantage of the coupled forces governing embedding space formation under a softmax. These forces of compactness and separability can be boosted or mitigated within controlled locations at will by using a warping function. In this work, we provide a simple example of a warping function and use it to achieve competitive, state-of-the-art results on various metric learning benchmarks.
comment: Preprint
♻ ☆ Progressive Domain Adaptation for Thermal Infrared Object Tracking
Due to the lack of large-scale labeled Thermal InfraRed (TIR) training datasets, most existing TIR trackers are trained directly on RGB datasets. However, tracking methods trained on RGB datasets suffer a significant drop-off in TIR data due to the domain shift issue. To this end, in this work, we propose a Progressive Domain Adaptation framework for TIR Tracking (PDAT), which transfers useful knowledge learned from RGB tracking to TIR tracking. The framework makes full use of large-scale labeled RGB datasets without requiring time-consuming and labor-intensive labeling of large-scale TIR data. Specifically, we first propose an adversarial-based global domain adaptation module to reduce domain gap on the feature level coarsely. Second, we design a clustering-based subdomain adaptation method to further align the feature distributions of the RGB and TIR datasets finely. These two domain adaptation modules gradually eliminate the discrepancy between the two domains, and thus learn domain-invariant fine-grained features through progressive training. Additionally, we collect a largescale TIR dataset with over 1.48 million unlabeled TIR images for training the proposed domain adaptation framework. Experimental results on five TIR tracking benchmarks show that the proposed method gains a nearly 6% success rate, demonstrating its effectiveness.
comment: 10 pages, 8 figures
♻ ☆ An Efficient Instance Segmentation Framework Using Segmentation Foundation Models with Oriented Bounding Box Prompts
Instance segmentation in unmanned aerial vehicle measurement is a long-standing challenge. Since horizontal bounding boxes introduce many interference objects, oriented bounding boxes (OBBs) are usually used for instance identification. However, based on ``segmentation within bounding box'' paradigm, current instance segmentation methods using OBBs are overly dependent on bounding box detection performance. To tackle this, this paper proposes OBSeg, an efficient instance segmentation framework using OBBs. OBSeg is based on box prompt-based segmentation foundation models (BSMs), e.g., Segment Anything Model. Specifically, OBSeg first detects OBBs to distinguish instances and provide coarse localization information. Then, it predicts OBB prompt-related masks for fine segmentation. Since OBBs only serve as prompts, OBSeg alleviates the over-dependence on bounding box detection performance of current instance segmentation methods using OBBs. In addition, to enable BSMs to handle OBB prompts, we propose a novel OBB prompt encoder. To make OBSeg more lightweight and further improve the performance of lightweight distilled BSMs, a Gaussian smoothing-based knowledge distillation method is introduced. Experiments demonstrate that OBSeg outperforms current instance segmentation methods on multiple public datasets. The code is available at https://github.com/zhen6618/OBBInstanceSegmentation.
♻ ☆ Collaborative Group: Composed Image Retrieval via Consensus Learning from Noisy Annotations
Composed image retrieval extends content-based image retrieval systems by enabling users to search using reference images and captions that describe their intention. Despite great progress in developing image-text compositors to extract discriminative visual-linguistic features, we identify a hitherto overlooked issue, triplet ambiguity, which impedes robust feature extraction. Triplet ambiguity refers to a type of semantic ambiguity that arises between the reference image, the relative caption, and the target image. It is mainly due to the limited representation of the annotated text, resulting in many noisy triplets where multiple visually dissimilar candidate images can be matched to an identical reference pair (i.e., a reference image + a relative caption). To address this challenge, we propose the Consensus Network (Css-Net), inspired by the psychological concept that groups outperform individuals. Css-Net comprises two core components: (1) a consensus module with four diverse compositors, each generating distinct image-text embeddings, fostering complementary feature extraction and mitigating dependence on any single, potentially biased compositor; (2) a Kullback-Leibler divergence loss that encourages learning of inter-compositor interactions to promote consensual outputs. During evaluation, the decisions of the four compositors are combined through a weighting scheme, enhancing overall agreement. On benchmark datasets, particularly FashionIQ, Css-Net demonstrates marked improvements. Notably, it achieves significant recall gains, with a 2.77% increase in R@10 and 6.67% boost in R@50, underscoring its competitiveness in addressing the fundamental limitations of existing methods.
comment: Accepted by Knowledge-Based Systems (KBS)
♻ ☆ CAST: Cross-Attention in Space and Time for Video Action Recognition NeurIPS 2023
Recognizing human actions in videos requires spatial and temporal understanding. Most existing action recognition models lack a balanced spatio-temporal understanding of videos. In this work, we propose a novel two-stream architecture, called Cross-Attention in Space and Time (CAST), that achieves a balanced spatio-temporal understanding of videos using only RGB input. Our proposed bottleneck cross-attention mechanism enables the spatial and temporal expert models to exchange information and make synergistic predictions, leading to improved performance. We validate the proposed method with extensive experiments on public benchmarks with different characteristics: EPIC-KITCHENS-100, Something-Something-V2, and Kinetics-400. Our method consistently shows favorable performance across these datasets, while the performance of existing methods fluctuates depending on the dataset characteristics.
comment: This is an accepted NeurIPS 2023. Project webpage is available at https://jong980812.github.io/CAST.github.io/ Code is available at https://github.com/KHU-VLL/CAST
♻ ☆ TALDS-Net: Task-Aware Adaptive Local Descriptors Selection for Few-shot Image Classification ICASSP 2024
Few-shot image classification aims to classify images from unseen novel classes with few samples. Recent works demonstrate that deep local descriptors exhibit enhanced representational capabilities compared to image-level features. However, most existing methods solely rely on either employing all local descriptors or directly utilizing partial descriptors, potentially resulting in the loss of crucial information. Moreover, these methods primarily emphasize the selection of query descriptors while overlooking support descriptors. In this paper, we propose a novel Task-Aware Adaptive Local Descriptors Selection Network (TALDS-Net), which exhibits the capacity for adaptive selection of task-aware support descriptors and query descriptors. Specifically, we compare the similarity of each local support descriptor with other local support descriptors to obtain the optimal support descriptor subset and then compare the query descriptors with the optimal support subset to obtain discriminative query descriptors. Extensive experiments demonstrate that our TALDS-Net outperforms state-of-the-art methods on both general and fine-grained datasets.
comment: 4 pages, 1 figures, is accepted by ICASSP 2024
♻ ☆ Planning and Rendering: Towards Product Poster Generation with Diffusion Models
Product poster generation significantly optimizes design efficiency and reduces production costs. Prevailing methods predominantly rely on image-inpainting methods to generate clean background images for given products. Subsequently, poster layout generation methods are employed to produce corresponding layout results. However, the background images may not be suitable for accommodating textual content due to their complexity, and the fixed location of products limits the diversity of layout results. To alleviate these issues, we propose a novel product poster generation framework based on diffusion models named P\&R. The P\&R draws inspiration from the workflow of designers in creating posters, which consists of two stages: Planning and Rendering. At the planning stage, we propose a PlanNet to generate the layout of the product and other visual components considering both the appearance features of the product and semantic features of the text, which improves the diversity and rationality of the layouts. At the rendering stage, we propose a RenderNet to generate the background for the product while considering the generated layout, where a spatial fusion module is introduced to fuse the layout of different visual components. To foster the advancement of this field, we propose the first product poster generation dataset PPG30k, comprising 30k exquisite product poster images along with comprehensive image and text annotations. Our method outperforms the state-of-the-art product poster generation methods on PPG30k. The PPG30k will be released soon.
♻ ☆ Unveiling the Human-like Similarities of Automatic Facial Expression Recognition: An Empirical Exploration through Explainable AI
Facial expression recognition is vital for human behavior analysis, and deep learning has enabled models that can outperform humans. However, it is unclear how closely they mimic human processing. This study aims to explore the similarity between deep neural networks and human perception by comparing twelve different networks, including both general object classifiers and FER-specific models. We employ an innovative global explainable AI method to generate heatmaps, revealing crucial facial regions for the twelve networks trained on six facial expressions. We assess these results both quantitatively and qualitatively, comparing them to ground truth masks based on Friesen and Ekman's description and among them. We use Intersection over Union (IoU) and normalized correlation coefficients for comparisons. We generate 72 heatmaps to highlight critical regions for each expression and architecture. Qualitatively, models with pre-trained weights show more similarity in heatmaps compared to those without pre-training. Specifically, eye and nose areas influence certain facial expressions, while the mouth is consistently important across all models and expressions. Quantitatively, we find low average IoU values (avg. 0.2702) across all expressions and architectures. The best-performing architecture averages 0.3269, while the worst-performing one averages 0.2066. Dendrograms, built with the normalized correlation coefficient, reveal two main clusters for most expressions: models with pre-training and models without pre-training. Findings suggest limited alignment between human and AI facial expression recognition, with network architectures influencing the similarity, as similar architectures prioritize similar facial regions.
comment: Multimed Tools Appl (2024)
♻ ☆ Learning Exposure Correction in Dynamic Scenes
Exposure correction aims to enhance visual data suffering from improper exposures, which can greatly improve satisfactory visual effects. However, previous methods mainly focus on the image modality, and the video counterpart is less explored in the literature. Directly applying prior image-based methods to videos results in temporal incoherence with low visual quality. Through thorough investigation, we find that the development of relevant communities is limited by the absence of a benchmark dataset. Therefore, in this paper, we construct the first real-world paired video dataset, including both underexposure and overexposure dynamic scenes. To achieve spatial alignment, we utilize two DSLR cameras and a beam splitter to simultaneously capture improper and normal exposure videos. Additionally, we propose an end-to-end video exposure correction network, in which a dual-stream module is designed to deal with both underexposure and overexposure factors, enhancing the illumination based on Retinex theory. The extensive experiments based on various metrics and user studies demonstrate the significance of our dataset and the effectiveness of our method. The code and dataset are available at https://github.com/kravrolens/VECNet.
comment: To be published at ACM Multimedia 2024
♻ ☆ Deep Learning for Computer Vision based Activity Recognition and Fall Detection of the Elderly: a Systematic Review
As the percentage of elderly people in developed countries increases worldwide, the healthcare of this collective is a worrying matter, especially if it includes the preservation of their autonomy. In this direction, many studies are being published on Ambient Assisted Living (AAL) systems, which help to reduce the preoccupations raised by the independent living of the elderly. In this study, a systematic review of the literature is presented on fall detection and Human Activity Recognition (HAR) for the elderly, as the two main tasks to solve to guarantee the safety of elderly people living alone. To address the current tendency to perform these two tasks, the review focuses on the use of Deep Learning (DL) based approaches on computer vision data. In addition, different collections of data like DL models, datasets or hardware (e.g. depth or thermal cameras) are gathered from the reviewed studies and provided for reference in future studies. Strengths and weaknesses of existing approaches are also discussed and, based on them, our recommendations for future works are provided.
♻ ☆ RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation
The Segment Anything Model (SAM) has gained significant attention for its impressive performance in image segmentation. However, it lacks proficiency in referring video object segmentation (RVOS) due to the need for precise user-interactive prompts and a limited understanding of different modalities, such as language and vision. This paper presents the RefSAM model, which explores the potential of SAM for RVOS by incorporating multi-view information from diverse modalities and successive frames at different timestamps in an online manner. Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-Modal MLP that projects the text embedding of the referring expression into sparse and dense embeddings, serving as user-interactive prompts. Additionally, we have introduced the hierarchical dense attention module to fuse hierarchical visual semantic information with sparse embeddings to obtain fine-grained dense embeddings, and an implicit tracking module to generate a tracking token and provide historical information for the mask decoder. Furthermore, we employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively. Through comprehensive ablation studies, we demonstrate our model's practical and effective design choices. Extensive experiments conducted on Refer-Youtube-VOS, Ref-DAVIS17, and three referring image segmentation datasets validate the superiority and effectiveness of our RefSAM model over existing methods.
♻ ☆ PointRWKV: Efficient RWKV-Like Model for Hierarchical Point Cloud Learning
Transformers have revolutionized the point cloud learning task, but the quadratic complexity hinders its extension to long sequence and makes a burden on limited computational resources. The recent advent of RWKV, a fresh breed of deep sequence models, has shown immense potential for sequence modeling in NLP tasks. In this paper, we present PointRWKV, a model of linear complexity derived from the RWKV model in the NLP field with necessary modifications for point cloud learning tasks. Specifically, taking the embedded point patches as input, we first propose to explore the global processing capabilities within PointRWKV blocks using modified multi-headed matrix-valued states and a dynamic attention recurrence mechanism. To extract local geometric features simultaneously, we design a parallel branch to encode the point cloud efficiently in a fixed radius near-neighbors graph with a graph stabilizer. Furthermore, we design PointRWKV as a multi-scale framework for hierarchical feature learning of 3D point clouds, facilitating various downstream tasks. Extensive experiments on different point cloud learning tasks show our proposed PointRWKV outperforms the transformer- and mamba-based counterparts, while significantly saving about 42\% FLOPs, demonstrating the potential option for constructing foundational 3D models.
♻ ☆ White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
comment: Accepted at Journal of Machine Learning Research. This paper integrates the works arXiv:2306.01129 and arXiv:2308.16271 into a complete story. In this paper, we improve the writing and organization, and also add conceptual, empirical, and theoretical improvements over the previous work. V2: small typo fixes and formatting improvements. V3: improvements from journal revisions
♻ ☆ Correlation-Embedded Transformer Tracking: A Single-Branch Framework
Developing robust and discriminative appearance models has been a long-standing research challenge in visual object tracking. In the prevalent Siamese-based paradigm, the features extracted by the Siamese-like networks are often insufficient to model the tracked targets and distractor objects, thereby hindering them from being robust and discriminative simultaneously. While most Siamese trackers focus on designing robust correlation operations, we propose a novel single-branch tracking framework inspired by the transformer. Unlike the Siamese-like feature extraction, our tracker deeply embeds cross-image feature correlation in multiple layers of the feature network. By extensively matching the features of the two images through multiple layers, it can suppress non-target features, resulting in target-aware feature extraction. The output features can be directly used for predicting target locations without additional correlation steps. Thus, we reformulate the two-branch Siamese tracking as a conceptually simple, fully transformer-based Single-Branch Tracking pipeline, dubbed SBT. After conducting an in-depth analysis of the SBT baseline, we summarize many effective design principles and propose an improved tracker dubbed SuperSBT. SuperSBT adopts a hierarchical architecture with a local modeling layer to enhance shallow-level features. A unified relation modeling is proposed to remove complex handcrafted layer pattern designs. SuperSBT is further improved by masked image modeling pre-training, integrating temporal modeling, and equipping with dedicated prediction heads. Thus, SuperSBT outperforms the SBT baseline by 4.7%,3.0%, and 4.5% AUC scores in LaSOT, TrackingNet, and GOT-10K. Notably, SuperSBT greatly raises the speed of SBT from 37 FPS to 81 FPS. Extensive experiments show that our method achieves superior results on eight VOT benchmarks.
comment: Extension of SBT paper, accepted by TPAMI
♻ ☆ Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation ECCV 2024
Current weakly-supervised incremental learning for semantic segmentation (WILSS) approaches only consider replacing pixel-level annotations with image-level labels, while the training images are still from well-designed datasets. In this work, we argue that widely available web images can also be considered for the learning of new classes. To achieve this, firstly we introduce a strategy to select web images which are similar to previously seen examples in the latent space using a Fourier-based domain discriminator. Then, an effective caption-driven reharsal strategy is proposed to preserve previously learnt classes. To our knowledge, this is the first work to rely solely on web images for both the learning of new concepts and the preservation of the already learned ones in WILSS. Experimental results show that the proposed approach can reach state-of-the-art performances without using manually selected and annotated data in the incremental steps.
comment: ECCV 2024
♻ ☆ Image-Based Virtual Try-On: A Survey
Image-based virtual try-on aims to synthesize a naturally dressed person image with a clothing image, which revolutionizes online shopping and inspires related topics within image generation, showing both research significance and commercial potential. However, there is a gap between current research progress and commercial applications and an absence of comprehensive overview of this field to accelerate the development.In this survey, we provide a comprehensive analysis of the state-of-the-art techniques and methodologies in aspects of pipeline architecture, person representation and key modules such as try-on indication, clothing warping and try-on stage. We additionally apply CLIP to assess the semantic alignment of try-on results, and evaluate representative methods with uniformly implemented evaluation metrics on the same dataset.In addition to quantitative and qualitative evaluation of current open-source methods, unresolved issues are highlighted and future research directions are prospected to identify key trends and inspire further exploration. The uniformly implemented evaluation metrics, dataset and collected methods will be made public available at https://github.com/little-misfit/Survey-Of-Virtual-Try-On.
comment: 30 pages, 20 figures
♻ ☆ DocKylin: A Large Multimodal Model for Visual Document Understanding with Efficient Visual Slimming
Current multimodal large language models (MLLMs) face significant challenges in visual document understanding (VDU) tasks due to the high resolution, dense text, and complex layouts typical of document images. These characteristics demand a high level of detail perception ability from MLLMs. While increasing input resolution improves detail perception capability, it also leads to longer sequences of visual tokens, increasing computational costs and straining the models' ability to handle long contexts. To address these challenges, we introduce DocKylin, a document-centric MLLM that performs visual content slimming at both the pixel and token levels, thereby reducing token sequence length in VDU scenarios. We introduce an Adaptive Pixel Slimming (APS) preprocessing module to perform pixel-level slimming, increasing the proportion of informative pixels. Moreover, we propose a novel Dynamic Token Slimming (DTS) module to conduct token-level slimming, filtering essential tokens and removing others to adaptively create a more compact visual sequence. Experiments demonstrate DocKylin's promising performance across various VDU benchmarks and the effectiveness of each component.
♻ ☆ Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers
Recent advancements in deep learning techniques have sparked performance boosts in various real-world applications including disease diagnosis based on multi-modal medical data. Cough sound data-based respiratory disease (e.g., COVID-19 and Chronic Obstructive Pulmonary Disease) diagnosis has also attracted much attention. However, existing works usually utilise traditional machine learning or deep models of moderate scales. On the other hand, the developed approaches are trained and evaluated on small-scale data due to the difficulty of curating and annotating clinical data on scale. To address these issues in prior works, we create a unified framework to evaluate various deep models from lightweight Convolutional Neural Networks (e.g., ResNet18) to modern vision transformers and compare their performance in respiratory disease classification. Based on the observations from such an extensive empirical study, we propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set. Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
♻ ☆ Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection
Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. However, the ambiguous nature of anomaly definitions across contexts may introduce inaccuracy in discriminating abnormal and normal events. To show the model what is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate its effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (86.5\%, \hl{90.4}\%, 94.4\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases. The data, code, and models can be found at: \url{https://github.com/shiwoaz/lap}.
♻ ☆ TagCLIP: Improving Discrimination Ability of Open-Vocabulary Semantic Segmentation
Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks. However, existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes, leading to confusion between novel classes and semantically similar ones. In this work, we propose a novel approach, TagCLIP (Trusty-aware guided CLIP), to address this issue. We disentangle the ill-posed optimization problem into two parallel processes: semantic matching performed individually and reliability judgment for improving discrimination ability. Building on the idea of special tokens in language modeling representing sentence-level embeddings, we introduce a trusty token that enables distinguishing novel classes from known ones in prediction. To evaluate our approach, we conduct experiments on two benchmark datasets, PASCAL VOC 2012, COCO-Stuff 164K and PASCAL Context. Our results show that TagCLIP improves the Intersection over Union (IoU) of unseen classes by 7.4%, 1.7% and 2.1%, respectively, with negligible overheads. The code is available at https://github.com/dvlab-research/TagCLIP.
comment: TPAMI2024
♻ ☆ Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach ECCV 2024
In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
comment: Published at ECCV 2024
♻ ☆ The Impact of Print-Scanning in Heterogeneous Morph Evaluation Scenarios
Face morphing attacks pose an increasing threat to face recognition (FR) systems. A morphed photo contains biometric information from two different subjects to take advantage of vulnerabilities in FRs. These systems are particularly susceptible to attacks when the morphs are subjected to print-scanning to mask the artifacts generated during the morphing process. We investigate the impact of print-scanning on morphing attack detection through a series of evaluations on heterogeneous morphing attack scenarios. Our experiments show that we can increase the Mated Morph Presentation Match Rate (MMPMR) by up to 8.48%. Furthermore, when a Single-image Morphing Attack Detection (S-MAD) algorithm is not trained to detect print-scanned morphs the Morphing Attack Classification Error Rate (MACER) can increase by up to 96.12%, indicating significant vulnerability.
comment: Accepted as a special sessions paper at IJCB 2024
AIGCs Confuse AI Too: Investigating and Explaining Synthetic Image-induced Hallucinations in Large Vision-Language Models
The evolution of Artificial Intelligence Generated Contents (AIGCs) is advancing towards higher quality. The growing interactions with AIGCs present a new challenge to the data-driven AI community: While AI-generated contents have played a crucial role in a wide range of AI models, the potential hidden risks they introduce have not been thoroughly examined. Beyond human-oriented forgery detection, AI-generated content poses potential issues for AI models originally designed to process natural data. In this study, we underscore the exacerbated hallucination phenomena in Large Vision-Language Models (LVLMs) caused by AI-synthetic images. Remarkably, our findings shed light on a consistent AIGC \textbf{hallucination bias}: the object hallucinations induced by synthetic images are characterized by a greater quantity and a more uniform position distribution, even these synthetic images do not manifest unrealistic or additional relevant visual features compared to natural images. Moreover, our investigations on Q-former and Linear projector reveal that synthetic images may present token deviations after visual projection, thereby amplifying the hallucination bias.
♻ ☆ Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning
Recently, multi-modal vision-language foundation models have gained significant attention in the medical field. While these models offer great opportunities, they still face crucial challenges, such as the requirement for fine-grained knowledge understanding in computer-aided diagnosis and the capability of utilizing very limited or even no task-specific labeled data in real-world clinical applications. In this study, we present MaCo, a masked contrastive chest X-ray foundation model that tackles these challenges. MaCo explores masked contrastive learning to simultaneously achieve fine-grained image understanding and zero-shot learning for a variety of medical imaging tasks. It designs a correlation weighting mechanism to adjust the correlation between masked chest X-ray image patches and their corresponding reports, thereby enhancing the model's representation learning capabilities. To evaluate the performance of MaCo, we conducted extensive experiments using 6 well-known open-source X-ray datasets. The experimental results demonstrate the superiority of MaCo over 10 state-of-the-art approaches across tasks such as classification, segmentation, detection, and phrase grounding. These findings highlight the significant potential of MaCo in advancing a wide range of medical image analysis tasks.
♻ ☆ BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction
Analyzing and reconstructing visual stimuli from brain signals effectively advances the understanding of human visual system. However, the EEG signals are complex and contain significant noise. This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG, such as difficulties in aligning EEG embeddings with the fine-grained semantic information and a heavy reliance on additional large self-collected dataset for training. To address these challenges, we propose a novel approach called BrainVis. Firstly, we divide the EEG signals into various units and apply a self-supervised approach on them to obtain EEG time-domain features, in an attempt to ease the training difficulty. Additionally, we also propose to utilize the frequency-domain features to enhance the EEG representations. Then, we simultaneously align EEG time-frequency embeddings with the interpolation of the coarse and fine-grained semantics in the CLIP space, to highlight the primary visual components and reduce the cross-modal alignment difficulty. Finally, we adopt the cascaded diffusion models to reconstruct images. Using only 10\% training data of the previous work, our proposed BrainVis outperforms state of the arts in both semantic fidelity reconstruction and generation quality. The code is available at https://github.com/RomGai/BrainVis.
♻ ☆ GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
In autonomous robotics, measurement of the robot's internal state and perception of its environment, including interaction with other agents such as collaborative robots, are essential. Estimating the pose of the robot arm from a single view has the potential to replace classical eye-to-hand calibration approaches and is particularly attractive for online estimation and dynamic environments. In addition to its pose, recovering the robot configuration provides a complete spatial understanding of the observed robot that can be used to anticipate the actions of other agents in advanced robotics use cases. Furthermore, this additional redundancy enables the planning and execution of recovery protocols in case of sensor failures or external disturbances. We introduce GISR - a deep configuration and robot-to-camera pose estimation method that prioritizes execution in real-time. GISR consists of two modules: (i) a geometric initialization module that efficiently computes an approximate robot pose and configuration, and (ii) a deep iterative silhouette-based refinement module that arrives at a final solution in just a few iterations. We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy, and can compete with approaches that rely on ground-truth proprioception and recover only the pose.
comment: IEEE Robotics and Automation Letters (under revision), code available at http://github.com/iwhitey/GISR-robot
♻ ☆ IDNet: A Novel Dataset for Identity Document Analysis and Fraud Detection
Effective fraud detection and analysis of government-issued identity documents, such as passports, driver's licenses, and identity cards, are essential in thwarting identity theft and bolstering security on online platforms. The training of accurate fraud detection and analysis tools depends on the availability of extensive identity document datasets. However, current publicly available benchmark datasets for identity document analysis, including MIDV-500, MIDV-2020, and FMIDV, fall short in several respects: they offer a limited number of samples, cover insufficient varieties of fraud patterns, and seldom include alterations in critical personal identifying fields like portrait images, limiting their utility in training models capable of detecting realistic frauds while preserving privacy. In response to these shortcomings, our research introduces a new benchmark dataset, IDNet, designed to advance privacy-preserving fraud detection efforts. The IDNet dataset comprises 837,060 images of synthetically generated identity documents, totaling approximately 490 gigabytes, categorized into 20 types from $10$ U.S. states and 10 European countries. We evaluate the utility and present use cases of the dataset, illustrating how it can aid in training privacy-preserving fraud detection methods, facilitating the generation of camera and video capturing of identity documents, and testing schema unification and other identity document management functionalities.
comment: 40 pages
♻ ☆ Projected Stochastic Gradient Descent with Quantum Annealed Binary Gradients
We present, QP-SBGD, a novel layer-wise stochastic optimiser tailored towards training neural networks with binary weights, known as binary neural networks (BNNs), on quantum hardware. BNNs reduce the computational requirements and energy consumption of deep learning models with minimal loss in accuracy. However, training them in practice remains to be an open challenge. Most known BNN-optimisers either rely on projected updates or binarise weights post-training. Instead, QP-SBGD approximately maps the gradient onto binary variables, by solving a quadratic constrained binary optimisation. Under practically reasonable assumptions, we show that this update rule converges with a rate of $\mathcal{O}(1 / \sqrt{T})$. Moreover, we show how the $\mathcal{NP}$-hard projection can be effectively executed on an adiabatic quantum annealer, harnessing recent advancements in quantum computation. We also introduce a projected version of this update rule and prove that if a fixed point exists in the binary variable space, the modified updates will converge to it. Last but not least, our algorithm is implemented layer-wise, making it suitable to train larger networks on resource-limited quantum hardware. Through extensive evaluations, we show that QP-SBGD outperforms or is on par with competitive and well-established baselines such as BinaryConnect, signSGD and ProxQuant when optimising the Rosenbrock function, training BNNs as well as binary graph neural networks.
♻ ☆ Co-synthesis of Histopathology Nuclei Image-Label Pairs using a Context-Conditioned Joint Diffusion Model ECCV 2024
In multi-class histopathology nuclei analysis tasks, the lack of training data becomes a main bottleneck for the performance of learning-based methods. To tackle this challenge, previous methods have utilized generative models to increase data by generating synthetic samples. However, existing methods often overlook the importance of considering the context of biological tissues (e.g., shape, spatial layout, and tissue type) in the synthetic data. Moreover, while generative models have shown superior performance in synthesizing realistic histopathology images, none of the existing methods are capable of producing image-label pairs at the same time. In this paper, we introduce a novel framework for co-synthesizing histopathology nuclei images and paired semantic labels using a context-conditioned joint diffusion model. We propose conditioning of a diffusion model using nucleus centroid layouts with structure-related text prompts to incorporate spatial and structural context information into the generation targets. Moreover, we enhance the granularity of our synthesized semantic labels by generating instance-wise nuclei labels using distance maps synthesized concurrently in conjunction with the images and semantic labels. We demonstrate the effectiveness of our framework in generating high-quality samples on multi-institutional, multi-organ, and multi-modality datasets. Our synthetic data consistently outperforms existing augmentation methods in the downstream tasks of nuclei segmentation and classification.
comment: ECCV 2024 accepted
Artificial Intelligence 125
☆ Coaching a Robotic Sonographer: Learning Robotic Ultrasound with Sparse Expert's Feedback
Ultrasound is widely employed for clinical intervention and diagnosis, due to its advantages of offering non-invasive, radiation-free, and real-time imaging. However, the accessibility of this dexterous procedure is limited due to the substantial training and expertise required of operators. The robotic ultrasound (RUS) offers a viable solution to address this limitation; nonetheless, achieving human-level proficiency remains challenging. Learning from demonstrations (LfD) methods have been explored in RUS, which learns the policy prior from a dataset of offline demonstrations to encode the mental model of the expert sonographer. However, active engagement of experts, i.e. Coaching, during the training of RUS has not been explored thus far. Coaching is known for enhancing efficiency and performance in human training. This paper proposes a coaching framework for RUS to amplify its performance. The framework combines DRL (self-supervised practice) with sparse expert's feedback through coaching. The DRL employs an off-policy Soft Actor-Critic (SAC) network, with a reward based on image quality rating. The coaching by experts is modeled as a Partially Observable Markov Decision Process (POMDP), which updates the policy parameters based on the correction by the expert. The validation study on phantoms showed that coaching increases the learning rate by $25\%$ and the number of high-quality image acquisition by $74.5\%$.
comment: Accepted in IEEE Transactions on Medical Robotics and Bionics (TMRB) 2024
☆ Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining
Recent studies have been increasingly demonstrating that high-quality data is crucial for effective pretraining of language models. However, the precise definition of "high-quality" remains underexplored. Focusing on the code domain, we introduce Arctic-SnowCoder-1.3B, a data-efficient base code model pretrained on 555B tokens through three phases of progressively refined data: (1) general pretraining with 500B standard-quality code tokens, preprocessed through basic filtering, deduplication, and decontamination, (2) continued pretraining with 50B high-quality tokens, selected from phase one by a BERT-style quality annotator trained to distinguish good code from random data, using positive examples drawn from high-quality code files, along with instruction data from Magicoder and StarCoder2-Instruct, and (3) enhanced pretraining with 5B synthetic data created by Llama-3.1-70B using phase two data as seeds, adapting the Magicoder approach for pretraining. Despite being trained on a limited dataset, Arctic-SnowCoder achieves state-of-the-art performance on BigCodeBench, a coding benchmark focusing on practical and challenging programming tasks, compared to similarly sized models trained on no more than 1T tokens, outperforming Phi-1.5-1.3B by 36%. Across all evaluated benchmarks, Arctic-SnowCoder-1.3B beats StarCoderBase-3B pretrained on 1T tokens. Additionally, it matches the performance of leading small base code models trained on trillions of tokens. For example, Arctic-SnowCoder-1.3B surpasses StarCoder2-3B, pretrained on over 3.3T tokens, on HumanEval+, a benchmark that evaluates function-level code generation, and remains competitive on BigCodeBench. Our evaluation presents a comprehensive analysis justifying various design choices for Arctic-SnowCoder. Most importantly, we find that the key to high-quality data is its alignment with the distribution of downstream applications.
☆ TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model ICML 2024
With recent advances in building foundation models for texts and video data, there is a surge of interest in foundation models for time series. A family of models have been developed, utilizing a temporal auto-regressive generative Transformer architecture, whose effectiveness has been proven in Large Language Models. While the empirical results are promising, almost all existing time series foundation models have only been tested on well-curated ``benchmark'' datasets very similar to texts. However, real-world time series exhibit unique challenges, such as variable channel sizes across domains, missing values, and varying signal sampling intervals due to the multi-resolution nature of real-world data. Additionally, the uni-directional nature of temporally auto-regressive decoding limits the incorporation of domain knowledge, such as physical laws expressed as partial differential equations (PDEs). To address these challenges, we introduce the Time Diffusion Transformer (TimeDiT), a general foundation model for time series that employs a denoising diffusion paradigm instead of temporal auto-regressive generation. TimeDiT leverages the Transformer architecture to capture temporal dependencies and employs diffusion processes to generate high-quality candidate samples without imposing stringent assumptions on the target distribution via novel masking schemes and a channel alignment strategy. Furthermore, we propose a finetuning-free model editing strategy that allows the seamless integration of external knowledge during the sampling process without updating any model parameters. Extensive experiments conducted on a varity of tasks such as forecasting, imputation, and anomaly detection, demonstrate the effectiveness of TimeDiT.
comment: 23 Pages, 6 Figures, 11 Tables. First present at ICML 2024 Workshop on Foundation Models in the Wild
☆ On the Benefits of Memory for Modeling Time-Dependent PDEs
Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving partial differential equations (PDEs). These techniques frequently offer a better trade-off between computational cost and accuracy for many PDE families of interest. For time-dependent PDEs, existing methodologies typically treat PDEs as Markovian systems, i.e., the evolution of the system only depends on the ``current state'', and not the past states. However, distortion of the input signals -- e.g., due to discretization or low-pass filtering -- can render the evolution of the distorted signals non-Markovian. In this work, motivated by the Mori-Zwanzig theory of model reduction, we investigate the impact of architectures with memory for modeling PDEs: that is, when past states are explicitly used to predict the future. We introduce Memory Neural Operator (MemNO), a network based on the recent SSM architectures and Fourier Neural Operator (FNO). We empirically demonstrate on a variety of PDE families of interest that when the input is given on a low-resolution grid, MemNO significantly outperforms the baselines without memory, achieving more than 6 times less error on unseen PDEs. Via a combination of theory and experiments, we show that the effect of memory is particularly significant when the solution of the PDE has high frequency Fourier components (e.g., low-viscosity fluid dynamics), and it also increases robustness to observation noise.
☆ Speech Foundation Model Ensembles for the Controlled Singing Voice Deepfake Detection (CtrSVDD) Challenge 2024
This work details our approach to achieving a leading system with a 1.79% pooled equal error rate (EER) on the evaluation set of the Controlled Singing Voice Deepfake Detection (CtrSVDD). The rapid advancement of generative AI models presents significant challenges for detecting AI-generated deepfake singing voices, attracting increased research attention. The Singing Voice Deepfake Detection (SVDD) Challenge 2024 aims to address this complex task. In this work, we explore the ensemble methods, utilizing speech foundation models to develop robust singing voice anti-spoofing systems. We also introduce a novel Squeeze-and-Excitation Aggregation (SEA) method, which efficiently and effectively integrates representation features from the speech foundation models, surpassing the performance of our other individual systems. Evaluation results confirm the efficacy of our approach in detecting deepfake singing voices. The codes can be accessed at https://github.com/Anmol2059/SVDD2024.
comment: Accepted to the IEEE Spoken Language Technology Workshop (SLT) 2024. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Initial Development and Evaluation of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) System
Computer system creativity is a key step on the pathway to artificial general intelligence (AGI). It is elusive, however, due to the fact that human creativity is not fully understood and, thus, it is difficult to develop this capability in software. Large language models (LLMs) provide a facsimile of creativity and the appearance of sentience, while not actually being either creative or sentient. While LLMs have created bona fide new content, in some cases - such as with harmful hallucinations - inadvertently, their deliberate creativity is seen by some to not match that of humans. In response to this challenge, this paper proposes a technique for enhancing LLM output creativity via an iterative process of concept injection and refinement. Initial work on the development of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) system is presented and the efficacy of key system components is evaluated.
☆ Biochemical Prostate Cancer Recurrence Prediction: Thinking Fast & Slow
Time to biochemical recurrence in prostate cancer is essential for prognostic monitoring of the progression of patients after prostatectomy, which assesses the efficacy of the surgery. In this work, we proposed to leverage multiple instance learning through a two-stage ``thinking fast \& slow'' strategy for the time to recurrence (TTR) prediction. The first (``thinking fast'') stage finds the most relevant WSI area for biochemical recurrence and the second (``thinking slow'') stage leverages higher resolution patches to predict TTR. Our approach reveals a mean C-index ($Ci$) of 0.733 ($\theta=0.059$) on our internal validation and $Ci=0.603$ on the LEOPARD challenge validation set. Post hoc attention visualization shows that the most attentive area contributes to the TTR prediction.
comment: 8 pages, 3 figures, methodology paper for LEOPRARD Challenge
Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications
The development of satellite constellation applications is rapidly advancing due to increasing user demands, reduced operational costs, and technological advancements. However, a significant gap in the existing literature concerns reconfiguration and retasking issues within satellite constellations, which is the primary focus of our research. In this work, we critically assess the impact of satellite failures on constellation performance and the associated task requirements. To facilitate this analysis, we introduce a system modeling approach for GPS satellite constellations, enabling an investigation into performance dynamics and task distribution strategies, particularly in scenarios where satellite failures occur during mission-critical operations. Additionally, we introduce reinforcement learning (RL) techniques, specifically Q-learning, Policy Gradient, Deep Q-Network (DQN), and Proximal Policy Optimization (PPO), for managing satellite constellations, addressing the challenges posed by reconfiguration and retasking following satellite failures. Our results demonstrate that DQN and PPO achieve effective outcomes in terms of average rewards, task completion rates, and response times.
comment: Accepted for publication in the IEEE Military Communications Conference (IEEE MILCOM 2024)
☆ Action-Based ADHD Diagnosis in Video
Attention Deficit Hyperactivity Disorder (ADHD) causes significant impairment in various domains. Early diagnosis of ADHD and treatment could significantly improve the quality of life and functioning. Recently, machine learning methods have improved the accuracy and efficiency of the ADHD diagnosis process. However, the cost of the equipment and trained staff required by the existing methods are generally huge. Therefore, we introduce the video-based frame-level action recognition network to ADHD diagnosis for the first time. We also record a real multi-modal ADHD dataset and extract three action classes from the video modality for ADHD diagnosis. The whole process data have been reported to CNTW-NHS Foundation Trust, which would be reviewed by medical consultants/professionals and will be made public in due course.
comment: 31st European Symposium on Artificial Neural Networks
☆ NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise
Backdoor attacks pose a significant threat when using third-party data for deep learning development. In these attacks, data can be manipulated to cause a trained model to behave improperly when a specific trigger pattern is applied, providing the adversary with unauthorized advantages. While most existing works focus on designing trigger patterns in both visible and invisible to poison the victim class, they typically result in a single targeted class upon the success of the backdoor attack, meaning that the victim class can only be converted to another class based on the adversary predefined value. In this paper, we address this issue by introducing a novel sample-specific multi-targeted backdoor attack, namely NoiseAttack. Specifically, we adopt White Gaussian Noise (WGN) with various Power Spectral Densities (PSD) as our underlying triggers, coupled with a unique training strategy to execute the backdoor attack. This work is the first of its kind to launch a vision backdoor attack with the intent to generate multiple targeted classes with minimal input configuration. Furthermore, our extensive experimental results demonstrate that NoiseAttack can achieve a high attack success rate against popular network architectures and datasets, as well as bypass state-of-the-art backdoor detection methods. Our source code and experiments are available at https://github.com/SiSL-URI/NoiseAttack/tree/main.
☆ FastVoiceGrad: One-step Diffusion-Based Voice Conversion with Adversarial Conditional Diffusion Distillation
Diffusion-based voice conversion (VC) techniques such as VoiceGrad have attracted interest because of their high VC performance in terms of speech quality and speaker similarity. However, a notable limitation is the slow inference caused by the multi-step reverse diffusion. Therefore, we propose FastVoiceGrad, a novel one-step diffusion-based VC that reduces the number of iterations from dozens to one while inheriting the high VC performance of the multi-step diffusion-based VC. We obtain the model using adversarial conditional diffusion distillation (ACDD), leveraging the ability of generative adversarial networks and diffusion models while reconsidering the initial states in sampling. Evaluations of one-shot any-to-any VC demonstrate that FastVoiceGrad achieves VC performance superior to or comparable to that of previous multi-step diffusion-based VC while enhancing the inference speed. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/.
comment: Accepted to Interspeech 2024. Project page: https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/
☆ A+AI: Threats to Society, Remedies, and Governance
This document focuses on the threats, especially near-term threats, that Artificial Intelligence (AI) brings to society. Most of the threats discussed here can result from any algorithmic process, not just AI; in addition, defining AI is notoriously difficult. For both reasons, it is important to think of "A+AI": Algorithms and Artificial Intelligence. In addition to the threats, this paper discusses countermeasures to them, and it includes a table showing which countermeasures are likely to mitigate which threats. Thoughtful governance could manage the risks without seriously impeding progress; in fact, chances are it would accelerate progress by reducing the social chaos that would otherwise be likely. The paper lists specific actions government should take as soon as possible, namely: * Require all social media platforms accessible in the U.S. to offer users verification that their accounts are owned by citizens, and to display every account's verification status * Establish regulations to require that all products created or significantly modified with A+AI be clearly labeled as such; to restrict use of generative AI to create likenesses of persons; and to require creators of generative AI software to disclose materials used to train their software and to compensate the creators of any copyrighted material used * Fund a crash project of research on mitigating the threats * Fund educational campaigns to raise awareness of the threats
comment: 25 pages
☆ On a heuristic approach to the description of consciousness as a hypercomplex system state and the possibility of machine consciousness (German edition)
This article presents a heuristic view that shows that the inner states of consciousness experienced by every human being have a physical but imaginary hypercomplex basis. The hypercomplex description is necessary because certain processes of consciousness cannot be physically measured in principle, but nevertheless exist. Based on theoretical considerations, it could be possible - as a result of mathematical investigations into a so-called bicomplex algebra - to generate and use hypercomplex system states on machines in a targeted manner. The hypothesis of the existence of hypercomplex system states on machines is already supported by the surprising performance of highly complex AI systems. However, this has yet to be proven. In particular, there is a lack of experimental data that distinguishes such systems from other systems, which is why this question will be addressed in later articles. This paper describes the developed bicomplex algebra and possible applications of these findings to generate hypercomplex energy states on machines. In the literature, such system states are often referred to as machine consciousness. The article uses mathematical considerations to explain how artificial consciousness could be generated and what advantages this would have for such AI systems.
comment: 7 pages, in German language. 1 figure
☆ CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation
Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given the few-shot examples, we use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology question-answering (QA), medicine QA and commonsense QA as well as summarization. Our experiments show that CRAFT-based models outperform or achieve comparable performance to general LLMs for QA tasks, while CRAFT-based summarization models outperform models trained on human-curated data by 46 preference points.
☆ DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos
Despite significant advancements in monocular depth estimation for static images, estimating video depth in the open world remains challenging, since open-world videos are extremely diverse in content, motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. DepthCrafter achieves generalization ability to open-world videos by training a video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy with the compiled paired video-depth datasets. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that processes extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
comment: Project webpage: https://depthcrafter.github.io
☆ A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial
Dental disease is a prevalent chronic condition associated with substantial financial burden, personal suffering, and increased risk of systemic diseases. Despite widespread recommendations for twice-daily tooth brushing, adherence to recommended oral self-care behaviors remains sub-optimal due to factors such as forgetfulness and disengagement. To address this, we developed Oralytics, a mHealth intervention system designed to complement clinician-delivered preventative care for marginalized individuals at risk for dental disease. Oralytics incorporates an online reinforcement learning algorithm to determine optimal times to deliver intervention prompts that encourage oral self-care behaviors. We have deployed Oralytics in a registered clinical trial. The deployment required careful design to manage challenges specific to the clinical trials setting in the U.S. In this paper, we (1) highlight key design decisions of the RL algorithm that address these challenges and (2) conduct a re-sampling analysis to evaluate algorithm design decisions. A second phase (randomized control trial) of Oralytics is planned to start in spring 2025.
☆ OLMoE: Open Mixture-of-Experts Language Models
We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.
comment: 61 pages (24 main), 36 figures, 14 tables
☆ Low-Resolution Face Recognition via Adaptable Instance-Relation Distillation IJCNN 2024
Low-resolution face recognition is a challenging task due to the missing of informative details. Recent approaches based on knowledge distillation have proven that high-resolution clues can well guide low-resolution face recognition via proper knowledge transfer. However, due to the distribution difference between training and testing faces, the learned models often suffer from poor adaptability. To address that, we split the knowledge transfer process into distillation and adaptation steps, and propose an adaptable instance-relation distillation approach to facilitate low-resolution face recognition. In the approach, the student distills knowledge from high-resolution teacher in both instance level and relation level, providing sufficient cross-resolution knowledge transfer. Then, the learned student can be adaptable to recognize low-resolution faces with adaptive batch normalization in inference. In this manner, the capability of recovering missing details of familiar low-resolution faces can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on low-resolution face recognition clearly demonstrate the effectiveness and adaptability of our approach.
comment: Accepted by IJCNN 2024
☆ AllWeatherNet:Unified Image enhancement for autonomous driving under adverse weather and lowlight-conditions
Adverse conditions like snow, rain, nighttime, and fog, pose challenges for autonomous driving perception systems. Existing methods have limited effectiveness in improving essential computer vision tasks, such as semantic segmentation, and often focus on only one specific condition, such as removing rain or translating nighttime images into daytime ones. To address these limitations, we propose a method to improve the visual quality and clarity degraded by such adverse conditions. Our method, AllWeather-Net, utilizes a novel hierarchical architecture to enhance images across all adverse conditions. This architecture incorporates information at three semantic levels: scene, object, and texture, by discriminating patches at each level. Furthermore, we introduce a Scaled Illumination-aware Attention Mechanism (SIAM) that guides the learning towards road elements critical for autonomous driving perception. SIAM exhibits robustness, remaining unaffected by changes in weather conditions or environmental scenes. AllWeather-Net effectively transforms images into normal weather and daytime scenes, demonstrating superior image enhancement results and subsequently enhancing the performance of semantic segmentation, with up to a 5.3% improvement in mIoU in the trained domain. We also show our model's generalization ability by applying it to unseen domains without re-training, achieving up to 3.9% mIoU improvement. Code can be accessed at: https://github.com/Jumponthemoon/AllWeatherNet.
☆ BEAVER: An Enterprise Benchmark for Text-to-SQL
Existing text-to-SQL benchmarks have largely been constructed using publicly available tables from the web with human-generated tests containing question and SQL statement pairs. They typically show very good results and lead people to think that LLMs are effective at text-to-SQL tasks. In this paper, we apply off-the-shelf LLMs to a benchmark containing enterprise data warehouse data. In this environment, LLMs perform poorly, even when standard prompt engineering and RAG techniques are utilized. As we will show, the reasons for poor performance are largely due to three characteristics: (1) public LLMs cannot train on enterprise data warehouses because they are largely in the "dark web", (2) schemas of enterprise tables are more complex than the schemas in public data, which leads the SQL-generation task innately harder, and (3) business-oriented questions are often more complex, requiring joins over multiple tables and aggregations. As a result, we propose a new dataset BEAVER, sourced from real enterprise data warehouses together with natural language queries and their correct SQL statements which we collected from actual user history. We evaluated this dataset using recent LLMs and demonstrated their poor performance on this task. We hope this dataset will facilitate future researchers building more sophisticated text-to-SQL systems which can do better on this important class of data.
☆ TransDAE: Dual Attention Mechanism in a Hierarchical Transformer for Efficient Medical Image Segmentation
In healthcare, medical image segmentation is crucial for accurate disease diagnosis and the development of effective treatment strategies. Early detection can significantly aid in managing diseases and potentially prevent their progression. Machine learning, particularly deep convolutional neural networks, has emerged as a promising approach to addressing segmentation challenges. Traditional methods like U-Net use encoding blocks for local representation modeling and decoding blocks to uncover semantic relationships. However, these models often struggle with multi-scale objects exhibiting significant variations in texture and shape, and they frequently fail to capture long-range dependencies in the input data. Transformers designed for sequence-to-sequence predictions have been proposed as alternatives, utilizing global self-attention mechanisms. Yet, they can sometimes lack precise localization due to insufficient granular details. To overcome these limitations, we introduce TransDAE: a novel approach that reimagines the self-attention mechanism to include both spatial and channel-wise associations across the entire feature space, while maintaining computational efficiency. Additionally, TransDAE enhances the skip connection pathway with an inter-scale interaction module, promoting feature reuse and improving localization accuracy. Remarkably, TransDAE outperforms existing state-of-the-art methods on the Synaps multi-organ dataset, even without relying on pre-trained weights.
☆ AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities
Generative AI has drawn significant attention from stakeholders in higher education. As it introduces new opportunities for personalized learning and tutoring support, it simultaneously poses challenges to academic integrity and leads to ethical issues. Consequently, governing responsible AI usage within higher education institutions (HEIs) becomes increasingly important. Leading universities have already published guidelines on Generative AI, with most attempting to embrace this technology responsibly. This study provides a new perspective by focusing on strategies for responsible AI governance as demonstrated in these guidelines. Through a case study of 14 prestigious universities in the United States, we identified the multi-unit governance of AI, the role-specific governance of AI, and the academic characteristics of AI governance from their AI guidelines. The strengths and potential limitations of these strategies and characteristics are discussed. The findings offer practical implications for guiding responsible AI usage in HEIs and beyond.
☆ When Digital Twin Meets 6G: Concepts, Obstacles, and Research Prospects
The convergence of digital twin technology and the emerging 6G network presents both challenges and numerous research opportunities. This article explores the potential synergies between digital twin and 6G, highlighting the key challenges and proposing fundamental principles for their integration. We discuss the unique requirements and capabilities of digital twin in the context of 6G networks, such as sustainable deployment, real-time synchronization, seamless migration, predictive analytic, and closed-loop control. Furthermore, we identify research opportunities for leveraging digital twin and artificial intelligence to enhance various aspects of 6G, including network optimization, resource allocation, security, and intelligent service provisioning. This article aims to stimulate further research and innovation at the intersection of digital twin and 6G, paving the way for transformative applications and services in the future.
comment: 7 pages, 6 figures
☆ vec2wav 2.0: Advancing Voice Conversion via Discrete Token Vocoders
We propose a new speech discrete token vocoder, vec2wav 2.0, which advances voice conversion (VC). We use discrete tokens from speech self-supervised models as the content features of source speech, and treat VC as a prompted vocoding task. To amend the loss of speaker timbre in the content tokens, vec2wav 2.0 utilizes the WavLM features to provide strong timbre-dependent information. A novel adaptive Snake activation function is proposed to better incorporate timbre into the waveform reconstruction process. In this way, vec2wav 2.0 learns to alter the speaker timbre appropriately given different reference prompts. Also, no supervised data is required for vec2wav 2.0 to be effectively trained. Experimental results demonstrate that vec2wav 2.0 outperforms all other baselines to a considerable margin in terms of audio quality and speaker similarity in any-to-any VC. Ablation studies verify the effects made by the proposed techniques. Moreover, vec2wav 2.0 achieves competitive cross-lingual VC even only trained on monolingual corpus. Thus, vec2wav 2.0 shows timbre can potentially be manipulated only by speech token vocoders, pushing the frontiers of VC and speech synthesis.
comment: 5 pages, 4 figures
☆ QueryCheetah: Fast Automated Discovery of Attribute Inference Attacks Against Query-Based Systems CCS
Query-based systems (QBSs) are one of the key approaches for sharing data. QBSs allow analysts to request aggregate information from a private protected dataset. Attacks are a crucial part of ensuring QBSs are truly privacy-preserving. The development and testing of attacks is however very labor-intensive and unable to cope with the increasing complexity of systems. Automated approaches have been shown to be promising but are currently extremely computationally intensive, limiting their applicability in practice. We here propose QueryCheetah, a fast and effective method for automated discovery of privacy attacks against QBSs. We instantiate QueryCheetah on attribute inference attacks and show it to discover stronger attacks than previous methods while being 18 times faster than the state-of-the-art automated approach. We then show how QueryCheetah allows system developers to thoroughly evaluate the privacy risk, including for various attacker strengths and target individuals. We finally show how QueryCheetah can be used out-of-the-box to find attacks in larger syntaxes and workarounds around ad-hoc defenses.
comment: This is an extended version of the ACM CCS paper which includes appendices
Planning to avoid ambiguous states through Gaussian approximations to non-linear sensors in active inference agents
In nature, active inference agents must learn how observations of the world represent the state of the agent. In engineering, the physics behind sensors is often known reasonably accurately and measurement functions can be incorporated into generative models. When a measurement function is non-linear, the transformed variable is typically approximated with a Gaussian distribution to ensure tractable inference. We show that Gaussian approximations that are sensitive to the curvature of the measurement function, such as a second-order Taylor approximation, produce a state-dependent ambiguity term. This induces a preference over states, based on how accurately the state can be inferred from the observation. We demonstrate this preference with a robot navigation experiment where agents plan trajectories.
comment: 13 pages, 3 figures. Accepted to the International Workshop on Active Inference 2024
☆ Exploiting the Vulnerability of Large Language Models via Defense-Aware Architectural Backdoor
Deep neural networks (DNNs) have long been recognized as vulnerable to backdoor attacks. By providing poisoned training data in the fine-tuning process, the attacker can implant a backdoor into the victim model. This enables input samples meeting specific textual trigger patterns to be classified as target labels of the attacker's choice. While such black-box attacks have been well explored in both computer vision and natural language processing (NLP), backdoor attacks relying on white-box attack philosophy have hardly been thoroughly investigated. In this paper, we take the first step to introduce a new type of backdoor attack that conceals itself within the underlying model architecture. Specifically, we pcricKet1996!ropose to design separate backdoor modules consisting of two functions: trigger detection and noise injection. The add-on modules of model architecture layers can detect the presence of input trigger tokens and modify layer weights using Gaussian noise to disturb the feature distribution of the baseline model. We conduct extensive experiments to evaluate our attack methods using two model architecture settings on five different large language datasets. We demonstrate that the training-free architectural backdoor on a large language model poses a genuine threat. Unlike the-state-of-art work, it can survive the rigorous fine-tuning and retraining process, as well as evade output probability-based defense methods (i.e. BDDR). All the code and data is available https://github.com/SiSL-URI/Arch_Backdoor_LLM.
☆ Comprehensive Equity Index (CEI): Definition and Application to Bias Evaluation in Biometrics ICPR
We present a novel metric designed, among other applications, to quantify biased behaviors of machine learning models. As its core, the metric consists of a new similarity metric between score distributions that balances both their general shapes and tails' probabilities. In that sense, our proposed metric may be useful in many application areas. Here we focus on and apply it to the operational evaluation of face recognition systems, with special attention to quantifying demographic biases; an application where our metric is especially useful. The topic of demographic bias and fairness in biometric recognition systems has gained major attention in recent years. The usage of these systems has spread in society, raising concerns about the extent to which these systems treat different population groups. A relevant step to prevent and mitigate demographic biases is first to detect and quantify them. Traditionally, two approaches have been studied to quantify differences between population groups in machine learning literature: 1) measuring differences in error rates, and 2) measuring differences in recognition score distributions. Our proposed Comprehensive Equity Index (CEI) trade-offs both approaches combining both errors from distribution tails and general distribution shapes. This new metric is well suited to real-world scenarios, as measured on NIST FRVT evaluations, involving high-performance systems and realistic face databases including a wide range of covariates and demographic groups. We first show the limitations of existing metrics to correctly assess the presence of biases in realistic setups and then propose our new metric to tackle these limitations. We tested the proposed metric with two state-of-the-art models and four widely used databases, showing its capacity to overcome the main flaws of previous bias metrics.
comment: Accepted paper for the 27th International Conference on Pattern Recognition (ICPR) 2024
☆ From Grounding to Planning: Benchmarking Bottlenecks in Web Agents
General web-based agents are increasingly essential for interacting with complex web environments, yet their performance in real-world web applications remains poor, yielding extremely low accuracy even with state-of-the-art frontier models. We observe that these agents can be decomposed into two primary components: Planning and Grounding. Yet, most existing research treats these agents as black boxes, focusing on end-to-end evaluations which hinder meaningful improvements. We sharpen the distinction between the planning and grounding components and conduct a novel analysis by refining experiments on the Mind2Web dataset. Our work proposes a new benchmark for each of the components separately, identifying the bottlenecks and pain points that limit agent performance. Contrary to prevalent assumptions, our findings suggest that grounding is not a significant bottleneck and can be effectively addressed with current techniques. Instead, the primary challenge lies in the planning component, which is the main source of performance degradation. Through this analysis, we offer new insights and demonstrate practical suggestions for improving the capabilities of web agents, paving the way for more reliable agents.
☆ GradINN: Gradient Informed Neural Network
We propose Gradient Informed Neural Networks (GradINNs), a methodology inspired by Physics Informed Neural Networks (PINNs) that can be used to efficiently approximate a wide range of physical systems for which the underlying governing equations are completely unknown or cannot be defined, a condition that is often met in complex engineering problems. GradINNs leverage prior beliefs about a system's gradient to constrain the predicted function's gradient across all input dimensions. This is achieved using two neural networks: one modeling the target function and an auxiliary network expressing prior beliefs, e.g., smoothness. A customized loss function enables training the first network while enforcing gradient constraints derived from the auxiliary network. We demonstrate the advantages of GradINNs, particularly in low-data regimes, on diverse problems spanning non time-dependent systems (Friedman function, Stokes Flow) and time-dependent systems (Lotka-Volterra, Burger's equation). Experimental results showcase strong performance compared to standard neural networks and PINN-like approaches across all tested scenarios.
☆ LUK: Empowering Log Understanding with Expert Knowledge from Large Language Models
Logs play a critical role in providing essential information for system monitoring and troubleshooting. Recently, with the success of pre-trained language models (PLMs) and large language models (LLMs) in natural language processing (NLP), smaller PLMs (such as BERT) and LLMs (like ChatGPT) have become the current mainstream approaches for log analysis. While LLMs possess rich knowledge, their high computational costs and unstable performance make LLMs impractical for analyzing logs directly. In contrast, smaller PLMs can be fine-tuned for specific tasks even with limited computational resources, making them more practical. However, these smaller PLMs face challenges in understanding logs comprehensively due to their limited expert knowledge. To better utilize the knowledge embedded within LLMs for log understanding, this paper introduces a novel knowledge enhancement framework, called LUK, which acquires expert knowledge from LLMs to empower log understanding on a smaller PLM. Specifically, we design a multi-expert collaboration framework based on LLMs consisting of different roles to acquire expert knowledge. In addition, we propose two novel pre-training tasks to enhance the log pre-training with expert knowledge. LUK achieves state-of-the-art results on different log analysis tasks and extensive experiments demonstrate expert knowledge from LLMs can be utilized more effectively to understand logs.
comment: Under review
☆ A randomized simulation trial evaluating ABiMed, a clinical decision support system for medication reviews and polypharmacy management
Background: Medication review is a structured interview of the patient, performed by the pharmacist and aimed at optimizing drug treatments. In practice, medication review is a long and cognitively-demanding task that requires specific knowledge. Clinical practice guidelines have been proposed, but their application is tedious. Methods: We designed ABiMed, a clinical decision support system for medication reviews, based on the implementation of the STOPP/START v2 guidelines and on the visual presentation of aggregated drug knowledge using tables, graphs and flower glyphs. We evaluated ABiMed with 39 community pharmacists during a randomized simulation trial, each pharmacist performing a medication review for two fictitious patients without ABiMed, and two others with ABiMed. We recorded the problems identified by the pharmacists, the interventions proposed, the response time, the perceived usability and the comments. Pharmacists' medication reviews were compared to an expert-designed gold standard. Results: With ABiMed, pharmacists found 1.6 times more relevant drug-related problems during the medication review (p=1.1e-12) and proposed better interventions (p=9.8e-9), without needing more time (p=0.56). The System Usability Scale score is 82.7, which is ranked "excellent". In their comments, pharmacists appreciated the visual aspect of ABiMed and its ability to compare the current treatment with the proposed one. A multifactor analysis showed no difference in the support offered by ABiMed according to the pharmacist's age or sex, in terms of percentage of problems identified or quality of the proposed interventions. Conclusions: The use of an intelligent and visual clinical decision support system can help pharmacists when they perform medication reviews. Our main perspective is the validation of the system in clinical conditions.
comment: 8 pages, 6 figures
☆ 3D-LEX v1.0: 3D Lexicons for American Sign Language and Sign Language of the Netherlands
In this work, we present an efficient approach for capturing sign language in 3D, introduce the 3D-LEX v1.0 dataset, and detail a method for semi-automatic annotation of phonetic properties. Our procedure integrates three motion capture techniques encompassing high-resolution 3D poses, 3D handshapes, and depth-aware facial features, and attains an average sampling rate of one sign every 10 seconds. This includes the time for presenting a sign example, performing and recording the sign, and archiving the capture. The 3D-LEX dataset includes 1,000 signs from American Sign Language and an additional 1,000 signs from the Sign Language of the Netherlands. We showcase the dataset utility by presenting a simple method for generating handshape annotations directly from 3D-LEX. We produce handshape labels for 1,000 signs from American Sign Language and evaluate the labels in a sign recognition task. The labels enhance gloss recognition accuracy by 5% over using no handshape annotations, and by 1% over expert annotations. Our motion capture data supports in-depth analysis of sign features and facilitates the generation of 2D projections from any viewpoint. The 3D-LEX collection has been aligned with existing sign language benchmarks and linguistic resources, to support studies in 3D-aware sign language processing.
☆ What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices
Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.
comment: Work in progress
☆ Latent Distillation for Continual Object Detection at the Edge ECCV
While numerous methods achieving remarkable performance exist in the Object Detection literature, addressing data distribution shifts remains challenging. Continual Learning (CL) offers solutions to this issue, enabling models to adapt to new data while maintaining performance on previous data. This is particularly pertinent for edge devices, common in dynamic environments like automotive and robotics. In this work, we address the memory and computation constraints of edge devices in the Continual Learning for Object Detection (CLOD) scenario. Specifically, (i) we investigate the suitability of an open-source, lightweight, and fast detector, namely NanoDet, for CLOD on edge devices, improving upon larger architectures used in the literature. Moreover, (ii) we propose a novel CL method, called Latent Distillation~(LD), that reduces the number of operations and the memory required by state-of-the-art CL approaches without significantly compromising detection performance. Our approach is validated using the well-known VOC and COCO benchmarks, reducing the distillation parameter overhead by 74\% and the Floating Points Operations~(FLOPs) by 56\% per model update compared to other distillation methods.
comment: ECCV workshops, Computational Aspects of Deep Learning (CADL) 2024
☆ Real-Time Indoor Object Detection based on hybrid CNN-Transformer Approach
Real-time object detection in indoor settings is a challenging area of computer vision, faced with unique obstacles such as variable lighting and complex backgrounds. This field holds significant potential to revolutionize applications like augmented and mixed realities by enabling more seamless interactions between digital content and the physical world. However, the scarcity of research specifically fitted to the intricacies of indoor environments has highlighted a clear gap in the literature. To address this, our study delves into the evaluation of existing datasets and computational models, leading to the creation of a refined dataset. This new dataset is derived from OpenImages v7, focusing exclusively on 32 indoor categories selected for their relevance to real-world applications. Alongside this, we present an adaptation of a CNN detection model, incorporating an attention mechanism to enhance the model's ability to discern and prioritize critical features within cluttered indoor scenes. Our findings demonstrate that this approach is not just competitive with existing state-of-the-art models in accuracy and speed but also opens new avenues for research and application in the field of real-time indoor object detection.
☆ The Role of Large Language Models in Musicology: Are We Ready to Trust the Machines?
In this work, we explore the use and reliability of Large Language Models (LLMs) in musicology. From a discussion with experts and students, we assess the current acceptance and concerns regarding this, nowadays ubiquitous, technology. We aim to go one step further, proposing a semi-automatic method to create an initial benchmark using retrieval-augmented generation models and multiple-choice question generation, validated by human experts. Our evaluation on 400 human-validated questions shows that current vanilla LLMs are less reliable than retrieval augmented generation from music dictionaries. This paper suggests that the potential of LLMs in musicology requires musicology driven research that can specialized LLMs by including accurate and reliable domain knowledge.
☆ Fair Railway Network Design
When designing a public transportation network in a country, one may want to minimise the sum of travel duration of all inhabitants. This corresponds to a purely utilitarian view and does not involve any fairness consideration, as the resulting network will typically benefit the capital city and/or large central cities while leaving some peripheral cities behind. On the other hand, a more egalitarian view will allow some people to travel between peripheral cities without having to go through a central city. We define a model, propose algorithms for computing solution networks, and report on experiments based on real data.
comment: 32 pages, 18 figures
☆ Learning State-Dependent Policy Parametrizations for Dynamic Technician Routing with Rework
Home repair and installation services require technicians to visit customers and resolve tasks of different complexity. Technicians often have heterogeneous skills and working experiences. The geographical spread of customers makes achieving only perfect matches between technician skills and task requirements impractical. Additionally, technicians are regularly absent due to sickness. With non-perfect assignments regarding task requirement and technician skill, some tasks may remain unresolved and require a revisit and rework. Companies seek to minimize customer inconvenience due to delay. We model the problem as a sequential decision process where, over a number of service days, customers request service while heterogeneously skilled technicians are routed to serve customers in the system. Each day, our policy iteratively builds tours by adding "important" customers. The importance bases on analytical considerations and is measured by respecting routing efficiency, urgency of service, and risk of rework in an integrated fashion. We propose a state-dependent balance of these factors via reinforcement learning. A comprehensive study shows that taking a few non-perfect assignments can be quite beneficial for the overall service quality. We further demonstrate the value provided by a state-dependent parametrization.
☆ Dialogue You Can Trust: Human and AI Perspectives on Generated Conversations
As dialogue systems and chatbots increasingly integrate into everyday interactions, the need for efficient and accurate evaluation methods becomes paramount. This study explores the comparative performance of human and AI assessments across a range of dialogue scenarios, focusing on seven key performance indicators (KPIs): Coherence, Innovation, Concreteness, Goal Contribution, Commonsense Contradiction, Incorrect Fact, and Redundancy. Utilizing the GPT-4o API, we generated a diverse dataset of conversations and conducted a two-part experimental analysis. In Experiment 1, we evaluated multi-party conversations on Coherence, Innovation, Concreteness, and Goal Contribution, revealing that GPT models align closely with human judgments. Notably, both human and AI evaluators exhibited a tendency towards binary judgment rather than linear scaling, highlighting a shared challenge in these assessments. Experiment 2 extended the work of Finch et al. (2023) by focusing on dyadic dialogues and assessing Commonsense Contradiction, Incorrect Fact, and Redundancy. The results indicate that while GPT-4o demonstrates strong performance in maintaining factual accuracy and commonsense reasoning, it still struggles with reducing redundancy and self-contradiction. Our findings underscore the potential of GPT models to closely replicate human evaluation in dialogue systems, while also pointing to areas for improvement. This research offers valuable insights for advancing the development and implementation of more refined dialogue evaluation methodologies, contributing to the evolution of more effective and human-like AI communication tools.
comment: 17 pages, 15 figures, shorter version submitted to 22nd Annual Workshop of the Australasian Language Technology Association (ALTA'24)
☆ LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning
Effective planning is essential for the success of any task, from organizing a vacation to routing autonomous vehicles and developing corporate strategies. It involves setting goals, formulating plans, and allocating resources to achieve them. LLMs are particularly well-suited for automated planning due to their strong capabilities in commonsense reasoning. They can deduce a sequence of actions needed to achieve a goal from a given state and identify an effective course of action. However, it is frequently observed that plans generated through direct prompting often fail upon execution. Our survey aims to highlight the existing challenges in planning with language models, focusing on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning. Through this study, we explore how LLMs transform AI planning and provide unique insights into the future of LM-assisted planning.
☆ Training on the Benchmark Is Not All You Need
The success of Large Language Models (LLMs) relies heavily on the huge amount of pre-training data learned in the pre-training phase. The opacity of the pre-training process and the training data causes the results of many benchmark tests to become unreliable. If any model has been trained on a benchmark test set, it can seriously hinder the health of the field. In order to automate and efficiently test the capabilities of large language models, numerous mainstream benchmarks adopt a multiple-choice format. As the swapping of the contents of multiple-choice options does not affect the meaning of the question itself, we propose a simple and effective data leakage detection method based on this property. Specifically, we shuffle the contents of the options in the data to generate the corresponding derived data sets, and then detect data leakage based on the model's log probability distribution over the derived data sets. If there is a maximum and outlier in the set of log probabilities, it indicates that the data is leaked. Our method is able to work under black-box conditions without access to model training data or weights, effectively identifying data leakage from benchmark test sets in model pre-training data, including both normal scenarios and complex scenarios where options may have been shuffled intentionally or unintentionally. Through experiments based on two LLMs and benchmark designs, we demonstrate the effectiveness of our method. In addition, we evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets and give a ranking of the leaked LLMs for each benchmark, and we find that the Qwen family of LLMs has the highest degree of data leakage.
☆ Empirical evidence of Large Language Model's influence on human spoken communication
Artificial Intelligence (AI) agents now interact with billions of humans in natural language, thanks to advances in Large Language Models (LLMs) like ChatGPT. This raises the question of whether AI has the potential to shape a fundamental aspect of human culture: the way we speak. Recent analyses revealed that scientific publications already exhibit evidence of AI-specific language. But this evidence is inconclusive, since scientists may simply be using AI to copy-edit their writing. To explore whether AI has influenced human spoken communication, we transcribed and analyzed about 280,000 English-language videos of presentations, talks, and speeches from more than 20,000 YouTube channels of academic institutions. We find a significant shift in the trend of word usage specific to words distinctively associated with ChatGPT following its release. These findings provide the first empirical evidence that humans increasingly imitate LLMs in their spoken language. Our results raise societal and policy-relevant concerns about the potential of AI to unintentionally reduce linguistic diversity, or to be deliberately misused for mass manipulation. They also highlight the need for further investigation into the feedback loops between machine behavior and human culture.
☆ Optimal Power Grid Operations with Foundation Models
The energy transition, crucial for tackling the climate crisis, demands integrating numerous distributed, renewable energy sources into existing grids. Along with climate change and consumer behavioral changes, this leads to changes and variability in generation and load patterns, introducing significant complexity and uncertainty into grid planning and operations. While the industry has already started to exploit AI to overcome computational challenges of established grid simulation tools, we propose the use of AI Foundation Models (FMs) and advances in Graph Neural Networks to efficiently exploit poorly available grid data for different downstream tasks, enhancing grid operations. For capturing the grid's underlying physics, we believe that building a self-supervised model learning the power flow dynamics is a critical first step towards developing an FM for the power grid. We show how this approach may close the gap between the industry needs and current grid analysis capabilities, to bring the industry closer to optimal grid operation and planning.
☆ Interpreting Outliers in Time Series Data through Decoding Autoencoder ECML-PKDD
Outlier detection is a crucial analytical tool in various fields. In critical systems like manufacturing, malfunctioning outlier detection can be costly and safety-critical. Therefore, there is a significant need for explainable artificial intelligence (XAI) when deploying opaque models in such environments. This study focuses on manufacturing time series data from a German automotive supply industry. We utilize autoencoders to compress the entire time series and then apply anomaly detection techniques to its latent features. For outlier interpretation, we (i) adopt widely used XAI techniques to the autoencoder's encoder. Additionally, (ii) we propose AEE, Aggregated Explanatory Ensemble, a novel approach that fuses explanations of multiple XAI techniques into a single, more expressive interpretation. For evaluation of explanations, (iii) we propose a technique to measure the quality of encoder explanations quantitatively. Furthermore, we qualitatively assess the effectiveness of outlier explanations with domain expertise.
comment: 14 pages, 8 figures, accepted at TempXAI @ ECML-PKDD
☆ USTC-KXDIGIT System Description for ASVspoof5 Challenge
This paper describes the USTC-KXDIGIT system submitted to the ASVspoof5 Challenge for Track 1 (speech deepfake detection) and Track 2 (spoofing-robust automatic speaker verification, SASV). Track 1 showcases a diverse range of technical qualities from potential processing algorithms and includes both open and closed conditions. For these conditions, our system consists of a cascade of a frontend feature extractor and a back-end classifier. We focus on extensive embedding engineering and enhancing the generalization of the back-end classifier model. Specifically, the embedding engineering is based on hand-crafted features and speech representations from a self-supervised model, used for closed and open conditions, respectively. To detect spoof attacks under various adversarial conditions, we trained multiple systems on an augmented training set. Additionally, we used voice conversion technology to synthesize fake audio from genuine audio in the training set to enrich the synthesis algorithms. To leverage the complementary information learned by different model architectures, we employed activation ensemble and fused scores from different systems to obtain the final decision score for spoof detection. During the evaluation phase, the proposed methods achieved 0.3948 minDCF and 14.33% EER in the close condition, and 0.0750 minDCF and 2.59% EER in the open condition, demonstrating the robustness of our submitted systems under adversarial conditions. In Track 2, we continued using the CM system from Track 1 and fused it with a CNN-based ASV system. This approach achieved 0.2814 min-aDCF in the closed condition and 0.0756 min-aDCF in the open condition, showcasing superior performance in the SASV system.
comment: ASVspoof5 workshop paper
☆ Differentially Private Kernel Density Estimation
We introduce a refined differentially private (DP) data structure for kernel density estimation (KDE), offering not only improved privacy-utility tradeoff but also better efficiency over prior results. Specifically, we study the mathematical problem: given a similarity function $f$ (or DP KDE) and a private dataset $X \subset \mathbb{R}^d$, our goal is to preprocess $X$ so that for any query $y\in\mathbb{R}^d$, we approximate $\sum_{x \in X} f(x, y)$ in a differentially private fashion. The best previous algorithm for $f(x,y) =\| x - y \|_1$ is the node-contaminated balanced binary tree by [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. Their algorithm requires $O(nd)$ space and time for preprocessing with $n=|X|$. For any query point, the query time is $d \log n$, with an error guarantee of $(1+\alpha)$-approximation and $\epsilon^{-1} \alpha^{-0.5} d^{1.5} R \log^{1.5} n$. In this paper, we improve the best previous result [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024] in three aspects: - We reduce query time by a factor of $\alpha^{-1} \log n$. - We improve the approximation ratio from $\alpha$ to 1. - We reduce the error dependence by a factor of $\alpha^{-0.5}$. From a technical perspective, our method of constructing the search tree differs from previous work [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. In prior work, for each query, the answer is split into $\alpha^{-1} \log n$ numbers, each derived from the summation of $\log n$ values in interval tree countings. In contrast, we construct the tree differently, splitting the answer into $\log n$ numbers, where each is a smart combination of two distance values, two counting values, and $y$ itself. We believe our tree structure may be of independent interest.
☆ Classifier-Free Diffusion-Based Weakly-Supervised Approach for Health Indicator Derivation in Rotating Machines: Advancing Early Fault Detection and Condition Monitoring
Deriving health indicators of rotating machines is crucial for their maintenance. However, this process is challenging for the prevalent adopted intelligent methods since they may take the whole data distributions, not only introducing noise interference but also lacking the explainability. To address these issues, we propose a diffusion-based weakly-supervised approach for deriving health indicators of rotating machines, enabling early fault detection and continuous monitoring of condition evolution. This approach relies on a classifier-free diffusion model trained using healthy samples and a few anomalies. This model generates healthy samples. and by comparing the differences between the original samples and the generated ones in the envelope spectrum, we construct an anomaly map that clearly identifies faults. Health indicators are then derived, which can explain the fault types and mitigate noise interference. Comparative studies on two cases demonstrate that the proposed method offers superior health monitoring effectiveness and robustness compared to baseline models.
☆ A Multimodal Object-level Contrast Learning Method for Cancer Survival Risk Prediction
Computer-aided cancer survival risk prediction plays an important role in the timely treatment of patients. This is a challenging weakly supervised ordinal regression task associated with multiple clinical factors involved such as pathological images, genomic data and etc. In this paper, we propose a new training method, multimodal object-level contrast learning, for cancer survival risk prediction. First, we construct contrast learning pairs based on the survival risk relationship among the samples in the training sample set. Then we introduce the object-level contrast learning method to train the survival risk predictor. We further extend it to the multimodal scenario by applying cross-modal constrast. Considering the heterogeneity of pathological images and genomics data, we construct a multimodal survival risk predictor employing attention-based and self-normalizing based nerural network respectively. Finally, the survival risk predictor trained by our proposed method outperforms state-of-the-art methods on two public multimodal cancer datasets for survival risk prediction.
☆ Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization
Training a fine-grained image recognition model with limited data presents a significant challenge, as the subtle differences between categories may not be easily discernible amidst distracting noise patterns. One commonly employed strategy is to leverage pretrained neural networks, which can generate effective feature representations for constructing an image classification model with a restricted dataset. However, these pretrained neural networks are typically trained for different tasks than the fine-grained visual recognition (FGVR) task at hand, which can lead to the extraction of less relevant features. Moreover, in the context of building FGVR models with limited data, these irrelevant features can dominate the training process, overshadowing more useful, generalizable discriminative features. Our research has identified a surprisingly simple solution to this challenge: we introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed. This regularization is achieved by maximizing the uniformity of feature magnitude distribution, measured through the entropy of the normalized features. The motivation behind this regularization is to remove bias in feature magnitudes from pretrained models, where some features may be more prominent and, consequently, more likely to be used for classification. Additionally, we have developed a dynamic weighting mechanism to adjust the strength of this regularization throughout the learning process. Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
☆ Pureformer-VC: Non-parallel One-Shot Voice Conversion with Pure Transformer Blocks and Triplet Discriminative Training ICASSP 2025
One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the unseen target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics into the generated speech effectively. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario.
comment: submmited to ICASSP 2025
☆ ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation
Representing robotic manipulation tasks as constraints that associate the robot and the environment is a promising way to encode desired robot behaviors. However, it remains unclear how to formulate the constraints such that they are 1) versatile to diverse tasks, 2) free of manual labeling, and 3) optimizable by off-the-shelf solvers to produce robot actions in real-time. In this work, we introduce Relational Keypoint Constraints (ReKep), a visually-grounded representation for constraints in robotic manipulation. Specifically, ReKep is expressed as Python functions mapping a set of 3D keypoints in the environment to a numerical cost. We demonstrate that by representing a manipulation task as a sequence of Relational Keypoint Constraints, we can employ a hierarchical optimization procedure to solve for robot actions (represented by a sequence of end-effector poses in SE(3)) with a perception-action loop at a real-time frequency. Furthermore, in order to circumvent the need for manual specification of ReKep for each new task, we devise an automated procedure that leverages large vision models and vision-language models to produce ReKep from free-form language instructions and RGB-D observations. We present system implementations on a wheeled single-arm platform and a stationary dual-arm platform that can perform a large variety of manipulation tasks, featuring multi-stage, in-the-wild, bimanual, and reactive behaviors, all without task-specific data or environment models. Website at https://rekep-robot.github.io.
☆ PMLBmini: A Tabular Classification Benchmark Suite for Data-Scarce Applications
In practice, we are often faced with small-sized tabular data. However, current tabular benchmarks are not geared towards data-scarce applications, making it very difficult to derive meaningful conclusions from empirical comparisons. We introduce PMLBmini, a tabular benchmark suite of 44 binary classification datasets with sample sizes $\leq$ 500. We use our suite to thoroughly evaluate current automated machine learning (AutoML) frameworks, off-the-shelf tabular deep neural networks, as well as classical linear models in the low-data regime. Our analysis reveals that state-of-the-art AutoML and deep learning approaches often fail to appreciably outperform even a simple logistic regression baseline, but we also identify scenarios where AutoML and deep learning methods are indeed reasonable to apply. Our benchmark suite, available on https://github.com/RicardoKnauer/TabMini , allows researchers and practitioners to analyze their own methods and challenge their data efficiency.
comment: AutoML 2024 Workshop Track
☆ Dreaming is All You Need
In classification tasks, achieving a harmonious balance between exploration and precision is of paramount importance. To this end, this research introduces two novel deep learning models, SleepNet and DreamNet, to strike this balance. SleepNet seamlessly integrates supervised learning with unsupervised ``sleep" stages using pre-trained encoder models. Dedicated neurons within SleepNet are embedded in these unsupervised features, forming intermittent ``sleep" blocks that facilitate exploratory learning. Building upon the foundation of SleepNet, DreamNet employs full encoder-decoder frameworks to reconstruct the hidden states, mimicking the human "dreaming" process. This reconstruction process enables further exploration and refinement of the learned representations. Moreover, the principle ideas of our SleepNet and DreamNet are generic and can be applied to both computer vision and natural language processing downstream tasks. Through extensive empirical evaluations on diverse image and text datasets, SleepNet and DreanNet have demonstrated superior performance compared to state-of-the-art models, showcasing the strengths of unsupervised exploration and supervised precision afforded by our innovative approaches.
☆ SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced by Large Language Models (LLMs), which enable robots to better understand complex language commands and perform advanced tasks with enhanced comprehension and adaptability, highlighting their potential to improve embodied AI capabilities. However, this advancement also introduces safety challenges, particularly in robotic navigation tasks. Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections, resulting in unsafe behaviours such as detours or collisions. To address these issues, we propose \textit{SafeEmbodAI}, a safety framework for integrating mobile robots into embodied AI systems. \textit{SafeEmbodAI} incorporates secure prompting, state management, and safety validation mechanisms to secure and assist LLMs in reasoning through multi-modal data and validating responses. We designed a metric to evaluate mission-oriented exploration, and evaluations in simulated environments demonstrate that our framework effectively mitigates threats from malicious commands and improves performance in various environment settings, ensuring the safety of embodied AI systems. Notably, In complex environments with mixed obstacles, our method demonstrates a significant performance increase of 267\% compared to the baseline in attack scenarios, highlighting its robustness in challenging conditions.
☆ T1-contrast Enhanced MRI Generation from Multi-parametric MRI for Glioma Patients with Latent Tumor Conditioning
Objective: Gadolinium-based contrast agents (GBCAs) are commonly used in MRI scans of patients with gliomas to enhance brain tumor characterization using T1-weighted (T1W) MRI. However, there is growing concern about GBCA toxicity. This study develops a deep-learning framework to generate T1-postcontrast (T1C) from pre-contrast multiparametric MRI. Approach: We propose the tumor-aware vision transformer (TA-ViT) model that predicts high-quality T1C images. The predicted tumor region is significantly improved (P < .001) by conditioning the transformer layers from predicted segmentation maps through adaptive layer norm zero mechanism. The predicted segmentation maps were generated with the multi-parametric residual (MPR) ViT model and transformed into a latent space to produce compressed, feature-rich representations. The TA-ViT model predicted T1C MRI images of 501 glioma cases. Selected patients were split into training (N=400), validation (N=50), and test (N=51) sets. Main Results: Both qualitative and quantitative results demonstrate that the TA-ViT model performs superior against the benchmark MRP-ViT model. Our method produces synthetic T1C MRI with high soft tissue contrast and more accurately reconstructs both the tumor and whole brain volumes. The synthesized T1C images achieved remarkable improvements in both tumor and healthy tissue regions compared to the MRP-ViT model. For healthy tissue and tumor regions, the results were as follows: NMSE: 8.53 +/- 4.61E-4; PSNR: 31.2 +/- 2.2; NCC: 0.908 +/- .041 and NMSE: 1.22 +/- 1.27E-4, PSNR: 41.3 +/- 4.7, and NCC: 0.879 +/- 0.042, respectively. Significance: The proposed method generates synthetic T1C images that closely resemble real T1C images. Future development and application of this approach may enable contrast-agent-free MRI for brain tumor patients, eliminating the risk of GBCA toxicity and simplifying the MRI scan protocol.
comment: arXiv admin note: text overlap with arXiv:2407.02616
☆ Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria
Deriving a representative model using value function-based methods from the perspective of preference disaggregation has emerged as a prominent and growing topic in multi-criteria sorting (MCS) problems. A noteworthy observation is that many existing approaches to learning a representative model for MCS problems traditionally assume the monotonicity of criteria, which may not always align with the complexities found in real-world MCS scenarios. Consequently, this paper proposes some approaches to learning a representative model for MCS problems with non-monotonic criteria through the integration of the threshold-based value-driven sorting procedure. To do so, we first define some transformation functions to map the marginal values and category thresholds into a UTA-like functional space. Subsequently, we construct constraint sets to model non-monotonic criteria in MCS problems and develop optimization models to check and rectify the inconsistency of the decision maker's assignment example preference information. By simultaneously considering the complexity and discriminative power of the models, two distinct lexicographic optimization-based approaches are developed to derive a representative model for MCS problems with non-monotonic criteria. Eventually, we offer an illustrative example and conduct comprehensive simulation experiments to elaborate the feasibility and validity of the proposed approaches.
comment: 45 pages, 12 figures
☆ Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG)
In the field of eXplainable AI (XAI) in language models, the progression from local explanations of individual decisions to global explanations with high-level concepts has laid the groundwork for mechanistic interpretability, which aims to decode the exact operations. However, this paradigm has not been adequately explored in image models, where existing methods have primarily focused on class-specific interpretations. This paper introduces a novel approach to systematically trace the entire pathway from input through all intermediate layers to the final output within the whole dataset. We utilize Pointwise Feature Vectors (PFVs) and Effective Receptive Fields (ERFs) to decompose model embeddings into interpretable Concept Vectors. Then, we calculate the relevance between concept vectors with our Generalized Integrated Gradients (GIG), enabling a comprehensive, dataset-wide analysis of model behavior. We validate our method of concept extraction and concept attribution in both qualitative and quantitative evaluations. Our approach advances the understanding of semantic significance within image models, offering a holistic view of their operational mechanics.
☆ Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information
Sequential recommender systems are essential for discerning user preferences from historical interactions and facilitating targeted recommendations. Recent innovations employing Large Language Models (LLMs) have advanced the field by encoding item semantics, yet they often necessitate substantial parameter tuning and are resource-demanding. Moreover, these works fails to consider the diverse characteristics of different types of users and thus diminishes the recommendation accuracy. In this paper, we propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser). Specifically, Bi-Tuning works by inserting trainable virtual tokens at both the prefix and suffix of the input sequence and freezing the LLM parameters, thus optimizing the LLM for the sequential recommendation. In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation. Furthermore, to capture the characteristics of different types of users when integrating the collaborative information via the prefix, we introduce M-Former, a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems, significantly improving the accuracy of recommendations. Extensive experiments on real-world datasets demonstrate that Laser can parameter-efficiently adapt LLMs to effective recommender systems, significantly outperforming state-of-the-art methods.
comment: 11 pages, 4 figures
☆ A Time-Intensity Aware Pipeline for Generating Late-Stage Breast DCE-MRI using Generative Adversarial Models
Contrast-enhancement pattern analysis is critical in breast magnetic resonance imaging (MRI) to distinguish benign from probably malignant tumors. However, contrast-enhanced image acquisitions are time-consuming and very expensive. As an alternative to physical acquisition, this paper proposes a comprehensive pipeline for the generation of accurate long-term (late) contrast-enhanced breast MRI from the early counterpart. The proposed strategy focuses on preserving the contrast agent pattern in the enhanced regions while maintaining visual properties in the entire synthesized images. To that end, a novel loss function that leverages the biological behavior of contrast agent (CA) in tissue, given by the Time-Intensity (TI) enhancement curve, is proposed to optimize a pixel-attention based generative model. In addition, unlike traditional normalization and standardization methods, we developed a new normalization strategy that maintains the contrast enhancement pattern across the image sequences at multiple timestamps. This ensures the prevalence of the CA pattern after image preprocessing, unlike conventional approaches. Furthermore, in order to objectively evaluate the clinical quality of the synthesized images, two metrics are also introduced to measure the differences between the TI curves of enhanced regions of the acquired and synthesized images. The experimental results showed that the proposed strategy generates images that significantly outperform diagnostic quality in contrast-enhanced regions while maintaining the spatial features of the entire image. This results suggest a potential use of synthetic late enhanced images generated via deep learning in clinical scenarios.
☆ Large-scale Urban Facility Location Selection with Knowledge-informed Reinforcement Learning
The facility location problem (FLP) is a classical combinatorial optimization challenge aimed at strategically laying out facilities to maximize their accessibility. In this paper, we propose a reinforcement learning method tailored to solve large-scale urban FLP, capable of producing near-optimal solutions at superfast inference speed. We distill the essential swap operation from local search, and simulate it by intelligently selecting edges on a graph of urban regions, guided by a knowledge-informed graph neural network, thus sidestepping the need for heavy computation of local search. Extensive experiments on four US cities with different geospatial conditions demonstrate that our approach can achieve comparable performance to commercial solvers with less than 5\% accessibility loss, while displaying up to 1000 times speedup. We deploy our model as an online geospatial application at https://huggingface.co/spaces/randommmm/MFLP.
comment: 4 pages
☆ GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting
Dense colored point clouds enhance visual perception and are of significant value in various robotic applications. However, existing learning-based point cloud upsampling methods are constrained by computational resources and batch processing strategies, which often require subdividing point clouds into smaller patches, leading to distortions that degrade perceptual quality. To address this challenge, we propose a novel 2D-3D hybrid colored point cloud upsampling framework (GaussianPU) based on 3D Gaussian Splatting (3DGS) for robotic perception. This approach leverages 3DGS to bridge 3D point clouds with their 2D rendered images in robot vision systems. A dual scale rendered image restoration network transforms sparse point cloud renderings into dense representations, which are then input into 3DGS along with precise robot camera poses and interpolated sparse point clouds to reconstruct dense 3D point clouds. We have made a series of enhancements to the vanilla 3DGS, enabling precise control over the number of points and significantly boosting the quality of the upsampled point cloud for robotic scene understanding. Our framework supports processing entire point clouds on a single consumer-grade GPU, such as the NVIDIA GeForce RTX 3090, eliminating the need for segmentation and thus producing high-quality, dense colored point clouds with millions of points for robot navigation and manipulation tasks. Extensive experimental results on generating million-level point cloud data validate the effectiveness of our method, substantially improving the quality of colored point clouds and demonstrating significant potential for applications involving large-scale point clouds in autonomous robotics and human-robot interaction scenarios.
comment: 7 pages, 5 figures
☆ AdaComp: Extractive Context Compression with Adaptive Predictor for Retrieval-Augmented Large Language Models
Retrieved documents containing noise will hinder RAG from detecting answer clues and make the inference process slow and expensive. Therefore, context compression is necessary to enhance its accuracy and efficiency. Existing context compression methods use extractive or generative models to retain the most query-relevant sentences or apply the information bottleneck theory to preserve sufficient information. However, these methods may face issues such as over-compression or high computational costs. We observe that the retriever often ranks relevant documents at the top, but the exact number of documents needed to answer the query is uncertain due to the impact of query complexity and retrieval quality: complex queries like multi-hop questions may require retaining more documents than simpler queries, and a low-quality retrieval may need to rely on more documents to generate accurate outputs. Therefore, determining the minimum number of required documents (compression rate) is still a challenge for RAG. In this paper, we introduce AdaComp, a low-cost extractive context compression method that adaptively determines the compression rate based on both query complexity and retrieval quality. Specifically, we first annotate the minimum top-k documents necessary for the RAG system to answer the current query as the compression rate and then construct triplets of the query, retrieved documents, and its compression rate. Then, we use this triplet dataset to train a compression-rate predictor. Experiments on three QA datasets and one conversational Muiti-doc QA dataset show that AdaComp significantly reduces inference costs while maintaining performance nearly identical to uncompressed models, achieving a balance between efficiency and performance.
comment: 8 pages, 5 figures, code available at https://anonymous.4open.science/r/AdaComp-8C0C/
☆ Improving Apple Object Detection with Occlusion-Enhanced Distillation
Apples growing in natural environments often face severe visual obstructions from leaves and branches. This significantly increases the risk of false detections in object detection tasks, thereby escalating the challenge. Addressing this issue, we introduce a technique called "Occlusion-Enhanced Distillation" (OED). This approach utilizes occlusion information to regularize the learning of semantically aligned features on occluded datasets and employs Exponential Moving Average (EMA) to enhance training stability. Specifically, we first design an occlusion-enhanced dataset that integrates Grounding DINO and SAM methods to extract occluding elements such as leaves and branches from each sample, creating occlusion examples that reflect the natural growth state of fruits. Additionally, we propose a multi-scale knowledge distillation strategy, where the student network uses images with increased occlusions as inputs, while the teacher network employs images without natural occlusions. Through this setup, the strategy guides the student network to learn from the teacher across scales of semantic and local features alignment, effectively narrowing the feature distance between occluded and non-occluded targets and enhancing the robustness of object detection. Lastly, to improve the stability of the student network, we introduce the EMA strategy, which aids the student network in learning more generalized feature expressions that are less affected by the noise of individual image occlusions. Our method significantly outperforms current state-of-the-art techniques through extensive comparative experiments.
☆ LSSF-Net: Lightweight Segmentation with Self-Awareness, Spatial Attention, and Focal Modulation
Accurate segmentation of skin lesions within dermoscopic images plays a crucial role in the timely identification of skin cancer for computer-aided diagnosis on mobile platforms. However, varying shapes of the lesions, lack of defined edges, and the presence of obstructions such as hair strands and marker colors make this challenge more complex. \textcolor{red}Additionally, skin lesions often exhibit subtle variations in texture and color that are difficult to differentiate from surrounding healthy skin, necessitating models that can capture both fine-grained details and broader contextual information. Currently, melanoma segmentation models are commonly based on fully connected networks and U-Nets. However, these models often struggle with capturing the complex and varied characteristics of skin lesions, such as the presence of indistinct boundaries and diverse lesion appearances, which can lead to suboptimal segmentation performance.To address these challenges, we propose a novel lightweight network specifically designed for skin lesion segmentation utilizing mobile devices, featuring a minimal number of learnable parameters (only 0.8 million). This network comprises an encoder-decoder architecture that incorporates conformer-based focal modulation attention, self-aware local and global spatial attention, and split channel-shuffle. The efficacy of our model has been evaluated on four well-established benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2. Empirical findings substantiate its state-of-the-art performance, notably reflected in a high Jaccard index.
☆ Blocks as Probes: Dissecting Categorization Ability of Large Multimodal Models BMVC 2024
Categorization, a core cognitive ability in humans that organizes objects based on common features, is essential to cognitive science as well as computer vision. To evaluate the categorization ability of visual AI models, various proxy tasks on recognition from datasets to open world scenarios have been proposed. Recent development of Large Multimodal Models (LMMs) has demonstrated impressive results in high-level visual tasks, such as visual question answering, video temporal reasoning, etc., utilizing the advanced architectures and large-scale multimodal instruction tuning. Previous researchers have developed holistic benchmarks to measure the high-level visual capability of LMMs, but there is still a lack of pure and in-depth quantitative evaluation of the most fundamental categorization ability. According to the research on human cognitive process, categorization can be seen as including two parts: category learning and category use. Inspired by this, we propose a novel, challenging, and efficient benchmark based on composite blocks, called ComBo, which provides a disentangled evaluation framework and covers the entire categorization process from learning to use. By analyzing the results of multiple evaluation tasks, we find that although LMMs exhibit acceptable generalization ability in learning new categories, there are still gaps compared to humans in many ways, such as fine-grained perception of spatial relationship and abstract category understanding. Through the study of categorization, we can provide inspiration for the further development of LMMs in terms of interpretability and generalization.
comment: 39 pages, 28 figures, 4 tables. Accepted at The 35th British Machine Vision Conference (BMVC 2024). Project page at https://fubin29.github.io/Blocks-as-Probes/
☆ Benchmarking Cognitive Domains for LLMs: Insights from Taiwanese Hakka Culture
This study introduces a comprehensive benchmark designed to evaluate the performance of large language models (LLMs) in understanding and processing cultural knowledge, with a specific focus on Hakka culture as a case study. Leveraging Bloom's Taxonomy, the study develops a multi-dimensional framework that systematically assesses LLMs across six cognitive domains: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating. This benchmark extends beyond traditional single-dimensional evaluations by providing a deeper analysis of LLMs' abilities to handle culturally specific content, ranging from basic recall of facts to higher-order cognitive tasks such as creative synthesis. Additionally, the study integrates Retrieval-Augmented Generation (RAG) technology to address the challenges of minority cultural knowledge representation in LLMs, demonstrating how RAG enhances the models' performance by dynamically incorporating relevant external information. The results highlight the effectiveness of RAG in improving accuracy across all cognitive domains, particularly in tasks requiring precise retrieval and application of cultural knowledge. However, the findings also reveal the limitations of RAG in creative tasks, underscoring the need for further optimization. This benchmark provides a robust tool for evaluating and comparing LLMs in culturally diverse contexts, offering valuable insights for future research and development in AI-driven cultural knowledge preservation and dissemination.
comment: Submitted to O-COCOSDA 2024
☆ EA-RAS: Towards Efficient and Accurate End-to-End Reconstruction of Anatomical Skeleton
Efficient, accurate and low-cost estimation of human skeletal information is crucial for a range of applications such as biology education and human-computer interaction. However, current simple skeleton models, which are typically based on 2D-3D joint points, fall short in terms of anatomical fidelity, restricting their utility in fields. On the other hand, more complex models while anatomically precise, are hindered by sophisticate multi-stage processing and the need for extra data like skin meshes, making them unsuitable for real-time applications. To this end, we propose the EA-RAS (Towards Efficient and Accurate End-to-End Reconstruction of Anatomical Skeleton), a single-stage, lightweight, and plug-and-play anatomical skeleton estimator that can provide real-time, accurate anatomically realistic skeletons with arbitrary pose using only a single RGB image input. Additionally, EA-RAS estimates the conventional human-mesh model explicitly, which not only enhances the functionality but also leverages the outside skin information by integrating features into the inside skeleton modeling process. In this work, we also develop a progressive training strategy and integrated it with an enhanced optimization process, enabling the network to obtain initial weights using only a small skin dataset and achieve self-supervision in skeleton reconstruction. Besides, we also provide an optional lightweight post-processing optimization strategy to further improve accuracy for scenarios that prioritize precision over real-time processing. The experiments demonstrated that our regression method is over 800 times faster than existing methods, meeting real-time requirements. Additionally, the post-processing optimization strategy provided can enhance reconstruction accuracy by over 50% and achieve a speed increase of more than 7 times.
comment: 13 pages,15 figures
☆ Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs
Large language models (LLMs) have shown success in generating high-quality responses. In order to achieve better alignment with LLMs with human preference, various works are proposed based on specific optimization process, which, however, is not suitable to Black-Box LLMs like GPT-4, due to inaccessible parameters. In Black-Box LLMs case, their performance is highly dependent on the quality of the provided prompts. Existing methods to enhance response quality often involve a prompt refinement model, yet these approaches potentially suffer from semantic inconsistencies between the refined and original prompts, and typically overlook the relationship between them. To address these challenges, we introduce a self-instructed in-context learning framework that empowers LLMs to deliver more effective responses by generating reliable derived prompts to construct informative contextual environments. Our approach incorporates a self-instructed reinforcement learning mechanism, enabling direct interaction with the response model during derived prompt generation for better alignment. We then formulate querying as an in-context learning task, using responses from LLMs combined with the derived prompts to establish a contextual demonstration for the original prompt. This strategy ensures alignment with the original query, reduces discrepancies from refined prompts, and maximizes the LLMs' in-context learning capability. Extensive experiments demonstrate that the proposed method not only generates more reliable derived prompts but also significantly enhances LLMs' ability to deliver more effective responses, including Black-Box models such as GPT-4.
☆ VoxHakka: A Dialectally Diverse Multi-speaker Text-to-Speech System for Taiwanese Hakka
This paper introduces VoxHakka, a text-to-speech (TTS) system designed for Taiwanese Hakka, a critically under-resourced language spoken in Taiwan. Leveraging the YourTTS framework, VoxHakka achieves high naturalness and accuracy and low real-time factor in speech synthesis while supporting six distinct Hakka dialects. This is achieved by training the model with dialect-specific data, allowing for the generation of speaker-aware Hakka speech. To address the scarcity of publicly available Hakka speech corpora, we employed a cost-effective approach utilizing a web scraping pipeline coupled with automatic speech recognition (ASR)-based data cleaning techniques. This process ensured the acquisition of a high-quality, multi-speaker, multi-dialect dataset suitable for TTS training. Subjective listening tests conducted using comparative mean opinion scores (CMOS) demonstrate that VoxHakka significantly outperforms existing publicly available Hakka TTS systems in terms of pronunciation accuracy, tone correctness, and overall naturalness. This work represents a significant advancement in Hakka language technology and provides a valuable resource for language preservation and revitalization efforts.
comment: Submitted to O-COCOSDA 2024
☆ Effective Noise-aware Data Simulation for Domain-adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation
Cross-domain speech enhancement (SE) is often faced with severe challenges due to the scarcity of noise and background information in an unseen target domain, leading to a mismatch between training and test conditions. This study puts forward a novel data simulation method to address this issue, leveraging noise-extractive techniques and generative adversarial networks (GANs) with only limited target noisy speech data. Notably, our method employs a noise encoder to extract noise embeddings from target-domain data. These embeddings aptly guide the generator to synthesize utterances acoustically fitted to the target domain while authentically preserving the phonetic content of the input clean speech. Furthermore, we introduce the notion of dynamic stochastic perturbation, which can inject controlled perturbations into the noise embeddings during inference, thereby enabling the model to generalize well to unseen noise conditions. Experiments on the VoiceBank-DEMAND benchmark dataset demonstrate that our domain-adaptive SE method outperforms an existing strong baseline based on data simulation.
comment: Accepted to IEEE SLT 2024
☆ Long-Range Biometric Identification in Real World Scenarios: A Comprehensive Evaluation Framework Based on Missions
The considerable body of data available for evaluating biometric recognition systems in Research and Development (R\&D) environments has contributed to the increasingly common problem of target performance mismatch. Biometric algorithms are frequently tested against data that may not reflect the real world applications they target. From a Testing and Evaluation (T\&E) standpoint, this domain mismatch causes difficulty assessing when improvements in State-of-the-Art (SOTA) research actually translate to improved applied outcomes. This problem can be addressed with thoughtful preparation of data and experimental methods to reflect specific use-cases and scenarios. To that end, this paper evaluates research solutions for identifying individuals at ranges and altitudes, which could support various application areas such as counterterrorism, protection of critical infrastructure facilities, military force protection, and border security. We address challenges including image quality issues and reliance on face recognition as the sole biometric modality. By fusing face and body features, we propose developing robust biometric systems for effective long-range identification from both the ground and steep pitch angles. Preliminary results show promising progress in whole-body recognition. This paper presents these early findings and discusses potential future directions for advancing long-range biometric identification systems based on mission-driven metrics.
☆ Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition
We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR). Fine-grained TSR in the wild is difficult due to the complex road conditions, and existing approaches particularly struggle with cross-country TSR when data is lacking. Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for the LMM. The context descriptions with center coordinate prompt optimization help the LMM to locate the target traffic sign in the original road images containing multiple traffic signs and filter irrelevant answers through the proposed prior traffic sign hypothesis. The characteristic description is based on few-shot in-context learning of template traffic signs, which decreases the cross-domain difference and enhances the fine-grained recognition capability of the LMM. The differential descriptions of similar traffic signs optimize the multimodal thinking capability of the LMM. The proposed method is independent of training data and requires only simple and uniform instructions. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries, and the proposed method achieves state-of-the-art TSR results on all five datasets.
☆ Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations
Signal analysis and classification is fraught with high levels of noise and perturbation. Computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and detection; however, these methods aren't designed to handle the low signal-to-noise ratios inherent within non-vision signal processing tasks. While they are powerful, they are currently not the method of choice in the inherently noisy and dynamic critical infrastructure domain, such as smart-grid sensing, anomaly detection, and non-intrusive load monitoring.
☆ On the Design Space Between Transformers and Recursive Neural Nets
In this paper, we study two classes of models, Recursive Neural Networks (RvNNs) and Transformers, and show that a tight connection between them emerges from the recent development of two recent models - Continuous Recursive Neural Networks (CRvNN) and Neural Data Routers (NDR). On one hand, CRvNN pushes the boundaries of traditional RvNN, relaxing its discrete structure-wise composition and ends up with a Transformer-like structure. On the other hand, NDR constrains the original Transformer to induce better structural inductive bias, ending up with a model that is close to CRvNN. Both models, CRvNN and NDR, show strong performance in algorithmic tasks and generalization in which simpler forms of RvNNs and Transformers fail. We explore these "bridge" models in the design space between RvNNs and Transformers, formalize their tight connections, discuss their limitations, and propose ideas for future research.
☆ S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners
Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S$^3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.
☆ From Data to Insights: A Covariate Analysis of the IARPA BRIAR Dataset for Multimodal Biometric Recognition Algorithms at Altitude and Range
This paper examines covariate effects on fused whole body biometrics performance in the IARPA BRIAR dataset, specifically focusing on UAV platforms, elevated positions, and distances up to 1000 meters. The dataset includes outdoor videos compared with indoor images and controlled gait recordings. Normalized raw fusion scores relate directly to predicted false accept rates (FAR), offering an intuitive means for interpreting model results. A linear model is developed to predict biometric algorithm scores, analyzing their performance to identify the most influential covariates on accuracy at altitude and range. Weather factors like temperature, wind speed, solar loading, and turbulence are also investigated in this analysis. The study found that resolution and camera distance best predicted accuracy and findings can guide future research and development efforts in long-range/elevated/UAV biometrics and support the creation of more reliable and robust systems for national security and other critical domains.
☆ Managing multiple agents by automatically adjusting incentives
In the coming years, AI agents will be used for making more complex decisions, including in situations involving many different groups of people. One big challenge is that AI agent tends to act in its own interest, unlike humans who often think about what will be the best for everyone in the long run. In this paper, we explore a method to get self-interested agents to work towards goals that benefit society as a whole. We propose a method to add a manager agent to mediate agent interactions by assigning incentives to certain actions. We tested our method with a supply-chain management problem and showed that this framework (1) increases the raw reward by 22.2%, (2) increases the agents' reward by 23.8%, and (3) increases the manager's reward by 20.1%.
comment: 7 pages
☆ Applications and Advances of Artificial Intelligence in Music Generation:A Review
In recent years, artificial intelligence (AI) has made significant progress in the field of music generation, driving innovation in music creation and applications. This paper provides a systematic review of the latest research advancements in AI music generation, covering key technologies, models, datasets, evaluation methods, and their practical applications across various fields. The main contributions of this review include: (1) presenting a comprehensive summary framework that systematically categorizes and compares different technological approaches, including symbolic generation, audio generation, and hybrid models, helping readers better understand the full spectrum of technologies in the field; (2) offering an extensive survey of current literature, covering emerging topics such as multimodal datasets and emotion expression evaluation, providing a broad reference for related research; (3) conducting a detailed analysis of the practical impact of AI music generation in various application domains, particularly in real-time interaction and interdisciplinary applications, offering new perspectives and insights; (4) summarizing the existing challenges and limitations of music quality evaluation methods and proposing potential future research directions, aiming to promote the standardization and broader adoption of evaluation techniques. Through these innovative summaries and analyses, this paper serves as a comprehensive reference tool for researchers and practitioners in AI music generation, while also outlining future directions for the field.
☆ Multi-Modal Adapter for Vision-Language Models
Large pre-trained vision-language models, such as CLIP, have demonstrated state-of-the-art performance across a wide range of image classification tasks, without requiring retraining. Few-shot CLIP is competitive with existing specialized architectures that were trained on the downstream tasks. Recent research demonstrates that the performance of CLIP can be further improved using lightweight adaptation approaches. However, previous methods adapt different modalities of the CLIP model individually, ignoring the interactions and relationships between visual and textual representations. In this work, we propose Multi-Modal Adapter, an approach for Multi-Modal adaptation of CLIP. Specifically, we add a trainable Multi-Head Attention layer that combines text and image features to produce an additive adaptation of both. Multi-Modal Adapter demonstrates improved generalizability, based on its performance on unseen classes compared to existing adaptation methods. We perform additional ablations and investigations to validate and interpret the proposed approach.
♻ ☆ PID Accelerated Temporal Difference Algorithms
Long-horizon tasks, which have a large discount factor, pose a challenge for most conventional reinforcement learning (RL) algorithms. Algorithms such as Value Iteration and Temporal Difference (TD) learning have a slow convergence rate and become inefficient in these tasks. When the transition distributions are given, PID VI was recently introduced to accelerate the convergence of Value Iteration using ideas from control theory. Inspired by this, we introduce PID TD Learning and PID Q-Learning algorithms for the RL setting, in which only samples from the environment are available. We give a theoretical analysis of the convergence of PID TD Learning and its acceleration compared to the conventional TD Learning. We also introduce a method for adapting PID gains in the presence of noise and empirically verify its effectiveness.
♻ ☆ Low-Rank Quantization-Aware Training for LLMs
Large language models (LLMs) are omnipresent, however their practical deployment is challenging due to their ever increasing computational and memory demands. Quantization is one of the most effective ways to make them more compute and memory efficient. Quantization-aware training (QAT) methods, generally produce the best quantized performance, however it comes at the cost of potentially long training time and excessive memory usage, making it impractical when applying for LLMs. Inspired by parameter-efficient fine-tuning (PEFT) and low-rank adaptation (LoRA) literature, we propose LR-QAT -- a lightweight and memory-efficient QAT algorithm for LLMs. LR-QAT employs several components to save memory without sacrificing predictive performance: (a) low-rank auxiliary weights that are aware of the quantization grid; (b) a downcasting operator using fixed-point or double-packed integers and (c) checkpointing. Unlike most related work, our method (i) is inference-efficient, leading to no additional overhead compared to traditional PTQ; (ii) can be seen as a general extended pretraining framework, meaning that the resulting model can still be utilized for any downstream task afterwards; (iii) can be applied across a wide range of quantization settings, such as different choices quantization granularity, activation quantization, and seamlessly combined with many PTQ techniques. We apply LR-QAT to LLaMA-1/2/3 and Mistral model families and validate its effectiveness on several downstream tasks. Our method outperforms common post-training quantization (PTQ) approaches and reaches the same model performance as full-model QAT at the fraction of its memory usage. Specifically, we can train a 7B LLM on a single consumer grade GPU with 24GB of memory. Our source code is available at https://github.com/qualcomm-ai-research/LR-QAT
♻ ☆ Chemical Reaction Neural Networks for Fitting Accelerating Rate Calorimetry Data
As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially fires, which is a major safety concern. Typically, when modelling the chemical kinetics of thermal runaway calorimetry data ( e.g. Accelerating Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to Accelerated Rate Calorimetry (ARC) data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.
♻ ☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos. A sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/.
comment: 7 pages, 5 figures, 4 tables. Last updated on September 3rd, 2024
♻ ☆ Foundation Models for Music: A Survey
In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.
♻ ☆ FairX: A comprehensive benchmarking tool for model analysis using fairness, utility, and explainability
We present FairX, an open-source Python-based benchmarking tool designed for the comprehensive analysis of models under the umbrella of fairness, utility, and eXplainability (XAI). FairX enables users to train benchmarking bias-mitigation models and evaluate their fairness using a wide array of fairness metrics, data utility metrics, and generate explanations for model predictions, all within a unified framework. Existing benchmarking tools do not have the way to evaluate synthetic data generated from fair generative models, also they do not have the support for training fair generative models either. In FairX, we add fair generative models in the collection of our fair-model library (pre-processing, in-processing, post-processing) and evaluation metrics for evaluating the quality of synthetic fair data. This version of FairX supports both tabular and image datasets. It also allows users to provide their own custom datasets. The open-source FairX benchmarking package is publicly available at \url{https://github.com/fahim-sikder/FairX}.
♻ ☆ Towards Explainable Traffic Flow Prediction with Large Language Models
Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and explainability in traffic prediction models remains a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a Traffic flow Prediction model based on Large Language Models (LLMs) to generate explainable traffic predictions, named xTP-LLM. By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions. This paper contributes to advancing explainable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation. To the best of our knowledge, this is the first study to use LLM for explainable prediction of traffic flows.
comment: 31pages, 16 figures
♻ ☆ rerankers: A Lightweight Python Library to Unify Ranking Methods
This paper presents rerankers, a Python library which provides an easy-to-use interface to the most commonly used re-ranking approaches. Re-ranking is an integral component of many retrieval pipelines; however, there exist numerous approaches to it, relying on different implementation methods. rerankers unifies these methods into a single user-friendly interface, allowing practitioners and researchers alike to explore different methods while only changing a single line of Python code. Moreover ,rerankers ensures that its implementations are done with the fewest dependencies possible, and re-uses the original implementation whenever possible, guaranteeing that our simplified interface results in no performance degradation compared to more complex ones. The full source code and list of supported models are updated regularly and available at https://github.com/answerdotai/rerankers.
♻ ☆ OceanGPT: A Large Language Model for Ocean Science Tasks ACL2024
Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet's surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reasons are the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever large language model in the ocean domain, which is expert in various ocean science tasks. We also propose OceanGPT, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.
comment: ACL2024. Project Website: http://oceangpt.zjukg.cn/
♻ ☆ Statistical Context Detection for Deep Lifelong Reinforcement Learning
Context detection involves labeling segments of an online stream of data as belonging to different tasks. Task labels are used in lifelong learning algorithms to perform consolidation or other procedures that prevent catastrophic forgetting. Inferring task labels from online experiences remains a challenging problem. Most approaches assume finite and low-dimension observation spaces or a preliminary training phase during which task labels are learned. Moreover, changes in the transition or reward functions can be detected only in combination with a policy, and therefore are more difficult to detect than changes in the input distribution. This paper presents an approach to learning both policies and labels in an online deep reinforcement learning setting. The key idea is to use distance metrics, obtained via optimal transport methods, i.e., Wasserstein distance, on suitable latent action-reward spaces to measure distances between sets of data points from past and current streams. Such distances can then be used for statistical tests based on an adapted Kolmogorov-Smirnov calculation to assign labels to sequences of experiences. A rollback procedure is introduced to learn multiple policies by ensuring that only the appropriate data is used to train the corresponding policy. The combination of task detection and policy deployment allows for the optimization of lifelong reinforcement learning agents without an oracle that provides task labels. The approach is tested using two benchmarks and the results show promising performance when compared with related context detection algorithms. The results suggest that optimal transport statistical methods provide an explainable and justifiable procedure for online context detection and reward optimization in lifelong reinforcement learning.
comment: 10 pages excluding references and bibliography. Accepted at CoLLAs 2024
♻ ☆ Controllable Edge-Type-Specific Interpretation in Multi-Relational Graph Neural Networks for Drug Response Prediction
Graph Neural Networks have been widely applied in critical decision-making areas that demand interpretable predictions, leading to the flourishing development of interpretability algorithms. However, current graph interpretability algorithms tend to emphasize generality and often overlook biological significance, thereby limiting their applicability in predicting cancer drug responses. In this paper, we propose a novel post-hoc interpretability algorithm for cancer drug response prediction, CETExplainer, which incorporates a controllable edge-type-specific weighting mechanism. It considers the mutual information between subgraphs and predictions, proposing a structural scoring approach to provide fine-grained, biologically meaningful explanations for predictive models. We also introduce a method for constructing ground truth based on real-world datasets to quantitatively evaluate the proposed interpretability algorithm. Empirical analysis on the real-world dataset demonstrates that CETExplainer achieves superior stability and improves explanation quality compared to leading algorithms, thereby offering a robust and insightful tool for cancer drug prediction.
♻ ☆ GANs Conditioning Methods: A Survey
In recent years, Generative Adversarial Networks (GANs) have seen significant advancements, leading to their widespread adoption across various fields. The original GAN architecture enables the generation of images without any specific control over the content, making it an unconditional generation process. However, many practical applications require precise control over the generated output, which has led to the development of conditional GANs (cGANs) that incorporate explicit conditioning to guide the generation process. cGANs extend the original framework by incorporating additional information (conditions), enabling the generation of samples that adhere to that specific criteria. Various conditioning methods have been proposed, each differing in how they integrate the conditioning information into both the generator and the discriminator networks. In this work, we review the conditioning methods proposed for GANs, exploring the characteristics of each method and highlighting their unique mechanisms and theoretical foundations. Furthermore, we conduct a comparative analysis of these methods, evaluating their performance on various image datasets. Through these analyses, we aim to provide insights into the strengths and limitations of various conditioning techniques, guiding future research and application in generative modeling.
♻ ☆ A Survey on Stability of Learning with Limited Labelled Data and its Sensitivity to the Effects of Randomness
Learning with limited labelled data, such as prompting, in-context learning, fine-tuning, meta-learning or few-shot learning, aims to effectively train a model using only a small amount of labelled samples. However, these approaches have been observed to be excessively sensitive to the effects of uncontrolled randomness caused by non-determinism in the training process. The randomness negatively affects the stability of the models, leading to large variances in results across training runs. When such sensitivity is disregarded, it can unintentionally, but unfortunately also intentionally, create an imaginary perception of research progress. Recently, this area started to attract research attention and the number of relevant studies is continuously growing. In this survey, we provide a comprehensive overview of 415 papers addressing the effects of randomness on the stability of learning with limited labelled data. We distinguish between four main tasks addressed in the papers (investigate/evaluate; determine; mitigate; benchmark/compare/report randomness effects), providing findings for each one. Furthermore, we identify and discuss seven challenges and open problems together with possible directions to facilitate further research. The ultimate goal of this survey is to emphasise the importance of this growing research area, which so far has not received an appropriate level of attention, and reveal impactful directions for future research.
comment: Accepted to ACM Comput. Surv. 2024
♻ ☆ KTO: Model Alignment as Prospect Theoretic Optimization ICML 2024
Kahneman & Tversky's $\textit{prospect theory}$ tells us that humans perceive random variables in a biased but well-defined manner (1992); for example, humans are famously loss-averse. We show that objectives for aligning LLMs with human feedback implicitly incorporate many of these biases -- the success of these objectives (e.g., DPO) over cross-entropy minimization can partly be ascribed to them belonging to a family of loss functions that we call $\textit{human-aware losses}$ (HALOs). However, the utility functions these methods attribute to humans still differ from those in the prospect theory literature. Using a Kahneman-Tversky model of human utility, we propose a HALO that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences, as current methods do. We call this approach KTO, and it matches or exceeds the performance of preference-based methods at scales from 1B to 30B, despite only learning from a binary signal of whether an output is desirable. More broadly, our work suggests that there is no one HALO that is universally superior; the best loss depends on the inductive biases most appropriate for a given setting, an oft-overlooked consideration.
comment: ICML 2024
♻ ☆ RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation
The Segment Anything Model (SAM) has gained significant attention for its impressive performance in image segmentation. However, it lacks proficiency in referring video object segmentation (RVOS) due to the need for precise user-interactive prompts and a limited understanding of different modalities, such as language and vision. This paper presents the RefSAM model, which explores the potential of SAM for RVOS by incorporating multi-view information from diverse modalities and successive frames at different timestamps in an online manner. Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-Modal MLP that projects the text embedding of the referring expression into sparse and dense embeddings, serving as user-interactive prompts. Additionally, we have introduced the hierarchical dense attention module to fuse hierarchical visual semantic information with sparse embeddings to obtain fine-grained dense embeddings, and an implicit tracking module to generate a tracking token and provide historical information for the mask decoder. Furthermore, we employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively. Through comprehensive ablation studies, we demonstrate our model's practical and effective design choices. Extensive experiments conducted on Refer-Youtube-VOS, Ref-DAVIS17, and three referring image segmentation datasets validate the superiority and effectiveness of our RefSAM model over existing methods.
♻ ☆ Towards Scalable Automated Alignment of LLMs: A Survey
Alignment is the most critical step in building large language models (LLMs) that meet human needs. With the rapid development of LLMs gradually surpassing human capabilities, traditional alignment methods based on human-annotation are increasingly unable to meet the scalability demands. Therefore, there is an urgent need to explore new sources of automated alignment signals and technical approaches. In this paper, we systematically review the recently emerging methods of automated alignment, attempting to explore how to achieve effective, scalable, automated alignment once the capabilities of LLMs exceed those of humans. Specifically, we categorize existing automated alignment methods into 4 major categories based on the sources of alignment signals and discuss the current status and potential development of each category. Additionally, we explore the underlying mechanisms that enable automated alignment and discuss the essential factors that make automated alignment technologies feasible and effective from the fundamental role of alignment.
comment: Paper List: https://github.com/cascip/awesome-auto-alignment
♻ ☆ Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made so far in applying this promising scheme to more abstract entities. A prominent example of these could be the concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.. We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good performance on baseline experiments, where the distributions of the training and testing stages are equal. Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions differ, CL boasts more robust and much better error performance.
♻ ☆ Correcting misinformation on social media with a large language model
Real-world misinformation, often multimodal, can be partially or fully factual but misleading using diverse tactics like conflating correlation with causation. Such misinformation is severely understudied, challenging to address, and harms various social domains, particularly on social media, where it can spread rapidly. High-quality and timely correction of misinformation that identifies and explains its (in)accuracies effectively reduces false beliefs. Despite the wide acceptance of manual correction, it is difficult to be timely and scalable. While LLMs have versatile capabilities that could accelerate misinformation correction, they struggle due to a lack of recent information, a tendency to produce false content, and limitations in addressing multimodal information. We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving evidence as refutations or supporting context, MUSE identifies and explains content (in)accuracies with references. It conducts multimodal retrieval and interprets visual content to verify and correct multimodal content. Given the absence of a comprehensive evaluation approach, we propose 13 dimensions of misinformation correction quality. Then, fact-checking experts evaluate responses to social media content that are not presupposed to be misinformation but broadly include (partially) incorrect and correct posts that may (not) be misleading. Results demonstrate MUSE's ability to write high-quality responses to potential misinformation--across modalities, tactics, domains, political leanings, and for information that has not previously been fact-checked online--within minutes of its appearance on social media. Overall, MUSE outperforms GPT-4 by 37% and even high-quality responses from laypeople by 29%. Our work provides a general methodological and evaluative framework to correct misinformation at scale.
comment: 50 pages
♻ ☆ NeMo-Aligner: Scalable Toolkit for Efficient Model Alignment
Aligning Large Language Models (LLMs) with human values and preferences is essential for making them helpful and safe. However, building efficient tools to perform alignment can be challenging, especially for the largest and most competent LLMs which often contain tens or hundreds of billions of parameters. We create NeMo-Aligner, a toolkit for model alignment that can efficiently scale to a thousand GPUs for training the largest open-source LLMs such as Nemotron 4 340B and Llama 3.1 405B. NeMo-Aligner comes with highly optimized and scalable implementations for major paradigms of model alignment such as: Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO), SteerLM, and Self-Play Fine-Tuning (SPIN). Additionally, our toolkit supports running most of the alignment techniques in a Parameter Efficient Fine-Tuning (PEFT) setting. NeMo-Aligner is designed for extensibility, allowing support for other alignment techniques with minimal effort. It is open-sourced with Apache 2.0 License and we invite community contributions at https://github.com/NVIDIA/NeMo-Aligner
comment: 16 pages, 4 figures, Accepted to COLM 2024
♻ ☆ PokerKit: A Comprehensive Python Library for Fine-Grained Multi-Variant Poker Game Simulations
PokerKit is an open-source Python library designed to overcome the restrictions of existing poker game simulation and hand evaluation tools, which typically support only a handful of poker variants and lack flexibility in game state control. In contrast, PokerKit significantly expands this scope by supporting an extensive array of poker variants and it provides a flexible architecture for users to define their custom games. This paper details the design and implementation of PokerKit, including its intuitive programmatic API, multi-variant game support, and a unified hand evaluation suite across different hand types. The flexibility of PokerKit allows for applications in diverse areas, such as poker AI development, tool creation, and online poker casino implementation. PokerKit's reliability has been established through static type checking, extensive doctests, and unit tests, achieving 99% code coverage. The introduction of PokerKit represents a significant contribution to the field of computer poker, fostering future research and advanced AI development for a wide variety of poker games. The source code is available at https://github.com/uoftcprg/pokerkit
comment: 8 pages, 5 figures, accepted to the IEEE Transactions on Games
♻ ☆ Halfway Escape Optimization: A Quantum-Inspired Solution for General Optimization Problems
This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a quantum-inspired metaheuristic designed to address general optimization problems characterized by rugged landscapes and high-dimensionality with an efficient convergence rate. The study presents a comprehensive comparative evaluation of HEO's performance against established optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial Fish Swarm Algorithm (AFSA), Grey Wolf Optimizer (GWO), and Quantum behaved Particle Swarm Optimization (QPSO). The primary analysis encompasses 14 benchmark functions with dimension 30, demonstrating HEO's effectiveness and adaptability in navigating general optimization problems and providing valuable insights into its performance. The test of HEO in Pressure Vessel Design and Tubular Column Design infers its feasibility and potential in real-time applications. Further validation in Osmancik-97 and Cammeo Rice Classification proves the effectiveness of HEO and achieves a higher accuracy record.
♻ ☆ Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks \cite{qi2023fine}-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions \cite{huang2024vaccine, rosati2024representation} and fine-tuning stage solutions \cite{huang2024lazy,mukhoti2023fine}. However, our evaluation shows that both categories of defenses fail \textit{when some specific training hyper-parameters are chosen} -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textbf{\textit{agnostic to the training hyper-parameters in the fine-tuning stage}}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at \url{https://huangtiansheng.github.io/Antidote_gh_page/}
♻ ☆ Investigating Recurrent Transformers with Dynamic Halt
In this paper, we comprehensively study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism: (1) the approach of incorporating a depth-wise recurrence similar to Universal Transformers; and (2) the approach of incorporating a chunk-wise temporal recurrence like Temporal Latent Bottleneck. Furthermore, we propose and investigate novel ways to extend and combine the above methods - for example, we propose a global mean-based dynamic halting mechanism for Universal Transformers and an augmentation of Temporal Latent Bottleneck with elements from Universal Transformer. We compare the models and probe their inductive biases in several diagnostic tasks, such as Long Range Arena (LRA), flip-flop language modeling, ListOps, and Logical Inference. The code is released in: https://github.com/JRC1995/InvestigatingRecurrentTransformers/tree/main
♻ ☆ OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step
Despite significant advancements in text generation and reasoning, Large Language Models (LLMs) still face challenges in accurately performing complex arithmetic operations. Language model systems often enable LLMs to generate code for arithmetic operations to achieve accurate calculations. However, this approach compromises speed and security, and fine-tuning risks the language model losing prior capabilities. We propose a framework that enables exact arithmetic in a single autoregressive step, providing faster, more secure, and more interpretable LLM systems with arithmetic capabilities. We use the hidden states of a LLM to control a symbolic architecture that performs arithmetic. Our implementation using Llama 3 with OccamNet as a symbolic model (OccamLlama) achieves 100\% accuracy on single arithmetic operations ($+,-,\times,\div,\sin{},\cos{},\log{},\exp{},\sqrt{}$), outperforming GPT 4o with and without a code interpreter. Furthermore, OccamLlama outperforms GPT 4o with and without a code interpreter on average across a range of mathematical problem solving benchmarks, demonstrating that OccamLLMs can excel in arithmetic tasks, even surpassing much larger models. We will make our code public shortly.
♻ ☆ How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments
Decision-making, a complicated task requiring various types of abilities, presents an excellent framework for assessing Large Language Models (LLMs). Our research investigates decision-making capabilities of LLMs through the lens of Game Theory. We focus specifically on games that support the simultaneous participation of more than two agents. We introduce GAMA($\gamma$)-Bench, which evaluates LLMs' Gaming Ability in Multi-Agent environments. $\gamma$-Bench includes eight classical multi-agent games and a scoring scheme specially designed to quantitatively assess LLMs' performance. Leveraging $\gamma$-Bench, we investigate LLMs' robustness, generalizability, and strategies for enhancement. Results reveal that while GPT-3.5 shows satisfying robustness, its generalizability is relatively limited. However, its performance can be improved through approaches such as Chain-of-Thought. Additionally, we evaluate twelve versions from six models, including GPT-3.5, GPT-4, Gemini, LLaMA-3.1, Mixtral, and Qwen-2. We find that Gemini-1.5-Pro outperforms other models with a score of $63.8$ out of $100$, followed by LLaMA-3.1-70B and GPT-4 with scores of $60.9$ and $60.5$, respectively. The code and experimental results are made publicly available via https://github.com/CUHK-ARISE/GAMABench.
comment: 11 pages of main text. 20 pages of appendices. 12 figures, 9 tables. Added models: Gemini-1.5-Pro, LLaMA-3.1-{7, 70, 405}B, Mixtral-8x{7, 22}B, Qwen-2-72B
♻ ☆ MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning
Determining the optimal size of a neural network is critical, as it directly impacts runtime performance and memory usage. Pruning is a well-established model compression technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation. However, many recent pruning methods overlook the global contributions of individual model components, making it difficult to ensure that a pruned model meets the desired dataset and performance requirements. To address these challenges, we developed a new pruning algorithm, MPruner, that leverages mutual information through vector similarity. MPruner utilizes layer clustering with the Centered Kernel Alignment (CKA) similarity metric, allowing us to incorporate global information from the neural network for more precise and efficient layer-wise pruning. We evaluated MPruner across various architectures and configurations, demonstrating its versatility and providing practical guidelines. MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.
♻ ☆ BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction
Analyzing and reconstructing visual stimuli from brain signals effectively advances the understanding of human visual system. However, the EEG signals are complex and contain significant noise. This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG, such as difficulties in aligning EEG embeddings with the fine-grained semantic information and a heavy reliance on additional large self-collected dataset for training. To address these challenges, we propose a novel approach called BrainVis. Firstly, we divide the EEG signals into various units and apply a self-supervised approach on them to obtain EEG time-domain features, in an attempt to ease the training difficulty. Additionally, we also propose to utilize the frequency-domain features to enhance the EEG representations. Then, we simultaneously align EEG time-frequency embeddings with the interpolation of the coarse and fine-grained semantics in the CLIP space, to highlight the primary visual components and reduce the cross-modal alignment difficulty. Finally, we adopt the cascaded diffusion models to reconstruct images. Using only 10\% training data of the previous work, our proposed BrainVis outperforms state of the arts in both semantic fidelity reconstruction and generation quality. The code is available at https://github.com/RomGai/BrainVis.
♻ ☆ The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
♻ ☆ GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
In autonomous robotics, measurement of the robot's internal state and perception of its environment, including interaction with other agents such as collaborative robots, are essential. Estimating the pose of the robot arm from a single view has the potential to replace classical eye-to-hand calibration approaches and is particularly attractive for online estimation and dynamic environments. In addition to its pose, recovering the robot configuration provides a complete spatial understanding of the observed robot that can be used to anticipate the actions of other agents in advanced robotics use cases. Furthermore, this additional redundancy enables the planning and execution of recovery protocols in case of sensor failures or external disturbances. We introduce GISR - a deep configuration and robot-to-camera pose estimation method that prioritizes execution in real-time. GISR consists of two modules: (i) a geometric initialization module that efficiently computes an approximate robot pose and configuration, and (ii) a deep iterative silhouette-based refinement module that arrives at a final solution in just a few iterations. We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy, and can compete with approaches that rely on ground-truth proprioception and recover only the pose.
comment: IEEE Robotics and Automation Letters (under revision), code available at http://github.com/iwhitey/GISR-robot
♻ ☆ IDNet: A Novel Dataset for Identity Document Analysis and Fraud Detection
Effective fraud detection and analysis of government-issued identity documents, such as passports, driver's licenses, and identity cards, are essential in thwarting identity theft and bolstering security on online platforms. The training of accurate fraud detection and analysis tools depends on the availability of extensive identity document datasets. However, current publicly available benchmark datasets for identity document analysis, including MIDV-500, MIDV-2020, and FMIDV, fall short in several respects: they offer a limited number of samples, cover insufficient varieties of fraud patterns, and seldom include alterations in critical personal identifying fields like portrait images, limiting their utility in training models capable of detecting realistic frauds while preserving privacy. In response to these shortcomings, our research introduces a new benchmark dataset, IDNet, designed to advance privacy-preserving fraud detection efforts. The IDNet dataset comprises 837,060 images of synthetically generated identity documents, totaling approximately 490 gigabytes, categorized into 20 types from $10$ U.S. states and 10 European countries. We evaluate the utility and present use cases of the dataset, illustrating how it can aid in training privacy-preserving fraud detection methods, facilitating the generation of camera and video capturing of identity documents, and testing schema unification and other identity document management functionalities.
comment: 40 pages
♻ ☆ Linear Contextual Bandits with Hybrid Payoff: Revisited ECML
We study the Linear Contextual Bandit problem in the hybrid reward setting. In this setting every arm's reward model contains arm specific parameters in addition to parameters shared across the reward models of all the arms. We can reduce this setting to two closely related settings (a) Shared - no arm specific parameters, and (b) Disjoint - only arm specific parameters, enabling the application of two popular state of the art algorithms - $\texttt{LinUCB}$ and $\texttt{DisLinUCB}$ (Algorithm 1 in (Li et al. 2010)). When the arm features are stochastic and satisfy a popular diversity condition, we provide new regret analyses for both algorithms, significantly improving on the known regret guarantees of these algorithms. Our novel analysis critically exploits the hybrid reward structure and the diversity condition. Moreover, we introduce a new algorithm $\texttt{HyLinUCB}$ that crucially modifies $\texttt{LinUCB}$ (using a new exploration coefficient) to account for sparsity in the hybrid setting. Under the same diversity assumptions, we prove that $\texttt{HyLinUCB}$ also incurs only $O(\sqrt{T})$ regret for $T$ rounds. We perform extensive experiments on synthetic and real-world datasets demonstrating strong empirical performance of $\texttt{HyLinUCB}$.For number of arm specific parameters much larger than the number of shared parameters, we observe that $\texttt{DisLinUCB}$ incurs the lowest regret. In this case, regret of $\texttt{HyLinUCB}$ is the second best and extremely competitive to $\texttt{DisLinUCB}$. In all other situations, including our real-world dataset, $\texttt{HyLinUCB}$ has significantly lower regret than $\texttt{LinUCB}$, $\texttt{DisLinUCB}$ and other SOTA baselines we considered. We also empirically observe that the regret of $\texttt{HyLinUCB}$ grows much slower with the number of arms compared to baselines, making it suitable even for very large action spaces.
comment: Accepted at ECML PKDD 2024 as a Research Track Paper
♻ ☆ Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education
The integration of Artificial Intelligence (AI), particularly Large Language Model (LLM)-based systems, in education has shown promise in enhancing teaching and learning experiences. However, the advent of Multimodal Large Language Models (MLLMs) like GPT-4 with vision (GPT-4V), capable of processing multimodal data including text, sound, and visual inputs, opens a new era of enriched, personalized, and interactive learning landscapes in education. Grounded in theory of multimedia learning, this paper explores the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios. Possible applications for MLLMs could range from content creation to tailored support for learning, fostering competencies in scientific practices, and providing assessment and feedback. These scenarios are not limited to text-based and uni-modal formats but can be multimodal, increasing thus personalization, accessibility, and potential learning effectiveness. Besides many opportunities, challenges such as data protection and ethical considerations become more salient, calling for robust frameworks to ensure responsible integration. This paper underscores the necessity for a balanced approach in implementing MLLMs, where the technology complements rather than supplants the educator's role, ensuring thus an effective and ethical use of AI in science education. It calls for further research to explore the nuanced implications of MLLMs on the evolving role of educators and to extend the discourse beyond science education to other disciplines. Through the exploration of potentials, challenges, and future implications, we aim to contribute to a preliminary understanding of the transformative trajectory of MLLMs in science education and beyond.
comment: revised version 2. September 2024
♻ ☆ Preference Learning Algorithms Do Not Learn Preference Rankings
Preference learning algorithms (e.g., RLHF and DPO) are frequently used to steer LLMs to produce generations that are more preferred by humans, but our understanding of their inner workings is still limited. In this work, we study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs, measured via $\textit{ranking accuracy}$. Surprisingly, we find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets. We furthermore derive the $\textit{idealized ranking accuracy}$ that a preference-tuned LLM would achieve if it optimized the DPO or RLHF objective perfectly. We demonstrate that existing models exhibit a significant $\textit{alignment gap}$ -- $\textit{i.e.}$, a gap between the observed and idealized ranking accuracies. We attribute this discrepancy to the DPO objective, which is empirically and theoretically ill-suited to fix even mild ranking errors in the reference model, and derive a simple and efficient formula for quantifying the difficulty of learning a given preference datapoint. Finally, we demonstrate that ranking accuracy strongly correlates with the empirically popular win rate metric when the model is close to the reference model used in the objective, shedding further light on the differences between on-policy (e.g., RLHF) and off-policy (e.g., DPO) preference learning algorithms.
♻ ☆ A Voter-Based Stochastic Rejection-Method Framework for Asymptotically Safe Language Model Outputs
This paper proposes a new method for preventing unsafe or otherwise low quality large language model (LLM) outputs, by leveraging the stochasticity of LLMs. We propose a system whereby LLM checkers vote on the acceptability of a generated output, regenerating it if a threshold of disapproval is reached, until sufficient checkers approve. We further propose estimators for cost and failure rate, and based on those estimators and experimental data tailored to the application, we propose an algorithm that achieves a desired failure rate at the least possible cost. We demonstrate that, under these models, failure rate decreases exponentially as a function of cost when voter count and threshold are chosen according to the algorithm, and that the models reasonably estimate the actual performance of such a system in action, even with limited data.
comment: 7 pages, 2 figures
♻ ☆ Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models
Emerging Denoising Diffusion Probabilistic Models (DDPM) have become increasingly utilised because of promising results they have achieved in diverse generative tasks with continuous data, such as image and sound synthesis. Nonetheless, the success of diffusion models has not been fully extended to discrete symbolic music. We propose to combine a vector quantized variational autoencoder (VQ-VAE) and discrete diffusion models for the generation of symbolic music with desired composer styles. The trained VQ-VAE can represent symbolic music as a sequence of indexes that correspond to specific entries in a learned codebook. Subsequently, a discrete diffusion model is used to model the VQ-VAE's discrete latent space. The diffusion model is trained to generate intermediate music sequences consisting of codebook indexes, which are then decoded to symbolic music using the VQ-VAE's decoder. The evaluation results demonstrate our model can generate symbolic music with target composer styles that meet the given conditions with a high accuracy of 72.36%. Our code is available at https://github.com/jinchengzhanggg/VQVAE-Diffusion.
♻ ☆ Zyda: A 1.3T Dataset for Open Language Modeling
The size of large language models (LLMs) has scaled dramatically in recent years and their computational and data requirements have surged correspondingly. State-of-the-art language models, even at relatively smaller sizes, typically require training on at least a trillion tokens. This rapid advancement has eclipsed the growth of open-source datasets available for large-scale LLM pretraining. In this paper, we introduce Zyda (Zyphra Dataset), a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus. We apply rigorous filtering and deduplication processes, both within and across datasets, to maintain and enhance the quality derived from the original datasets. Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite. Our rigorous data processing methods significantly enhance Zyda's effectiveness, outperforming even the best of its constituent datasets when used independently.
♻ ☆ Correction with Backtracking Reduces Hallucination in Summarization
Abstractive summarization aims at generating natural language summaries of a source document that are succinct while preserving the important elements. Despite recent advances, neural text summarization models are known to be susceptible to hallucinating (or more correctly confabulating), that is to produce summaries with details that are not grounded in the source document. In this paper, we introduce a simple yet efficient technique, CoBa, to reduce hallucination in abstractive summarization. The approach is based on two steps: hallucination detection and mitigation. We show that the former can be achieved through measuring simple statistics about conditional word probabilities and distance to context words. Further, we demonstrate that straight-forward backtracking is surprisingly effective at mitigation. We thoroughly evaluate the proposed method with prior art on three benchmark datasets for text summarization. The results show that CoBa is effective and efficient in reducing hallucination, and offers great adaptability and flexibility. Code can be found at https://github.com/zhenzhel/CoBa.
TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets
Clinical trials are pivotal for developing new medical treatments, yet they typically pose some risks such as patient mortality, adverse events, and enrollment failure that waste immense efforts spanning over a decade. Applying artificial intelligence (AI) to forecast or simulate key events in clinical trials holds great potential for providing insights to guide trial designs. However, complex data collection and question definition requiring medical expertise and a deep understanding of trial designs have hindered the involvement of AI thus far. This paper tackles these challenges by presenting a comprehensive suite of meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design, encompassing prediction of trial duration, patient dropout rate, serious adverse event, mortality rate, trial approval outcome, trial failure reason, drug dose finding, design of eligibility criteria. Furthermore, we provide basic validation methods for each task to ensure the datasets' usability and reliability. We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design, ultimately advancing clinical trial research and accelerating medical solution development. The curated dataset, metrics, and basic models are publicly available at https://github.com/ML2Health/ML2ClinicalTrials/tree/main/AI4Trial.
♻ ☆ Cooperative Evolutionary Pressure and Diminishing Returns Might Explain the Fermi Paradox: On What Super-AIs Are Like
With an evolutionary approach, the basis of morality can be explained as adaptations to problems of cooperation. With 'evolution' taken in a broad sense, evolving AIs that satisfy the conditions for evolution to apply will be subject to the same cooperative evolutionary pressure as biological entities. Here the adaptiveness of increased cooperation as material safety and wealth increase is discussed -- for humans, for other societies, and for AIs. Diminishing beneficial returns from increased access to material resources also suggests the possibility that, on the whole, there will be no incentive to for instance colonize entire galaxies, thus providing a possible explanation of the Fermi paradox, wondering where everybody is. It is further argued that old societies could engender, give way to, super-AIs, since it is likely that super-AIs are feasible, and fitter. Closing is an aside on effective ways for morals and goals to affect life and society, emphasizing environments, cultures, and laws, and exemplified by how to eat. Appended are an algorithm for colonizing for example a galaxy quickly, models of the evolution of cooperation and fairness under diminishing returns, and software for simulating signaling development. It is also noted that there can be no exponential colonization or reproduction, for mathematical reasons, as each entity takes up a certain amount of space.
comment: 29 pages, 1 figure. Added clarifications, references, expansions, and did some copy editing
♻ ☆ A Survey on Responsible Generative AI: What to Generate and What Not
In recent years, generative AI (GenAI), like large language models and text-to-image models, has received significant attention across various domains. However, ensuring the responsible generation of content by these models is crucial for their real-world applicability. This raises an interesting question: What should responsible GenAI generate, and what should it not? To answer the question, this paper investigates the practical responsible requirements of both textual and visual generative models, outlining five key considerations: generating truthful content, avoiding toxic content, refusing harmful instruction, leaking no training data-related content, and ensuring generated content identifiable. Specifically, we review recent advancements and challenges in addressing these requirements. Besides, we discuss and emphasize the importance of responsible GenAI across healthcare, education, finance, and artificial general intelligence domains. Through a unified perspective on both textual and visual generative models, this paper aims to provide insights into practical safety-related issues and further benefit the community in building responsible GenAI.
comment: 77 pages, 10 figures
♻ ☆ GPT has become financially literate: Insights from financial literacy tests of GPT and a preliminary test of how people use it as a source of advice
We assess the ability of GPT -- a large language model -- to serve as a financial robo-advisor for the masses, by using a financial literacy test. Davinci and ChatGPT based on GPT-3.5 score 66% and 65% on the financial literacy test, respectively, compared to a baseline of 33%. However, ChatGPT based on GPT-4 achieves a near-perfect 99% score, pointing to financial literacy becoming an emergent ability of state-of-the-art models. We use the Judge-Advisor System and a savings dilemma to illustrate how researchers might assess advice-utilization from large language models. We also present a number of directions for future research.
comment: 43 pages, 2 figures and 2 tables in main text; in V2 added information that this is the Author Accepted Manuscript version
♻ ☆ Value-Distributional Model-Based Reinforcement Learning
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks. We study the problem from a model-based Bayesian reinforcement learning perspective, where the goal is to learn the posterior distribution over value functions induced by parameter (epistemic) uncertainty of the Markov decision process. Previous work restricts the analysis to a few moments of the distribution over values or imposes a particular distribution shape, e.g., Gaussians. Inspired by distributional reinforcement learning, we introduce a Bellman operator whose fixed-point is the value distribution function. Based on our theory, we propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function. We combine EQR with soft actor-critic (SAC) for policy optimization with an arbitrary differentiable objective function of the learned value distribution. Evaluation across several continuous-control tasks shows performance benefits with respect to both model-based and model-free algorithms. The code is available at https://github.com/boschresearch/dist-mbrl.
♻ ☆ Distilling Knowledge for Short-to-Long Term Trajectory Prediction IROS 2024
Long-term trajectory forecasting is an important and challenging problem in the fields of computer vision, machine learning, and robotics. One fundamental difficulty stands in the evolution of the trajectory that becomes more and more uncertain and unpredictable as the time horizon grows, subsequently increasing the complexity of the problem. To overcome this issue, in this paper, we propose Di-Long, a new method that employs the distillation of a short-term trajectory model forecaster that guides a student network for long-term trajectory prediction during the training process. Given a total sequence length that comprehends the allowed observation for the student network and the complementary target sequence, we let the student and the teacher solve two different related tasks defined over the same full trajectory: the student observes a short sequence and predicts a long trajectory, whereas the teacher observes a longer sequence and predicts the remaining short target trajectory. The teacher's task is less uncertain, and we use its accurate predictions to guide the student through our knowledge distillation framework, reducing long-term future uncertainty. Our experiments show that our proposed Di-Long method is effective for long-term forecasting and achieves state-of-the-art performance on the Intersection Drone Dataset (inD) and the Stanford Drone Dataset (SDD).
comment: Accepted to IROS 2024
♻ ☆ RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback ICML 2024
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive. RL from AI Feedback (RLAIF), introduced in Bai et al., offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM. Across the tasks of summarization, helpful dialogue generation, and harmless dialogue generation, we show that RLAIF achieves comparable performance to RLHF. Furthermore, we take a step towards "self-improvement" by demonstrating that RLAIF can outperform a supervised fine-tuned baseline even when the AI labeler is the same size as the policy, or even the exact same checkpoint as the initial policy. Finally, we introduce direct-RLAIF (d-RLAIF) - a technique that circumvents RM training by obtaining rewards directly from an off-the-shelf LLM during RL, which achieves superior performance to canonical RLAIF. Our results suggest that RLAIF can achieve performance on-par with using human feedback, offering a potential solution to the scalability limitations of RLHF.
comment: Presented at ICML 2024
♻ ☆ SSM Meets Video Diffusion Models: Efficient Long-Term Video Generation with Structured State Spaces ICLR 2024
Given the remarkable achievements in image generation through diffusion models, the research community has shown increasing interest in extending these models to video generation. Recent diffusion models for video generation have predominantly utilized attention layers to extract temporal features. However, attention layers are limited by their computational costs, which increase quadratically with the sequence length. This limitation presents significant challenges when generating longer video sequences using diffusion models. To overcome this challenge, we propose leveraging state-space models (SSMs) as temporal feature extractors. SSMs (e.g., Mamba) have recently gained attention as promising alternatives due to their linear-time memory consumption relative to sequence length. In line with previous research suggesting that using bidirectional SSMs is effective for understanding spatial features in image generation, we found that bidirectionality is also beneficial for capturing temporal features in video data, rather than relying on traditional unidirectional SSMs. We conducted comprehensive evaluations on multiple long-term video datasets, such as MineRL Navigate, across various model sizes. For sequences up to 256 frames, SSM-based models require less memory to achieve the same FVD as attention-based models. Moreover, SSM-based models often deliver better performance with comparable GPU memory usage. Our codes are available at https://github.com/shim0114/SSM-Meets-Video-Diffusion-Models.
comment: Accepted as a workshop paper at ICLR 2024
Graphics 4
☆ Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning
Shadows are formed when light encounters obstacles, leading to areas of diminished illumination. In computer vision, shadow detection, removal, and generation are crucial for enhancing scene understanding, refining image quality, ensuring visual consistency in video editing, and improving virtual environments. This paper presents a comprehensive survey of shadow detection, removal, and generation in images and videos within the deep learning landscape over the past decade, covering tasks, deep models, datasets, and evaluation metrics. Our key contributions include a comprehensive survey of shadow analysis, standardization of experimental comparisons, exploration of the relationships among model size, speed, and performance, a cross-dataset generalization study, identification of open issues and future directions, and provision of publicly available resources to support further research.
comment: Publicly available results, trained models, and evaluation metrics at https://github.com/xw-hu/Unveiling-Deep-Shadows
☆ DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos
Despite significant advancements in monocular depth estimation for static images, estimating video depth in the open world remains challenging, since open-world videos are extremely diverse in content, motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. DepthCrafter achieves generalization ability to open-world videos by training a video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy with the compiled paired video-depth datasets. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that processes extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
comment: Project webpage: https://depthcrafter.github.io
Dynamic Motion Synthesis: Masked Audio-Text Conditioned Spatio-Temporal Transformers
Our research presents a novel motion generation framework designed to produce whole-body motion sequences conditioned on multiple modalities simultaneously, specifically text and audio inputs. Leveraging Vector Quantized Variational Autoencoders (VQVAEs) for motion discretization and a bidirectional Masked Language Modeling (MLM) strategy for efficient token prediction, our approach achieves improved processing efficiency and coherence in the generated motions. By integrating spatial attention mechanisms and a token critic we ensure consistency and naturalness in the generated motions. This framework expands the possibilities of motion generation, addressing the limitations of existing approaches and opening avenues for multimodal motion synthesis.
♻ ☆ Learning a Generalized Physical Face Model From Data
Physically-based simulation is a powerful approach for 3D facial animation as the resulting deformations are governed by physical constraints, allowing to easily resolve self-collisions, respond to external forces and perform realistic anatomy edits. Today's methods are data-driven, where the actuations for finite elements are inferred from captured skin geometry. Unfortunately, these approaches have not been widely adopted due to the complexity of initializing the material space and learning the deformation model for each character separately, which often requires a skilled artist followed by lengthy network training. In this work, we aim to make physics-based facial animation more accessible by proposing a generalized physical face model that we learn from a large 3D face dataset. Once trained, our model can be quickly fit to any unseen identity and produce a ready-to-animate physical face model automatically. Fitting is as easy as providing a single 3D face scan, or even a single face image. After fitting, we offer intuitive animation controls, as well as the ability to retarget animations across characters. All the while, the resulting animations allow for physical effects like collision avoidance, gravity, paralysis, bone reshaping and more.
Robotics 44
☆ Time-Varying Soft-Maximum Barrier Functions for Safety in Unmapped and Dynamic Environments
We present a closed-form optimal feedback control method that ensures safety in an a prior unknown and potentially dynamic environment. This article considers the scenario where local perception data (e.g., LiDAR) is obtained periodically, and this data can be used to construct a local control barrier function (CBF) that models a local set that is safe for a period of time into the future. Then, we use a smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single barrier function that models an approximate union of the N most recently obtained local sets. This composite barrier function is used in a constrained quadratic optimization, which is solved in closed form to obtain a safe-and-optimal feedback control. We also apply the time-varying soft-maximum barrier function control to 2 robotic systems (nonholonomic ground robot with nonnegligible inertia, and quadrotor robot), where the objective is to navigate an a priori unknown environment safely and reach a target destination. In these applications, we present a simple approach to generate local CBFs from periodically obtained perception data.
comment: Preprint submitted to IEEE Transactions on Control Systems Technology (TCST)
☆ Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization
Recent advancements in reinforcement learning (RL) have been fueled by large-scale data and deep neural networks, particularly for high-dimensional and complex tasks. Online RL methods like Proximal Policy Optimization (PPO) are effective in dynamic scenarios but require substantial real-time data, posing challenges in resource-constrained or slow simulation environments. Offline RL addresses this by pre-learning policies from large datasets, though its success depends on the quality and diversity of the data. This work proposes a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets. This approach improves exploration and sample efficiency, leading to significant gains in cumulative rewards, convergence speed, and strategy stability in complex tasks. Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models. These findings provide new insights and methods for applying RL to high-dimensional, complex tasks. Finally, we open-source our code at https://github.com/TianciGao/DiffPPO
☆ Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design
We introduce the first, to our knowledge, rigorous approach that enables multi-agent networks to self-configure their communication topology to balance the trade-off between scalability and optimality during multi-agent planning. We are motivated by the future of ubiquitous collaborative autonomy where numerous distributed agents will be coordinating via agent-to-agent communication to execute complex tasks such as traffic monitoring, event detection, and environmental exploration. But the explosion of information in such large-scale networks currently curtails their deployment due to impractical decision times induced by the computational and communication requirements of the existing near-optimal coordination algorithms. To overcome this challenge, we present the AlterNAting COordination and Network-Design Algorithm (Anaconda), a scalable algorithm that also enjoys near-optimality guarantees. Subject to the agents' bandwidth constraints, Anaconda enables the agents to optimize their local communication neighborhoods such that the action-coordination approximation performance of the network is maximized. Compared to the state of the art, Anaconda is an anytime self-configurable algorithm that quantifies its suboptimality guarantee for any type of network, from fully disconnected to fully centralized, and that, for sparse networks, is one order faster in terms of decision speed. To develop the algorithm, we quantify the suboptimality cost due to decentralization, i.e., due to communication-minimal distributed coordination. We also employ tools inspired by the literature on multi-armed bandits and submodular maximization subject to cardinality constraints. We demonstrate Anaconda in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
comment: Accepted to CDC 2024
☆ Grounding Language Models in Autonomous Loco-manipulation Tasks ICRA
Humanoid robots with behavioral autonomy have consistently been regarded as ideal collaborators in our daily lives and promising representations of embodied intelligence. Compared to fixed-based robotic arms, humanoid robots offer a larger operational space while significantly increasing the difficulty of control and planning. Despite the rapid progress towards general-purpose humanoid robots, most studies remain focused on locomotion ability with few investigations into whole-body coordination and tasks planning, thus limiting the potential to demonstrate long-horizon tasks involving both mobility and manipulation under open-ended verbal instructions. In this work, we propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios. We combine reinforcement learning (RL) with whole-body optimization to generate robot motions and store them into a motion library. We further leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph that comprises a series of motion primitives to bridge lower-level execution with higher-level planning. Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks, demonstrating high autonomy from free-text commands in unstructured scenes.
comment: Summit to ICRA@40. arXiv admin note: substantial text overlap with arXiv:2406.14655
☆ An Investigation of Denial of Service Attacks on Autonomous Driving Software and Hardware in Operation
This research investigates the impact of Denial of Service (DoS) attacks, specifically Internet Control Message Protocol (ICMP) flood attacks, on Autonomous Driving (AD) systems, focusing on their control modules. Two experimental setups were created: the first involved an ICMP flood attack on a Raspberry Pi running an AD software stack, and the second examined the effects of single and double ICMP flood attacks on a Global Navigation Satellite System Real-Time Kinematic (GNSS-RTK) device for high-accuracy localization of an autonomous vehicle that is available on the market. The results indicate a moderate impact of DoS attacks on the AD stack, where the increase in median computation time was marginal, suggesting a degree of resilience to these types of attacks. In contrast, the GNSS device demonstrated significant vulnerability: during DoS attacks, the sample rate dropped drastically to approximately 50% and 5% of the nominal rate for single and double attacker configurations, respectively. Additionally, the longest observed time increments were in the range of seconds during the attacks. These results underscore the vulnerability of AD systems to DoS attacks and the critical need for robust cybersecurity measures. This work provides valuable insights into the design requirements of AD software stacks and highlights that external hardware and modules can be significant attack surfaces.
☆ External Steering of Vine Robots via Magnetic Actuation
This paper explores the concept of external magnetic control for vine robots to enable their high curvature steering and navigation for use in endoluminal applications. Vine robots, inspired by natural growth and locomotion strategies, present unique shape adaptation capabilities that allow passive deformation around obstacles. However, without additional steering mechanisms, they lack the ability to actively select the desired direction of growth. The principles of magnetically steered growing robots are discussed, and experimental results showcase the effectiveness of the proposed magnetic actuation approach. We present a 25 mm diameter vine robot with integrated magnetic tip capsule, including 6 Degrees of Freedom (DOF) localization and camera and demonstrate a minimum bending radius of 3.85 cm with an internal pressure of 30 kPa. Furthermore, we evaluate the robot's ability to form tight curvature through complex navigation tasks, with magnetic actuation allowing for extended free-space navigation without buckling. The suspension of the magnetic tip was also validated using the 6 DOF localization system to ensure that the shear-free nature of vine robots was preserved. Additionally, by exploiting the magnetic wrench at the tip, we showcase preliminary results of vine retraction. The findings contribute to the development of controllable vine robots for endoluminal applications, providing high tip force and shear-free navigation.
comment: 13 pages, 10 figures
☆ Adaptive Artificial Time Delay Control for Robotic Systems
Artificial time delay controller was conceptualised for nonlinear systems to reduce dependency on precise system modelling unlike the conventional adaptive and robust control strategies. In this approach unknown dynamics is compensated by using input and state measurements collected at immediate past time instant (i.e., artificially delayed). The advantage of this kind of approach lies in its simplicity and ease of implementation. However, the applications of artificial time delay controllers in robotics, which are also robust against unknown state-dependent uncertainty, are still missing at large. This thesis presents the study of this control approach toward two important classes of robotic systems, namely a fully actuated bipedal walking robot and an underactuated quadrotor system. In the first work, we explore the idea of a unified control design instead of multiple controllers for different walking phases in adaptive bipedal walking control while bypassing computing constraint forces, since they often lead to complex designs. The second work focuses on quadrotors employed for applications such as payload delivery, inspection and search-and-rescue. The effectiveness of this controller is validated using experimental results.
☆ Revisiting Safe Exploration in Safe Reinforcement learning
Safe reinforcement learning (SafeRL) extends standard reinforcement learning with the idea of safety, where safety is typically defined through the constraint of the expected cost return of a trajectory being below a set limit. However, this metric fails to distinguish how costs accrue, treating infrequent severe cost events as equal to frequent mild ones, which can lead to riskier behaviors and result in unsafe exploration. We introduce a new metric, expected maximum consecutive cost steps (EMCC), which addresses safety during training by assessing the severity of unsafe steps based on their consecutive occurrence. This metric is particularly effective for distinguishing between prolonged and occasional safety violations. We apply EMMC in both on- and off-policy algorithm for benchmarking their safe exploration capability. Finally, we validate our metric through a set of benchmarks and propose a new lightweight benchmark task, which allows fast evaluation for algorithm design.
☆ Saying goodbyes to rotating your phone: Magnetometer calibration during SLAM
While Wi-Fi positioning is still more common indoors, using magnetic field features has become widely known and utilized as an alternative or supporting source of information. Magnetometer bias presents significant challenge in magnetic field navigation and SLAM. Traditionally, magnetometers have been calibrated using standard sphere or ellipsoid fitting methods and by requiring manual user procedures, such as rotating a smartphone in a figure-eight shape. This is not always feasible, particularly when the magnetometer is attached to heavy or fast-moving platforms, or when user behavior cannot be reliably controlled. Recent research has proposed using map data for calibration during positioning. This paper takes a step further and verifies that a pre-collected map is not needed; instead, calibration can be done as part of a SLAM process. The presented solution uses a factorized particle filter that factors out calibration in addition to the magnetic field map. The method is validated using smartphone data from a shopping mall and mobile robotics data from an office environment. Results support the claim that magnetometer calibration can be achieved during SLAM with comparable accuracy to manual calibration. Furthermore, the method seems to slightly improve manual calibration when used on top of it, suggesting potential for integrating various calibration approaches.
comment: Accepted for publication at the 14th International Conference on Indoor Positioning and Indoor Navigation (IPIN 2024)
☆ CyberCortex.AI: An AI-based Operating System for Autonomous Robotics and Complex Automation
The underlying framework for controlling autonomous robots and complex automation applications are Operating Systems (OS) capable of scheduling perception-and-control tasks, as well as providing real-time data communication to other robotic peers and remote cloud computers. In this paper, we introduce CyberCortex.AI, a robotics OS designed to enable heterogeneous AI-based robotics and complex automation applications. CyberCortex.AI is a decentralized distributed OS which enables robots to talk to each other, as well as to High Performance Computers (HPC) in the cloud. Sensory and control data from the robots is streamed towards HPC systems with the purpose of training AI algorithms, which are afterwards deployed on the robots. Each functionality of a robot (e.g. sensory data acquisition, path planning, motion control, etc.) is executed within a so-called DataBlock of Filters shared through the internet, where each filter is computed either locally on the robot itself, or remotely on a different robotic system. The data is stored and accessed via a so-called \textit{Temporal Addressable Memory} (TAM), which acts as a gateway between each filter's input and output. CyberCortex.AI has two main components: i) the CyberCortex.AI.inference system, which is a real-time implementation of the DataBlock running on the robots' embedded hardware, and ii) the CyberCortex.AI.dojo, which runs on an HPC computer in the cloud, and it is used to design, train and deploy AI algorithms. We present a quantitative and qualitative performance analysis of the proposed approach using two collaborative robotics applications: \textit{i}) a forest fires prevention system based on an Unitree A1 legged robot and an Anafi Parrot 4K drone, as well as \textit{ii}) an autonomous driving system which uses CyberCortex.AI for collaborative perception and motion control.
☆ Direct Kinematics, Inverse Kinematics, and Motion Planning of 1-DoF Rational Linkages
This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree-of-freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss-Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.
☆ Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving
Online corner case detection is crucial for ensuring safety in autonomous driving vehicles. Current autonomous driving approaches can be categorized into modular approaches and end-to-end approaches. To leverage the advantages of both, we propose a method for online corner case detection that integrates an end-to-end approach into a modular system. The modular system takes over the primary driving task and the end-to-end network runs in parallel as a secondary one, the disagreement between the systems is then used for corner case detection. We implement this method on a real vehicle and evaluate it qualitatively. Our results demonstrate that end-to-end networks, known for their superior situational awareness, as secondary driving systems, can effectively contribute to corner case detection. These findings suggest that such an approach holds potential for enhancing the safety of autonomous vehicles.
comment: IEEE SMC 2024
☆ Development and Validation of a Modular Sensor-Based System for Gait Analysis and Control in Lower-Limb Exoskeletons
With rapid advancements in exoskeleton hardware technologies, successful assessment and accurate control remain challenging. This study introduces a modular sensor-based system to enhance biomechanical evaluation and control in lower-limb exoskeletons, utilizing advanced sensor technologies and fuzzy logic. We aim to surpass the limitations of current biomechanical evaluation methods confined to laboratories and to address the high costs and complexity of exoskeleton control systems. The system integrates inertial measurement units, force-sensitive resistors, and load cells into instrumented crutches and 3D-printed insoles. These components function both independently and collectively to capture comprehensive biomechanical data, including the anteroposterior center of pressure and crutch ground reaction forces. This data is processed through a central unit using fuzzy logic algorithms for real-time gait phase estimation and exoskeleton control. Validation experiments with three participants, benchmarked against gold-standard motion capture and force plate technologies, demonstrate our system's capability for reliable gait phase detection and precise biomechanical measurements. By offering our designs open-source and integrating cost-effective technologies, this study advances wearable robotics and promotes broader innovation and adoption in exoskeleton research.
comment: 12 pages, 8 figures, submitted to IEEE Transactions in Medical Robotics and Bionics
☆ Remote telepresence over large distances via robot avatars: case studies
This paper discusses the necessary considerations and adjustments that allow a recently proposed avatar system architecture to be used with different robotic avatar morphologies (both wheeled and legged robots with various types of hands and kinematic structures) for the purpose of enabling remote (intercontinental) telepresence under communication bandwidth restrictions. The case studies reported involve robots using both position and torque control modes, independently of their software middleware.
☆ Online Non-linear Centroidal MPC with Stability Guarantees for Robust Locomotion of Legged Robots
Nonlinear model predictive locomotion controllers based on the reduced centroidal dynamics are nowadays ubiquitous in legged robots. These schemes, even if they assume an inherent simplification of the robot's dynamics, were shown to endow robots with a step-adjustment capability in reaction to small pushes, and, moreover, in the case of uncertain parameters - as unknown payloads - they were shown to be able to provide some practical, albeit limited, robustness. In this work, we provide rigorous certificates of their closed loop stability via a reformulation of the centroidal MPC controller. This is achieved thanks to a systematic procedure inspired by the machinery of adaptive control, together with ideas coming from Control Lyapunov functions. Our reformulation, in addition, provides robustness for a class of unmeasured constant disturbances. To demonstrate the generality of our approach, we validated our formulation on a new generation of humanoid robots - the 56.7 kg ergoCub, as well as on a commercially available 21 kg quadruped robot, Aliengo.
☆ Coverage Metrics for a Scenario Database for the Scenario-Based Assessment of Automated Driving Systems
Automated Driving Systems (ADSs) have the potential to make mobility services available and safe for all. A multi-pillar Safety Assessment Framework (SAF) has been proposed for the type-approval process of ADSs. The SAF requires that the test scenarios for the ADS adequately covers the Operational Design Domain (ODD) of the ADS. A common method for generating test scenarios involves basing them on scenarios identified and characterized from driving data. This work addresses two questions when collecting scenarios from driving data. First, do the collected scenarios cover all relevant aspects of the ADS' ODD? Second, do the collected scenarios cover all relevant aspects that are in the driving data, such that no potentially important situations are missed? This work proposes coverage metrics that provide a quantitative answer to these questions. The proposed coverage metrics are illustrated by means of an experiment in which over 200000 scenarios from 10 different scenario categories are collected from the HighD data set. The experiment demonstrates that a coverage of 100 % can be achieved under certain conditions, and it also identifies which data and scenarios could be added to enhance the coverage outcomes in case a 100 % coverage has not been achieved. Whereas this work presents metrics for the quantification of the coverage of driving data and the identified scenarios, this paper concludes with future research directions, including the quantification of the completeness of driving data and the identified scenarios.
comment: Accepted for the 2024 IEEE International Automated Vehicle Validation (IAVVC 2024) Conference
☆ Scenario-based assessment of automated driving systems: How (not) to parameterize scenarios?
The development of Automated Driving Systems (ADSs) has advanced significantly. To enable their large-scale deployment, the United Nations Regulation 157 (UN R157) concerning the approval of Automated Lane Keeping Systems (ALKSs) has been approved in 2021. UN R157 requires an activated ALKS to avoid any collisions that are reasonably preventable and proposes a method to distinguish reasonably preventable collisions from unpreventable ones using "the simulated performance of a skilled and attentive human driver". With different driver models, benchmarks are set for ALKSs in three types of scenarios. The three types of scenarios considered in the proposed method in UN R157 assume a certain parameterization without any further consideration. This work investigates the parameterization of these scenarios, showing that the choice of parameterization significantly affects the simulation outcomes. By comparing real-world and parameterized scenarios, we show that the influence of parameterization depends on the scenario type, driver model, and evaluation criterion. Alternative parameterizations are proposed, leading to results that are closer to the non-parameterized scenarios in terms of recall, precision, and F1 score. The study highlights the importance of careful scenario parameterization and suggests improvements to the current UN R157 approach.
comment: Accepted for the 2024 IEEE International Automated Vehicle Validation (IAVVC2024) Conference
☆ AI Olympics challenge with Evolutionary Soft Actor Critic
In the following report, we describe the solution we propose for the AI Olympics competition held at IROS 2024. Our solution is based on a Model-free Deep Reinforcement Learning approach combined with an evolutionary strategy. We will briefly describe the algorithms that have been used and then provide details of the approach
☆ Online One-Dimensional Magnetic Field SLAM with Loop-Closure Detection
We present a lightweight magnetic field simultaneous localisation and mapping (SLAM) approach for drift correction in odometry paths, where the interest is purely in the odometry and not in map building. We represent the past magnetic field readings as a one-dimensional trajectory against which the current magnetic field observations are matched. This approach boils down to sequential loop-closure detection and decision-making, based on the current pose state estimate and the magnetic field. We combine this setup with a path estimation framework using an extended Kalman smoother which fuses the odometry increments with the detected loop-closure timings. We demonstrate the practical applicability of the model with several different real-world examples from a handheld iPad moving in indoor scenes.
comment: To appear in International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 2024
☆ Affordance-based Robot Manipulation with Flow Matching
We present a framework for assistive robot manipulation, which focuses on two fundamental challenges: first, efficiently adapting large-scale models to downstream scene affordance understanding tasks, especially in daily living scenarios where gathering multi-task data involving humans requires strenuous effort; second, effectively learning robot trajectories by grounding the visual affordance model. We tackle the first challenge by employing a parameter-efficient prompt tuning method that prepends learnable text prompts to the frozen vision model to predict manipulation affordances in multi-task scenarios. Then we propose to learn robot trajectories guided by affordances in a supervised Flow Matching method. Flow matching represents a robot visuomotor policy as a conditional process of flowing random waypoints to desired robot trajectories. Finally, we introduce a real-world dataset with 10 tasks across Activities of Daily Living to test our framework. Our extensive evaluation highlights that the proposed prompt tuning method for learning manipulation affordance with language prompter achieves competitive performance and even outperforms other finetuning protocols across data scales, while satisfying parameter efficiency. Learning multi-task robot trajectories with a single flow matching policy also leads to consistently better performance than alternative behavior cloning methods, especially given multimodal robot action distributions. Our framework seamlessly unifies affordance model learning and trajectory generation with flow matching for robot manipulation.
☆ Flying a Quadrotor with Unknown Actuators and Sensor Configuration
Though control algorithms for multirotor Unmanned Air Vehicle (UAV) are well understood, the configuration, parameter estimation, and tuning of flight control algorithms takes quite some time and resources. In previous work, we have shown that it is possible to identify the control effectiveness and motor dynamics of a multirotor fast enough for it to recover to a stable hover after being thrown 4 meters in the air. In this paper, we extend this to include estimation of the position of the Inertial Measurement Unit (IMU) relative to the Center of Gravity (CoG), estimation of the IMU rotation, the thrust direction of all motors and the optimal combined thrust direction. In order to guarantee a correct IMU position estimation, two prior throw-and-catches of the vehicle with spin around different axes are required. For these throws, a height as low as 1 meter is sufficient. Quadrotor flight experimentation confirms the efficacy of the approach, and a simulation shows its applicability to fully-actuated crafts with multiple possible hover orientations.
comment: This work has been submitted to IMAV 2024 for possible publication
☆ Accelerated Multi-objective Task Learning using Modified Q-learning Algorithm
Robots find extensive applications in industry. In recent years, the influence of robots has also increased rapidly in domestic scenarios. The Q-learning algorithm aims to maximise the reward for reaching the goal. This paper proposes a modified version of the Q-learning algorithm, known as Q-learning with scaled distance metric (Q-SD). This algorithm enhances task learning and makes task completion more meaningful. A robotic manipulator (agent) applies the Q-SD algorithm to the task of table cleaning. Using Q-SD, the agent acquires the sequence of steps necessary to accomplish the task while minimising the manipulator's movement distance. We partition the table into grids of different dimensions. The first has a grid count of 3 times 3, and the second has a grid count of 4 times 4. Using the Q-SD algorithm, the maximum success obtained in these two environments was 86% and 59% respectively. Moreover, Compared to the conventional Q-learning algorithm, the drop in average distance moved by the agent in these two environments using the Q-SD algorithm was 8.61% and 6.7% respectively.
comment: 9 pages, 9 figures, 7 tables
☆ Robust Vehicle Localization and Tracking in Rain using Street Maps
GPS-based vehicle localization and tracking suffers from unstable positional information commonly experienced in tunnel segments and in dense urban areas. Also, both Visual Odometry (VO) and Visual Inertial Odometry (VIO) are susceptible to adverse weather conditions that causes occlusions or blur on the visual input. In this paper, we propose a novel approach for vehicle localization that uses street network based map information to correct drifting odometry estimates and intermittent GPS measurements especially, in adversarial scenarios such as driving in rain and tunnels. Specifically, our approach is a flexible fusion algorithm that integrates intermittent GPS, drifting IMU and VO estimates together with 2D map information for robust vehicle localization and tracking. We refer to our approach as Map-Fusion. We robustly evaluate our proposed approach on four geographically diverse datasets from different countries ranging across clear and rain weather conditions. These datasets also include challenging visual segments in tunnels and underpasses. We show that with the integration of the map information, our Map-Fusion algorithm reduces the error of the state-of-the-art VO and VIO approaches across all datasets. We also validate our proposed algorithm in a real-world environment and in real-time on a hardware constrained mobile robot. Map-Fusion achieved 2.46m error in clear weather and 6.05m error in rain weather for a 150m route.
☆ Upgrading Pepper Robot s Social Interaction with Advanced Hardware and Perception Enhancements
In this paper, we propose hardware and software enhancements for the Pepper robot to improve its human-robot interaction capabilities. This includes the integration of an NVIDIA Jetson GPU to enhance computational capabilities and execute real time algorithms, and a RealSense D435i camera to capture depth images, as well as the computer vision algorithms to detect and localize the humans around the robot and estimate their body orientation and gaze direction. The new stack is implemented on ROS and is running on the extended Pepper hardware, and the communication with the robot s firmware is done through the NAOqi ROS driver API. We have also collected a MoCap dataset of human activities in a controlled environment, together with the corresponding RGB-D data, to validate the proposed perception algorithms.
☆ Kalman Filtering for Precise Indoor Position and Orientation Estimation Using IMU and Acoustics on Riemannian Manifolds
Indoor tracking and pose estimation, i.e., determining the position and orientation of a moving target, are increasingly important due to their numerous applications. While Inertial Navigation Systems (INS) provide high update rates, their positioning errors can accumulate rapidly over time. To mitigate this, it is common to integrate INS with complementary systems to correct drift and improve accuracy. This paper presents a novel approach that combines INS with an acoustic Riemannian-based localization system to enhance indoor positioning and orientation tracking. The proposed method employs both the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) for fusing data from the two systems. The Riemannian-based localization system delivers high-accuracy estimates of the target's position and orientation, which are then used to correct the INS data. A new projection algorithm is introduced to map the EKF or UKF output onto the Riemannian manifold, further improving estimation accuracy. Our results show that the proposed methods significantly outperform benchmark algorithms in both position and orientation estimation. The effectiveness of the proposed methods was evaluated through extensive numerical simulations and testing using our in-house experimental setup. These evaluations confirm the superior performance of our approach in practical scenarios.
☆ MFCalib: Single-shot and Automatic Extrinsic Calibration for LiDAR and Camera in Targetless Environments Based on Multi-Feature Edge IROS2024
This paper presents MFCalib, an innovative extrinsic calibration technique for LiDAR and RGB camera that operates automatically in targetless environments with a single data capture. At the heart of this method is using a rich set of edge information, significantly enhancing calibration accuracy and robustness. Specifically, we extract both depth-continuous and depth-discontinuous edges, along with intensity-discontinuous edges on planes. This comprehensive edge extraction strategy ensures our ability to achieve accurate calibration with just one round of data collection, even in complex and varied settings. Addressing the uncertainty of depth-discontinuous edges, we delve into the physical measurement principles of LiDAR and develop a beam model, effectively mitigating the issue of edge inflation caused by the LiDAR beam. Extensive experiment results demonstrate that MFCalib outperforms the state-of-the-art targetless calibration methods across various scenes, achieving and often surpassing the precision of multi-scene calibrations in a single-shot collection. To support community development, we make our code available open-source on GitHub.
comment: 8 pages, 10 figures, accepted by IROS2024
☆ Semantically Controllable Augmentations for Generalizable Robot Learning IJRR
Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training. However, collecting large real-world datasets is intractable due to high operational costs. For robot learning to generalize despite these challenges, it is essential to leverage sources of data or priors beyond the robot's direct experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. These generative models encompass a broad range of real-world scenarios beyond a robot's direct experience and can synthesize novel synthetic experiences that expose robotic agents to additional world priors aiding real-world generalization at no extra cost. In particular, our approach leverages pre-trained generative models as an effective tool for data augmentation. We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets while inducing rich variations that enable real-world generalization. Based on diverse augmentations of robot data, we show how scalable robot manipulation policies can be trained and deployed both in simulation and in unseen real-world environments such as kitchens and table-tops. By demonstrating the effectiveness of image-text generative models in diverse real-world robotic applications, our generative augmentation framework provides a scalable and efficient path for boosting generalization in robot learning at no extra human cost.
comment: Accepted for publication by IJRR. First 3 authors contributed equally. Last 3 authors advised equally
☆ Development of Occupancy Prediction Algorithm for Underground Parking Lots
The core objective of this study is to address the perception challenges faced by autonomous driving in adverse environments like basements. Initially, this paper commences with data collection in an underground garage. A simulated underground garage model is established within the CARLA simulation environment, and SemanticKITTI format occupancy ground truth data is collected in this simulated setting. Subsequently, the study integrates a Transformer-based Occupancy Network model to complete the occupancy grid prediction task within this scenario. A comprehensive BEV perception framework is designed to enhance the accuracy of neural network models in dimly lit, challenging autonomous driving environments. Finally, experiments validate the accuracy of the proposed solution's perception performance in basement scenarios. The proposed solution is tested on our self-constructed underground garage dataset, SUSTech-COE-ParkingLot, yielding satisfactory results.
Whole-Body Control Through Narrow Gaps From Pixels To Action
Flying through body-size narrow gaps in the environment is one of the most challenging moments for an underactuated multirotor. We explore a purely data-driven method to master this flight skill in simulation, where a neural network directly maps pixels and proprioception to continuous low-level control commands. This learned policy enables whole-body control through gaps with different geometries demanding sharp attitude changes (e.g., near-vertical roll angle). The policy is achieved by successive model-free reinforcement learning (RL) and online observation space distillation. The RL policy receives (virtual) point clouds of the gaps' edges for scalable simulation and is then distilled into the high-dimensional pixel space. However, this flight skill is fundamentally expensive to learn by exploring due to restricted feasible solution space. We propose to reset the agent as states on the trajectories by a model-based trajectory optimizer to alleviate this problem. The presented training pipeline is compared with baseline methods, and ablation studies are conducted to identify the key ingredients of our method. The immediate next step is to scale up the variation of gap sizes and geometries in anticipation of emergent policies and demonstrate the sim-to-real transformation.
comment: 9 pages, 8 figures, 2 tables
♻ ☆ Augmented Reality without Borders: Achieving Precise Localization Without Maps
Visual localization is crucial for Computer Vision and Augmented Reality (AR) applications, where determining the camera or device's position and orientation is essential to accurately interact with the physical environment. Traditional methods rely on detailed 3D maps constructed using Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM), which is computationally expensive and impractical for dynamic or large-scale environments. We introduce MARLOC, a novel localization framework for AR applications that uses known relative transformations within image sequences to perform intra-sequence triangulation, generating 3D-2D correspondences for pose estimation and refinement. MARLOC eliminates the need for pre-built SfM maps, providing accurate and efficient localization suitable for dynamic outdoor environments. Evaluation with benchmark datasets and real-world experiments demonstrates MARLOC's state-of-the-art performance and robustness. By integrating MARLOC into an AR device, we highlight its capability to achieve precise localization in real-world outdoor scenarios, showcasing its practical effectiveness and potential to enhance visual localization in AR applications.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Neuromorphic force-control in an industrial task: validating energy and latency benefits IROS 2024
As robots become smarter and more ubiquitous, optimizing the power consumption of intelligent compute becomes imperative towards ensuring the sustainability of technological advancements. Neuromorphic computing hardware makes use of biologically inspired neural architectures to achieve energy and latency improvements compared to conventional von Neumann computing architecture. Applying these benefits to robots has been demonstrated in several works in the field of neurorobotics, typically on relatively simple control tasks. Here, we introduce an example of neuromorphic computing applied to the real-world industrial task of object insertion. We trained a spiking neural network (SNN) to perform force-torque feedback control using a reinforcement learning approach in simulation. We then ported the SNN to the Intel neuromorphic research chip Loihi interfaced with a KUKA robotic arm. At inference time we show latency competitive with current CPU/GPU architectures, and one order of magnitude less energy usage in comparison to state-of-the-art low-energy edge-hardware. We offer this example as a proof of concept implementation of a neuromoprhic controller in real-world robotic setting, highlighting the benefits of neuromorphic hardware for the development of intelligent controllers for robots.
comment: Accepted at IROS 2024
♻ ☆ PhysORD: A Neuro-Symbolic Approach for Physics-infused Motion Prediction in Off-road Driving
Motion prediction is critical for autonomous off-road driving, however, it presents significantly more challenges than on-road driving because of the complex interaction between the vehicle and the terrain. Traditional physics-based approaches encounter difficulties in accurately modeling dynamic systems and external disturbance. In contrast, data-driven neural networks require extensive datasets and struggle with explicitly capturing the fundamental physical laws, which can easily lead to poor generalization. By merging the advantages of both methods, neuro-symbolic approaches present a promising direction. These methods embed physical laws into neural models, potentially significantly improving generalization capabilities. However, no prior works were evaluated in real-world settings for off-road driving. To bridge this gap, we present PhysORD, a neural-symbolic approach integrating the conservation law, i.e., the Euler-Lagrange equation, into data-driven neural models for motion prediction in off-road driving. Our experiments showed that PhysORD can accurately predict vehicle motion and tolerate external disturbance by modeling uncertainties. It outperforms existing methods both in accuracy and efficiency and demonstrates data-efficient learning and generalization ability in long-term prediction.
♻ ☆ PEACE: Prompt Engineering Automation for CLIPSeg Enhancement in Aerial Robotics
Safe landing is an essential aspect of flight operations in fields ranging from industrial to space robotics. With the growing interest in artificial intelligence, we focus on learning-based methods for safe landing. Our previous work, Dynamic Open-Vocabulary Enhanced SafE-Landing with Intelligence (DOVESEI), demonstrated the feasibility of using prompt-based segmentation for identifying safe landing zones with open vocabulary models. However, relying on a heuristic selection of words for prompts is not reliable, as it cannot adapt to changing environments, potentially leading to harmful outcomes if the observed environment is not accurately represented by the chosen prompt. To address this issue, we introduce PEACE (Prompt Engineering Automation for CLIPSeg Enhancement), an enhancement to DOVESEI that automates prompt engineering to adapt to shifts in data distribution. PEACE can perform safe landings using only monocular cameras and image segmentation. PEACE shows significant improvements in prompt generation and engineering for aerial images compared to standard prompts used for CLIP and CLIPSeg. By combining DOVESEI and PEACE, our system improved the success rate of safe landing zone selection by at least 30\% in both simulations and indoor experiments.
comment: arXiv admin note: text overlap with arXiv:2308.11471
Fast and Certifiable Trajectory Optimization
We propose semidefinite trajectory optimization (STROM), a framework that computes fast and certifiably optimal solutions for nonconvex trajectory optimization problems defined by polynomial objectives and constraints. STROM employs sparse second-order Lasserre's hierarchy to generate semidefinite program (SDP) relaxations of trajectory optimization. Different from existing tools (e.g., YALMIP and SOSTOOLS in Matlab), STROM generates chain-like multiple-block SDPs with only positive semidefinite (PSD) variables. Moreover, STROM does so two orders of magnitude faster. Underpinning STROM is cuADMM, the first ADMM-based SDP solver implemented in CUDA and runs in GPUs (with C/C++ extension). cuADMM builds upon the symmetric Gauss-Seidel ADMM algorithm and leverages GPU parallelization to speedup solving sparse linear systems and projecting onto PSD cones. In five trajectory optimization problems (inverted pendulum, cart-pole, vehicle landing, flying robot, and car back-in), cuADMM computes optimal trajectories (with certified suboptimality below 1%) in minutes (when other solvers take hours or run out of memory) and seconds (when others take minutes). Further, when warmstarted by data-driven initialization in the inverted pendulum problem, cuADMM delivers real-time performance: providing certifiably optimal trajectories in 0.66 seconds despite the SDP has 49,500 variables and 47,351 constraints.
♻ ☆ Multi-Visual-Inertial System: Analysis, Calibration and Estimation
In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and(or) rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU or camera intrinsics and the IMU-IMU(or camera) spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with intrinsics-termed ACI3-to preintegrate IMU measurements, which is leveraged to fuse auxiliary IMUs and(or) gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain - no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to the extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method such as Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.
♻ ☆ Active Semantic Mapping and Pose Graph Spectral Analysis for Robot Exploration
Exploration in unknown and unstructured environments is a pivotal requirement for robotic applications. A robot's exploration behavior can be inherently affected by the performance of its Simultaneous Localization and Mapping (SLAM) subsystem, although SLAM and exploration are generally studied separately. In this paper, we formulate exploration as an active mapping problem and extend it with semantic information. We introduce a novel active metric-semantic SLAM approach, leveraging recent research advances in information theory and spectral graph theory: we combine semantic mutual information and the connectivity metrics of the underlying pose graph of the SLAM subsystem. We use the resulting utility function to evaluate different trajectories to select the most favorable strategy during exploration. Exploration and SLAM metrics are analyzed in experiments. Running our algorithm on the Habitat dataset, we show that, while maintaining efficiency close to the state-of-the-art exploration methods, our approach effectively increases the performance of metric-semantic SLAM with a 21% reduction in average map error and a 9% improvement in average semantic classification accuracy.
comment: 8 pages, 5 figures
♻ ☆ Globally Stable Neural Imitation Policies
Imitation learning presents an effective approach to alleviate the resource-intensive and time-consuming nature of policy learning from scratch in the solution space. Even though the resulting policy can mimic expert demonstrations reliably, it often lacks predictability in unexplored regions of the state-space, giving rise to significant safety concerns in the face of perturbations. To address these challenges, we introduce the Stable Neural Dynamical System (SNDS), an imitation learning regime which produces a policy with formal stability guarantees. We deploy a neural policy architecture that facilitates the representation of stability based on Lyapunov theorem, and jointly train the policy and its corresponding Lyapunov candidate to ensure global stability. We validate our approach by conducting extensive experiments in simulation and successfully deploying the trained policies on a real-world manipulator arm. The experimental results demonstrate that our method overcomes the instability, accuracy, and computational intensity problems associated with previous imitation learning methods, making our method a promising solution for stable policy learning in complex planning scenarios.
♻ ☆ Driving from Vision through Differentiable Optimal Control IROS 2024
This paper proposes DriViDOC: a framework for Driving from Vision through Differentiable Optimal Control, and its application to learn autonomous driving controllers from human demonstrations. DriViDOC combines the automatic inference of relevant features from camera frames with the properties of nonlinear model predictive control (NMPC), such as constraint satisfaction. Our approach leverages the differentiability of parametric NMPC, allowing for end-to-end learning of the driving model from images to control. The model is trained on an offline dataset comprising various human demonstrations collected on a motion-base driving simulator. During online testing, the model demonstrates successful imitation of different driving styles, and the interpreted NMPC parameters provide insights into the achievement of specific driving behaviors. Our experimental results show that DriViDOC outperforms other methods involving NMPC and neural networks, exhibiting an average improvement of 20% in imitation scores.
comment: This work has been accepted for publication in the Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). Accompanying video available at: https://youtu.be/ENHhphpbPLs
♻ ☆ A Soft Robotic System Automatically Learns Precise Agile Motions Without Model Information IROS 2024
Many application domains, e.g., in medicine and manufacturing, can greatly benefit from pneumatic Soft Robots (SRs). However, the accurate control of SRs has remained a significant challenge to date, mainly due to their nonlinear dynamics and viscoelastic material properties. Conventional control design methods often rely on either complex system modeling or time-intensive manual tuning, both of which require significant amounts of human expertise and thus limit their practicality. In recent works, the data-driven method, Automatic Neural ODE Control (ANODEC) has been successfully used to -- fully automatically and utilizing only input-output data -- design controllers for various nonlinear systems in silico, and without requiring prior model knowledge or extensive manual tuning. In this work, we successfully apply ANODEC to automatically learn to perform agile, non-repetitive reference tracking motion tasks in a real-world SR and within a finite time horizon. To the best of the authors' knowledge, ANODEC achieves, for the first time, performant control of a SR with hysteresis effects from only 30 seconds of input-output data and without any prior model knowledge. We show that for multiple, qualitatively different and even out-of-training-distribution reference signals, a single feedback controller designed by ANODEC outperforms a manually tuned PID baseline consistently. Overall, this contribution not only further strengthens the validity of ANODEC, but it marks an important step towards more practical, easy-to-use SRs that can automatically learn to perform agile motions from minimal experimental interaction time.
comment: Submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ DecAP: Decaying Action Priors for Accelerated Imitation Learning of Torque-Based Legged Locomotion Policies
Optimal Control for legged robots has gone through a paradigm shift from position-based to torque-based control, owing to the latter's compliant and robust nature. In parallel to this shift, the community has also turned to Deep Reinforcement Learning (DRL) as a promising approach to directly learn locomotion policies for complex real-life tasks. However, most end-to-end DRL approaches still operate in position space, mainly because learning in torque space is often sample-inefficient and does not consistently converge to natural gaits. To address these challenges, we propose a two-stage framework. In the first stage, we generate our own imitation data by training a position-based policy, eliminating the need for expert knowledge to design optimal controllers. The second stage incorporates decaying action priors, a novel method to enhance the exploration of torque-based policies aided by imitation rewards. We show that our approach consistently outperforms imitation learning alone and is robust to scaling these rewards from 0.1x to 10x. We further validate the benefits of torque control by comparing the robustness of a position-based policy to a position-assisted torque-based policy on a quadruped (Unitree Go1) without any domain randomization in the form of external disturbances during training.
comment: \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Exploring and Learning Structure: Active Inference Approach in Navigational Agents
Drawing inspiration from animal navigation strategies, we introduce a novel computational model for navigation and mapping, rooted in biologically inspired principles. Animals exhibit remarkable navigation abilities by efficiently using memory, imagination, and strategic decision-making to navigate complex and aliased environments. Building on these insights, we integrate traditional cognitive mapping approaches with an Active Inference Framework (AIF) to learn an environment structure in a few steps. Through the incorporation of topological mapping for long-term memory and AIF for navigation planning and structure learning, our model can dynamically apprehend environmental structures and expand its internal map with predicted beliefs during exploration. Comparative experiments with the Clone-Structured Graph (CSCG) model highlight our model's ability to rapidly learn environmental structures in a single episode, with minimal navigation overlap. this is achieved without prior knowledge of the dimensions of the environment or the type of observations, showcasing its robustness and effectiveness in navigating ambiguous environments.
comment: IWAI workshop 2024
Toward Globally Optimal State Estimation Using Automatically Tightened Semidefinite Relaxations
In recent years, semidefinite relaxations of common optimization problems in robotics have attracted growing attention due to their ability to provide globally optimal solutions. In many cases, it was shown that specific handcrafted redundant constraints are required to obtain tight relaxations and thus global optimality. These constraints are formulation-dependent and typically identified through a lengthy manual process. Instead, the present paper suggests an automatic method to find a set of sufficient redundant constraints to obtain tightness, if they exist. We first propose an efficient feasibility check to determine if a given set of variables can lead to a tight formulation. Secondly, we show how to scale the method to problems of bigger size. At no point of the process do we have to find redundant constraints manually. We showcase the effectiveness of the approach, in simulation and on real datasets, for range-based localization and stereo-based pose estimation. Finally, we reproduce semidefinite relaxations presented in recent literature and show that our automatic method always finds a smaller set of constraints sufficient for tightness than previously considered.
comment: 20 pages, 22 figures. Version history: v4 (conditionally accepted version T-RO), v3 (revised version), v2 (submitted version), v1 (initial version)
Safe and Smooth: Certified Continuous-Time Range-Only Localization
A common approach to localize a mobile robot is by measuring distances to points of known positions, called anchors. Locating a device from distance measurements is typically posed as a non-convex optimization problem, stemming from the nonlinearity of the measurement model. Non-convex optimization problems may yield suboptimal solutions when local iterative solvers such as Gauss-Newton are employed. In this paper, we design an optimality certificate for continuous-time range-only localization. Our formulation allows for the integration of a motion prior, which ensures smoothness of the solution and is crucial for localizing from only a few distance measurements. The proposed certificate comes at little additional cost since it has the same complexity as the sparse local solver itself: linear in the number of positions. We show, both in simulation and on real-world datasets, that the efficient local solver often finds the globally optimal solution (confirmed by our certificate), but it may converge to local solutions with high errors, which our certificate correctly detects.
comment: 10 pages, 7 figures, accepted to IEEE Robotics and Automation Letters (this arXiv version contains supplementary appendix). Version info: v4 (add publication header, change min to argmin in (2) and (16)), v3 (revised version), v2 (submitted version), v1 (initial version)
♻ ☆ DarkGS: Learning Neural Illumination and 3D Gaussians Relighting for Robotic Exploration in the Dark
Humans have the remarkable ability to construct consistent mental models of an environment, even under limited or varying levels of illumination. We wish to endow robots with this same capability. In this paper, we tackle the challenge of constructing a photorealistic scene representation under poorly illuminated conditions and with a moving light source. We approach the task of modeling illumination as a learning problem, and utilize the developed illumination model to aid in scene reconstruction. We introduce an innovative framework that uses a data-driven approach, Neural Light Simulators (NeLiS), to model and calibrate the camera-light system. Furthermore, we present DarkGS, a method that applies NeLiS to create a relightable 3D Gaussian scene model capable of real-time, photorealistic rendering from novel viewpoints. We show the applicability and robustness of our proposed simulator and system in a variety of real-world environments.
comment: 8 pages, 10 figures
Computer Vision 43
♻ ☆ LSMS: Language-guided Scale-aware MedSegmentor for Medical Image Referring Segmentation
Conventional medical image segmentation methods have been found inadequate in facilitating physicians with the identification of specific lesions for diagnosis and treatment. Given the utility of text as an instructional format, we introduce a novel task termed Medical Image Referring Segmentation (MIRS), which requires segmenting specified lesions in images based on the given language expressions. Due to the varying object scales in medical images, MIRS demands robust vision-language modeling and comprehensive multi-scale interaction for precise localization and segmentation under linguistic guidance. However, existing medical image segmentation methods fall short in meeting these demands, resulting in insufficient segmentation accuracy. In response, we propose an approach named Language-guided Scale-aware MedSegmentor (LSMS), incorporating two appealing designs: (1)~a Scale-aware Vision-Language Attention module that leverages diverse convolutional kernels to acquire rich visual knowledge and interact closely with linguistic features, thereby enhancing lesion localization capability; (2)~a Full-Scale Decoder that globally models multi-modal features across various scales, capturing complementary information between scales to accurately outline lesion boundaries. Addressing the lack of suitable datasets for MIRS, we constructed a vision-language medical dataset called Reference Hepatic Lesion Segmentation (RefHL-Seg). This dataset comprises 2,283 abdominal CT slices from 231 cases, with corresponding textual annotations and segmentation masks for various liver lesions in images. We validated the performance of LSMS for MIRS and conventional medical image segmentation tasks across various datasets. Our LSMS consistently outperforms on all datasets with lower computational costs. The code and datasets will be released.
comment: 14 pages, 5 figures
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation
Neural networks, despite their remarkable performance in widespread applications, including image classification, are also known to be vulnerable to subtle adversarial noise. Although some diffusion-based purification methods have been proposed, for example, DiffPure, those methods are time-consuming. In this paper, we propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Function Evaluation (NFE) in diffusion models. We use Latent Consistency Model (LCM) and ControlNet for our one-step purification. OSCP is computationally friendly and time efficient compared to other diffusion-based purification methods; we achieve defense success rate of 74.19\% on ImageNet, only requiring 0.1s for each purification. Moreover, there is a fundamental incongruence between consistency distillation and adversarial perturbation. To address this ontological dissonance, we propose Gaussian Adversarial Noise Distillation (GAND), a novel consistency distillation framework that facilitates a more nuanced reconciliation of the latent space dynamics, effectively bridging the natural and adversarial manifolds. Our experiments show that the GAND does not need a Full Fine Tune (FFT); PEFT, e.g., LoRA is sufficient.
♻ ☆ Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
comment: 15 pages, 3 figures, 4 tables
♻ ☆ Enabling Local Editing in Diffusion Models by Joint and Individual Component Analysis BMVC2024
Recent advances in Diffusion Models (DMs) have led to significant progress in visual synthesis and editing tasks, establishing them as a strong competitor to Generative Adversarial Networks (GANs). However, the latent space of DMs is not as well understood as that of GANs. Recent research has focused on unsupervised semantic discovery in the latent space of DMs by leveraging the bottleneck layer of the denoising network, which has been shown to exhibit properties of a semantic latent space. However, these approaches are limited to discovering global attributes. In this paper we address, the challenge of local image manipulation in DMs and introduce an unsupervised method to factorize the latent semantics learned by the denoising network of pre-trained DMs. Given an arbitrary image and defined regions of interest, we utilize the Jacobian of the denoising network to establish a relation between the regions of interest and their corresponding subspaces in the latent space. Furthermore, we disentangle the joint and individual components of these subspaces to identify latent directions that enable local image manipulation. Once discovered, these directions can be applied to different images to produce semantically consistent edits, making our method suitable for practical applications. Experimental results on various datasets demonstrate that our method can produce semantic edits that are more localized and have better fidelity compared to the state-of-the-art.
comment: Accepted at BMVC2024
♻ ☆ Inter-Frame Compression for Dynamic Point Cloud Geometry Coding
Efficient point cloud compression is essential for applications like virtual and mixed reality, autonomous driving, and cultural heritage. This paper proposes a deep learning-based inter-frame encoding scheme for dynamic point cloud geometry compression. We propose a lossy geometry compression scheme that predicts the latent representation of the current frame using the previous frame by employing a novel feature space inter-prediction network. The proposed network utilizes sparse convolutions with hierarchical multiscale 3D feature learning to encode the current frame using the previous frame. The proposed method introduces a novel predictor network for motion compensation in the feature domain to map the latent representation of the previous frame to the coordinates of the current frame to predict the current frame's feature embedding. The framework transmits the residual of the predicted features and the actual features by compressing them using a learned probabilistic factorized entropy model. At the receiver, the decoder hierarchically reconstructs the current frame by progressively rescaling the feature embedding. The proposed framework is compared to the state-of-the-art Video-based Point Cloud Compression (V-PCC) and Geometry-based Point Cloud Compression (G-PCC) schemes standardized by the Moving Picture Experts Group (MPEG). The proposed method achieves more than 88% BD-Rate (Bjontegaard Delta Rate) reduction against G-PCCv20 Octree, more than 56% BD-Rate savings against G-PCCv20 Trisoup, more than 62% BD-Rate reduction against V-PCC intra-frame encoding mode, and more than 52% BD-Rate savings against V-PCC P-frame-based inter-frame encoding mode using HEVC. These significant performance gains are cross-checked and verified in the MPEG working group.
♻ ☆ SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery
Automated detection of surgical errors can improve robotic-assisted surgery. Despite promising progress, existing methods still face challenges in capturing rich temporal context to establish long-term dependencies while maintaining computational efficiency. In this paper, we propose a novel hierarchical model named SEDMamba, which incorporates the selective state space model (SSM) into surgical error detection, facilitating efficient long sequence modelling with linear complexity. SEDMamba enhances selective SSM with a bottleneck mechanism and fine-to-coarse temporal fusion (FCTF) to detect and temporally localize surgical errors in long videos. The bottleneck mechanism compresses and restores features within their spatial dimension, thereby reducing computational complexity. FCTF utilizes multiple dilated 1D convolutional layers to merge temporal information across diverse scale ranges, accommodating errors of varying duration. Our work also contributes the first-of-its-kind, frame-level, in-vivo surgical error dataset to support error detection in real surgical cases. Specifically, we deploy the clinically validated observational clinical human reliability assessment tool (OCHRA) to annotate the errors during suturing tasks in an open-source radical prostatectomy dataset (SAR-RARP50). Experimental results demonstrate that our SEDMamba outperforms state-of-the-art methods with at least 1.82% AUC and 3.80% AP performance gains with significantly reduced computational complexity. The corresponding error annotations, code and models will be released at https://github.com/wzjialang/SEDMamba.
comment: 8 pages
♻ ☆ Efficient Video Object Segmentation via Modulated Cross-Attention Memory WACV 2025
Recently, transformer-based approaches have shown promising results for semi-supervised video object segmentation. However, these approaches typically struggle on long videos due to increased GPU memory demands, as they frequently expand the memory bank every few frames. We propose a transformer-based approach, named MAVOS, that introduces an optimized and dynamic long-term modulated cross-attention (MCA) memory to model temporal smoothness without requiring frequent memory expansion. The proposed MCA effectively encodes both local and global features at various levels of granularity while efficiently maintaining consistent speed regardless of the video length. Extensive experiments on multiple benchmarks, LVOS, Long-Time Video, and DAVIS 2017, demonstrate the effectiveness of our proposed contributions leading to real-time inference and markedly reduced memory demands without any degradation in segmentation accuracy on long videos. Compared to the best existing transformer-based approach, our MAVOS increases the speed by 7.6x, while significantly reducing the GPU memory by 87% with comparable segmentation performance on short and long video datasets. Notably on the LVOS dataset, our MAVOS achieves a J&F score of 63.3% while operating at 37 frames per second (FPS) on a single V100 GPU. Our code and models will be publicly available at: https://github.com/Amshaker/MAVOS.
comment: WACV 2025
♻ ☆ RISSOLE: Parameter-efficient Diffusion Models via Block-wise Generation and Retrieval-Guidance
Diffusion-based models demonstrate impressive generation capabilities. However, they also have a massive number of parameters, resulting in enormous model sizes, thus making them unsuitable for deployment on resource-constraint devices. Block-wise generation can be a promising alternative for designing compact-sized (parameter-efficient) deep generative models since the model can generate one block at a time instead of generating the whole image at once. However, block-wise generation is also considerably challenging because ensuring coherence across generated blocks can be non-trivial. To this end, we design a retrieval-augmented generation (RAG) approach and leverage the corresponding blocks of the images retrieved by the RAG module to condition the training and generation stages of a block-wise denoising diffusion model. Our conditioning schemes ensure coherence across the different blocks during training and, consequently, during generation. While we showcase our approach using the latent diffusion model (LDM) as the base model, it can be used with other variants of denoising diffusion models. We validate the solution of the coherence problem through the proposed approach by reporting substantive experiments to demonstrate our approach's effectiveness in compact model size and excellent generation quality.
♻ ☆ Multi-Visual-Inertial System: Analysis, Calibration and Estimation
In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and(or) rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU or camera intrinsics and the IMU-IMU(or camera) spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with intrinsics-termed ACI3-to preintegrate IMU measurements, which is leveraged to fuse auxiliary IMUs and(or) gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain - no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to the extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method such as Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.
♻ ☆ On Evaluating Adversarial Robustness of Volumetric Medical Segmentation Models
Volumetric medical segmentation models have achieved significant success on organ and tumor-based segmentation tasks in recent years. However, their vulnerability to adversarial attacks remains largely unexplored, raising serious concerns regarding the real-world deployment of tools employing such models in the healthcare sector. This underscores the importance of investigating the robustness of existing models. In this context, our work aims to empirically examine the adversarial robustness across current volumetric segmentation architectures, encompassing Convolutional, Transformer, and Mamba-based models. We extend this investigation across four volumetric segmentation datasets, evaluating robustness under both white box and black box adversarial attacks. Overall, we observe that while both pixel and frequency-based attacks perform reasonably well under \emph{white box} setting, the latter performs significantly better under transfer-based black box attacks. Across our experiments, we observe transformer-based models show higher robustness than convolution-based models with Mamba-based models being the most vulnerable. Additionally, we show that large-scale training of volumetric segmentation models improves the model's robustness against adversarial attacks. The code and robust models are available at https://github.com/HashmatShadab/Robustness-of-Volumetric-Medical-Segmentation-Models.
comment: Accepted at British Machine Vision Conference 2024
♻ ☆ Training-free Long Video Generation with Chain of Diffusion Model Experts
Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
♻ ☆ TRAM: Global Trajectory and Motion of 3D Humans from in-the-wild Videos
We propose TRAM, a two-stage method to reconstruct a human's global trajectory and motion from in-the-wild videos. TRAM robustifies SLAM to recover the camera motion in the presence of dynamic humans and uses the scene background to derive the motion scale. Using the recovered camera as a metric-scale reference frame, we introduce a video transformer model (VIMO) to regress the kinematic body motion of a human. By composing the two motions, we achieve accurate recovery of 3D humans in the world space, reducing global motion errors by a large margin from prior work. https://yufu-wang.github.io/tram4d/
comment: The project website: https://yufu-wang.github.io/tram4d/
♻ ☆ Privacy-Aware Document Visual Question Answering ICDAR 2024
Document Visual Question Answering (DocVQA) has quickly grown into a central task of document understanding. But despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees. In this work, we explore privacy in the domain of DocVQA for the first time, highlighting privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions. Specifically, we focus on invoice processing as a realistic document understanding scenario, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the data of the invoice provider is the sensitive information to be protected. We demonstrate that non-private models tend to memorise, a behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through either or both of the two input modalities: vision (document image) or language (OCR tokens). Finally, we design attacks exploiting the memorisation effect of the model, and demonstrate their effectiveness in probing a representative DocVQA models.
comment: 35 pages, 12 figures, accepted for publication at the 18th International Conference on Document Analysis and Recognition, ICDAR 2024
♻ ☆ Does Data-Efficient Generalization Exacerbate Bias in Foundation Models? ECCV 2024
Foundation models have emerged as robust models with label efficiency in diverse domains. In medical imaging, these models contribute to the advancement of medical diagnoses due to the difficulty in obtaining labeled data. However, it is unclear whether using a large amount of unlabeled data, biased by the presence of sensitive attributes during pre-training, influences the fairness of the model. This research examines the bias in the Foundation model (RetFound) when it is applied to fine-tune the Brazilian Multilabel Ophthalmological Dataset (BRSET), which has a different population than the pre-training dataset. The model evaluation, in comparison with supervised learning, shows that the Foundation Model has the potential to reduce the gap between the maximum AUC and minimum AUC evaluations across gender and age groups. However, in a data-efficient generalization, the model increases the bias when the data amount decreases. These findings suggest that when deploying a Foundation Model in real-life scenarios with limited data, the possibility of fairness issues should be considered.
comment: Preprint of paper to be presented at Fairness and Ethics Towards Transparent AI: Facing the Challenge through Model Debiasing (FAILED) during ECCV 2024
♻ ☆ Implicit Concept Removal of Diffusion Models ECCV2024
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed as the "implicit concepts", could be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model's ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present the Geom-Erasing, a novel concept removal method based on the geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (i.e., QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving the state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.
comment: Accepted by ECCV2024. Project Page: https://kaichen1998.github.io/projects/geom-erasing/
♻ ☆ GUing: A Mobile GUI Search Engine using a Vision-Language Model
App developers use the Graphical User Interface (GUI) of other apps as a source of inspiration for designing and improving their own apps. Recent research has thus suggested retrieving relevant GUI designs that match a certain text query from screenshot datasets acquired through crowdsourced or automated exploration of GUIs. However, such text-to-GUI retrieval approaches only leverage the textual information of the GUI elements, neglecting visual information such as icons or background images. In addition, retrieved screenshots are not steered by app developers and often lack important app features that require particular input data. To overcome these limitations, this paper proposes GUing, a GUI search engine based on a vision-language model called GUIClip, which we trained specifically for the problem of designing app GUIs. For this, we first collected from Google Play app introduction images which usually display the most representative screenshots and are often captioned (i.e.~labeled) by app vendors. Then, we developed an automated pipeline to classify, crop, and extract the captions from these images. This resulted in a large dataset which we share with this paper: including 303k app screenshots, out of which 135k have captions. We used this dataset to train a novel vision-language model, which is, to the best of our knowledge, the first of its kind in GUI retrieval. We evaluated our approach on various datasets from related work and in manual experiment. The results demonstrate that our model outperforms previous approaches in text-to-GUI retrieval achieving a Recall@10 of up to 0.69 and a HIT@10 of 0.91. We also explored the performance of GUIClip for other GUI tasks including GUI classification and sketch-to-GUI retrieval with encouraging results.
♻ ☆ An open dataset for oracle bone script recognition and decipherment
Oracle bone script, one of the earliest known forms of ancient Chinese writing, presents invaluable research materials for scholars studying the humanities and geography of the Shang Dynasty, dating back 3,000 years. The immense historical and cultural significance of these writings cannot be overstated. However, the passage of time has obscured much of their meaning, presenting a significant challenge in deciphering these ancient texts. With the advent of Artificial Intelligence (AI), employing AI to assist in deciphering Oracle Bone Characters (OBCs) has become a feasible option. Yet, progress in this area has been hindered by a lack of high-quality datasets. To address this issue, this paper details the creation of the HUST-OBC dataset. This dataset encompasses 77,064 images of 1,588 individual deciphered characters and 62,989 images of 9,411 undeciphered characters, with a total of 140,053 images, compiled from diverse sources. The hope is that this dataset could inspire and assist future research in deciphering those unknown OBCs. All the codes and datasets are available at https://github.com/Yuliang-Liu/Open-Oracle.
♻ ☆ SABER-6D: Shape Representation Based Implicit Object Pose Estimation ECCV 2024
In this paper, we propose a novel encoder-decoder architecture, named SABER, to learn the 6D pose of the object in the embedding space by learning shape representation at a given pose. This model enables us to learn pose by performing shape representation at a target pose from RGB image input. We perform shape representation as an auxiliary task which helps us in learning rotations space for an object based on 2D images. An image encoder predicts the rotation in the embedding space and the DeepSDF based decoder learns to represent the object's shape at the given pose. As our approach is shape based, the pipeline is suitable for any type of object irrespective of the symmetry. Moreover, we need only a CAD model of the objects to train SABER. Our pipeline is synthetic data based and can also handle symmetric objects without symmetry labels and, thus, no additional labeled training data is needed. The experimental evaluation shows that our method achieves close to benchmark results for both symmetric objects and asymmetric objects on Occlusion-LineMOD, and T-LESS datasets.
comment: ECCV 2024 R6D workshop
♻ ☆ A Deep-Learning-Based Label-free No-Reference Image Quality Assessment Metric: Application in Sodium MRI Denoising
New multinuclear MRI techniques, such as sodium MRI, generally suffer from low image quality due to an inherently low signal. Postprocessing methods, such as image denoising, have been developed for image enhancement. However, the assessment of these enhanced images is challenging especially considering when there is a lack of high resolution and high signal images as reference, such as in sodium MRI. No-reference Image Quality Assessment (NR-IQA) metrics are approaches to solve this problem. Existing learning-based NR-IQA metrics rely on labels derived from subjective human opinions or metrics like Signal-to-Noise Ratio (SNR), which are either time-consuming or lack accurate ground truths, resulting in unreliable assessment. We note that deep learning (DL) models have a unique characteristic in that they are specialized to a characteristic training set, meaning that deviations between the input testing data from the training data will reduce prediction accuracy. Therefore, we propose a novel DL-based NR-IQA metric, the Model Specialization Metric (MSM), which does not depend on ground-truth images or labels. MSM measures the difference between the input image and the model's prediction for evaluating the quality of the input image. Experiments conducted on both simulated distorted proton T1-weighted MR images and denoised sodium MR images demonstrate that MSM exhibits a superior evaluation performance on various simulated noises and distortions. MSM also has a substantial agreement with the expert evaluations, achieving an averaged Cohen's Kappa coefficient of 0.6528, outperforming the existing NR-IQA metrics.
comment: 13 pages, 3 figures
♻ ☆ Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model ACM MM 2024
Existing Transformer-based models for point cloud analysis suffer from quadratic complexity, leading to compromised point cloud resolution and information loss. In contrast, the newly proposed Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity. However, the straightforward adoption of Mamba does not achieve satisfactory performance on point cloud tasks. In this work, we present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction, achieving superior performance, high efficiency, and scalability potential. Specifically, we propose a simple yet effective Local Norm Pooling (LNP) block to extract local geometric features. Additionally, to obtain better global features, we introduce a bidirectional SSM (bi-SSM) with both a token forward SSM and a novel backward SSM that operates on the feature channel. Extensive experimental results show that Mamba3D surpasses Transformer-based counterparts and concurrent works in multiple tasks, with or without pre-training. Notably, Mamba3D achieves multiple SoTA, including an overall accuracy of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with single-modal pre-training) on the ModelNet40 classification task, with only linear complexity. Our code and weights are available at https://github.com/xhanxu/Mamba3D.
comment: ACM MM 2024. Code and weights are available at https://github.com/xhanxu/Mamba3D
♻ ☆ Structured Generative Models for Scene Understanding
This position paper argues for the use of \emph{structured generative models} (SGMs) for the understanding of static scenes. This requires the reconstruction of a 3D scene from an input image (or a set of multi-view images), whereby the contents of the image(s) are causally explained in terms of models of instantiated objects, each with their own type, shape, appearance and pose, along with global variables like scene lighting and camera parameters. This approach also requires scene models which account for the co-occurrences and inter-relationships of objects in a scene. The SGM approach has the merits that it is compositional and generative, which lead to interpretability and editability. \\\\ To pursue the SGM agenda, we need models for objects and scenes, and approaches to carry out inference. We first review models for objects, which include ``things'' (object categories that have a well defined shape), and ``stuff'' (categories which have amorphous spatial extent). We then move on to review \emph{scene models} which describe the inter-relationships of objects. Perhaps the most challenging problem for SGMs is \emph{inference} of the objects, lighting and camera parameters, and scene inter-relationships from input consisting of a single or multiple images. We conclude with a discussion of issues that need addressing to advance the SGM agenda.
comment: 32 pages, 10 figures
♻ ☆ MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection
Large unlabeled data and difficult-to-identify anomalies are the urgent issues need to overcome in most industrial scene. In order to address this issue, a new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL). The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types by generating simulated anomaly samples. To cope with the problem of the lack of labeling of anomalous simulated samples, a pseudo-labeler method based on a one-classifier ensemble was employed in this study, which enhances the robustness of the model in the case of limited labeling data by automatically selecting key pseudo-labeling hyperparameters. Meanwhile, a memory-enhanced learning mechanism is introduced to effectively predict abnormal regions by analyzing the difference be-tween the input samples and the normal samples in the memory pool. An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data, which optimizes the ef-ficiency and real-time performance of de-tection. By conducting extensive trials on the recently developed BHAD dataset (in-cluding MVTec AD [1], Visa [2], and MDPP [3]), MAPL achieves an average im-age-level AUROC score of 86.2%, demon-strating a 5.1% enhancement compared to the original MemSeg [4] model. The source code is available at https://github.com/jzc777/MAPL.
♻ ☆ UniUSNet: A Promptable Framework for Universal Ultrasound Disease Prediction and Tissue Segmentation
Ultrasound is widely used in clinical practice due to its affordability, portability, and safety. However, current AI research often overlooks combined disease prediction and tissue segmentation. We propose UniUSNet, a universal framework for ultrasound image classification and segmentation. This model handles various ultrasound types, anatomical positions, and input formats, excelling in both segmentation and classification tasks. Trained on a comprehensive dataset with over 9.7K annotations from 7 distinct anatomical positions, our model matches state-of-the-art performance and surpasses single-dataset and ablated models. Zero-shot and fine-tuning experiments show strong generalization and adaptability with minimal fine-tuning. We plan to expand our dataset and refine the prompting mechanism, with model weights and code available at (https://github.com/Zehui-Lin/UniUSNet).
comment: Accepted to BIBM 2024
♻ ☆ GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data ACM MM2024
Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning and reduces the time and effort required for organ annotation.Existing state-of-the-art methods train the labeled data with ground truths and train the unlabeled data with pseudo-labels. However, the two training flows are separate, which does not reflect the interrelationship between labeled and unlabeled data.To address this issue, we propose a semi-supervised multi-organ segmentation method called GuidedNet, which leverages the knowledge from labeled data to guide the training of unlabeled data. The primary goals of this study are to improve the quality of pseudo-labels for unlabeled data and to enhance the network's learning capability for both small and complex organs.A key concept is that voxel features from labeled and unlabeled data that are close to each other in the feature space are more likely to belong to the same class.On this basis, a 3D Consistent Gaussian Mixture Model (3D-CGMM) is designed to leverage the feature distributions from labeled data to rectify the generated pseudo-labels.Furthermore, we introduce a Knowledge Transfer Cross Pseudo Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data, thereby improving the segmentation accuracy for both small and complex organs. Extensive experiments on two public datasets, FLARE22 and AMOS, demonstrated that GuidedNet is capable of achieving state-of-the-art performance. The source code with our proposed model are available at https://github.com/kimjisoo12/GuidedNet.
comment: Accepted by ACM MM2024, 10 pages, 5 figures
♻ ☆ PD-APE: A Parallel Decoding Framework with Adaptive Position Encoding for 3D Visual Grounding
3D visual grounding aims to identify objects in 3D point cloud scenes that match specific natural language descriptions. This requires the model to not only focus on the target object itself but also to consider the surrounding environment to determine whether the descriptions are met. Most previous works attempt to accomplish both tasks within the same module, which can easily lead to a distraction of attention. To this end, we propose PD-APE, a dual-branch decoding framework that separately decodes target object attributes and surrounding layouts. Specifically, in the target object branch, the decoder processes text tokens that describe features of the target object (e.g., category and color), guiding the queries to pay attention to the target object itself. In the surrounding branch, the queries align with other text tokens that carry surrounding environment information, making the attention maps accurately capture the layout described in the text. Benefiting from the proposed dual-branch design, the queries are allowed to focus on points relevant to each branch's specific objective. Moreover, we design an adaptive position encoding method for each branch respectively. In the target object branch, the position encoding relies on the relative positions between seed points and predicted 3D boxes. In the surrounding branch, the attention map is additionally guided by the confidence between visual and text features, enabling the queries to focus on points that have valuable layout information. Extensive experiments demonstrate that we surpass the state-of-the-art on two widely adopted 3D visual grounding datasets, ScanRefer and Nr3D.
DORec: Decomposed Object Reconstruction and Segmentation Utilizing 2D Self-Supervised Features
Recovering 3D geometry and textures of individual objects is crucial for many robotics applications, such as manipulation, pose estimation, and autonomous driving. However, decomposing a target object from a complex background is challenging. Most existing approaches rely on costly manual labels to acquire object instance perception. Recent advancements in 2D self-supervised learning offer new prospects for identifying objects of interest, yet leveraging such noisy 2D features for clean decomposition remains difficult. In this paper, we propose a Decomposed Object Reconstruction (DORec) network based on neural implicit representations. Our key idea is to use 2D self-supervised features to create two levels of masks for supervision: a binary mask for foreground regions and a K-cluster mask for semantically similar regions. These complementary masks result in robust decomposition. Experimental results on different datasets show DORec's superiority in segmenting and reconstructing diverse foreground objects from varied backgrounds enabling downstream tasks such as pose estimation.
♻ ☆ FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models ECCV 2024
The substantial computational costs of diffusion models, especially due to the repeated denoising steps necessary for high-quality image generation, present a major obstacle to their widespread adoption. While several studies have attempted to address this issue by reducing the number of score function evaluations (NFE) using advanced ODE solvers without fine-tuning, the decreased number of denoising iterations misses the opportunity to update fine details, resulting in noticeable quality degradation. In our work, we introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models. Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality. To realize the practical benefits of this intuition, we conduct an extensive analysis and propose a novel method, FRDiff. FRDiff is designed to harness the advantages of both reduced NFE and feature reuse, achieving a Pareto frontier that balances fidelity and latency trade-offs in various generative tasks.
comment: Accepted at ECCV 2024. Code : https://github.com/ECoLab-POSTECH/FRDiff
♻ ☆ Evolution-aware VAriance (EVA) Coreset Selection for Medical Image Classification
In the medical field, managing high-dimensional massive medical imaging data and performing reliable medical analysis from it is a critical challenge, especially in resource-limited environments such as remote medical facilities and mobile devices. This necessitates effective dataset compression techniques to reduce storage, transmission, and computational cost. However, existing coreset selection methods are primarily designed for natural image datasets, and exhibit doubtful effectiveness when applied to medical image datasets due to challenges such as intra-class variation and inter-class similarity. In this paper, we propose a novel coreset selection strategy termed as Evolution-aware VAriance (EVA), which captures the evolutionary process of model training through a dual-window approach and reflects the fluctuation of sample importance more precisely through variance measurement. Extensive experiments on medical image datasets demonstrate the effectiveness of our strategy over previous SOTA methods, especially at high compression rates. EVA achieves 98.27% accuracy with only 10% training data, compared to 97.20% for the full training set. None of the compared baseline methods can exceed Random at 5% selection rate, while EVA outperforms Random by 5.61%, showcasing its potential for efficient medical image analysis.
comment: Accepted by ACM Multimedia 2024 (oral), see: https://openreview.net/forum?id=m1qrB9KSYD
♻ ☆ Biometrics and Behavior Analysis for Detecting Distractions in e-Learning
In this article, we explore computer vision approaches to detect abnormal head pose during e-learning sessions and we introduce a study on the effects of mobile phone usage during these sessions. We utilize behavioral data collected from 120 learners monitored while participating in a MOOC learning sessions. Our study focuses on the influence of phone-usage events on behavior and physiological responses, specifically attention, heart rate, and meditation, before, during, and after phone usage. Additionally, we propose an approach for estimating head pose events using images taken by the webcam during the MOOC learning sessions to detect phone-usage events. Our hypothesis suggests that head posture undergoes significant changes when learners interact with a mobile phone, contrasting with the typical behavior seen when learners face a computer during e-learning sessions. We propose an approach designed to detect deviations in head posture from the average observed during a learner's session, operating as a semi-supervised method. This system flags events indicating alterations in head posture for subsequent human review and selection of mobile phone usage occurrences with a sensitivity over 90%.
comment: Published in IEEE Intl. Symposium on Computers in Education (SIIE) 2024
♻ ☆ VAAD: Visual Attention Analysis Dashboard applied to e-Learning
In this paper, we present an approach in the Multimodal Learning Analytics field. Within this approach, we have developed a tool to visualize and analyze eye movement data collected during learning sessions in online courses. The tool is named VAAD, an acronym for Visual Attention Analysis Dashboard. These eye movement data have been gathered using an eye-tracker and subsequently processed and visualized for interpretation. The purpose of the tool is to conduct a descriptive analysis of the data by facilitating its visualization, enabling the identification of differences and learning patterns among various learner populations. Additionally, it integrates a predictive module capable of anticipating learner activities during a learning session. Consequently, VAAD holds the potential to offer valuable insights into online learning behaviors from both descriptive and predictive perspectives.
comment: Published in IEEE Intl. Symposium on Computers in Education (SIIE) 2024
♻ ☆ Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation
Medical image segmentation plays a crucial role in computer-aided diagnosis. However, existing methods heavily rely on fully supervised training, which requires a large amount of labeled data with time-consuming pixel-wise annotations. Moreover, accurately segmenting lesions poses challenges due to variations in shape, size, and location. To address these issues, we propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image Segmentation (DEC-Seg). First, we propose a Cross-level Feature Aggregation (CFA) module that integrates cross-level adjacent layers to enhance the feature representation ability across different resolutions. To address scale variation, we present a scale-enhanced consistency constraint, which ensures consistency in the segmentation maps generated from the same input image at different scales. This constraint helps handle variations in lesion sizes and improves the robustness of the model. Furthermore, we propose a cross-generative consistency scheme, in which the original and perturbed images can be reconstructed using cross-segmentation maps. This consistency constraint allows us to mine effective feature representations and boost the segmentation performance. To further exploit the scale information, we propose a Dual-scale Complementary Fusion (DCF) module that integrates features from two scale-specific decoders operating at different scales to help produce more accurate segmentation maps. Extensive experimental results on multiple medical segmentation tasks (polyp, skin lesion, and brain glioma) demonstrate the effectiveness of our DEC-Seg against other state-of-the-art semi-supervised segmentation approaches. The implementation code will be released at https://github.com/taozh2017/DECSeg.
comment: 12 pages 10 figures
♻ ☆ Pedestrian Attribute Recognition via CLIP based Prompt Vision-Language Fusion
Existing pedestrian attribute recognition (PAR) algorithms adopt pre-trained CNN (e.g., ResNet) as their backbone network for visual feature learning, which might obtain sub-optimal results due to the insufficient employment of the relations between pedestrian images and attribute labels. In this paper, we formulate PAR as a vision-language fusion problem and fully exploit the relations between pedestrian images and attribute labels. Specifically, the attribute phrases are first expanded into sentences, and then the pre-trained vision-language model CLIP is adopted as our backbone for feature embedding of visual images and attribute descriptions. The contrastive learning objective connects the vision and language modalities well in the CLIP-based feature space, and the Transformer layers used in CLIP can capture the long-range relations between pixels. Then, a multi-modal Transformer is adopted to fuse the dual features effectively and feed-forward network is used to predict attributes. To optimize our network efficiently, we propose the region-aware prompt tuning technique to adjust very few parameters (i.e., only the prompt vectors and classification heads) and fix both the pre-trained VL model and multi-modal Transformer. Our proposed PAR algorithm only adjusts 0.75% learnable parameters compared with the fine-tuning strategy. It also achieves new state-of-the-art performance on both standard and zero-shot settings for PAR, including RAPv1, RAPv2, WIDER, PA100K, and PETA-ZS, RAP-ZS datasets. The source code and pre-trained models will be released on https://github.com/Event-AHU/OpenPAR.
comment: Accepted by IEEE TCSVT 2024, Camera Ready Version
♻ ☆ Show Me the World in My Language: Establishing the First Baseline for Scene-Text to Scene-Text Translation ICPR 2024
In this work, we study the task of ``visually'' translating scene text from a source language (e.g., Hindi) to a target language (e.g., English). Visual translation involves not just the recognition and translation of scene text but also the generation of the translated image that preserves visual features of the source scene text, such as font, size, and background. There are several challenges associated with this task, such as translation with limited context, deciding between translation and transliteration, accommodating varying text lengths within fixed spatial boundaries, and preserving the font and background styles of the source scene text in the target language. To address this problem, we make the following contributions: (i) We study visual translation as a standalone problem for the first time in the literature. (ii) We present a cascaded framework for visual translation that combines state-of-the-art modules for scene text recognition, machine translation, and scene text synthesis as a baseline for the task. (iii) We propose a set of task-specific design enhancements to design a variant of the baseline to obtain performance improvements. (iv) Currently, the existing related literature lacks any comprehensive performance evaluation for this novel task. To fill this gap, we introduce several automatic and user-assisted evaluation metrics designed explicitly for evaluating visual translation. Further, we evaluate presented baselines for translating scene text between Hindi and English. Our experiments demonstrate that although we can effectively perform visual translation over a large collection of scene text images, the presented baseline only partially addresses challenges posed by visual translation tasks. We firmly believe that this new task and the limitations of existing models, as reported in this paper, should encourage further research in visual translation.
comment: Accepted at ICPR 2024, Project Website: https://vl2g.github.io/projects/visTrans/
♻ ☆ An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models ECCV 2024
In this study, we identify the inefficient attention phenomena in Large Vision-Language Models (LVLMs), notably within prominent models like LLaVA-1.5, QwenVL-Chat and Video-LLaVA. We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs, suggesting a need for a sparser approach compared to textual data handling. To this end, we introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency by learning adaptive attention patterns in early layers and pruning visual tokens in subsequent ones. Our evaluations demonstrate FastV's ability to dramatically reduce computational costs (e.g., a 45 reduction in FLOPs for LLaVA-1.5-13B) without sacrificing performance in a wide range of image and video understanding tasks. The computational efficiency and performance trade-off of FastV are highly customizable and pareto-efficient. It can compress the FLOPs of a 13B-parameter model to achieve a lower budget than that of a 7B-parameter model, while still maintaining superior performance. We believe FastV has practical values for deployment of LVLMs in edge devices and commercial models. Code is released at https://github.com/pkunlp-icler/FastV.
comment: Accepted to ECCV 2024 (Oral), code is released at https://github.com/pkunlp-icler/FastV,
♻ ☆ Video Diffusion Models are Strong Video Inpainter
Propagation-based video inpainting using optical flow at the pixel or feature level has recently garnered significant attention. However, it has limitations such as the inaccuracy of optical flow prediction and the propagation of noise over time. These issues result in non-uniform noise and time consistency problems throughout the video, which are particularly pronounced when the removed area is large and involves substantial movement. To address these issues, we propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI). We design FFF-VDI inspired by the capabilities of pre-trained image-to-video diffusion models that can transform the first frame image into a highly natural video. To apply this to the video inpainting task, we propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code. Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video. The proposed model addresses the limitations of existing methods that rely on optical flow quality, producing much more natural and temporally consistent videos. This proposed approach is the first to effectively integrate image-to-video diffusion models into video inpainting tasks. Through various comparative experiments, we demonstrate that the proposed model can robustly handle diverse inpainting types with high quality.
♻ ☆ A Grey-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in generative AI, particularly Latent Diffusion Models (LDMs), have revolutionized image synthesis and manipulation. However, these generative techniques raises concerns about data misappropriation and intellectual property infringement. Adversarial attacks on machine learning models have been extensively studied, and a well-established body of research has extended these techniques as a benign metric to prevent the underlying misuse of generative AI. Current approaches to safeguarding images from manipulation by LDMs are limited by their reliance on model-specific knowledge and their inability to significantly degrade semantic quality of generated images. In response to these shortcomings, we propose the Posterior Collapse Attack (PCA) based on the observation that VAEs suffer from posterior collapse during training. Our method minimizes dependence on the white-box information of target models to get rid of the implicit reliance on model-specific knowledge. By accessing merely a small amount of LDM parameters, in specific merely the VAE encoder of LDMs, our method causes a substantial semantic collapse in generation quality, particularly in perceptual consistency, and demonstrates strong transferability across various model architectures. Experimental results show that PCA achieves superior perturbation effects on image generation of LDMs with lower runtime and VRAM. Our method outperforms existing techniques, offering a more robust and generalizable solution that is helpful in alleviating the socio-technical challenges posed by the rapidly evolving landscape of generative AI.
comment: 21 pages, 7 figures, 10 tables
♻ ☆ Event Voxel Set Transformer for Spatiotemporal Representation Learning on Event Streams
Event cameras are neuromorphic vision sensors that record a scene as sparse and asynchronous event streams. Most event-based methods project events into dense frames and process them using conventional vision models, resulting in high computational complexity. A recent trend is to develop point-based networks that achieve efficient event processing by learning sparse representations. However, existing works may lack robust local information aggregators and effective feature interaction operations, thus limiting their modeling capabilities. To this end, we propose an attention-aware model named Event Voxel Set Transformer (EVSTr) for efficient spatiotemporal representation learning on event streams. It first converts the event stream into voxel sets and then hierarchically aggregates voxel features to obtain robust representations. The core of EVSTr is an event voxel transformer encoder that consists of two well-designed components, including the Multi-Scale Neighbor Embedding Layer (MNEL) for local information aggregation and the Voxel Self-Attention Layer (VSAL) for global feature interaction. Enabling the network to incorporate a long-range temporal structure, we introduce a segment modeling strategy (S$^{2}$TM) to learn motion patterns from a sequence of segmented voxel sets. The proposed model is evaluated on two recognition tasks, including object classification and action recognition. To provide a convincing model evaluation, we present a new event-based action recognition dataset (NeuroHAR) recorded in challenging scenarios. Comprehensive experiments show that EVSTr achieves state-of-the-art performance while maintaining low model complexity.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
♻ ☆ MM-Soc: Benchmarking Multimodal Large Language Models in Social Media Platforms ACL 2024
Social media platforms are hubs for multimodal information exchange, encompassing text, images, and videos, making it challenging for machines to comprehend the information or emotions associated with interactions in online spaces. Multimodal Large Language Models (MLLMs) have emerged as a promising solution to these challenges, yet they struggle to accurately interpret human emotions and complex content such as misinformation. This paper introduces MM-Soc, a comprehensive benchmark designed to evaluate MLLMs' understanding of multimodal social media content. MM-Soc compiles prominent multimodal datasets and incorporates a novel large-scale YouTube tagging dataset, targeting a range of tasks from misinformation detection, hate speech detection, and social context generation. Through our exhaustive evaluation on ten size-variants of four open-source MLLMs, we have identified significant performance disparities, highlighting the need for advancements in models' social understanding capabilities. Our analysis reveals that, in a zero-shot setting, various types of MLLMs generally exhibit difficulties in handling social media tasks. However, MLLMs demonstrate performance improvements post fine-tuning, suggesting potential pathways for improvement. Our code and data are available at https://github.com/claws-lab/MMSoc.git.
comment: In Proceedings of ACL 2024
♻ ☆ Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance
Although most existing multi-modal salient object detection (SOD) methods demonstrate effectiveness through training models from scratch, the limited multi-modal data hinders these methods from reaching optimality. In this paper, we propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the pre-trained Segment Anything Model (SAM) for multi-modal SOD. Despite serving as a recent vision fundamental model, driving the class-agnostic SAM to comprehend and detect salient objects accurately is non-trivial, especially in challenging scenes. To this end, we develop \underline{SAM} with se\underline{m}antic f\underline{e}ature fu\underline{s}ion guidanc\underline{e} (Sammese), which incorporates multi-modal saliency-specific knowledge into SAM to adapt SAM to multi-modal SOD tasks. However, it is difficult for SAM trained on single-modal data to directly mine the complementary benefits of multi-modal inputs and comprehensively utilize them to achieve accurate saliency prediction. To address these issues, we first design a multi-modal complementary fusion module to extract robust multi-modal semantic features by integrating information from visible and thermal or depth image pairs. Then, we feed the extracted multi-modal semantic features into both the SAM image encoder and mask decoder for fine-tuning and prompting, respectively. Specifically, in the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. In the mask decoder, a semantic-geometric prompt generation strategy is proposed to produce corresponding embeddings with various saliency cues. Extensive experiments on both RGB-D and RGB-T SOD benchmarks show the effectiveness of the proposed framework. The code will be available at \url{https://github.com/Angknpng/Sammese}.
comment: 10 pages, 9 figures
♻ ☆ S-NeRF++: Autonomous Driving Simulation via Neural Reconstruction and Generation
Autonomous driving simulation system plays a crucial role in enhancing self-driving data and simulating complex and rare traffic scenarios, ensuring navigation safety. However, traditional simulation systems, which often heavily rely on manual modeling and 2D image editing, struggled with scaling to extensive scenes and generating realistic simulation data. In this study, we present S-NeRF++, an innovative autonomous driving simulation system based on neural reconstruction. Trained on widely-used self-driving datasets such as nuScenes and Waymo, S-NeRF++ can generate a large number of realistic street scenes and foreground objects with high rendering quality as well as offering considerable flexibility in manipulation and simulation. Specifically, S-NeRF++ is an enhanced neural radiance field for synthesizing large-scale scenes and moving vehicles, with improved scene parameterization and camera pose learning. The system effectively utilizes noisy and sparse LiDAR data to refine training and address depth outliers, ensuring high-quality reconstruction and novel-view rendering. It also provides a diverse foreground asset bank by reconstructing and generating different foreground vehicles to support comprehensive scenario creation.Moreover, we have developed an advanced foreground-background fusion pipeline that skillfully integrates illumination and shadow effects, further enhancing the realism of our simulations. With the high-quality simulated data provided by our S-NeRF++, we found the perception methods enjoy performance boosts on several autonomous driving downstream tasks, further demonstrating our proposed simulator's effectiveness.
♻ ☆ NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating, as malnutrition has been directly linked to decreased quality of life. However self-reporting methods such as food diaries suffer from substantial bias. Other conventional dietary assessment techniques and emerging alternative approaches such as mobile applications incur high time costs and may necessitate trained personnel. Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images, but the lack of comprehensive datasets with diverse viewpoints, modalities and food annotations hinders the accuracy and realism of such methods. To address this limitation, we introduce NutritionVerse-Synth, the first large-scale dataset of 84,984 photorealistic synthetic 2D food images with associated dietary information and multimodal annotations (including depth images, instance masks, and semantic masks). Additionally, we collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism. Leveraging these novel datasets, we develop and benchmark NutritionVerse, an empirical study of various dietary intake estimation approaches, including indirect segmentation-based and direct prediction networks. We further fine-tune models pretrained on synthetic data with real images to provide insights into the fusion of synthetic and real data. Finally, we release both datasets (NutritionVerse-Synth, NutritionVerse-Real) on https://www.kaggle.com/nutritionverse/datasets as part of an open initiative to accelerate machine learning for dietary sensing.
comment: Corrections made to Tables 6, 7, and 8, and corrections made to Experiments Part C. Additional clarification made in Section 4
♻ ☆ DarkGS: Learning Neural Illumination and 3D Gaussians Relighting for Robotic Exploration in the Dark
Humans have the remarkable ability to construct consistent mental models of an environment, even under limited or varying levels of illumination. We wish to endow robots with this same capability. In this paper, we tackle the challenge of constructing a photorealistic scene representation under poorly illuminated conditions and with a moving light source. We approach the task of modeling illumination as a learning problem, and utilize the developed illumination model to aid in scene reconstruction. We introduce an innovative framework that uses a data-driven approach, Neural Light Simulators (NeLiS), to model and calibrate the camera-light system. Furthermore, we present DarkGS, a method that applies NeLiS to create a relightable 3D Gaussian scene model capable of real-time, photorealistic rendering from novel viewpoints. We show the applicability and robustness of our proposed simulator and system in a variety of real-world environments.
comment: 8 pages, 10 figures
♻ ☆ Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model
Breast magnetic resonance imaging (MRI) is the imaging technique with the highest sensitivity for detecting breast cancer and is routinely used for women at high risk. Despite the comprehensive multiparametric protocol of breast MRI, existing artificial intelligence-based studies predominantly rely on single sequences and have limited validation. Here we report a large mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure, offering a noninvasive method for personalized breast cancer management. We have curated the largest multiparametric breast MRI dataset, involving 5,205 patients from three hospitals in the north, southeast, and southwest of China, for the development and extensive evaluation of our model. MOME demonstrated accurate and robust identification of breast cancer. It achieved comparable performance for malignancy recognition to that of four senior radiologists and significantly outperformed a junior radiologist, with 0.913 AUROC, 0.948 AUPRC, 0.905 F1 score, and 0.723 MCC. Our findings suggest that MOME could reduce the need for biopsies in BI-RADS 4 patients with a ratio of 7.3%, classify triple-negative breast cancer with an AUROC of 0.709, and predict pathological complete response to neoadjuvant chemotherapy with an AUROC of 0.694. The model further supports scalable and interpretable inference, adapting to missing modalities and providing decision explanations by highlighting lesions and measuring modality contributions. MOME exemplifies a discriminative, robust, scalable, and interpretable multimodal model, paving the way for noninvasive, personalized management of breast cancer patients based on multiparametric breast imaging data.
comment: 27 pages, 8 figures, 10 tables
Artificial Intelligence 87
☆ AMG: Avatar Motion Guided Video Generation
Human video generation task has gained significant attention with the advancement of deep generative models. Generating realistic videos with human movements is challenging in nature, due to the intricacies of human body topology and sensitivity to visual artifacts. The extensively studied 2D media generation methods take advantage of massive human media datasets, but struggle with 3D-aware control; whereas 3D avatar-based approaches, while offering more freedom in control, lack photorealism and cannot be harmonized seamlessly with background scene. We propose AMG, a method that combines the 2D photorealism and 3D controllability by conditioning video diffusion models on controlled rendering of 3D avatars. We additionally introduce a novel data processing pipeline that reconstructs and renders human avatar movements from dynamic camera videos. AMG is the first method that enables multi-person diffusion video generation with precise control over camera positions, human motions, and background style. We also demonstrate through extensive evaluation that it outperforms existing human video generation methods conditioned on pose sequences or driving videos in terms of realism and adaptability.
comment: The project page is at https://github.com/zshyang/amg
☆ EarthGen: Generating the World from Top-Down Views
In this work, we present a novel method for extensive multi-scale generative terrain modeling. At the core of our model is a cascade of superresolution diffusion models that can be combined to produce consistent images across multiple resolutions. Pairing this concept with a tiled generation method yields a scalable system that can generate thousands of square kilometers of realistic Earth surfaces at high resolution. We evaluate our method on a dataset collected from Bing Maps and show that it outperforms super-resolution baselines on the extreme super-resolution task of 1024x zoom. We also demonstrate its ability to create diverse and coherent scenes via an interactive gigapixel-scale generated map. Finally, we demonstrate how our system can be extended to enable novel content creation applications including controllable world generation and 3D scene generation.
☆ PoliPrompt: A High-Performance Cost-Effective LLM-Based Text Classification Framework for Political Science
Recent advancements in large language models (LLMs) have opened new avenues for enhancing text classification efficiency in political science, surpassing traditional machine learning methods that often require extensive feature engineering, human labeling, and task-specific training. However, their effectiveness in achieving high classification accuracy remains questionable. This paper introduces a three-stage in-context learning approach that leverages LLMs to improve classification accuracy while minimizing experimental costs. Our method incorporates automatic enhanced prompt generation, adaptive exemplar selection, and a consensus mechanism that resolves discrepancies between two weaker LLMs, refined by an advanced LLM. We validate our approach using datasets from the BBC news reports, Kavanaugh Supreme Court confirmation, and 2018 election campaign ads. The results show significant improvements in classification F1 score (+0.36 for zero-shot classification) with manageable economic costs (-78% compared with human labeling), demonstrating that our method effectively addresses the limitations of traditional machine learning while offering a scalable and reliable solution for text analysis in political science.
comment: 23 pages, 5 figures
☆ Real-Time Recurrent Learning using Trace Units in Reinforcement Learning
Recurrent Neural Networks (RNNs) are used to learn representations in partially observable environments. For agents that learn online and continually interact with the environment, it is desirable to train RNNs with real-time recurrent learning (RTRL); unfortunately, RTRL is prohibitively expensive for standard RNNs. A promising direction is to use linear recurrent architectures (LRUs), where dense recurrent weights are replaced with a complex-valued diagonal, making RTRL efficient. In this work, we build on these insights to provide a lightweight but effective approach for training RNNs in online RL. We introduce Recurrent Trace Units (RTUs), a small modification on LRUs that we nonetheless find to have significant performance benefits over LRUs when trained with RTRL. We find RTUs significantly outperform other recurrent architectures across several partially observable environments while using significantly less computation.
☆ Kvasir-VQA: A Text-Image Pair GI Tract Dataset ACM MM
We introduce Kvasir-VQA, an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations to facilitate advanced machine learning tasks in Gastrointestinal (GI) diagnostics. This dataset comprises 6,500 annotated images spanning various GI tract conditions and surgical instruments, and it supports multiple question types including yes/no, choice, location, and numerical count. The dataset is intended for applications such as image captioning, Visual Question Answering (VQA), text-based generation of synthetic medical images, object detection, and classification. Our experiments demonstrate the dataset's effectiveness in training models for three selected tasks, showcasing significant applications in medical image analysis and diagnostics. We also present evaluation metrics for each task, highlighting the usability and versatility of our dataset. The dataset and supporting artifacts are available at https://datasets.simula.no/kvasir-vqa.
comment: to be published in VLM4Bio 2024, part of the ACM Multimedia (ACM MM) conference 2024
☆ Efficient and Scalable Estimation of Tool Representations in Vector Space
Recent advancements in function calling and tool use have significantly enhanced the capabilities of large language models (LLMs) by enabling them to interact with external information sources and execute complex tasks. However, the limited context window of LLMs presents challenges when a large number of tools are available, necessitating efficient methods to manage prompt length and maintain accuracy. Existing approaches, such as fine-tuning LLMs or leveraging their reasoning capabilities, either require frequent retraining or incur significant latency overhead. A more efficient solution involves training smaller models to retrieve the most relevant tools for a given query, although this requires high quality, domain-specific data. To address those challenges, we present a novel framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models. Empowered by LLMs, we create ToolBank, a new tool retrieval dataset that reflects real human user usages. For tool retrieval methodologies, we propose novel approaches: (1) Tool2Vec: usage-driven tool embedding generation for tool retrieval, (2) ToolRefiner: a staged retrieval method that iteratively improves the quality of retrieved tools, and (3) MLC: framing tool retrieval as a multi-label classification problem. With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank. Additionally, we present further experimental results to rigorously validate our methods. Our code is available at \url{https://github.com/SqueezeAILab/Tool2Vec}
☆ Self-Supervised Learning for Identifying Defects in Sewer Footage ICML 2024
Sewerage infrastructure is among the most expensive modern investments requiring time-intensive manual inspections by qualified personnel. Our study addresses the need for automated solutions without relying on large amounts of labeled data. We propose a novel application of Self-Supervised Learning (SSL) for sewer inspection that offers a scalable and cost-effective solution for defect detection. We achieve competitive results with a model that is at least 5 times smaller than other approaches found in the literature and obtain competitive performance with 10\% of the available data when training with a larger architecture. Our findings highlight the potential of SSL to revolutionize sewer maintenance in resource-limited settings.
comment: Poster at the LatinX in AI Workshop @ ICML 2024
☆ Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design
We introduce the first, to our knowledge, rigorous approach that enables multi-agent networks to self-configure their communication topology to balance the trade-off between scalability and optimality during multi-agent planning. We are motivated by the future of ubiquitous collaborative autonomy where numerous distributed agents will be coordinating via agent-to-agent communication to execute complex tasks such as traffic monitoring, event detection, and environmental exploration. But the explosion of information in such large-scale networks currently curtails their deployment due to impractical decision times induced by the computational and communication requirements of the existing near-optimal coordination algorithms. To overcome this challenge, we present the AlterNAting COordination and Network-Design Algorithm (Anaconda), a scalable algorithm that also enjoys near-optimality guarantees. Subject to the agents' bandwidth constraints, Anaconda enables the agents to optimize their local communication neighborhoods such that the action-coordination approximation performance of the network is maximized. Compared to the state of the art, Anaconda is an anytime self-configurable algorithm that quantifies its suboptimality guarantee for any type of network, from fully disconnected to fully centralized, and that, for sparse networks, is one order faster in terms of decision speed. To develop the algorithm, we quantify the suboptimality cost due to decentralization, i.e., due to communication-minimal distributed coordination. We also employ tools inspired by the literature on multi-armed bandits and submodular maximization subject to cardinality constraints. We demonstrate Anaconda in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
comment: Accepted to CDC 2024
☆ GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI
Much previous AI research has focused on developing monolithic models to maximize their intelligence and capability, with the primary goal of enhancing performance on specific tasks. In contrast, this paper explores an alternative approach: collaborative AI systems that use workflows to integrate models, data sources, and pipelines to solve complex and diverse tasks. We introduce GenAgent, an LLM-based framework that automatically generates complex workflows, offering greater flexibility and scalability compared to monolithic models. The core innovation of GenAgent lies in representing workflows with code, alongside constructing workflows with collaborative agents in a step-by-step manner. We implement GenAgent on the ComfyUI platform and propose a new benchmark, OpenComfy. The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations, showing its capability to generate complex workflows with superior effectiveness and stability.
☆ VLSI Hypergraph Partitioning with Deep Learning
Partitioning is a known problem in computer science and is critical in chip design workflows, as advancements in this area can significantly influence design quality and efficiency. Deep Learning (DL) techniques, particularly those involving Graph Neural Networks (GNNs), have demonstrated strong performance in various node, edge, and graph prediction tasks using both inductive and transductive learning methods. A notable area of recent interest within GNNs are pooling layers and their application to graph partitioning. While these methods have yielded promising results across social, computational, and other random graphs, their effectiveness has not yet been explored in the context of VLSI hypergraph netlists. In this study, we introduce a new set of synthetic partitioning benchmarks that emulate real-world netlist characteristics and possess a known upper bound for solution cut quality. We distinguish these benchmarks with the prior work and evaluate existing state-of-the-art partitioning algorithms alongside GNN-based approaches, highlighting their respective advantages and disadvantages.
☆ Automatic Detection of LLM-generated Code: A Case Study of Claude 3 Haiku
Using Large Language Models (LLMs) has gained popularity among software developers for generating source code. However, the use of LLM-generated code can introduce risks of adding suboptimal, defective, and vulnerable code. This makes it necessary to devise methods for the accurate detection of LLM-generated code. Toward this goal, we perform a case study of Claude 3 Haiku (or Claude 3 for brevity) on CodeSearchNet dataset. We divide our analyses into two parts: function-level and class-level. We extract 22 software metric features, such as Code Lines and Cyclomatic Complexity, for each level of granularity. We then analyze code snippets generated by Claude 3 and their human-authored counterparts using the extracted features to understand how unique the code generated by Claude 3 is. In the following step, we use the unique characteristics of Claude 3-generated code to build Machine Learning (ML) models and identify which features of the code snippets make them more detectable by ML models. Our results indicate that Claude 3 tends to generate longer functions, but shorter classes than humans, and this characteristic can be used to detect Claude 3-generated code with ML models with 82% and 66% accuracies for function-level and class-level snippets, respectively.
comment: Submitted to a journal for potential publication
☆ H-ARC: A Robust Estimate of Human Performance on the Abstraction and Reasoning Corpus Benchmark
The Abstraction and Reasoning Corpus (ARC) is a visual program synthesis benchmark designed to test challenging out-of-distribution generalization in humans and machines. Since 2019, limited progress has been observed on the challenge using existing artificial intelligence methods. Comparing human and machine performance is important for the validity of the benchmark. While previous work explored how well humans can solve tasks from the ARC benchmark, they either did so using only a subset of tasks from the original dataset, or from variants of ARC, and therefore only provided a tentative estimate of human performance. In this work, we obtain a more robust estimate of human performance by evaluating 1729 humans on the full set of 400 training and 400 evaluation tasks from the original ARC problem set. We estimate that average human performance lies between 73.3% and 77.2% correct with a reported empirical average of 76.2% on the training set, and between 55.9% and 68.9% correct with a reported empirical average of 64.2% on the public evaluation set. However, we also find that 790 out of the 800 tasks were solvable by at least one person in three attempts, suggesting that the vast majority of the publicly available ARC tasks are in principle solvable by typical crowd-workers recruited over the internet. Notably, while these numbers are slightly lower than earlier estimates, human performance still greatly exceeds current state-of-the-art approaches for solving ARC. To facilitate research on ARC, we publicly release our dataset, called H-ARC (human-ARC), which includes all of the submissions and action traces from human participants.
comment: 12 pages, 7 figures
☆ Imitating Language via Scalable Inverse Reinforcement Learning
The majority of language model training builds on imitation learning. It covers pretraining, supervised fine-tuning, and affects the starting conditions for reinforcement learning from human feedback (RLHF). The simplicity and scalability of maximum likelihood estimation (MLE) for next token prediction led to its role as predominant paradigm. However, the broader field of imitation learning can more effectively utilize the sequential structure underlying autoregressive generation. We focus on investigating the inverse reinforcement learning (IRL) perspective to imitation, extracting rewards and directly optimizing sequences instead of individual token likelihoods and evaluate its benefits for fine-tuning large language models. We provide a new angle, reformulating inverse soft-Q-learning as a temporal difference regularized extension of MLE. This creates a principled connection between MLE and IRL and allows trading off added complexity with increased performance and diversity of generations in the supervised fine-tuning (SFT) setting. We find clear advantages for IRL-based imitation, in particular for retaining diversity while maximizing task performance, rendering IRL a strong alternative on fixed SFT datasets even without online data generation. Our analysis of IRL-extracted reward functions further indicates benefits for more robust reward functions via tighter integration of supervised and preference-based LLM post-training.
☆ CHESS: Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification
Deploying large language models (LLMs) on edge devices presents significant challenges due to the substantial computational overhead and memory requirements. Activation sparsification can mitigate these challenges by reducing the number of activated neurons during inference. Existing methods typically employ thresholding-based sparsification based on the statistics of activation tensors. However, these methods do not explicitly model the impact of activation sparsification on performance, leading to suboptimal performance degradation. To address this issue, this paper reformulates the activation sparsification problem by introducing a new objective that optimizes the sparsification decisions. Building on this reformulation, we propose CHESS, a general activation sparsification approach via CHannel-wise thrEsholding and Selective Sparsification. First, channel-wise thresholding assigns a unique threshold to each activation channel in the feed-forward network (FFN) layers. Then, selective sparsification involves applying thresholding-based activation sparsification to specific layers within the attention modules. Finally, we detail the implementation of sparse kernels to accelerate LLM inference. Experimental results demonstrate that the proposed CHESS achieves lower performance degradation over 8 downstream tasks while activating fewer parameters compared to existing methods, thus speeding up the LLM inference by up to 1.27x.
☆ Correlating Time Series with Interpretable Convolutional Kernels
This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting downstream machine learning tasks. First, we propose formulating convolutional kernel learning for univariate time series as a sparse regression problem with a non-negative constraint, leveraging the properties of circular convolution and circulant matrices. Second, to generalize this approach to multivariate and multidimensional time series data, we use tensor computations, reformulating the convolutional kernel learning problem in the form of tensors. This is further converted into a standard sparse regression problem through vectorization and tensor unfolding operations. In the proposed methodology, the optimization problem is addressed using the existing non-negative subspace pursuit method, enabling the convolutional kernel to capture temporal correlations and patterns. To evaluate the proposed model, we apply it to several real-world time series datasets. On the multidimensional rideshare and taxi trip data from New York City and Chicago, the convolutional kernels reveal interpretable local correlations and cyclical patterns, such as weekly seasonality. In the context of multidimensional fluid flow data, both local and nonlocal correlations captured by the convolutional kernels can reinforce tensor factorization, leading to performance improvements in fluid flow reconstruction tasks. Thus, this study lays an insightful foundation for automatically learning convolutional kernels from time series data, with an emphasis on interpretability through sparsity and non-negativity constraints.
comment: 11 pages, 7 figures
☆ Language Models Benefit from Preparation with Elicited Knowledge
The zero-shot chain of thought (CoT) approach is often used in question answering (QA) by language models (LMs) for tasks that require multiple reasoning steps, typically enhanced by the prompt "Let's think step by step." However, some QA tasks hinge more on accessing relevant knowledge than on chaining reasoning steps. We introduce a simple general prompting technique, called PREP, that involves using two instances of LMs: the first (LM1) generates relevant information, and the second (LM2) answers the question based on this information. PREP is designed to be general and independent of the user's domain knowledge, making it applicable across various QA tasks without the need for specialized prompt engineering. To evaluate the effectiveness of our prompting method, we create a dataset of 100 binary-choice questions, derived from an extensive schematic dataset on artifact parts and material composition. These questions ask which of two artifacts is less likely to share materials with another artifact. Such questions probe the LM's knowledge of shared materials in the part structure of different artifacts. We test our method on our dataset and three published commonsense reasoning datasets. The average accuracy of our method is consistently higher than that of all the other tested methods across all the tested datasets.
☆ Pairing Analogy-Augmented Generation with Procedural Memory for Procedural Q&A
While LLMs in the RAG paradigm have shown remarkable performance on a variety of tasks, they still under-perform on unseen domains, especially on complex tasks like procedural question answering. In this work, we introduce a novel formalism and structure for manipulating text-based procedures. Based on this formalism, we further present a novel dataset called LCStep, scraped from the LangChain Python docs. Moreover, we extend the traditional RAG system to propose a novel system called analogy-augmented generation (AAG), that draws inspiration from human analogical reasoning and ability to assimilate past experiences to solve unseen problems. The proposed method uses a frozen language model with a custom procedure memory store to adapt to specialized knowledge. We demonstrate that AAG outperforms few-shot and RAG baselines on LCStep, RecipeNLG, and CHAMP datasets under a pairwise LLM-based evaluation, corroborated by human evaluation in the case of RecipeNLG.
☆ A Financial Time Series Denoiser Based on Diffusion Model
Financial time series often exhibit low signal-to-noise ratio, posing significant challenges for accurate data interpretation and prediction and ultimately decision making. Generative models have gained attention as powerful tools for simulating and predicting intricate data patterns, with the diffusion model emerging as a particularly effective method. This paper introduces a novel approach utilizing the diffusion model as a denoiser for financial time series in order to improve data predictability and trading performance. By leveraging the forward and reverse processes of the conditional diffusion model to add and remove noise progressively, we reconstruct original data from noisy inputs. Our extensive experiments demonstrate that diffusion model-based denoised time series significantly enhance the performance on downstream future return classification tasks. Moreover, trading signals derived from the denoised data yield more profitable trades with fewer transactions, thereby minimizing transaction costs and increasing overall trading efficiency. Finally, we show that by using classifiers trained on denoised time series, we can recognize the noising state of the market and obtain excess return.
☆ Pediatric brain tumor classification using digital histopathology and deep learning: evaluation of SOTA methods on a multi-center Swedish cohort
Brain tumors are the most common solid tumors in children and young adults, but the scarcity of large histopathology datasets has limited the application of computational pathology in this group. This study implements two weakly supervised multiple-instance learning (MIL) approaches on patch-features obtained from state-of-the-art histology-specific foundation models to classify pediatric brain tumors in hematoxylin and eosin whole slide images (WSIs) from a multi-center Swedish cohort. WSIs from 540 subjects (age 8.5$\pm$4.9 years) diagnosed with brain tumor were gathered from the six Swedish university hospitals. Instance (patch)-level features were obtained from WSIs using three pre-trained feature extractors: ResNet50, UNI and CONCH. Instances were aggregated using attention-based MIL (ABMIL) or clustering-constrained attention MIL (CLAM) for patient-level classification. Models were evaluated on three classification tasks based on the hierarchical classification of pediatric brain tumors: tumor category, family and type. Model generalization was assessed by training on data from two of the centers and testing on data from four other centers. Model interpretability was evaluated through attention-mapping. The highest classification performance was achieved using UNI features and AMBIL aggregation, with Matthew's correlation coefficient of 0.86$\pm$0.04, 0.63$\pm$0.04, and 0.53$\pm$0.05, for tumor category, family and type classification, respectively. When evaluating generalization, models utilizing UNI and CONCH features outperformed those using ResNet50. However, the drop in performance from the in-site to out-of-site testing was similar across feature extractors. These results show the potential of state-of-the-art computational pathology methods in diagnosing pediatric brain tumors at different hierarchical levels with fair generalizability on a multi-center national dataset.
☆ Grounding Language Models in Autonomous Loco-manipulation Tasks ICRA
Humanoid robots with behavioral autonomy have consistently been regarded as ideal collaborators in our daily lives and promising representations of embodied intelligence. Compared to fixed-based robotic arms, humanoid robots offer a larger operational space while significantly increasing the difficulty of control and planning. Despite the rapid progress towards general-purpose humanoid robots, most studies remain focused on locomotion ability with few investigations into whole-body coordination and tasks planning, thus limiting the potential to demonstrate long-horizon tasks involving both mobility and manipulation under open-ended verbal instructions. In this work, we propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios. We combine reinforcement learning (RL) with whole-body optimization to generate robot motions and store them into a motion library. We further leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph that comprises a series of motion primitives to bridge lower-level execution with higher-level planning. Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks, demonstrating high autonomy from free-text commands in unstructured scenes.
comment: Summit to ICRA@40. arXiv admin note: substantial text overlap with arXiv:2406.14655
☆ Multi-frequency Neural Born Iterative Method for Solving 2-D Inverse Scattering Problems
In this work, we propose a deep learning-based imaging method for addressing the multi-frequency electromagnetic (EM) inverse scattering problem (ISP). By combining deep learning technology with EM physical laws, we have successfully developed a multi-frequency neural Born iterative method (NeuralBIM), guided by the principles of the single-frequency NeuralBIM. This method integrates multitask learning techniques with NeuralBIM's efficient iterative inversion process to construct a robust multi-frequency Born iterative inversion model. During training, the model employs a multitask learning approach guided by homoscedastic uncertainty to adaptively allocate the weights of each frequency's data. Additionally, an unsupervised learning method, constrained by the physical laws of ISP, is used to train the multi-frequency NeuralBIM model, eliminating the need for contrast and total field data. The effectiveness of the multi-frequency NeuralBIM is validated through synthetic and experimental data, demonstrating improvements in accuracy and computational efficiency for solving ISP. Moreover, this method exhibits strong generalization capabilities and noise resistance. The multi-frequency NeuralBIM method explores a novel inversion method for multi-frequency EM data and provides an effective solution for the electromagnetic ISP of multi-frequency data.
☆ Topological degree as a discrete diagnostic for disentanglement, with applications to the $Δ$VAE
We investigate the ability of Diffusion Variational Autoencoder ($\Delta$VAE) with unit sphere $\mathcal{S}^2$ as latent space to capture topological and geometrical structure and disentangle latent factors in datasets. For this, we introduce a new diagnostic of disentanglement: namely the topological degree of the encoder, which is a map from the data manifold to the latent space. By using tools from homology theory, we derive and implement an algorithm that computes this degree. We use the algorithm to compute the degree of the encoder of models that result from the training procedure. Our experimental results show that the $\Delta$VAE achieves relatively small LSBD scores, and that regardless of the degree after initialization, the degree of the encoder after training becomes $-1$ or $+1$, which implies that the resulting encoder is at least homotopic to a homeomorphism.
☆ Large Language Models versus Classical Machine Learning: Performance in COVID-19 Mortality Prediction Using High-Dimensional Tabular Data
Background: This study aimed to evaluate and compare the performance of classical machine learning models (CMLs) and large language models (LLMs) in predicting mortality associated with COVID-19 by utilizing a high-dimensional tabular dataset. Materials and Methods: We analyzed data from 9,134 COVID-19 patients collected across four hospitals. Seven CML models, including XGBoost and random forest (RF), were trained and evaluated. The structured data was converted into text for zero-shot classification by eight LLMs, including GPT-4 and Mistral-7b. Additionally, Mistral-7b was fine-tuned using the QLoRA approach to enhance its predictive capabilities. Results: Among the CML models, XGBoost and RF achieved the highest accuracy, with F1 scores of 0.87 for internal validation and 0.83 for external validation. In the LLM category, GPT-4 was the top performer with an F1 score of 0.43. Fine-tuning Mistral-7b significantly improved its recall from 1% to 79%, resulting in an F1 score of 0.74, which was stable during external validation. Conclusion: While LLMs show moderate performance in zero-shot classification, fine-tuning can significantly enhance their effectiveness, potentially aligning them closer to CML models. However, CMLs still outperform LLMs in high-dimensional tabular data tasks.
comment: Code is available at: https://github.com/mohammad-gh009/Large-Language-Models-vs-Classical-Machine-learning and https://github.com/Sdamirsa/Tehran_COVID_Cohort. The datasets are available from the corresponding author on reasonable request (sdamirsa@ymail.com)
☆ GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling WACV 2025
Depth estimation plays a pivotal role in autonomous driving, facilitating a comprehensive understanding of the vehicle's 3D surroundings. Radar, with its robustness to adverse weather conditions and capability to measure distances, has drawn significant interest for radar-camera depth estimation. However, existing algorithms process the inherently noisy and sparse radar data by projecting 3D points onto the image plane for pixel-level feature extraction, overlooking the valuable geometric information contained within the radar point cloud. To address this gap, we propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data. This approach effectively enriches the feature representation by incorporating spatial relationships compared to traditional methods that rely only on 2D feature extraction. Furthermore, we incorporate a point cloud upsampling task to densify the radar point cloud, rectify point positions, and derive additional 3D features under the guidance of lidar data. Finally, we fuse radar and camera features during the decoding phase for depth estimation. We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
comment: Accepted by WACV 2025
Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling
The primary goal of traffic accident anticipation is to foresee potential accidents in real time using dashcam videos, a task that is pivotal for enhancing the safety and reliability of autonomous driving technologies. In this study, we introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods by incorporating monocular depth cues for sophisticated 3D scene modeling. Addressing the prevalent challenge of skewed data distribution in traffic accident datasets, we propose the Binary Adaptive Loss for Early Anticipation (BA-LEA). This novel loss function, together with a multi-task learning strategy, shifts the focus of the predictive model towards the critical moments preceding an accident. {We rigorously evaluate the performance of our framework on three benchmark datasets--Dashcam Accident Dataset (DAD), Car Crash Dataset (CCD), and AnAn Accident Detection (A3D), and DADA-2000 Dataset--demonstrating its superior predictive accuracy through key metrics such as Average Precision (AP) and mean Time-To-Accident (mTTA).
☆ Conversational Complexity for Assessing Risk in Large Language Models
Large Language Models (LLMs) present a dual-use dilemma: they enable beneficial applications while harboring potential for harm, particularly through conversational interactions. Despite various safeguards, advanced LLMs remain vulnerable. A watershed case was Kevin Roose's notable conversation with Bing, which elicited harmful outputs after extended interaction. This contrasts with simpler early jailbreaks that produced similar content more easily, raising the question: How much conversational effort is needed to elicit harmful information from LLMs? We propose two measures: Conversational Length (CL), which quantifies the conversation length used to obtain a specific response, and Conversational Complexity (CC), defined as the Kolmogorov complexity of the user's instruction sequence leading to the response. To address the incomputability of Kolmogorov complexity, we approximate CC using a reference LLM to estimate the compressibility of user instructions. Applying this approach to a large red-teaming dataset, we perform a quantitative analysis examining the statistical distribution of harmful and harmless conversational lengths and complexities. Our empirical findings suggest that this distributional analysis and the minimisation of CC serve as valuable tools for understanding AI safety, offering insights into the accessibility of harmful information. This work establishes a foundation for a new perspective on LLM safety, centered around the algorithmic complexity of pathways to harm.
comment: 14 pages, 6 figures
☆ Revisiting Safe Exploration in Safe Reinforcement learning
Safe reinforcement learning (SafeRL) extends standard reinforcement learning with the idea of safety, where safety is typically defined through the constraint of the expected cost return of a trajectory being below a set limit. However, this metric fails to distinguish how costs accrue, treating infrequent severe cost events as equal to frequent mild ones, which can lead to riskier behaviors and result in unsafe exploration. We introduce a new metric, expected maximum consecutive cost steps (EMCC), which addresses safety during training by assessing the severity of unsafe steps based on their consecutive occurrence. This metric is particularly effective for distinguishing between prolonged and occasional safety violations. We apply EMMC in both on- and off-policy algorithm for benchmarking their safe exploration capability. Finally, we validate our metric through a set of benchmarks and propose a new lightweight benchmark task, which allows fast evaluation for algorithm design.
☆ CyberCortex.AI: An AI-based Operating System for Autonomous Robotics and Complex Automation
The underlying framework for controlling autonomous robots and complex automation applications are Operating Systems (OS) capable of scheduling perception-and-control tasks, as well as providing real-time data communication to other robotic peers and remote cloud computers. In this paper, we introduce CyberCortex.AI, a robotics OS designed to enable heterogeneous AI-based robotics and complex automation applications. CyberCortex.AI is a decentralized distributed OS which enables robots to talk to each other, as well as to High Performance Computers (HPC) in the cloud. Sensory and control data from the robots is streamed towards HPC systems with the purpose of training AI algorithms, which are afterwards deployed on the robots. Each functionality of a robot (e.g. sensory data acquisition, path planning, motion control, etc.) is executed within a so-called DataBlock of Filters shared through the internet, where each filter is computed either locally on the robot itself, or remotely on a different robotic system. The data is stored and accessed via a so-called \textit{Temporal Addressable Memory} (TAM), which acts as a gateway between each filter's input and output. CyberCortex.AI has two main components: i) the CyberCortex.AI.inference system, which is a real-time implementation of the DataBlock running on the robots' embedded hardware, and ii) the CyberCortex.AI.dojo, which runs on an HPC computer in the cloud, and it is used to design, train and deploy AI algorithms. We present a quantitative and qualitative performance analysis of the proposed approach using two collaborative robotics applications: \textit{i}) a forest fires prevention system based on an Unitree A1 legged robot and an Anafi Parrot 4K drone, as well as \textit{ii}) an autonomous driving system which uses CyberCortex.AI for collaborative perception and motion control.
☆ ESP-PCT: Enhanced VR Semantic Performance through Efficient Compression of Temporal and Spatial Redundancies in Point Cloud Transformers
Semantic recognition is pivotal in virtual reality (VR) applications, enabling immersive and interactive experiences. A promising approach is utilizing millimeter-wave (mmWave) signals to generate point clouds. However, the high computational and memory demands of current mmWave point cloud models hinder their efficiency and reliability. To address this limitation, our paper introduces ESP-PCT, a novel Enhanced Semantic Performance Point Cloud Transformer with a two-stage semantic recognition framework tailored for VR applications. ESP-PCT takes advantage of the accuracy of sensory point cloud data and optimizes the semantic recognition process, where the localization and focus stages are trained jointly in an end-to-end manner. We evaluate ESP-PCT on various VR semantic recognition conditions, demonstrating substantial enhancements in recognition efficiency. Notably, ESP-PCT achieves a remarkable accuracy of 93.2% while reducing the computational requirements (FLOPs) by 76.9% and memory usage by 78.2% compared to the existing Point Transformer model simultaneously. These underscore ESP-PCT's potential in VR semantic recognition by achieving high accuracy and reducing redundancy. The code and data of this project are available at \url{https://github.com/lymei-SEU/ESP-PCT}.
☆ EnCLAP++: Analyzing the EnCLAP Framework for Optimizing Automated Audio Captioning Performance
In this work, we aim to analyze and optimize the EnCLAP framework, a state-of-the-art model in automated audio captioning. We investigate the impact of modifying the acoustic encoder components, explore pretraining with different dataset scales, and study the effectiveness of a reranking scheme. Through extensive experimentation and quantitative analysis of generated captions, we develop EnCLAP++, an enhanced version that significantly surpasses the original.
comment: Accepted to DCASE2024 Workshop
☆ Edge AI: Evaluation of Model Compression Techniques for Convolutional Neural Networks
This work evaluates the compression techniques on ConvNeXt models in image classification tasks using the CIFAR-10 dataset. Structured pruning, unstructured pruning, and dynamic quantization methods are evaluated to reduce model size and computational complexity while maintaining accuracy. The experiments, conducted on cloud-based platforms and edge device, assess the performance of these techniques. Results show significant reductions in model size, with up to 75% reduction achieved using structured pruning techniques. Additionally, dynamic quantization achieves a reduction of up to 95% in the number of parameters. Fine-tuned models exhibit improved compression performance, indicating the benefits of pre-training in conjunction with compression techniques. Unstructured pruning methods reveal trends in accuracy and compression, with limited reductions in computational complexity. The combination of OTOV3 pruning and dynamic quantization further enhances compression performance, resulting 89.7% reduction in size, 95% reduction with number of parameters and MACs, and 3.8% increase with accuracy. The deployment of the final compressed model on edge device demonstrates high accuracy 92.5% and low inference time 20 ms, validating the effectiveness of compression techniques for real-world edge computing applications.
☆ Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving
Online corner case detection is crucial for ensuring safety in autonomous driving vehicles. Current autonomous driving approaches can be categorized into modular approaches and end-to-end approaches. To leverage the advantages of both, we propose a method for online corner case detection that integrates an end-to-end approach into a modular system. The modular system takes over the primary driving task and the end-to-end network runs in parallel as a secondary one, the disagreement between the systems is then used for corner case detection. We implement this method on a real vehicle and evaluate it qualitatively. Our results demonstrate that end-to-end networks, known for their superior situational awareness, as secondary driving systems, can effectively contribute to corner case detection. These findings suggest that such an approach holds potential for enhancing the safety of autonomous vehicles.
comment: IEEE SMC 2024
♻ ☆ Evolving Virtual World with Delta-Engine
In this paper, we focus on the \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by individuals' capability to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \textbf{\emph{Delta-Engine}} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's scalability. It consists of a base engine and a neural proxy. The base engine programs the prototype of the virtual world; given a trigger, the neural proxy generates new snippets on the base engine through \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We introduce an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss the human-LLM collaborative design to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation.
♻ ☆ DiffLoad: Uncertainty Quantification in Electrical Load Forecasting with the Diffusion Model
Electrical load forecasting plays a crucial role in decision-making for power systems, including unit commitment and economic dispatch. The integration of renewable energy sources and the occurrence of external events, such as the COVID-19 pandemic, have rapidly increased uncertainties in load forecasting. The uncertainties in load forecasting can be divided into two types: epistemic uncertainty and aleatoric uncertainty. Separating these types of uncertainties can help decision-makers better understand where and to what extent the uncertainty is, thereby enhancing their confidence in the following decision-making. This paper proposes a diffusion-based Seq2Seq structure to estimate epistemic uncertainty and employs the robust additive Cauchy distribution to estimate aleatoric uncertainty. Our method not only ensures the accuracy of load forecasting but also demonstrates the ability to separate the two types of uncertainties and be applicable to different levels of loads. The relevant code can be found at \url{https://anonymous.4open.science/r/DiffLoad-4714/}.
comment: Accepted by IEEE Transactions on Power Systems, 2024
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation
Neural networks, despite their remarkable performance in widespread applications, including image classification, are also known to be vulnerable to subtle adversarial noise. Although some diffusion-based purification methods have been proposed, for example, DiffPure, those methods are time-consuming. In this paper, we propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Function Evaluation (NFE) in diffusion models. We use Latent Consistency Model (LCM) and ControlNet for our one-step purification. OSCP is computationally friendly and time efficient compared to other diffusion-based purification methods; we achieve defense success rate of 74.19\% on ImageNet, only requiring 0.1s for each purification. Moreover, there is a fundamental incongruence between consistency distillation and adversarial perturbation. To address this ontological dissonance, we propose Gaussian Adversarial Noise Distillation (GAND), a novel consistency distillation framework that facilitates a more nuanced reconciliation of the latent space dynamics, effectively bridging the natural and adversarial manifolds. Our experiments show that the GAND does not need a Full Fine Tune (FFT); PEFT, e.g., LoRA is sufficient.
♻ ☆ Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
comment: 15 pages, 3 figures, 4 tables
♻ ☆ RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
The increasing sophistication of text-to-image generative models has led to complex challenges in defining and enforcing copyright infringement criteria and protection. Existing methods, such as watermarking and dataset deduplication, fail to provide comprehensive solutions due to the lack of standardized metrics and the inherent complexity of addressing copyright infringement in diffusion models. To deal with these challenges, we propose a Reinforcement Learning-based Copyright Protection(RLCP) method for Text-to-Image Diffusion Model, which minimizes the generation of copyright-infringing content while maintaining the quality of the model-generated dataset. Our approach begins with the introduction of a novel copyright metric grounded in copyright law and court precedents on infringement. We then utilize the Denoising Diffusion Policy Optimization (DDPO) framework to guide the model through a multi-step decision-making process, optimizing it using a reward function that incorporates our proposed copyright metric. Additionally, we employ KL divergence as a regularization term to mitigate some failure modes and stabilize RL fine-tuning. Experiments conducted on 3 mixed datasets of copyright and non-copyright images demonstrate that our approach significantly reduces copyright infringement risk while maintaining image quality.
comment: arXiv admin note: text overlap with arXiv:2403.12052 by other authors
♻ ☆ Persuasion Games using Large Language Models
Large Language Models (LLMs) have emerged as formidable instruments capable of comprehending and producing human-like text. This paper explores the potential of LLMs, to shape user perspectives and subsequently influence their decisions on particular tasks. This capability finds applications in diverse domains such as Investment, Credit cards and Insurance, wherein they assist users in selecting appropriate insurance policies, investment plans, Credit cards, Retail, as well as in Behavioral Change Support Systems (BCSS). We present a sophisticated multi-agent framework wherein a consortium of agents operate in collaborative manner. The primary agent engages directly with user agents through persuasive dialogue, while the auxiliary agents perform tasks such as information retrieval, response analysis, development of persuasion strategies, and validation of facts. Empirical evidence from our experiments demonstrates that this collaborative methodology significantly enhances the persuasive efficacy of the LLM. We continuously analyze the resistance of the user agent to persuasive efforts and counteract it by employing a combination of rule-based and LLM-based resistance-persuasion mapping techniques. We employ simulated personas and generate conversations in insurance, banking, and retail domains to evaluate the proficiency of large language models (LLMs) in recognizing, adjusting to, and influencing various personality types. Concurrently, we examine the resistance mechanisms employed by LLM simulated personas. Persuasion is quantified via measurable surveys before and after interaction, LLM-generated scores on conversation, and user decisions (purchase or non-purchase).
♻ ☆ PhysORD: A Neuro-Symbolic Approach for Physics-infused Motion Prediction in Off-road Driving
Motion prediction is critical for autonomous off-road driving, however, it presents significantly more challenges than on-road driving because of the complex interaction between the vehicle and the terrain. Traditional physics-based approaches encounter difficulties in accurately modeling dynamic systems and external disturbance. In contrast, data-driven neural networks require extensive datasets and struggle with explicitly capturing the fundamental physical laws, which can easily lead to poor generalization. By merging the advantages of both methods, neuro-symbolic approaches present a promising direction. These methods embed physical laws into neural models, potentially significantly improving generalization capabilities. However, no prior works were evaluated in real-world settings for off-road driving. To bridge this gap, we present PhysORD, a neural-symbolic approach integrating the conservation law, i.e., the Euler-Lagrange equation, into data-driven neural models for motion prediction in off-road driving. Our experiments showed that PhysORD can accurately predict vehicle motion and tolerate external disturbance by modeling uncertainties. It outperforms existing methods both in accuracy and efficiency and demonstrates data-efficient learning and generalization ability in long-term prediction.
♻ ☆ Dissociation of Faithful and Unfaithful Reasoning in LLMs
Large language models (LLMs) often improve their performance in downstream tasks when they generate Chain of Thought reasoning text before producing an answer. We investigate how LLMs recover from errors in Chain of Thought. Through analysis of error recovery behaviors, we find evidence for unfaithfulness in Chain of Thought, which occurs when models arrive at the correct answer despite invalid reasoning text. We identify factors that shift LLM recovery behavior: LLMs recover more frequently from obvious errors and in contexts that provide more evidence for the correct answer. Critically, these factors have divergent effects on faithful and unfaithful recoveries. Our results indicate that there are distinct mechanisms driving faithful and unfaithful error recoveries. Selective targeting of these mechanisms may be able to drive down the rate of unfaithful reasoning and improve model interpretability.
comment: code published at https://github.com/CoTErrorRecovery/CoTErrorRecovery
♻ ☆ SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery
Automated detection of surgical errors can improve robotic-assisted surgery. Despite promising progress, existing methods still face challenges in capturing rich temporal context to establish long-term dependencies while maintaining computational efficiency. In this paper, we propose a novel hierarchical model named SEDMamba, which incorporates the selective state space model (SSM) into surgical error detection, facilitating efficient long sequence modelling with linear complexity. SEDMamba enhances selective SSM with a bottleneck mechanism and fine-to-coarse temporal fusion (FCTF) to detect and temporally localize surgical errors in long videos. The bottleneck mechanism compresses and restores features within their spatial dimension, thereby reducing computational complexity. FCTF utilizes multiple dilated 1D convolutional layers to merge temporal information across diverse scale ranges, accommodating errors of varying duration. Our work also contributes the first-of-its-kind, frame-level, in-vivo surgical error dataset to support error detection in real surgical cases. Specifically, we deploy the clinically validated observational clinical human reliability assessment tool (OCHRA) to annotate the errors during suturing tasks in an open-source radical prostatectomy dataset (SAR-RARP50). Experimental results demonstrate that our SEDMamba outperforms state-of-the-art methods with at least 1.82% AUC and 3.80% AP performance gains with significantly reduced computational complexity. The corresponding error annotations, code and models will be released at https://github.com/wzjialang/SEDMamba.
comment: 8 pages
♻ ☆ Manipulating Large Language Models to Increase Product Visibility
Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.
♻ ☆ Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
comment: This article is currently under review. All data will be open on GitHub once the review is complete. https://github.com/limanwang/Balancing-Rigor-and-Utility
♻ ☆ On the Impacts of Contexts on Repository-Level Code Generation
CodeLLMs have gained widespread adoption for code generation tasks, yet their capacity to handle repository-level code generation with complex contextual dependencies remains underexplored. Our work underscores the critical importance of leveraging repository-level contexts to generate executable and functionally correct code. We present \textbf{\methodnamews}, a novel benchmark designed to evaluate repository-level code generation, with a focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts. Our study examines a controlled scenario where developers specify essential code dependencies (contexts), challenging models to integrate them effectively. Additionally, we introduce an instruction-tuned dataset that enhances CodeLLMs' ability to leverage dependencies, along with a new metric, \textit{Dependency Invocation Rate (DIR)}, to quantify context utilization. Experimental results reveal that while pretrained LLMs demonstrate superior performance in terms of correctness, instruction-tuned models excel in context utilization and debugging capabilities. \methodnamews offers a comprehensive evaluation framework for assessing code functionality and alignment with developer intent, thereby advancing the development of more reliable CodeLLMs for real-world applications. The dataset and source code are available at~\url{https://github.com/FSoft-AI4Code/RepoExec}.
♻ ☆ Eliciting Informative Text Evaluations with Large Language Models
Peer prediction mechanisms motivate high-quality feedback with provable guarantees. However, current methods only apply to rather simple reports, like multiple-choice or scalar numbers. We aim to broaden these techniques to the larger domain of text-based reports, drawing on the recent developments in large language models. This vastly increases the applicability of peer prediction mechanisms as textual feedback is the norm in a large variety of feedback channels: peer reviews, e-commerce customer reviews, and comments on social media. We introduce two mechanisms, the Generative Peer Prediction Mechanism (GPPM) and the Generative Synopsis Peer Prediction Mechanism (GSPPM). These mechanisms utilize LLMs as predictors, mapping from one agent's report to a prediction of her peer's report. Theoretically, we show that when the LLM prediction is sufficiently accurate, our mechanisms can incentivize high effort and truth-telling as an (approximate) Bayesian Nash equilibrium. Empirically, we confirm the efficacy of our mechanisms through experiments conducted on two real datasets: the Yelp review dataset and the ICLR OpenReview dataset. We highlight the results that on the ICLR dataset, our mechanisms can differentiate three quality levels -- human-written reviews, GPT-4-generated reviews, and GPT-3.5-generated reviews in terms of expected scores. Additionally, GSPPM penalizes LLM-generated reviews more effectively than GPPM.
comment: Accepted by the Twenty-Fifth ACM Conference on Economics and Computation (EC'24)
♻ ☆ Uplift Modeling Under Limited Supervision
Estimating causal effects in e-commerce tends to involve costly treatment assignments which can be impractical in large-scale settings. Leveraging machine learning to predict such treatment effects without actual intervention is a standard practice to diminish the risk. However, existing methods for treatment effect prediction tend to rely on training sets of substantial size, which are built from real experiments and are thus inherently risky to create. In this work we propose a graph neural network to diminish the required training set size, relying on graphs that are common in e-commerce data. Specifically, we view the problem as node regression with a restricted number of labeled instances, develop a two-model neural architecture akin to previous causal effect estimators, and test varying message-passing layers for encoding. Furthermore, as an extra step, we combine the model with an acquisition function to guide the creation of the training set in settings with extremely low experimental budget. The framework is flexible since each step can be used separately with other models or treatment policies. The experiments on real large-scale networks indicate a clear advantage of our methodology over the state of the art, which in many cases performs close to random, underlining the need for models that can generalize with limited supervision to reduce experimental risks.
♻ ☆ Into the Unknown: Self-Learning Large Language Models
We address the main problem of self-learning LLM: the question of what to learn. We propose a self-learning LLM framework that enables an LLM to independently learn previously unknown knowledge through self-assessment of their own hallucinations. We introduce a concept called Point in the Unknown (PiU) to identify atomic knowledge unknown to a model, along with four methods for automatic PiUs identification, facilitating the creation of a self-learning loop that focuses exclusively on the absorption of currently unknown knowledge into the model. Additionally, we developed evaluation metrics to gauge an LLM's self-learning capability. Our experiments revealed that LLMs with at least 3B parameters that have undergone some instruction training would be able to perform self-learning well. We further proved the effectiveness of self-learning by comparing the performance of a model that has undergone self-learning to a model that has not. Our self-learning concept allows more efficient LLM updates and opens new perspectives for LLM knowledge exchange.
comment: 10 pages, 3 figures, 3 tables, submitted
AI-Assisted Generation of Difficult Math Questions
Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH$^2$ - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH$^2$ than on MATH (b) Higher performance on MATH when using MATH$^2$ questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH$^2$ is the square on MATH, suggesting that successfully solving the question in MATH$^2$ requires a nontrivial combination of two distinct math skills.
♻ ☆ Online Detection of Anomalies in Temporal Knowledge Graphs with Interpretability SIGMOD 2025
Temporal knowledge graphs (TKGs) are valuable resources for capturing evolving relationships among entities, yet they are often plagued by noise, necessitating robust anomaly detection mechanisms. Existing dynamic graph anomaly detection approaches struggle to capture the rich semantics introduced by node and edge categories within TKGs, while TKG embedding methods lack interpretability, undermining the credibility of anomaly detection. Moreover, these methods falter in adapting to pattern changes and semantic drifts resulting from knowledge updates. To tackle these challenges, we introduce AnoT, an efficient TKG summarization method tailored for interpretable online anomaly detection in TKGs. AnoT begins by summarizing a TKG into a novel rule graph, enabling flexible inference of complex patterns in TKGs. When new knowledge emerges, AnoT maps it onto a node in the rule graph and traverses the rule graph recursively to derive the anomaly score of the knowledge. The traversal yields reachable nodes that furnish interpretable evidence for the validity or the anomalous of the new knowledge. Overall, AnoT embodies a detector-updater-monitor architecture, encompassing a detector for offline TKG summarization and online scoring, an updater for real-time rule graph updates based on emerging knowledge, and a monitor for estimating the approximation error of the rule graph. Experimental results on four real-world datasets demonstrate that AnoT surpasses existing methods significantly in terms of accuracy and interoperability. All of the raw datasets and the implementation of AnoT are provided in https://github.com/zjs123/ANoT.
comment: 26 pages, 10 figures. Accepted by SIGMOD 2025
♻ ☆ NeuFair: Neural Network Fairness Repair with Dropout ISSTA 2024
This paper investigates neuron dropout as a post-processing bias mitigation for deep neural networks (DNNs). Neural-driven software solutions are increasingly applied in socially critical domains with significant fairness implications. While neural networks are exceptionally good at finding statistical patterns from data, they may encode and amplify existing biases from the historical data. Existing bias mitigation algorithms often require modifying the input dataset or the learning algorithms. We posit that the prevalent dropout methods that prevent over-fitting during training by randomly dropping neurons may be an effective and less intrusive approach to improve the fairness of pre-trained DNNs. However, finding the ideal set of neurons to drop is a combinatorial problem. We propose NeuFair, a family of post-processing randomized algorithms that mitigate unfairness in pre-trained DNNs via dropouts during inference after training. Our randomized search is guided by an objective to minimize discrimination while maintaining the model's utility. We show that our design of randomized algorithms is effective and efficient in improving fairness (up to 69%) with minimal or no model performance degradation. We provide intuitive explanations of these phenomena and carefully examine the influence of various hyperparameters of search algorithms on the results. Finally, we empirically and conceptually compare NeuFair to different state-of-the-art bias mitigators.
comment: Paper accepted at ACM ISSTA 2024
♻ ☆ An Investigation of Neuron Activation as a Unified Lens to Explain Chain-of-Thought Eliciting Arithmetic Reasoning of LLMs ACL 2024
Large language models (LLMs) have shown strong arithmetic reasoning capabilities when prompted with Chain-of-Thought (CoT) prompts. However, we have only a limited understanding of how they are processed by LLMs. To demystify it, prior work has primarily focused on ablating different components in the CoT prompt and empirically observing their resulting LLM performance change. Yet, the reason why these components are important to LLM reasoning is not explored. To fill this gap, in this work, we investigate ``neuron activation'' as a lens to provide a unified explanation to observations made by prior work. Specifically, we look into neurons within the feed-forward layers of LLMs that may have activated their arithmetic reasoning capabilities, using Llama2 as an example. To facilitate this investigation, we also propose an approach based on GPT-4 to automatically identify neurons that imply arithmetic reasoning. Our analyses revealed that the activation of reasoning neurons in the feed-forward layers of an LLM can explain the importance of various components in a CoT prompt, and future research can extend it for a more complete understanding.
comment: 9 pages, 1 figure, to be published in ACL 2024
♻ ☆ Privacy-Aware Document Visual Question Answering ICDAR 2024
Document Visual Question Answering (DocVQA) has quickly grown into a central task of document understanding. But despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees. In this work, we explore privacy in the domain of DocVQA for the first time, highlighting privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions. Specifically, we focus on invoice processing as a realistic document understanding scenario, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the data of the invoice provider is the sensitive information to be protected. We demonstrate that non-private models tend to memorise, a behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through either or both of the two input modalities: vision (document image) or language (OCR tokens). Finally, we design attacks exploiting the memorisation effect of the model, and demonstrate their effectiveness in probing a representative DocVQA models.
comment: 35 pages, 12 figures, accepted for publication at the 18th International Conference on Document Analysis and Recognition, ICDAR 2024
♻ ☆ Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant ICASSP 2024
Large language models (LLMs) have demonstrated impressive generalization capabilities on specific tasks with human-written instruction data. However, the limited quantity, diversity, and professional expertise of such instruction data raise concerns about the performance of LLMs in psychotherapy tasks when provided with domain-specific instructions. To address this, we firstly propose Domain-Specific Assistant Instructions based on AlexanderStreet therapy, and secondly, we use an adaption fine-tuning method and retrieval augmented generation method to improve pre-trained LLMs. Through quantitative evaluation of linguistic quality using automatic and human evaluation, we observe that pre-trained LLMs on Psychotherapy Assistant Instructions outperform state-of-the-art LLMs response baselines. Our Assistant-Instruction approach offers a half-annotation method to align pre-trained LLMs with instructions and provide pre-trained LLMs with more psychotherapy knowledge.
comment: Accepted at ICASSP 2024 EIHRC Workshop
♻ ☆ Sentiment Analysis Across Languages: Evaluation Before and After Machine Translation to English
People communicate in more than 7,000 languages around the world, with around 780 languages spoken in India alone. Despite this linguistic diversity, research on Sentiment Analysis has predominantly focused on English text data, resulting in a disproportionate availability of sentiment resources for English. This paper examines the performance of transformer models in Sentiment Analysis tasks across multilingual datasets and text that has undergone machine translation. By comparing the effectiveness of these models in different linguistic contexts, we gain insights into their performance variations and potential implications for sentiment analysis across diverse languages. We also discuss the shortcomings and potential for future work towards the end.
comment: 6 pages, 3 Figures
♻ ☆ The Cultivated Practices of Text-to-Image Generation
Humankind is entering a novel creative era in which anybody can synthesize digital information using generative artificial intelligence (AI). Text-to-image generation, in particular, has become vastly popular and millions of practitioners produce AI-generated images and AI art online. This chapter first gives an overview of the key developments that enabled a healthy co-creative online ecosystem around text-to-image generation to rapidly emerge, followed by a high-level description of key elements in this ecosystem. A particular focus is placed on prompt engineering, a creative practice that has been embraced by the AI art community. It is then argued that the emerging co-creative ecosystem constitutes an intelligent system on its own - a system that both supports human creativity, but also potentially entraps future generations and limits future development efforts in AI. The chapter discusses the potential risks and dangers of cultivating this co-creative ecosystem, such as the bias inherent in today's training data, potential quality degradation in future image generation systems due to synthetic data becoming common place, and the potential long-term effects of text-to-image generation on people's imagination, ambitions, and development.
comment: In "Humane autonomous technology - Re-thinking experience with and in intelligent systems", Palgrave Macmillan, 2024
♻ ☆ HyperInterval: Hypernetwork approach to training weight interval regions in continual learning
Recently, a new Continual Learning (CL) paradigm was presented to control catastrophic forgetting, called Interval Continual Learning (InterContiNet), which relies on enforcing interval constraints on the neural network parameter space. Unfortunately, InterContiNet training is challenging due to the high dimensionality of the weight space, making intervals difficult to manage. To address this issue, we introduce \our{} \footnote{The source code is available at https://github.com/gmum/HyperInterval}, a technique that employs interval arithmetic within the embedding space and utilizes a hypernetwork to map these intervals to the target network parameter space. We train interval embeddings for consecutive tasks and train a hypernetwork to transform these embeddings into weights of the target network. An embedding for a given task is trained along with the hypernetwork, preserving the response of the target network for the previous task embeddings. Interval arithmetic works with a more manageable, lower-dimensional embedding space rather than directly preparing intervals in a high-dimensional weight space. Our model allows faster and more efficient training. Furthermore, \our{} maintains the guarantee of not forgetting. At the end of training, we can choose one universal embedding to produce a single network dedicated to all tasks. In such a framework, hypernetwork is used only for training and, finally, we can utilize one set of weights. \our{} obtains significantly better results than InterContiNet and gives SOTA results on several benchmarks.
♻ ☆ Stabilizing Extreme Q-learning by Maclaurin Expansion
In offline reinforcement learning, in-sample learning methods have been widely used to prevent performance degradation caused by evaluating out-of-distribution actions from the dataset. Extreme Q-learning (XQL) employs a loss function based on the assumption that Bellman error follows a Gumbel distribution, enabling it to model the soft optimal value function in an in-sample manner. It has demonstrated strong performance in both offline and online reinforcement learning settings. However, issues remain, such as the instability caused by the exponential term in the loss function and the risk of the error distribution deviating from the Gumbel distribution. Therefore, we propose Maclaurin Expanded Extreme Q-learning to enhance stability. In this method, applying Maclaurin expansion to the loss function in XQL enhances stability against large errors. This approach involves adjusting the modeled value function between the value function under the behavior policy and the soft optimal value function, thus achieving a trade-off between stability and optimality depending on the order of expansion. It also enables adjustment of the error distribution assumption from a normal distribution to a Gumbel distribution. Our method significantly stabilizes learning in online RL tasks from DM Control, where XQL was previously unstable. Additionally, it improves performance in several offline RL tasks from D4RL.
comment: Accepted at RLC 2024: The first Reinforcement Learning Conference
♻ ☆ An Effective Information Theoretic Framework for Channel Pruning
Channel pruning is a promising method for accelerating and compressing convolutional neural networks. However, current pruning algorithms still remain unsolved problems that how to assign layer-wise pruning ratios properly and discard the least important channels with a convincing criterion. In this paper, we present a novel channel pruning approach via information theory and interpretability of neural networks. Specifically, we regard information entropy as the expected amount of information for convolutional layers. In addition, if we suppose a matrix as a system of linear equations, a higher-rank matrix represents there exist more solutions to it, which indicates more uncertainty. From the point of view of information theory, the rank can also describe the amount of information. In a neural network, considering the rank and entropy as two information indicators of convolutional layers, we propose a fusion function to reach a compromise of them, where the fusion results are defined as ``information concentration''. When pre-defining layer-wise pruning ratios, we employ the information concentration as a reference instead of heuristic and engineering tuning to provide a more interpretable solution. Moreover, we leverage Shapley values, which are a potent tool in the interpretability of neural networks, to evaluate the channel contributions and discard the least important channels for model compression while maintaining its performance. Extensive experiments demonstrate the effectiveness and promising performance of our method. For example, our method improves the accuracy by 0.21% when reducing 45.5% FLOPs and removing 40.3% parameters for ResNet-56 on CIFAR-10. Moreover, our method obtains loss in Top-1/Top-5 accuracies of 0.43%/0.11% by reducing 41.6% FLOPs and removing 35.0% parameters for ResNet-50 on ImageNet.
♻ ☆ Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model ACM MM 2024
Existing Transformer-based models for point cloud analysis suffer from quadratic complexity, leading to compromised point cloud resolution and information loss. In contrast, the newly proposed Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity. However, the straightforward adoption of Mamba does not achieve satisfactory performance on point cloud tasks. In this work, we present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction, achieving superior performance, high efficiency, and scalability potential. Specifically, we propose a simple yet effective Local Norm Pooling (LNP) block to extract local geometric features. Additionally, to obtain better global features, we introduce a bidirectional SSM (bi-SSM) with both a token forward SSM and a novel backward SSM that operates on the feature channel. Extensive experimental results show that Mamba3D surpasses Transformer-based counterparts and concurrent works in multiple tasks, with or without pre-training. Notably, Mamba3D achieves multiple SoTA, including an overall accuracy of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with single-modal pre-training) on the ModelNet40 classification task, with only linear complexity. Our code and weights are available at https://github.com/xhanxu/Mamba3D.
comment: ACM MM 2024. Code and weights are available at https://github.com/xhanxu/Mamba3D
♻ ☆ Barlow Twins Deep Neural Network for Advanced 1D Drug-Target Interaction Prediction
Accurate prediction of drug-target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this laborious discovery process. In a novel approach, BarlowDTI, we utilise the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein. Our method achieves state-of-the-art predictive performance against multiple established benchmarks using only one-dimensional input. The use of gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for substantial computational resources. We also investigate how the model reaches its decision based on individual training samples. By comparing co-crystal structures, we find that BarlowDTI effectively exploits catalytically active and stabilising residues, highlighting the model's ability to generalise from one-dimensional input data. In addition, we further benchmark new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug-target interaction predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions. Therefore, we provide an easy-to-use web interface that can be freely accessed at https://www.bio.nat.tum.de/oc2/barlowdti .
comment: Refined model architecture, additional results added
♻ ☆ LiveFC: A System for Live Fact-Checking of Audio Streams
The advances in the digital era have led to rapid dissemination of information. This has also aggravated the spread of misinformation and disinformation. This has potentially serious consequences, such as civil unrest. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. While automated fact-checking approaches exist, they do not operate in real-time and do not always account for spread of misinformation through different modalities. This is particularly important as proactive fact-checking on live streams in real-time can help people be informed of false narratives and prevent catastrophic consequences that may cause civil unrest. This is particularly relevant with the rapid dissemination of information through video on social media platforms or other streams like political rallies and debates. Hence, in this work we develop a platform named LiveFC, that can aid in fact-checking live audio streams in real-time. LiveFC has a user-friendly interface that displays the claims detected along with their veracity and evidence for live streams with associated speakers for claims from respective segments. The app can be accessed at http://livefc.factiverse.ai and a screen recording of the demo can be found at https://bit.ly/3WVAoIw.
comment: Under Review, 11 pages
♻ ☆ Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments
The effective integration of generative artificial intelligence in education is a fundamental aspect to prepare future generations. The objective of this study is to analyze from a quantitative and qualitative point of view the perception of controlled student-IA interaction within the classroom. This analysis includes assessing the ethical implications and everyday use of AI tools, as well as understanding whether AI tools encourage students to pursue STEM careers. Several points for improvement in education are found, such as the challenge of getting teachers to engage with new technologies and adapt their methods in all subjects, not just those related to technologies.
comment: 17 pages, 7 figures, 4 tables
♻ ☆ Generalizing Fairness to Generative Language Models via Reformulation of Non-discrimination Criteria
Generative AI, such as large language models, has undergone rapid development within recent years. As these models become increasingly available to the public, concerns arise about perpetuating and amplifying harmful biases in applications. Gender stereotypes can be harmful and limiting for the individuals they target, whether they consist of misrepresentation or discrimination. Recognizing gender bias as a pervasive societal construct, this paper studies how to uncover and quantify the presence of gender biases in generative language models. In particular, we derive generative AI analogues of three well-known non-discrimination criteria from classification, namely independence, separation and sufficiency. To demonstrate these criteria in action, we design prompts for each of the criteria with a focus on occupational gender stereotype, specifically utilizing the medical test to introduce the ground truth in the generative AI context. Our results address the presence of occupational gender bias within such conversational language models.
♻ ☆ Neural Dehydration: Effective Erasure of Black-box Watermarks from DNNs with Limited Data CCS '24
To protect the intellectual property of well-trained deep neural networks (DNNs), black-box watermarks, which are embedded into the prediction behavior of DNN models on a set of specially-crafted samples and extracted from suspect models using only API access, have gained increasing popularity in both academy and industry. Watermark robustness is usually implemented against attackers who steal the protected model and obfuscate its parameters for watermark removal. However, current robustness evaluations are primarily performed under moderate attacks or unrealistic settings. Existing removal attacks could only crack a small subset of the mainstream black-box watermarks, and fall short in four key aspects: incomplete removal, reliance on prior knowledge of the watermark, performance degradation, and high dependency on data. In this paper, we propose a watermark-agnostic removal attack called \textsc{Neural Dehydration} (\textit{abbrev.} \textsc{Dehydra}), which effectively erases all ten mainstream black-box watermarks from DNNs, with only limited or even no data dependence. In general, our attack pipeline exploits the internals of the protected model to recover and unlearn the watermark message. We further design target class detection and recovered sample splitting algorithms to reduce the utility loss and achieve data-free watermark removal on five of the watermarking schemes. We conduct comprehensive evaluation of \textsc{Dehydra} against ten mainstream black-box watermarks on three benchmark datasets and DNN architectures. Compared with existing removal attacks, \textsc{Dehydra} achieves strong removal effectiveness across all the covered watermarks, preserving at least $90\%$ of the stolen model utility, under the data-limited settings, i.e., less than $2\%$ of the training data or even data-free.
comment: 20 pages, ver 2.0, accepted by CCS '24
♻ ☆ Physics simulation capabilities of LLMs
[Abridged abstract] Large Language Models (LLMs) can solve some undergraduate-level to graduate-level physics textbook problems and are proficient at coding. Combining these two capabilities could one day enable AI systems to simulate and predict the physical world. We present an evaluation of state-of-the-art (SOTA) LLMs on PhD-level to research-level computational physics problems. We condition LLM generation on the use of well-documented and widely-used packages to elicit coding capabilities in the physics and astrophysics domains. We contribute $\sim 50$ original and challenging problems in celestial mechanics (with REBOUND), stellar physics (with MESA), 1D fluid dynamics (with Dedalus) and non-linear dynamics (with SciPy). Since our problems do not admit unique solutions, we evaluate LLM performance on several soft metrics: counts of lines that contain different types of errors (coding, physics, necessity and sufficiency) as well as a more "educational" Pass-Fail metric focused on capturing the salient physical ingredients of the problem at hand. As expected, today's SOTA LLM (GPT4) zero-shot fails most of our problems, although about 40\% of the solutions could plausibly get a passing grade. About $70-90 \%$ of the code lines produced are necessary, sufficient and correct (coding \& physics). Physics and coding errors are the most common, with some unnecessary or insufficient lines. We observe significant variations across problem class and difficulty. We identify several failure modes of GPT4 in the computational physics domain. Our reconnaissance work provides a snapshot of current computational capabilities in classical physics and points to obvious improvement targets if AI systems are ever to reach a basic level of autonomy in physics simulation capabilities.
comment: Accepted for publication in Physica Scripta. Abridged abstract. 15 pages + appendix, 1 figure. Comments are welcome
♻ ☆ On Learning Action Costs from Input Plans
Most of the work on learning action models focus on learning the actions' dynamics from input plans. This allows us to specify the valid plans of a planning task. However, very little work focuses on learning action costs, which in turn allows us to rank the different plans. In this paper we introduce a new problem: that of learning the costs of a set of actions such that a set of input plans are optimal under the resulting planning model. To solve this problem we present $LACFIP^k$, an algorithm to learn action's costs from unlabeled input plans. We provide theoretical and empirical results showing how $LACFIP^k$ can successfully solve this task.
♻ ☆ ACE, a generic constraint solver
Constraint Programming (CP) is a useful technology for modeling and solving combinatorial constrained problems. On the one hand, on can use a library like PyCSP3 for easily modeling problems arising in various application fields (e.g., scheduling, planning, data-mining, cryptography, bio-informatics, organic chemistry, etc.). Problem instances can then be directly generated from specific models and data. On the other hand, for solving instances (notably, represented in XCSP3 format), one can use a constraint solver like ACE, which is presented in this paper. ACE is an open-source constraint solver, developed in Java, which focuses on integer variables (including 0/1-Boolean variables), state-of-the-art table constraints, popular global constraints, search heuristics and (mono-criterion) optimization.
♻ ☆ FastMem: Fast Memorization of Prompt Improves Context Awareness of Large Language Models
Large language models (LLMs) excel in generating coherent text, but they often struggle with context awareness, leading to inaccuracies in tasks requiring faithful adherence to provided information. We introduce FastMem, a novel method designed to enhance instruction fine-tuned LLMs' context awareness through fast memorization of the prompt. FastMem maximizes the likelihood of the prompt before inference by fine-tuning only the last Feed-Forward Network (FFN) module. This targeted approach ensures efficient optimization without overfitting, significantly improving the model's ability to comprehend and accurately follow the context. Our experiments demonstrate substantial gains in reading comprehension, text summarization and adherence to output structures. For instance, FastMem improves the accuracy of Llama 3-8B-Inst on the NQ-SWAP dataset from 59.1% to 71.6%, and reduces the output structure failure rate of Qwen 1.5-4B-Chat from 34.9% to 25.5%. Extensive experimental results highlight FastMem's potential to offer a robust solution to enhance the reliability and accuracy of LLMs in various applications. Our code is available at: https://github.com/IAAR-Shanghai/FastMem
♻ ☆ Exploring and Learning Structure: Active Inference Approach in Navigational Agents
Drawing inspiration from animal navigation strategies, we introduce a novel computational model for navigation and mapping, rooted in biologically inspired principles. Animals exhibit remarkable navigation abilities by efficiently using memory, imagination, and strategic decision-making to navigate complex and aliased environments. Building on these insights, we integrate traditional cognitive mapping approaches with an Active Inference Framework (AIF) to learn an environment structure in a few steps. Through the incorporation of topological mapping for long-term memory and AIF for navigation planning and structure learning, our model can dynamically apprehend environmental structures and expand its internal map with predicted beliefs during exploration. Comparative experiments with the Clone-Structured Graph (CSCG) model highlight our model's ability to rapidly learn environmental structures in a single episode, with minimal navigation overlap. this is achieved without prior knowledge of the dimensions of the environment or the type of observations, showcasing its robustness and effectiveness in navigating ambiguous environments.
comment: IWAI workshop 2024
♻ ☆ Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
This paper presents a fast and cost-effective method for diagnosing cardiac abnormalities with high accuracy and reliability using low-cost systems in clinics. The primary limitation of automatic diagnosing of cardiac diseases is the rarity of correct and acceptable labeled samples, which can be expensive to prepare. To address this issue, two methods are proposed in this work. The first method is a unique Multi-Branch Deep Convolutional Neural Network (MBDCN) architecture inspired by human auditory processing, specifically designed to optimize feature extraction by employing various sizes of convolutional filters and audio signal power spectrum as input. In the second method, called as Long short-term memory-Convolutional Neural (LSCN) model, Additionally, the network architecture includes Long Short-Term Memory (LSTM) network blocks to improve feature extraction in the time domain. The innovative approach of combining multiple parallel branches consisting of the one-dimensional convolutional layers along with LSTM blocks helps in achieving superior results in audio signal processing tasks. The experimental results demonstrate superiority of the proposed methods over the state-of-the-art techniques. The overall classification accuracy of heart sounds with the LSCN network is more than 96%. The efficiency of this network is significant compared to common feature extraction methods such as Mel Frequency Cepstral Coefficients (MFCC) and wavelet transform. Therefore, the proposed method shows promising results in the automatic analysis of heart sounds and has potential applications in the diagnosis and early detection of cardiovascular diseases.
comment: 19 pages, "Submitted to Biomedical Signal Processing and Control"
♻ ☆ FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models ECCV 2024
The substantial computational costs of diffusion models, especially due to the repeated denoising steps necessary for high-quality image generation, present a major obstacle to their widespread adoption. While several studies have attempted to address this issue by reducing the number of score function evaluations (NFE) using advanced ODE solvers without fine-tuning, the decreased number of denoising iterations misses the opportunity to update fine details, resulting in noticeable quality degradation. In our work, we introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models. Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality. To realize the practical benefits of this intuition, we conduct an extensive analysis and propose a novel method, FRDiff. FRDiff is designed to harness the advantages of both reduced NFE and feature reuse, achieving a Pareto frontier that balances fidelity and latency trade-offs in various generative tasks.
comment: Accepted at ECCV 2024. Code : https://github.com/ECoLab-POSTECH/FRDiff
♻ ☆ Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems
Artificial Intelligence (AI) has paved the way for revolutionary decision-making processes, which if harnessed appropriately, can contribute to advancements in various sectors, from healthcare to economics. However, its black box nature presents significant ethical challenges related to bias and transparency. AI applications are hugely impacted by biases, presenting inconsistent and unreliable findings, leading to significant costs and consequences, highlighting and perpetuating inequalities and unequal access to resources. Hence, developing safe, reliable, ethical, and Trustworthy AI systems is essential. Our team of researchers working with Trustworthy and Responsible AI, part of the Transdisciplinary Scholarship Initiative within the University of Calgary, conducts research on Trustworthy and Responsible AI, including fairness, bias mitigation, reproducibility, generalization, interpretability, and authenticity. In this paper, we review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias. We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making, as well as guidelines to foster Responsible and Trustworthy AI models.
comment: 44 pages, 2 figures
♻ ☆ OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection
Recent studies have demonstrated the significant potential of Large Language Models (LLMs) in generating Register Transfer Level (RTL) code, with notable advancements showcased by commercial models such as GPT-4 and Claude3-Opus. However, these proprietary LLMs often raise concerns regarding privacy and security. While open-source LLMs offer solutions to these concerns, they typically underperform commercial models in RTL code generation tasks, primarily due to the scarcity of high-quality open-source RTL datasets. To address this challenge, we introduce OriGen , a fully open-source framework that incorporates self-reflection capabilities and a novel dataset augmentation methodology for generating high-quality, large-scale RTL code. Our approach employs a code-tocode augmentation technique to enhance the quality of open-source RTL code datasets. Furthermore, OriGen can rectify syntactic errors through a self-reflection process that leverages compiler feedback. Experimental results demonstrate that OriGen significantly outperforms other open-source alternatives in RTL code generation. It surpasses the previous best-performing open-source LLM by 12.8% and even exceeds GPT-4 Turbo in the pass@1 metric on the VerilogEval-Human benchmark. Moreover, OriGen exhibits superior capabilities in self-reflection and error correction, outperforming GPT-4 by 19.9% on a benchmark designed to evaluate self-reflection capabilities.
♻ ☆ ERATTA: Extreme RAG for Table To Answers with Large Language Models
Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. Although RAG implemented with AI agents (agentic-RAG) has been recently popularized, its suffers from unstable cost and unreliable performances for Enterprise-level data-practices. Most existing use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user-query routing, data-retrieval and custom prompting for question-answering capabilities from Enterprise-data tables. The source tables here are highly fluctuating and large in size and the proposed framework enables structured responses in under 10 seconds per query. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.
comment: 5 pages, 4 tables, IEEE Big Data, 2024
♻ ☆ Pedestrian Attribute Recognition via CLIP based Prompt Vision-Language Fusion
Existing pedestrian attribute recognition (PAR) algorithms adopt pre-trained CNN (e.g., ResNet) as their backbone network for visual feature learning, which might obtain sub-optimal results due to the insufficient employment of the relations between pedestrian images and attribute labels. In this paper, we formulate PAR as a vision-language fusion problem and fully exploit the relations between pedestrian images and attribute labels. Specifically, the attribute phrases are first expanded into sentences, and then the pre-trained vision-language model CLIP is adopted as our backbone for feature embedding of visual images and attribute descriptions. The contrastive learning objective connects the vision and language modalities well in the CLIP-based feature space, and the Transformer layers used in CLIP can capture the long-range relations between pixels. Then, a multi-modal Transformer is adopted to fuse the dual features effectively and feed-forward network is used to predict attributes. To optimize our network efficiently, we propose the region-aware prompt tuning technique to adjust very few parameters (i.e., only the prompt vectors and classification heads) and fix both the pre-trained VL model and multi-modal Transformer. Our proposed PAR algorithm only adjusts 0.75% learnable parameters compared with the fine-tuning strategy. It also achieves new state-of-the-art performance on both standard and zero-shot settings for PAR, including RAPv1, RAPv2, WIDER, PA100K, and PETA-ZS, RAP-ZS datasets. The source code and pre-trained models will be released on https://github.com/Event-AHU/OpenPAR.
comment: Accepted by IEEE TCSVT 2024, Camera Ready Version
♻ ☆ MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents
Machine learning research, crucial for technological advancements and innovation, often faces significant challenges due to its inherent complexity, slow pace of experimentation, and the necessity for specialized expertise. Motivated by this, we present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot), designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents. The framework consists of three phases: research idea generation, experiment implementation, and implementation execution. First, existing research papers are used to generate hypotheses and experimental plans vis IdeaAgent powered by LLMs. Next, the implementation generation phase translates these plans into executables with ExperimentAgent. This phase leverages retrieved prototype code and optionally retrieves candidate models and data. Finally, the execution phase, also managed by ExperimentAgent, involves running experiments with mechanisms for human feedback and iterative debugging to enhance the likelihood of achieving executable research outcomes. We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
♻ ☆ Show Me the World in My Language: Establishing the First Baseline for Scene-Text to Scene-Text Translation ICPR 2024
In this work, we study the task of ``visually'' translating scene text from a source language (e.g., Hindi) to a target language (e.g., English). Visual translation involves not just the recognition and translation of scene text but also the generation of the translated image that preserves visual features of the source scene text, such as font, size, and background. There are several challenges associated with this task, such as translation with limited context, deciding between translation and transliteration, accommodating varying text lengths within fixed spatial boundaries, and preserving the font and background styles of the source scene text in the target language. To address this problem, we make the following contributions: (i) We study visual translation as a standalone problem for the first time in the literature. (ii) We present a cascaded framework for visual translation that combines state-of-the-art modules for scene text recognition, machine translation, and scene text synthesis as a baseline for the task. (iii) We propose a set of task-specific design enhancements to design a variant of the baseline to obtain performance improvements. (iv) Currently, the existing related literature lacks any comprehensive performance evaluation for this novel task. To fill this gap, we introduce several automatic and user-assisted evaluation metrics designed explicitly for evaluating visual translation. Further, we evaluate presented baselines for translating scene text between Hindi and English. Our experiments demonstrate that although we can effectively perform visual translation over a large collection of scene text images, the presented baseline only partially addresses challenges posed by visual translation tasks. We firmly believe that this new task and the limitations of existing models, as reported in this paper, should encourage further research in visual translation.
comment: Accepted at ICPR 2024, Project Website: https://vl2g.github.io/projects/visTrans/
♻ ☆ An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models ECCV 2024
In this study, we identify the inefficient attention phenomena in Large Vision-Language Models (LVLMs), notably within prominent models like LLaVA-1.5, QwenVL-Chat and Video-LLaVA. We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs, suggesting a need for a sparser approach compared to textual data handling. To this end, we introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency by learning adaptive attention patterns in early layers and pruning visual tokens in subsequent ones. Our evaluations demonstrate FastV's ability to dramatically reduce computational costs (e.g., a 45 reduction in FLOPs for LLaVA-1.5-13B) without sacrificing performance in a wide range of image and video understanding tasks. The computational efficiency and performance trade-off of FastV are highly customizable and pareto-efficient. It can compress the FLOPs of a 13B-parameter model to achieve a lower budget than that of a 7B-parameter model, while still maintaining superior performance. We believe FastV has practical values for deployment of LVLMs in edge devices and commercial models. Code is released at https://github.com/pkunlp-icler/FastV.
comment: Accepted to ECCV 2024 (Oral), code is released at https://github.com/pkunlp-icler/FastV,
♻ ☆ A Grey-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in generative AI, particularly Latent Diffusion Models (LDMs), have revolutionized image synthesis and manipulation. However, these generative techniques raises concerns about data misappropriation and intellectual property infringement. Adversarial attacks on machine learning models have been extensively studied, and a well-established body of research has extended these techniques as a benign metric to prevent the underlying misuse of generative AI. Current approaches to safeguarding images from manipulation by LDMs are limited by their reliance on model-specific knowledge and their inability to significantly degrade semantic quality of generated images. In response to these shortcomings, we propose the Posterior Collapse Attack (PCA) based on the observation that VAEs suffer from posterior collapse during training. Our method minimizes dependence on the white-box information of target models to get rid of the implicit reliance on model-specific knowledge. By accessing merely a small amount of LDM parameters, in specific merely the VAE encoder of LDMs, our method causes a substantial semantic collapse in generation quality, particularly in perceptual consistency, and demonstrates strong transferability across various model architectures. Experimental results show that PCA achieves superior perturbation effects on image generation of LDMs with lower runtime and VRAM. Our method outperforms existing techniques, offering a more robust and generalizable solution that is helpful in alleviating the socio-technical challenges posed by the rapidly evolving landscape of generative AI.
comment: 21 pages, 7 figures, 10 tables
♻ ☆ Pearl: A Production-ready Reinforcement Learning Agent
Reinforcement learning (RL) is a versatile framework for optimizing long-term goals. Although many real-world problems can be formalized with RL, learning and deploying a performant RL policy requires a system designed to address several important challenges, including the exploration-exploitation dilemma, partial observability, dynamic action spaces, and safety concerns. While the importance of these challenges has been well recognized, existing open-source RL libraries do not explicitly address them. This paper introduces Pearl, a Production-Ready RL software package designed to embrace these challenges in a modular way. In addition to presenting benchmarking results, we also highlight examples of Pearl's ongoing industry adoption to demonstrate its advantages for production use cases. Pearl is open sourced on GitHub at github.com/facebookresearch/pearl and its official website is pearlagent.github.io.
♻ ☆ An Idiosyncrasy of Time-discretization in Reinforcement Learning
Many reinforcement learning algorithms are built on an assumption that an agent interacts with an environment over fixed-duration, discrete time steps. However, physical systems are continuous in time, requiring a choice of time-discretization granularity when digitally controlling them. Furthermore, such systems do not wait for decisions to be made before advancing the environment state, necessitating the study of how the choice of discretization may affect a reinforcement learning algorithm. In this work, we consider the relationship between the definitions of the continuous-time and discrete-time returns. Specifically, we acknowledge an idiosyncrasy with naively applying a discrete-time algorithm to a discretized continuous-time environment, and note how a simple modification can better align the return definitions. This observation is of practical consideration when dealing with environments where time-discretization granularity is a choice, or situations where such granularity is inherently stochastic.
comment: RLC 2024
♻ ☆ Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations
Sea ice at the North Pole is vital to global climate dynamics. However, accurately forecasting sea ice poses a significant challenge due to the intricate interaction among multiple variables. Leveraging the capability to integrate multiple inputs and powerful performances seamlessly, many studies have turned to neural networks for sea ice forecasting. This paper introduces a novel deep architecture named Unicorn, designed to forecast weekly sea ice. Our model integrates multiple time series images within its architecture to enhance its forecasting performance. Moreover, we incorporate a bottleneck layer within the U-Net architecture, serving as neural ordinary differential equations with convolution operations, to capture the spatiotemporal dynamics of latent variables. Through real data analysis with datasets spanning from 1998 to 2021, our proposed model demonstrates significant improvements over state-of-the-art models in the sea ice concentration forecasting task. It achieves an average MAE improvement of 12% compared to benchmark models. Additionally, our method outperforms existing approaches in sea ice extent forecasting, achieving a classification performance improvement of approximately 18%. These experimental results show the superiority of our proposed model.
♻ ☆ CHiSafetyBench: A Chinese Hierarchical Safety Benchmark for Large Language Models
With the profound development of large language models(LLMs), their safety concerns have garnered increasing attention. However, there is a scarcity of Chinese safety benchmarks for LLMs, and the existing safety taxonomies are inadequate, lacking comprehensive safety detection capabilities in authentic Chinese scenarios. In this work, we introduce CHiSafetyBench, a dedicated safety benchmark for evaluating LLMs' capabilities in identifying risky content and refusing answering risky questions in Chinese contexts. CHiSafetyBench incorporates a dataset that covers a hierarchical Chinese safety taxonomy consisting of 5 risk areas and 31 categories. This dataset comprises two types of tasks: multiple-choice questions and question-answering, evaluating LLMs from the perspectives of risk content identification and the ability to refuse answering risky questions respectively. Utilizing this benchmark, we validate the feasibility of automatic evaluation as a substitute for human evaluation and conduct comprehensive automatic safety assessments on mainstream Chinese LLMs. Our experiments reveal the varying performance of different models across various safety domains, indicating that all models possess considerable potential for improvement in Chinese safety capabilities. Our dataset is publicly available at https://github.com/UnicomAI/UnicomBenchmark/tree/main/CHiSafetyBench.
comment: 16 pages, 5 figures
♻ ☆ United We Stand: Decentralized Multi-Agent Planning With Attrition
Decentralized planning is a key element of cooperative multi-agent systems for information gathering tasks. However, despite the high frequency of agent failures in realistic large deployment scenarios, current approaches perform poorly in the presence of failures, by not converging at all, and/or by making very inefficient use of resources (e.g. energy). In this work, we propose Attritable MCTS (A-MCTS), a decentralized MCTS algorithm capable of timely and efficient adaptation to changes in the set of active agents. It is based on the use of a global reward function for the estimation of each agent's local contribution, and regret matching for coordination. We evaluate its effectiveness in realistic data-harvesting problems under different scenarios. We show both theoretically and experimentally that A-MCTS enables efficient adaptation even under high failure rates. Results suggest that, in the presence of frequent failures, our solution improves substantially over the best existing approaches in terms of global utility and scalability.
comment: To appear in ECAI 2024
♻ ☆ NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating, as malnutrition has been directly linked to decreased quality of life. However self-reporting methods such as food diaries suffer from substantial bias. Other conventional dietary assessment techniques and emerging alternative approaches such as mobile applications incur high time costs and may necessitate trained personnel. Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images, but the lack of comprehensive datasets with diverse viewpoints, modalities and food annotations hinders the accuracy and realism of such methods. To address this limitation, we introduce NutritionVerse-Synth, the first large-scale dataset of 84,984 photorealistic synthetic 2D food images with associated dietary information and multimodal annotations (including depth images, instance masks, and semantic masks). Additionally, we collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism. Leveraging these novel datasets, we develop and benchmark NutritionVerse, an empirical study of various dietary intake estimation approaches, including indirect segmentation-based and direct prediction networks. We further fine-tune models pretrained on synthetic data with real images to provide insights into the fusion of synthetic and real data. Finally, we release both datasets (NutritionVerse-Synth, NutritionVerse-Real) on https://www.kaggle.com/nutritionverse/datasets as part of an open initiative to accelerate machine learning for dietary sensing.
comment: Corrections made to Tables 6, 7, and 8, and corrections made to Experiments Part C. Additional clarification made in Section 4
♻ ☆ From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding
Knowledge graph embedding (KGE) that maps entities and relations into vector representations is essential for downstream applications. Conventional KGE methods require high-dimensional representations to learn the complex structure of knowledge graph, but lead to oversized model parameters. Recent advances reduce parameters by low-dimensional entity representations, while developing techniques (e.g., knowledge distillation or reinvented representation forms) to compensate for reduced dimension. However, such operations introduce complicated computations and model designs that may not benefit large knowledge graphs. To seek a simple strategy to improve the parameter efficiency of conventional KGE models, we take inspiration from that deeper neural networks require exponentially fewer parameters to achieve expressiveness comparable to wider networks for compositional structures. We view all entity representations as a single-layer embedding network, and conventional KGE methods that adopt high-dimensional entity representations equal widening the embedding network to gain expressiveness. To achieve parameter efficiency, we instead propose a deeper embedding network for entity representations, i.e., a narrow entity embedding layer plus a multi-layer dimension lifting network (LiftNet). Experiments on three public datasets show that by integrating LiftNet, four conventional KGE methods with 16-dimensional representations achieve comparable link prediction accuracy as original models that adopt 512-dimensional representations, saving 68.4% to 96.9% parameters.
♻ ☆ Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model
Breast magnetic resonance imaging (MRI) is the imaging technique with the highest sensitivity for detecting breast cancer and is routinely used for women at high risk. Despite the comprehensive multiparametric protocol of breast MRI, existing artificial intelligence-based studies predominantly rely on single sequences and have limited validation. Here we report a large mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure, offering a noninvasive method for personalized breast cancer management. We have curated the largest multiparametric breast MRI dataset, involving 5,205 patients from three hospitals in the north, southeast, and southwest of China, for the development and extensive evaluation of our model. MOME demonstrated accurate and robust identification of breast cancer. It achieved comparable performance for malignancy recognition to that of four senior radiologists and significantly outperformed a junior radiologist, with 0.913 AUROC, 0.948 AUPRC, 0.905 F1 score, and 0.723 MCC. Our findings suggest that MOME could reduce the need for biopsies in BI-RADS 4 patients with a ratio of 7.3%, classify triple-negative breast cancer with an AUROC of 0.709, and predict pathological complete response to neoadjuvant chemotherapy with an AUROC of 0.694. The model further supports scalable and interpretable inference, adapting to missing modalities and providing decision explanations by highlighting lesions and measuring modality contributions. MOME exemplifies a discriminative, robust, scalable, and interpretable multimodal model, paving the way for noninvasive, personalized management of breast cancer patients based on multiparametric breast imaging data.
comment: 27 pages, 8 figures, 10 tables
Graphics 2
☆ AMG: Avatar Motion Guided Video Generation
Human video generation task has gained significant attention with the advancement of deep generative models. Generating realistic videos with human movements is challenging in nature, due to the intricacies of human body topology and sensitivity to visual artifacts. The extensively studied 2D media generation methods take advantage of massive human media datasets, but struggle with 3D-aware control; whereas 3D avatar-based approaches, while offering more freedom in control, lack photorealism and cannot be harmonized seamlessly with background scene. We propose AMG, a method that combines the 2D photorealism and 3D controllability by conditioning video diffusion models on controlled rendering of 3D avatars. We additionally introduce a novel data processing pipeline that reconstructs and renders human avatar movements from dynamic camera videos. AMG is the first method that enables multi-person diffusion video generation with precise control over camera positions, human motions, and background style. We also demonstrate through extensive evaluation that it outperforms existing human video generation methods conditioned on pose sequences or driving videos in terms of realism and adaptability.
comment: The project page is at https://github.com/zshyang/amg
☆ DiffCSG: Differentiable CSG via Rasterization
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requires that each scene parameter relates to pixel values through differentiable operations. While 3D mesh rendering algorithms have been implemented in a differentiable way, these algorithms do not directly extend to Constructive-Solid-Geometry (CSG), a popular parametric representation of shapes, because the underlying boolean operations are typically performed with complex black-box mesh-processing libraries. We present an algorithm, DiffCSG, to render CSG models in a differentiable manner. Our algorithm builds upon CSG rasterization, which displays the result of boolean operations between primitives without explicitly computing the resulting mesh and, as such, bypasses black-box mesh processing. We describe how to implement CSG rasterization within a differentiable rendering pipeline, taking special care to apply antialiasing along primitive intersections to obtain gradients in such critical areas. Our algorithm is simple and fast, can be easily incorporated into modern machine learning setups, and enables a range of applications for computer-aided design, including direct and image-based editing of CSG primitives. Code and data: https://yyyyyhc.github.io/DiffCSG/.
Robotics 20
Detection, Recognition and Pose Estimation of Tabletop Objects
The problem of cleaning a messy table using Deep Neural Networks is a very interesting problem in both social and industrial robotics. This project focuses on the social application of this technology. A neural network model that is capable of detecting and recognizing common tabletop objects, such as a mug, mouse, or stapler is developed. The model also predicts the angle at which these objects are placed on a table,with respect to some reference. Assuming each object has a fixed intended position and orientation on the tabletop, the orientation of a particular object predicted by the deep learning model can be used to compute the transformation matrix to move the object from its initial position to the intended position. This can be fed to a pick and place robot to carry out the transfer.This paper talks about the deep learning approaches used in this project for object detection and orientation estimation.
☆ Kinematics & Dynamics Library for Baxter Arm
The Baxter robot is a standard research platform used widely in research tasks, supported with an SDK provided by the developers, Rethink Robotics. Despite the ubiquitous use of the robot, the official software support is sub-standard. Especially, the native IK service has a low success rate and is often inconsistent. This unreliable behavior makes Baxter difficult to use for experiments and the research community is in need of a more reliable software support to control the robot. We present our work towards creating a Python based software library supporting the kinematics and dynamics of the Baxter robot. Our toolbox contains implementation of pose and velocity kinematics with support for Jacobian operations for redundancy resolution. We present the implementation and performance of our library, along with a comparison with PyKDL. Keywords- Baxter Research Robot, Manipulator Kinematics, Iterative IK, Dynamical Model, Redundant Manipulator
☆ Vehicle-to-Everything (V2X) Communication: A Roadside Unit for Adaptive Intersection Control of Autonomous Electric Vehicles
Recent advances in autonomous vehicle technologies and cellular network speeds motivate developments in vehicle-to-everything (V2X) communications. Enhanced road safety features and improved fuel efficiency are some of the motivations behind V2X for future transportation systems. Adaptive intersection control systems have considerable potential to achieve these goals by minimizing idle times and predicting short-term future traffic conditions. Integrating V2X into traffic management systems introduces the infrastructure necessary to make roads safer for all users and initiates the shift towards more intelligent and connected cities. To demonstrate our solution, we implement both a simulated and real-world representation of a 4-way intersection and crosswalk scenario with 2 self-driving electric vehicles, a roadside unit (RSU), and traffic light. Our architecture minimizes fuel consumption through intersections by reducing acceleration and braking by up to 75.35%. We implement a cost-effective solution to intelligent and connected intersection control to serve as a proof-of-concept model suitable as the basis for continued research and development. Code for this project is available at https://github.com/MMachado05/REU-2024.
comment: Supported by the National Science Foundation under Grants No. 2150292 and 2150096
☆ Automated Cinematography Motion Planning for UAVs
This project aimed to develop an automated cinematography platform using an unmanned aerial vehicle. Quadcopters are a great platform for shooting aerial scenes but are difficult to maneuver smoothly and can require expertise to pilot. We aim to design an algorithm to enable automated cinematography of a desired object of interest. Given the location of an object and other obstacles in the environment, the drone is able to plan its trajectory while simultaneously keeping the desired object in the video frame and avoiding obstacles. The high maneuverability of quadcopter platforms coupled with the desire for smooth movement and stability from camera platforms means a robust motion planning algorithm must be developed which can take advantage of the quadcopter's abilities while creating motion paths which satisfy the ultimate goal of capturing aerial video. This project aims to research, develop, simulate, and test such an algorithm.
Dynamic Subgoal based Path Formation and Task Allocation: A NeuroFleets Approach to Scalable Swarm Robotics
This paper addresses the challenges of exploration and navigation in unknown environments from the perspective of evolutionary swarm robotics. A key focus is on path formation, which is essential for enabling cooperative swarm robots to navigate effectively. We designed the task allocation and path formation process based on a finite state machine, ensuring systematic decision-making and efficient state transitions. The approach is decentralized, allowing each robot to make decisions independently based on local information, which enhances scalability and robustness. We present a novel subgoal-based path formation method that establishes paths between locations by leveraging visually connected subgoals. Simulation experiments conducted in the Argos simulator show that this method successfully forms paths in the majority of trials. However, inter-collision (traffic) among numerous robots during path formation can negatively impact performance. To address this issue, we propose a task allocation strategy that uses local communication protocols and light signal-based communication to manage robot deployment. This strategy assesses the distance between points and determines the optimal number of robots needed for the path formation task, thereby reducing unnecessary exploration and traffic congestion. The performance of both the subgoal-based path formation method and the task allocation strategy is evaluated by comparing the path length, time, and resource usage against the A* algorithm. Simulation results demonstrate the effectiveness of our approach, highlighting its scalability, robustness, and fault tolerance.
comment: arXiv admin note: text overlap with arXiv:2312.16606
DSLO: Deep Sequence LiDAR Odometry Based on Inconsistent Spatio-temporal Propagation IROS 2024
This paper introduces a 3D point cloud sequence learning model based on inconsistent spatio-temporal propagation for LiDAR odometry, termed DSLO. It consists of a pyramid structure with a spatial information reuse strategy, a sequential pose initialization module, a gated hierarchical pose refinement module, and a temporal feature propagation module. First, spatial features are encoded using a point feature pyramid, with features reused in successive pose estimations to reduce computational overhead. Second, a sequential pose initialization method is introduced, leveraging the high-frequency sampling characteristic of LiDAR to initialize the LiDAR pose. Then, a gated hierarchical pose refinement mechanism refines poses from coarse to fine by selectively retaining or discarding motion information from different layers based on gate estimations. Finally, temporal feature propagation is proposed to incorporate the historical motion information from point cloud sequences, and address the spatial inconsistency issue when transmitting motion information embedded in point clouds between frames. Experimental results on the KITTI odometry dataset and Argoverse dataset demonstrate that DSLO outperforms state-of-the-art methods, achieving at least a 15.67\% improvement on RTE and a 12.64\% improvement on RRE, while also achieving a 34.69\% reduction in runtime compared to baseline methods. Our implementation will be available at https://github.com/IRMVLab/DSLO.
comment: 6 pages, 5 figures, accepted by IROS 2024
☆ Antagonist Inhibition Control in Redundant Tendon-driven Structures Based on Human Reciprocal Innervation for Wide Range Limb Motion of Musculoskeletal Humanoids
The body structure of an anatomically correct tendon-driven musculoskeletal humanoid is complex, and the difference between its geometric model and the actual robot is very large because expressing the complex routes of tendon wires in a geometric model is very difficult. If we move a tendon-driven musculoskeletal humanoid by the tendon wire lengths of the geometric model, unintended muscle tension and slack will emerge. In some cases, this can lead to the wreckage of the actual robot. To solve this problem, we focused on reciprocal innervation in the human nervous system, and then implemented antagonist inhibition control (AIC) based on the reflex. This control makes it possible to avoid unnecessary internal muscle tension and slack of tendon wires caused by model error, and to perform wide range motion safely for a long time. To verify its effectiveness, we applied AIC to the upper limb of the tendon-driven musculoskeletal humanoid, Kengoro, and succeeded in dangling for 14 minutes and doing pull-ups.
comment: Accepted at IEEE Robotics and Automation Letters
☆ Automatic Grouping of Redundant Sensors and Actuators Using Functional and Spatial Connections: Application to Muscle Grouping for Musculoskeletal Humanoids
For a robot with redundant sensors and actuators distributed throughout its body, it is difficult to construct a controller or a neural network using all of them due to computational cost and complexity. Therefore, it is effective to extract functionally related sensors and actuators, group them, and construct a controller or a network for each of these groups. In this study, the functional and spatial connections among sensors and actuators are embedded into a graph structure and a method for automatic grouping is developed. Taking a musculoskeletal humanoid with a large number of redundant muscles as an example, this method automatically divides all the muscles into regions such as the forearm, upper arm, scapula, neck, etc., which has been done by humans based on a geometric model. The functional relationship among the muscles and the spatial relationship of the neural connections are calculated without a geometric model.
comment: Accepted at IEEE Robotics and Automation Letters
☆ Learning to Singulate Objects in Packed Environments using a Dexterous Hand
Robotic object singulation, where a robot must isolate, grasp, and retrieve a target object in a cluttered environment, is a fundamental challenge in robotic manipulation. This task is difficult due to occlusions and how other objects act as obstacles for manipulation. A robot must also reason about the effect of object-object interactions as it tries to singulate the target. Prior work has explored object singulation in scenarios where there is enough free space to perform relatively long pushes to separate objects, in contrast to when space is tight and objects have little separation from each other. In this paper, we propose the Singulating Objects in Packed Environments (SOPE) framework. We propose a novel method that involves a displacement-based state representation and a multi-phase reinforcement learning procedure that enables singulation using the 16-DOF Allegro Hand. We demonstrate extensive experiments in Isaac Gym simulation, showing the ability of our system to singulate a target object in clutter. We directly transfer the policy trained in simulation to the real world. Over 250 physical robot manipulation trials, our method obtains success rates of 79.2%, outperforming alternative learning and non-learning methods.
☆ Deep Probabilistic Traversability with Test-time Adaptation for Uncertainty-aware Planetary Rover Navigation
Traversability assessment of deformable terrain is vital for safe rover navigation on planetary surfaces. Machine learning (ML) is a powerful tool for traversability prediction but faces predictive uncertainty. This uncertainty leads to prediction errors, increasing the risk of wheel slips and immobilization for planetary rovers. To address this issue, we integrate principal approaches to uncertainty handling -- quantification, exploitation, and adaptation -- into a single learning and planning framework for rover navigation. The key concept is \emph{deep probabilistic traversability}, forming the basis of an end-to-end probabilistic ML model that predicts slip distributions directly from rover traverse observations. This probabilistic model quantifies uncertainties in slip prediction and exploits them as traversability costs in path planning. Its end-to-end nature also allows adaptation of pre-trained models with in-situ traverse experience to reduce uncertainties. We perform extensive simulations in synthetic environments that pose representative uncertainties in planetary analog terrains. Experimental results show that our method achieves more robust path planning under novel environmental conditions than existing approaches.
comment: 8 pages, 4 figures. Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ Incorporating General Contact Surfaces in the Kinematics of Tendon-Driven Rolling-Contact Joint Mechanisms
This paper presents the first kinematic modeling of tendon-driven rolling-contact joint mechanisms with general contact surfaces subject to external loads. We derived the kinematics as a set of recursive equations and developed efficient iterative algorithms to solve for both tendon force actuation and tendon displacement actuation. The configuration predictions of the kinematics were experimentally validated using a prototype mechanism. Our MATLAB implementation of the proposed kinematic is available at https://github.com/hjhdog1/RollingJoint.
comment: 10 pages, 13 figures
☆ Online Temporal Fusion for Vectorized Map Construction in Mapless Autonomous Driving
To reduce the reliance on high-definition (HD) maps, a growing trend in autonomous driving is leveraging on-board sensors to generate vectorized maps online. However, current methods are mostly constrained by processing only single-frame inputs, which hampers their robustness and effectiveness in complex scenarios. To overcome this problem, we propose an online map construction system that exploits the long-term temporal information to build a consistent vectorized map. First, the system efficiently fuses all historical road marking detections from an off-the-shelf network into a semantic voxel map, which is implemented using a hashing-based strategy to exploit the sparsity of road elements. Then reliable voxels are found by examining the fused information and incrementally clustered into an instance-level representation of road markings. Finally, the system incorporates domain knowledge to estimate the geometric and topological structures of roads, which can be directly consumed by the planning and control (PnC) module. Through experiments conducted in complicated urban environments, we have demonstrated that the output of our system is more consistent and accurate than the network output by a large margin and can be effectively used in a closed-loop autonomous driving system.
comment: 8 pages, 9 figures
☆ Diffusion Policy Policy Optimization
We introduce Diffusion Policy Policy Optimization, DPPO, an algorithmic framework including best practices for fine-tuning diffusion-based policies (e.g. Diffusion Policy) in continuous control and robot learning tasks using the policy gradient (PG) method from reinforcement learning (RL). PG methods are ubiquitous in training RL policies with other policy parameterizations; nevertheless, they had been conjectured to be less efficient for diffusion-based policies. Surprisingly, we show that DPPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks compared to other RL methods for diffusion-based policies and also compared to PG fine-tuning of other policy parameterizations. Through experimental investigation, we find that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization, leading to structured and on-manifold exploration, stable training, and strong policy robustness. We further demonstrate the strengths of DPPO in a range of realistic settings, including simulated robotic tasks with pixel observations, and via zero-shot deployment of simulation-trained policies on robot hardware in a long-horizon, multi-stage manipulation task. Website with code: diffusion-ppo.github.io
comment: Website: diffusion-ppo.github.io
☆ The Persistent Robot Charging Problem for Long-Duration Autonomy
This paper introduces a novel formulation aimed at determining the optimal schedule for recharging a fleet of $n$ heterogeneous robots, with the primary objective of minimizing resource utilization. This study provides a foundational framework applicable to Multi-Robot Mission Planning, particularly in scenarios demanding Long-Duration Autonomy (LDA) or other contexts that necessitate periodic recharging of multiple robots. A novel Integer Linear Programming (ILP) model is proposed to calculate the optimal initial conditions (partial charge) for individual robots, leading to the minimal utilization of charging stations. This formulation was further generalized to maximize the servicing time for robots given adequate charging stations. The efficacy of the proposed formulation is evaluated through a comparative analysis, measuring its performance against the thrift price scheduling algorithm documented in the existing literature. The findings not only validate the effectiveness of the proposed approach but also underscore its potential as a valuable tool in optimizing resource allocation for a range of robotic and engineering applications.
♻ ☆ AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
comment: 9 pages, 20 figures
♻ ☆ Surgical-VQLA++: Adversarial Contrastive Learning for Calibrated Robust Visual Question-Localized Answering in Robotic Surgery
Medical visual question answering (VQA) bridges the gap between visual information and clinical decision-making, enabling doctors to extract understanding from clinical images and videos. In particular, surgical VQA can enhance the interpretation of surgical data, aiding in accurate diagnoses, effective education, and clinical interventions. However, the inability of VQA models to visually indicate the regions of interest corresponding to the given questions results in incomplete comprehension of the surgical scene. To tackle this, we propose the surgical visual question localized-answering (VQLA) for precise and context-aware responses to specific queries regarding surgical images. Furthermore, to address the strong demand for safety in surgical scenarios and potential corruptions in image acquisition and transmission, we propose a novel approach called Calibrated Co-Attention Gated Vision-Language (C$^2$G-ViL) embedding to integrate and align multimodal information effectively. Additionally, we leverage the adversarial sample-based contrastive learning strategy to boost our performance and robustness. We also extend our EndoVis-18-VQLA and EndoVis-17-VQLA datasets to broaden the scope and application of our data. Extensive experiments on the aforementioned datasets demonstrate the remarkable performance and robustness of our solution. Our solution can effectively combat real-world image corruption. Thus, our proposed approach can serve as an effective tool for assisting surgical education, patient care, and enhancing surgical outcomes.
comment: Accepted by Information Fusion. Code and data availability: https://github.com/longbai1006/Surgical-VQLAPlus
♻ ☆ CTS: Concurrent Teacher-Student Reinforcement Learning for Legged Locomotion
Thanks to recent explosive developments of data-driven learning methodologies, reinforcement learning (RL) emerges as a promising solution to address the legged locomotion problem in robotics. In this paper, we propose CTS, a novel Concurrent Teacher-Student reinforcement learning architecture for legged locomotion over uneven terrains. Different from conventional teacher-student architecture that trains the teacher policy via RL first and then transfers the knowledge to the student policy through supervised learning, our proposed architecture trains teacher and student policy networks concurrently under the reinforcement learning paradigm. To this end, we develop a new training scheme based on a modified proximal policy gradient (PPO) method that exploits data samples collected from the interactions between both the teacher and the student policies with the environment. The effectiveness of the proposed architecture and the new training scheme is demonstrated through substantial quantitative simulation comparisons with the state-of-the-art approaches and extensive indoor and outdoor experiments with quadrupedal and point-foot bipedal robot platforms, showcasing robust and agile locomotion capability. Quantitative simulation comparisons show that our approach reduces the average velocity tracking error by up to 20% compared to the two-stage teacher-student, demonstrating significant superiority in addressing blind locomotion tasks. Videos are available at https://clearlab-sustech.github.io/concurrentTS.
♻ ☆ Bridging the Sim-to-Real Gap with Bayesian Inference
We present SIM-FSVGD for learning robot dynamics from data. As opposed to traditional methods, SIM-FSVGD leverages low-fidelity physical priors, e.g., in the form of simulators, to regularize the training of neural network models. While learning accurate dynamics already in the low data regime, SIM-FSVGD scales and excels also when more data is available. We empirically show that learning with implicit physical priors results in accurate mean model estimation as well as precise uncertainty quantification. We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system. Using model-based RL, we demonstrate a highly dynamic parking maneuver with drifting, using less than half the data compared to the state of the art.
♻ ☆ NEDS-SLAM: A Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting
We propose NEDS-SLAM, a dense semantic SLAM system based on 3D Gaussian representation, that enables robust 3D semantic mapping, accurate camera tracking, and high-quality rendering in real-time. In the system, we propose a Spatially Consistent Feature Fusion model to reduce the effect of erroneous estimates from pre-trained segmentation head on semantic reconstruction, achieving robust 3D semantic Gaussian mapping. Additionally, we employ a lightweight encoder-decoder to compress the high-dimensional semantic features into a compact 3D Gaussian representation, mitigating the burden of excessive memory consumption. Furthermore, we leverage the advantage of 3D Gaussian splatting, which enables efficient and differentiable novel view rendering, and propose a Virtual Camera View Pruning method to eliminate outlier gaussians, thereby effectively enhancing the quality of scene representations. Our NEDS-SLAM method demonstrates competitive performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in 3D dense semantic mapping.
comment: accepted by RA-L, IEEE Robotics and Automation Letters
♻ ☆ Parallel Distributional Deep Reinforcement Learning for Mapless Navigation of Terrestrial Mobile Robots
This paper introduces novel deep reinforcement learning (Deep-RL) techniques using parallel distributional actor-critic networks for navigating terrestrial mobile robots. Our approaches use laser range findings, relative distance, and angle to the target to guide the robot. We trained agents in the Gazebo simulator and deployed them in real scenarios. Results show that parallel distributional Deep-RL algorithms enhance decision-making and outperform non-distributional and behavior-based approaches in navigation and spatial generalization.
comment: Paper accepted at the 24th International Conference on Control, Automation and Systems (ICCAS)
Computer Vision 22
♻ ☆ Generic Objects as Pose Probes for Few-Shot View Synthesis
Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction, while they require a substantial number of posed images as inputs. COLMAP is frequently employed for preprocessing to estimate poses, while it necessitates a large number of feature matches to operate effectively, and it struggles with scenes characterized by sparse features, large baselines between images, or a limited number of input images. We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images. Traditional methods often use calibration boards but they are not common in images. We propose a novel idea of utilizing everyday objects, commonly found in both images and real life, as "pose probes". The probe object is automatically segmented by SAM, whose shape is initialized from a cube. We apply a dual-branch volume rendering optimization (object NeRF and scene NeRF) to constrain the pose optimization and jointly refine the geometry. Specifically, object poses of two views are first estimated by PnP matching in an SDF representation, which serves as initial poses. PnP matching, requiring only a few features, is suitable for feature-sparse scenes. Additional views are incrementally incorporated to refine poses from preceding views. In experiments, PoseProbe achieves state-of-the-art performance in both pose estimation and novel view synthesis across multiple datasets. We demonstrate its effectiveness, particularly in few-view and large-baseline scenes where COLMAP struggles. In ablations, using different objects in a scene yields comparable performance. Our project page is available at: \href{https://zhirui-gao.github.io/PoseProbe.github.io/}{this https URL}
♻ ☆ U-BEV: Height-aware Bird's-Eye-View Segmentation and Neural Map-based Relocalization
Efficient relocalization is essential for intelligent vehicles when GPS reception is insufficient or sensor-based localization fails. Recent advances in Bird's-Eye-View (BEV) segmentation allow for accurate estimation of local scene appearance and in turn, can benefit the relocalization of the vehicle. However, one downside of BEV methods is the heavy computation required to leverage the geometric constraints. This paper presents U-BEV, a U-Net inspired architecture that extends the current state-of-the-art by allowing the BEV to reason about the scene on multiple height layers before flattening the BEV features. We show that this extension boosts the performance of the U-BEV by up to 4.11 IoU. Additionally, we combine the encoded neural BEV with a differentiable template matcher to perform relocalization on neural SD-map data. The model is fully end-to-end trainable and outperforms transformer-based BEV methods of similar computational complexity by 1.7 to 2.8 mIoU and BEV-based relocalization by over 26% Recall Accuracy on the nuScenes dataset.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ REBEL: Reinforcement Learning via Regressing Relative Rewards
While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications, including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping), and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a minimalist RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the relative reward between two completions to a prompt in terms of the policy, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and be extended to handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler to implement and more computationally efficient than PPO. When fine-tuning Llama-3-8B-Instruct, REBEL achieves strong performance in AlpacaEval 2.0, MT-Bench, and Open LLM Leaderboard.
comment: New experimental results on general chat
♻ ☆ GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
comment: Submitted to TPAMI 2024
♻ ☆ Exploring Driving Behavior for Autonomous Vehicles Based on Gramian Angular Field Vision Transformer
Effective classification of autonomous vehicle (AV) driving behavior emerges as a critical area for diagnosing AV operation faults, enhancing autonomous driving algorithms, and reducing accident rates. This paper presents the Gramian Angular Field Vision Transformer (GAF-ViT) model, designed to analyze AV driving behavior. The proposed GAF-ViT model consists of three key components: GAF Transformer Module, Channel Attention Module, and Multi-Channel ViT Module. These modules collectively convert representative sequences of multivariate behavior into multi-channel images and employ image recognition techniques for behavior classification. A channel attention mechanism is applied to multi-channel images to discern the impact of various driving behavior features. Experimental evaluation on the Waymo Open Dataset of trajectories demonstrates that the proposed model achieves state-of-the-art performance. Furthermore, an ablation study effectively substantiates the efficacy of individual modules within the model.
♻ ☆ Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models
Recent advancements in general-purpose or domain-specific multimodal large language models (LLMs) have witnessed remarkable progress for medical decision-making. However, they are designated for specific classification or generative tasks, and require model training or finetuning on large-scale datasets with sizeable parameters and tremendous computing, hindering their clinical utility across diverse resource-constrained scenarios in practice. In this paper, we propose a novel and lightweight framework Med-MoE (Mixture-of-Experts) that tackles both discriminative and generative multimodal medical tasks. The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning. After aligning multimodal medical images with LLM tokens, we then enable the model for different multimodal medical tasks with instruction tuning, together with a trainable router tailored for expert selection across input modalities. Finally, the model is tuned by integrating the router with multiple domain-specific experts, which are selectively activated and further empowered by meta expert. Comprehensive experiments on both open- and close-end medical question answering (Med-VQA) and image classification tasks across datasets such as VQA-RAD, SLAKE and Path-VQA demonstrate that our model can achieve performance superior to or on par with state-of-the-art baselines, while only requiring approximately 30\%-50\% of activated model parameters. Extensive analysis and ablations corroborate the effectiveness and practical utility of our method.
♻ ☆ T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
♻ ☆ Surgical-VQLA++: Adversarial Contrastive Learning for Calibrated Robust Visual Question-Localized Answering in Robotic Surgery
Medical visual question answering (VQA) bridges the gap between visual information and clinical decision-making, enabling doctors to extract understanding from clinical images and videos. In particular, surgical VQA can enhance the interpretation of surgical data, aiding in accurate diagnoses, effective education, and clinical interventions. However, the inability of VQA models to visually indicate the regions of interest corresponding to the given questions results in incomplete comprehension of the surgical scene. To tackle this, we propose the surgical visual question localized-answering (VQLA) for precise and context-aware responses to specific queries regarding surgical images. Furthermore, to address the strong demand for safety in surgical scenarios and potential corruptions in image acquisition and transmission, we propose a novel approach called Calibrated Co-Attention Gated Vision-Language (C$^2$G-ViL) embedding to integrate and align multimodal information effectively. Additionally, we leverage the adversarial sample-based contrastive learning strategy to boost our performance and robustness. We also extend our EndoVis-18-VQLA and EndoVis-17-VQLA datasets to broaden the scope and application of our data. Extensive experiments on the aforementioned datasets demonstrate the remarkable performance and robustness of our solution. Our solution can effectively combat real-world image corruption. Thus, our proposed approach can serve as an effective tool for assisting surgical education, patient care, and enhancing surgical outcomes.
comment: Accepted by Information Fusion. Code and data availability: https://github.com/longbai1006/Surgical-VQLAPlus
♻ ☆ CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
To improve logical anomaly detection, some previous works have integrated segmentation techniques with conventional anomaly detection methods. Although these methods are effective, they frequently lead to unsatisfactory segmentation results and require manual annotations. To address these drawbacks, we develop an unsupervised component segmentation technique that leverages foundation models to autonomously generate training labels for a lightweight segmentation network without human labeling. Integrating this new segmentation technique with our proposed Patch Histogram module and the Local-Global Student-Teacher (LGST) module, we achieve a detection AUROC of 95.3% in the MVTec LOCO AD dataset, which surpasses previous SOTA methods. Furthermore, our proposed method provides lower latency and higher throughput than most existing approaches.
♻ ☆ Quantum Implicit Neural Representations
Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds. This approach aims to utilize neural networks to parameterize the implicit function of the signal. However, when representing implicit functions, traditional neural networks such as ReLU-based multilayer perceptrons face challenges in accurately modeling high-frequency components of signals. Recent research has begun to explore the use of Fourier Neural Networks (FNNs) to overcome this limitation. In this paper, we propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs. Furthermore, through theoretical analysis, we demonstrate that QIREN possesses a quantum advantage over classical FNNs. Lastly, we conducted experiments in signal representation, image superresolution, and image generation tasks to show the superior performance of QIREN compared to state-of-the-art (SOTA) models. Our work not only incorporates quantum advantages into implicit neural representations but also uncovers a promising application direction for Quantum Neural Networks.
comment: This paper was accepted by icml 2024
♻ ☆ Pensieve: Retrospect-then-Compare Mitigates Visual Hallucination
Multi-modal Large Language Models (MLLMs) demonstrate remarkable success across various vision-language tasks. However, they suffer from visual hallucination, where the generated responses diverge from the provided image. Are MLLMs oblivious to the accurate visual cues when they hallucinate? Our investigation reveals that the visual branch may equally advocate both accurate and erroneous content. To address this issue, we propose Pensieve, a training-free method that leverages the analogous visual hallucinations, which are induced by images sharing common semantic and appearance characteristics, to mitigate hallucination. Specifically, Pensieve enables MLLMs to retrospect relevant images as references and compare their visual content with the test image via confidence score subtraction. Moreover, our paradigm balances the effects of addressing errors from both the visual and textual branches by adaptively scaling the subtracted scores. Experiments on Whoops, LLaVA Bench, POPE, and MME demonstrate the efficacy of Pensieve in mitigating visual hallucination, surpassing other advanced decoding strategies. Pensieve also aids MLLMs in identifying visual details and enhance the specificity of generated image descriptions.
♻ ☆ Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
♻ ☆ MBSS-T1: Model-Based Self-Supervised Motion Correction for Robust Cardiac T1 Mapping
T1 mapping is a valuable quantitative MRI technique for diagnosing diffuse myocardial diseases. Traditional methods, relying on breath-hold sequences and echo triggering, face challenges with patient compliance and arrhythmias, limiting their effectiveness. Image registration can enable motion-robust T1 mapping, but inherent intensity differences between time points pose a challenge. We introduce MBSS-T1, a self-supervised model for motion correction in cardiac T1 mapping, constrained by physical and anatomical principles. The physical constraints ensure expected signal decay behavior, while the anatomical constraints maintain realistic deformations. The unique combination of these constraints ensures accurate T1 mapping along the longitudinal relaxation axis. MBSS-T1 outperformed baseline deep-learning-based image registration approaches in a 5-fold experiment on a public dataset of 210 patients (STONE sequence) and an internal dataset of 19 patients (MOLLI sequence). MBSS-T1 excelled in model fitting quality ($R^2$: 0.975 vs. 0.941, 0.946), anatomical alignment (Dice score: 0.89 vs. 0.84, 0.88), and expert visual quality assessment for the presence of visible motion artifacts (4.33 vs. 3.38, 3.66). MBSS-T1 has the potential to enable motion-robust T1 mapping for a broader range of patients, overcoming challenges such as arrhythmias and suboptimal compliance, and allowing for free-breathing T1 mapping without requiring large training datasets. Our code will be publicly available upon acceptance.
♻ ☆ Achieving Resolution-Agnostic DNN-based Image Watermarking: A Novel Perspective of Implicit Neural Representation ACM MM'24
DNN-based watermarking methods are rapidly developing and delivering impressive performances. Recent advances achieve resolution-agnostic image watermarking by reducing the variant resolution watermarking problem to a fixed resolution watermarking problem. However, such a reduction process can potentially introduce artifacts and low robustness. To address this issue, we propose the first, to the best of our knowledge, Resolution-Agnostic Image WaterMarking (RAIMark) framework by watermarking the implicit neural representation (INR) of image. Unlike previous methods, our method does not rely on the previous reduction process by directly watermarking the continuous signal instead of image pixels, thus achieving resolution-agnostic watermarking. Precisely, given an arbitrary-resolution image, we fit an INR for the target image. As a continuous signal, such an INR can be sampled to obtain images with variant resolutions. Then, we quickly fine-tune the fitted INR to get a watermarked INR conditioned on a binary secret message. A pre-trained watermark decoder extracts the hidden message from any sampled images with arbitrary resolutions. By directly watermarking INR, we achieve resolution-agnostic watermarking with increased robustness. Extensive experiments show that our method outperforms previous methods with significant improvements: averagely improved bit accuracy by 7%$\sim$29%. Notably, we observe that previous methods are vulnerable to at least one watermarking attack (e.g. JPEG, crop, resize), while ours are robust against all watermarking attacks.
comment: Accepted by ACM MM'24
♻ ☆ NEDS-SLAM: A Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting
We propose NEDS-SLAM, a dense semantic SLAM system based on 3D Gaussian representation, that enables robust 3D semantic mapping, accurate camera tracking, and high-quality rendering in real-time. In the system, we propose a Spatially Consistent Feature Fusion model to reduce the effect of erroneous estimates from pre-trained segmentation head on semantic reconstruction, achieving robust 3D semantic Gaussian mapping. Additionally, we employ a lightweight encoder-decoder to compress the high-dimensional semantic features into a compact 3D Gaussian representation, mitigating the burden of excessive memory consumption. Furthermore, we leverage the advantage of 3D Gaussian splatting, which enables efficient and differentiable novel view rendering, and propose a Virtual Camera View Pruning method to eliminate outlier gaussians, thereby effectively enhancing the quality of scene representations. Our NEDS-SLAM method demonstrates competitive performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in 3D dense semantic mapping.
comment: accepted by RA-L, IEEE Robotics and Automation Letters
♻ ☆ CRS-Diff: Controllable Remote Sensing Image Generation with Diffusion Model
The emergence of generative models has revolutionized the field of remote sensing (RS) image generation. Despite generating high-quality images, existing methods are limited in relying mainly on text control conditions, and thus do not always generate images accurately and stably. In this paper, we propose CRS-Diff, a new RS generative framework specifically tailored for RS image generation, leveraging the inherent advantages of diffusion models while integrating more advanced control mechanisms. Specifically, CRS-Diff can simultaneously support text-condition, metadata-condition, and image-condition control inputs, thus enabling more precise control to refine the generation process. To effectively integrate multiple condition control information, we introduce a new conditional control mechanism to achieve multi-scale feature fusion, thus enhancing the guiding effect of control conditions. To our knowledge, CRS-Diff is the first multiple-condition controllable RS generative model. Experimental results in single-condition and multiple-condition cases have demonstrated the superior ability of our CRS-Diff to generate RS images both quantitatively and qualitatively compared with previous methods. Additionally, our CRS-Diff can serve as a data engine that generates high-quality training data for downstream tasks, e.g., road extraction. The code is available at https://github.com/Sonettoo/CRS-Diff.
♻ ☆ Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation
Generative Neural Radiance Fields (GNeRF)-based 3D-aware GANs have showcased remarkable prowess in crafting high-fidelity images while upholding robust 3D consistency, particularly face generation. However, specific existing models prioritize view consistency over disentanglement, leading to constrained semantic or attribute control during the generation process. While many methods have explored incorporating semantic masks or leveraging 3D Morphable Models (3DMM) priors to imbue models with semantic control, these methods often demand training from scratch, entailing significant computational overhead. In this paper, we propose a novel approach: a conditional GNeRF model that integrates specific attribute labels as input, thus amplifying the controllability and disentanglement capabilities of 3D-aware generative models. Our approach builds upon a pre-trained 3D-aware face model, and we introduce a Training as Init and Optimizing for Tuning (TRIOT) method to train a conditional normalized flow module to enable the facial attribute editing, then optimize the latent vector to improve attribute-editing precision further. Our extensive experiments substantiate the efficacy of our model, showcasing its ability to generate high-quality edits with enhanced view consistency while safeguarding non-target regions. The code for our model is publicly available at https://github.com/zhangqianhui/TT-GNeRF.
comment: 14 pages
♻ ☆ ICAL: Implicit Character-Aided Learning for Enhanced Handwritten Mathematical Expression Recognition ICDAR 2024
Significant progress has been made in the field of handwritten mathematical expression recognition, while existing encoder-decoder methods are usually difficult to model global information in $LaTeX$. Therefore, this paper introduces a novel approach, Implicit Character-Aided Learning (ICAL), to mine the global expression information and enhance handwritten mathematical expression recognition. Specifically, we propose the Implicit Character Construction Module (ICCM) to predict implicit character sequences and use a Fusion Module to merge the outputs of the ICCM and the decoder, thereby producing corrected predictions. By modeling and utilizing implicit character information, ICAL achieves a more accurate and context-aware interpretation of handwritten mathematical expressions. Experimental results demonstrate that ICAL notably surpasses the state-of-the-art(SOTA) models, improving the expression recognition rate (ExpRate) by 2.25\%/1.81\%/1.39\% on the CROHME 2014/2016/2019 datasets respectively, and achieves a remarkable 69.06\% on the challenging HME100k test set. We make our code available on the GitHub: https://github.com/qingzhenduyu/ICAL
comment: ICDAR 2024 Oral Paper
♻ ☆ DiffMap: Enhancing Map Segmentation with Map Prior Using Diffusion Model
Constructing high-definition (HD) maps is a crucial requirement for enabling autonomous driving. In recent years, several map segmentation algorithms have been developed to address this need, leveraging advancements in Bird's-Eye View (BEV) perception. However, existing models still encounter challenges in producing realistic and consistent semantic map layouts. One prominent issue is the limited utilization of structured priors inherent in map segmentation masks. In light of this, we propose DiffMap, a novel approach specifically designed to model the structured priors of map segmentation masks using latent diffusion model. By incorporating this technique, the performance of existing semantic segmentation methods can be significantly enhanced and certain structural errors present in the segmentation outputs can be effectively rectified. Notably, the proposed module can be seamlessly integrated into any map segmentation model, thereby augmenting its capability to accurately delineate semantic information. Furthermore, through extensive visualization analysis, our model demonstrates superior proficiency in generating results that more accurately reflect real-world map layouts, further validating its efficacy in improving the quality of the generated maps.
♻ ☆ Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer BMVC 2024
Understanding the morphological structure of medical images and precisely segmenting the region of interest or abnormality is an important task that can assist in diagnosis. However, the unique properties of medical imaging make clear segmentation difficult,and the high cost and time-consuming task of labeling leads to a coarse-grained representation of ground truth. Facing with these problems, we propose a novel Diffusion Transformer Segmentation (DTS) model for robust segmentation in the presence of noise. We propose an alternative to the dominant Denoising U-Net encoder through experiments applying a transformer architecture, which captures global dependency through self-attention. Additionally, we propose k-neighbor label smoothing, reverse boundary attention, and self-supervised learning with morphology-driven learning to improve the ability to identify complex structures. Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities, including CT, MRI, and lesion images.
comment: Accepted in BMVC 2024
♻ ☆ BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation ICRA 2023
Multi-sensor fusion is essential for an accurate and reliable autonomous driving system. Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with camera features. However, the camera-to-LiDAR projection throws away the semantic density of camera features, hindering the effectiveness of such methods, especially for semantic-oriented tasks (such as 3D scene segmentation). In this paper, we break this deeply-rooted convention with BEVFusion, an efficient and generic multi-task multi-sensor fusion framework. It unifies multi-modal features in the shared bird's-eye view (BEV) representation space, which nicely preserves both geometric and semantic information. To achieve this, we diagnose and lift key efficiency bottlenecks in the view transformation with optimized BEV pooling, reducing latency by more than 40x. BEVFusion is fundamentally task-agnostic and seamlessly supports different 3D perception tasks with almost no architectural changes. It establishes the new state of the art on nuScenes, achieving 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower computation cost. Code to reproduce our results is available at https://github.com/mit-han-lab/bevfusion.
comment: ICRA 2023. The first two authors contributed equally to this work. Project page: https://bevfusion.mit.edu
♻ ☆ PanopticPartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation ECCV 2022
Panoptic Part Segmentation (PPS) unifies panoptic and part segmentation into one task. Previous works utilize separate approaches to handle things, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework, Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we first design a meta-architecture that decouples part features and things/stuff features, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Second, we propose a new metric Part-Whole Quality (PWQ), better to measure this task from pixel-region and part-whole perspectives. It also decouples the errors for part segmentation and panoptic segmentation. Third, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross-attention scheme to boost part segmentation qualities further. We design a new part-whole interaction method using masked cross attention. Finally, extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results. Our models can serve as a strong baseline and aid future research in PPS. The source code and trained models will be available at~\url{https://github.com/lxtGH/Panoptic-PartFormer}.
comment: T-PAMI-2024, Extension of PanopticPartFormer (ECCV 2022)
Artificial Intelligence 24
♻ ☆ SFR-GNN: Simple and Fast Robust GNNs against Structural Attacks
Graph Neural Networks (GNNs) have demonstrated commendable performance for graph-structured data. Yet, GNNs are often vulnerable to adversarial structural attacks as embedding generation relies on graph topology. Existing efforts are dedicated to purifying the maliciously modified structure or applying adaptive aggregation, thereby enhancing the robustness against adversarial structural attacks. It is inevitable for a defender to consume heavy computational costs due to lacking prior knowledge about modified structures. To this end, we propose an efficient defense method, called Simple and Fast Robust Graph Neural Network (SFR-GNN), supported by mutual information theory. The SFR-GNN first pre-trains a GNN model using node attributes and then fine-tunes it over the modified graph in the manner of contrastive learning, which is free of purifying modified structures and adaptive aggregation, thus achieving great efficiency gains. Consequently, SFR-GNN exhibits a 24%--162% speedup compared to advanced robust models, demonstrating superior robustness for node classification tasks.
♻ ☆ Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion
The growing demand for road use in urban areas has led to significant traffic congestion, posing challenges that are costly to mitigate through infrastructure expansion alone. As an alternative, optimizing existing traffic management systems, particularly through adaptive traffic signal control, offers a promising solution. This paper explores the use of Reinforcement Learning (RL) to enhance traffic signal operations at intersections, aiming to reduce congestion without extensive sensor networks. We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions while following a fixed phase cycle. By representing the state as a scalar queue length, our approach simplifies the learning process and lowers deployment costs. The algorithms were tested in four distinct traffic scenarios using seven evaluation metrics to comprehensively assess performance. Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems, highlighting their potential to improve urban traffic flow efficiently.
comment: 9 pages, 8 figures, 5 tables
♻ ☆ Multi-Microphone Speech Emotion Recognition using the Hierarchical Token-semantic Audio Transformer Architecture
The performance of most emotion recognition systems degrades in real-life situations ('in the wild' scenarios) where the audio is contaminated by reverberation. Our study explores new methods to alleviate the performance degradation of SER algorithms and develop a more robust system for adverse conditions. We propose processing multi-microphone signals to address these challenges and improve emotion classification accuracy. We adopt a state-of-the-art transformer model, the HTS-AT, to handle multi-channel audio inputs. We evaluate two strategies: averaging mel-spectrograms across channels and summing patch-embedded representations. Our multi-microphone model achieves superior performance compared to single-channel baselines when tested on real-world reverberant environments.
♻ ☆ Predicting Scientific Impact Through Diffusion, Conformity, and Contribution Disentanglement CIKM24
The scientific impact of academic papers is influenced by intricate factors such as dynamic popularity and inherent contribution. Existing models typically rely on static graphs for citation count estimation, failing to differentiate among its sources. In contrast, we propose distinguishing effects derived from various factors and predicting citation increments as estimated potential impacts within the dynamic context. In this research, we introduce a novel model, DPPDCC, which Disentangles the Potential impacts of Papers into Diffusion, Conformity, and Contribution values. It encodes temporal and structural features within dynamic heterogeneous graphs derived from the citation networks and applies various auxiliary tasks for disentanglement. By emphasizing comparative and co-cited/citing information and aggregating snapshots evolutionarily, DPPDCC captures knowledge flow within the citation network. Afterwards, popularity is outlined by contrasting augmented graphs to extract the essence of citation diffusion and predicting citation accumulation bins for quantitative conformity modeling. Orthogonal constraints ensure distinct modeling of each perspective, preserving the contribution value. To gauge generalization across publication times and replicate the realistic dynamic context, we partition data based on specific time points and retain all samples without strict filtering. Extensive experiments on three datasets validate DPPDCC's superiority over baselines for papers published previously, freshly, and immediately, with further analyses confirming its robustness. Our codes and supplementary materials can be found at https://github.com/ECNU-Text-Computing/DPPDCC.
comment: Accepted by CIKM24
♻ ☆ Forecasting Live Chat Intent from Browsing History CIKM 2024
Customers reach out to online live chat agents with various intents, such as asking about product details or requesting a return. In this paper, we propose the problem of predicting user intent from browsing history and address it through a two-stage approach. The first stage classifies a user's browsing history into high-level intent categories. Here, we represent each browsing history as a text sequence of page attributes and use the ground-truth class labels to fine-tune pretrained Transformers. The second stage provides a large language model (LLM) with the browsing history and predicted intent class to generate fine-grained intents. For automatic evaluation, we use a separate LLM to judge the similarity between generated and ground-truth intents, which closely aligns with human judgments. Our two-stage approach yields significant performance gains compared to generating intents without the classification stage.
comment: CIKM 2024
♻ ☆ Visual Verity in AI-Generated Imagery: Computational Metrics and Human-Centric Analysis
The rapid advancements in AI technologies have revolutionized the production of graphical content across various sectors, including entertainment, advertising, and e-commerce. These developments have spurred the need for robust evaluation methods to assess the quality and realism of AI-generated images. To address this, we conducted three studies. First, we introduced and validated a questionnaire called Visual Verity, which measures photorealism, image quality, and text-image alignment. Second, we applied this questionnaire to assess images from AI models (DALL-E2, DALL-E3, GLIDE, Stable Diffusion) and camera-generated images, revealing that camera-generated images excelled in photorealism and text-image alignment, while AI models led in image quality. We also analyzed statistical properties, finding that camera-generated images scored lower in hue, saturation, and brightness. Third, we evaluated computational metrics' alignment with human judgments, identifying MS-SSIM and CLIP as the most consistent with human assessments. Additionally, we proposed the Neural Feature Similarity Score (NFSS) for assessing image quality. Our findings highlight the need for refining computational metrics to better capture human visual perception, thereby enhancing AI-generated content evaluation.
♻ ☆ LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to generate answers from the short retrieved units. The imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. The loss of contextual information in the short, chunked units may increase the likelihood of introducing hard negatives during the retrieval stage. Additionally, the reader might not fully leverage the capabilities of recent advancements in LLMs. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. In the two Wikipedia-based datasets, NQ and HotpotQA, LongRAG processes the entire Wikipedia corpus into 4K-token units by grouping related documents. By increasing the unit size, we significantly reduce the total number of units. This greatly reduces the burden on the retriever, resulting in strong retrieval performance with only a few (less than 8) top units. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ and 64.3% on HotpotQA, which are on par with the (fully-trained) SoTA model. Furthermore, we test on two non-Wikipedia-based datasets, Qasper and MultiFieldQA-en. LongRAG processes each individual document as a single (long) unit rather than chunking them into smaller units. By doing so, we achieve an F1 score of 25.9% on Qasper and 57.5% on MultiFieldQA-en. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.
comment: Technical Report
♻ ☆ ApisTox: a new benchmark dataset for the classification of small molecules toxicity on honey bees
The global decline in bee populations poses significant risks to agriculture, biodiversity, and environmental stability. To bridge the gap in existing data, we introduce ApisTox, a comprehensive dataset focusing on the toxicity of pesticides to honey bees (Apis mellifera). This dataset combines and leverages data from existing sources such as ECOTOX and PPDB, providing an extensive, consistent, and curated collection that surpasses the previous datasets. ApisTox incorporates a wide array of data, including toxicity levels for chemicals, details such as time of their publication in literature, and identifiers linking them to external chemical databases. This dataset may serve as an important tool for environmental and agricultural research, but also can support the development of policies and practices aimed at minimizing harm to bee populations. Finally, ApisTox offers a unique resource for benchmarking molecular property prediction methods on agrochemical compounds, facilitating advancements in both environmental science and cheminformatics. This makes it a valuable tool for both academic research and practical applications in bee conservation.
♻ ☆ T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
♻ ☆ VoiceFlow: Efficient Text-to-Speech with Rectified Flow Matching ICASSP 2024
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we propose VoiceFlow, an acoustic model that utilizes a rectified flow matching algorithm to achieve high synthesis quality with a limited number of sampling steps. VoiceFlow formulates the process of generating mel-spectrograms into an ordinary differential equation conditional on text inputs, whose vector field is then estimated. The rectified flow technique then effectively straightens its sampling trajectory for efficient synthesis. Subjective and objective evaluations on both single and multi-speaker corpora showed the superior synthesis quality of VoiceFlow compared to the diffusion counterpart. Ablation studies further verified the validity of the rectified flow technique in VoiceFlow.
comment: 4 figure, 5 pages, accepted to ICASSP 2024
♻ ☆ LoAS: Fully Temporal-Parallel Dataflow for Dual-Sparse Spiking Neural Networks MICRO 2024
Spiking Neural Networks (SNNs) have gained significant research attention in the last decade due to their potential to drive resource-constrained edge devices. Though existing SNN accelerators offer high efficiency in processing sparse spikes with dense weights, opportunities are less explored in SNNs with sparse weights, i.e., dual-sparsity. In this work, we study the acceleration of dual-sparse SNNs, focusing on their core operation, sparse-matrix-sparse-matrix multiplication (spMspM). We observe that naively running a dual-sparse SNN on existing spMspM accelerators designed for dual-sparse Artificial Neural Networks (ANNs) exhibits sub-optimal efficiency. The main challenge is that processing timesteps, a natural property of SNNs, introduces an extra loop to ANN spMspM, leading to longer latency and more memory traffic. To address the problem, we propose a fully temporal-parallel (FTP) dataflow, which minimizes both data movement across timesteps and the end-to-end latency of dual-sparse SNNs. To maximize the efficiency of FTP dataflow, we propose an FTP-friendly spike compression mechanism that efficiently compresses single-bit spikes and ensures contiguous memory access. We further propose an FTP-friendly inner-join circuit that can lower the cost of the expensive prefix-sum circuits with almost no throughput penalty. All the above techniques for FTP dataflow are encapsulated in LoAS, a Low-latency inference Accelerator for dual-sparse SNNs. With FTP dataflow, compression, and inner-join, running dual-sparse SNN workloads on LoAS demonstrates significant speedup (up to $8.51\times$) and energy reduction (up to $3.68\times$) compared to running it on prior dual-sparse accelerators.
comment: Accepted to MICRO 2024. Will update with the camera-ready version once ready. (Github: https://github.com/RuokaiYin/LoAS)
♻ ☆ Clinical Insights: A Comprehensive Review of Language Models in Medicine
This paper provides a detailed examination of the advancements and applications of large language models in the healthcare sector, with a particular emphasis on clinical applications. The study traces the evolution of LLMs from their foundational technologies to the latest developments in domain-specific models and multimodal integration. It explores the technical progression from encoder-based models requiring fine-tuning to sophisticated approaches that integrate textual, visual, and auditory data, thereby facilitating comprehensive AI solutions in healthcare. The paper discusses both the opportunities these technologies present for enhancing clinical efficiency and the challenges they pose in terms of ethics, data privacy, and implementation. Additionally, it critically evaluates the deployment strategies of LLMs, emphasizing the necessity of open-source models to ensure data privacy and adaptability within healthcare environments. Future research directions are proposed, focusing on empirical studies to evaluate the real-world efficacy of LLMs in healthcare and the development of open datasets for further research. This review aims to provide a comprehensive resource for both newcomers and multidisciplinary researchers interested in the intersection of AI and healthcare.
comment: Submitted to PLOS Digital Health
♻ ☆ A Versatile Graph Learning Approach through LLM-based Agent
Designing versatile graph learning approaches is important, considering the diverse graphs and tasks existing in real-world applications. Existing methods have attempted to achieve this target through automated machine learning techniques, pre-training and fine-tuning strategies, and large language models. However, these methods are not versatile enough for graph learning, as they work on either limited types of graphs or a single task. In this paper, we propose to explore versatile graph learning approaches with LLM-based agents, and the key insight is customizing the graph learning procedures for diverse graphs and tasks. To achieve this, we develop several LLM-based agents, equipped with diverse profiles, tools, functions and human experience. They collaborate to configure each procedure with task and data-specific settings step by step towards versatile solutions, and the proposed method is dubbed GL-Agent. By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method, especially in complex scenarios.The low resource cost and the potential to use open-source LLMs highlight the efficiency of GL-Agent.
♻ ☆ The Oscars of AI Theater: A Survey on Role-Playing with Language Models
This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at https://github.com/nuochenpku/Awesome-Role-Play-Papers.
comment: 28 pages
♻ ☆ Quantum Implicit Neural Representations
Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds. This approach aims to utilize neural networks to parameterize the implicit function of the signal. However, when representing implicit functions, traditional neural networks such as ReLU-based multilayer perceptrons face challenges in accurately modeling high-frequency components of signals. Recent research has begun to explore the use of Fourier Neural Networks (FNNs) to overcome this limitation. In this paper, we propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs. Furthermore, through theoretical analysis, we demonstrate that QIREN possesses a quantum advantage over classical FNNs. Lastly, we conducted experiments in signal representation, image superresolution, and image generation tasks to show the superior performance of QIREN compared to state-of-the-art (SOTA) models. Our work not only incorporates quantum advantages into implicit neural representations but also uncovers a promising application direction for Quantum Neural Networks.
comment: This paper was accepted by icml 2024
♻ ☆ Ex3: Automatic Novel Writing by Extracting, Excelsior and Expanding
Generating long-term texts such as novels using artificial intelligence has always been a challenge. A common approach is to use large language models (LLMs) to construct a hierarchical framework that first plans and then writes. Despite the fact that the generated novels reach a sufficient length, they exhibit poor logical coherence and appeal in their plots and deficiencies in character and event depiction, ultimately compromising the overall narrative quality. In this paper, we propose a method named Extracting Excelsior and Expanding. Ex3 initially extracts structure information from raw novel data. By combining this structure information with the novel data, an instruction-following dataset is meticulously crafted. This dataset is then utilized to fine-tune the LLM, aiming for excelsior generation performance. In the final stage, a tree-like expansion method is deployed to facilitate the generation of arbitrarily long novels. Evaluation against previous methods showcases Ex3's ability to produce higher-quality long-form novels.
♻ ☆ Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
♻ ☆ Can LLMs Understand Social Norms in Autonomous Driving Games?
Social norm is defined as a shared standard of acceptable behavior in a society. The emergence of social norms fosters coordination among agents without any hard-coded rules, which is crucial for the large-scale deployment of AVs in an intelligent transportation system. This paper explores the application of LLMs in understanding and modeling social norms in autonomous driving games. We introduce LLMs into autonomous driving games as intelligent agents who make decisions according to text prompts. These agents are referred to as LLM-based agents. Our framework involves LLM-based agents playing Markov games in a multi-agent system (MAS), allowing us to investigate the emergence of social norms among individual agents. We aim to identify social norms by designing prompts and utilizing LLMs on textual information related to the environment setup and the observations of LLM-based agents. Using the OpenAI Chat API powered by GPT-4.0, we conduct experiments to simulate interactions and evaluate the performance of LLM-based agents in two driving scenarios: unsignalized intersection and highway platoon. The results show that LLM-based agents can handle dynamically changing environments in Markov games, and social norms evolve among LLM-based agents in both scenarios. In the intersection game, LLM-based agents tend to adopt a conservative driving policy when facing a potential car crash. The advantage of LLM-based agents in games lies in their strong operability and analyzability, which facilitate experimental design.
♻ ☆ Editing Personality for Large Language Models NLPCC 2024
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs). This task seeks to adjust the models' responses to opinion-related questions on specified topics since an individual's personality often manifests in the form of their expressed opinions, thereby showcasing different personality traits. Specifically, we construct PersonalityEdit, a new benchmark dataset to address this task. Drawing on the theory in Social Psychology, we isolate three representative traits, namely Neuroticism, Extraversion, and Agreeableness, as the foundation for our benchmark. We then gather data using GPT-4, generating responses that align with a specified topic and embody the targeted personality trait. We conduct comprehensive experiments involving various baselines and discuss the representation of personality behavior in LLMs. Our findings uncover potential challenges of the proposed task, illustrating several remaining issues. We anticipate that our work can stimulate further annotation in model editing and personality-related research. Code is available at https://github.com/zjunlp/EasyEdit.
comment: NLPCC 2024
♻ ☆ Strict Partitioning for Sporadic Rigid Gang Tasks
The rigid gang task model is based on the idea of executing multiple threads simultaneously on a fixed number of processors to increase efficiency and performance. Although there is extensive literature on global rigid gang scheduling, partitioned approaches have several practical advantages (e.g., task isolation and reduced scheduling overheads). In this paper, we propose a new partitioned scheduling strategy for rigid gang tasks, named strict partitioning. The method creates disjoint partitions of tasks and processors to avoid inter-partition interference. Moreover, it tries to assign tasks with similar volumes (i.e., parallelisms) to the same partition so that the intra-partition interference can be reduced. Within each partition, the tasks can be scheduled using any type of scheduler, which allows the use of a less pessimistic schedulability test. Extensive synthetic experiments and a case study based on Edge TPU benchmarks show that strict partitioning achieves better schedulability performance than state-of-the-art global gang schedulability analyses for both preemptive and non-preemptive rigid gang task sets.
comment: Published in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2024)
♻ ☆ Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer BMVC 2024
Understanding the morphological structure of medical images and precisely segmenting the region of interest or abnormality is an important task that can assist in diagnosis. However, the unique properties of medical imaging make clear segmentation difficult,and the high cost and time-consuming task of labeling leads to a coarse-grained representation of ground truth. Facing with these problems, we propose a novel Diffusion Transformer Segmentation (DTS) model for robust segmentation in the presence of noise. We propose an alternative to the dominant Denoising U-Net encoder through experiments applying a transformer architecture, which captures global dependency through self-attention. Additionally, we propose k-neighbor label smoothing, reverse boundary attention, and self-supervised learning with morphology-driven learning to improve the ability to identify complex structures. Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities, including CT, MRI, and lesion images.
comment: Accepted in BMVC 2024
♻ ☆ BEADs: Bias Evaluation Across Domains
Recent advancements in large language models (LLMs) have greatly enhanced natural language processing (NLP) applications. Nevertheless, these models often inherit biases from their training data. Despite the availability of various datasets, most are limited to one or two NLP tasks (typically classification or evaluation) and lack comprehensive evaluations across a broader range of NLP tasks. To address this gap, we introduce the Bias Evaluations Across Domains (BEADs) dataset, designed to support a wide array of NLP tasks, including text classification, token classification, bias quantification, and benign language generation. A key focus of this paper is the gold label subset of BEADs, an important portion of the data verified by experts to ensure high reliability. BEADs provides data for both fine-tuning, including classification and language generation tasks, and for evaluating LLMs. Our findings indicate that BEADs effectively identifies numerous biases when fine-tuned on this dataset. It also reduces biases when used for fine-tuning language generation task, while preserving language quality. The results also reveal some prevalent demographic biases in LLMs when BEADs is used for evaluation in demographic task. The benchmarking results highlight the efficacy of fine-tuning LLMs for bias identification and the necessity of comprehensive bias evaluation. We make BEADs publicly available to promote more responsible AI development. The dataset can be accessed at https://huggingface.co/datasets/shainar/BEAD .
comment: under review
♻ ☆ The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aides to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist
♻ ☆ Enhancing Training Efficiency Using Packing with Flash Attention
Padding is often used in tuning LLM models by adding special tokens to shorter training examples to match the length of the longest sequence in each batch. While this ensures uniformity for batch processing, it introduces inefficiencies by including irrelevant padding tokens in the computation and wastes GPU resources. Hugging Face SFT trainer has always offered the option to use packing to combine multiple training examples, allowing for maximal utilization of GPU resources. However, up till now, it did not offer proper masking of each packed training example. This capability has been added to Hugging Face Transformers 4.44. We analyse this new feature and show the benefits across different variations of packing.
Graphics 3
☆ GroomCap: High-Fidelity Prior-Free Hair Capture SIGGRAPH
Despite recent advances in multi-view hair reconstruction, achieving strand-level precision remains a significant challenge due to inherent limitations in existing capture pipelines. We introduce GroomCap, a novel multi-view hair capture method that reconstructs faithful and high-fidelity hair geometry without relying on external data priors. To address the limitations of conventional reconstruction algorithms, we propose a neural implicit representation for hair volume that encodes high-resolution 3D orientation and occupancy from input views. This implicit hair volume is trained with a new volumetric 3D orientation rendering algorithm, coupled with 2D orientation distribution supervision, to effectively prevent the loss of structural information caused by undesired orientation blending. We further propose a Gaussian-based hair optimization strategy to refine the traced hair strands with a novel chained Gaussian representation, utilizing direct photometric supervision from images. Our results demonstrate that GroomCap is able to capture high-quality hair geometries that are not only more precise and detailed than existing methods but also versatile enough for a range of applications.
comment: Accepted by SIGGRAPH Asia 2024
☆ Curvy: A Parametric Cross-section based Surface Reconstruction
In this work, we present a novel approach for reconstructing shape point clouds using planar sparse cross-sections with the help of generative modeling. We present unique challenges pertaining to the representation and reconstruction in this problem setting. Most methods in the classical literature lack the ability to generalize based on object class and employ complex mathematical machinery to reconstruct reliable surfaces. We present a simple learnable approach to generate a large number of points from a small number of input cross-sections over a large dataset. We use a compact parametric polyline representation using adaptive splitting to represent the cross-sections and perform learning using a Graph Neural Network to reconstruct the underlying shape in an adaptive manner reducing the dependence on the number of cross-sections provided.
♻ ☆ Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation
Generative Neural Radiance Fields (GNeRF)-based 3D-aware GANs have showcased remarkable prowess in crafting high-fidelity images while upholding robust 3D consistency, particularly face generation. However, specific existing models prioritize view consistency over disentanglement, leading to constrained semantic or attribute control during the generation process. While many methods have explored incorporating semantic masks or leveraging 3D Morphable Models (3DMM) priors to imbue models with semantic control, these methods often demand training from scratch, entailing significant computational overhead. In this paper, we propose a novel approach: a conditional GNeRF model that integrates specific attribute labels as input, thus amplifying the controllability and disentanglement capabilities of 3D-aware generative models. Our approach builds upon a pre-trained 3D-aware face model, and we introduce a Training as Init and Optimizing for Tuning (TRIOT) method to train a conditional normalized flow module to enable the facial attribute editing, then optimize the latent vector to improve attribute-editing precision further. Our extensive experiments substantiate the efficacy of our model, showcasing its ability to generate high-quality edits with enhanced view consistency while safeguarding non-target regions. The code for our model is publicly available at https://github.com/zhangqianhui/TT-GNeRF.
comment: 14 pages
Robotics 14
☆ Formal Verification and Control with Conformal Prediction
In this survey, we design formal verification and control algorithms for autonomous systems with practical safety guarantees using conformal prediction (CP), a statistical tool for uncertainty quantification. We focus on learning-enabled autonomous systems (LEASs) in which the complexity of learning-enabled components (LECs) is a major bottleneck that hampers the use of existing model-based verification and design techniques. Instead, we advocate for the use of CP, and we will demonstrate its use in formal verification, systems and control theory, and robotics. We argue that CP is specifically useful due to its simplicity (easy to understand, use, and modify), generality (requires no assumptions on learned models and data distributions, i.e., is distribution-free), and efficiency (real-time capable and accurate). We pursue the following goals with this survey. First, we provide an accessible introduction to CP for non-experts who are interested in using CP to solve problems in autonomy. Second, we show how to use CP for the verification of LECs, e.g., for verifying input-output properties of neural networks. Third and fourth, we review recent articles that use CP for safe control design as well as offline and online verification of LEASs. We summarize their ideas in a unifying framework that can deal with the complexity of LEASs in a computationally efficient manner. In our exposition, we consider simple system specifications, e.g., robot navigation tasks, as well as complex specifications formulated in temporal logic formalisms. Throughout our survey, we compare to other statistical techniques (e.g., scenario optimization, PAC-Bayes theory, etc.) and how these techniques have been used in verification and control. Lastly, we point the reader to open problems and future research directions.
☆ DAP: Diffusion-based Affordance Prediction for Multi-modality Storage IROS2024
Solving storage problem: where objects must be accurately placed into containers with precise orientations and positions, presents a distinct challenge that extends beyond traditional rearrangement tasks. These challenges are primarily due to the need for fine-grained 6D manipulation and the inherent multi-modality of solution spaces, where multiple viable goal configurations exist for the same storage container. We present a novel Diffusion-based Affordance Prediction (DAP) pipeline for the multi-modal object storage problem. DAP leverages a two-step approach, initially identifying a placeable region on the container and then precisely computing the relative pose between the object and that region. Existing methods either struggle with multi-modality issues or computation-intensive training. Our experiments demonstrate DAP's superior performance and training efficiency over the current state-of-the-art RPDiff, achieving remarkable results on the RPDiff benchmark. Additionally, our experiments showcase DAP's data efficiency in real-world applications, an advancement over existing simulation-driven approaches. Our contribution fills a gap in robotic manipulation research by offering a solution that is both computationally efficient and capable of handling real-world variability. Code and supplementary material can be found at: https://github.com/changhaonan/DPS.git.
comment: Paper Accepted by IROS2024. Arxiv version is 8 pages
☆ Rapid Gyroscope Calibration: A Deep Learning Approach
Low-cost gyroscope calibration is essential for ensuring the accuracy and reliability of gyroscope measurements. Stationary calibration estimates the deterministic parts of measurement errors. To this end, a common practice is to average the gyroscope readings during a predefined period and estimate the gyroscope bias. Calibration duration plays a crucial role in performance, therefore, longer periods are preferred. However, some applications require quick startup times and calibration is therefore allowed only for a short time. In this work, we focus on reducing low-cost gyroscope calibration time using deep learning methods. We propose a deep-learning framework and explore the possibilities of using multiple real and virtual gyroscopes to improve the calibration performance of single gyroscopes. To train and validate our approach, we recorded a dataset consisting of 169 hours of gyroscope readings, using 24 gyroscopes of two different brands. We also created a virtual dataset consisting of simulated gyroscope readings. The two datasets were used to evaluate our proposed approach. One of our key achievements in this work is reducing gyroscope calibration time by up to 89% using three low-cost gyroscopes.
comment: 10 Pages, 14 Figures,
☆ UDGS-SLAM : UniDepth Assisted Gaussian Splatting for Monocular SLAM
Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM.This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATERMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.
☆ Rapid and Robust Trajectory Optimization for Humanoids
Performing trajectory design for humanoid robots with high degrees of freedom is computationally challenging. The trajectory design process also often involves carefully selecting various hyperparameters and requires a good initial guess which can further complicate the development process. This work introduces a generalized gait optimization framework that directly generates smooth and physically feasible trajectories. The proposed method demonstrates faster and more robust convergence than existing techniques and explicitly incorporates closed-loop kinematic constraints that appear in many modern humanoids. The method is implemented as an open-source C++ codebase which can be found at https://roahmlab.github.io/RAPTOR/.
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
♻ ☆ Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control
Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in the presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems. We combine offline learning from past experience and online learning from current robot interaction with the unknown environment. These two ingredients enable a highly sample-efficient and adaptive learning process, capable of accurately inferring model dynamics in real-time even in operating regimes that greatly differ from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is heuristically conditioned to the aleatoric (data) uncertainty of the learned dynamics. This controller actively chooses the optimal control actions that (i) optimize the control performance and (ii) improve the efficiency of online learning sample collection. We demonstrate the effectiveness of our method through a series of challenging real-world experiments using a quadrotor system. Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.
♻ ☆ Robust Path Planning via Learning from Demonstrations for Robotic Catheters in Deformable Environments
Objective: Navigation through tortuous and deformable vessels using catheters with limited steering capability underscores the need for reliable path planning. State-of-the-art path planners do not fully account for the deformable nature of the environment. Methods: This work proposes a robust path planner via a learning from demonstrations method, named Curriculum Generative Adversarial Imitation Learning (C-GAIL). This path planning framework takes into account the interaction between steerable catheters and vessel walls and the deformable property of vessels. Results: In-silico comparative experiments show that the proposed network achieves a 38% higher success rate in static environments and 17% higher in dynamic environments compared to a state-of-the-art approach based on GAIL. In-vitro validation experiments indicate that the path generated by the proposed C-GAIL path planner achieves a targeting error of 1.26$\pm$0.55mm and a tracking error of 5.18$\pm$3.48mm. These results represent improvements of 41% and 40% over the conventional centerline-following technique for targeting error and tracking error, respectively. Conclusion: The proposed C-GAIL path planner outperforms the state-of-the-art GAIL approach. The in-vitro validation experiments demonstrate that the path generated by the proposed C-GAIL path planner aligns better with the actual steering capability of the pneumatic artificial muscle-driven catheter utilized in this study. Therefore, the proposed approach can provide enhanced support to the user in navigating the catheter towards the target with greater accuracy, effectively meeting clinical accuracy requirements. Significance: The proposed path planning framework exhibits superior performance in managing uncertainty associated with vessel deformation, thereby resulting in lower tracking errors.
comment: 11 pages, 10 figures
♻ ☆ S3E: A Mulit-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. For access to the dataset and the latest information, please visit our repository at https://pengyu-team.github.io/S3E.
♻ ☆ Towards Safe Robot Use with Edged or Pointed Objects: A Surrogate Study Assembling a Human Hand Injury Protection Database
The use of pointed or edged tools or objects is one of the most challenging aspects of today's application of physical human-robot interaction (pHRI). One reason for this is that the severity of harm caused by such edged or pointed impactors is less well studied than for blunt impactors. Consequently, the standards specify well-reasoned force and pressure thresholds for blunt impactors and advise avoiding any edges and corners in contacts. Nevertheless, pointed or edged impactor geometries cannot be completely ruled out in real pHRI applications. For example, to allow edged or pointed tools such as screwdrivers near human operators, the knowledge of injury severity needs to be extended so that robot integrators can perform well-reasoned, time-efficient risk assessments. In this paper, we provide the initial datasets on injury prevention for the human hand based on drop tests with surrogates for the human hand, namely pig claws and chicken drumsticks. We then demonstrate the ease and efficiency of robot use using the dataset for contact on two examples. Finally, our experiments provide a set of injuries that may also be expected for human subjects under certain robot mass-velocity constellations in collisions. To extend this work, testing on human samples and a collaborative effort from research institutes worldwide is needed to create a comprehensive human injury avoidance database for any pHRI scenario and thus for safe pHRI applications including edged and pointed geometries.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ A Learning Quasi-stiffness Control Framework of a Powered Trans-femoral Prosthesis for Adaptive Speed and Incline Walking
Impedance-based control represents a prevalent strategy in the powered trans femoral prostheses because of its ability to reproduce natural walking. However, most existing studies have developed impedance-based prosthesis controllers for specific tasks, while creating a task-adaptive controller for variable-task walking continues to be a significant challenge. This article proposes a task-adaptive quasi-stiffness control framework for powered prostheses that generalizes across various walking tasks, including the torque-angle relationship reconstruction part and the quasi-stiffness controller design part. A Gaussian Process Regression model is introduced to predict the target features of the human joints angle and torque in a new task. Subsequently, a Kernel Movement Primitives is employed to reconstruct the torque-angle relationship of the new task from multiple human reference trajectories and estimated target features. Based on the torque-angle relationship of the new task, a quasi-stiffness control approach is designed for a powered prosthesis. Finally, the proposed framework is validated through practical examples, including varying speeds and inclines walking tasks. Notably, the proposed framework not only aligns with but frequently surpasses the performance of a benchmark finite state machine impedance controller without necessitating manual impedance tuning and has the potential to expand to variable walking tasks in daily life for the trans-femoral amputees.
comment: 9 pages, 11 figures. This work has been submitted to the IEEE-TCDS for possible publication
♻ ☆ Towards Unconstrained Collision Injury Protection Data Sets: Initial Surrogate Experiments for the Human Hand
Safety for physical human-robot interaction (pHRI) is a major concern for all application domains. While current standardization for industrial robot applications provide safety constraints that address the onset of pain in blunt impacts, these impact thresholds are difficult to use on edged or pointed impactors. The most severe injuries occur in constrained contact scenarios, where crushing is possible. Nevertheless, situations potentially resulting in constrained contact only occur in certain areas of a workspace and design or organisational approaches can be used to avoid them. What remains are risks to the human physical integrity caused by unconstrained accidental contacts, which are difficult to avoid while maintaining robot motion efficiency. Nevertheless, the probability and severity of injuries occurring with edged or pointed impacting objects in unconstrained collisions is hardly researched. In this paper, we propose an experimental setup and procedure using two pendulums modeling human hands and arms and robots to understand the injury potential of unconstrained collisions of human hands with edged objects. Pig feet are used as ex vivo surrogate samples - as these closely resemble the physiological characteristics of human hands - to create an initial injury database on the severity of injuries caused by unconstrained edged or pointed impacts. For the effective mass range of typical lightweight robots, the data obtained show low probabilities of injuries such as skin cuts or bone/tendon injuries in unconstrained collisions when the velocity is reduced to < 0.5 m/s. The proposed experimental setups and procedures should be complemented by sufficient human modeling and will eventually lead to a complete understanding of the biomechanical injury potential in pHRI.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Harnessing the Potential of Omnidirectional Multi-Rotor Aerial Vehicles in Cooperative Jamming Against Eavesdropping
Recent research in communications-aware robotics has been propelled by advancements in 5G and emerging 6G technologies. This field now includes the integration of Multi-Rotor Aerial Vehicles (MRAVs) into cellular networks, with a specific focus on under-actuated MRAVs. These vehicles face challenges in independently controlling position and orientation due to their limited control inputs, which adversely affects communication metrics such as Signal-to-Noise Ratio. In response, a newer class of omnidirectional MRAVs has been developed, which can control both position and orientation simultaneously by tilting their propellers. However, exploiting this capability fully requires sophisticated motion planning techniques. This paper presents a novel application of omnidirectional MRAVs designed to enhance communication security and thwart eavesdropping. It proposes a strategy where one MRAV functions as an aerial Base Station, while another acts as a friendly jammer to secure communications. This study is the first to apply such a strategy to MRAVs in scenarios involving eavesdroppers.
comment: 7 pages, 4 figures, Accepted for presentation to the 2024 IEEE Global Communications Conference (IEEE GLOBECOM), Cape Town, South Africa. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ SeeThruFinger: See and Grasp Anything with a Multi-Modal Soft Touch
We present SeeThruFinger, a Vision-Based Tactile Sensing (VBTS) architecture using a markerless See-Thru-Network. It achieves simultaneous visual perception and tactile sensing while providing omni-directional, adaptive grasping for manipulation. Multi-modal perception of intrinsic and extrinsic interactions is critical in building intelligent robots that learn. Instead of adding various sensors for different modalities, a preferred solution is to integrate them into one elegant and coherent design, which is a challenging task. This study leverages the in-finger vision to inpaint occluded regions of the external environment, achieving coherent scene reconstruction for visual perception. By tracking real-time segmentation of the Soft Polyhedral Network's large-scale deformation, we achieved real-time markerless tactile sensing of 6D forces and torques. We further demonstrate the application of the SeeThruFinger for reactive grasping without using external cameras or dedicated force and torque sensors. As a result, our proposed SeeThruFinger architecture enables multi-modal perception via a single in-finger vision camera in a markerless way, including scene inpainting, object detection, segmentation tracking, and tactile sensing.
comment: 10 pages, 5 figures, 1 table
Computer Vision 17
♻ ☆ Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine
Recent studies indicate that Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks. However, these evaluations primarily focused on the accuracy of multi-choice questions alone. Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning when solving New England Journal of Medicine (NEJM) Image Challenges - an imaging quiz designed to test the knowledge and diagnostic capabilities of medical professionals. Evaluation results confirmed that GPT-4V performs comparatively to human physicians regarding multi-choice accuracy (81.6% vs. 77.8%). GPT-4V also performs well in cases where physicians incorrectly answer, with over 78% accuracy. However, we discovered that GPT-4V frequently presents flawed rationales in cases where it makes the correct final choices (35.5%), most prominent in image comprehension (27.2%). Regardless of GPT-4V's high accuracy in multi-choice questions, our findings emphasize the necessity for further in-depth evaluations of its rationales before integrating such multimodal AI models into clinical workflows.
♻ ☆ CURLing the Dream: Contrastive Representations for World Modeling in Reinforcement Learning
In this work, we present Curled-Dreamer, a novel reinforcement learning algorithm that integrates contrastive learning into the DreamerV3 framework to enhance performance in visual reinforcement learning tasks. By incorporating the contrastive loss from the CURL algorithm and a reconstruction loss from autoencoder, Curled-Dreamer achieves significant improvements in various DeepMind Control Suite tasks. Our extensive experiments demonstrate that Curled-Dreamer consistently outperforms state-of-the-art algorithms, achieving higher mean and median scores across a diverse set of tasks. The results indicate that the proposed approach not only accelerates learning but also enhances the robustness of the learned policies. This work highlights the potential of combining different learning paradigms to achieve superior performance in reinforcement learning applications.
comment: Paper accepted for 24th International Conference on Control, Automation and Systems (ICCAS)
♻ ☆ Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
This paper presents dilated Residual Network (ResNet) models for disease classification from retinal fundus images. Dilated convolution filters are used to replace normal convolution filters in the higher layers of the ResNet model (dilated ResNet) in order to improve the receptive field compared to the normal ResNet model for disease classification. This study introduces computer-assisted diagnostic tools that employ deep learning, enhanced with explainable AI techniques. These techniques aim to make the tool's decision-making process transparent, thereby enabling medical professionals to understand and trust the AI's diagnostic decision. They are particularly relevant in today's healthcare landscape, where there is a growing demand for transparency in AI applications to ensure their reliability and ethical use. The dilated ResNet is used as a replacement for the normal ResNet to enhance the classification accuracy of retinal eye diseases and reduce the required computing time. The dataset used in this work is the Ocular Disease Intelligent Recognition (ODIR) dataset which is a structured ophthalmic database with eight classes covering most of the common retinal eye diseases. The evaluation metrics used in this work include precision, recall, accuracy, and F1 score. In this work, a comparative study has been made between normal ResNet models and dilated ResNet models on five variants namely ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The dilated ResNet model shows promising results as compared to normal ResNet with an average F1 score of 0.71, 0.70, 0.69, 0.67, and 0.70 respectively for the above respective variants in ODIR multiclass disease classification.
comment: Added authors' contributions
♻ ☆ Convex Hull Prediction for Adaptive Video Streaming by Recurrent Learning
Adaptive video streaming relies on the construction of efficient bitrate ladders to deliver the best possible visual quality to viewers under bandwidth constraints. The traditional method of content dependent bitrate ladder selection requires a video shot to be pre-encoded with multiple encoding parameters to find the optimal operating points given by the convex hull of the resulting rate-quality curves. However, this pre-encoding step is equivalent to an exhaustive search process over the space of possible encoding parameters, which causes significant overhead in terms of both computation and time expenditure. To reduce this overhead, we propose a deep learning based method of content aware convex hull prediction. We employ a recurrent convolutional network (RCN) to implicitly analyze the spatiotemporal complexity of video shots in order to predict their convex hulls. A two-step transfer learning scheme is adopted to train our proposed RCN-Hull model, which ensures sufficient content diversity to analyze scene complexity, while also making it possible to capture the scene statistics of pristine source videos. Our experimental results reveal that our proposed model yields better approximations of the optimal convex hulls, and offers competitive time savings as compared to existing approaches. On average, the pre-encoding time was reduced by 53.8% by our method, while the average Bjontegaard delta bitrate (BD-rate) of the predicted convex hulls against ground truth was 0.26%, and the mean absolute deviation of the BD-rate distribution was 0.57%.
♻ ☆ Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations
Due to the successful development of deep image generation technology, forgery detection plays a more important role in social and economic security. Racial bias has not been explored thoroughly in the deep forgery detection field. In the paper, we first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods. Different from existing forgery detection datasets, the self-constructed FairFD dataset contains a balanced racial ratio and diverse forgery generation images with the largest-scale subjects. Additionally, we identify the problems with naive fairness metrics when benchmarking forgery detection models. To comprehensively evaluate fairness, we design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results. We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates. Extensive experiments conducted with 12 representative forgery detection models demonstrate the value of the proposed dataset and the reasonability of the designed fairness metrics. By applying the BPFA to the existing fairest detector, we achieve a new SOTA. Furthermore, we conduct more in-depth analyses to offer more insights to inspire researchers in the community.
♻ ☆ S3E: A Mulit-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. For access to the dataset and the latest information, please visit our repository at https://pengyu-team.github.io/S3E.
♻ ☆ CILF-CIAE: CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation
The age estimation task aims to predict the age of an individual by analyzing facial features in an image. The development of age estimation can improve the efficiency and accuracy of various applications (e.g., age verification and secure access control, etc.). In recent years, contrastive language-image pre-training (CLIP) has been widely used in various multimodal tasks and has made some progress in the field of age estimation. However, existing CLIP-based age estimation methods require high memory usage (quadratic complexity) when globally modeling images, and lack an error feedback mechanism to prompt the model about the quality of age prediction results. To tackle the above issues, we propose a novel CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation (CILF-CIAE). Specifically, we first introduce the CLIP model to extract image features and text semantic information respectively, and map them into a highly semantically aligned high-dimensional feature space. Next, we designed a new Transformer architecture (i.e., FourierFormer) to achieve channel evolution and spatial interaction of images, and to fuse image and text semantic information. Compared with the quadratic complexity of the attention mechanism, the proposed Fourierformer is of linear log complexity. To further narrow the semantic gap between image and text features, we utilize an efficient contrastive multimodal learning module that supervises the multimodal fusion process of FourierFormer through contrastive loss for image-text matching, thereby improving the interaction effect between different modalities. Finally, we introduce reversible age estimation, which uses end-to-end error feedback to reduce the error rate of age predictions. Through extensive experiments on multiple data sets, CILF-CIAE has achieved better age prediction results.
comment: 14 pages, 14 figures, 3 tables
♻ ☆ Graph Information Bottleneck for Remote Sensing Segmentation
Remote sensing segmentation has a wide range of applications in environmental protection, and urban change detection, etc. Despite the success of deep learning-based remote sensing segmentation methods (e.g., CNN and Transformer), they are not flexible enough to model irregular objects. In addition, existing graph contrastive learning methods usually adopt the way of maximizing mutual information to keep the node representations consistent between different graph views, which may cause the model to learn task-independent redundant information. To tackle the above problems, this paper treats images as graph structures and introduces a simple contrastive vision GNN (SC-ViG) architecture for remote sensing segmentation. Specifically, we construct a node-masked and edge-masked graph view to obtain an optimal graph structure representation, which can adaptively learn whether to mask nodes and edges. Furthermore, this paper innovatively introduces information bottleneck theory into graph contrastive learning to maximize task-related information while minimizing task-independent redundant information. Finally, we replace the convolutional module in UNet with the SC-ViG module to complete the segmentation and classification tasks of remote sensing images. Extensive experiments on publicly available real datasets demonstrate that our method outperforms state-of-the-art remote sensing image segmentation methods.
comment: 13 pages, 6 figures
♻ ☆ Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming
Neural enhancement through super-resolution (SR) deep neural networks (DNNs) opens up new possibilities for ultra-high-definition (UHD) live streaming over existing encoding and networking infrastructure. Yet, the heavy SR DNN inference overhead leads to severe deployment challenges. To reduce the overhead, existing systems propose to apply DNN-based SR only on carefully selected anchor frames while upscaling non-anchor frames via the lightweight reusing-based SR approach. However, frame-level scheduling is coarse-grained and fails to deliver optimal efficiency. In this work, we propose Palantir, the first neural-enhanced UHD live streaming system with fine-grained patch-level scheduling. Two novel techniques are incorporated into Palantir to select the most beneficial anchor patches and support latency-sensitive UHD live streaming applications. Firstly, under the guidance of our pioneering and theoretical analysis, Palantir constructs a directed acyclic graph (DAG) for lightweight yet accurate SR quality estimation under any possible anchor patch set. Secondly, to further optimize the scheduling latency, Palantir improves parallelizability by refactoring the computation subprocedure of the estimation process into a sparse matrix-matrix multiplication operation. The evaluation results suggest that Palantir incurs a negligible scheduling latency accounting for less than 5.7% of the end-to-end latency requirement. When compared to the naive method of applying DNN-based SR on all the frames, Palantir can reduce the SR DNN inference overhead by 20 times (or 60 times) while preserving 54.0-82.6% (or 32.8-64.0%) of the quality gain. When compared to the state-of-the-art real-time frame-level scheduling strategy, Palantir can reduce the SR DNN inference overhead by 80.1% at most (and 38.4% on average) without sacrificing the video quality.
♻ ☆ Anticipating Future Object Compositions without Forgetting
Despite the significant advancements in computer vision models, their ability to generalize to novel object-attribute compositions remains limited. Existing methods for Compositional Zero-Shot Learning (CZSL) mainly focus on image classification. This paper aims to enhance CZSL in object detection without forgetting prior learned knowledge. We use Grounding DINO and incorporate Compositional Soft Prompting (CSP) into it and extend it with Compositional Anticipation. We achieve a 70.5% improvement over CSP on the harmonic mean (HM) between seen and unseen compositions on the CLEVR dataset. Furthermore, we introduce Contrastive Prompt Tuning to incrementally address model confusion between similar compositions. We demonstrate the effectiveness of this method and achieve an increase of 14.5% in HM across the pretrain, increment, and unseen sets. Collectively, these methods provide a framework for learning various compositions with limited data, as well as improving the performance of underperforming compositions when additional data becomes available.
♻ ☆ InfiniBench: A Comprehensive Benchmark for Large Multimodal Models in Very Long Video Understanding
Understanding long videos, ranging from tens of minutes to several hours, presents unique challenges in video comprehension. Despite the increasing importance of long-form video content, existing benchmarks primarily focus on shorter clips. To address this gap, we introduce InfiniBench a comprehensive benchmark for very long video understanding which presents 1)The longest video duration, averaging 52.59 minutes per video 2) The largest number of question-answer pairs, 108.2K 3) Diversity in questions that examine nine different skills and include both multiple-choice questions and open-ended questions 4) Human-centric, as the video sources come from movies and daily TV shows, with specific human-level question designs such as Movie Spoiler Questions that require critical thinking and comprehensive understanding. Using InfiniBench, we comprehensively evaluate existing Large Multi-Modality Models (LMMs) on each skill, including the commercial models such as GPT-4o and Gemini 1.5 Flash and the open-source models. The evaluation shows significant challenges in our benchmark. Our findings reveal that even leading AI models like GPT-4o and Gemini 1.5 Flash face challenges in achieving high performance in long video understanding, with average accuracies of just 49.16\% and 42.72\%, and average scores of 3.22 and 2.71 out of 5, respectively. We hope this benchmark will stimulate the LMMs community towards long video and human-level understanding. Our benchmark can be accessed at https://vision-cair.github.io/InfiniBench/
comment: 24 pages,25 figures
♻ ☆ Translating Images to Road Network: A Sequence-to-Sequence Perspective ICCV 2023
The extraction of road network is essential for the generation of high-definition maps since it enables the precise localization of road landmarks and their interconnections. However, generating road network poses a significant challenge due to the conflicting underlying combination of Euclidean (e.g., road landmarks location) and non-Euclidean (e.g., road topological connectivity) structures. Existing methods struggle to merge the two types of data domains effectively, but few of them address it properly. Instead, our work establishes a unified representation of both types of data domain by projecting both Euclidean and non-Euclidean data into an integer series called RoadNet Sequence. Further than modeling an auto-regressive sequence-to-sequence Transformer model to understand RoadNet Sequence, we decouple the dependency of RoadNet Sequence into a mixture of auto-regressive and non-autoregressive dependency. Building on this, our proposed non-autoregressive sequence-to-sequence approach leverages non-autoregressive dependencies while fixing the gap towards auto-regressive dependencies, resulting in success on both efficiency and accuracy. We further identify two main bottlenecks in the current RoadNetTransformer on a non-overfitting split of the dataset: poor landmark detection limited by the BEV Encoder and error propagation to topology reasoning. Therefore, we propose Topology-Inherited Training to inherit better topology knowledge into RoadNetTransformer. Additionally, we collect SD-Maps from open-source map datasets and use this prior information to significantly improve landmark detection and reachability. Extensive experiments on nuScenes dataset demonstrate the superiority of RoadNet Sequence representation and the non-autoregressive approach compared to existing state-of-the-art alternatives.
comment: V1 is the ICCV 2023 conference version, and V2 is the extended version
♻ ☆ Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification
Real-world data are long-tailed, the lack of tail samples leads to a significant limitation in the generalization ability of the model. Although numerous approaches of class re-balancing perform well for moderate class imbalance problems, additional knowledge needs to be introduced to help the tail class recover the underlying true distribution when the observed distribution from a few tail samples does not represent its true distribution properly, thus allowing the model to learn valuable information outside the observed domain. In this work, we propose to leverage the geometric information of the feature distribution of the well-represented head class to guide the model to learn the underlying distribution of the tail class. Specifically, we first systematically define the geometry of the feature distribution and the similarity measures between the geometries, and discover four phenomena regarding the relationship between the geometries of different feature distributions. Then, based on four phenomena, feature uncertainty representation is proposed to perturb the tail features by utilizing the geometry of the head class feature distribution. It aims to make the perturbed features cover the underlying distribution of the tail class as much as possible, thus improving the model's generalization performance in the test domain. Finally, we design a three-stage training scheme enabling feature uncertainty modeling to be successfully applied. Experiments on CIFAR-10/100-LT, ImageNet-LT, and iNaturalist2018 show that our proposed approach outperforms other similar methods on most metrics. In addition, the experimental phenomena we discovered are able to provide new perspectives and theoretical foundations for subsequent studies.
comment: This work was accepted by the IJCV 2024
♻ ☆ xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations ECCV24
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
comment: Accepted by ECCV24 AI4VA
♻ ☆ CMAB: A First National-Scale Multi-Attribute Building Dataset in China Derived from Open Source Data and GeoAI
Rapidly acquiring three-dimensional (3D) building data, including geometric attributes like rooftop, height and orientations, as well as indicative attributes like function, quality, and age, is essential for accurate urban analysis, simulations, and policy updates. Current building datasets suffer from incomplete coverage of building multi-attributes. This paper introduces a geospatial artificial intelligence (GeoAI) framework for large-scale building modeling, presenting the first national-scale Multi-Attribute Building dataset (CMAB), covering 3,667 spatial cities, 29 million buildings, and 21.3 billion square meters of rooftops with an F1-Score of 89.93% in OCRNet-based extraction, totaling 337.7 billion cubic meters of building stock. We trained bootstrap aggregated XGBoost models with city administrative classifications, incorporating features such as morphology, location, and function. Using multi-source data, including billions of high-resolution Google Earth images and 60 million street view images (SVIs), we generated rooftop, height, function, age, and quality attributes for each building. Accuracy was validated through model benchmarks, existing similar products, and manual SVI validation, mostly above 80%. Our dataset and results are crucial for global SDGs and urban planning.
comment: 43 pages, 20 figures
♻ ☆ Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection WACV
Skeleton-based video anomaly detection (SVAD) is a crucial task in computer vision. Accurately identifying abnormal patterns or events enables operators to promptly detect suspicious activities, thereby enhancing safety. Achieving this demands a comprehensive understanding of human motions, both at body and region levels, while also accounting for the wide variations of performing a single action. However, existing studies fail to simultaneously address these crucial properties. This paper introduces a novel, practical and lightweight framework, namely Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection (GiCiSAD) to overcome the challenges associated with SVAD. GiCiSAD consists of three novel modules: the Graph Attention-based Forecasting module to capture the spatio-temporal dependencies inherent in the data, the Graph-level Jigsaw Puzzle Maker module to distinguish subtle region-level discrepancies between normal and abnormal motions, and the Graph-based Conditional Diffusion model to generate a wide spectrum of human motions. Extensive experiments on four widely used skeleton-based video datasets show that GiCiSAD outperforms existing methods with significantly fewer training parameters, establishing it as the new state-of-the-art.
comment: Accepted at the Winter Conference on Applications of Computer Vision (WACV). 17 pages, 6 figures, 6 tables
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
Artificial Intelligence 26
♻ ☆ Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine
Recent studies indicate that Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks. However, these evaluations primarily focused on the accuracy of multi-choice questions alone. Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning when solving New England Journal of Medicine (NEJM) Image Challenges - an imaging quiz designed to test the knowledge and diagnostic capabilities of medical professionals. Evaluation results confirmed that GPT-4V performs comparatively to human physicians regarding multi-choice accuracy (81.6% vs. 77.8%). GPT-4V also performs well in cases where physicians incorrectly answer, with over 78% accuracy. However, we discovered that GPT-4V frequently presents flawed rationales in cases where it makes the correct final choices (35.5%), most prominent in image comprehension (27.2%). Regardless of GPT-4V's high accuracy in multi-choice questions, our findings emphasize the necessity for further in-depth evaluations of its rationales before integrating such multimodal AI models into clinical workflows.
♻ ☆ Adversarial Domain Adaptation for Cross-user Activity Recognition Using Diffusion-based Noise-centred Learning
Human Activity Recognition (HAR) plays a crucial role in various applications such as human-computer interaction and healthcare monitoring. However, challenges persist in HAR models due to the data distribution differences between training and real-world data distributions, particularly evident in cross-user scenarios. This paper introduces a novel framework, termed Diffusion-based Noise-centered Adversarial Learning Domain Adaptation (Diff-Noise-Adv-DA), designed to address these challenges by leveraging generative diffusion modeling and adversarial learning techniques. Traditional HAR models often struggle with the diversity of user behaviors and sensor data distributions. Diff-Noise-Adv-DA innovatively integrates the inherent noise within diffusion models, harnessing its latent information to enhance domain adaptation. Specifically, the framework transforms noise into a critical carrier of activity and domain class information, facilitating robust classification across different user domains. Experimental evaluations demonstrate the effectiveness of Diff-Noise-Adv-DA in improving HAR model performance across different users, surpassing traditional domain adaptation methods. The framework not only mitigates distribution mismatches but also enhances data quality through noise-based denoising techniques.
♻ ☆ CURLing the Dream: Contrastive Representations for World Modeling in Reinforcement Learning
In this work, we present Curled-Dreamer, a novel reinforcement learning algorithm that integrates contrastive learning into the DreamerV3 framework to enhance performance in visual reinforcement learning tasks. By incorporating the contrastive loss from the CURL algorithm and a reconstruction loss from autoencoder, Curled-Dreamer achieves significant improvements in various DeepMind Control Suite tasks. Our extensive experiments demonstrate that Curled-Dreamer consistently outperforms state-of-the-art algorithms, achieving higher mean and median scores across a diverse set of tasks. The results indicate that the proposed approach not only accelerates learning but also enhances the robustness of the learned policies. This work highlights the potential of combining different learning paradigms to achieve superior performance in reinforcement learning applications.
comment: Paper accepted for 24th International Conference on Control, Automation and Systems (ICCAS)
♻ ☆ Kolmogorov-Arnold Network for Online Reinforcement Learning
Kolmogorov-Arnold Networks (KANs) have shown potential as an alternative to Multi-Layer Perceptrons (MLPs) in neural networks, providing universal function approximation with fewer parameters and reduced memory usage. In this paper, we explore the use of KANs as function approximators within the Proximal Policy Optimization (PPO) algorithm. We evaluate this approach by comparing its performance to the original MLP-based PPO using the DeepMind Control Proprio Robotics benchmark. Our results indicate that the KAN-based reinforcement learning algorithm can achieve comparable performance to its MLP-based counterpart, often with fewer parameters. These findings suggest that KANs may offer a more efficient option for reinforcement learning models.
comment: Paper accepted at 24th International Conference on Control, Automation and Systems (ICCAS)
♻ ☆ Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
Diffusion-based generative models' impressive ability to create convincing images has garnered global attention. However, their complex structures and operations often pose challenges for non-experts to grasp. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex structure with explanations of the underlying operations. By comparing image generation of prompt variants, users can discover the impact of keyword changes on image generation. A 56-participant user study demonstrates that Diffusion Explainer offers substantial learning benefits to non-experts. Our tool has been used by over 10,300 users from 124 countries at https://poloclub.github.io/diffusion-explainer/.
comment: 5 pages, 7 figures
♻ ☆ Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
This paper presents dilated Residual Network (ResNet) models for disease classification from retinal fundus images. Dilated convolution filters are used to replace normal convolution filters in the higher layers of the ResNet model (dilated ResNet) in order to improve the receptive field compared to the normal ResNet model for disease classification. This study introduces computer-assisted diagnostic tools that employ deep learning, enhanced with explainable AI techniques. These techniques aim to make the tool's decision-making process transparent, thereby enabling medical professionals to understand and trust the AI's diagnostic decision. They are particularly relevant in today's healthcare landscape, where there is a growing demand for transparency in AI applications to ensure their reliability and ethical use. The dilated ResNet is used as a replacement for the normal ResNet to enhance the classification accuracy of retinal eye diseases and reduce the required computing time. The dataset used in this work is the Ocular Disease Intelligent Recognition (ODIR) dataset which is a structured ophthalmic database with eight classes covering most of the common retinal eye diseases. The evaluation metrics used in this work include precision, recall, accuracy, and F1 score. In this work, a comparative study has been made between normal ResNet models and dilated ResNet models on five variants namely ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The dilated ResNet model shows promising results as compared to normal ResNet with an average F1 score of 0.71, 0.70, 0.69, 0.67, and 0.70 respectively for the above respective variants in ODIR multiclass disease classification.
comment: Added authors' contributions
♻ ☆ Do Concept Bottleneck Models Respect Localities?
Concept-based methods explain model predictions using human-understandable concepts. These models require accurate concept predictors, yet the faithfulness of existing concept predictors to their underlying concepts is unclear. In this paper, we investigate the faithfulness of Concept Bottleneck Models (CBMs), a popular family of concept-based architectures, by looking at whether they respect "localities" in datasets. Localities involve using only relevant features when predicting a concept's value. When localities are not considered, concepts may be predicted based on spuriously correlated features, degrading performance and robustness. This work examines how CBM predictions change when perturbing model inputs, and reveals that CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets. Our empirical and theoretical results demonstrate that datasets with correlated concepts may lead to accurate but uninterpretable models that fail to learn localities. Overall, we find that CBM interpretability is fragile, as CBMs occasionally rely upon spurious features, necessitating further research into the robustness of concept predictors.
comment: Previous Version Accepted at NeurIPs 23 XAI in Action Workshop
♻ ☆ Probabilistic Variational Causal Approach in Observational Studies
In this paper, we introduce a new causal methodology that accounts for the rarity and frequency of events in observational studies based on their relevance to the underlying problem. Specifically, we propose a direct causal effect metric called the Probabilistic Variational Causal Effect (PACE) and its variations adhering to certain postulates applicable to both non-binary and binary treatments. The PACE metric is derived by integrating the concept of total variation -- representing the purely causal component -- with interventions on the treatment value, combined with the probabilities of hypothetical transitioning between treatment levels. PACE features a parameter d, where lower values of d correspond to scenarios emphasizing rare treatment values, while higher values of d focus on situations where the causal impact of more frequent treatment levels is more relevant. Thus, instead of a single causal effect value, we provide a causal effect function of the degree d. Additionally, we introduce positive and negative PACE to measure the respective positive and negative causal changes in the outcome as exposure values shift. We also consider normalized versions of PACE, referred to as MEAN PACE. Furthermore, we provide an identifiability criterion for PACE to handle counterfactual challenges in observational studies, and we define several generalizations of our methodology. Lastly, we compare our framework with other well-known causal frameworks through the analysis of various examples.
comment: 35 pages, 5 figures, 2 tables
♻ ☆ Public Transit Arrival Prediction: a Seq2Seq RNN Approach
Arrival/Travel times for public transit exhibit variability on account of factors like seasonality, dwell times at bus stops, traffic signals, travel demand fluctuation etc. The developing world in particular is plagued by additional factors like lack of lane discipline, excess vehicles, diverse modes of transport and so on. This renders the bus arrival time prediction (BATP) to be a challenging problem especially in the developing world. A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work. The model intelligently incorporates both spatial and temporal correlations in a unique (non-linear) fashion distinct from existing approaches. In particular, we propose a Gated Recurrent Unit (GRU) based Encoder-Decoder(ED) OR Seq2Seq RNN model (originally introduced for language translation) for BATP. The geometry of the dynamic real time BATP problem enables a nice fit with the Encoder-Decoder based RNN structure. We feed relevant additional synchronized inputs (from previous trips) at each step of the decoder (a feature classically unexplored in machine translation applications). Further motivated from accurately modelling congestion influences on travel time prediction, we additionally propose to use a bidirectional layer at the decoder (something unexplored in other time-series based ED application contexts). The effectiveness of the proposed algorithms is demonstrated on real field data collected from challenging traffic conditions. Our experiments indicate that the proposed method outperforms diverse existing state-of-art data-driven approaches proposed for the same problem.
♻ ☆ A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond
Neural Code Intelligence -- leveraging deep learning to understand, generate, and optimize code -- holds immense potential for transformative impacts on the whole society. Bridging the gap between Natural Language and Programming Language, this domain has drawn significant attention from researchers in both research communities over the past few years. This survey presents a systematic and chronological review of the advancements in code intelligence, encompassing over 50 representative models and their variants, more than 20 categories of tasks, and an extensive coverage of over 680 related works. We follow the historical progression to trace the paradigm shifts across different research phases (e.g., from modeling code with recurrent neural networks to the era of Large Language Models). Concurrently, we highlight the major technical transitions in models, tasks, and evaluations spanning through different stages. For applications, we also observe a co-evolving shift. It spans from initial endeavors to tackling specific scenarios, through exploring a diverse array of tasks during its rapid expansion, to currently focusing on tackling increasingly complex and varied real-world challenges. Building on our examination of the developmental trajectories, we further investigate the emerging synergies between code intelligence and broader machine intelligence, uncovering new cross-domain opportunities and illustrating the substantial influence of code intelligence across various domains. Finally, we delve into both the opportunities and challenges associated with this field, alongside elucidating our insights on the most promising research directions. An ongoing, dynamically updated project and resources associated with this survey have been released at https://github.com/QiushiSun/NCISurvey.
comment: 64 pages, 6 figures, 10 tables, 695 references
♻ ☆ Is There No Such Thing as a Bad Question? H4R: HalluciBot For Ratiocination, Rewriting, Ranking, and Routing
Hallucination continues to be one of the most critical challenges in the institutional adoption journey of Large Language Models (LLMs). While prior studies have primarily focused on the post-generation analysis and refinement of outputs, this paper centers on the effectiveness of queries in eliciting accurate responses from LLMs. We present HalluciBot, a model that estimates the query's propensity to hallucinate before generation, without invoking any LLMs during inference. HalluciBot can serve as a proxy reward model for query rewriting, offering a general framework to estimate query quality based on accuracy and consensus. In essence, HalluciBot investigates how poorly constructed queries can lead to erroneous outputs - moreover, by employing query rewriting guided by HalluciBot's empirical estimates, we demonstrate that 95.7% output accuracy can be achieved for Multiple Choice questions. The training procedure for HalluciBot consists of perturbing 369,837 queries n times, employing n+1 independent LLM agents, sampling an output from each query, conducting a Multi-Agent Monte Carlo simulation on the sampled outputs, and training an encoder classifier. The idea of perturbation is the outcome of our ablation studies that measures the increase in output diversity (+12.5 agreement spread) by perturbing a query in lexically different but semantically similar ways. Therefore, HalluciBot paves the way to ratiocinate (76.0% test F1 score, 46.6% in saved computation on hallucinatory queries), rewrite (+30.2% positive class transition from hallucinatory to non-hallucinatory), rank (+50.6% positive class transition from hallucinatory to non-hallucinatory), and route queries to effective pipelines.
♻ ☆ Evaluating Large Language Models for Health-related Queries with Presuppositions ACL 2024
As corporations rush to integrate large language models (LLMs) to their search offerings, it is critical that they provide factually accurate information that is robust to any presuppositions that a user may express. In this work, we introduce UPHILL, a dataset consisting of health-related queries with varying degrees of presuppositions. Using UPHILL, we evaluate the factual accuracy and consistency of InstructGPT, ChatGPT, and BingChat models. We find that while model responses rarely disagree with true health claims (posed as questions), they often fail to challenge false claims: responses from InstructGPT agree with 32% of the false claims, ChatGPT 26% and BingChat 23%. As we increase the extent of presupposition in input queries, the responses from InstructGPT and ChatGPT agree with the claim considerably more often, regardless of its veracity. Responses from BingChat, which rely on retrieved webpages, are not as susceptible. Given the moderate factual accuracy, and the inability of models to consistently correct false assumptions, our work calls for a careful assessment of current LLMs for use in high-stakes scenarios.
comment: Findings of ACL 2024
♻ ☆ The Winnability of Klondike Solitaire and Many Other Patience Games
Our ignorance of the winnability percentage of the solitaire card game `Klondike' has been described as "one of the embarrassments of applied mathematics". Klondike, the game in the Windows Solitaire program, is just one of many single-player card games, generically called 'patience' or 'solitaire' games, for which players have long wanted to know how likely a particular game is to be winnable. A number of different games have been studied empirically in the academic literature and by non-academic enthusiasts. Here we show that a single general purpose Artificial Intelligence program named `Solvitaire' can be used to determine the winnability percentage of 73 variants of 35 different single-player card games with a 95% confidence interval of +/- 0.1% or better. For example, we report the winnability of Klondike as 81.945%+/- 0.084% (in the `thoughtful' variant where the player knows the rank and suit of all cards), a 30-fold reduction in confidence interval over the best previous result. The vast majority of our results are either entirely new or represent significant improvements on previous knowledge.
♻ ☆ Explaining Explanations in Probabilistic Logic Programming
The emergence of tools based on artificial intelligence has also led to the need of producing explanations which are understandable by a human being. In most approaches, the system is considered a black box, making it difficult to generate appropriate explanations. In this work, though, we consider a setting where models are transparent: probabilistic logic programming (PLP), a paradigm that combines logic programming for knowledge representation and probability to model uncertainty. However, given a query, the usual notion of explanation is associated with a set of choices, one for each random variable of the model. Unfortunately, such a set does not explain why the query is true and, in fact, it may contain choices that are actually irrelevant for the considered query. To improve this situation, we present in this paper an approach to explaining explanations which is based on defining a new query-driven inference mechanism for PLP where proofs are labeled with "choice expressions", a compact and easy to manipulate representation for sets of choices. The combination of proof trees and choice expressions allows us to produce comprehensible query justifications with a causal structure.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will appear in the APLAS 2024 proceedings published by Springer LNCS
♻ ☆ Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning SC'24
The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
comment: This is the preprint version of the paper accepted for presentation at the 2024 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'24). \c{opyright} 2024 IEEE. Personal use of this material is permitted. For other uses, permission from IEEE must be obtained. Please refer to IEEE Xplore for the final published version
♻ ☆ CILF-CIAE: CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation
The age estimation task aims to predict the age of an individual by analyzing facial features in an image. The development of age estimation can improve the efficiency and accuracy of various applications (e.g., age verification and secure access control, etc.). In recent years, contrastive language-image pre-training (CLIP) has been widely used in various multimodal tasks and has made some progress in the field of age estimation. However, existing CLIP-based age estimation methods require high memory usage (quadratic complexity) when globally modeling images, and lack an error feedback mechanism to prompt the model about the quality of age prediction results. To tackle the above issues, we propose a novel CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation (CILF-CIAE). Specifically, we first introduce the CLIP model to extract image features and text semantic information respectively, and map them into a highly semantically aligned high-dimensional feature space. Next, we designed a new Transformer architecture (i.e., FourierFormer) to achieve channel evolution and spatial interaction of images, and to fuse image and text semantic information. Compared with the quadratic complexity of the attention mechanism, the proposed Fourierformer is of linear log complexity. To further narrow the semantic gap between image and text features, we utilize an efficient contrastive multimodal learning module that supervises the multimodal fusion process of FourierFormer through contrastive loss for image-text matching, thereby improving the interaction effect between different modalities. Finally, we introduce reversible age estimation, which uses end-to-end error feedback to reduce the error rate of age predictions. Through extensive experiments on multiple data sets, CILF-CIAE has achieved better age prediction results.
comment: 14 pages, 14 figures, 3 tables
♻ ☆ Graph Information Bottleneck for Remote Sensing Segmentation
Remote sensing segmentation has a wide range of applications in environmental protection, and urban change detection, etc. Despite the success of deep learning-based remote sensing segmentation methods (e.g., CNN and Transformer), they are not flexible enough to model irregular objects. In addition, existing graph contrastive learning methods usually adopt the way of maximizing mutual information to keep the node representations consistent between different graph views, which may cause the model to learn task-independent redundant information. To tackle the above problems, this paper treats images as graph structures and introduces a simple contrastive vision GNN (SC-ViG) architecture for remote sensing segmentation. Specifically, we construct a node-masked and edge-masked graph view to obtain an optimal graph structure representation, which can adaptively learn whether to mask nodes and edges. Furthermore, this paper innovatively introduces information bottleneck theory into graph contrastive learning to maximize task-related information while minimizing task-independent redundant information. Finally, we replace the convolutional module in UNet with the SC-ViG module to complete the segmentation and classification tasks of remote sensing images. Extensive experiments on publicly available real datasets demonstrate that our method outperforms state-of-the-art remote sensing image segmentation methods.
comment: 13 pages, 6 figures
♻ ☆ Efficient Long-distance Latent Relation-aware Graph Neural Network for Multi-modal Emotion Recognition in Conversations
The task of multi-modal emotion recognition in conversation (MERC) aims to analyze the genuine emotional state of each utterance based on the multi-modal information in the conversation, which is crucial for conversation understanding. Existing methods focus on using graph neural networks (GNN) to model conversational relationships and capture contextual latent semantic relationships. However, due to the complexity of GNN, existing methods cannot efficiently capture the potential dependencies between long-distance utterances, which limits the performance of MERC. In this paper, we propose an Efficient Long-distance Latent Relation-aware Graph Neural Network (ELR-GNN) for multi-modal emotion recognition in conversations. Specifically, we first use pre-extracted text, video and audio features as input to Bi-LSTM to capture contextual semantic information and obtain low-level utterance features. Then, we use low-level utterance features to construct a conversational emotion interaction graph. To efficiently capture the potential dependencies between long-distance utterances, we use the dilated generalized forward push algorithm to precompute the emotional propagation between global utterances and design an emotional relation-aware operator to capture the potential semantic associations between different utterances. Furthermore, we combine early fusion and adaptive late fusion mechanisms to fuse latent dependency information between speaker relationship information and context. Finally, we obtain high-level discourse features and feed them into MLP for emotion prediction. Extensive experimental results show that ELR-GNN achieves state-of-the-art performance on the benchmark datasets IEMOCAP and MELD, with running times reduced by 52\% and 35\%, respectively.
comment: 11 pages, 3 tables
♻ ☆ DER-GCN: Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Dialogue Emotion Recognition
With the continuous development of deep learning (DL), the task of multimodal dialogue emotion recognition (MDER) has recently received extensive research attention, which is also an essential branch of DL. The MDER aims to identify the emotional information contained in different modalities, e.g., text, video, and audio, in different dialogue scenes. However, existing research has focused on modeling contextual semantic information and dialogue relations between speakers while ignoring the impact of event relations on emotion. To tackle the above issues, we propose a novel Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Emotion Recognition (DER-GCN) method. It models dialogue relations between speakers and captures latent event relations information. Specifically, we construct a weighted multi-relationship graph to simultaneously capture the dependencies between speakers and event relations in a dialogue. Moreover, we also introduce a Self-Supervised Masked Graph Autoencoder (SMGAE) to improve the fusion representation ability of features and structures. Next, we design a new Multiple Information Transformer (MIT) to capture the correlation between different relations, which can provide a better fuse of the multivariate information between relations. Finally, we propose a loss optimization strategy based on contrastive learning to enhance the representation learning ability of minority class features. We conduct extensive experiments on the IEMOCAP and MELD benchmark datasets, which verify the effectiveness of the DER-GCN model. The results demonstrate that our model significantly improves both the average accuracy and the f1 value of emotion recognition.
comment: 14 pages, 7 figures
♻ ☆ Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming
Neural enhancement through super-resolution (SR) deep neural networks (DNNs) opens up new possibilities for ultra-high-definition (UHD) live streaming over existing encoding and networking infrastructure. Yet, the heavy SR DNN inference overhead leads to severe deployment challenges. To reduce the overhead, existing systems propose to apply DNN-based SR only on carefully selected anchor frames while upscaling non-anchor frames via the lightweight reusing-based SR approach. However, frame-level scheduling is coarse-grained and fails to deliver optimal efficiency. In this work, we propose Palantir, the first neural-enhanced UHD live streaming system with fine-grained patch-level scheduling. Two novel techniques are incorporated into Palantir to select the most beneficial anchor patches and support latency-sensitive UHD live streaming applications. Firstly, under the guidance of our pioneering and theoretical analysis, Palantir constructs a directed acyclic graph (DAG) for lightweight yet accurate SR quality estimation under any possible anchor patch set. Secondly, to further optimize the scheduling latency, Palantir improves parallelizability by refactoring the computation subprocedure of the estimation process into a sparse matrix-matrix multiplication operation. The evaluation results suggest that Palantir incurs a negligible scheduling latency accounting for less than 5.7% of the end-to-end latency requirement. When compared to the naive method of applying DNN-based SR on all the frames, Palantir can reduce the SR DNN inference overhead by 20 times (or 60 times) while preserving 54.0-82.6% (or 32.8-64.0%) of the quality gain. When compared to the state-of-the-art real-time frame-level scheduling strategy, Palantir can reduce the SR DNN inference overhead by 80.1% at most (and 38.4% on average) without sacrificing the video quality.
♻ ☆ Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT-4
Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce \textbf{Suspicion-Agent}, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available.
♻ ☆ Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models ACL 2024
Ensuring the trustworthiness of large language models (LLMs) is crucial. Most studies concentrate on fully pre-trained LLMs to better understand and improve LLMs' trustworthiness. In this paper, to reveal the untapped potential of pre-training, we pioneer the exploration of LLMs' trustworthiness during this period, focusing on five key dimensions: reliability, privacy, toxicity, fairness, and robustness. To begin with, we apply linear probing to LLMs. The high probing accuracy suggests that \textit{LLMs in early pre-training can already distinguish concepts in each trustworthiness dimension}. Therefore, to further uncover the hidden possibilities of pre-training, we extract steering vectors from a LLM's pre-training checkpoints to enhance the LLM's trustworthiness. Finally, inspired by~\citet{choi2023understanding} that mutual information estimation is bounded by linear probing accuracy, we also probe LLMs with mutual information to investigate the dynamics of trustworthiness during pre-training. We are the first to observe a similar two-phase phenomenon: fitting and compression~\citep{shwartz2017opening}. This research provides an initial exploration of trustworthiness modeling during LLM pre-training, seeking to unveil new insights and spur further developments in the field. We will make our code publicly accessible at \url{https://github.com/ChnQ/TracingLLM}.
comment: Accepted at ACL 2024
♻ ☆ Enhancing Transferability of Adversarial Attacks with GE-AdvGAN+: A Comprehensive Framework for Gradient Editing
Transferable adversarial attacks pose significant threats to deep neural networks, particularly in black-box scenarios where internal model information is inaccessible. Studying adversarial attack methods helps advance the performance of defense mechanisms and explore model vulnerabilities. These methods can uncover and exploit weaknesses in models, promoting the development of more robust architectures. However, current methods for transferable attacks often come with substantial computational costs, limiting their deployment and application, especially in edge computing scenarios. Adversarial generative models, such as Generative Adversarial Networks (GANs), are characterized by their ability to generate samples without the need for retraining after an initial training phase. GE-AdvGAN, a recent method for transferable adversarial attacks, is based on this principle. In this paper, we propose a novel general framework for gradient editing-based transferable attacks, named GE-AdvGAN+, which integrates nearly all mainstream attack methods to enhance transferability while significantly reducing computational resource consumption. Our experiments demonstrate the compatibility and effectiveness of our framework. Compared to the baseline AdvGAN, our best-performing method, GE-AdvGAN++, achieves an average ASR improvement of 47.8. Additionally, it surpasses the latest competing algorithm, GE-AdvGAN, with an average ASR increase of 5.9. The framework also exhibits enhanced computational efficiency, achieving 2217.7 FPS, outperforming traditional methods such as BIM and MI-FGSM. The implementation code for our GE-AdvGAN+ framework is available at https://github.com/GEAdvGANP
♻ ☆ ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models ACL 2024
In this position paper, we argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking that draws upon insights from disciplines such as user experience research and human behavioral psychology to ensure that the experimental design and results are reliable. The conclusions from these evaluations, thus, must consider factors such as usability, aesthetics, and cognitive biases. We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert. Furthermore, the evaluation should differentiate the capabilities and weaknesses of increasingly powerful large language models -- which requires effective test sets. The scalability of human evaluation is also crucial to wider adoption. Hence, to design an effective human evaluation system in the age of generative NLP, we propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
comment: Accepted in ACL 2024
♻ ☆ xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations ECCV24
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
comment: Accepted by ECCV24 AI4VA
♻ ☆ Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection WACV
Skeleton-based video anomaly detection (SVAD) is a crucial task in computer vision. Accurately identifying abnormal patterns or events enables operators to promptly detect suspicious activities, thereby enhancing safety. Achieving this demands a comprehensive understanding of human motions, both at body and region levels, while also accounting for the wide variations of performing a single action. However, existing studies fail to simultaneously address these crucial properties. This paper introduces a novel, practical and lightweight framework, namely Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection (GiCiSAD) to overcome the challenges associated with SVAD. GiCiSAD consists of three novel modules: the Graph Attention-based Forecasting module to capture the spatio-temporal dependencies inherent in the data, the Graph-level Jigsaw Puzzle Maker module to distinguish subtle region-level discrepancies between normal and abnormal motions, and the Graph-based Conditional Diffusion model to generate a wide spectrum of human motions. Extensive experiments on four widely used skeleton-based video datasets show that GiCiSAD outperforms existing methods with significantly fewer training parameters, establishing it as the new state-of-the-art.
comment: Accepted at the Winter Conference on Applications of Computer Vision (WACV). 17 pages, 6 figures, 6 tables
Graphics 1
☆ Mastoidectomy Multi-View Synthesis from a Single Microscopy Image
Cochlear Implant (CI) procedures involve performing an invasive mastoidectomy to insert an electrode array into the cochlea. In this paper, we introduce a novel pipeline that is capable of generating synthetic multi-view videos from a single CI microscope image. In our approach, we use a patient's pre-operative CT scan to predict the post-mastoidectomy surface using a method designed for this purpose. We manually align the surface with a selected microscope frame to obtain an accurate initial pose of the reconstructed CT mesh relative to the microscope. We then perform UV projection to transfer the colors from the frame to surface textures. Novel views of the textured surface can be used to generate a large dataset of synthetic frames with ground truth poses. We evaluated the quality of synthetic views rendered using Pytorch3D and PyVista. We found both rendering engines lead to similarly high-quality synthetic novel-view frames compared to ground truth with a structural similarity index for both methods averaging about 0.86. A large dataset of novel views with known poses is critical for ongoing training of a method to automatically estimate microscope pose for 2D to 3D registration with the pre-operative CT to facilitate augmented reality surgery. This dataset will empower various downstream tasks, such as integrating Augmented Reality (AR) in the OR, tracking surgical tools, and supporting other video analysis studies.
comment: Submitted to Medical Imaging 2025: Image-Guided Procedures, Robotic Interventions, and Modeling
Robotics 34
☆ Information-Based Trajectory Planning for Autonomous Absolute Tracking in Cislunar Space
The resurgence of lunar operations requires advancements in cislunar navigation and Space Situational Awareness (SSA). Challenges associated to these tasks have created an interest in autonomous planning, navigation, and tracking technologies that operate with little ground-based intervention. This research introduces a trajectory planning tool for a low-thrust mobile observer, aimed at maximizing navigation and tracking performance with satellite-to-satellite relative measurements. We formulate an expression for the information gathered over an observation period based on the mutual information between augmented observer/target states and the associated measurement set collected. We then develop an optimal trajectory design problem for a mobile observer, balancing information gain and control effort, and solve this problem with a Sequential Convex Programming (SCP) approach. The developed methods are demonstrated in scenarios involving spacecraft in the cislunar regime, demonstrating the potential for improved autonomous navigation and tracking.
comment: 2024 AAS/AIAA Astrodynamics Specialist Conference
☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos.
comment: 7 pages, 5 figures, 4 tables. Last updated on August 30th, 2024
☆ EMPOWER: Embodied Multi-role Open-vocabulary Planning with Online Grounding and Execution IROS 2024
Task planning for robots in real-life settings presents significant challenges. These challenges stem from three primary issues: the difficulty in identifying grounded sequences of steps to achieve a goal; the lack of a standardized mapping between high-level actions and low-level commands; and the challenge of maintaining low computational overhead given the limited resources of robotic hardware. We introduce EMPOWER, a framework designed for open-vocabulary online grounding and planning for embodied agents aimed at addressing these issues. By leveraging efficient pre-trained foundation models and a multi-role mechanism, EMPOWER demonstrates notable improvements in grounded planning and execution. Quantitative results highlight the effectiveness of our approach, achieving an average success rate of 0.73 across six different real-life scenarios using a TIAGo robot.
comment: Accepted at IROS 2024
☆ Augmented Reality without Borders: Achieving Precise Localization Without Maps
Visual localization is crucial for Computer Vision and Augmented Reality (AR) applications, where determining the camera or device's position and orientation is essential to accurately interact with the physical environment. Traditional methods rely on detailed 3D maps constructed using Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM), which is computationally expensive and impractical for dynamic or large-scale environments. We introduce MARLOC, a novel localization framework for AR applications that uses known relative transformations within image sequences to perform intra-sequence triangulation, generating 3D-2D correspondences for pose estimation and refinement. MARLOC eliminates the need for pre-built SfM maps, providing accurate and efficient localization suitable for dynamic outdoor environments. Evaluation with benchmark datasets and real-world experiments demonstrates MARLOC's state-of-the-art performance and robustness. By integrating MARLOC into an AR device, we highlight its capability to achieve precise localization in real-world outdoor scenarios, showcasing its practical effectiveness and potential to enhance visual localization in AR applications.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Bidirectional Decoding: Improving Action Chunking via Closed-Loop Resampling
Predicting and executing a sequence of actions without intermediate replanning, known as action chunking, is increasingly used in robot learning from human demonstrations. However, its effects on learned policies remain puzzling: some studies highlight its importance for achieving strong performance, while others observe detrimental effects. In this paper, we first dissect the role of action chunking by analyzing the divergence between the learner and the demonstrator. We find that longer action chunks enable a policy to better capture temporal dependencies by taking into account more past states and actions within the chunk. However, this advantage comes at the cost of exacerbating errors in stochastic environments due to fewer observations of recent states. To address this, we propose Bidirectional Decoding (BID), a test-time inference algorithm that bridges action chunking with closed-loop operations. BID samples multiple predictions at each time step and searches for the optimal one based on two criteria: (i) backward coherence, which favors samples aligned with previous decisions, (ii) forward contrast, which favors samples close to outputs of a stronger policy and distant from those of a weaker policy. By coupling decisions within and across action chunks, BID enhances temporal consistency over extended sequences while enabling adaptive replanning in stochastic environments. Experimental results show that BID substantially outperforms conventional closed-loop operations of two state-of-the-art generative policies across seven simulation benchmarks and two real-world tasks.
comment: Project website: https://bid-robot.github.io/
☆ Optimizing Interaction Space: Enlarging the Capture Volume for Multiple Portable Motion Capture Devices
Markerless motion capture devices such as the Leap Motion Controller (LMC) have been extensively used for tracking hand, wrist, and forearm positions as an alternative to Marker-based Motion Capture (MMC). However, previous studies have highlighted the subpar performance of LMC in reliably recording hand kinematics. In this study, we employ four LMC devices to optimize their collective tracking volume, aiming to enhance the accuracy and precision of hand kinematics. Through Monte Carlo simulation, we determine an optimized layout for the four LMC devices and subsequently conduct reliability and validity experiments encompassing 1560 trials across ten subjects. The combined tracking volume is validated against an MMC system, particularly for kinematic movements involving wrist, index, and thumb flexion. Utilizing calculation resources in one computer, our result of the optimized configuration has a better visibility rate with a value of 0.05 $\pm$ 0.55 compared to the initial configuration with -0.07 $\pm$ 0.40. Multiple Leap Motion Controllers (LMCs) have proven to increase the interaction space of capture volume but are still unable to give agreeable measurements from dynamic movement.
comment: This paper has eight pages and five figures. It has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. The code used in this work is available at https://github.com/hilmanfatoni/Multi-LMC_Optimization
☆ NanoMVG: USV-Centric Low-Power Multi-Task Visual Grounding based on Prompt-Guided Camera and 4D mmWave Radar
Recently, visual grounding and multi-sensors setting have been incorporated into perception system for terrestrial autonomous driving systems and Unmanned Surface Vehicles (USVs), yet the high complexity of modern learning-based visual grounding model using multi-sensors prevents such model to be deployed on USVs in the real-life. To this end, we design a low-power multi-task model named NanoMVG for waterway embodied perception, guiding both camera and 4D millimeter-wave radar to locate specific object(s) through natural language. NanoMVG can perform both box-level and mask-level visual grounding tasks simultaneously. Compared to other visual grounding models, NanoMVG achieves highly competitive performance on the WaterVG dataset, particularly in harsh environments and boasts ultra-low power consumption for long endurance.
comment: 8 pages, 6 figures
☆ Non-verbal Interaction and Interface with a Quadruped Robot using Body and Hand Gestures: Design and User Experience Evaluation
In recent years, quadruped robots have attracted significant attention due to their practical advantages in maneuverability, particularly when navigating rough terrain and climbing stairs. As these robots become more integrated into various industries, including construction and healthcare, researchers have increasingly focused on developing intuitive interaction methods such as speech and gestures that do not require separate devices such as keyboards or joysticks. This paper aims at investigating a comfortable and efficient interaction method with quadruped robots that possess a familiar form factor. To this end, we conducted two preliminary studies to observe how individuals naturally interact with a quadruped robot in natural and controlled settings, followed by a prototype experiment to examine human preferences for body-based and hand-based gesture controls using a Unitree Go1 Pro quadruped robot. We assessed the user experience of 13 participants using the User Experience Questionnaire and measured the time taken to complete specific tasks. The findings of our preliminary results indicate that humans have a natural preference for communicating with robots through hand and body gestures rather than speech. In addition, participants reported higher satisfaction and completed tasks more quickly when using body gestures to interact with the robot. This contradicts the fact that most gesture-based control technologies for quadruped robots are hand-based. The video is available at https://youtu.be/rysv1p1zvp4.
comment: 16 pages
☆ Robotic Object Insertion with a Soft Wrist through Sim-to-Real Privileged Training IROS 2024
This study addresses contact-rich object insertion tasks under unstructured environments using a robot with a soft wrist, enabling safe contact interactions. For the unstructured environments, we assume that there are uncertainties in object grasp and hole pose and that the soft wrist pose cannot be directly measured. Recent methods employ learning approaches and force/torque sensors for contact localization; however, they require data collection in the real world. This study proposes a sim-to-real approach using a privileged training strategy. This method has two steps. 1) The teacher policy is trained to complete the task with sensor inputs and ground truth privileged information such as the peg pose, and then 2) the student encoder is trained with data produced from teacher policy rollouts to estimate the privileged information from sensor history. We performed sim-to-real experiments under grasp and hole pose uncertainties. This resulted in 100\%, 95\%, and 80\% success rates for circular peg insertion with 0, +5, and -5 degree peg misalignments, respectively, and start positions randomly shifted $\pm$ 10 mm from a default position. Also, we tested the proposed method with a square peg that was never seen during training. Additional simulation evaluations revealed that using the privileged strategy improved success rates compared to training with only simulated sensor data. Our results demonstrate the advantage of using sim-to-real privileged training for soft robots, which has the potential to alleviate human engineering efforts for robotic assembly.
comment: This paper has been accepted at IROS 2024
☆ Generative Modeling Perspective for Control and Reasoning in Robotics
Heralded by the initial success in speech recognition and image classification, learning-based approaches with neural networks, commonly referred to as deep learning, have spread across various fields. A primitive form of a neural network functions as a deterministic mapping from one vector to another, parameterized by trainable weights. This is well suited for point estimation in which the model learns a one-to-one mapping (e.g., mapping a front camera view to a steering angle) that is required to solve the task of interest. Although learning such a deterministic, one-to-one mapping is effective, there are scenarios where modeling \emph{multimodal} data distributions, namely learning one-to-many relationships, is helpful or even necessary. In this thesis, we adopt a generative modeling perspective on robotics problems. Generative models learn and produce samples from multimodal distributions, rather than performing point estimation. We will explore the advantages this perspective offers for three topics in robotics.
comment: arXiv admin note: text overlap with arXiv:2302.12244
MakeWay: Object-Aware Costmaps for Proactive Indoor Navigation Using LiDAR
In this paper, we introduce a LiDAR-based robot navigation system, based on novel object-aware affordance-based costmaps. Utilizing a 3D object detection network, our system identifies objects of interest in LiDAR keyframes, refines their 3D poses with the Iterative Closest Point (ICP) algorithm, and tracks them via Kalman filters and the Hungarian algorithm for data association. It then updates existing object poses with new associated detections and creates new object maps for unmatched detections. Using the maintained object-level mapping system, our system creates affordance-driven object costmaps for proactive collision avoidance in path planning. Additionally, we address the scarcity of indoor semantic LiDAR data by introducing an automated labeling technique. This method utilizes a CAD model database for accurate ground-truth annotations, encompassing bounding boxes, positions, orientations, and point-wise semantics of each object in LiDAR sequences. Our extensive evaluations, conducted in both simulated and real-world robot platforms, highlights the effectiveness of proactive object avoidance by using object affordance costmaps, enhancing robotic navigation safety and efficiency. The system can operate in real-time onboard and we intend to release our code and data for public use.
comment: 8 pages, 11 figures
☆ Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning
The stability of visual odometry (VO) systems is undermined by degraded image quality, especially in environments with significant illumination changes. This study employs a deep reinforcement learning (DRL) framework to train agents for exposure control, aiming to enhance imaging performance in challenging conditions. A lightweight image simulator is developed to facilitate the training process, enabling the diversification of image exposure and sequence trajectory. This setup enables completely offline training, eliminating the need for direct interaction with camera hardware and the real environments. Different levels of reward functions are crafted to enhance the VO systems, equipping the DRL agents with varying intelligence. Extensive experiments have shown that our exposure control agents achieve superior efficiency-with an average inference duration of 1.58 ms per frame on a CPU-and respond more quickly than traditional feedback control schemes. By choosing an appropriate reward function, agents acquire an intelligent understanding of motion trends and anticipate future illumination changes. This predictive capability allows VO systems to deliver more stable and precise odometry results. The codes and datasets are available at https://github.com/ShuyangUni/drl_exposure_ctrl.
comment: 8 pages, 7 figures
☆ From "Made In" to Mukokuseki: Exploring the Visual Perception of National Identity in Robots
People read human characteristics into the design of social robots, a visual process with socio-cultural implications. One factor may be nationality, a complex social characteristic that is linked to ethnicity, culture, and other factors of identity that can be embedded in the visual design of robots. Guided by social identity theory (SIT), we explored the notion of "mukokuseki," a visual design characteristic defined by the absence of visual cues to national and ethnic identity in Japanese cultural exports. In a two-phase categorization study (n=212), American (n=110) and Japanese (n=92) participants rated a random selection of nine robot stimuli from America and Japan, plus multinational Pepper. We found evidence of made-in and two kinds of mukokuseki effects. We offer suggestions for the visual design of mukokuseki robots that may interact with people from diverse backgrounds. Our findings have implications for robots and social identity, the viability of robotic exports, and the use of robots internationally.
comment: 35 pages
☆ Improving the Region of Attraction of a Multi-rotor UAV by Estimating Unknown Disturbances
This study presents a machine learning-aided approach to accurately estimate the region of attraction (ROA) of a multi-rotor unmanned aerial vehicle (UAV) controlled using a linear quadratic regulator (LQR) controller. Conventional ROA estimation approaches rely on a nominal dynamic model for ROA calculation, leading to inaccurate estimation due to unknown dynamics and disturbances associated with the physical system. To address this issue, our study utilizes a neural network to predict these unknown disturbances of a planar quadrotor. The nominal model integrated with the learned disturbances is then employed to calculate the ROA of the planer quadrotor using a graphical technique. The estimated ROA is then compared with the ROA calculated using Lyapunov analysis and the graphical approach without incorporating the learned disturbances. The results illustrated that the proposed method provides a more accurate estimation of the ROA, while the conventional Lyapunov-based estimation tends to be more conservative.
☆ Constraint-Aware Intent Estimation for Dynamic Human-Robot Object Co-Manipulation RSS24
Constraint-aware estimation of human intent is essential for robots to physically collaborate and interact with humans. Further, to achieve fluid collaboration in dynamic tasks intent estimation should be achieved in real-time. In this paper, we present a framework that combines online estimation and control to facilitate robots in interpreting human intentions, and dynamically adjust their actions to assist in dynamic object co-manipulation tasks while considering both robot and human constraints. Central to our approach is the adoption of a Dynamic Systems (DS) model to represent human intent. Such a low-dimensional parameterized model, along with human manipulability and robot kinematic constraints, enables us to predict intent using a particle filter solely based on past motion data and tracking errors. For safe assistive control, we propose a variable impedance controller that adapts the robot's impedance to offer assistance based on the intent estimation confidence from the DS particle filter. We validate our framework on a challenging real-world human-robot co-manipulation task and present promising results over baselines. Our framework represents a significant step forward in physical human-robot collaboration (pHRC), ensuring that robot cooperative interactions with humans are both feasible and effective.
comment: RSS24 version with typos fixed
RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning
Global localization using onboard perception sensors, such as cameras and LiDARs, is crucial in autonomous driving and robotics applications when GPS signals are unreliable. Most approaches achieve global localization by sequential place recognition and pose estimation. Some of them train separate models for each task, while others employ a single model with dual heads, trained jointly with separate task-specific losses. However, the accuracy of localization heavily depends on the success of place recognition, which often fails in scenarios with significant changes in viewpoint or environmental appearance. Consequently, this renders the final pose estimation of localization ineffective. To address this, we propose a novel paradigm, PR-by-PE localization, which improves global localization accuracy by deriving place recognition directly from pose estimation. Our framework, RING#, is an end-to-end PR-by-PE localization network operating in the bird's-eye view (BEV) space, designed to support both vision and LiDAR sensors. It introduces a theoretical foundation for learning two equivariant representations from BEV features, which enables globally convergent and computationally efficient pose estimation. Comprehensive experiments on the NCLT and Oxford datasets across both vision and LiDAR modalities demonstrate that our method outperforms state-of-the-art approaches. Furthermore, we provide extensive analyses to confirm the effectiveness of our method. The code will be publicly released.
comment: 23 pages, 19 figures
♻ ☆ Addressing the challenges of loop detection in agricultural environments
While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.
♻ ☆ Evaluation and Deployment of LiDAR-based Place Recognition in Dense Forests
Many LiDAR place recognition systems have been developed and tested specifically for urban driving scenarios. Their performance in natural environments such as forests and woodlands have been studied less closely. In this paper, we analyzed the capabilities of four different LiDAR place recognition systems, both handcrafted and learning-based methods, using LiDAR data collected with a handheld device and legged robot within dense forest environments. In particular, we focused on evaluating localization where there is significant translational and orientation difference between corresponding LiDAR scan pairs. This is particularly important for forest survey systems where the sensor or robot does not follow a defined road or path. Extending our analysis we then incorporated the best performing approach, Logg3dNet, into a full 6-DoF pose estimation system -- introducing several verification layers for precise registration. We demonstrated the performance of our methods in three operational modes: online SLAM, offline multi-mission SLAM map merging, and relocalization into a prior map. We evaluated these modes using data captured in forests from three different countries, achieving 80% of correct loop closures candidates with baseline distances up to 5m, and 60% up to 10m. Video at: https://youtu.be/86l-oxjwmjY
♻ ☆ DeformGS: Scene Flow in Highly Deformable Scenes for Deformable Object Manipulation
Teaching robots to fold, drape, or reposition deformable objects such as cloth will unlock a variety of automation applications. While remarkable progress has been made for rigid object manipulation, manipulating deformable objects poses unique challenges, including frequent occlusions, infinite-dimensional state spaces and complex dynamics. Just as object pose estimation and tracking have aided robots for rigid manipulation, dense 3D tracking (scene flow) of highly deformable objects will enable new applications in robotics while aiding existing approaches, such as imitation learning or creating digital twins with real2sim transfer. We propose DeformGS, an approach to recover scene flow in highly deformable scenes, using simultaneous video captures of a dynamic scene from multiple cameras. DeformGS builds on recent advances in Gaussian splatting, a method that learns the properties of a large number of Gaussians for state-of-the-art and fast novel-view synthesis. DeformGS learns a deformation function to project a set of Gaussians with canonical properties into world space. The deformation function uses a neural-voxel encoding and a multilayer perceptron (MLP) to infer Gaussian position, rotation, and a shadow scalar. We enforce physics-inspired regularization terms based on conservation of momentum and isometry, which leads to trajectories with smaller trajectory errors. We also leverage existing foundation models SAM and XMEM to produce noisy masks, and learn a per-Gaussian mask for better physics-inspired regularization. DeformGS achieves high-quality 3D tracking on highly deformable scenes with shadows and occlusions. In experiments, DeformGS improves 3D tracking by an average of 55.8% compared to the state-of-the-art. With sufficient texture, DeformGS achieves a median tracking error of 3.3 mm on a cloth of 1.5 x 1.5 m in area. Website: https://deformgs.github.io
♻ ☆ Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers IROS
We consider a warehouse in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance in this task. Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, multi-agent reinforcement learning (MARL) can be flexibly applied to diverse warehouse configurations (e.g. size, layout, number/types of workers, item replenishment frequency), and different types of order-picking paradigms (e.g. Goods-to-Person and Person-to-Goods), as the agents can learn how to cooperate optimally through experience. We develop hierarchical MARL algorithms in which a manager agent assigns goals to worker agents, and the policies of the manager and workers are co-trained toward maximising a global objective (e.g. pick rate). Our hierarchical algorithms achieve significant gains in sample efficiency over baseline MARL algorithms and overall pick rates over multiple established industry heuristics in a diverse set of warehouse configurations and different order-picking paradigms.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
♻ ☆ Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding IROS 2024
Multi-agent pathfinding (MAPF) is the problem of finding a set of conflict-free paths for a set of agents. Typically, the agents' moves are limited to a pre-defined graph of possible locations and allowed transitions between them, e.g. a 4-neighborhood grid. We explore how to solve MAPF problems when each agent can move between any pair of possible locations as long as traversing the line segment connecting them does not lead to a collision with the obstacles. This is known as any-angle pathfinding. We present the first optimal any-angle multi-agent pathfinding algorithm. Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP). The straightforward combination of those, however, scales poorly since any-angle path finding induces search trees with a very large branching factor. To mitigate this, we adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints. Experimental results on different combinations of these techniques show they enable solving over 30% more problems than the vanilla combination of CCBS and TO-AA-SIPP. In addition, we present a bounded-suboptimal variant of our algorithm, that enables trading runtime for solution cost in a controlled manner.
comment: This is a pre-print version of the paper accepted to IROS 2024. Its main body is similar to the camera-ready version of the conference paper. In addition this pre-print contains Appendix
♻ ☆ Localization Under Consistent Assumptions Over Dynamics
Accurate maps are a prerequisite for virtually all mobile robot tasks. Most state-of-the-art maps assume a static world; therefore, dynamic objects are filtered out of the measurements. However, this division ignores movable but non-moving -- i.e., semi-static -- objects, which are usually recorded in the map and treated as static objects, violating the static world assumption and causing errors in the localization. This paper presents a method for consistently modeling moving and movable objects to match the map and measurements. This reduces the error resulting from inconsistent categorization and treatment of non-static measurements. A semantic segmentation network is used to categorize the measurements into static and semi-static classes, and a background subtraction filter is used to remove dynamic measurements. Finally, we show that consistent assumptions over dynamics improve localization accuracy when compared against a state-of-the-art baseline solution using real-world data from the Oxford Radar RobotCar data set.
comment: IEEE-MFI 2024
♻ ☆ Object-Oriented Grid Mapping in Dynamic Environments
Grid maps, especially occupancy grid maps, are ubiquitous in many mobile robot applications. To simplify the process of learning the map, grid maps subdivide the world into a grid of cells whose occupancies are independently estimated using measurements in the perceptual field of the particular cell. However, the world consists of objects that span multiple cells, which means that measurements falling onto a cell provide evidence of the occupancy of other cells belonging to the same object. Current models do not capture this correlation and, therefore, do not use object-level information for estimating the state of the environment. In this work, we present a way to generalize the update of grid maps, relaxing the assumption of independence. We propose modeling the relationship between the measurements and the occupancy of each cell as a set of latent variables and jointly estimate those variables and the posterior of the map. We propose a method to estimate the latent variables by clustering based on semantic labels and an extension to the Normal Distributions Transform Occupancy Map (NDT-OM) to facilitate the proposed map update method. We perform comprehensive map creation and localization experiments with real-world data sets and show that the proposed method creates better maps in highly dynamic environments compared to state-of-the-art methods. Finally, we demonstrate the ability of the proposed method to remove occluded objects from the map in a lifelong map update scenario.
comment: IEEE-MFI 2024
♻ ☆ RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving
Autonomous navigation at high speeds in off-road environments necessitates robots to comprehensively understand their surroundings using onboard sensing only. The extreme conditions posed by the off-road setting can cause degraded camera image quality due to poor lighting and motion blur, as well as limited sparse geometric information available from LiDAR sensing when driving at high speeds. In this work, we present RoadRunner, a novel framework capable of predicting terrain traversability and an elevation map directly from camera and LiDAR sensor inputs. RoadRunner enables reliable autonomous navigation, by fusing sensory information, handling of uncertainty, and generation of contextually informed predictions about the geometry and traversability of the terrain while operating at low latency. In contrast to existing methods relying on classifying handcrafted semantic classes and using heuristics to predict traversability costs, our method is trained end-to-end in a self-supervised fashion. The RoadRunner network architecture builds upon popular sensor fusion network architectures from the autonomous driving domain, which embed LiDAR and camera information into a common Bird's Eye View perspective. Training is enabled by utilizing an existing traversability estimation stack to generate training data in hindsight in a scalable manner from real-world off-road driving datasets. Furthermore, RoadRunner improves the system latency by a factor of roughly 4, from 500 ms to 140 ms, while improving the accuracy for traversability costs and elevation map predictions. We demonstrate the effectiveness of RoadRunner in enabling safe and reliable off-road navigation at high speeds in multiple real-world driving scenarios through unstructured desert environments.
comment: accepted for IEEE Transactions on Field Robotics (T-FR)
♻ ☆ Revisiting Reward Design and Evaluation for Robust Humanoid Standing and Walking
A necessary capability for humanoid robots is the ability to stand and walk while rejecting natural disturbances. Recent progress has been made using sim-to-real reinforcement learning (RL) to train such locomotion controllers, with approaches differing mainly in their reward functions. However, prior works lack a clear method to systematically test new reward functions and compare controller performance through repeatable experiments. This limits our understanding of the trade-offs between approaches and hinders progress. To address this, we propose a low-cost, quantitative benchmarking method to evaluate and compare the real-world performance of standing and walking (SaW) controllers on metrics like command following, disturbance recovery, and energy efficiency. We also revisit reward function design and construct a minimally constraining reward function to train SaW controllers. We experimentally verify that our benchmarking framework can identify areas for improvement, which can be systematically addressed to enhance the policies. We also compare our new controller to state-of-the-art controllers on the Digit humanoid robot. The results provide clear quantitative trade-offs among the controllers and suggest directions for future improvements to the reward functions and expansion of the benchmarks.
comment: 8 pages, 5 figs
♻ ☆ Motion Polynomials Admitting a Factorization with Linear Factors
Motion polynomials (polynomials over the dual quaternions with nonzero real norm) describe rational motions. We present a necessary and sufficient condition for reduced bounded motion polynomials to admit factorizations into monic linear factors, and we give an algorithm to compute them. We can use those linear factors to construct mechanisms because the factorization corresponds to the decomposition of the rational motion into simple rotations or translations. Bounded motion polynomials always admit a factorization into linear factors after multiplying with a suitable real or quaternion polynomial. Our criterion for factorizability allows us to improve on earlier algorithms to compute a suitable real or quaternion polynomial co-factor.
♻ ☆ Control of Unknown Quadrotors from a Single Throw IROS 2024
This paper presents a method to recover quadrotor UAV from a throw, when no control parameters are known before the throw. We leverage the availability of high-frequency rotor speed feedback available in racing drone hardware and software to find control effectiveness values and fit a motor model using recursive least squares (RLS) estimation. Furthermore, we propose an excitation sequence that provides large actuation commands while guaranteeing to stay within gyroscope sensing limits. After 450ms of excitation, an INDI attitude controller uses the 52 fitted parameters to arrest rotational motion and recover an upright attitude. Finally, a NDI position controller drives the craft to a position setpoint. The proposed algorithm runs efficiently on microcontrollers found in common UAV flight controllers, and was shown to recover an agile quadrotor every time in 57 live experiments with as low as 3.5m throw height, demonstrating robustness against initial rotations and noise. We also demonstrate control of randomized quadrotors in simulated throws, where the parameter fitting RMS error is typically within 10% of the true value. This work has been submitted to IROS 2024 for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
comment: 7 pages, 5 figures, 2 tables. Submitted to the IROS 2024 conference
♻ ☆ AlabOS: A Python-based Reconfigurable Workflow Management Framework for Autonomous Laboratories
The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and active learning, promises to accelerate materials discovery and innovation. As these autonomous systems grow in complexity, the demand for robust and efficient workflow management software becomes increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources, with an emphasis on automated laboratories for materials synthesis and characterization. AlabOS features a reconfigurable experiment workflow model and a resource reservation mechanism, enabling the simultaneous execution of varied workflows composed of modular tasks while eliminating conflicts between tasks. To showcase its capability, we demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, A-Lab, with around 3,500 samples synthesized over 1.5 years.
comment: 34 pages, 5 figures
♻ ☆ DTG : Diffusion-based Trajectory Generation for Mapless Global Navigation
We present a novel end-to-end diffusion-based trajectory generation method, DTG, for mapless global navigation in challenging outdoor scenarios with occlusions and unstructured off-road features like grass, buildings, bushes, etc. Given a distant goal, our approach computes a trajectory that satisfies the following goals: (1) minimize the travel distance to the goal; (2) maximize the traversability by choosing paths that do not lie in undesirable areas. Specifically, we present a novel Conditional RNN(CRNN) for diffusion models to efficiently generate trajectories. Furthermore, we propose an adaptive training method that ensures that the diffusion model generates more traversable trajectories. We evaluate our methods in various outdoor scenes and compare the performance with other global navigation algorithms on a Husky robot. In practice, we observe at least a 15% improvement in traveling distance and around a 7% improvement in traversability.
comment: 10 pages
♻ ☆ Perfecting Periodic Trajectory Tracking: Model Predictive Control with a Periodic Observer ($Π$-MPC) IROS 2024
In Model Predictive Control (MPC), discrepancies between the actual system and the predictive model can lead to substantial tracking errors and significantly degrade performance and reliability. While such discrepancies can be alleviated with more complex models, this often complicates controller design and implementation. By leveraging the fact that many trajectories of interest are periodic, we show that perfect tracking is possible when incorporating a simple observer that estimates and compensates for periodic disturbances. We present the design of the observer and the accompanying tracking MPC scheme, proving that their combination achieves zero tracking error asymptotically, regardless of the complexity of the unmodelled dynamics. We validate the effectiveness of our method, demonstrating asymptotically perfect tracking on a high-dimensional soft robot with nearly 10,000 states and a fivefold reduction in tracking errors compared to a baseline MPC on small-scale autonomous race car experiments.
comment: 8 pages, 3 figures; 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ HeROS: a miniaturised platform for research and development on Heterogeneous RObotic Systems
Tests and prototyping are vital in the research and development of robotic systems. Work with target hardware is problematic. Hence, in the article, a low-cost, miniaturised physical platform is presented to deal with experiments on heterogeneous robotic systems. The platform comprises a physical board with tiles of the standardised base, diverse mobile robots, and manipulation robots. The number of exemplary applications validates the usefulness of the solution.
♻ ☆ Decentralized Adaptive Aerospace Transportation of Unknown Loads Using A Team of Robots
Transportation missions in aerospace are limited to the capability of each aerospace robot and the properties of the target transported object, such as mass, inertia, and grasping locations. We present a novel decentralized adaptive controller design for multiple robots that can be implemented in different kinds of aerospace robots. Our controller adapts to unknown objects in different gravity environments. We validate our method in an aerial scenario using multiple fully actuated hexarotors with grasping capabilities, and a space scenario using a group of space tugs. In both scenarios, the robots transport a payload cooperatively through desired three-dimensional trajectories. We show that our method can adapt to unexpected changes that include the loss of robots during the transportation mission.
comment: This paper has been accepted by DARS2024 Conference. The permission for the preprint version on Arxiv has been approved through the DARS2024 Committee and Springer Press
♻ ☆ Rico: extended TIAGo robot towards up-to-date social and assistive robot usage scenarios
Social and assistive robotics have vastly increased in popularity in recent years. Due to the wide range of usage, robots executing such tasks must be highly reliable and possess enough functions to satisfy multiple scenarios. This article describes a mobile, artificial intelligence-driven, robotic platform Rico. Its prior usage in similar scenarios, the number of its capabilities, and the experiments it presented should qualify it as a proper arm-less platform for social and assistive circumstances.
comment: PP-RAI 2024, 5th Polish Conference on Artificial Intelligence, 18-20.04.2024 Warsaw, Poland
♻ ☆ Saltation Matrices: The Essential Tool for Linearizing Hybrid Dynamical Systems
Hybrid dynamical systems, i.e. systems that have both continuous and discrete states, are ubiquitous in engineering, but are difficult to work with due to their discontinuous transitions. For example, a robot leg is able to exert very little control effort while it is in the air compared to when it is on the ground. When the leg hits the ground, the penetrating velocity instantaneously collapses to zero. These instantaneous changes in dynamics and discontinuities (or jumps) in state make standard smooth tools for planning, estimation, control, and learning difficult for hybrid systems. One of the key tools for accounting for these jumps is called the saltation matrix. The saltation matrix is the sensitivity update when a hybrid jump occurs and has been used in a variety of fields including robotics, power circuits, and computational neuroscience. This paper presents an intuitive derivation of the saltation matrix and discusses what it captures, where it has been used in the past, how it is used for linear and quadratic forms, how it is computed for rigid body systems with unilateral constraints, and some of the structural properties of the saltation matrix in these cases.
Computer Vision 110
☆ Bridging Episodes and Semantics: A Novel Framework for Long-Form Video Understanding ECCV'24
While existing research often treats long-form videos as extended short videos, we propose a novel approach that more accurately reflects human cognition. This paper introduces BREASE: BRidging Episodes And SEmantics for Long-Form Video Understanding, a model that simulates episodic memory accumulation to capture action sequences and reinforces them with semantic knowledge dispersed throughout the video. Our work makes two key contributions: First, we develop an Episodic COmpressor (ECO) that efficiently aggregates crucial representations from micro to semi-macro levels. Second, we propose a Semantics reTRiever (SeTR) that enhances these aggregated representations with semantic information by focusing on the broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. Extensive experiments demonstrate that BREASE achieves state-of-the-art performance across multiple long video understanding benchmarks in both zero-shot and fully-supervised settings. The project page and code are at: https://joslefaure.github.io/assets/html/hermes.html.
comment: Accepted to the EVAL-FoMo Workshop at ECCV'24. Project page: https://joslefaure.github.io/assets/html/hermes.html
☆ DARES: Depth Anything in Robotic Endoscopic Surgery with Self-supervised Vector-LoRA of the Foundation Model
Robotic-assisted surgery (RAS) relies on accurate depth estimation for 3D reconstruction and visualization. While foundation models like Depth Anything Models (DAM) show promise, directly applying them to surgery often yields suboptimal results. Fully fine-tuning on limited surgical data can cause overfitting and catastrophic forgetting, compromising model robustness and generalization. Although Low-Rank Adaptation (LoRA) addresses some adaptation issues, its uniform parameter distribution neglects the inherent feature hierarchy, where earlier layers, learning more general features, require more parameters than later ones. To tackle this issue, we introduce Depth Anything in Robotic Endoscopic Surgery (DARES), a novel approach that employs a new adaptation technique, Vector Low-Rank Adaptation (Vector-LoRA) on the DAM V2 to perform self-supervised monocular depth estimation in RAS scenes. To enhance learning efficiency, we introduce Vector-LoRA by integrating more parameters in earlier layers and gradually decreasing parameters in later layers. We also design a reprojection loss based on the multi-scale SSIM error to enhance depth perception by better tailoring the foundation model to the specific requirements of the surgical environment. The proposed method is validated on the SCARED dataset and demonstrates superior performance over recent state-of-the-art self-supervised monocular depth estimation techniques, achieving an improvement of 13.3% in the absolute relative error metric. The code and pre-trained weights are available at https://github.com/mobarakol/DARES.
comment: 11 pages
☆ CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion
With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera placement, a key component of previsualization. To address these issues, we introduce CinePreGen, a visual previsualization system enhanced with engine-powered diffusion. It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments. This is combined with a user-friendly AI rendering workflow, which aims to achieve consistent results through multi-masked IP-Adapter and engine simulation guidelines. In our comprehensive evaluation study, we demonstrate that our system reduces development viscosity (i.e., the complexity and challenges in the development process), meets users' needs for extensive control and iteration in the design process, and outperforms other AI video production workflows in cinematic camera movement, as shown by our experiments and a within-subjects user study. With its intuitive camera controls and realistic rendering of camera motion, CinePreGen shows great potential for improving video production for both individual creators and industry professionals.
☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos.
comment: 7 pages, 5 figures, 4 tables. Last updated on August 30th, 2024
☆ Generative AI Enables Medical Image Segmentation in Ultra Low-Data Regimes
Semantic segmentation of medical images is pivotal in applications like disease diagnosis and treatment planning. While deep learning has excelled in automating this task, a major hurdle is the need for numerous annotated segmentation masks, which are resource-intensive to produce due to the required expertise and time. This scenario often leads to ultra low-data regimes, where annotated images are extremely limited, posing significant challenges for the generalization of conventional deep learning methods on test images. To address this, we introduce a generative deep learning framework, which uniquely generates high-quality paired segmentation masks and medical images, serving as auxiliary data for training robust models in data-scarce environments. Unlike traditional generative models that treat data generation and segmentation model training as separate processes, our method employs multi-level optimization for end-to-end data generation. This approach allows segmentation performance to directly influence the data generation process, ensuring that the generated data is specifically tailored to enhance the performance of the segmentation model. Our method demonstrated strong generalization performance across 9 diverse medical image segmentation tasks and on 16 datasets, in ultra-low data regimes, spanning various diseases, organs, and imaging modalities. When applied to various segmentation models, it achieved performance improvements of 10-20\% (absolute), in both same-domain and out-of-domain scenarios. Notably, it requires 8 to 20 times less training data than existing methods to achieve comparable results. This advancement significantly improves the feasibility and cost-effectiveness of applying deep learning in medical imaging, particularly in scenarios with limited data availability.
☆ How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition ECCV 2024
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.
comment: Accepted at ECCV 2024 Workshops
☆ Look, Learn and Leverage (L$^3$): Mitigating Visual-Domain Shift and Discovering Intrinsic Relations via Symbolic Alignment
Modern deep learning models have demonstrated outstanding performance on discovering the underlying mechanisms when both visual appearance and intrinsic relations (e.g., causal structure) data are sufficient, such as Disentangled Representation Learning (DRL), Causal Representation Learning (CRL) and Visual Question Answering (VQA) methods. However, generalization ability of these models is challenged when the visual domain shifts and the relations data is absent during finetuning. To address this challenge, we propose a novel learning framework, Look, Learn and Leverage (L$^3$), which decomposes the learning process into three distinct phases and systematically utilize the class-agnostic segmentation masks as the common symbolic space to align visual domains. Thus, a relations discovery model can be trained on the source domain, and when the visual domain shifts and the intrinsic relations are absent, the pretrained relations discovery model can be directly reused and maintain a satisfactory performance. Extensive performance evaluations are conducted on three different tasks: DRL, CRL and VQA, and show outstanding results on all three tasks, which reveals the advantages of L$^3$.
comment: 17 pages, 9 figures, 6 tables
☆ LSMS: Language-guided Scale-aware MedSegmentor for Medical Image Referring Segmentation
Conventional medical image segmentation methods have been found inadequate in facilitating physicians with the identification of specific lesions for diagnosis and treatment. Given the utility of text as an instructional format, we introduce a novel task termed Medical Image Referring Segmentation (MIRS), which requires segmenting specified lesions in images based on the given language expressions. Due to the varying object scales in medical images, MIRS demands robust vision-language modeling and comprehensive multi-scale interaction for precise localization and segmentation under linguistic guidance. However, existing medical image segmentation methods fall short in meeting these demands, resulting in insufficient segmentation accuracy. In response, we propose an approach named Language-guided Scale-aware MedSegmentor (LSMS), incorporating two appealing designs: (1)~a Scale-aware Vision-Language Attention module that leverages diverse convolutional kernels to acquire rich visual knowledge and interact closely with linguistic features, thereby enhancing lesion localization capability; (2)~a Full-Scale Decoder that globally models multi-modal features across various scales, capturing complementary information between scales to accurately outline lesion boundaries. Addressing the lack of suitable datasets for MIRS, we constructed a vision-language medical dataset called Reference Hepatic Lesion Segmentation (RefHL-Seg). This dataset comprises 2,283 abdominal CT slices from 231 cases, with corresponding textual annotations and segmentation masks for various liver lesions in images. We validated the performance of LSMS for MIRS and conventional medical image segmentation tasks across various datasets. Our LSMS consistently outperforms on all datasets with lower computational costs. The code and datasets will be released.
comment: 14 pages, 5 figures
☆ Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method
In this paper, we delve into the realm of 4-D light fields (LFs) to enhance underwater imaging plagued by light absorption, scattering, and other challenges. Contrasting with conventional 2-D RGB imaging, 4-D LF imaging excels in capturing scenes from multiple perspectives, thereby indirectly embedding geometric information. This intrinsic property is anticipated to effectively address the challenges associated with underwater imaging. By leveraging both explicit and implicit depth cues present in 4-D LF images, we propose a progressive, mutually reinforcing framework for underwater 4-D LF image enhancement and depth estimation. Specifically, our framework explicitly utilizes estimated depth information alongside implicit depth-related dynamic convolutional kernels to modulate output features. The entire framework decomposes this complex task, iteratively optimizing the enhanced image and depth information to progressively achieve optimal enhancement results. More importantly, we construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods, comprising 75 underwater scenes and 3675 high-resolution 2K pairs. To craft vibrant and varied underwater scenes, we build underwater environments with various objects and adopt several types of degradation. Through extensive experimentation, we showcase the potential and superiority of 4-D LF-based underwater imaging vis-a-vis traditional 2-D RGB-based approaches. Moreover, our method effectively corrects color bias and achieves state-of-the-art performance. The dataset and code will be publicly available at https://github.com/linlos1234/LFUIE.
comment: 14 pages, 14 figures
☆ Evaluating Reliability in Medical DNNs: A Critical Analysis of Feature and Confidence-Based OOD Detection MICCAI 2023
Reliable use of deep neural networks (DNNs) for medical image analysis requires methods to identify inputs that differ significantly from the training data, called out-of-distribution (OOD), to prevent erroneous predictions. OOD detection methods can be categorised as either confidence-based (using the model's output layer for OOD detection) or feature-based (not using the output layer). We created two new OOD benchmarks by dividing the D7P (dermatology) and BreastMNIST (ultrasound) datasets into subsets which either contain or don't contain an artefact (rulers or annotations respectively). Models were trained with artefact-free images, and images with the artefacts were used as OOD test sets. For each OOD image, we created a counterfactual by manually removing the artefact via image processing, to assess the artefact's impact on the model's predictions. We show that OOD artefacts can boost a model's softmax confidence in its predictions, due to correlations in training data among other factors. This contradicts the common assumption that OOD artefacts should lead to more uncertain outputs, an assumption on which most confidence-based methods rely. We use this to explain why feature-based methods (e.g. Mahalanobis score) typically have greater OOD detection performance than confidence-based methods (e.g. MCP). However, we also show that feature-based methods typically perform worse at distinguishing between inputs that lead to correct and incorrect predictions (for both OOD and ID data). Following from these insights, we argue that a combination of feature-based and confidence-based methods should be used within DNN pipelines to mitigate their respective weaknesses. These project's code and OOD benchmarks are available at: https://github.com/HarryAnthony/Evaluating_OOD_detection.
comment: Accepted for the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024) workshop at the MICCAI 2023
☆ Investigating Neuron Ablation in Attention Heads: The Case for Peak Activation Centering
The use of transformer-based models is growing rapidly throughout society. With this growth, it is important to understand how they work, and in particular, how the attention mechanisms represent concepts. Though there are many interpretability methods, many look at models through their neuronal activations, which are poorly understood. We describe different lenses through which to view neuron activations, and investigate the effectiveness in language models and vision transformers through various methods of neural ablation: zero ablation, mean ablation, activation resampling, and a novel approach we term 'peak ablation'. Through experimental analysis, we find that in different regimes and models, each method can offer the lowest degradation of model performance compared to other methods, with resampling usually causing the most significant performance deterioration. We make our code available at https://github.com/nickypro/investigating-ablation.
comment: 9 pages, 2 figures, XAI World Conference 2024 Late-Breaking Work
☆ Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations
Advancing Machine Learning (ML)-based perception models for autonomous systems necessitates addressing weak spots within the models, particularly in challenging Operational Design Domains (ODDs). These are environmental operating conditions of an autonomous vehicle which can contain difficult conditions, e.g., lens flare at night or objects reflected in a wet street. This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions. The proposed approach leverages customized physics-based augmentation functions, to generate realistic training data that simulates diverse ODD scenarios. We present a comprehensive framework that includes identifying weak spots in ML models, selecting suitable augmentations, and devising effective training strategies. The methodology integrates hyperparameter optimization and latent space optimization to fine-tune augmentation parameters, ensuring they maximally improve the ML models' performance. Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets. Our findings emphasize that optimal training strategies are model- and data-specific and highlight the benefits of integrating augmentations into the training pipeline. By incorporating augmentations, we observe enhanced robustness of ML-based perception models, making them more resilient to edge cases encountered in real-world ODDs. This work underlines the importance of customized augmentations and offers an effective solution for improving the safety and reliability of autonomous driving functions.
☆ BOP-D: Revisiting 6D Pose Estimation Benchmark for Better Evaluation under Visual Ambiguities
Currently, 6D pose estimation methods are benchmarked on datasets that consider, for their ground truth annotations, visual ambiguities as only related to global object symmetries. However, as previously observed [26], visual ambiguities can also happen depending on the viewpoint or the presence of occluding objects, when disambiguating parts become hidden. The visual ambiguities are therefore actually different across images. We thus first propose an automatic method to re-annotate those datasets with a 6D pose distribution specific to each image, taking into account the visibility of the object surface in the image to correctly determine the visual ambiguities. Given this improved ground truth, we re-evaluate the state-of-the-art methods and show this greatly modify the ranking of these methods. Our annotations also allow us to benchmark recent methods able to estimate a pose distribution on real images for the first time. We will make our annotations for the T-LESS dataset and our code publicly available.
☆ DCUDF2: Improving Efficiency and Accuracy in Extracting Zero Level Sets from Unsigned Distance Fields
Unsigned distance fields (UDFs) allow for the representation of models with complex topologies, but extracting accurate zero level sets from these fields poses significant challenges, particularly in preserving topological accuracy and capturing fine geometric details. To overcome these issues, we introduce DCUDF2, an enhancement over DCUDF--the current state-of-the-art method--for extracting zero level sets from UDFs. Our approach utilizes an accuracy-aware loss function, enhanced with self-adaptive weights, to improve geometric quality significantly. We also propose a topology correction strategy that reduces the dependence on hyper-parameter, increasing the robustness of our method. Furthermore, we develop new operations leveraging self-adaptive weights to boost runtime efficiency. Extensive experiments on surface extraction across diverse datasets demonstrate that DCUDF2 outperforms DCUDF and existing methods in both geometric fidelity and topological accuracy. We will make the source code publicly available.
☆ UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios
Recent evaluations of Large Multimodal Models (LMMs) have explored their capabilities in various domains, with only few benchmarks specifically focusing on urban environments. Moreover, existing urban benchmarks have been limited to evaluating LMMs with basic region-level urban tasks under singular views, leading to incomplete evaluations of LMMs' abilities in urban environments. To address these issues, we present UrBench, a comprehensive benchmark designed for evaluating LMMs in complex multi-view urban scenarios. UrBench contains 11.6K meticulously curated questions at both region-level and role-level that cover 4 task dimensions: Geo-Localization, Scene Reasoning, Scene Understanding, and Object Understanding, totaling 14 task types. In constructing UrBench, we utilize data from existing datasets and additionally collect data from 11 cities, creating new annotations using a cross-view detection-matching method. With these images and annotations, we then integrate LMM-based, rule-based, and human-based methods to construct large-scale high-quality questions. Our evaluations on 21 LMMs show that current LMMs struggle in the urban environments in several aspects. Even the best performing GPT-4o lags behind humans in most tasks, ranging from simple tasks such as counting to complex tasks such as orientation, localization and object attribute recognition, with an average performance gap of 17.4%. Our benchmark also reveals that LMMs exhibit inconsistent behaviors with different urban views, especially with respect to understanding cross-view relations. UrBench datasets and benchmark results will be publicly available at https://opendatalab.github.io/UrBench/.
comment: 9 pages, 6 figures
☆ VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either fine-tune large language models (LLMs) or build large-scale time-series datasets to develop TSF foundation models. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. In this paper, we explore a new road to building a TSF foundation model from rich and high-quality natural images, based on the intrinsic similarities between images and time series. To bridge the gap between the two domains, we reformulate the TSF task as an image reconstruction task, which is further processed by a visual masked autoencoder (MAE) self-supervised pre-trained on the ImageNet dataset. Surprisingly, without further adaptation in the time-series domain, the proposed VisionTS could achieve superior zero-shot forecasting performance compared to existing TSF foundation models. With minimal fine-tuning, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. These findings suggest that visual models could be a free lunch for TSF and highlight the potential for future cross-domain research between computer vision and TSF. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
comment: 26 pages, 11 figures
☆ Abstracted Gaussian Prototypes for One-Shot Concept Learning
We introduce a cluster-based generative image segmentation framework to encode higher-level representations of visual concepts based on one-shot learning inspired by the Omniglot Challenge. The inferred parameters of each component of a Gaussian Mixture Model (GMM) represent a distinct topological subpart of a visual concept. Sampling new data from these parameters generates augmented subparts to build a more robust prototype for each concept, i.e., the Abstracted Gaussian Prototype (AGP). This framework addresses one-shot classification tasks using a cognitively-inspired similarity metric and addresses one-shot generative tasks through a novel AGP-VAE pipeline employing variational autoencoders (VAEs) to generate new class variants. Results from human judges reveal that the generative pipeline produces novel examples and classes of visual concepts that are broadly indistinguishable from those made by humans. The proposed framework leads to impressive but not state-of-the-art classification accuracy; thus, the contribution is two-fold: 1) the system is uniquely low in theoretical and computational complexity and operates in a completely standalone manner compared while existing approaches draw heavily on pre-training or knowledge engineering; and 2) in contrast with competing neural network models, the AGP approach addresses the importance of breadth of task capability emphasized in the Omniglot challenge (i.e., successful performance on generative tasks). These two points are critical as we advance toward an understanding of how learning/reasoning systems can produce viable, robust, and flexible concepts based on literally nothing more than a single example.
☆ A nonlinear elasticity model in computer vision
The purpose of this paper is to analyze a nonlinear elasticity model previously introduced by the authors for comparing two images, regarded as bounded open subsets of $\R^n$ together with associated vector-valued intensity maps. Optimal transformations between the images are sought as minimisers of an integral functional among orientation-preserving homeomorphisms. The existence of minimisers is proved under natural coercivity and polyconvexity conditions, assuming only that the intensity functions are bounded measurable. Variants of the existence theorem are also proved, first under the constraint that finite sets of landmark points in the two images are mapped one to the other, and second when one image is to be compared to an unknown part of another. The question is studied as to whether for images related by a linear mapping the unique minimizer is given by that linear mapping. For a natural class of functional integrands an example is given guaranteeing that this property holds for pairs of images in which the second is a scaling of the first by a constant factor. However for the property to hold for arbitrary pairs of linearly related images it is shown that the integrand has to depend on the gradient of the transformation as a convex function of its determinant alone. This suggests a new model in which the integrand depends also on second derivatives of the transformation, and an example is given for which both existence of minimizers is assured and the above property holds for all pairs of linearly related images.
☆ CondSeg: Ellipse Estimation of Pupil and Iris via Conditioned Segmentation
Parsing of eye components (i.e. pupil, iris and sclera) is fundamental for eye tracking and gaze estimation for AR/VR products. Mainstream approaches tackle this problem as a multi-class segmentation task, providing only visible part of pupil/iris, other methods regress elliptical parameters using human-annotated full pupil/iris parameters. In this paper, we consider two priors: projected full pupil/iris circle can be modelled with ellipses (ellipse prior), and the visibility of pupil/iris is controlled by openness of eye-region (condition prior), and design a novel method CondSeg to estimate elliptical parameters of pupil/iris directly from segmentation labels, without explicitly annotating full ellipses, and use eye-region mask to control the visibility of estimated pupil/iris ellipses. Conditioned segmentation loss is used to optimize the parameters by transforming parameterized ellipses into pixel-wise soft masks in a differentiable way. Our method is tested on public datasets (OpenEDS-2019/-2020) and shows competitive results on segmentation metrics, and provides accurate elliptical parameters for further applications of eye tracking simultaneously.
☆ OG-Mapping: Octree-based Structured 3D Gaussians for Online Dense Mapping
3D Gaussian splatting (3DGS) has recently demonstrated promising advancements in RGB-D online dense mapping. Nevertheless, existing methods excessively rely on per-pixel depth cues to perform map densification, which leads to significant redundancy and increased sensitivity to depth noise. Additionally, explicitly storing 3D Gaussian parameters of room-scale scene poses a significant storage challenge. In this paper, we introduce OG-Mapping, which leverages the robust scene structural representation capability of sparse octrees, combined with structured 3D Gaussian representations, to achieve efficient and robust online dense mapping. Moreover, OG-Mapping employs an anchor-based progressive map refinement strategy to recover the scene structures at multiple levels of detail. Instead of maintaining a small number of active keyframes with a fixed keyframe window as previous approaches do, a dynamic keyframe window is employed to allow OG-Mapping to better tackle false local minima and forgetting issues. Experimental results demonstrate that OG-Mapping delivers more robust and superior realism mapping results than existing Gaussian-based RGB-D online mapping methods with a compact model, and no additional post-processing is required.
☆ How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception
Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles, substantially enhancing their ability to understand and interpret the environment. However, these systems exhibit inherent limitations such as brittleness, opacity, and unpredictable behavior in out-of-distribution scenarios. The European Union (EU) Artificial Intelligence (AI) Act, as a pioneering legislative framework, aims to address these challenges by establishing stringent norms and standards for AI systems, including those used in autonomous driving (AD), which are categorized as high-risk AI. In this work, we explore how the newly available generative AI models can potentially support addressing upcoming regulatory requirements in AD perception, particularly with respect to safety. This short review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD. While generative AI models show promise in addressing some of the EU AI Acts requirements, such as transparency and robustness, this review examines their potential benefits and discusses how developers could leverage these methods to enhance compliance with the Act. The paper also highlights areas where further research is needed to ensure reliable and safe integration of these technologies.
☆ NanoMVG: USV-Centric Low-Power Multi-Task Visual Grounding based on Prompt-Guided Camera and 4D mmWave Radar
Recently, visual grounding and multi-sensors setting have been incorporated into perception system for terrestrial autonomous driving systems and Unmanned Surface Vehicles (USVs), yet the high complexity of modern learning-based visual grounding model using multi-sensors prevents such model to be deployed on USVs in the real-life. To this end, we design a low-power multi-task model named NanoMVG for waterway embodied perception, guiding both camera and 4D millimeter-wave radar to locate specific object(s) through natural language. NanoMVG can perform both box-level and mask-level visual grounding tasks simultaneously. Compared to other visual grounding models, NanoMVG achieves highly competitive performance on the WaterVG dataset, particularly in harsh environments and boasts ultra-low power consumption for long endurance.
comment: 8 pages, 6 figures
☆ Covariance-corrected Whitening Alleviates Network Degeneration on Imbalanced Classification
Class imbalance is a critical issue in image classification that significantly affects the performance of deep recognition models. In this work, we first identify a network degeneration dilemma that hinders the model learning by introducing a high linear dependence among the features inputted into the classifier. To overcome this challenge, we propose a novel framework called Whitening-Net to mitigate the degenerate solutions, in which ZCA whitening is integrated before the linear classifier to normalize and decorrelate the batch samples. However, in scenarios with extreme class imbalance, the batch covariance statistic exhibits significant fluctuations, impeding the convergence of the whitening operation. Therefore, we propose two covariance-corrected modules, the Group-based Relatively Balanced Batch Sampler (GRBS) and the Batch Embedded Training (BET), to get more accurate and stable batch covariance, thereby reinforcing the capability of whitening. Our modules can be trained end-to-end without incurring substantial computational costs. Comprehensive empirical evaluations conducted on benchmark datasets, including CIFAR-LT-10/100, ImageNet-LT, and iNaturalist-LT, validate the effectiveness of our proposed approaches.
comment: 20 pages, 10 figures, 10 tables. arXiv admin note: text overlap with arXiv:2112.05958
Hybrid Classification-Regression Adaptive Loss for Dense Object Detection
For object detection detectors, enhancing model performance hinges on the ability to simultaneously consider inconsistencies across tasks and focus on difficult-to-train samples. Achieving this necessitates incorporating information from both the classification and regression tasks. However, prior work tends to either emphasize difficult-to-train samples within their respective tasks or simply compute classification scores with IoU, often leading to suboptimal model performance. In this paper, we propose a Hybrid Classification-Regression Adaptive Loss, termed as HCRAL. Specifically, we introduce the Residual of Classification and IoU (RCI) module for cross-task supervision, addressing task inconsistencies, and the Conditioning Factor (CF) to focus on difficult-to-train samples within each task. Furthermore, we introduce a new strategy named Expanded Adaptive Training Sample Selection (EATSS) to provide additional samples that exhibit classification and regression inconsistencies. To validate the effectiveness of the proposed method, we conduct extensive experiments on COCO test-dev. Experimental evaluations demonstrate the superiority of our approachs. Additionally, we designed experiments by separately combining the classification and regression loss with regular loss functions in popular one-stage models, demonstrating improved performance.
☆ EMHI: A Multimodal Egocentric Human Motion Dataset with HMD and Body-Worn IMUs
Egocentric human pose estimation (HPE) using wearable sensors is essential for VR/AR applications. Most methods rely solely on either egocentric-view images or sparse Inertial Measurement Unit (IMU) signals, leading to inaccuracies due to self-occlusion in images or the sparseness and drift of inertial sensors. Most importantly, the lack of real-world datasets containing both modalities is a major obstacle to progress in this field. To overcome the barrier, we propose EMHI, a multimodal \textbf{E}gocentric human \textbf{M}otion dataset with \textbf{H}ead-Mounted Display (HMD) and body-worn \textbf{I}MUs, with all data collected under the real VR product suite. Specifically, EMHI provides synchronized stereo images from downward-sloping cameras on the headset and IMU data from body-worn sensors, along with pose annotations in SMPL format. This dataset consists of 885 sequences captured by 58 subjects performing 39 actions, totaling about 28.5 hours of recording. We evaluate the annotations by comparing them with optical marker-based SMPL fitting results. To substantiate the reliability of our dataset, we introduce MEPoser, a new baseline method for multimodal egocentric HPE, which employs a multimodal fusion encoder, temporal feature encoder, and MLP-based regression heads. The experiments on EMHI show that MEPoser outperforms existing single-modal methods and demonstrates the value of our dataset in solving the problem of egocentric HPE. We believe the release of EMHI and the method could advance the research of egocentric HPE and expedite the practical implementation of this technology in VR/AR products.
☆ Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis
Current computer-aided ECG diagnostic systems struggle with the underdetection of rare but critical cardiac anomalies due to the imbalanced nature of ECG datasets. This study introduces a novel approach using self-supervised anomaly detection pretraining to address this limitation. The anomaly detection model is specifically designed to detect and localize subtle deviations from normal cardiac patterns, capturing the nuanced details essential for accurate ECG interpretation. Validated on an extensive dataset of over one million ECG records from clinical practice, characterized by a long-tail distribution across 116 distinct categories, the anomaly detection-pretrained ECG diagnostic model has demonstrated a significant improvement in overall accuracy. Notably, our approach yielded a 94.7% AUROC, 92.2% sensitivity, and 92.5\% specificity for rare ECG types, significantly outperforming traditional methods and narrowing the performance gap with common ECG types. The integration of anomaly detection pretraining into ECG analysis represents a substantial contribution to the field, addressing the long-standing challenge of long-tail data distributions in clinical diagnostics. Furthermore, prospective validation in real-world clinical settings revealed that our AI-driven approach enhances diagnostic efficiency, precision, and completeness by 32%, 6.7%, and 11.8% respectively, when compared to standard practices. This advancement marks a pivotal step forward in the integration of AI within clinical cardiology, with particularly profound implications for emergency care, where rapid and accurate ECG interpretation is crucial. The contributions of this study not only push the boundaries of current ECG diagnostic capabilities but also lay the groundwork for more reliable and accessible cardiovascular care.
comment: arXiv admin note: text overlap with arXiv:2404.04935
☆ Look, Compare, Decide: Alleviating Hallucination in Large Vision-Language Models via Multi-View Multi-Path Reasoning
Recently, Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multi-modal context comprehension. However, they still suffer from hallucination problems referring to generating inconsistent outputs with the image content. To mitigate hallucinations, previous studies mainly focus on retraining LVLMs with custom datasets. Although effective, they inherently come with additional computational costs. In this paper, we propose a training-free framework, \textbf{MVP}, that aims to reduce hallucinations by making the most of the innate capabilities of the LVLMs via \textbf{M}ulti-\textbf{V}iew Multi-\textbf{P}ath Reasoning. Specifically, we first devise a multi-view information-seeking strategy to thoroughly perceive the comprehensive information in the image, which enriches the general global information captured by the original vision encoder in LVLMs. Furthermore, during the answer decoding, we observe that the occurrence of hallucinations has a strong correlation with the certainty of the answer tokens. Thus, we propose multi-path reasoning for each information view to quantify and aggregate the certainty scores for each potential answer among multiple decoding paths and finally decide the output answer. By fully grasping the information in the image and carefully considering the certainty of the potential answers when decoding, our MVP can effectively reduce hallucinations in LVLMs.The extensive experiments verify that our proposed MVP significantly mitigates the hallucination problem across four well-known LVLMs. The source code is available at: \url{https://github.com/GasolSun36/MVP}.
comment: 13 pages, 7 tables, 7 figures
☆ GMM-IKRS: Gaussian Mixture Models for Interpretable Keypoint Refinement and Scoring ECCV 2024
The extraction of keypoints in images is at the basis of many computer vision applications, from localization to 3D reconstruction. Keypoints come with a score permitting to rank them according to their quality. While learned keypoints often exhibit better properties than handcrafted ones, their scores are not easily interpretable, making it virtually impossible to compare the quality of individual keypoints across methods. We propose a framework that can refine, and at the same time characterize with an interpretable score, the keypoints extracted by any method. Our approach leverages a modified robust Gaussian Mixture Model fit designed to both reject non-robust keypoints and refine the remaining ones. Our score comprises two components: one relates to the probability of extracting the same keypoint in an image captured from another viewpoint, the other relates to the localization accuracy of the keypoint. These two interpretable components permit a comparison of individual keypoints extracted across different methods. Through extensive experiments we demonstrate that, when applied to popular keypoint detectors, our framework consistently improves the repeatability of keypoints as well as their performance in homography and two/multiple-view pose recovery tasks.
comment: Accepted at ECCV 2024
☆ RenDetNet: Weakly-supervised Shadow Detection with Shadow Caster Verification ECCV 2024
Existing shadow detection models struggle to differentiate dark image areas from shadows. In this paper, we tackle this issue by verifying that all detected shadows are real, i.e. they have paired shadow casters. We perform this step in a physically-accurate manner by differentiably re-rendering the scene and observing the changes stemming from carving out estimated shadow casters. Thanks to this approach, the RenDetNet proposed in this paper is the first learning-based shadow detection model whose supervisory signals can be computed in a self-supervised manner. The developed system compares favourably against recent models trained on our data. As part of this publication, we release our code on github.
comment: AIM @ ECCV 2024 / code available at https://github.com/n-kubiak/RenDetNet
☆ Temporal and Interactive Modeling for Efficient Human-Human Motion Generation TIM
Human-human motion generation is essential for understanding humans as social beings. Although several transformer-based methods have been proposed, they typically model each individual separately and overlook the causal relationships in temporal motion sequences. Furthermore, the attention mechanism in transformers exhibits quadratic computational complexity, significantly reducing their efficiency when processing long sequences. In this paper, we introduce TIM (Temporal and Interactive Modeling), an efficient and effective approach that presents the pioneering human-human motion generation model utilizing RWKV. Specifically, we first propose Causal Interactive Injection to leverage the temporal properties of motion sequences and avoid non-causal and cumbersome modeling. Then we present Role-Evolving Mixing to adjust to the ever-evolving roles throughout the interaction. Finally, to generate smoother and more rational motion, we design Localized Pattern Amplification to capture short-term motion patterns. Extensive experiments on InterHuman demonstrate that our method achieves superior performance. Notably, TIM has achieved state-of-the-art results using only 32% of InterGen's trainable parameters. Code will be available soon. Homepage: https://aigc-explorer.github.io/TIM-page/
comment: Homepage: https://aigc-explorer.github.io/TIM-page/
☆ VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers
The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.
comment: 11 pages, 6 figures
☆ Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI
Purpose: To develop an open-source nnU-Net-based AI model for combined detection and segmentation of unruptured intracranial aneurysms (UICA) in 3D TOF-MRI, and compare models trained on datasets with aneurysm-like differential diagnoses. Methods: This retrospective study (2020-2023) included 385 anonymized 3D TOF-MRI images from 364 patients (mean age 59 years, 60% female) at multiple centers plus 113 subjects from the ADAM challenge. Images featured untreated or possible UICAs and differential diagnoses. Four distinct training datasets were created, and the nnU-Net framework was used for model development. Performance was assessed on a separate test set using sensitivity and False Positive (FP)/case rate for detection, and DICE score and NSD (Normalized Surface Distance) with a 0.5mm threshold for segmentation. Statistical analysis included chi-square, Mann-Whitney-U, and Kruskal-Wallis tests, with significance set at p < 0.05. Results: Models achieved overall sensitivity between 82% and 85% and a FP/case rate of 0.20 to 0.31, with no significant differences (p = 0.90 and p = 0.16). The primary model showed 85% sensitivity and 0.23 FP/case rate, outperforming the ADAM-challenge winner (61%) and a nnU-Net trained on ADAM data (51%) in sensitivity (p < 0.05). It achieved a mean DICE score of 0.73 and an NSD of 0.84 for correctly detected UICA. Conclusions: Our open-source, nnU-Net-based AI model (available at 10.5281/zenodo.13386859) demonstrates high sensitivity, low false positive rates, and consistent segmentation accuracy for UICA detection and segmentation in 3D TOF-MRI, suggesting its potential to improve clinical diagnosis and for monitoring of UICA.
comment: 14 pages, 5 figures, 3 tables, 2 supplementary tables
☆ Sparse Uncertainty-Informed Sampling from Federated Streaming Data
We present a numerically robust, computationally efficient approach for non-I.I.D. data stream sampling in federated client systems, where resources are limited and labeled data for local model adaptation is sparse and expensive. The proposed method identifies relevant stream observations to optimize the underlying client model, given a local labeling budget, and performs instantaneous labeling decisions without relying on any memory buffering strategies. Our experiments show enhanced training batch diversity and an improved numerical robustness of the proposal compared to existing strategies over large-scale data streams, making our approach an effective and convenient solution in FL environments.
comment: Preprint, 6 pages, 3 figures, Accepted for ESANN 2024
☆ UTrack: Multi-Object Tracking with Uncertain Detections ECCV 2024
The tracking-by-detection paradigm is the mainstream in multi-object tracking, associating tracks to the predictions of an object detector. Although exhibiting uncertainty through a confidence score, these predictions do not capture the entire variability of the inference process. For safety and security critical applications like autonomous driving, surveillance, etc., knowing this predictive uncertainty is essential though. Therefore, we introduce, for the first time, a fast way to obtain the empirical predictive distribution during object detection and incorporate that knowledge in multi-object tracking. Our mechanism can easily be integrated into state-of-the-art trackers, enabling them to fully exploit the uncertainty in the detections. Additionally, novel association methods are introduced that leverage the proposed mechanism. We demonstrate the effectiveness of our contribution on a variety of benchmarks, such as MOT17, MOT20, DanceTrack, and KITTI.
comment: Accepted for the ECCV 2024 Workshop on Uncertainty Quantification for Computer Vision
☆ RISSOLE: Parameter-efficient Diffusion Models via Block-wise Generation and Retrieval-Guidance
Diffusion-based models demonstrate impressive generation capabilities. However, they also have a massive number of parameters, resulting in enormous model sizes, thus making them unsuitable for deployment on resource-constraint devices. Block-wise generation can be a promising alternative for designing compact-sized (parameter-efficient) deep generative models since the model can generate one block at a time instead of generating the whole image at once. However, block-wise generation is also considerably challenging because ensuring coherence across generated blocks can be non-trivial. To this end, we design a retrieval-augmented generation (RAG) approach and leverage the corresponding blocks of the images retrieved by the RAG module to condition the training and generation stages of a block-wise denoising diffusion model. Our conditioning schemes ensure coherence across the different blocks during training and, consequently, during generation. While we showcase our approach using the latent diffusion model (LDM) as the base model, it can be used with other variants of denoising diffusion models. We validate the solution of the coherence problem through the proposed approach by reporting substantive experiments to demonstrate our approach's effectiveness in compact model size and excellent generation quality.
☆ FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition
Federated learning is a machine learning paradigm that enables decentralized clients to collaboratively learn a shared model while keeping all the training data local. While considerable research has focused on federated image generation, particularly Generative Adversarial Networks, Variational Autoencoders have received less attention. In this paper, we address the challenges of non-IID (independently and identically distributed) data environments featuring multiple groups of images of different types. Specifically, heterogeneous data distributions can lead to difficulties in maintaining a consistent latent space and can also result in local generators with disparate texture features being blended during aggregation. We introduce a novel approach, FissionVAE, which decomposes the latent space and constructs decoder branches tailored to individual client groups. This method allows for customized learning that aligns with the unique data distributions of each group. Additionally, we investigate the incorporation of hierarchical VAE architectures and demonstrate the use of heterogeneous decoder architectures within our model. We also explore strategies for setting the latent prior distributions to enhance the decomposition process. To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images of Earth. Our experiments demonstrate that FissionVAE greatly improves generation quality on these datasets compared to baseline federated VAE models.
☆ Focus-Consistent Multi-Level Aggregation for Compositional Zero-Shot Learning
To transfer knowledge from seen attribute-object compositions to recognize unseen ones, recent compositional zero-shot learning (CZSL) methods mainly discuss the optimal classification branches to identify the elements, leading to the popularity of employing a three-branch architecture. However, these methods mix up the underlying relationship among the branches, in the aspect of consistency and diversity. Specifically, consistently providing the highest-level features for all three branches increases the difficulty in distinguishing classes that are superficially similar. Furthermore, a single branch may focus on suboptimal regions when spatial messages are not shared between the personalized branches. Recognizing these issues and endeavoring to address them, we propose a novel method called Focus-Consistent Multi-Level Aggregation (FOMA). Our method incorporates a Multi-Level Feature Aggregation (MFA) module to generate personalized features for each branch based on the image content. Additionally, a Focus-Consistent Constraint encourages a consistent focus on the informative regions, thereby implicitly exchanging spatial information between all branches. Extensive experiments on three benchmark datasets (UT-Zappos, C-GQA, and Clothing16K) demonstrate that our FOMA outperforms SOTA.
comment: Compositional Zero-Shot Learning
☆ Stochastic Layer-Wise Shuffle: A Good Practice to Improve Vision Mamba Training
Recent Vision Mamba models not only have much lower complexity for processing higher resolution images and longer videos but also the competitive performance with Vision Transformers (ViTs). However, they are stuck into overfitting and thus only present up to base size (about 80M). It is still unclear how vanilla Vision Mamba (Vim) can be efficiently scaled up to larger sizes, which is essentially for further exploitation. In this paper, we propose a stochastic layer-wise shuffle regularization, which empowers successfully scaling non-hierarchical Vision Mamba to a large size (about 300M) in a supervised setting. Specifically, our base and large-scale ShuffleMamba models can outperform the supervised ViTs of similar size by 0.8\% and 1.0\% classification accuracy on ImageNet1k, respectively, without auxiliary data. When evaluated on the ADE20K semantic segmentation and COCO detection tasks, our ShuffleMamba models also show significant improvements. Without bells and whistles, the stochastic layer-wise shuffle has the following highlights: (1) \textit{Plug and play:} it does not change model architectures and will be omitted in inference. (2) \textit{Simple but effective:} it can improve the overfitting in Vim training and only introduce random token permutation operations. (3) \textit{Intuitive:} the token sequences in deeper layers are more likely to be shuffled as they are expected to be more semantic and less sensitive to patch positions. Code and models will be available at https://github.com/huangzizheng01/ShuffleMamba.
☆ Approximately Invertible Neural Network for Learned Image Compression
Learned image compression have attracted considerable interests in recent years. It typically comprises an analysis transform, a synthesis transform, quantization and an entropy coding model. The analysis transform and synthesis transform are used to encode an image to latent feature and decode the quantized feature to reconstruct the image, and can be regarded as coupled transforms. However, the analysis transform and synthesis transform are designed independently in the existing methods, making them unreliable in high-quality image compression. Inspired by the invertible neural networks in generative modeling, invertible modules are used to construct the coupled analysis and synthesis transforms. Considering the noise introduced in the feature quantization invalidates the invertible process, this paper proposes an Approximately Invertible Neural Network (A-INN) framework for learned image compression. It formulates the rate-distortion optimization in lossy image compression when using INN with quantization, which differentiates from using INN for generative modelling. Generally speaking, A-INN can be used as the theoretical foundation for any INN based lossy compression method. Based on this formulation, A-INN with a progressive denoising module (PDM) is developed to effectively reduce the quantization noise in the decoding. Moreover, a Cascaded Feature Recovery Module (CFRM) is designed to learn high-dimensional feature recovery from low-dimensional ones to further reduce the noise in feature channel compression. In addition, a Frequency-enhanced Decomposition and Synthesis Module (FDSM) is developed by explicitly enhancing the high-frequency components in an image to address the loss of high-frequency information inherent in neural network based image compression. Extensive experiments demonstrate that the proposed A-INN outperforms the existing learned image compression methods.
☆ Generalizing Deepfake Video Detection with Plug-and-Play: Video-Level Blending and Spatiotemporal Adapter Tuning
Three key challenges hinder the development of current deepfake video detection: (1) Temporal features can be complex and diverse: how can we identify general temporal artifacts to enhance model generalization? (2) Spatiotemporal models often lean heavily on one type of artifact and ignore the other: how can we ensure balanced learning from both? (3) Videos are naturally resource-intensive: how can we tackle efficiency without compromising accuracy? This paper attempts to tackle the three challenges jointly. First, inspired by the notable generality of using image-level blending data for image forgery detection, we investigate whether and how video-level blending can be effective in video. We then perform a thorough analysis and identify a previously underexplored temporal forgery artifact: Facial Feature Drift (FFD), which commonly exists across different forgeries. To reproduce FFD, we then propose a novel Video-level Blending data (VB), where VB is implemented by blending the original image and its warped version frame-by-frame, serving as a hard negative sample to mine more general artifacts. Second, we carefully design a lightweight Spatiotemporal Adapter (StA) to equip a pretrained image model (both ViTs and CNNs) with the ability to capture both spatial and temporal features jointly and efficiently. StA is designed with two-stream 3D-Conv with varying kernel sizes, allowing it to process spatial and temporal features separately. Extensive experiments validate the effectiveness of the proposed methods; and show our approach can generalize well to previously unseen forgery videos, even the just-released (in 2024) SoTAs. We release our code and pretrained weights at \url{https://github.com/YZY-stack/StA4Deepfake}.
☆ Instant Adversarial Purification with Adversarial Consistency Distillation
Neural networks, despite their remarkable performance in widespread applications, including image classification, are also known to be vulnerable to subtle adversarial noise. Although some diffusion-based purification methods have been proposed, for example, DiffPure, those methods are time-consuming. In this paper, we propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Function Evaluation (NFE) in diffusion models. We use Latent Consistency Model (LCM) and ControlNet for our one-step purification. OSCP is computationally friendly and time efficient compared to other diffusion-based purification methods; we achieve defense success rate of 74.19\% on ImageNet, only requiring 0.1s for each purification. Moreover, there is a fundamental incongruence between consistency distillation and adversarial perturbation. To address this ontological dissonance, we propose Gaussian Adversarial Noise Distillation (GAND), a novel consistency distillation framework that facilitates a more nuanced reconciliation of the latent space dynamics, effectively bridging the natural and adversarial manifolds. Our experiments show that the GAND does not need a Full Fine Tune (FFT); PEFT, e.g., LoRA is sufficient.
☆ Vote&Mix: Plug-and-Play Token Reduction for Efficient Vision Transformer
Despite the remarkable success of Vision Transformers (ViTs) in various visual tasks, they are often hindered by substantial computational cost. In this work, we introduce Vote\&Mix (\textbf{VoMix}), a plug-and-play and parameter-free token reduction method, which can be readily applied to off-the-shelf ViT models \textit{without any training}. VoMix tackles the computational redundancy of ViTs by identifying tokens with high homogeneity through a layer-wise token similarity voting mechanism. Subsequently, the selected tokens are mixed into the retained set, thereby preserving visual information. Experiments demonstrate VoMix significantly improves the speed-accuracy tradeoff of ViTs on both images and videos. Without any training, VoMix achieves a 2$\times$ increase in throughput of existing ViT-H on ImageNet-1K and a 2.4$\times$ increase in throughput of existing ViT-L on Kinetics-400 video dataset, with a mere 0.3\% drop in top-1 accuracy.
☆ Efficient Image Restoration through Low-Rank Adaptation and Stable Diffusion XL
In this study, we propose an enhanced image restoration model, SUPIR, based on the integration of two low-rank adaptive (LoRA) modules with the Stable Diffusion XL (SDXL) framework. Our method leverages the advantages of LoRA to fine-tune SDXL models, thereby significantly improving image restoration quality and efficiency. We collect 2600 high-quality real-world images, each with detailed descriptive text, for training the model. The proposed method is evaluated on standard benchmarks and achieves excellent performance, demonstrated by higher peak signal-to-noise ratio (PSNR), lower learned perceptual image patch similarity (LPIPS), and higher structural similarity index measurement (SSIM) scores. These results underscore the effectiveness of combining LoRA with SDXL for advanced image restoration tasks, highlighting the potential of our approach in generating high-fidelity restored images.
comment: 10 pages
☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to improve this vast amount of unlabeled data available. Thus its better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is less label data available. In this survey we thus develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
comment: 34 Pages, 5 Figures, 7 Tables
☆ LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model
Recent advancements in the field of No-Reference Image Quality Assessment (NR-IQA) using deep learning techniques demonstrate high performance across multiple open-source datasets. However, such models are typically very large and complex making them not so suitable for real-world deployment, especially on resource- and battery-constrained mobile devices. To address this limitation, we propose a compact, lightweight NR-IQA model that achieves state-of-the-art (SOTA) performance on ECCV AIM UHD-IQA challenge validation and test datasets while being also nearly 5.7 times faster than the fastest SOTA model. Our model features a dual-branch architecture, with each branch separately trained on synthetically and authentically distorted images which enhances the model's generalizability across different distortion types. To improve robustness under diverse real-world visual conditions, we additionally incorporate multiple color spaces during the training process. We also demonstrate the higher accuracy of recently proposed Kolmogorov-Arnold Networks (KANs) for final quality regression as compared to the conventional Multi-Layer Perceptrons (MLPs). Our evaluation considering various open-source datasets highlights the practical, high-accuracy, and robust performance of our proposed lightweight model. Code: https://github.com/nasimjamshidi/LAR-IQA.
☆ BTMuda: A Bi-level Multi-source unsupervised domain adaptation framework for breast cancer diagnosis
Deep learning has revolutionized the early detection of breast cancer, resulting in a significant decrease in mortality rates. However, difficulties in obtaining annotations and huge variations in distribution between training sets and real scenes have limited their clinical applications. To address these limitations, unsupervised domain adaptation (UDA) methods have been used to transfer knowledge from one labeled source domain to the unlabeled target domain, yet these approaches suffer from severe domain shift issues and often ignore the potential benefits of leveraging multiple relevant sources in practical applications. To address these limitations, in this work, we construct a Three-Branch Mixed extractor and propose a Bi-level Multi-source unsupervised domain adaptation method called BTMuda for breast cancer diagnosis. Our method addresses the problems of domain shift by dividing domain shift issues into two levels: intra-domain and inter-domain. To reduce the intra-domain shift, we jointly train a CNN and a Transformer as two paths of a domain mixed feature extractor to obtain robust representations rich in both low-level local and high-level global information. As for the inter-domain shift, we redesign the Transformer delicately to a three-branch architecture with cross-attention and distillation, which learns domain-invariant representations from multiple domains. Besides, we introduce two alignment modules - one for feature alignment and one for classifier alignment - to improve the alignment process. Extensive experiments conducted on three public mammographic datasets demonstrate that our BTMuda outperforms state-of-the-art methods.
☆ Can We Leave Deepfake Data Behind in Training Deepfake Detector?
The generalization ability of deepfake detectors is vital for their applications in real-world scenarios. One effective solution to enhance this ability is to train the models with manually-blended data, which we termed "blendfake", encouraging models to learn generic forgery artifacts like blending boundary. Interestingly, current SoTA methods utilize blendfake without incorporating any deepfake data in their training process. This is likely because previous empirical observations suggest that vanilla hybrid training (VHT), which combines deepfake and blendfake data, results in inferior performance to methods using only blendfake data (so-called "1+1<2"). Therefore, a critical question arises: Can we leave deepfake behind and rely solely on blendfake data to train an effective deepfake detector? Intuitively, as deepfakes also contain additional informative forgery clues (e.g., deep generative artifacts), excluding all deepfake data in training deepfake detectors seems counter-intuitive. In this paper, we rethink the role of blendfake in detecting deepfakes and formulate the process from "real to blendfake to deepfake" to be a progressive transition. Specifically, blendfake and deepfake can be explicitly delineated as the oriented pivot anchors between "real-to-fake" transitions. The accumulation of forgery information should be oriented and progressively increasing during this transition process. To this end, we propose an Oriented Progressive Regularizor (OPR) to establish the constraints that compel the distribution of anchors to be discretely arranged. Furthermore, we introduce feature bridging to facilitate the smooth transition between adjacent anchors. Extensive experiments confirm that our design allows leveraging forgery information from both blendfake and deepfake effectively and comprehensively.
☆ Text-to-Image Generation Via Energy-Based CLIP
Joint Energy Models (JEMs), while drawing significant research attention, have not been successfully scaled to real-world, high-resolution datasets. We present EB-CLIP, a novel approach extending JEMs to the multimodal vision-language domain using CLIP, integrating both generative and discriminative objectives. For the generative objective, we introduce an image-text joint-energy function based on Cosine similarity in the CLIP space, training CLIP to assign low energy to real image-caption pairs and high energy otherwise. For the discriminative objective, we employ contrastive adversarial loss, extending the adversarial training objective to the multimodal domain. EB-CLIP not only generates realistic images from text but also achieves competitive results on the compositionality benchmark, outperforming leading methods with fewer parameters. Additionally, we demonstrate the superior guidance capability of EB-CLIP by enhancing CLIP-based generative frameworks and converting unconditional diffusion models to text-based ones. Lastly, we show that EB-CLIP can serve as a more robust evaluation metric for text-to-image generative tasks than CLIP.
☆ CP-VoteNet: Contrastive Prototypical VoteNet for Few-Shot Point Cloud Object Detection
Few-shot point cloud 3D object detection (FS3D) aims to identify and localise objects of novel classes from point clouds, using knowledge learnt from annotated base classes and novel classes with very few annotations. Thus far, this challenging task has been approached using prototype learning, but the performance remains far from satisfactory. We find that in existing methods, the prototypes are only loosely constrained and lack of fine-grained awareness of the semantic and geometrical correlation embedded within the point cloud space. To mitigate these issues, we propose to leverage the inherent contrastive relationship within the semantic and geometrical subspaces to learn more refined and generalisable prototypical representations. To this end, we first introduce contrastive semantics mining, which enables the network to extract discriminative categorical features by constructing positive and negative pairs within training batches. Meanwhile, since point features representing local patterns can be clustered into geometric components, we further propose to impose contrastive relationship at the primitive level. Through refined primitive geometric structures, the transferability of feature encoding from base to novel classes is significantly enhanced. The above designs and insights lead to our novel Contrastive Prototypical VoteNet (CP-VoteNet). Extensive experiments on two FS3D benchmarks FS-ScanNet and FS-SUNRGBD demonstrate that CP-VoteNet surpasses current state-of-the-art methods by considerable margins across different FS3D settings. Further ablation studies conducted corroborate the rationale and effectiveness of our designs.
comment: Accepted by PRCV 2024
☆ ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images ECCV 2024
To advance the state of the art in the creation of 3D foundation models, this paper introduces the ConDense framework for 3D pre-training utilizing existing pre-trained 2D networks and large-scale multi-view datasets. We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline, where 2D-3D feature consistency is enforced through a volume rendering NeRF-like ray marching process. Using dense per pixel features we are able to 1) directly distill the learned priors from 2D models to 3D models and create useful 3D backbones, 2) extract more consistent and less noisy 2D features, 3) formulate a consistent embedding space where 2D, 3D, and other modalities of data (e.g., natural language prompts) can be jointly queried. Furthermore, besides dense features, ConDense can be trained to extract sparse features (e.g., key points), also with 2D-3D consistency -- condensing 3D NeRF representations into compact sets of decorated key points. We demonstrate that our pre-trained model provides good initialization for various 3D tasks including 3D classification and segmentation, outperforming other 3D pre-training methods by a significant margin. It also enables, by exploiting our sparse features, additional useful downstream tasks, such as matching 2D images to 3D scenes, detecting duplicate 3D scenes, and querying a repository of 3D scenes through natural language -- all quite efficiently and without any per-scene fine-tuning.
comment: ECCV 2024
☆ Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
comment: 15 pages, 3 figures, 4 tables
☆ Retrieval-Augmented Natural Language Reasoning for Explainable Visual Question Answering ICIP
Visual Question Answering with Natural Language Explanation (VQA-NLE) task is challenging due to its high demand for reasoning-based inference. Recent VQA-NLE studies focus on enhancing model networks to amplify the model's reasoning capability but this approach is resource-consuming and unstable. In this work, we introduce a new VQA-NLE model, ReRe (Retrieval-augmented natural language Reasoning), using leverage retrieval information from the memory to aid in generating accurate answers and persuasive explanations without relying on complex networks and extra datasets. ReRe is an encoder-decoder architecture model using a pre-trained clip vision encoder and a pre-trained GPT-2 language model as a decoder. Cross-attention layers are added in the GPT-2 for processing retrieval features. ReRe outperforms previous methods in VQA accuracy and explanation score and shows improvement in NLE with more persuasive, reliability.
comment: ICIP Workshop 2024
☆ Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning
The stability of visual odometry (VO) systems is undermined by degraded image quality, especially in environments with significant illumination changes. This study employs a deep reinforcement learning (DRL) framework to train agents for exposure control, aiming to enhance imaging performance in challenging conditions. A lightweight image simulator is developed to facilitate the training process, enabling the diversification of image exposure and sequence trajectory. This setup enables completely offline training, eliminating the need for direct interaction with camera hardware and the real environments. Different levels of reward functions are crafted to enhance the VO systems, equipping the DRL agents with varying intelligence. Extensive experiments have shown that our exposure control agents achieve superior efficiency-with an average inference duration of 1.58 ms per frame on a CPU-and respond more quickly than traditional feedback control schemes. By choosing an appropriate reward function, agents acquire an intelligent understanding of motion trends and anticipate future illumination changes. This predictive capability allows VO systems to deliver more stable and precise odometry results. The codes and datasets are available at https://github.com/ShuyangUni/drl_exposure_ctrl.
comment: 8 pages, 7 figures
☆ AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding
Over the past few years, the advancement of Multimodal Large Language Models (MLLMs) has captured the wide interest of researchers, leading to numerous innovations to enhance MLLMs' comprehension. In this paper, we present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions. We hypothesize that the requisite number of visual tokens for the model is contingent upon both the resolution and content of the input image. Generally, natural images with a lower information density can be effectively interpreted by the model using fewer visual tokens at reduced resolutions. In contrast, images containing textual content, such as documents with rich text, necessitate a higher number of visual tokens for accurate text interpretation due to their higher information density. Building on this insight, we devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images. This method mitigates distortion effects that arise from resizing images to a uniform resolution and dynamically optimizing the visual tokens input to the LLMs. Our model is capable of processing images with resolutions up to $1008\times 1008$. Extensive experiments across various datasets demonstrate that our method achieves impressive performance in handling vision-language tasks in both natural and text-related scenes. The source code and dataset are now publicly available at \url{https://github.com/harrytea/AdaptVision}.
☆ 2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction
2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction, enabling novel view synthesis and geometry reconstruction simultaneously. While the well-known Gaussian kernel is broadly used, its lack of anisotropy and deformation ability leads to dim and vague edges at object silhouettes, limiting the reconstruction quality of current Gaussian splatting methods. To enhance the representation power, we draw inspiration from quantum physics and propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting. The new kernel takes a unified mathematical form and extends the Gaussian function, which serves as the zero-rank term in the updated formulation. Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks. The proposed kernel outperforms traditional Gaussian Splatting kernels, showcasing its potential for high-quality 3D reconstruction and rendering.
☆ Cross Fusion RGB-T Tracking with Bi-directional Adapter
Many state-of-the-art RGB-T trackers have achieved remarkable results through modality fusion. However, these trackers often either overlook temporal information or fail to fully utilize it, resulting in an ineffective balance between multi-modal and temporal information. To address this issue, we propose a novel Cross Fusion RGB-T Tracking architecture (CFBT) that ensures the full participation of multiple modalities in tracking while dynamically fusing temporal information. The effectiveness of CFBT relies on three newly designed cross spatio-temporal information fusion modules: Cross Spatio-Temporal Augmentation Fusion (CSTAF), Cross Spatio-Temporal Complementarity Fusion (CSTCF), and Dual-Stream Spatio-Temporal Adapter (DSTA). CSTAF employs a cross-attention mechanism to enhance the feature representation of the template comprehensively. CSTCF utilizes complementary information between different branches to enhance target features and suppress background features. DSTA adopts the adapter concept to adaptively fuse complementary information from multiple branches within the transformer layer, using the RGB modality as a medium. These ingenious fusions of multiple perspectives introduce only less than 0.3\% of the total modal parameters, but they indeed enable an efficient balance between multi-modal and temporal information. Extensive experiments on three popular RGB-T tracking benchmarks demonstrate that our method achieves new state-of-the-art performance.
☆ Synthetic Lunar Terrain: A Multimodal Open Dataset for Training and Evaluating Neuromorphic Vision Algorithms RAS
Synthetic Lunar Terrain (SLT) is an open dataset collected from an analogue test site for lunar missions, featuring synthetic craters in a high-contrast lighting setup. It includes several side-by-side captures from event-based and conventional RGB cameras, supplemented with a high-resolution 3D laser scan for depth estimation. The event-stream recorded from the neuromorphic vision sensor of the event-based camera is of particular interest as this emerging technology provides several unique advantages, such as high data rates, low energy consumption and resilience towards scenes of high dynamic range. SLT provides a solid foundation to analyse the limits of RGB-cameras and potential advantages or synergies in utilizing neuromorphic visions with the goal of enabling and improving lunar specific applications like rover navigation, landing in cratered environments or similar.
comment: 7 pages, 5 figures, to be published at "International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS, 2024
☆ Contrastive Learning with Synthetic Positives
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques by utilizing the similarity of multiple instances within the same class. However, its efficacy is constrained as the nearest neighbor algorithm primarily identifies ``easy'' positive pairs, where the representations are already closely located in the embedding space. In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (CLSP) that utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives. Through feature interpolation in the diffusion model sampling process, we generate images with distinct backgrounds yet similar semantic content to the anchor image. These images are considered ``hard'' positives for the anchor image, and when included as supplementary positives in the contrastive loss, they contribute to a performance improvement of over 2\% and 1\% in linear evaluation compared to the previous NNCLR and All4One methods across multiple benchmark datasets such as CIFAR10, achieving state-of-the-art methods. On transfer learning benchmarks, CLSP outperforms existing SSL frameworks on 6 out of 8 downstream datasets. We believe CLSP establishes a valuable baseline for future SSL studies incorporating synthetic data in the training process.
comment: 8 pages, conference
☆ Causal Representation-Based Domain Generalization on Gaze Estimation
The availability of extensive datasets containing gaze information for each subject has significantly enhanced gaze estimation accuracy. However, the discrepancy between domains severely affects a model's performance explicitly trained for a particular domain. In this paper, we propose the Causal Representation-Based Domain Generalization on Gaze Estimation (CauGE) framework designed based on the general principle of causal mechanisms, which is consistent with the domain difference. We employ an adversarial training manner and an additional penalizing term to extract domain-invariant features. After extracting features, we position the attention layer to make features sufficient for inferring the actual gaze. By leveraging these modules, CauGE ensures that the neural networks learn from representations that meet the causal mechanisms' general principles. By this, CauGE generalizes across domains by extracting domain-invariant features, and spurious correlations cannot influence the model. Our method achieves state-of-the-art performance in the domain generalization on gaze estimation benchmark.
☆ HiTSR: A Hierarchical Transformer for Reference-based Super-Resolution
In this paper, we propose HiTSR, a hierarchical transformer model for reference-based image super-resolution, which enhances low-resolution input images by learning matching correspondences from high-resolution reference images. Diverging from existing multi-network, multi-stage approaches, we streamline the architecture and training pipeline by incorporating the double attention block from GAN literature. Processing two visual streams independently, we fuse self-attention and cross-attention blocks through a gating attention strategy. The model integrates a squeeze-and-excitation module to capture global context from the input images, facilitating long-range spatial interactions within window-based attention blocks. Long skip connections between shallow and deep layers further enhance information flow. Our model demonstrates superior performance across three datasets including SUN80, Urban100, and Manga109. Specifically, on the SUN80 dataset, our model achieves PSNR/SSIM values of 30.24/0.821. These results underscore the effectiveness of attention mechanisms in reference-based image super-resolution. The transformer-based model attains state-of-the-art results without the need for purpose-built subnetworks, knowledge distillation, or multi-stage training, emphasizing the potency of attention in meeting reference-based image super-resolution requirements.
comment: arXiv admin note: text overlap with arXiv:2307.08837
☆ Transient Fault Tolerant Semantic Segmentation for Autonomous Driving ECCV 2024
Deep learning models are crucial for autonomous vehicle perception, but their reliability is challenged by algorithmic limitations and hardware faults. We address the latter by examining fault-tolerance in semantic segmentation models. Using established hardware fault models, we evaluate existing hardening techniques both in terms of accuracy and uncertainty and introduce ReLUMax, a novel simple activation function designed to enhance resilience against transient faults. ReLUMax integrates seamlessly into existing architectures without time overhead. Our experiments demonstrate that ReLUMax effectively improves robustness, preserving performance and boosting prediction confidence, thus contributing to the development of reliable autonomous driving systems.
comment: Accepted ECCV 2024 UnCV Workshop - https://github.com/iurada/neutron-segmentation
♻ ☆ Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks
Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: https://github.com/Visual-AI/Dissect-OOD-OSR
comment: Accepted to IJCV, preprint version; v2: add supplementary
♻ ☆ OpticalRS-4M: Scaling Efficient Masked Autoencoder Learning on Large Remote Sensing Dataset
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-4M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-4M comprises 4 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments demonstrate that OpticalRS-4M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2 times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models.
♻ ☆ Revisiting 360 Depth Estimation with PanoGabor: A New Fusion Perspective
Depth estimation from a monocular 360 image is important to the perception of the entire 3D environment. However, the inherent distortion and large field of view (FoV) in 360 images pose great challenges for this task. To this end, existing mainstream solutions typically introduce additional perspective-based 360 representations (\textit{e.g.}, Cubemap) to achieve effective feature extraction. Nevertheless, regardless of the introduced representations, they eventually need to be unified into the equirectangular projection (ERP) format for the subsequent depth estimation, which inevitably reintroduces the troublesome distortions. In this work, we propose an oriented distortion-aware Gabor Fusion framework (PGFuse) to address the above challenges. First, we introduce Gabor filters that analyze texture in the frequency domain, thereby extending the receptive fields and enhancing depth cues. To address the reintroduced distortions, we design a linear latitude-aware distortion representation method to generate customized, distortion-aware Gabor filters (PanoGabor filters). Furthermore, we design a channel-wise and spatial-wise unidirectional fusion module (CS-UFM) that integrates the proposed PanoGabor filters to unify other representations into the ERP format, delivering effective and distortion-free features. Considering the orientation sensitivity of the Gabor transform, we introduce a spherical gradient constraint to stabilize this sensitivity. Experimental results on three popular indoor 360 benchmarks demonstrate the superiority of the proposed PGFuse to existing state-of-the-art solutions. Code can be available upon acceptance.
♻ ☆ LLaVA-SG: Leveraging Scene Graphs as Visual Semantic Expression in Vision-Language Models
Recent advances in large vision-language models (VLMs) typically employ vision encoders based on the Vision Transformer (ViT) architecture. The division of the images into patches by ViT results in a fragmented perception, thereby hindering the visual understanding capabilities of VLMs. In this paper, we propose an innovative enhancement to address this limitation by introducing a Scene Graph Expression (SGE) module in VLMs. This module extracts and structurally expresses the complex semantic information within images, thereby improving the foundational perception and understanding abilities of VLMs. Extensive experiments demonstrate that integrating our SGE module significantly enhances the VLM's performance in vision-language tasks, indicating its effectiveness in preserving intricate semantic details and facilitating better visual understanding.
♻ ☆ Frankenstein: Generating Semantic-Compositional 3D Scenes in One Tri-Plane SIGGRAPH
We present Frankenstein, a diffusion-based framework that can generate semantic-compositional 3D scenes in a single pass. Unlike existing methods that output a single, unified 3D shape, Frankenstein simultaneously generates multiple separated shapes, each corresponding to a semantically meaningful part. The 3D scene information is encoded in one single tri-plane tensor, from which multiple Singed Distance Function (SDF) fields can be decoded to represent the compositional shapes. During training, an auto-encoder compresses tri-planes into a latent space, and then the denoising diffusion process is employed to approximate the distribution of the compositional scenes. Frankenstein demonstrates promising results in generating room interiors as well as human avatars with automatically separated parts. The generated scenes facilitate many downstream applications, such as part-wise re-texturing, object rearrangement in the room or avatar cloth re-targeting. Our project page is available at: https://wolfball.github.io/frankenstein/.
comment: SIGGRAPH Asia 2024 Conference Paper
♻ ☆ RT-GS2: Real-Time Generalizable Semantic Segmentation for 3D Gaussian Representations of Radiance Fields BMVC 2024
Gaussian Splatting has revolutionized the world of novel view synthesis by achieving high rendering performance in real-time. Recently, studies have focused on enriching these 3D representations with semantic information for downstream tasks. In this paper, we introduce RT-GS2, the first generalizable semantic segmentation method employing Gaussian Splatting. While existing Gaussian Splatting-based approaches rely on scene-specific training, RT-GS2 demonstrates the ability to generalize to unseen scenes. Our method adopts a new approach by first extracting view-independent 3D Gaussian features in a self-supervised manner, followed by a novel View-Dependent / View-Independent (VDVI) feature fusion to enhance semantic consistency over different views. Extensive experimentation on three different datasets showcases RT-GS2's superiority over the state-of-the-art methods in semantic segmentation quality, exemplified by a 8.01% increase in mIoU on the Replica dataset. Moreover, our method achieves real-time performance of 27.03 FPS, marking an astonishing 901 times speedup compared to existing approaches. This work represents a significant advancement in the field by introducing, to the best of our knowledge, the first real-time generalizable semantic segmentation method for 3D Gaussian representations of radiance fields.
comment: Accepted paper at BMVC 2024
♻ ☆ A Permuted Autoregressive Approach to Word-Level Recognition for Urdu Digital Text
This research paper introduces a novel word-level Optical Character Recognition (OCR) model specifically designed for digital Urdu text, leveraging transformer-based architectures and attention mechanisms to address the distinct challenges of Urdu script recognition, including its diverse text styles, fonts, and variations. The model employs a permuted autoregressive sequence (PARSeq) architecture, which enhances its performance by enabling context-aware inference and iterative refinement through the training of multiple token permutations. This method allows the model to adeptly manage character reordering and overlapping characters, commonly encountered in Urdu script. Trained on a dataset comprising approximately 160,000 Urdu text images, the model demonstrates a high level of accuracy in capturing the intricacies of Urdu script, achieving a CER of 0.178. Despite ongoing challenges in handling certain text variations, the model exhibits superior accuracy and effectiveness in practical applications. Future work will focus on refining the model through advanced data augmentation techniques and the integration of context-aware language models to further enhance its performance and robustness in Urdu text recognition.
♻ ☆ DeformGS: Scene Flow in Highly Deformable Scenes for Deformable Object Manipulation
Teaching robots to fold, drape, or reposition deformable objects such as cloth will unlock a variety of automation applications. While remarkable progress has been made for rigid object manipulation, manipulating deformable objects poses unique challenges, including frequent occlusions, infinite-dimensional state spaces and complex dynamics. Just as object pose estimation and tracking have aided robots for rigid manipulation, dense 3D tracking (scene flow) of highly deformable objects will enable new applications in robotics while aiding existing approaches, such as imitation learning or creating digital twins with real2sim transfer. We propose DeformGS, an approach to recover scene flow in highly deformable scenes, using simultaneous video captures of a dynamic scene from multiple cameras. DeformGS builds on recent advances in Gaussian splatting, a method that learns the properties of a large number of Gaussians for state-of-the-art and fast novel-view synthesis. DeformGS learns a deformation function to project a set of Gaussians with canonical properties into world space. The deformation function uses a neural-voxel encoding and a multilayer perceptron (MLP) to infer Gaussian position, rotation, and a shadow scalar. We enforce physics-inspired regularization terms based on conservation of momentum and isometry, which leads to trajectories with smaller trajectory errors. We also leverage existing foundation models SAM and XMEM to produce noisy masks, and learn a per-Gaussian mask for better physics-inspired regularization. DeformGS achieves high-quality 3D tracking on highly deformable scenes with shadows and occlusions. In experiments, DeformGS improves 3D tracking by an average of 55.8% compared to the state-of-the-art. With sufficient texture, DeformGS achieves a median tracking error of 3.3 mm on a cloth of 1.5 x 1.5 m in area. Website: https://deformgs.github.io
♻ ☆ Docling Technical Report
This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.
♻ ☆ Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation
The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FM), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FM in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice for prevention/management of GC cases, thereby improving patient outcomes.
♻ ☆ DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors
Dynamic 3D interaction has been attracting a lot of attention recently. However, creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, which requires manually assigning precise physical properties to the object or the simulated results would become unnatural. Another solution is to learn the deformation of 3D objects with the distillation of video generative models, which, however, tends to produce 3D videos with small and discontinuous motions due to the inappropriate extraction and application of physical prior. In this work, combining the strengths and complementing shortcomings of the above two solutions, we propose to learn the physical properties of a material field with video diffusion priors, and then utilize a physics-based Material-Point-Method (MPM) simulator to generate 4D content with realistic motions. In particular, we propose motion distillation sampling to emphasize video motion information during distillation. Moreover, to facilitate the optimization, we further propose a KAN-based material field with frame boosting. Experimental results demonstrate that our method enjoys more realistic motion than state-of-the-arts. Codes are released at: https://github.com/tyhuang0428/DreamPhysics.
comment: Codes are released at: https://github.com/tyhuang0428/DreamPhysics
♻ ☆ L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection
LiDAR-based vision systems are integral for 3D object detection, which is crucial for autonomous navigation. However, they suffer from performance degradation in adverse weather conditions due to the quality deterioration of LiDAR point clouds. Fusing LiDAR with the weather-robust 4D radar sensor is expected to solve this problem. However, the fusion of LiDAR and 4D radar is challenging because they differ significantly in terms of data quality and the degree of degradation in adverse weather. To address these issues, we introduce L4DR, a weather-robust 3D object detection method that effectively achieves LiDAR and 4D Radar fusion. Our L4DR includes Multi-Modal Encoding (MME) and Foreground-Aware Denoising (FAD) technique to reconcile sensor gaps, which is the first exploration of the complementarity of early fusion between LiDAR and 4D radar. Additionally, we design an Inter-Modal and Intra-Modal ({IM}2 ) parallel feature extraction backbone coupled with a Multi-Scale Gated Fusion (MSGF) module to counteract the varying degrees of sensor degradation under adverse weather conditions. Experimental evaluation on a VoD dataset with simulated fog proves that L4DR is more adaptable to changing weather conditions. It delivers a significant performance increase under different fog levels, improving the 3D mAP by up to 20.0% over the traditional LiDAR-only approach. Moreover, the results on the K-Radar dataset validate the consistent performance improvement of L4DR in real-world adverse weather conditions.
♻ ☆ GeoMeter: Probing Depth and Height Perception of Large Visual-Language Models
Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce GeoMeter, a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications.
♻ ☆ Object-Centric Diffusion for Efficient Video Editing ECCV24
Diffusion-based video editing have reached impressive quality and can transform either the global style, local structure, and attributes of given video inputs, following textual edit prompts. However, such solutions typically incur heavy memory and computational costs to generate temporally-coherent frames, either in the form of diffusion inversion and/or cross-frame attention. In this paper, we conduct an analysis of such inefficiencies, and suggest simple yet effective modifications that allow significant speed-ups whilst maintaining quality. Moreover, we introduce Object-Centric Diffusion, to fix generation artifacts and further reduce latency by allocating more computations towards foreground edited regions, arguably more important for perceptual quality. We achieve this by two novel proposals: i) Object-Centric Sampling, decoupling the diffusion steps spent on salient or background regions and spending most on the former, and ii) Object-Centric Token Merging, which reduces cost of cross-frame attention by fusing redundant tokens in unimportant background regions. Both techniques are readily applicable to a given video editing model without retraining, and can drastically reduce its memory and computational cost. We evaluate our proposals on inversion-based and control-signal-based editing pipelines, and show a latency reduction up to 10x for a comparable synthesis quality. Project page: qualcomm-ai-research.github.io/object-centric-diffusion.
comment: ECCV24
♻ ☆ CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation IROS 2024
Depth estimation is critical in autonomous driving for interpreting 3D scenes accurately. Recently, radar-camera depth estimation has become of sufficient interest due to the robustness and low-cost properties of radar. Thus, this paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation, combining RGB imagery with sparse and noisy radar point cloud data. The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements, by predicting a radar confidence map and a preliminary coarse depth map. A novel approach is presented for generating the ground truth for the confidence map, which involves associating each radar point with its corresponding object to identify potential projection surfaces. These maps, together with the initial radar input, are processed by a second encoder. For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively, thereby enhancing the reliability of the depth map by filtering out radar noise. Our methodology, evaluated on the nuScenes dataset, demonstrates superior performance, improving upon the current leading model by 3.2% in Mean Absolute Error (MAE) and 2.7% in Root Mean Square Error (RMSE). Code: https://github.com/harborsarah/CaFNet
comment: Accepted by IROS 2024
♻ ☆ Addressing the challenges of loop detection in agricultural environments
While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.
♻ ☆ Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification ECML
Deep active learning (AL) seeks to minimize the annotation costs for training deep neural networks. BAIT, a recently proposed AL strategy based on the Fisher Information, has demonstrated impressive performance across various datasets. However, BAIT's high computational and memory requirements hinder its applicability on large-scale classification tasks, resulting in current research neglecting BAIT in their evaluation. This paper introduces two methods to enhance BAIT's computational efficiency and scalability. Notably, we significantly reduce its time complexity by approximating the Fisher Information. In particular, we adapt the original formulation by i) taking the expectation over the most probable classes, and ii) constructing a binary classification task, leading to an alternative likelihood for gradient computations. Consequently, this allows the efficient use of BAIT on large-scale datasets, including ImageNet. Our unified and comprehensive evaluation across a variety of datasets demonstrates that our approximations achieve strong performance with considerably reduced time complexity. Furthermore, we provide an extensive open-source toolbox that implements recent state-of-the-art AL strategies, available at https://github.com/dhuseljic/dal-toolbox.
comment: Accepted at ECML PKDD 2024
♻ ☆ GlyphDraw2: Automatic Generation of Complex Glyph Posters with Diffusion Models and Large Language Models
Posters play a crucial role in marketing and advertising by enhancing visual communication and brand visibility, making significant contributions to industrial design. With the latest advancements in controllable T2I diffusion models, increasing research has focused on rendering text within synthesized images. Despite improvements in text rendering accuracy, the field of automatic poster generation remains underexplored. In this paper, we propose an automatic poster generation framework with text rendering capabilities leveraging LLMs, utilizing a triple-cross attention mechanism based on alignment learning. This framework aims to create precise poster text within a detailed contextual background. Additionally, the framework supports controllable fonts, adjustable image resolution, and the rendering of posters with descriptions and text in both English and Chinese.Furthermore, we introduce a high-resolution font dataset and a poster dataset with resolutions exceeding 1024 pixels. Our approach leverages the SDXL architecture. Extensive experiments validate our method's capability in generating poster images with complex and contextually rich backgrounds.Codes is available at https://github.com/OPPO-Mente-Lab/GlyphDraw2.
♻ ☆ Large coordinate kernel attention network for lightweight image super-resolution
The multi-scale receptive field and large kernel attention (LKA) module have been shown to significantly improve performance in the lightweight image super-resolution task. However, existing lightweight super-resolution (SR) methods seldom pay attention to designing efficient building block with multi-scale receptive field for local modeling, and their LKA modules face a quadratic increase in computational and memory footprints as the convolutional kernel size increases. To address the first issue, we propose the multi-scale blueprint separable convolutions (MBSConv) as highly efficient building block with multi-scale receptive field, it can focus on the learning for the multi-scale information which is a vital component of discriminative representation. As for the second issue, we revisit the key properties of LKA in which we find that the adjacent direct interaction of local information and long-distance dependencies is crucial to provide remarkable performance. Thus, taking this into account and in order to mitigate the complexity of LKA, we propose a large coordinate kernel attention (LCKA) module which decomposes the 2D convolutional kernels of the depth-wise convolutional layers in LKA into horizontal and vertical 1-D kernels. LCKA enables the adjacent direct interaction of local information and long-distance dependencies not only in the horizontal direction but also in the vertical. Besides, LCKA allows for the direct use of extremely large kernels in the depth-wise convolutional layers to capture more contextual information, which helps to significantly improve the reconstruction performance, and it incurs lower computational complexity and memory footprints. Integrating MBSConv and LCKA, we propose a large coordinate kernel attention network (LCAN).
comment: 13 pages
♻ ☆ Improving Online Source-free Domain Adaptation for Object Detection by Unsupervised Data Acquisition ECCV
Effective object detection in autonomous vehicles is challenged by deployment in diverse and unfamiliar environments. Online Source-Free Domain Adaptation (O-SFDA) offers model adaptation using a stream of unlabeled data from a target domain in an online manner. However, not all captured frames contain information beneficial for adaptation, especially in the presence of redundant data and class imbalance issues. This paper introduces a novel approach to enhance O-SFDA for adaptive object detection through unsupervised data acquisition. Our methodology prioritizes the most informative unlabeled frames for inclusion in the online training process. Empirical evaluation on a real-world dataset reveals that our method outperforms existing state-of-the-art O-SFDA techniques, demonstrating the viability of unsupervised data acquisition for improving the adaptive object detector.
comment: Accepted by ECCV workshop ROAM 2024; 12 pages, 2 figures
♻ ☆ CathAction: A Benchmark for Endovascular Intervention Understanding
Real-time visual feedback from catheterization analysis is crucial for enhancing surgical safety and efficiency during endovascular interventions. However, existing datasets are often limited to specific tasks, small scale, and lack the comprehensive annotations necessary for broader endovascular intervention understanding. To tackle these limitations, we introduce CathAction, a large-scale dataset for catheterization understanding. Our CathAction dataset encompasses approximately 500,000 annotated frames for catheterization action understanding and collision detection, and 25,000 ground truth masks for catheter and guidewire segmentation. For each task, we benchmark recent related works in the field. We further discuss the challenges of endovascular intentions compared to traditional computer vision tasks and point out open research questions. We hope that CathAction will facilitate the development of endovascular intervention understanding methods that can be applied to real-world applications. The dataset is available at https://airvlab.github.io/cathaction/.
comment: 10 pages. Webpage: https://airvlab.github.io/cathaction/
♻ ☆ Human-Free Automated Prompting for Vision-Language Anomaly Detection: Prompt Optimization with Meta-guiding Prompt Scheme
Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning, making prompt-based anomaly detection a promising approach. Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types. Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods, eliminating the need for human intervention. The primary challenge in this approach is the lack of anomalous samples during the training phase. Additionally, the Vision Transformer (ViT)-based image encoder in VLMs is not ideal for pixel-wise anomaly segmentation due to a locality feature mismatch between the original image and the output feature map. To tackle the first challenge, we have developed the Object-Attention Anomaly Generation Module (OAGM) to synthesize anomaly samples for training. Furthermore, our Meta-Guiding Prompt-Tuning Scheme (MPTS) iteratively adjusts the gradient-based optimization direction of learnable prompts to avoid overfitting to the synthesized anomalies. For the second challenge, we propose Locality-Aware Attention, which ensures that each local patch feature attends only to nearby patch features, preserving the locality features corresponding to their original locations. This framework allows for the optimal prompt embeddings by searching in the continuous latent space via backpropagation, free from human semantic constraints. Additionally, the modified locality-aware attention improves the precision of pixel-wise anomaly segmentation.
♻ ☆ Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
♻ ☆ RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving
Autonomous navigation at high speeds in off-road environments necessitates robots to comprehensively understand their surroundings using onboard sensing only. The extreme conditions posed by the off-road setting can cause degraded camera image quality due to poor lighting and motion blur, as well as limited sparse geometric information available from LiDAR sensing when driving at high speeds. In this work, we present RoadRunner, a novel framework capable of predicting terrain traversability and an elevation map directly from camera and LiDAR sensor inputs. RoadRunner enables reliable autonomous navigation, by fusing sensory information, handling of uncertainty, and generation of contextually informed predictions about the geometry and traversability of the terrain while operating at low latency. In contrast to existing methods relying on classifying handcrafted semantic classes and using heuristics to predict traversability costs, our method is trained end-to-end in a self-supervised fashion. The RoadRunner network architecture builds upon popular sensor fusion network architectures from the autonomous driving domain, which embed LiDAR and camera information into a common Bird's Eye View perspective. Training is enabled by utilizing an existing traversability estimation stack to generate training data in hindsight in a scalable manner from real-world off-road driving datasets. Furthermore, RoadRunner improves the system latency by a factor of roughly 4, from 500 ms to 140 ms, while improving the accuracy for traversability costs and elevation map predictions. We demonstrate the effectiveness of RoadRunner in enabling safe and reliable off-road navigation at high speeds in multiple real-world driving scenarios through unstructured desert environments.
comment: accepted for IEEE Transactions on Field Robotics (T-FR)
♻ ☆ Evidential Deep Partial Multi-View Classification With Discount Fusion
Incomplete multi-view data classification poses significant challenges due to the common issue of missing views in real-world scenarios. Despite advancements, existing methods often fail to provide reliable predictions, largely due to the uncertainty of missing views and the inconsistent quality of imputed data. To tackle these problems, we propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC). Initially, we use K-means imputation to address missing views, creating a complete set of multi-view data. However, the potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences. To manage this, we introduce a Conflict-Aware Evidential Fusion Network (CAEFN), which dynamically adjusts based on the reliability of the evidence, ensuring trustworthy discount fusion and producing reliable inference outcomes. Comprehensive experiments on various benchmark datasets reveal EDP-MVC not only matches but often surpasses the performance of state-of-the-art methods.
comment: Ongoing work. 13 pages, 3 figures, 6 tables
♻ ☆ Eyes Can Deceive: Benchmarking Counterfactual Reasoning Abilities of Multi-modal Large Language Models
Counterfactual reasoning, as a crucial manifestation of human intelligence, refers to making presuppositions based on established facts and extrapolating potential outcomes. Existing multimodal large language models (MLLMs) have exhibited impressive cognitive and reasoning capabilities, which have been examined across a wide range of Visual Question Answering (VQA) benchmarks. Nevertheless, how will existing MLLMs perform when faced with counterfactual questions? To answer this question, we first curate a novel \textbf{C}ounter\textbf{F}actual \textbf{M}ulti\textbf{M}odal reasoning benchmark, abbreviated as \textbf{CFMM}, to systematically assess the counterfactual reasoning capabilities of MLLMs. Our CFMM comprises six challenging tasks, each including hundreds of carefully human-labeled and GPT-generated counterfactual questions, to evaluate MLLM's counterfactual reasoning capabilities across diverse aspects. Through experiments, interestingly, we find that existing MLLMs prefer to believe what they see, but ignore the counterfactual presuppositions presented in the question, thereby leading to inaccurate responses. Furthermore, we evaluate a wide range of prevalent MLLMs on our proposed CFMM. The significant gap between their performance on our CFMM and that on several VQA benchmarks indicates that there is still considerable room for improvement in existing MLLMs toward approaching human-level intelligence. On the other hand, through boosting MLLMs performances on our CFMM in the future, potential avenues toward developing MLLMs with advanced intelligence can be explored.
♻ ☆ Early Explorations of Lightweight Models for Wound Segmentation on Mobile Devices
The aging population poses numerous challenges to healthcare, including the increase in chronic wounds in the elderly. The current approach to wound assessment by therapists based on photographic documentation is subjective, highlighting the need for computer-aided wound recognition from smartphone photos. This offers objective and convenient therapy monitoring, while being accessible to patients from their home at any time. However, despite research in mobile image segmentation, there is a lack of focus on mobile wound segmentation. To address this gap, we conduct initial research on three lightweight architectures to investigate their suitability for smartphone-based wound segmentation. Using public datasets and UNet as a baseline, our results are promising, with both ENet and TopFormer, as well as the larger UNeXt variant, showing comparable performance to UNet. Furthermore, we deploy the models into a smartphone app for visual assessment of live segmentation, where results demonstrate the effectiveness of TopFormer in distinguishing wounds from wound-coloured objects. While our study highlights the potential of transformer models for mobile wound segmentation, future work should aim to further improve the mask contours.
comment: Extended version of our paper that was published in the "47th German Conference on Artificial Intelligence (KI 2024)"
♻ ☆ Deep Convolutional Framelet Denoising for Panoramic by Mixed Wavelet Integration
Enhancing quality and removing noise during preprocessing is one of the most critical steps in image processing. X-ray images are created by photons colliding with atoms and the variation in scattered noise absorption. This noise leads to a deterioration in the graph's medical quality and, at times, results in repetition, thereby increasing the patient's effective dose. One of the most critical challenges in this area has consistently been lowering the image noise. Techniques like BM3d, low-pass filters, and Autoencoder have taken this step. Owing to their structural design and high rate of repetition, neural networks employing diverse architectures have, over the past decade, achieved noise reduction with satisfactory outcomes, surpassing the traditional BM3D and low-pass filters. The combination of the Hankel matrix with neural networks represents one of these configurations. The Hankel matrix aims to identify a local circle by separating individual values into local and non-local components, utilizing a non-local matrix. A non-local matrix can be created using the wave or DCT. This paper suggests integrating the waveform with the Daubechies (D4) wavelet due to its higher energy concentration and employs the u-Net neural network architecture, which incorporates the waveform exclusively at each stage. The outcomes were evaluated using the PSNR and SSIM criteria, and the outcomes were verified by using various waves. The effectiveness of a one-wave network has increased from 0.5% to 1.2%, according to studies done on other datasets
♻ ☆ TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo
The reconstruction of textureless areas has long been a challenging problem in MVS due to lack of reliable pixel correspondences between images. In this paper, we propose the Textureless-aware Segmentation And Correlative Refinement guided Multi-View Stereo (TSAR-MVS), a novel method that effectively tackles challenges posed by textureless areas in 3D reconstruction through filtering, refinement and segmentation. First, we implement the joint hypothesis filtering, a technique that merges a confidence estimator with a disparity discontinuity detector to eliminate incorrect depth estimations. Second, to spread the pixels with confident depth, we introduce an iterative correlation refinement strategy that leverages RANSAC to generate 3D planes based on superpixels, succeeded by a weighted median filter for broadening the influence of accurately determined pixels. Finally, we present a textureless-aware segmentation method that leverages edge detection and line detection for accurately identify large textureless regions for further depth completion. Experiments on ETH3D, Tanks & Temples and Strecha datasets demonstrate the superior performance and strong generalization capability of our proposed method.
♻ ☆ MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo
Reconstructing textureless areas in MVS poses challenges due to the absence of reliable pixel correspondences within fixed patch. Although certain methods employ patch deformation to expand the receptive field, their patches mistakenly skip depth edges to calculate areas with depth discontinuity, thereby causing ambiguity. Consequently, we introduce Multi-granularity Segmentation Prior Multi-View Stereo (MSP-MVS). Specifically, we first propose multi-granularity segmentation prior by integrating multi-granularity depth edges to restrict patch deformation within homogeneous areas. Moreover, we present anchor equidistribution that bring deformed patches with more uniformly distributed anchors to ensure an adequate coverage of their own homogeneous areas. Furthermore, we introduce iterative local search optimization to represent larger patch with sparse representative candidates, significantly boosting the expressive capacity for each patch. The state-of-the-art results on ETH3D and Tanks & Temples benchmarks demonstrate the effectiveness and robust generalization ability of our proposed method.
comment: arXiv admin note: text overlap with arXiv:2308.09990
♻ ☆ Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper.
comment: 18 pages, 5 figures
♻ ☆ Zero-Shot Multi-Object Scene Completion ECCV 2024
We present a 3D scene completion method that recovers the complete geometry of multiple unseen objects in complex scenes from a single RGB-D image. Despite notable advancements in single-object 3D shape completion, high-quality reconstructions in highly cluttered real-world multi-object scenes remains a challenge. To address this issue, we propose OctMAE, an architecture that leverages an Octree U-Net and a latent 3D MAE to achieve high-quality and near real-time multi-object scene completion through both local and global geometric reasoning. Because a naive 3D MAE can be computationally intractable and memory intensive even in the latent space, we introduce a novel occlusion masking strategy and adopt 3D rotary embeddings, which significantly improves the runtime and scene completion quality. To generalize to a wide range of objects in diverse scenes, we create a large-scale photorealistic dataset, featuring a diverse set of 12K 3D object models from the Objaverse dataset which are rendered in multi-object scenes with physics-based positioning. Our method outperforms the current state-of-the-art on both synthetic and real-world datasets and demonstrates a strong zero-shot capability.
comment: Published at ECCV 2024, Webpage: https://sh8.io/#/oct_mae
♻ ☆ Does CLIP Bind Concepts? Probing Compositionality in Large Image Models
Large-scale neural network models combining text and images have made incredible progress in recent years. However, it remains an open question to what extent such models encode compositional representations of the concepts over which they operate, such as correctly identifying "red cube" by reasoning over the constituents "red" and "cube". In this work, we focus on the ability of a large pretrained vision and language model (CLIP) to encode compositional concepts and to bind variables in a structure-sensitive way (e.g., differentiating "cube behind sphere" from "sphere behind cube"). To inspect the performance of CLIP, we compare several architectures from research on compositional distributional semantics models (CDSMs), a line of research that attempts to implement traditional compositional linguistic structures within embedding spaces. We benchmark them on three synthetic datasets - single-object, two-object, and relational - designed to test concept binding. We find that CLIP can compose concepts in a single-object setting, but in situations where concept binding is needed, performance drops dramatically. At the same time, CDSMs also perform poorly, with best performance at chance level.
comment: Lewis and Nayak contributed equally
♻ ☆ 3D Weakly Supervised Semantic Segmentation with 2D Vision-Language Guidance
In this paper, we propose 3DSS-VLG, a weakly supervised approach for 3D Semantic Segmentation with 2D Vision-Language Guidance, an alternative approach that a 3D model predicts dense-embedding for each point which is co-embedded with both the aligned image and text spaces from the 2D vision-language model. Specifically, our method exploits the superior generalization ability of the 2D vision-language models and proposes the Embeddings Soft-Guidance Stage to utilize it to implicitly align 3D embeddings and text embeddings. Moreover, we introduce the Embeddings Specialization Stage to purify the feature representation with the help of a given scene-level label, specifying a better feature supervised by the corresponding text embedding. Thus, the 3D model is able to gain informative supervisions both from the image embedding and text embedding, leading to competitive segmentation performances. To the best of our knowledge, this is the first work to investigate 3D weakly supervised semantic segmentation by using the textual semantic information of text category labels. Moreover, with extensive quantitative and qualitative experiments, we present that our 3DSS-VLG is able not only to achieve the state-of-the-art performance on both S3DIS and ScanNet datasets, but also to maintain strong generalization capability.
♻ ☆ Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models
Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using prompt-specific methods to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of our method in comparison to existing techniques.
comment: The experiments are insufficient and need to be completed
♻ ☆ Hydra-MDP: End-to-end Multimodal Planning with Multi-target Hydra-Distillation CVPR 2024
We propose Hydra-MDP, a novel paradigm employing multiple teachers in a teacher-student model. This approach uses knowledge distillation from both human and rule-based teachers to train the student model, which features a multi-head decoder to learn diverse trajectory candidates tailored to various evaluation metrics. With the knowledge of rule-based teachers, Hydra-MDP learns how the environment influences the planning in an end-to-end manner instead of resorting to non-differentiable post-processing. This method achieves the $1^{st}$ place in the Navsim challenge, demonstrating significant improvements in generalization across diverse driving environments and conditions. More details by visiting \url{https://github.com/NVlabs/Hydra-MDP}.
comment: The 1st place solution of End-to-end Driving at Scale at the CVPR 2024 Autonomous Grand Challenge
♻ ☆ VRSO: Visual-Centric Reconstruction for Static Object Annotation IROS
As a part of the perception results of intelligent driving systems, static object detection (SOD) in 3D space provides crucial cues for driving environment understanding. With the rapid deployment of deep neural networks for SOD tasks, the demand for high-quality training samples soars. The traditional, also reliable, way is manual labelling over the dense LiDAR point clouds and reference images. Though most public driving datasets adopt this strategy to provide SOD ground truth (GT), it is still expensive and time-consuming in practice. This paper introduces VRSO, a visual-centric approach for static object annotation. Experiments on the Waymo Open Dataset show that the mean reprojection error from VRSO annotation is only 2.6 pixels, around four times lower than the Waymo Open Dataset labels (10.6 pixels). VRSO is distinguished in low cost, high efficiency, and high quality: (1) It recovers static objects in 3D space with only camera images as input, and (2) manual annotation is barely involved since GT for SOD tasks is generated based on an automatic reconstruction and annotation pipeline.
comment: Accepted at 2024 IEEE International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras
Event cameras are ideally suited to capture High Dynamic Range (HDR) visual information without blur but provide poor imaging capability for static or slowly varying scenes. Conversely, conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on HDR or quickly changing scenes. In this paper, we present an asynchronous linear filter architecture, fusing event and frame camera data, for HDR video reconstruction and spatial convolution that exploits the advantages of both sensor modalities. The key idea is the introduction of a state that directly encodes the integrated or convolved image information and that is updated asynchronously as each event or each frame arrives from the camera. The state can be read-off as-often-as and whenever required to feed into subsequent vision modules for real-time robotic systems. Our experimental results are evaluated on both publicly available datasets with challenging lighting conditions and fast motions, along with a new dataset with HDR reference that we provide. The proposed AKF pipeline outperforms other state-of-the-art methods in both absolute intensity error (69.4% reduction) and image similarity indexes (average 35.5% improvement). We also demonstrate the integration of image convolution with linear spatial kernels Gaussian, Sobel, and Laplacian as an application of our architecture.
comment: 17 pages, 10 figures. Date of Publication: 04 September 2023
♻ ☆ MiniGPT-Reverse-Designing: Predicting Image Adjustments Utilizing MiniGPT-4
Vision-Language Models (VLMs) have recently seen significant advancements through integrating with Large Language Models (LLMs). The VLMs, which process image and text modalities simultaneously, have demonstrated the ability to learn and understand the interaction between images and texts across various multi-modal tasks. Reverse designing, which could be defined as a complex vision-language task, aims to predict the edits and their parameters, given a source image, an edited version, and an optional high-level textual edit description. This task requires VLMs to comprehend the interplay between the source image, the edited version, and the optional textual context simultaneously, going beyond traditional vision-language tasks. In this paper, we extend and fine-tune MiniGPT-4 for the reverse designing task. Our experiments demonstrate the extensibility of off-the-shelf VLMs, specifically MiniGPT-4, for more complex tasks such as reverse designing. Code is available at this \href{https://github.com/VahidAz/MiniGPT-Reverse-Designing}
comment: 8 pages, 7 figures
♻ ☆ Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment
Learning to ground natural language queries to target objects or regions in 3D point clouds is quite essential for 3D scene understanding. Nevertheless, existing 3D visual grounding approaches require a substantial number of bounding box annotations for text queries, which is time-consuming and labor-intensive to obtain. In this paper, we propose 3D-VLA, a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment. Our 3D-VLA exploits the superior ability of current large-scale vision-language models (VLMs) on aligning the semantics between texts and 2D images, as well as the naturally existing correspondences between 2D images and 3D point clouds, and thus implicitly constructs correspondences between texts and 3D point clouds with no need for fine-grained box annotations in the training procedure. During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images. To the best of our knowledge, this is the first work to investigate 3D visual grounding in a weakly supervised manner by involving large scale vision-language models, and extensive experiments on ReferIt3D and ScanRefer datasets demonstrate that our 3D-VLA achieves comparable and even superior results over the fully supervised methods.
♻ ☆ DeepSpeak Dataset v1.0
We describe a large-scale dataset--DeepSpeak--of real and deepfake footage of people talking and gesturing in front of their webcams. The real videos in this first version of the dataset consist of 17 hours of footage from 220 diverse individuals. Constituting more than 26 hours of footage, the fake videos consist of a range of different state-of-the-art face-swap and lip-sync deepfakes with natural and AI-generated voices. We expect to release future versions of this dataset with different and updated deepfake technologies. This dataset is made freely available for research and non-commercial uses; requests for commercial use will be considered.
♻ ☆ Visual Multi-Object Tracking with Re-Identification and Occlusion Handling using Labeled Random Finite Sets
This paper proposes an online visual multi-object tracking (MOT) algorithm that resolves object appearance-reappearance and occlusion. Our solution is based on the labeled random finite set (LRFS) filtering approach, which in principle, addresses disappearance, appearance, reappearance, and occlusion via a single Bayesian recursion. However, in practice, existing numerical approximations cause reappearing objects to be initialized as new tracks, especially after long periods of being undetected. In occlusion handling, the filter's efficacy is dictated by trade-offs between the sophistication of the occlusion model and computational demand. Our contribution is a novel modeling method that exploits object features to address reappearing objects whilst maintaining a linear complexity in the number of detections. Moreover, to improve the filter's occlusion handling, we propose a fuzzy detection model that takes into consideration the overlapping areas between tracks and their sizes. We also develop a fast version of the filter to further reduce the computational time. The source code is publicly available at https://github.com/linh-gist/mv-glmb-ab.
♻ ☆ Criticality Leveraged Adversarial Training (CLAT) for Boosted Performance via Parameter Efficiency
Adversarial training enhances neural network robustness but suffers from a tendency to overfit and increased generalization errors on clean data. This work introduces CLAT, an innovative approach that mitigates adversarial overfitting by introducing parameter efficiency into the adversarial training process, improving both clean accuracy and adversarial robustness. Instead of tuning the entire model, CLAT identifies and fine-tunes robustness-critical layers - those predominantly learning non-robust features - while freezing the remaining model to enhance robustness. It employs dynamic critical layer selection to adapt to changes in layer criticality throughout the fine-tuning process. Empirically, CLAT can be applied on top of existing adversarial training methods, significantly reduces the number of trainable parameters by approximately 95%, and achieves more than a 2% improvement in adversarial robustness compared to baseline methods.
comment: 9 pages + appendix/ additional experiments
♻ ☆ Prompt Generation Networks for Input-Space Adaptation of Frozen Vision Transformers BMVC2024
With the introduction of the transformer architecture in computer vision, increasing model scale has been demonstrated as a clear path to achieving performance and robustness gains. However, with model parameter counts reaching the billions, classical finetuning approaches are becoming increasingly limiting and even unfeasible when models become hosted as inference APIs, as in NLP. Visual input-prompt learning, an adaptation technique in which additional inputs in visual (RGB) space are learned, has emerged as a potential solution for adapting frozen and cloud-hosted models, requiring neither access to the forward pass, nor post-processing. Yet so far, these constraints have deteriorated adaptation performances significantly. To this end, we propose the Prompt Generation Network (PGN) that generates a different prompt for every data point, which is then used to adapt a frozen pretrained vision model to a target task. We show that the PGN effectively adapts pretrained models to various new datasets: It surpasses previous methods by a large margin on 12/12 datasets and even outperforms full-finetuning on 5/12, while requiring 100x fewer parameters. Lastly, we introduce the "prompt inversion" trick, with which PGNs can be efficiently trained in a latent space but deployed in RGB input space for inference.
comment: Accepted by BMVC2024. Codebase: https://github.com/jochemloedeman/PGN
♻ ☆ PoCo: Point Context Cluster for RGBD Indoor Place Recognition
We present a novel end-to-end algorithm (PoCo) for the indoor RGB-D place recognition task, aimed at identifying the most likely match for a given query frame within a reference database. The task presents inherent challenges attributed to the constrained field of view and limited range of perception sensors. We propose a new network architecture, which generalizes the recent Context of Clusters (CoCs) to extract global descriptors directly from the noisy point clouds through end-to-end learning. Moreover, we develop the architecture by integrating both color and geometric modalities into the point features to enhance the global descriptor representation. We conducted evaluations on public datasets ScanNet-PR and ARKit with 807 and 5047 scenarios, respectively. PoCo achieves SOTA performance: on ScanNet-PR, we achieve R@1 of 64.63%, a 5.7% improvement from the best-published result CGis (61.12%); on Arkit, we achieve R@1 of 45.12%, a 13.3% improvement from the best-published result CGis (39.82%). In addition, PoCo shows higher efficiency than CGis in inference time (1.75X-faster), and we demonstrate the effectiveness of PoCo in recognizing places within a real-world laboratory environment.
♻ ☆ Mix-Domain Contrastive Learning for Unpaired H&E-to-IHC Stain Translation
H&E-to-IHC stain translation techniques offer a promising solution for precise cancer diagnosis, especially in low-resource regions where there is a shortage of health professionals and limited access to expensive equipment. Considering the pixel-level misalignment of H&E-IHC image pairs, current research explores the pathological consistency between patches from the same positions of the image pair. However, most of them overemphasize the correspondence between domains or patches, overlooking the side information provided by the non-corresponding objects. In this paper, we propose a Mix-Domain Contrastive Learning (MDCL) method to leverage the supervision information in unpaired H&E-to-IHC stain translation. Specifically, the proposed MDCL method aggregates the inter-domain and intra-domain pathology information by estimating the correlation between the anchor patch and all the patches from the matching images, encouraging the network to learn additional contrastive knowledge from mixed domains. With the mix-domain pathology information aggregation, MDCL enhances the pathological consistency between the corresponding patches and the component discrepancy of the patches from the different positions of the generated IHC image. Extensive experiments on two H&E-to-IHC stain translation datasets, namely MIST and BCI, demonstrate that the proposed method achieves state-of-the-art performance across multiple metrics.
♻ ☆ FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes
Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to map buildings and other above-ground structures. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. Large annotated Lidar datasets are needed to evaluate these classification methods, however, current Lidar benchmarks have restricted scope and often cover a single urban area. To bridge this data gap, we introduce the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high quality labels for 7 semantic classes and spanning 250 km$^2$. FRACTAL achieves high spatial and semantic diversity by explicitly sampling rare classes and challenging landscapes from five different regions of France. We describe the data collection, annotation, and curation process of the dataset. We provide baseline semantic segmentation results using a state of the art 3D point cloud classification model. FRACTAL aims to support the development of 3D deep learning approaches for large-scale land monitoring.
comment: 9 (body) + 2 (bibliography) + 8 (appendices) pages | Dataset is available at https://huggingface.co/datasets/IGNF/FRACTAL | Trained model is available at https://huggingface.co/IGNF/FRACTAL-LidarHD_7cl_randlanet | Deep learning code repository is on Gihtub at https://github.com/IGNF/myria3d | Data engineering code repository is on Github at https://github.com/IGNF/pacasam
♻ ☆ Matryoshka Diffusion Models ICLR2024
Diffusion models are the de facto approach for generating high-quality images and videos, but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion Models(MDM), an end-to-end framework for high-resolution image and video synthesis. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small-scale inputs are nested within those of large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions, which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a single pixel-space model at resolutions of up to 1024x1024 pixels, demonstrating strong zero-shot generalization using the CC12M dataset, which contains only 12 million images. Our code is released at https://github.com/apple/ml-mdm
comment: Accepted by ICLR2024
♻ ☆ Motion Avatar: Generate Human and Animal Avatars with Arbitrary Motion BMVC 2024
In recent years, there has been significant interest in creating 3D avatars and motions, driven by their diverse applications in areas like film-making, video games, AR/VR, and human-robot interaction. However, current efforts primarily concentrate on either generating the 3D avatar mesh alone or producing motion sequences, with integrating these two aspects proving to be a persistent challenge. Additionally, while avatar and motion generation predominantly target humans, extending these techniques to animals remains a significant challenge due to inadequate training data and methods. To bridge these gaps, our paper presents three key contributions. Firstly, we proposed a novel agent-based approach named Motion Avatar, which allows for the automatic generation of high-quality customizable human and animal avatars with motions through text queries. The method significantly advanced the progress in dynamic 3D character generation. Secondly, we introduced a LLM planner that coordinates both motion and avatar generation, which transforms a discriminative planning into a customizable Q&A fashion. Lastly, we presented an animal motion dataset named Zoo-300K, comprising approximately 300,000 text-motion pairs across 65 animal categories and its building pipeline ZooGen, which serves as a valuable resource for the community. See project website https://steve-zeyu-zhang.github.io/MotionAvatar/
comment: Accepted to BMVC 2024
Artificial Intelligence 122
☆ Bridging Episodes and Semantics: A Novel Framework for Long-Form Video Understanding ECCV'24
While existing research often treats long-form videos as extended short videos, we propose a novel approach that more accurately reflects human cognition. This paper introduces BREASE: BRidging Episodes And SEmantics for Long-Form Video Understanding, a model that simulates episodic memory accumulation to capture action sequences and reinforces them with semantic knowledge dispersed throughout the video. Our work makes two key contributions: First, we develop an Episodic COmpressor (ECO) that efficiently aggregates crucial representations from micro to semi-macro levels. Second, we propose a Semantics reTRiever (SeTR) that enhances these aggregated representations with semantic information by focusing on the broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. Extensive experiments demonstrate that BREASE achieves state-of-the-art performance across multiple long video understanding benchmarks in both zero-shot and fully-supervised settings. The project page and code are at: https://joslefaure.github.io/assets/html/hermes.html.
comment: Accepted to the EVAL-FoMo Workshop at ECCV'24. Project page: https://joslefaure.github.io/assets/html/hermes.html
☆ Advancing Multi-talker ASR Performance with Large Language Models
Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works.
comment: 8 pages, accepted by IEEE SLT 2024
☆ Open-vocabulary Temporal Action Localization using VLMs
Video action localization aims to find timings of a specific action from a long video. Although existing learning-based approaches have been successful, those require annotating videos that come with a considerable labor cost. This paper proposes a learning-free, open-vocabulary approach based on emerging vision-language models (VLM). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames into a concatenated image with frame index labels, making a VLM guess a frame that is considered to be closest to the start/end of the action. Iterating this process by narrowing a sampling time window results in finding a specific frame of start and end of an action. We demonstrate that this sampling technique yields reasonable results, illustrating a practical extension of VLMs for understanding videos.
comment: 7 pages, 5 figures, 4 tables. Last updated on August 30th, 2024
☆ Getting Inspiration for Feature Elicitation: App Store- vs. LLM-based Approach
Over the past decade, app store (AppStore)-inspired requirements elicitation has proven to be highly beneficial. Developers often explore competitors' apps to gather inspiration for new features. With the advance of Generative AI, recent studies have demonstrated the potential of large language model (LLM)-inspired requirements elicitation. LLMs can assist in this process by providing inspiration for new feature ideas. While both approaches are gaining popularity in practice, there is a lack of insight into their differences. We report on a comparative study between AppStore- and LLM-based approaches for refining features into sub-features. By manually analyzing 1,200 sub-features recommended from both approaches, we identified their benefits, challenges, and key differences. While both approaches recommend highly relevant sub-features with clear descriptions, LLMs seem more powerful particularly concerning novel unseen app scopes. Moreover, some recommended features are imaginary with unclear feasibility, which suggests the importance of a human-analyst in the elicitation loop.
comment: To Appear In Proceedings of 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)
☆ Exploring the Effect of Explanation Content and Format on User Comprehension and Trust
In recent years, various methods have been introduced for explaining the outputs of "black-box" AI models. However, it is not well understood whether users actually comprehend and trust these explanations. In this paper, we focus on explanations for a regression tool for assessing cancer risk and examine the effect of the explanations' content and format on the user-centric metrics of comprehension and trust. Regarding content, we experiment with two explanation methods: the popular SHAP, based on game-theoretic notions and thus potentially complex for everyday users to comprehend, and occlusion-1, based on feature occlusion which may be more comprehensible. Regarding format, we present SHAP explanations as charts (SC), as is conventional, and occlusion-1 explanations as charts (OC) as well as text (OT), to which their simpler nature also lends itself. The experiments amount to user studies questioning participants, with two different levels of expertise (the general population and those with some medical training), on their subjective and objective comprehension of and trust in explanations for the outputs of the regression tool. In both studies we found a clear preference in terms of subjective comprehension and trust for occlusion-1 over SHAP explanations in general, when comparing based on content. However, direct comparisons of explanations when controlling for format only revealed evidence for OT over SC explanations in most cases, suggesting that the dominance of occlusion-1 over SHAP explanations may be driven by a preference for text over charts as explanations. Finally, we found no evidence of a difference between the explanation types in terms of objective comprehension. Thus overall, the choice of the content and format of explanations needs careful attention, since in some contexts format, rather than content, may play the critical role in improving user experience.
comment: 18 pages
☆ MoRe Fine-Tuning with 10x Fewer Parameters
Parameter-efficient fine-tuning (PEFT) techniques have unlocked the potential to cheaply and easily specialize large pretrained models. However, the most prominent approaches, like low-rank adapters (LoRA), depend on heuristics or rules-of-thumb for their architectural choices -- potentially limiting their performance for new models and architectures. This limitation suggests that techniques from neural architecture search could be used to obtain optimal adapter architectures, but these are often expensive and difficult to implement. We address this challenge with Monarch Rectangular Fine-tuning (MoRe), a simple framework to search over adapter architectures that relies on the Monarch matrix class. Theoretically, we show that MoRe is more expressive than LoRA. Empirically, our approach is more parameter-efficient and performant than state-of-the-art PEFTs on a range of tasks and models, with as few as 5\% of LoRA's parameters.
☆ Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
Model-based reinforcement learning (RL) is anticipated to exhibit higher sample efficiency compared to model-free RL by utilizing a virtual environment model. However, it is challenging to obtain sufficiently accurate representations of the environmental dynamics due to uncertainties in complex systems and environments. An inaccurate environment model may degrade the sample efficiency and performance of model-based RL. Furthermore, while model-based RL can improve sample efficiency, it often still requires substantial training time to learn from scratch, potentially limiting its advantages over model-free approaches. To address these challenges, this paper introduces a knowledge-informed model-based residual reinforcement learning framework aimed at enhancing learning efficiency by infusing established expert knowledge into the learning process and avoiding the issue of beginning from zero. Our approach integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics, thus ensuring adaptability to complex scenarios. We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch. The proposed approach is applied to CAV trajectory control tasks for the dissipation of stop-and-go waves in mixed traffic flow. Experimental results demonstrate that our proposed approach enables the CAV agent to achieve superior performance in trajectory control compared to the baseline agents in terms of sample efficiency, traffic flow smoothness and traffic mobility. The source code and supplementary materials are available at https://github.com/zihaosheng/traffic-expertise-RL/.
☆ EMPOWER: Embodied Multi-role Open-vocabulary Planning with Online Grounding and Execution IROS 2024
Task planning for robots in real-life settings presents significant challenges. These challenges stem from three primary issues: the difficulty in identifying grounded sequences of steps to achieve a goal; the lack of a standardized mapping between high-level actions and low-level commands; and the challenge of maintaining low computational overhead given the limited resources of robotic hardware. We introduce EMPOWER, a framework designed for open-vocabulary online grounding and planning for embodied agents aimed at addressing these issues. By leveraging efficient pre-trained foundation models and a multi-role mechanism, EMPOWER demonstrates notable improvements in grounded planning and execution. Quantitative results highlight the effectiveness of our approach, achieving an average success rate of 0.73 across six different real-life scenarios using a TIAGo robot.
comment: Accepted at IROS 2024
☆ NDP: Next Distribution Prediction as a More Broad Target
Large language models (LLMs) trained on next-token prediction (NTP) paradigm have demonstrated powerful capabilities. However, the existing NTP paradigm contains several limitations, particularly related to planned task complications and error propagation during inference. In our work, we extend the critique of NTP, highlighting its limitation also due to training with a narrow objective: the prediction of a sub-optimal one-hot distribution. To support this critique, we conducted a pre-experiment treating the output distribution from powerful LLMs as efficient world data compression. By evaluating the similarity between the $n$-gram distribution and the one-hot distribution with LLMs, we observed that the $n$-gram distributions align more closely with the output distribution of LLMs. Based on this insight, we introduce Next Distribution Prediction (NDP), which uses $n$-gram distributions to replace the one-hot targets, enhancing learning without extra online training time. We conducted experiments across translation, general task, language transfer, and medical domain adaptation. Compared to NTP, NDP can achieve up to +2.97 COMET improvement in translation tasks, +0.61 average improvement in general tasks, and incredible +10.75 average improvement in the medical domain. This demonstrates the concrete benefits of addressing the target narrowing problem, pointing to a new direction for future work on improving NTP.
comment: 8 pages,5 figures
☆ Leveraging Graph Neural Networks to Forecast Electricity Consumption ECML
Accurate electricity demand forecasting is essential for several reasons, especially as the integration of renewable energy sources and the transition to a decentralized network paradigm introduce greater complexity and uncertainty. The proposed methodology leverages graph-based representations to effectively capture the spatial distribution and relational intricacies inherent in this decentralized network structure. This research work offers a novel approach that extends beyond the conventional Generalized Additive Model framework by considering models like Graph Convolutional Networks or Graph SAGE. These graph-based models enable the incorporation of various levels of interconnectedness and information sharing among nodes, where each node corresponds to the combined load (i.e. consumption) of a subset of consumers (e.g. the regions of a country). More specifically, we introduce a range of methods for inferring graphs tailored to consumption forecasting, along with a framework for evaluating the developed models in terms of both performance and explainability. We conduct experiments on electricity forecasting, in both a synthetic and a real framework considering the French mainland regions, and the performance and merits of our approach are discussed.
comment: 17 pages, ECML PKDD 2024 Workshop paper
☆ C-RADAR: A Centralized Deep Learning System for Intrusion Detection in Software Defined Networks
The popularity of Software Defined Networks (SDNs) has grown in recent years, mainly because of their ability to simplify network management and improve network flexibility. However, this also makes them vulnerable to various types of cyber attacks. SDNs work on a centralized control plane which makes them more prone to network attacks. Research has demonstrated that deep learning (DL) methods can be successful in identifying intrusions in conventional networks, but their application in SDNs is still an open research area. In this research, we propose the use of DL techniques for intrusion detection in SDNs. We measure the effectiveness of our method by experimentation on a dataset of network traffic and comparing it to existing techniques. Our results show that the DL-based approach outperforms traditional methods in terms of detection accuracy and computational efficiency. The deep learning architecture that has been used in this research is a Long Short Term Memory Network and Self-Attention based architecture i.e. LSTM-Attn which achieves an Fl-score of 0.9721. Furthermore, this technique can be trained to detect new attack patterns and improve the overall security of SDNs.
☆ Bidirectional Decoding: Improving Action Chunking via Closed-Loop Resampling
Predicting and executing a sequence of actions without intermediate replanning, known as action chunking, is increasingly used in robot learning from human demonstrations. However, its effects on learned policies remain puzzling: some studies highlight its importance for achieving strong performance, while others observe detrimental effects. In this paper, we first dissect the role of action chunking by analyzing the divergence between the learner and the demonstrator. We find that longer action chunks enable a policy to better capture temporal dependencies by taking into account more past states and actions within the chunk. However, this advantage comes at the cost of exacerbating errors in stochastic environments due to fewer observations of recent states. To address this, we propose Bidirectional Decoding (BID), a test-time inference algorithm that bridges action chunking with closed-loop operations. BID samples multiple predictions at each time step and searches for the optimal one based on two criteria: (i) backward coherence, which favors samples aligned with previous decisions, (ii) forward contrast, which favors samples close to outputs of a stronger policy and distant from those of a weaker policy. By coupling decisions within and across action chunks, BID enhances temporal consistency over extended sequences while enabling adaptive replanning in stochastic environments. Experimental results show that BID substantially outperforms conventional closed-loop operations of two state-of-the-art generative policies across seven simulation benchmarks and two real-world tasks.
comment: Project website: https://bid-robot.github.io/
☆ Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage
Fine-tuning large language models on private data for downstream applications poses significant privacy risks in potentially exposing sensitive information. Several popular community platforms now offer convenient distribution of a large variety of pre-trained models, allowing anyone to publish without rigorous verification. This scenario creates a privacy threat, as pre-trained models can be intentionally crafted to compromise the privacy of fine-tuning datasets. In this study, we introduce a novel poisoning technique that uses model-unlearning as an attack tool. This approach manipulates a pre-trained language model to increase the leakage of private data during the fine-tuning process. Our method enhances both membership inference and data extraction attacks while preserving model utility. Experimental results across different models, datasets, and fine-tuning setups demonstrate that our attacks significantly surpass baseline performance. This work serves as a cautionary note for users who download pre-trained models from unverified sources, highlighting the potential risks involved.
☆ AASIST3: KAN-Enhanced AASIST Speech Deepfake Detection using SSL Features and Additional Regularization for the ASVspoof 2024 Challenge
Automatic Speaker Verification (ASV) systems, which identify speakers based on their voice characteristics, have numerous applications, such as user authentication in financial transactions, exclusive access control in smart devices, and forensic fraud detection. However, the advancement of deep learning algorithms has enabled the generation of synthetic audio through Text-to-Speech (TTS) and Voice Conversion (VC) systems, exposing ASV systems to potential vulnerabilities. To counteract this, we propose a novel architecture named AASIST3. By enhancing the existing AASIST framework with Kolmogorov-Arnold networks, additional layers, encoders, and pre-emphasis techniques, AASIST3 achieves a more than twofold improvement in performance. It demonstrates minDCF results of 0.5357 in the closed condition and 0.1414 in the open condition, significantly enhancing the detection of synthetic voices and improving ASV security.
comment: 8 pages, 2 figures, 2 tables. Accepted paper at the ASVspoof 2024 (the 25th Interspeech Conference)
☆ rerankers: A Lightweight Python Library to Unify Ranking Methods
This paper presents rerankers, a Python library which provides an easy-to-use interface to the most commonly used re-ranking approaches. Re-ranking is an integral component of many retrieval pipelines; however, there exist numerous approaches to it, relying on different implementation methods. \texttt{rerankers} unifies these methods into a single user-friendly interface, allowing practitioners and researchers alike to explore different methods while only changing a single line of Python code. Moreover ,rerankers ensures that its implementations are done with the fewest dependencies possible, and re-uses the original implementation whenever possible, guaranteeing that our simplified interface results in no performance degradation compared to more complex ones. The full source code and list of supported models are updated regularly and available at https://github.com/answerdotai/rerankers.
☆ Modularity in Transformers: Investigating Neuron Separability & Specialization
Transformer models are increasingly prevalent in various applications, yet our understanding of their internal workings remains limited. This paper investigates the modularity and task specialization of neurons within transformer architectures, focusing on both vision (ViT) and language (Mistral 7B) models. Using a combination of selective pruning and MoEfication clustering techniques, we analyze the overlap and specialization of neurons across different tasks and data subsets. Our findings reveal evidence of task-specific neuron clusters, with varying degrees of overlap between related tasks. We observe that neuron importance patterns persist to some extent even in randomly initialized models, suggesting an inherent structure that training refines. Additionally, we find that neuron clusters identified through MoEfication correspond more strongly to task-specific neurons in earlier and later layers of the models. This work contributes to a more nuanced understanding of transformer internals and offers insights into potential avenues for improving model interpretability and efficiency.
comment: 11 pages, 6 figures
☆ Investigating Neuron Ablation in Attention Heads: The Case for Peak Activation Centering
The use of transformer-based models is growing rapidly throughout society. With this growth, it is important to understand how they work, and in particular, how the attention mechanisms represent concepts. Though there are many interpretability methods, many look at models through their neuronal activations, which are poorly understood. We describe different lenses through which to view neuron activations, and investigate the effectiveness in language models and vision transformers through various methods of neural ablation: zero ablation, mean ablation, activation resampling, and a novel approach we term 'peak ablation'. Through experimental analysis, we find that in different regimes and models, each method can offer the lowest degradation of model performance compared to other methods, with resampling usually causing the most significant performance deterioration. We make our code available at https://github.com/nickypro/investigating-ablation.
comment: 9 pages, 2 figures, XAI World Conference 2024 Late-Breaking Work
☆ Bridging Domain Knowledge and Process Discovery Using Large Language Models
Discovering good process models is essential for different process analysis tasks such as conformance checking and process improvements. Automated process discovery methods often overlook valuable domain knowledge. This knowledge, including insights from domain experts and detailed process documentation, remains largely untapped during process discovery. This paper leverages Large Language Models (LLMs) to integrate such knowledge directly into process discovery. We use rules derived from LLMs to guide model construction, ensuring alignment with both domain knowledge and actual process executions. By integrating LLMs, we create a bridge between process knowledge expressed in natural language and the discovery of robust process models, advancing process discovery methodologies significantly. To showcase the usability of our framework, we conducted a case study with the UWV employee insurance agency, demonstrating its practical benefits and effectiveness.
comment: This paper is accepted at the AI4BPM 2024 workshop and to be published in their proceedings
☆ Fair Best Arm Identification with Fixed Confidence
In this work, we present a novel framework for Best Arm Identification (BAI) under fairness constraints, a setting that we refer to as \textit{F-BAI} (fair BAI). Unlike traditional BAI, which solely focuses on identifying the optimal arm with minimal sample complexity, F-BAI also includes a set of fairness constraints. These constraints impose a lower limit on the selection rate of each arm and can be either model-agnostic or model-dependent. For this setting, we establish an instance-specific sample complexity lower bound and analyze the \textit{price of fairness}, quantifying how fairness impacts sample complexity. Based on the sample complexity lower bound, we propose F-TaS, an algorithm provably matching the sample complexity lower bound, while ensuring that the fairness constraints are satisfied. Numerical results, conducted using both a synthetic model and a practical wireless scheduling application, show the efficiency of F-TaS in minimizing the sample complexity while achieving low fairness violations.
☆ Hybridizing Base-Line 2D-CNN Model with Cat Swarm Optimization for Enhanced Advanced Persistent Threat Detection
In the realm of cyber-security, detecting Advanced Persistent Threats (APTs) remains a formidable challenge due to their stealthy and sophisticated nature. This research paper presents an innovative approach that leverages Convolutional Neural Networks (CNNs) with a 2D baseline model, enhanced by the cutting-edge Cat Swarm Optimization (CSO) algorithm, to significantly improve APT detection accuracy. By seamlessly integrating the 2D-CNN baseline model with CSO, we unlock the potential for unprecedented accuracy and efficiency in APT detection. The results unveil an impressive accuracy score of $98.4\%$, marking a significant enhancement in APT detection across various attack stages, illuminating a path forward in combating these relentless and sophisticated threats.
comment: 6 pages, 5 figures
☆ Accelerating the discovery of steady-states of planetary interior dynamics with machine learning
Simulating mantle convection often requires reaching a computationally expensive steady-state, crucial for deriving scaling laws for thermal and dynamical flow properties and benchmarking numerical solutions. The strong temperature dependence of the rheology of mantle rocks causes viscosity variations of several orders of magnitude, leading to a slow-evolving stagnant lid where heat conduction dominates, overlying a rapidly-evolving and strongly convecting region. Time-stepping methods, while effective for fluids with constant viscosity, are hindered by the Courant criterion, which restricts the time step based on the system's maximum velocity and grid size. Consequently, achieving steady-state requires a large number of time steps due to the disparate time scales governing the stagnant and convecting regions. We present a concept for accelerating mantle convection simulations using machine learning. We generate a dataset of 128 two-dimensional simulations with mixed basal and internal heating, and pressure- and temperature-dependent viscosity. We train a feedforward neural network on 97 simulations to predict steady-state temperature profiles. These can then be used to initialize numerical time stepping methods for different simulation parameters. Compared to typical initializations, the number of time steps required to reach steady-state is reduced by a median factor of 3.75. The benefit of this method lies in requiring very few simulations to train on, providing a solution with no prediction error as we initialize a numerical method, and posing minimal computational overhead at inference time. We demonstrate the effectiveness of our approach and discuss the potential implications for accelerated simulations for advancing mantle convection research.
☆ Stationary Policies are Optimal in Risk-averse Total-reward MDPs with EVaR
Optimizing risk-averse objectives in discounted MDPs is challenging because most models do not admit direct dynamic programming equations and require complex history-dependent policies. In this paper, we show that the risk-averse {\em total reward criterion}, under the Entropic Risk Measure (ERM) and Entropic Value at Risk (EVaR) risk measures, can be optimized by a stationary policy, making it simple to analyze, interpret, and deploy. We propose exponential value iteration, policy iteration, and linear programming to compute optimal policies. In comparison with prior work, our results only require the relatively mild condition of transient MDPs and allow for {\em both} positive and negative rewards. Our results indicate that the total reward criterion may be preferable to the discounted criterion in a broad range of risk-averse reinforcement learning domains.
☆ Flexible and Effective Mixing of Large Language Models into a Mixture of Domain Experts
We present a toolkit for creating low-cost Mixture-of-Domain-Experts (MOE) from trained models. The toolkit can be used for creating a mixture from models or from adapters. We perform extensive tests and offer guidance on defining the architecture of the resulting MOE using the toolkit. A public repository is available.
☆ UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios
Recent evaluations of Large Multimodal Models (LMMs) have explored their capabilities in various domains, with only few benchmarks specifically focusing on urban environments. Moreover, existing urban benchmarks have been limited to evaluating LMMs with basic region-level urban tasks under singular views, leading to incomplete evaluations of LMMs' abilities in urban environments. To address these issues, we present UrBench, a comprehensive benchmark designed for evaluating LMMs in complex multi-view urban scenarios. UrBench contains 11.6K meticulously curated questions at both region-level and role-level that cover 4 task dimensions: Geo-Localization, Scene Reasoning, Scene Understanding, and Object Understanding, totaling 14 task types. In constructing UrBench, we utilize data from existing datasets and additionally collect data from 11 cities, creating new annotations using a cross-view detection-matching method. With these images and annotations, we then integrate LMM-based, rule-based, and human-based methods to construct large-scale high-quality questions. Our evaluations on 21 LMMs show that current LMMs struggle in the urban environments in several aspects. Even the best performing GPT-4o lags behind humans in most tasks, ranging from simple tasks such as counting to complex tasks such as orientation, localization and object attribute recognition, with an average performance gap of 17.4%. Our benchmark also reveals that LMMs exhibit inconsistent behaviors with different urban views, especially with respect to understanding cross-view relations. UrBench datasets and benchmark results will be publicly available at https://opendatalab.github.io/UrBench/.
comment: 9 pages, 6 figures
☆ VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either fine-tune large language models (LLMs) or build large-scale time-series datasets to develop TSF foundation models. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. In this paper, we explore a new road to building a TSF foundation model from rich and high-quality natural images, based on the intrinsic similarities between images and time series. To bridge the gap between the two domains, we reformulate the TSF task as an image reconstruction task, which is further processed by a visual masked autoencoder (MAE) self-supervised pre-trained on the ImageNet dataset. Surprisingly, without further adaptation in the time-series domain, the proposed VisionTS could achieve superior zero-shot forecasting performance compared to existing TSF foundation models. With minimal fine-tuning, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. These findings suggest that visual models could be a free lunch for TSF and highlight the potential for future cross-domain research between computer vision and TSF. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
comment: 26 pages, 11 figures
☆ Abstracted Gaussian Prototypes for One-Shot Concept Learning
We introduce a cluster-based generative image segmentation framework to encode higher-level representations of visual concepts based on one-shot learning inspired by the Omniglot Challenge. The inferred parameters of each component of a Gaussian Mixture Model (GMM) represent a distinct topological subpart of a visual concept. Sampling new data from these parameters generates augmented subparts to build a more robust prototype for each concept, i.e., the Abstracted Gaussian Prototype (AGP). This framework addresses one-shot classification tasks using a cognitively-inspired similarity metric and addresses one-shot generative tasks through a novel AGP-VAE pipeline employing variational autoencoders (VAEs) to generate new class variants. Results from human judges reveal that the generative pipeline produces novel examples and classes of visual concepts that are broadly indistinguishable from those made by humans. The proposed framework leads to impressive but not state-of-the-art classification accuracy; thus, the contribution is two-fold: 1) the system is uniquely low in theoretical and computational complexity and operates in a completely standalone manner compared while existing approaches draw heavily on pre-training or knowledge engineering; and 2) in contrast with competing neural network models, the AGP approach addresses the importance of breadth of task capability emphasized in the Omniglot challenge (i.e., successful performance on generative tasks). These two points are critical as we advance toward an understanding of how learning/reasoning systems can produce viable, robust, and flexible concepts based on literally nothing more than a single example.
☆ AI-Driven Intrusion Detection Systems (IDS) on the ROAD dataset: A Comparative Analysis for automotive Controller Area Network (CAN)
The integration of digital devices in modern vehicles has revolutionized automotive technology, enhancing safety and the overall driving experience. The Controller Area Network (CAN) bus is a central system for managing in-vehicle communication between the electronic control units (ECUs). However, the CAN protocol poses security challenges due to inherent vulnerabilities, lacking encryption and authentication, which, combined with an expanding attack surface, necessitates robust security measures. In response to this challenge, numerous Intrusion Detection Systems (IDS) have been developed and deployed. Nonetheless, an open, comprehensive, and realistic dataset to test the effectiveness of such IDSs remains absent in the existing literature. This paper addresses this gap by considering the latest ROAD dataset, containing stealthy and sophisticated injections. The methodology involves dataset labelling and the implementation of both state-of-the-art deep learning models and traditional machine learning models to show the discrepancy in performance between the datasets most commonly used in the literature and the ROAD dataset, a more realistic alternative.
☆ A methodological framework for Resilience as a Service (RaaS) in multimodal urban transportation networks
Public transportation systems are experiencing an increase in commuter traffic. This increase underscores the need for resilience strategies to manage unexpected service disruptions, ensuring rapid and effective responses that minimize adverse effects on stakeholders and enhance the system's ability to maintain essential functions and recover quickly. This study aims to explore the management of public transport disruptions through resilience as a service (RaaS) strategies, developing an optimization model to effectively allocate resources and minimize the cost for operators and passengers. The proposed model includes multiple transportation options, such as buses, taxis, and automated vans, and evaluates them as bridging alternatives to rail-disrupted services based on factors such as their availability, capacity, speed, and proximity to the disrupted station. This ensures that the most suitable vehicles are deployed to maintain service continuity. Applied to a case study in the Ile de France region, Paris and suburbs, complemented by a microscopic simulation, the model is compared to existing solutions such as bus bridging and reserve fleets. The results highlight the model's performance in minimizing costs and enhancing stakeholder satisfaction, optimizing transport management during disruptions.
☆ Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features
Explainable Artificial Intelligence (XAI) plays a crucial role in fostering transparency and trust in AI systems, where traditional XAI approaches typically offer one level of abstraction for explanations, often in the form of heatmaps highlighting single or multiple input features. However, we ask whether abstract reasoning or problem-solving strategies of a model may also be relevant, as these align more closely with how humans approach solutions to problems. We propose a framework, called Symbolic XAI, that attributes relevance to symbolic queries expressing logical relationships between input features, thereby capturing the abstract reasoning behind a model's predictions. The methodology is built upon a simple yet general multi-order decomposition of model predictions. This decomposition can be specified using higher-order propagation-based relevance methods, such as GNN-LRP, or perturbation-based explanation methods commonly used in XAI. The effectiveness of our framework is demonstrated in the domains of natural language processing (NLP), vision, and quantum chemistry (QC), where abstract symbolic domain knowledge is abundant and of significant interest to users. The Symbolic XAI framework provides an understanding of the model's decision-making process that is both flexible for customization by the user and human-readable through logical formulas.
☆ Reasoning with maximal consistent signatures
We analyse a specific instance of the general approach of reasoning based on forgetting by Lang and Marquis. More precisely, we discuss an approach for reasoning with inconsistent information using maximal consistent subsignatures, where a maximal consistent subsignature is a maximal set of propositions such that forgetting the remaining propositions restores consistency. We analyse maximal consistent subsignatures and the corresponding minimal inconsistent subsignatures in-depth and show, among others, that the hitting set duality applies for them as well. We further analyse inference relations based on maximal consistent subsignatures wrt. rationality postulates from non-monotonic reasoning and computational complexity. We also consider the relationship of our approach with inconsistency measurement and paraconsistent reasoning.
☆ "Benefit Game: Alien Seaweed Swarms" -- Real-time Gamification of Digital Seaweed Ecology
"Benefit Game: Alien Seaweed Swarms" combines artificial life art and interactive game with installation to explore the impact of human activity on fragile seaweed ecosystems. The project aims to promote ecological consciousness by creating a balance in digital seaweed ecologies. Inspired by the real species "Laminaria saccharina", the author employs Procedural Content Generation via Machine Learning technology to generate variations of virtual seaweeds and symbiotic fungi. The audience can explore the consequences of human activities through gameplay and observe the ecosystem's feedback on the benefits and risks of seaweed aquaculture. This Benefit Game offers dynamic and real-time responsive artificial seaweed ecosystems for an interactive experience that enhances ecological consciousness.
comment: Paper accepted at ISEA 24, The 29th International Symposium on Electronic Art, Brisbane, Australia, 21-29 June 2024
☆ Causal Reasoning in Software Quality Assurance: A Systematic Review
Context: Software Quality Assurance (SQA) is a fundamental part of software engineering to ensure stakeholders that software products work as expected after release in operation. Machine Learning (ML) has proven to be able to boost SQA activities and contribute to the development of quality software systems. In this context, Causal Reasoning is gaining increasing interest as a methodology to solve some of the current ML limitations. It aims to go beyond a purely data-driven approach by exploiting the use of causality for more effective SQA strategies. Objective: Provide a broad and detailed overview of the use of causal reasoning for SQA activities, in order to support researchers to access this research field, identifying room for application, main challenges and research opportunities. Methods: A systematic literature review of causal reasoning in the SQA research area. Scientific papers have been searched, classified, and analyzed according to established guidelines for software engineering secondary studies. Results: Results highlight the primary areas within SQA where causal reasoning has been applied, the predominant methodologies used, and the level of maturity of the proposed solutions. Fault localization is the activity where causal reasoning is more exploited, especially in the web services/microservices domain, but other tasks like testing are rapidly gaining popularity. Both causal inference and causal discovery are exploited, with the Pearl's graphical formulation of causality being preferred, likely due to its intuitiveness. Tools to favour their application are appearing at a fast pace - most of them after 2021. Conclusions: The findings show that causal reasoning is a valuable means for SQA tasks with respect to multiple quality attributes, especially during V&V, evolution and maintenance to ensure reliability, while it is not yet fully exploited for phases like ...
comment: Preprint Journal Information and Software Technology
☆ Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis
How can balance be quantified in game settings? This question is crucial for game designers, especially in player-versus-player (PvP) games, where analyzing the strength relations among predefined team compositions-such as hero combinations in multiplayer online battle arena (MOBA) games or decks in card games-is essential for enhancing gameplay and achieving balance. We have developed two advanced measures that extend beyond the simplistic win rate to quantify balance in zero-sum competitive scenarios. These measures are derived from win value estimations, which employ strength rating approximations via the Bradley-Terry model and counter relationship approximations via vector quantization, significantly reducing the computational complexity associated with traditional win value estimations. Throughout the learning process of these models, we identify useful categories of compositions and pinpoint their counter relationships, aligning with the experiences of human players without requiring specific game knowledge. Our methodology hinges on a simple technique to enhance codebook utilization in discrete representation with a deterministic vector quantization process for an extremely small state space. Our framework has been validated in popular online games, including Age of Empires II, Hearthstone, Brawl Stars, and League of Legends. The accuracy of the observed strength relations in these games is comparable to traditional pairwise win value predictions, while also offering a more manageable complexity for analysis. Ultimately, our findings contribute to a deeper understanding of PvP game dynamics and present a methodology that significantly improves game balance evaluation and design.
comment: TMLR 09/2024 https://openreview.net/forum?id=2D36otXvBE
☆ Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model
Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)
☆ Deep Feature Embedding for Tabular Data ICONIP 2024
Tabular data learning has extensive applications in deep learning but its existing embedding techniques are limited in numerical and categorical features such as the inability to capture complex relationships and engineering. This paper proposes a novel deep embedding framework with leverages lightweight deep neural networks to generate effective feature embeddings for tabular data in machine learning research. For numerical features, a two-step feature expansion and deep transformation technique is used to capture copious semantic information. For categorical features, a unique identification vector for each entity is referred by a compact lookup table with a parameterized deep embedding function to uniform the embedding size dimensions, and transformed into a embedding vector using deep neural network. Experiments are conducted on real-world datasets for performance evaluation.
comment: 15 pages, 2figures, accepted to ICONIP 2024, Paper ID: 1399
☆ Look, Compare, Decide: Alleviating Hallucination in Large Vision-Language Models via Multi-View Multi-Path Reasoning
Recently, Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multi-modal context comprehension. However, they still suffer from hallucination problems referring to generating inconsistent outputs with the image content. To mitigate hallucinations, previous studies mainly focus on retraining LVLMs with custom datasets. Although effective, they inherently come with additional computational costs. In this paper, we propose a training-free framework, \textbf{MVP}, that aims to reduce hallucinations by making the most of the innate capabilities of the LVLMs via \textbf{M}ulti-\textbf{V}iew Multi-\textbf{P}ath Reasoning. Specifically, we first devise a multi-view information-seeking strategy to thoroughly perceive the comprehensive information in the image, which enriches the general global information captured by the original vision encoder in LVLMs. Furthermore, during the answer decoding, we observe that the occurrence of hallucinations has a strong correlation with the certainty of the answer tokens. Thus, we propose multi-path reasoning for each information view to quantify and aggregate the certainty scores for each potential answer among multiple decoding paths and finally decide the output answer. By fully grasping the information in the image and carefully considering the certainty of the potential answers when decoding, our MVP can effectively reduce hallucinations in LVLMs.The extensive experiments verify that our proposed MVP significantly mitigates the hallucination problem across four well-known LVLMs. The source code is available at: \url{https://github.com/GasolSun36/MVP}.
comment: 13 pages, 7 tables, 7 figures
☆ Towards Hyper-parameter-free Federated Learning
The adaptive synchronization techniques in federated learning (FL) for scaled global model updates show superior performance over the vanilla federated averaging (FedAvg) scheme. However, existing methods employ additional tunable hyperparameters on the server to determine the scaling factor. A contrasting approach is automated scaling analogous to tuning-free step-size schemes in stochastic gradient descent (SGD) methods, which offer competitive convergence rates and exhibit good empirical performance. In this work, we introduce two algorithms for automated scaling of global model updates. In our first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective. We show that such a scheme enables linear convergence for strongly convex federated objectives. Our second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the objective function value at the server required for computing the scaling factor, whose computation is otherwise not permitted. Our extensive empirical results show that the proposed methods perform at par or better than the popular federated learning algorithms for both convex and non-convex problems. Our work takes a step towards designing hyper-parameter-free federated learning.
comment: 28 pages, 3 figures
☆ Leveraging Digital Twin Technologies for Public Space Protection and Vulnerability Assessment
Over the recent years, the protection of the so-called `soft-targets', i.e. locations easily accessible by the general public with relatively low, though, security measures, has emerged as a rather challenging and increasingly important issue. The complexity and seriousness of this security threat growths nowadays exponentially, due to the emergence of new advanced technologies (e.g. Artificial Intelligence (AI), Autonomous Vehicles (AVs), 3D printing, etc.); especially when it comes to large-scale, popular and diverse public spaces. In this paper, a novel Digital Twin-as-a-Security-Service (DTaaSS) architecture is introduced for holistically and significantly enhancing the protection of public spaces (e.g. metro stations, leisure sites, urban squares, etc.). The proposed framework combines a Digital Twin (DT) conceptualization with additional cutting-edge technologies, including Internet of Things (IoT), cloud computing, Big Data analytics and AI. In particular, DTaaSS comprises a holistic, real-time, large-scale, comprehensive and data-driven security solution for the efficient/robust protection of public spaces, supporting: a) data collection and analytics, b) area monitoring/control and proactive threat detection, c) incident/attack prediction, and d) quantitative and data-driven vulnerability assessment. Overall, the designed architecture exhibits increased potential in handling complex, hybrid and combined threats over large, critical and popular soft-targets. The applicability and robustness of DTaaSS is discussed in detail against representative and diverse real-world application scenarios, including complex attacks to: a) a metro station, b) a leisure site, and c) a cathedral square.
☆ VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers
The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.
comment: 11 pages, 6 figures
Controllable Edge-Type-Specific Interpretation in Multi-Relational Graph Neural Networks for Drug Response Prediction
Graph Neural Networks have been widely applied in critical decision-making areas that demand interpretable predictions, leading to the flourishing development of interpretability algorithms. However, current graph interpretability algorithms tend to emphasize generality and often overlook biological significance, thereby limiting their applicability in predicting cancer drug responses. In this paper, we propose a novel post-hoc interpretability algorithm for cancer drug response prediction, CETExplainer, which incorporates a controllable edge-type-specific weighting mechanism. It considers the mutual information between subgraphs and predictions, proposing a structural scoring approach to provide fine-grained, biologically meaningful explanations for predictive models. We also introduce a method for constructing ground truth based on real-world datasets to quantitatively evaluate the proposed interpretability algorithm. Empirical analysis on the real-world dataset demonstrates that CETExplainer achieves superior stability and improves explanation quality compared to leading algorithms, thereby offering a robust and insightful tool for cancer drug prediction.
☆ Exploring User Acceptance Of Portable Intelligent Personal Assistants: A Hybrid Approach Using PLS-SEM And fsQCA
This research explores the factors driving user acceptance of Rabbit R1, a newly developed portable intelligent personal assistant (PIPA) that aims to redefine user interaction and control. The study extends the technology acceptance model (TAM) by incorporating artificial intelligence-specific factors (conversational intelligence, task intelligence, and perceived naturalness), user interface design factors (simplicity in information design and visual aesthetics), and user acceptance and loyalty. Using a purposive sampling method, we gathered data from 824 users in the US and analyzed the sample through partial least squares structural equation modeling (PLS-SEM) and fuzzy set qualitative comparative analysis (fsQCA). The findings reveal that all hypothesized relationships, including both direct and indirect effects, are supported. Additionally, fsQCA supports the PLS-SEM findings and identifies three configurations leading to high and low user acceptance. This research enriches the literature and provides valuable insights for system designers and marketers of PIPAs, guiding strategic decisions to foster widespread adoption and long-term engagement.
comment: 36,
☆ Understanding the User: An Intent-Based Ranking Dataset
As information retrieval systems continue to evolve, accurate evaluation and benchmarking of these systems become pivotal. Web search datasets, such as MS MARCO, primarily provide short keyword queries without accompanying intent or descriptions, posing a challenge in comprehending the underlying information need. This paper proposes an approach to augmenting such datasets to annotate informative query descriptions, with a focus on two prominent benchmark datasets: TREC-DL-21 and TREC-DL-22. Our methodology involves utilizing state-of-the-art LLMs to analyze and comprehend the implicit intent within individual queries from benchmark datasets. By extracting key semantic elements, we construct detailed and contextually rich descriptions for these queries. To validate the generated query descriptions, we employ crowdsourcing as a reliable means of obtaining diverse human perspectives on the accuracy and informativeness of the descriptions. This information can be used as an evaluation set for tasks such as ranking, query rewriting, or others.
☆ Strategic Arms with Side Communication Prevail Over Low-Regret MAB Algorithms
In the strategic multi-armed bandit setting, when arms possess perfect information about the player's behavior, they can establish an equilibrium where: 1. they retain almost all of their value, 2. they leave the player with a substantial (linear) regret. This study illustrates that, even if complete information is not publicly available to all arms but is shared among them, it is possible to achieve a similar equilibrium. The primary challenge lies in designing a communication protocol that incentivizes the arms to communicate truthfully.
☆ FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition
Federated learning is a machine learning paradigm that enables decentralized clients to collaboratively learn a shared model while keeping all the training data local. While considerable research has focused on federated image generation, particularly Generative Adversarial Networks, Variational Autoencoders have received less attention. In this paper, we address the challenges of non-IID (independently and identically distributed) data environments featuring multiple groups of images of different types. Specifically, heterogeneous data distributions can lead to difficulties in maintaining a consistent latent space and can also result in local generators with disparate texture features being blended during aggregation. We introduce a novel approach, FissionVAE, which decomposes the latent space and constructs decoder branches tailored to individual client groups. This method allows for customized learning that aligns with the unique data distributions of each group. Additionally, we investigate the incorporation of hierarchical VAE architectures and demonstrate the use of heterogeneous decoder architectures within our model. We also explore strategies for setting the latent prior distributions to enhance the decomposition process. To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images of Earth. Our experiments demonstrate that FissionVAE greatly improves generation quality on these datasets compared to baseline federated VAE models.
☆ Instant Adversarial Purification with Adversarial Consistency Distillation
Neural networks, despite their remarkable performance in widespread applications, including image classification, are also known to be vulnerable to subtle adversarial noise. Although some diffusion-based purification methods have been proposed, for example, DiffPure, those methods are time-consuming. In this paper, we propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Function Evaluation (NFE) in diffusion models. We use Latent Consistency Model (LCM) and ControlNet for our one-step purification. OSCP is computationally friendly and time efficient compared to other diffusion-based purification methods; we achieve defense success rate of 74.19\% on ImageNet, only requiring 0.1s for each purification. Moreover, there is a fundamental incongruence between consistency distillation and adversarial perturbation. To address this ontological dissonance, we propose Gaussian Adversarial Noise Distillation (GAND), a novel consistency distillation framework that facilitates a more nuanced reconciliation of the latent space dynamics, effectively bridging the natural and adversarial manifolds. Our experiments show that the GAND does not need a Full Fine Tune (FFT); PEFT, e.g., LoRA is sufficient.
☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to improve this vast amount of unlabeled data available. Thus its better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is less label data available. In this survey we thus develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
comment: 34 Pages, 5 Figures, 7 Tables
Dynamic Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling
Self-Consistency (SC) is a widely used method to mitigate hallucinations in Large Language Models (LLMs) by sampling the LLM multiple times and outputting the most frequent solution. Despite its benefits, SC results in significant computational costs proportional to the number of samples generated. Previous early-stopping approaches, such as Early Stopping Self Consistency and Adaptive Consistency, have aimed to reduce these costs by considering output consistency, but they do not analyze the quality of the reasoning paths (RPs) themselves. To address this issue, we propose Reasoning-Aware Self-Consistency (RASC), an innovative early-stopping framework that dynamically adjusts the number of sample generations by considering both the output answer and the RPs from Chain of Thought (CoT) prompting. RASC assigns confidence scores sequentially to the generated samples, stops when certain criteria are met, and then employs weighted majority voting to optimize sample usage and enhance answer reliability. We comprehensively test RASC with multiple LLMs across varied QA datasets. RASC outperformed existing methods and significantly reduces sample usage by an average of 80% while maintaining or improving accuracy up to 5% compared to the original SC
☆ Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
comment: 15 pages, 3 figures, 4 tables
☆ Improving Time Series Classification with Representation Soft Label Smoothing
Previous research has indicated that deep neural network based models for time series classification (TSC) tasks are prone to overfitting. This issue can be mitigated by employing strategies that prevent the model from becoming overly confident in its predictions, such as label smoothing and confidence penalty. Building upon the concept of label smoothing, we propose a novel approach to generate more reliable soft labels, which we refer to as representation soft label smoothing. We apply label smoothing, confidence penalty, and our method representation soft label smoothing to several TSC models and compare their performance with baseline method which only uses hard labels for training. Our results demonstrate that the use of these enhancement techniques yields competitive results compared to the baseline method. Importantly, our method demonstrates strong performance across models with varying structures and complexities.
comment: 14 pages,6 figures
☆ Safety Layers of Aligned Large Language Models: The Key to LLM Security
Aligned LLMs are highly secure, capable of recognizing and refusing to answer malicious questions. However, the role of internal parameters in maintaining this security is not well understood, further these models are vulnerable to security degradation when fine-tuned with non-malicious backdoor data or normal data. To address these challenges, our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones, referred to as "safety layers." We first confirm the existence of these safety layers by analyzing variations in input vectors within the model's internal layers. Additionally, we leverage the over-rejection phenomenon and parameters scaling analysis to precisely locate the safety layers. Building on this understanding, we propose a novel fine-tuning approach, Safely Partial-Parameter Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation. Our experiments demonstrate that this approach significantly preserves model security while maintaining performance and reducing computational resources compared to full fine-tuning.
☆ Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
comment: 26 pages (excl. references), 5 figures
☆ Training Ultra Long Context Language Model with Fully Pipelined Distributed Transformer
Large Language Models (LLMs) with long context capabilities are integral to complex tasks in natural language processing and computational biology, such as text generation and protein sequence analysis. However, training LLMs directly on extremely long contexts demands considerable GPU resources and increased memory, leading to higher costs and greater complexity. Alternative approaches that introduce long context capabilities via downstream finetuning or adaptations impose significant design limitations. In this paper, we propose Fully Pipelined Distributed Transformer (FPDT) for efficiently training long-context LLMs with extreme hardware efficiency. For GPT and Llama models, we achieve a 16x increase in sequence length that can be trained on the same hardware compared to current state-of-the-art solutions. With our dedicated sequence chunk pipeline design, we can now train 8B LLM with 2 million sequence length on only 4 GPUs, while also maintaining over 55% of MFU. Our proposed FPDT is agnostic to existing training techniques and is proven to work efficiently across different LLM models.
☆ Technical Report of HelixFold3 for Biomolecular Structure Prediction
The AlphaFold series has transformed protein structure prediction with remarkable accuracy, often matching experimental methods. AlphaFold2, AlphaFold-Multimer, and the latest AlphaFold3 represent significant strides in predicting single protein chains, protein complexes, and biomolecular structures. While AlphaFold2 and AlphaFold-Multimer are open-sourced, facilitating rapid and reliable predictions, AlphaFold3 remains partially accessible through a limited online server and has not been open-sourced, restricting further development. To address these challenges, the PaddleHelix team is developing HelixFold3, aiming to replicate AlphaFold3's capabilities. Using insights from previous models and extensive datasets, HelixFold3 achieves an accuracy comparable to AlphaFold3 in predicting the structures of conventional ligands, nucleic acids, and proteins. The initial release of HelixFold3 is available as open source on GitHub for academic research, promising to advance biomolecular research and accelerate discoveries. We also provide online service at PaddleHelix website at https://paddlehelix.baidu.com/app/all/helixfold3/forecast.
☆ MemLong: Memory-Augmented Retrieval for Long Text Modeling
Recent advancements in Large Language Models (LLMs) have yielded remarkable success across diverse fields. However, handling long contexts remains a significant challenge for LLMs due to the quadratic time and space complexity of attention mechanisms and the growing memory consumption of the key-value cache during generation. This work introduces MemLong: Memory-Augmented Retrieval for Long Text Generation, a method designed to enhance the capabilities of long-context language modeling by utilizing an external retriever for historical information retrieval. MemLong combines a non-differentiable ``ret-mem'' module with a partially trainable decoder-only language model and introduces a fine-grained, controllable retrieval attention mechanism that leverages semantic-level relevant chunks. Comprehensive evaluations on multiple long-context language modeling benchmarks demonstrate that MemLong consistently outperforms other state-of-the-art LLMs. More importantly, MemLong can extend the context length on a single 3090 GPU from 4k up to 80k. Our code is available at https://github.com/Bui1dMySea/MemLong
☆ UserSumBench: A Benchmark Framework for Evaluating User Summarization Approaches
Large language models (LLMs) have shown remarkable capabilities in generating user summaries from a long list of raw user activity data. These summaries capture essential user information such as preferences and interests, and therefore are invaluable for LLM-based personalization applications, such as explainable recommender systems. However, the development of new summarization techniques is hindered by the lack of ground-truth labels, the inherent subjectivity of user summaries, and human evaluation which is often costly and time-consuming. To address these challenges, we introduce \UserSumBench, a benchmark framework designed to facilitate iterative development of LLM-based summarization approaches. This framework offers two key components: (1) A reference-free summary quality metric. We show that this metric is effective and aligned with human preferences across three diverse datasets (MovieLens, Yelp and Amazon Review). (2) A novel robust summarization method that leverages time-hierarchical summarizer and self-critique verifier to produce high-quality summaries while eliminating hallucination. This method serves as a strong baseline for further innovation in summarization techniques.
☆ Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning
While inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system, they concurrently diminish the grid's system inertia, elevating the risk of frequency instabilities. Furthermore, smart inverters, interfaced via communication networks, pose a potential vulnerability to cyber threats if not diligently managed. To proactively fortify the power grid against sophisticated cyber attacks, we propose to employ reinforcement learning (RL) to identify potential threats and system vulnerabilities. This study concentrates on analyzing adversarial strategies for false data injection, specifically targeting smart inverters involved in primary frequency control. Our findings demonstrate that an RL agent can adeptly discern optimal false data injection methods to manipulate inverter settings, potentially causing catastrophic consequences.
☆ Transient Fault Tolerant Semantic Segmentation for Autonomous Driving ECCV 2024
Deep learning models are crucial for autonomous vehicle perception, but their reliability is challenged by algorithmic limitations and hardware faults. We address the latter by examining fault-tolerance in semantic segmentation models. Using established hardware fault models, we evaluate existing hardening techniques both in terms of accuracy and uncertainty and introduce ReLUMax, a novel simple activation function designed to enhance resilience against transient faults. ReLUMax integrates seamlessly into existing architectures without time overhead. Our experiments demonstrate that ReLUMax effectively improves robustness, preserving performance and boosting prediction confidence, thus contributing to the development of reliable autonomous driving systems.
comment: Accepted ECCV 2024 UnCV Workshop - https://github.com/iurada/neutron-segmentation
♻ ☆ Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks
Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: https://github.com/Visual-AI/Dissect-OOD-OSR
comment: Accepted to IJCV, preprint version; v2: add supplementary
♻ ☆ Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Recent advances in language models have achieved significant progress. GPT-4o, as a new milestone, has enabled real-time conversations with humans, demonstrating near-human natural fluency. Such human-computer interaction necessitates models with the capability to perform reasoning directly with the audio modality and generate output in streaming. However, this remains beyond the reach of current academic models, as they typically depend on extra TTS systems for speech synthesis, resulting in undesirable latency. This paper introduces the Mini-Omni, an audio-based end-to-end conversational model, capable of real-time speech interaction. To achieve this capability, we propose a text-instructed speech generation method, along with batch-parallel strategies during inference to further boost the performance. Our method also helps to retain the original model's language capabilities with minimal degradation, enabling other works to establish real-time interaction capabilities. We call this training method "Any Model Can Talk". We also introduce the VoiceAssistant-400K dataset to fine-tune models optimized for speech output. To our best knowledge, Mini-Omni is the first fully end-to-end, open-source model for real-time speech interaction, offering valuable potential for future research.
comment: Technical report, work in progress. Demo and code: https://github.com/gpt-omni/mini-omni
♻ ☆ A mathematical framework of intelligence and consciousness based on Riemannian Geometry
Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence. Intelligence encompasses learning, problem-solving, creativity, and even consciousness. Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation, exposing intrinsic data structures and dynamic processes within neural and artificial systems. However, a comprehensive framework that unifies the static and dynamic aspects of intelligence is still lacking. This manuscript proposes a mathematical framework based on Riemannian geometry to describe the structure and dynamics of intelligence and consciousness. Intelligence elements are conceptualised as tokens embedded in a high-dimensional space. The learned token embeddings capture the interconnections of tokens across various scenarios and tasks, forming manifolds in the intelligence space. Thought flow is depicted as the sequential activation of tokens along geodesics within these manifolds. During the navigation of geodesics, consciousness, as a self-referential process, perceives the thought flow, evaluates it against predictions, and provides feedback through prediction errors, adjusting the geodesic: non-zero prediction errors, such as learning, lead to the restructuring of the curved manifolds, thus changing the geodesic of thought flow. This dynamic interaction integrates new information, evolves the geometry and facilitates learning. The geometry of intelligence guides consciousness, and consciousness structures the geometry of intelligence. By integrating geometric concepts, this proposed theory offers a unified, mathematically framework for describing the structure and dynamics of intelligence and consciousness. Applicable to biological and artificial intelligence, this framework may pave the way for future research and empirical validation.
♻ ☆ LLaVA-SG: Leveraging Scene Graphs as Visual Semantic Expression in Vision-Language Models
Recent advances in large vision-language models (VLMs) typically employ vision encoders based on the Vision Transformer (ViT) architecture. The division of the images into patches by ViT results in a fragmented perception, thereby hindering the visual understanding capabilities of VLMs. In this paper, we propose an innovative enhancement to address this limitation by introducing a Scene Graph Expression (SGE) module in VLMs. This module extracts and structurally expresses the complex semantic information within images, thereby improving the foundational perception and understanding abilities of VLMs. Extensive experiments demonstrate that integrating our SGE module significantly enhances the VLM's performance in vision-language tasks, indicating its effectiveness in preserving intricate semantic details and facilitating better visual understanding.
♻ ☆ Identification of Prognostic Biomarkers for Stage III Non-Small Cell Lung Carcinoma in Female Nonsmokers Using Machine Learning
Lung cancer remains a leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) being the most common subtype. This study aimed to identify key biomarkers associated with stage III NSCLC in non-smoking females using gene expression profiling from the GDS3837 dataset. Utilizing XGBoost, a machine learning algorithm, the analysis achieved a strong predictive performance with an AUC score of 0.835. The top biomarkers identified - CCAAT enhancer binding protein alpha (C/EBP-alpha), lactate dehydrogenase A4 (LDHA), UNC-45 myosin chaperone B (UNC-45B), checkpoint kinase 1 (CHK1), and hypoxia-inducible factor 1 subunit alpha (HIF-1-alpha) - have been validated in the literature as being significantly linked to lung cancer. These findings highlight the potential of these biomarkers for early diagnosis and personalized therapy, emphasizing the value of integrating machine learning with molecular profiling in cancer research.
comment: This paper has been accepted for publication in the IEEE ICBASE 2024 conference
♻ ☆ Robust Statistical Scaling of Outlier Scores: Improving the Quality of Outlier Probabilities for Outliers (Extended Version)
Outlier detection algorithms typically assign an outlier score to each observation in a dataset, indicating the degree to which an observation is an outlier. However, these scores are often not comparable across algorithms and can be difficult for humans to interpret. Statistical scaling addresses this problem by transforming outlier scores into outlier probabilities without using ground-truth labels, thereby improving interpretability and comparability across algorithms. However, the quality of this transformation can be different for outliers and inliers. Missing outliers in scenarios where they are of particular interest - such as healthcare, finance, or engineering - can be costly or dangerous. Thus, ensuring good probabilities for outliers is essential. This paper argues that statistical scaling, as commonly used in the literature, does not produce equally good probabilities for outliers as for inliers. Therefore, we propose robust statistical scaling, which uses robust estimators to improve the probabilities for outliers. We evaluate several variants of our method against other outlier score transformations for real-world datasets and outlier detection algorithms, where it can improve the probabilities for outliers.
comment: 15 pages, 4 figures, extended version of an original article accepted for publication in SISAP 2024 by Springer Nature
♻ ☆ A Permuted Autoregressive Approach to Word-Level Recognition for Urdu Digital Text
This research paper introduces a novel word-level Optical Character Recognition (OCR) model specifically designed for digital Urdu text, leveraging transformer-based architectures and attention mechanisms to address the distinct challenges of Urdu script recognition, including its diverse text styles, fonts, and variations. The model employs a permuted autoregressive sequence (PARSeq) architecture, which enhances its performance by enabling context-aware inference and iterative refinement through the training of multiple token permutations. This method allows the model to adeptly manage character reordering and overlapping characters, commonly encountered in Urdu script. Trained on a dataset comprising approximately 160,000 Urdu text images, the model demonstrates a high level of accuracy in capturing the intricacies of Urdu script, achieving a CER of 0.178. Despite ongoing challenges in handling certain text variations, the model exhibits superior accuracy and effectiveness in practical applications. Future work will focus on refining the model through advanced data augmentation techniques and the integration of context-aware language models to further enhance its performance and robustness in Urdu text recognition.
♻ ☆ PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods
In domain-specific applications, GPT-4, augmented with precise prompts or Retrieval-Augmented Generation (RAG), shows notable potential but faces the critical tri-lemma of performance, cost, and data privacy. High performance requires sophisticated processing techniques, yet managing multiple agents within a complex workflow often proves costly and challenging. To address this, we introduce the PEER (Plan, Execute, Express, Review) multi-agent framework. This systematizes domain-specific tasks by integrating precise question decomposition, advanced information retrieval, comprehensive summarization, and rigorous self-assessment. Given the concerns of cost and data privacy, enterprises are shifting from proprietary models like GPT-4 to custom models, striking a balance between cost, security, and performance. We developed industrial practices leveraging online data and user feedback for efficient model tuning. This study provides best practice guidelines for applying multi-agent systems in domain-specific problem-solving and implementing effective agent tuning strategies. Our empirical studies, particularly in the financial question-answering domain, demonstrate that our approach achieves 95.0% of GPT-4's performance, while effectively managing costs and ensuring data privacy.
♻ ☆ Frankenstein: Generating Semantic-Compositional 3D Scenes in One Tri-Plane SIGGRAPH
We present Frankenstein, a diffusion-based framework that can generate semantic-compositional 3D scenes in a single pass. Unlike existing methods that output a single, unified 3D shape, Frankenstein simultaneously generates multiple separated shapes, each corresponding to a semantically meaningful part. The 3D scene information is encoded in one single tri-plane tensor, from which multiple Singed Distance Function (SDF) fields can be decoded to represent the compositional shapes. During training, an auto-encoder compresses tri-planes into a latent space, and then the denoising diffusion process is employed to approximate the distribution of the compositional scenes. Frankenstein demonstrates promising results in generating room interiors as well as human avatars with automatically separated parts. The generated scenes facilitate many downstream applications, such as part-wise re-texturing, object rearrangement in the room or avatar cloth re-targeting. Our project page is available at: https://wolfball.github.io/frankenstein/.
comment: SIGGRAPH Asia 2024 Conference Paper
♻ ☆ A Survey on Knowledge Editing of Neural Networks
Deep neural networks are becoming increasingly pervasive in academia and industry, matching and surpassing human performance on a wide variety of fields and related tasks. However, just as humans, even the largest artificial neural networks make mistakes, and once-correct predictions can become invalid as the world progresses in time. Augmenting datasets with samples that account for mistakes or up-to-date information has become a common workaround in practical applications. However, the well-known phenomenon of catastrophic forgetting poses a challenge in achieving precise changes in the implicitly memorized knowledge of neural network parameters, often requiring a full model re-training to achieve desired behaviors. That is expensive, unreliable, and incompatible with the current trend of large self-supervised pre-training, making it necessary to find more efficient and effective methods for adapting neural network models to changing data. To address this need, knowledge editing is emerging as a novel area of research that aims to enable reliable, data-efficient, and fast changes to a pre-trained target model, without affecting model behaviors on previously learned tasks. In this survey, we provide a brief review of this recent artificial intelligence field of research. We first introduce the problem of editing neural networks, formalize it in a common framework and differentiate it from more notorious branches of research such as continuous learning. Next, we provide a review of the most relevant knowledge editing approaches and datasets proposed so far, grouping works under four different families: regularization techniques, meta-learning, direct model editing, and architectural strategies. Finally, we outline some intersections with other fields of research and potential directions for future works.
♻ ☆ Evaluating Named Entity Recognition: A comparative analysis of mono- and multilingual transformer models on a novel Brazilian corporate earnings call transcripts dataset
Since 2018, when the Transformer architecture was introduced, Natural Language Processing has gained significant momentum with pre-trained Transformer-based models that can be fine-tuned for various tasks. Most models are pre-trained on large English corpora, making them less applicable to other languages, such as Brazilian Portuguese. In our research, we identified two models pre-trained in Brazilian Portuguese (BERTimbau and PTT5) and two multilingual models (mBERT and mT5). BERTimbau and mBERT use only the Encoder module, while PTT5 and mT5 use both the Encoder and Decoder. Our study aimed to evaluate their performance on a financial Named Entity Recognition (NER) task and determine the computational requirements for fine-tuning and inference. To this end, we developed the Brazilian Financial NER (BraFiNER) dataset, comprising sentences from Brazilian banks' earnings calls transcripts annotated using a weakly supervised approach. Additionally, we introduced a novel approach that reframes the token classification task as a text generation problem. After fine-tuning the models, we evaluated them using performance and error metrics. Our findings reveal that BERT-based models consistently outperform T5-based models. While the multilingual models exhibit comparable macro F1-scores, BERTimbau demonstrates superior performance over PTT5. In terms of error metrics, BERTimbau outperforms the other models. We also observed that PTT5 and mT5 generated sentences with changes in monetary and percentage values, highlighting the importance of accuracy and consistency in the financial domain. Our findings provide insights into the differing performance of BERT- and T5-based models for the NER task.
♻ ☆ Hoaxpedia: A Unified Wikipedia Hoax Articles Dataset
Hoaxes are a recognised form of disinformation created deliberately, with potential serious implications in the credibility of reference knowledge resources such as Wikipedia. What makes detecting Wikipedia hoaxes hard is that they often are written according to the official style guidelines. In this work, we first provide a systematic analysis of similarities and discrepancies between legitimate and hoax Wikipedia articles, and introduce Hoaxpedia, a collection of 311 hoax articles (from existing literature and official Wikipedia lists), together with semantically similar legitimate articles, which together form a binary text classification dataset aimed at fostering research in automated hoax detection. In this paper, We report results after analyzing several language models, hoax-to-legit ratios, and the amount of text classifiers are exposed to (full article vs the article's definition alone). Our results suggest that detecting deceitful content in Wikipedia based on content alone is hard but feasible, and complement our analysis with a study on the differences in distributions in edit histories, and find that looking at this feature yields better classification results than context.
♻ ☆ Scale-Adaptive Balancing of Exploration and Exploitation in Classical Planning
Balancing exploration and exploitation has been an important problem in both game tree search and automated planning. However, while the problem has been extensively analyzed within the Multi-Armed Bandit (MAB) literature, the planning community has had limited success when attempting to apply those results. We show that a more detailed theoretical understanding of MAB literature helps improve existing planning algorithms that are based on Monte Carlo Tree Search (MCTS) / Trial Based Heuristic Tree Search (THTS). In particular, THTS uses UCB1 MAB algorithms in an ad hoc manner, as UCB1's theoretical requirement of fixed bounded support reward distributions is not satisfied within heuristic search for classical planning. The core issue lies in UCB1's lack of adaptations to the different scales of the rewards. We propose GreedyUCT-Normal, a MCTS/THTS algorithm with UCB1-Normal bandit for agile classical planning, which handles distributions with different scales by taking the reward variance into consideration, and resulted in an improved algorithmic performance (more plans found with less node expansions) that outperforms Greedy Best First Search and existing MCTS/THTS-based algorithms (GreedyUCT,GreedyUCT*).
comment: Accepted in ECAI 2024. Scores 8/9/7/7/8
♻ ☆ Evolving Virtual World with Delta-Engine
In this paper, we focus on the \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by individuals' capability to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \textbf{\emph{Delta-Engine}} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's scalability. It consists of a base engine and a neural proxy. The base engine programs the prototype of the virtual world; given a trigger, the neural proxy generates new snippets on the base engine through \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We introduce an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss the human-LLM collaborative design to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation.
♻ ☆ Language models align with human judgments on key grammatical constructions
Do large language models (LLMs) make human-like linguistic generalizations? Dentella et al. (2023) ("DGL") prompt several LLMs ("Is the following sentence grammatically correct in English?") to elicit grammaticality judgments of 80 English sentences, concluding that LLMs demonstrate a "yes-response bias" and a "failure to distinguish grammatical from ungrammatical sentences". We re-evaluate LLM performance using well-established practices and find that DGL's data in fact provide evidence for just how well LLMs capture human behaviors. Models not only achieve high accuracy overall, but also capture fine-grained variation in human linguistic judgments.
comment: Published in PNAS at https://www.pnas.org/doi/10.1073/pnas.2400917121 as response to Dentella et al. (2023)
♻ ☆ Temporal Ensemble Logic
We introduce Temporal Ensemble Logic (TEL), a monadic, first-order modal logic for linear-time temporal reasoning. TEL includes primitive temporal constructs such as ``always up to $t$ time later'' ($\Box_t$), ``sometimes before $t$ time in the future'' ($\Diamond_t$), and ``$t$-time later'' $\varphi_t$. TEL has been motivated from the requirement for rigor and reproducibility for cohort specification and discovery in clinical and population health research, to fill a gap in formalizing temporal reasoning in biomedicine. Existing logical frameworks such as linear temporal logic are too restrictive to express temporal and sequential properties in biomedicine, or too permissive in semantic constructs, such as in Halpern-Shoham logic, to serve this purpose. In this paper, we first introduce TEL in a general set up, with discrete and dense time as special cases. We then focus on the theoretical development of discrete TEL on the temporal domain of positive integers $\mathbb{N}^+$, denoted as ${\rm TEL}_{\mathbb{N}^+}$. ${\rm TEL}_{\mathbb{N}^+}$ is strictly more expressive than the standard monadic second order logic, characterized by B\"{u}chi automata. We present its formal semantics, a proof system, and provide a proof for the undecidability of the satisfiability of ${\rm TEL}_{\mathbb{N}^+}$. We also include initial results on expressiveness and decidability fragments for ${\rm TEL}_{\mathbb{N}^+}$, followed by application outlook and discussions.
comment: 47 pages, 2 figures
♻ ☆ Effectiveness of probabilistic contact tracing in epidemic containment: the role of super-spreaders and transmission path reconstruction
The recent COVID-19 pandemic underscores the significance of early-stage non-pharmacological intervention strategies. The widespread use of masks and the systematic implementation of contact tracing strategies provide a potentially equally effective and socially less impactful alternative to more conventional approaches, such as large-scale mobility restrictions. However, manual contact tracing faces strong limitations in accessing the network of contacts, and the scalability of currently implemented protocols for smartphone-based digital contact tracing becomes impractical during the rapid expansion phases of the outbreaks, due to the surge in exposure notifications and associated tests. A substantial improvement in digital contact tracing can be obtained through the integration of probabilistic techniques for risk assessment that can more effectively guide the allocation of new diagnostic tests. In this study, we first quantitatively analyze the diagnostic and social costs associated with these containment measures based on contact tracing, employing three state-of-the-art models of SARS-CoV-2 spreading. Our results suggest that probabilistic techniques allow for more effective mitigation at a lower cost. Secondly, our findings reveal a remarkable efficacy of probabilistic contact-tracing techniques in performing backward and multi-step tracing and capturing super-spreading events.
♻ ☆ Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers IROS
We consider a warehouse in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance in this task. Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, multi-agent reinforcement learning (MARL) can be flexibly applied to diverse warehouse configurations (e.g. size, layout, number/types of workers, item replenishment frequency), and different types of order-picking paradigms (e.g. Goods-to-Person and Person-to-Goods), as the agents can learn how to cooperate optimally through experience. We develop hierarchical MARL algorithms in which a manager agent assigns goals to worker agents, and the policies of the manager and workers are co-trained toward maximising a global objective (e.g. pick rate). Our hierarchical algorithms achieve significant gains in sample efficiency over baseline MARL algorithms and overall pick rates over multiple established industry heuristics in a diverse set of warehouse configurations and different order-picking paradigms.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
♻ ☆ Minor DPO reject penalty to increase training robustness
Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task. In the past it uses reinforcement learning from human feedback (RLHF) algorithm to optimize the LLM policy to align with these preferences and not to draft too far from the original model. Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method. Using preference pairs of chosen and reject data, DPO models the relative log probability as implicit reward function and optimize LLM policy using a simple binary cross entropy objective directly. DPO is quite straight forward and easy to be understood. It perform efficiently and well in most cases. In this article, we analyze the working mechanism of $\beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification. With these insights, we propose MinorDPO, which is better aligned to the original RL algorithm, and increase the stability of preference optimization process.
comment: 8 pages, 19 figures
♻ ☆ Novel Methods for Analyzing Cellular Interactions in Deep Learning-Based Image Cytometry: Spatial Interaction Potential and Co-Localization Index
The study presents a novel approach for quantifying cellular interactions in digital pathology using deep learning-based image cytometry. Traditional methods struggle with the diversity and heterogeneity of cells within tissues. To address this, we introduce the Spatial Interaction Potential (SIP) and the Co-Localization Index (CLI), leveraging deep learning classification probabilities. SIP assesses the potential for cell-to-cell interactions, similar to an electric field, while CLI incorporates distances between cells, accounting for dynamic cell movements. Our approach enhances traditional methods, providing a more sophisticated analysis of cellular interactions. We validate SIP and CLI through simulations and apply them to colorectal cancer specimens, demonstrating strong correlations with actual biological data. This innovative method offers significant improvements in understanding cellular interactions and has potential applications in various fields of digital pathology.
♻ ☆ Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning, based on the principle of divide-and-conquer to maximize model capacity without significant additional computational cost. Even in the era of large-scale language models (LLMs), MoE continues to play a crucial role, as some researchers have indicated that GPT-4 adopts the MoE structure to ensure diverse inference results. However, MoE is susceptible to performance degeneracy, particularly evident in the issues of imbalance and homogeneous representation among experts. While previous studies have extensively addressed the problem of imbalance, the challenge of homogeneous representation remains unresolved. In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity, leading to frustratingly high similarities in their representations (up to 99\% in a well-performed MoE model). This problem restricts the expressive power of the MoE and, we argue, contradicts its original intention. To tackle this issue, we propose a straightforward yet highly effective solution: OMoE, an orthogonal expert optimizer. Additionally, we introduce an alternating training strategy that encourages each expert to update in a direction orthogonal to the subspace spanned by other experts. Our algorithm facilitates MoE training in two key ways: firstly, it explicitly enhances representation diversity, and secondly, it implicitly fosters interaction between experts during orthogonal weights computation. Through extensive experiments, we demonstrate that our proposed optimization algorithm significantly improves the performance of fine-tuning the MoE model on the GLUE benchmark, SuperGLUE benchmark, question-answering task, and name entity recognition tasks.
comment: ECAI 2024
♻ ☆ CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation IROS 2024
Depth estimation is critical in autonomous driving for interpreting 3D scenes accurately. Recently, radar-camera depth estimation has become of sufficient interest due to the robustness and low-cost properties of radar. Thus, this paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation, combining RGB imagery with sparse and noisy radar point cloud data. The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements, by predicting a radar confidence map and a preliminary coarse depth map. A novel approach is presented for generating the ground truth for the confidence map, which involves associating each radar point with its corresponding object to identify potential projection surfaces. These maps, together with the initial radar input, are processed by a second encoder. For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively, thereby enhancing the reliability of the depth map by filtering out radar noise. Our methodology, evaluated on the nuScenes dataset, demonstrates superior performance, improving upon the current leading model by 3.2% in Mean Absolute Error (MAE) and 2.7% in Root Mean Square Error (RMSE). Code: https://github.com/harborsarah/CaFNet
comment: Accepted by IROS 2024
♻ ☆ Isopignistic Canonical Decomposition via Belief Evolution Network
Developing a general information processing model in uncertain environments is fundamental for the advancement of explainable artificial intelligence. Dempster-Shafer theory of evidence is a well-known and effective reasoning method for representing epistemic uncertainty, which is closely related to subjective probability theory and possibility theory. Although they can be transformed to each other under some particular belief structures, there remains a lack of a clear and interpretable transformation process, as well as a unified approach for information processing. In this paper, we aim to address these issues from the perspectives of isopignistic belief functions and the hyper-cautious transferable belief model. Firstly, we propose an isopignistic transformation based on the belief evolution network. This transformation allows for the adjustment of the information granule while retaining the potential decision outcome. The isopignistic transformation is integrated with a hyper-cautious transferable belief model to establish a new canonical decomposition. This decomposition offers a reverse path between the possibility distribution and its isopignistic mass functions. The result of the canonical decomposition, called isopignistic function, is an identical information content distribution to reflect the propensity and relative commitment degree of the BPA. Furthermore, this paper introduces a method to reconstruct the basic belief assignment by adjusting the isopignistic function. It explores the advantages of this approach in modeling and handling uncertainty within the hyper-cautious transferable belief model. More general, this paper establishes a theoretical basis for building general models of artificial intelligence based on probability theory, Dempster-Shafer theory, and possibility theory.
♻ ☆ Incorporating Unlabelled Data into Bayesian Neural Networks
Conventional Bayesian Neural Networks (BNNs) are unable to leverage unlabelled data to improve their predictions. To overcome this limitation, we introduce Self-Supervised Bayesian Neural Networks, which use unlabelled data to learn models with suitable prior predictive distributions. This is achieved by leveraging contrastive pretraining techniques and optimising a variational lower bound. We then show that the prior predictive distributions of self-supervised BNNs capture problem semantics better than conventional BNN priors. In turn, our approach offers improved predictive performance over conventional BNNs, especially in low-budget regimes.
comment: Published in the Transactions on Machine Learning Research
♻ ☆ Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding IROS 2024
Multi-agent pathfinding (MAPF) is the problem of finding a set of conflict-free paths for a set of agents. Typically, the agents' moves are limited to a pre-defined graph of possible locations and allowed transitions between them, e.g. a 4-neighborhood grid. We explore how to solve MAPF problems when each agent can move between any pair of possible locations as long as traversing the line segment connecting them does not lead to a collision with the obstacles. This is known as any-angle pathfinding. We present the first optimal any-angle multi-agent pathfinding algorithm. Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP). The straightforward combination of those, however, scales poorly since any-angle path finding induces search trees with a very large branching factor. To mitigate this, we adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints. Experimental results on different combinations of these techniques show they enable solving over 30% more problems than the vanilla combination of CCBS and TO-AA-SIPP. In addition, we present a bounded-suboptimal variant of our algorithm, that enables trading runtime for solution cost in a controlled manner.
comment: This is a pre-print version of the paper accepted to IROS 2024. Its main body is similar to the camera-ready version of the conference paper. In addition this pre-print contains Appendix
♻ ☆ Jailbreak Attacks and Defenses Against Large Language Models: A Survey
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks, including question answering, translation, code completion, etc. However, the over-assistance of LLMs has raised the challenge of "jailbreaking", which induces the model to generate malicious responses against the usage policy and society by designing adversarial prompts. With the emergence of jailbreak attack methods exploiting different vulnerabilities in LLMs, the corresponding safety alignment measures are also evolving. In this paper, we propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods. For instance, the attack methods are divided into black-box and white-box attacks based on the transparency of the target model. Meanwhile, we classify defense methods into prompt-level and model-level defenses. Additionally, we further subdivide these attack and defense methods into distinct sub-classes and present a coherent diagram illustrating their relationships. We also conduct an investigation into the current evaluation methods and compare them from different perspectives. Our findings aim to inspire future research and practical implementations in safeguarding LLMs against adversarial attacks. Above all, although jailbreak remains a significant concern within the community, we believe that our work enhances the understanding of this domain and provides a foundation for developing more secure LLMs.
♻ ☆ TaSL: Task Skill Localization and Consolidation for Language Model Continual Learning ACL 2024
Language model continual learning (CL) has recently attracted significant interest for its ability to adapt large language models (LLMs) to dynamic real-world scenarios without retraining. A major challenge in this domain is catastrophic forgetting, where models lose previously acquired knowledge upon learning new tasks. Existing approaches commonly utilize multiple parameter-efficient fine-tuning (PEFT) blocks to acquire task-specific knowledge, yet these methods are inefficient and fail to leverage potential knowledge transfer across tasks. In this paper, we introduce a novel CL framework for language models, named Task Skill Localization and Consolidation (TaSL), which boosts knowledge transfer without depending on memory replay. TaSL initially segregates the model into 'skill units' based on parameter dependencies, allowing for more precise control. Subsequently, it employs a novel group-wise skill localization technique to ascertain the importance distribution of skill units for a new task. By comparing this importance distribution with those from previous tasks, we implement a fine-grained skill consolidation strategy that retains task-specific knowledge, thereby preventing forgetting, and updates task-shared knowledge, which facilitates bi-directional knowledge transfer. As a result, TaSL achieves an optimal balance between retaining prior knowledge and excelling in new tasks. TaSL also demonstrates strong generalizability, making it suitable for various base models and adaptable to PEFT methods like LoRA. Furthermore, it offers notable extensibility, supporting enhancements through integration with memory replay techniques. Comprehensive experiments conducted on two CL benchmarks, involving models ranging from 220M to 7B parameters, affirm the effectiveness of TaSL and its variants across different settings.
comment: Extension of ACL 2024 paper titled: Continual Dialog State Tracking via Task Skill Localization and Consolidation
♻ ☆ DiffLoad: Uncertainty Quantification in Electrical Load Forecasting with Diffusion Model
Electrical load forecasting plays a crucial role in decision-making for power systems, including unit commitment and economic dispatch. The integration of renewable energy sources and the occurrence of external events, such as the COVID-19 pandemic, have rapidly increased uncertainties in load forecasting. The uncertainties in load forecasting can be divided into two types: epistemic uncertainty and aleatoric uncertainty. Separating these types of uncertainties can help decision-makers better understand where and to what extent the uncertainty is, thereby enhancing their confidence in the following decision-making. This paper proposes a diffusion-based Seq2Seq structure to estimate epistemic uncertainty and employs the robust additive Cauchy distribution to estimate aleatoric uncertainty. Our method not only ensures the accuracy of load forecasting but also demonstrates the ability to separate the two types of uncertainties and be applicable to different levels of loads. The relevant code can be found at \url{https://anonymous.4open.science/r/DiffLoad-4714/}.
comment: Accepted by IEEE Transactions on Power Systems, 2024
♻ ☆ Demystifying Reinforcement Learning in Production Scheduling via Explainable AI
Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems. Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque. We conduct a case study where we systematically apply two explainable AI (xAI) frameworks, namely SHAP (DeepSHAP) and Captum (Input x Gradient), to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production. We find that methods in the xAI literature lack falsifiability and consistent terminology, do not adequately consider domain-knowledge, the target audience or real-world scenarios, and typically provide simple input-output explanations rather than causal interpretations. To resolve this issue, we introduce a hypotheses-based workflow. This approach enables us to inspect whether explanations align with domain knowledge and match the reward hypotheses of the agent. We furthermore tackle the challenge of communicating these insights to third parties by tailoring hypotheses to the target audience, which can serve as interpretations of the agent's behavior after verification. Our proposed workflow emphasizes the repeated verification of explanations and may be applicable to various DRL-based scheduling use cases.
♻ ☆ Markov flow policy -- deep MC
Discounted algorithms often encounter evaluation errors due to their reliance on short-term estimations, which can impede their efficacy in addressing simple, short-term tasks and impose undesired temporal discounts (\(\gamma\)). Interestingly, these algorithms are often tested without applying a discount, a phenomenon we refer as the \textit{train-test bias}. In response to these challenges, we propose the Markov Flow Policy, which utilizes a non-negative neural network flow to enable comprehensive forward-view predictions. Through integration into the TD7 codebase and evaluation using the MuJoCo benchmark, we observe significant performance improvements, positioning MFP as a straightforward, practical, and easily implementable solution within the domain of average rewards algorithms.
comment: Paper has been not finished
♻ ☆ Optimizing Agent Collaboration through Heuristic Multi-Agent Planning
The SOTA algorithms for addressing QDec-POMDP issues, QDec-FP and QDec-FPS, are unable to effectively tackle problems that involve different types of sensing agents. We propose a new algorithm that addresses this issue by requiring agents to adopt the same plan if one agent is unable to take a sensing action but the other can. Our algorithm performs significantly better than both QDec-FP and QDec-FPS in these types of situations.
comment: Paper has been not finished
♻ ☆ Solving Collaborative Dec-POMDPs with Deep Reinforcement Learning Heuristics
WQMIX, QMIX, QTRAN, and VDN are SOTA algorithms for Dec-POMDP. All of them cannot solve complex agents' cooperation domains. We give an algorithm to solve such problems. In the first stage, we solve a single-agent problem and get a policy. In the second stage, we solve the multi-agent problem with the single-agent policy. SA2MA has a clear advantage over all competitors in complex agents' cooperative domains.
comment: Paper has been not finished
♻ ☆ ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
♻ ☆ Eyes Can Deceive: Benchmarking Counterfactual Reasoning Abilities of Multi-modal Large Language Models
Counterfactual reasoning, as a crucial manifestation of human intelligence, refers to making presuppositions based on established facts and extrapolating potential outcomes. Existing multimodal large language models (MLLMs) have exhibited impressive cognitive and reasoning capabilities, which have been examined across a wide range of Visual Question Answering (VQA) benchmarks. Nevertheless, how will existing MLLMs perform when faced with counterfactual questions? To answer this question, we first curate a novel \textbf{C}ounter\textbf{F}actual \textbf{M}ulti\textbf{M}odal reasoning benchmark, abbreviated as \textbf{CFMM}, to systematically assess the counterfactual reasoning capabilities of MLLMs. Our CFMM comprises six challenging tasks, each including hundreds of carefully human-labeled and GPT-generated counterfactual questions, to evaluate MLLM's counterfactual reasoning capabilities across diverse aspects. Through experiments, interestingly, we find that existing MLLMs prefer to believe what they see, but ignore the counterfactual presuppositions presented in the question, thereby leading to inaccurate responses. Furthermore, we evaluate a wide range of prevalent MLLMs on our proposed CFMM. The significant gap between their performance on our CFMM and that on several VQA benchmarks indicates that there is still considerable room for improvement in existing MLLMs toward approaching human-level intelligence. On the other hand, through boosting MLLMs performances on our CFMM in the future, potential avenues toward developing MLLMs with advanced intelligence can be explored.
♻ ☆ Early Explorations of Lightweight Models for Wound Segmentation on Mobile Devices
The aging population poses numerous challenges to healthcare, including the increase in chronic wounds in the elderly. The current approach to wound assessment by therapists based on photographic documentation is subjective, highlighting the need for computer-aided wound recognition from smartphone photos. This offers objective and convenient therapy monitoring, while being accessible to patients from their home at any time. However, despite research in mobile image segmentation, there is a lack of focus on mobile wound segmentation. To address this gap, we conduct initial research on three lightweight architectures to investigate their suitability for smartphone-based wound segmentation. Using public datasets and UNet as a baseline, our results are promising, with both ENet and TopFormer, as well as the larger UNeXt variant, showing comparable performance to UNet. Furthermore, we deploy the models into a smartphone app for visual assessment of live segmentation, where results demonstrate the effectiveness of TopFormer in distinguishing wounds from wound-coloured objects. While our study highlights the potential of transformer models for mobile wound segmentation, future work should aim to further improve the mask contours.
comment: Extended version of our paper that was published in the "47th German Conference on Artificial Intelligence (KI 2024)"
♻ ☆ Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models
This study investigates the application of deep-learning diffusion models for the super-resolution of weather data, a novel approach aimed at enhancing the spatial resolution and detail of meteorological variables. Leveraging the capabilities of diffusion models, specifically the SR3 and ResDiff architectures, we present a methodology for transforming low-resolution weather data into high-resolution outputs. Our experiments, conducted using the WeatherBench dataset, focus on the super-resolution of the two-meter temperature variable, demonstrating the models' ability to generate detailed and accurate weather maps. The results indicate that the ResDiff model, further improved by incorporating physics-based modifications, significantly outperforms traditional SR3 methods in terms of Mean Squared Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). This research highlights the potential of diffusion models in meteorological applications, offering insights into their effectiveness, challenges, and prospects for future advancements in weather prediction and climate analysis.
♻ ☆ AI in Space for Scientific Missions: Strategies for Minimizing Neural-Network Model Upload
Artificial Intelligence (AI) has the potential to revolutionize space exploration by delegating several spacecraft decisions to an onboard AI instead of relying on ground control and predefined procedures. It is likely that there will be an AI/ML Processing Unit onboard the spacecraft running an inference engine. The neural-network will have pre-installed parameters that can be updated onboard by uploading, by telecommands, parameters obtained by training on the ground. However, satellite uplinks have limited bandwidth and transmissions can be costly. Furthermore, a mission operating with a suboptimal neural network will miss out on valuable scientific data. Smaller networks can thereby decrease the uplink cost, while increasing the value of the scientific data that is downloaded. In this work, we evaluate and discuss the use of reduced-precision and bare-minimum neural networks to reduce the time for upload. As an example of an AI use case, we focus on the NASA's Magnetosperic MultiScale (MMS) mission. We show how an AI onboard could be used in the Earth's magnetosphere to classify data to selectively downlink higher value data or to recognize a region-of-interest to trigger a burst-mode, collecting data at a high-rate. Using a simple filtering scheme and algorithm, we show how the start and end of a region-of-interest can be detected in on a stream of classifications. To provide the classifications, we use an established Convolutional Neural Network (CNN) trained to an accuracy >94%. We also show how the network can be reduced to a single linear layer and trained to the same accuracy as the established CNN. Thereby, reducing the overall size of the model by up to 98.9%. We further show how each network can be reduced by up to 75% of its original size, by using lower-precision formats to represent the network parameters, with a change in accuracy of less than 0.6 percentage points.
♻ ☆ Causal-Guided Active Learning for Debiasing Large Language Models ACL 2024
Although achieving promising performance, recent analyses show that current generative large language models (LLMs) may still capture dataset biases and utilize them for generation, leading to poor generalizability and harmfulness of LLMs. However, due to the diversity of dataset biases and the over-optimization problem, previous prior-knowledge-based debiasing methods and fine-tuning-based debiasing methods may not be suitable for current LLMs. To address this issue, we explore combining active learning with the causal mechanisms and propose a casual-guided active learning (CAL) framework, which utilizes LLMs itself to automatically and autonomously identify informative biased samples and induce the bias patterns. Then a cost-effective and efficient in-context learning based method is employed to prevent LLMs from utilizing dataset biases during generation. Experimental results show that CAL can effectively recognize typical biased instances and induce various bias patterns for debiasing LLMs.
comment: Accepted as ACL 2024 main conference & Rewared as Outstanding Paper
♻ ☆ Generative Design of Crystal Structures by Point Cloud Representations and Diffusion Model
Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable material, we present a framework for the generation of synthesizable materials, leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar. To gauge the efficacy of our approach, we employ it to reconstruct input structures from our training datasets, rigorously validating its high reconstruction performance. Furthermore, we demonstrate the profound potential of Point Cloud-Based Crystal Diffusion (PCCD) by generating entirely new materials, emphasizing their synthesizability. Our research stands as a noteworthy contribution to the advancement of materials design and synthesis through the cutting-edge avenue of generative design instead of the conventional substitution or experience-based discovery.
comment: I have submitted to a journal
♻ ☆ Towards Effective and Efficient Non-autoregressive Decoding Using Block-based Attention Mask
This paper proposes a novel non-autoregressive (NAR) block-based Attention Mask Decoder (AMD) that flexibly balances performance-efficiency trade-offs for Conformer ASR systems. AMD performs parallel NAR inference within contiguous blocks of output labels that are concealed using attention masks, while conducting left-to-right AR prediction and history context amalgamation between blocks. A beam search algorithm is designed to leverage a dynamic fusion of CTC, AR Decoder, and AMD probabilities. Experiments on the LibriSpeech-100hr corpus suggest the tripartite Decoder incorporating the AMD module produces a maximum decoding speed-up ratio of 1.73x over the baseline CTC+AR decoding, while incurring no statistically significant word error rate (WER) increase on the test sets. When operating with the same decoding real time factors, statistically significant WER reductions of up to 0.7% and 0.3% absolute (5.3% and 6.1% relative) were obtained over the CTC+AR baseline.
comment: 5 pages, 2 figures, 2 tables, Interspeech24 conference
♻ ☆ Anomaly Detection in Time Series of EDFA Pump Currents to Monitor Degeneration Processes using Fuzzy Clustering
This article proposes a novel fuzzy clustering based anomaly detection method for pump current time series of EDFA systems. The proposed change detection framework (CDF) strategically combines the advantages of entropy analysis (EA) and principle component analysis (PCA) with fuzzy clustering procedures. In the framework, EA is applied for dynamic selection of features for reduction of the feature space and increase of computational performance. Furthermore, PCA is utilized to extract features from the raw feature space to enable generalization capability of the subsequent fuzzy clustering procedures. Three different fuzzy clustering methods, more precisely the fuzzy clustering algorithm, a probabilistic clustering algorithm and a possibilistic clustering algorithm are evaluated for performance and generalization. Hence, the proposed framework has the innovative feature to detect changes in pump current time series at an early stage for arbitrary points of operation, compared to state-of-the-art predefined alarms in commercially used EDFAs. Moreover, the approach is implemented and tested using experimental data. In addition, the proposed framework enables further approaches of applying decentralized predictive maintenance for optical fiber networks.
comment: 6 pages, 6 figures
♻ ☆ Towards Learning Abductive Reasoning using VSA Distributed Representations
We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
comment: Accepted at the 18th International Conference on Neural-Symbolic Learning and Reasoning (NeSy) 2024 [Spotlight]
♻ ☆ AgentsCourt: Building Judicial Decision-Making Agents with Court Debate Simulation and Legal Knowledge Augmentation ACL
With the development of deep learning, natural language processing technology has effectively improved the efficiency of various aspects of the traditional judicial industry. However, most current efforts focus on tasks within individual judicial stages, making it difficult to handle complex tasks that span multiple stages. As the autonomous agents powered by large language models are becoming increasingly smart and able to make complex decisions in real-world settings, offering new insights for judicial intelligence. In this paper, (1) we propose a novel multi-agent framework, AgentsCourt, for judicial decision-making. Our framework follows the classic court trial process, consisting of court debate simulation, legal resources retrieval and decision-making refinement to simulate the decision-making of judge. (2) we introduce SimuCourt, a judicial benchmark that encompasses 420 Chinese judgment documents, spanning the three most common types of judicial cases. Furthermore, to support this task, we construct a large-scale legal knowledge base, Legal-KB, with multi-resource legal knowledge. (3) Extensive experiments show that our framework outperforms the existing advanced methods in various aspects, especially in generating legal articles, where our model achieves significant improvements of 8.6% and 9.1% F1 score in the first and second instance settings, respectively.
comment: This paper was first submitted to ACL ARR 2024 April (Under review)
♻ ☆ Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper.
comment: 18 pages, 5 figures
♻ ☆ Machine Learning & Wi-Fi: Unveiling the Path Towards AI/ML-Native IEEE 802.11 Networks
Artificial intelligence (AI) and machine learning (ML) are nowadays mature technologies considered essential for driving the evolution of future communications systems. Simultaneously, Wi-Fi technology has constantly evolved over the past three decades and incorporated new features generation after generation, thus gaining in complexity. As such, researchers have observed that AI/ML functionalities may be required to address the upcoming Wi-Fi challenges that will be otherwise difficult to solve with traditional approaches. This paper discusses the role of AI/ML in current and future Wi-Fi networks and depicts the ways forward. A roadmap towards AI/ML-native Wi-Fi, key challenges, standardization efforts, and major enablers are also discussed. An exemplary use case is provided to showcase the potential of AI/ML in Wi-Fi at different adoption stages.
♻ ☆ Does CLIP Bind Concepts? Probing Compositionality in Large Image Models
Large-scale neural network models combining text and images have made incredible progress in recent years. However, it remains an open question to what extent such models encode compositional representations of the concepts over which they operate, such as correctly identifying "red cube" by reasoning over the constituents "red" and "cube". In this work, we focus on the ability of a large pretrained vision and language model (CLIP) to encode compositional concepts and to bind variables in a structure-sensitive way (e.g., differentiating "cube behind sphere" from "sphere behind cube"). To inspect the performance of CLIP, we compare several architectures from research on compositional distributional semantics models (CDSMs), a line of research that attempts to implement traditional compositional linguistic structures within embedding spaces. We benchmark them on three synthetic datasets - single-object, two-object, and relational - designed to test concept binding. We find that CLIP can compose concepts in a single-object setting, but in situations where concept binding is needed, performance drops dramatically. At the same time, CDSMs also perform poorly, with best performance at chance level.
comment: Lewis and Nayak contributed equally
♻ ☆ Emergence of Social Norms in Generative Agent Societies: Principles and Architecture IJCAI 2024
Social norms play a crucial role in guiding agents towards understanding and adhering to standards of behavior, thus reducing social conflicts within multi-agent systems (MASs). However, current LLM-based (or generative) MASs lack the capability to be normative. In this paper, we propose a novel architecture, named CRSEC, to empower the emergence of social norms within generative MASs. Our architecture consists of four modules: Creation & Representation, Spreading, Evaluation, and Compliance. This addresses several important aspects of the emergent processes all in one: (i) where social norms come from, (ii) how they are formally represented, (iii) how they spread through agents' communications and observations, (iv) how they are examined with a sanity check and synthesized in the long term, and (v) how they are incorporated into agents' planning and actions. Our experiments deployed in the Smallville sandbox game environment demonstrate the capability of our architecture to establish social norms and reduce social conflicts within generative MASs. The positive outcomes of our human evaluation, conducted with 30 evaluators, further affirm the effectiveness of our approach. Our project can be accessed via the following link: https://github.com/sxswz213/CRSEC.
comment: Published as a conference paper at IJCAI 2024
♻ ☆ Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models
Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using prompt-specific methods to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of our method in comparison to existing techniques.
comment: The experiments are insufficient and need to be completed
♻ ☆ Token-level Direct Preference Optimization
Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO incorporates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, TDPO enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO's superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods. Our code is open-sourced at https://github.com/Vance0124/Token-level-Direct-Preference-Optimization.
♻ ☆ Perceptual Similarity for Measuring Decision-Making Style and Policy Diversity in Games
Defining and measuring decision-making styles, also known as playstyles, is crucial in gaming, where these styles reflect a broad spectrum of individuality and diversity. However, finding a universally applicable measure for these styles poses a challenge. Building on Playstyle Distance, the first unsupervised metric to measure playstyle similarity based on game screens and raw actions, we introduce three enhancements to increase accuracy: multiscale analysis with varied state granularity, a perceptual kernel rooted in psychology, and the utilization of the intersection-over-union method for efficient evaluation. These innovations not only advance measurement precision but also offer insights into human cognition of similarity. Across two racing games and seven Atari games, our techniques significantly improve the precision of zero-shot playstyle classification, achieving an accuracy exceeding 90 percent with fewer than 512 observation-action pairs, which is less than half an episode of these games. Furthermore, our experiments with 2048 and Go demonstrate the potential of discrete playstyle measures in puzzle and board games. We also develop an algorithm for assessing decision-making diversity using these measures. Our findings improve the measurement of end-to-end game analysis and the evolution of artificial intelligence for diverse playstyles.
comment: TMLR 08/2024 https://openreview.net/forum?id=30C9AWBW49
♻ ☆ Advancing Chinese biomedical text mining with community challenges
Objective: This study aims to review the recent advances in community challenges for biomedical text mining in China. Methods: We collected information of evaluation tasks released in community challenges of biomedical text mining, including task description, dataset description, data source, task type and related links. A systematic summary and comparative analysis were conducted on various biomedical natural language processing tasks, such as named entity recognition, entity normalization, attribute extraction, relation extraction, event extraction, text classification, text similarity, knowledge graph construction, question answering, text generation, and large language model evaluation. Results: We identified 39 evaluation tasks from 6 community challenges that spanned from 2017 to 2023. Our analysis revealed the diverse range of evaluation task types and data sources in biomedical text mining. We explored the potential clinical applications of these community challenge tasks from a translational biomedical informatics perspective. We compared with their English counterparts, and discussed the contributions, limitations, lessons and guidelines of these community challenges, while highlighting future directions in the era of large language models. Conclusion: Community challenge evaluation competitions have played a crucial role in promoting technology innovation and fostering interdisciplinary collaboration in the field of biomedical text mining. These challenges provide valuable platforms for researchers to develop state-of-the-art solutions.
♻ ☆ Differentiable Edge-based OPC
Optical proximity correction (OPC) is crucial for pushing the boundaries of semiconductor manufacturing and enabling the continued scaling of integrated circuits. While pixel-based OPC, termed as inverse lithography technology (ILT), has gained research interest due to its flexibility and precision. Its complexity and intricate features can lead to challenges in mask writing, increased defects, and higher costs, hence hindering widespread industrial adoption. In this paper, we propose DiffOPC, a differentiable OPC framework that enjoys the virtue of both edge-based OPC and ILT. By employing a mask rule-aware gradient-based optimization approach, DiffOPC efficiently guides mask edge segment movement during mask optimization, minimizing wafer error by propagating true gradients from the cost function back to the mask edges. Our approach achieves lower edge placement error while reducing manufacturing cost by half compared to state-of-the-art OPC techniques, bridging the gap between the high accuracy of pixel-based OPC and the practicality required for industrial adoption, thus offering a promising solution for advanced semiconductor manufacturing.
comment: Accepted by ICCAD24
♻ ☆ Towards Graph Prompt Learning: A Survey and Beyond
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.
comment: 19 pages, 2 figures
♻ ☆ Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
♻ ☆ Dense-Sparse Deep Convolutional Neural Networks Training for Image Denoising
Recently, deep learning methods such as the convolutional neural networks have gained prominence in the area of image denoising. This is owing to their proven ability to surpass state-of-the-art classical image denoising algorithms such as block-matching and 3D filtering algorithm. Deep denoising convolutional neural networks use many feed-forward convolution layers with added regularization methods of batch normalization and residual learning to speed up training and improve denoising performance significantly. However, this comes at the expense of a huge number of trainable parameters. In this paper, we show that by employing an enhanced dense-sparse-dense network training procedure to the deep denoising convolutional neural networks, comparable denoising performance level can be achieved at a significantly reduced number of trainable parameters. We derive motivation from the fact that networks trained using the dense-sparse-dense approach have been shown to attain performance boost with reduced number of parameters. The proposed reduced deep denoising convolutional neural networks network is an efficient denoising model with significantly reduced parameters and comparable performance to the deep denoising convolutional neural networks. Additionally, denoising was achieved at significantly reduced processing time.
♻ ☆ Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever
Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT's late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model's retrieval performance and cut storage requirements by up to 50%. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,
♻ ☆ On The Fairness Impacts of Hardware Selection in Machine Learning
In the machine learning ecosystem, hardware selection is often regarded as a mere utility, overshadowed by the spotlight on algorithms and data. This oversight is particularly problematic in contexts like ML-as-a-service platforms, where users often lack control over the hardware used for model deployment. How does the choice of hardware impact generalization properties? This paper investigates the influence of hardware on the delicate balance between model performance and fairness. We demonstrate that hardware choices can exacerbate existing disparities, attributing these discrepancies to variations in gradient flows and loss surfaces across different demographic groups. Through both theoretical and empirical analysis, the paper not only identifies the underlying factors but also proposes an effective strategy for mitigating hardware-induced performance imbalances.
♻ ☆ Improving Relational Database Interactions with Large Language Models: Column Descriptions and Their Impact on Text-to-SQL Performance
Relational databases often suffer from uninformative descriptors of table contents, such as ambiguous columns and hard-to-interpret values, impacting both human users and Text-to-SQL models. This paper explores the use of large language models (LLMs) to generate informative column descriptions as a semantic layer for relational databases. Using the BIRD-Bench development set, we created ColSQL, a dataset with gold-standard column descriptions generated and refined by LLMs and human annotators. We evaluated several instruction-tuned models, finding that GPT-4o and Command R+ excelled in generating high-quality descriptions. Additionally, we applied an LLM-as-a-judge to evaluate model performance. Although this method does not align well with human evaluations, we included it to explore its potential and to identify areas for improvement. More work is needed to improve the reliability of automatic evaluations for this task. We also find that detailed column descriptions significantly improve Text-to-SQL execution accuracy, especially when columns are uninformative. This study establishes LLMs as effective tools for generating detailed metadata, enhancing the usability of relational databases.
♻ ☆ FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test Code Repair
Flaky tests are problematic because they non-deterministically pass or fail for the same software version under test, causing confusion and wasting development effort. While machine learning models have been used to predict flakiness and its root causes, there is much less work on providing support to fix the problem. To address this gap, in this paper, we focus on predicting the type of fix that is required to remove flakiness and then repair the test code on that basis. We do this for a subset of flaky tests where the root cause of flakiness is in the test itself and not in the production code. One key idea is to guide the repair process with additional knowledge about the test's flakiness in the form of its predicted fix category. Thus, we first propose a framework that automatically generates labeled datasets for 13 fix categories and trains models to predict the fix category of a flaky test by analyzing the test code only. Our experimental results using code models and few-shot learning show that we can correctly predict most of the fix categories. To show the usefulness of such fix category labels for automatically repairing flakiness, we augment the prompts of GPT-3.5 Turbo, a Large Language Model (LLM), with such extra knowledge to request repair suggestions. The results show that our suggested fix category labels, complemented with in-context learning, significantly enhance the capability of GPT-3.5 Turbo in generating fixes for flaky tests. Based on the execution and analysis of a sample of GPT-repaired flaky tests, we estimate that a large percentage of such repairs (roughly between 51% and 83%) can be expected to pass. For the failing repaired tests, on average, 16% of the test code needs to be further changed for them to pass.
comment: 26 pages, 20 Figures
♻ ☆ Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods
This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art methods introduced for time-series and spatiotemporal causal analysis along with their strengths and limitations. The paper further describes the existing applications of several methods for answering specific Earth Science questions such as extreme weather events, sea level rise, teleconnections etc. This survey paper can serve as a primer for Data Science researchers interested in data-driven causal study as we share a list of resources, such as Earth Science datasets (synthetic, simulated and observational data) and open source tools for causal analysis. It will equally benefit the Earth Science community interested in taking an AI-driven approach to study the causality of different dynamic and thermodynamic processes as we present the open challenges and opportunities in performing causality-based Earth Science study.
♻ ☆ Data Authenticity, Consent, & Provenance for AI are all broken: what will it take to fix them? ICML 2024
New capabilities in foundation models are owed in large part to massive, widely-sourced, and under-documented training data collections. Existing practices in data collection have led to challenges in tracing authenticity, verifying consent, preserving privacy, addressing representation and bias, respecting copyright, and overall developing ethical and trustworthy foundation models. In response, regulation is emphasizing the need for training data transparency to understand foundation models' limitations. Based on a large-scale analysis of the foundation model training data landscape and existing solutions, we identify the missing infrastructure to facilitate responsible foundation model development practices. We examine the current shortcomings of common tools for tracing data authenticity, consent, and documentation, and outline how policymakers, developers, and data creators can facilitate responsible foundation model development by adopting universal data provenance standards.
comment: ICML 2024 camera-ready version (Spotlight paper). 9 pages, 2 tables
♻ ☆ Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. Our training dataset is a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide parameter-scaling results with a 7B, 14B models trained for 4.8T tokens, called phi-3-small, phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75%, 78% on MMLU, and 8.7, 8.9 on MT-bench). To enhance multilingual, multimodal, and long-context capabilities, we introduce three models in the phi-3.5 series: phi-3.5-mini, phi-3.5-MoE, and phi-3.5-Vision. The phi-3.5-MoE, a 16 x 3.8B MoE model with 6.6 billion active parameters, achieves superior performance in language reasoning, math, and code tasks compared to other open-source models of similar scale, such as Llama 3.1 and the Mixtral series, and on par with Gemini-1.5-Flash and GPT-4o-mini. Meanwhile, phi-3.5-Vision, a 4.2 billion parameter model derived from phi-3.5-mini, excels in reasoning tasks and is adept at handling both single-image and text prompts, as well as multi-image and text prompts.
comment: 24 pages
♻ ☆ Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms MICRO'24
Cloud platforms today have been deploying hardware accelerators like neural processing units (NPUs) for powering machine learning (ML) inference services. To maximize the resource utilization while ensuring reasonable quality of service, a natural approach is to virtualize NPUs for efficient resource sharing for multi-tenant ML services. However, virtualizing NPUs for modern cloud platforms is not easy. This is not only due to the lack of system abstraction support for NPU hardware, but also due to the lack of architectural and ISA support for enabling fine-grained dynamic operator scheduling for virtualized NPUs. We present Neu10, a holistic NPU virtualization framework. We investigate virtualization techniques for NPUs across the entire software and hardware stack. Neu10 consists of (1) a flexible NPU abstraction called vNPU, which enables fine-grained virtualization of the heterogeneous compute units in a physical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go computing model and flexible vNPU-to-pNPU mappings for improved resource utilization and cost-effectiveness; (3) an ISA extension of modern NPU architecture for facilitating fine-grained tensor operator scheduling for multiple vNPUs. We implement Neu10 based on a production-level NPU simulator. Our experiments show that Neu10 improves the throughput of ML inference services by up to 1.4$\times$ and reduces the tail latency by up to 4.6$\times$, while improving the NPU utilization by 1.2$\times$ on average, compared to state-of-the-art NPU sharing approaches.
comment: Accepted to MICRO'24
♻ ☆ Scaling Laws for Data Poisoning in LLMs
Recent work shows that LLMs are vulnerable to data poisoning, in which they are trained on partially corrupted or harmful data. Poisoned data is hard to detect, breaks guardrails, and leads to undesirable and harmful behavior. Given the intense efforts by leading labs to train and deploy increasingly larger and more capable LLMs, it is critical to ask if the risk of data poisoning will be naturally mitigated by scale, or if it is an increasing threat. We consider three threat models by which data poisoning can occur: malicious fine-tuning, imperfect data curation, and intentional data contamination. Our experiments evaluate the effects of data poisoning on 23 frontier LLMs ranging from 1.5-72 billion parameters on three datasets which speak to each of our threat models. We find that larger LLMs are increasingly vulnerable, learning harmful behavior significantly more quickly than smaller LLMs with even minimal data poisoning. These results underscore the need for robust safeguards against data poisoning in larger LLMs.
♻ ☆ SHS: Scorpion Hunting Strategy Swarm Algorithm
We introduced the Scorpion Hunting Strategy (SHS), a novel population-based, nature-inspired optimisation algorithm. This algorithm draws inspiration from the hunting strategy of scorpions, which identify, locate, and capture their prey using the alpha and beta vibration operators. These operators control the SHS algorithm's exploitation and exploration abilities. To formulate an optimisation method, we mathematically simulate these dynamic events and behaviors. We evaluate the effectiveness of the SHS algorithm by employing 20 benchmark functions (including 10 conventional and 10 CEC2020 functions), using both qualitative and quantitative analyses. Through a comparative analysis with 12 state-of-the-art meta-heuristic algorithms, we demonstrate that the proposed SHS algorithm yields exceptionally promising results. These findings are further supported by statistically significant results obtained through the Wilcoxon rank sum test. Additionally, the ranking of SHS, as determined by the average rank derived from the Friedman test, positions it at the forefront when compared to other algorithms. Going beyond theoretical validation, we showcase the practical utility of the SHS algorithm by applying it to six distinct real-world optimisation tasks. These applications illustrate the algorithm's potential in addressing complex optimisation challenges. In summary, this work not only introduces the innovative SHS algorithm but also substantiates its effectiveness and versatility through rigorous benchmarking and real-world problem-solving scenarios.
Graphics 7
☆ RenDetNet: Weakly-supervised Shadow Detection with Shadow Caster Verification ECCV 2024
Existing shadow detection models struggle to differentiate dark image areas from shadows. In this paper, we tackle this issue by verifying that all detected shadows are real, i.e. they have paired shadow casters. We perform this step in a physically-accurate manner by differentiably re-rendering the scene and observing the changes stemming from carving out estimated shadow casters. Thanks to this approach, the RenDetNet proposed in this paper is the first learning-based shadow detection model whose supervisory signals can be computed in a self-supervised manner. The developed system compares favourably against recent models trained on our data. As part of this publication, we release our code on github.
comment: AIM @ ECCV 2024 / code available at https://github.com/n-kubiak/RenDetNet
☆ 2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction
2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction, enabling novel view synthesis and geometry reconstruction simultaneously. While the well-known Gaussian kernel is broadly used, its lack of anisotropy and deformation ability leads to dim and vague edges at object silhouettes, limiting the reconstruction quality of current Gaussian splatting methods. To enhance the representation power, we draw inspiration from quantum physics and propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting. The new kernel takes a unified mathematical form and extends the Gaussian function, which serves as the zero-rank term in the updated formulation. Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks. The proposed kernel outperforms traditional Gaussian Splatting kernels, showcasing its potential for high-quality 3D reconstruction and rendering.
☆ MAPWise: Evaluating Vision-Language Models for Advanced Map Queries
Vision-language models (VLMs) excel at tasks requiring joint understanding of visual and linguistic information. A particularly promising yet under-explored application for these models lies in answering questions based on various kinds of maps. This study investigates the efficacy of VLMs in answering questions based on choropleth maps, which are widely used for data analysis and representation. To facilitate and encourage research in this area, we introduce a novel map-based question-answering benchmark, consisting of maps from three geographical regions (United States, India, China), each containing 1000 questions. Our benchmark incorporates 43 diverse question templates, requiring nuanced understanding of relative spatial relationships, intricate map features, and complex reasoning. It also includes maps with discrete and continuous values, encompassing variations in color-mapping, category ordering, and stylistic patterns, enabling comprehensive analysis. We evaluate the performance of multiple VLMs on this benchmark, highlighting gaps in their abilities and providing insights for improving such models.
comment: 30 Pages, 46 Tables, 6 Figure
☆ Adaptive Multi-Resolution Encoding for Interactive Large-Scale Volume Visualization through Functional Approximation
Functional approximation as a high-order continuous representation provides a more accurate value and gradient query compared to the traditional discrete volume representation. Volume visualization directly rendered from functional approximation generates high-quality rendering results without high-order artifacts caused by trilinear interpolations. However, querying an encoded functional approximation is computationally expensive, especially when the input dataset is large, making functional approximation impractical for interactive visualization. In this paper, we proposed a novel functional approximation multi-resolution representation, Adaptive-FAM, which is lightweight and fast to query. We also design a GPU-accelerated out-of-core multi-resolution volume visualization framework that directly utilizes the Adaptive-FAM representation to generate high-quality rendering with interactive responsiveness. Our method can not only dramatically decrease the caching time, one of the main contributors to input latency, but also effectively improve the cache hit rate through prefetching. Our approach significantly outperforms the traditional function approximation method in terms of input latency while maintaining comparable rendering quality.
♻ ☆ Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
♻ ☆ Frankenstein: Generating Semantic-Compositional 3D Scenes in One Tri-Plane SIGGRAPH
We present Frankenstein, a diffusion-based framework that can generate semantic-compositional 3D scenes in a single pass. Unlike existing methods that output a single, unified 3D shape, Frankenstein simultaneously generates multiple separated shapes, each corresponding to a semantically meaningful part. The 3D scene information is encoded in one single tri-plane tensor, from which multiple Singed Distance Function (SDF) fields can be decoded to represent the compositional shapes. During training, an auto-encoder compresses tri-planes into a latent space, and then the denoising diffusion process is employed to approximate the distribution of the compositional scenes. Frankenstein demonstrates promising results in generating room interiors as well as human avatars with automatically separated parts. The generated scenes facilitate many downstream applications, such as part-wise re-texturing, object rearrangement in the room or avatar cloth re-targeting. Our project page is available at: https://wolfball.github.io/frankenstein/.
comment: SIGGRAPH Asia 2024 Conference Paper
♻ ☆ Hoop Diagrams: A Set Visualization Method
We introduce Hoop Diagrams, a new visualization technique for set data. Hoop Diagrams are a circular visualization with hoops representing sets and sectors representing set intersections. We present an interactive tool for drawing Hoop Diagrams and describe a user study comparing them with Linear Diagrams. The results show only small differences, with users answering questions more quickly with Linear Diagrams, but answering some questions more accurately with Hoop Diagrams. Interaction data indicates that those using set order and intersection highlighting were more successful at answering questions, but those who used other interactions had a slower response. The similarity in usability suggests that the diagram type should be chosen based on the presentation method. Linear Diagrams increase in the horizontal direction with the number of intersections, leading to difficulties fitting on a screen. Hoop Diagrams always have a square aspect ratio.
Robotics 39
☆ 3D Whole-body Grasp Synthesis with Directional Controllability
Synthesizing 3D whole-bodies that realistically grasp objects is useful for animation, mixed reality, and robotics. This is challenging, because the hands and body need to look natural w.r.t. each other, the grasped object, as well as the local scene (i.e., a receptacle supporting the object). Only recent work tackles this, with a divide-and-conquer approach; it first generates a "guiding" right-hand grasp, and then searches for bodies that match this. However, the guiding-hand synthesis lacks controllability and receptacle awareness, so it likely has an implausible direction (i.e., a body can't match this without penetrating the receptacle) and needs corrections through major post-processing. Moreover, the body search needs exhaustive sampling and is expensive. These are strong limitations. We tackle these with a novel method called CWGrasp. Our key idea is that performing geometry-based reasoning "early on," instead of "too late," provides rich "control" signals for inference. To this end, CWGrasp first samples a plausible reaching-direction vector (used later for both the arm and hand) from a probabilistic model built via raycasting from the object and collision checking. Then, it generates a reaching body with a desired arm direction, as well as a "guiding" grasping hand with a desired palm direction that complies with the arm's one. Eventually, CWGrasp refines the body to match the "guiding" hand, while plausibly contacting the scene. Notably, generating already-compatible "parts" greatly simplifies the "whole." Moreover, CWGrasp uniquely tackles both right- and left-hand grasps. We evaluate on the GRAB and ReplicaGrasp datasets. CWGrasp outperforms baselines, at lower runtime and budget, while all components help performance. Code and models will be released.
☆ Auricular Vagus Nerve Stimulation for Enhancing Remote Pilot Training and Operations
The rapid growth of the drone industry, particularly in the use of small unmanned aerial systems (sUAS) and unmanned aerial vehicles (UAVs), requires the development of advanced training protocols for remote pilots. Remote pilots must develop a combination of technical and cognitive skills to manage the complexities of modern drone operations. This paper explores the integration of neurotechnology, specifically auricular vagus nerve stimulation (aVNS), as a method to enhance remote pilot training and performance. The scientific literature shows aVNS can safely improve cognitive functions such as attention, learning, and memory. It has also been shown useful to manage stress responses. For safe and efficient sUAS/UAV operation, it is essential for pilots to maintain high levels of vigilance and decision-making under pressure. By modulating sympathetic stress and cortical arousal, aVNS can prime cognitive faculties before training, help maintain focus during training and improve stress recovery post-training. Furthermore, aVNS has demonstrated the potential to enhance multitasking and cognitive control. This may help remote pilots during complex sUAS operations by potentially reducing the risk of impulsive decision-making or cognitive errors. This paper advocates for the inclusion of aVNS in remote pilot training programs by proposing that it can provide significant benefits in improving cognitive readiness, skill and knowledge acquisition, as well as operational safety and efficiency. Future research should focus on optimizing aVNS protocols for drone pilots while assessing long-term benefits to industrial safety and workforce readiness in real-world scenarios.
comment: 21 pages, 7 figures
☆ A compact neuromorphic system for ultra energy-efficient, on-device robot localization
Neuromorphic computing offers a transformative pathway to overcome the computational and energy challenges faced in deploying robotic localization and navigation systems at the edge. Visual place recognition, a critical component for navigation, is often hampered by the high resource demands of conventional systems, making them unsuitable for small-scale robotic platforms which still require to perform complex, long-range tasks. Although neuromorphic approaches offer potential for greater efficiency, real-time edge deployment remains constrained by the complexity and limited scalability of bio-realistic networks. Here, we demonstrate a neuromorphic localization system that performs accurate place recognition in up to 8km of traversal using models as small as 180 KB with 44k parameters, while consuming less than 1% of the energy required by conventional methods. Our Locational Encoding with Neuromorphic Systems (LENS) integrates spiking neural networks, an event-based dynamic vision sensor, and a neuromorphic processor within a single SPECK(TM) chip, enabling real-time, energy-efficient localization on a hexapod robot. LENS represents the first fully neuromorphic localization system capable of large-scale, on-device deployment, setting a new benchmark for energy efficient robotic place recognition.
comment: 28 pages, 4 main figures, 4 supplementary figures, 1 supplementary table, and 1 movie. Under review
☆ Bipedal locomotion using geometric techniques
This article describes a bipedal walking algorithm with inverse kinematics resolution based solely on geometric methods, so that all mathematical concepts are explained from the base, in order to clarify the reason for this solution. To do so, it has been necessary to simplify the problem and carry out didactic work to distribute content. In general, the articles related to this topic use matrix systems to solve both direct and inverse kinematics, using complex techniques such as decoupling or the Jacobian calculation. By simplifying the walking process, its resolution has been proposed in a simple way using only geometric techniques.
comment: in Spanish language
☆ RoboMNIST: A Multimodal Dataset for Multi-Robot Activity Recognition Using WiFi Sensing, Video, and Audio
We introduce a novel dataset for multi-robot activity recognition (MRAR) using two robotic arms integrating WiFi channel state information (CSI), video, and audio data. This multimodal dataset utilizes signals of opportunity, leveraging existing WiFi infrastructure to provide detailed indoor environmental sensing without additional sensor deployment. Data were collected using two Franka Emika robotic arms, complemented by three cameras, three WiFi sniffers to collect CSI, and three microphones capturing distinct yet complementary audio data streams. The combination of CSI, visual, and auditory data can enhance robustness and accuracy in MRAR. This comprehensive dataset enables a holistic understanding of robotic environments, facilitating advanced autonomous operations that mimic human-like perception and interaction. By repurposing ubiquitous WiFi signals for environmental sensing, this dataset offers significant potential aiming to advance robotic perception and autonomous systems. It provides a valuable resource for developing sophisticated decision-making and adaptive capabilities in dynamic environments.
☆ Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning
With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.
☆ Identifying Terrain Physical Parameters from Vision -- Towards Physical-Parameter-Aware Locomotion and Navigation
Identifying the physical properties of the surrounding environment is essential for robotic locomotion and navigation to deal with non-geometric hazards, such as slippery and deformable terrains. It would be of great benefit for robots to anticipate these extreme physical properties before contact; however, estimating environmental physical parameters from vision is still an open challenge. Animals can achieve this by using their prior experience and knowledge of what they have seen and how it felt. In this work, we propose a cross-modal self-supervised learning framework for vision-based environmental physical parameter estimation, which paves the way for future physical-property-aware locomotion and navigation. We bridge the gap between existing policies trained in simulation and identification of physical terrain parameters from vision. We propose to train a physical decoder in simulation to predict friction and stiffness from multi-modal input. The trained network allows the labeling of real-world images with physical parameters in a self-supervised manner to further train a visual network during deployment, which can densely predict the friction and stiffness from image data. We validate our physical decoder in simulation and the real world using a quadruped ANYmal robot, outperforming an existing baseline method. We show that our visual network can predict the physical properties in indoor and outdoor experiments while allowing fast adaptation to new environments.
DroneWiS: Automated Simulation Testing of small Unmanned Aerial Systems in Realistic Windy Conditions
The continuous evolution of small Unmanned Aerial Systems (sUAS) demands advanced testing methodologies to ensure their safe and reliable operations in the real-world. To push the boundaries of sUAS simulation testing in realistic environments, we previously developed the DroneReqValidator (DRV) platform, allowing developers to automatically conduct simulation testing in digital twin of earth. In this paper, we present DRV 2.0, which introduces a novel component called DroneWiS (Drone Wind Simulation). DroneWiS allows sUAS developers to automatically simulate realistic windy conditions and test the resilience of sUAS against wind. Unlike current state-of-the-art simulation tools such as Gazebo and AirSim that only simulate basic wind conditions, DroneWiS leverages Computational Fluid Dynamics (CFD) to compute the unique wind flows caused by the interaction of wind with the objects in the environment such as buildings and uneven terrains. This simulation capability provides deeper insights to developers about the navigation capability of sUAS in challenging and realistic windy conditions. DroneWiS equips sUAS developers with a powerful tool to test, debug, and improve the reliability and safety of sUAS in real-world. A working demonstration is available at https://youtu.be/khBHEBST8Wc
UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs). This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution, in addition to the fusion of detection results from teams of UAVs for the purpose of accurately and reliably geolocating objects of interest in a timely manner. In an offline step, an application-independent evaluation of vision-based detectors from a system perspective is first performed. Based on this evaluation, the most appropriate algorithms for online object detection for each platform are selected automatically before a mission, taking into account a number of practical system considerations, such as the available communication links, video compression used, and the available computational resources. The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations. A number of simulated and real flight experiments are also presented, validating the proposed method.
comment: 42 pages, 19 figures
☆ Integrating Features for Recognizing Human Activities through Optimized Parameters in Graph Convolutional Networks and Transformer Architectures
Human activity recognition is a major field of study that employs computer vision, machine vision, and deep learning techniques to categorize human actions. The field of deep learning has made significant progress, with architectures that are extremely effective at capturing human dynamics. This study emphasizes the influence of feature fusion on the accuracy of activity recognition. This technique addresses the limitation of conventional models, which face difficulties in identifying activities because of their limited capacity to understand spatial and temporal features. The technique employs sensory data obtained from four publicly available datasets: HuGaDB, PKU-MMD, LARa, and TUG. The accuracy and F1-score of two deep learning models, specifically a Transformer model and a Parameter-Optimized Graph Convolutional Network (PO-GCN), were evaluated using these datasets. The feature fusion technique integrated the final layer features from both models and inputted them into a classifier. Empirical evidence demonstrates that PO-GCN outperforms standard models in activity recognition. HuGaDB demonstrated a 2.3% improvement in accuracy and a 2.2% increase in F1-score. TUG showed a 5% increase in accuracy and a 0.5% rise in F1-score. On the other hand, LARa and PKU-MMD achieved lower accuracies of 64% and 69% respectively. This indicates that the integration of features enhanced the performance of both the Transformer model and PO-GCN.
comment: 6 pages, 1 figure, conference
☆ Time-Optimized Trajectory Planning for Non-Prehensile Object Transportation in 3D
Non-prehensile object transportation offers a way to enhance robotic performance in object manipulation tasks, especially with unstable objects. Effective trajectory planning requires simultaneous consideration of robot motion constraints and object stability. Here, we introduce a physical model for object stability and propose a novel trajectory planning approach for non-prehensile transportation along arbitrary straight lines in 3D space. Validation with a 7-DoF Franka Panda robot confirms improved transportation speed via tray rotation integration while ensuring object stability and robot motion constraints.
comment: Accepted to the European Robotic Forum (ERF) 2024
☆ EasyChauffeur: A Baseline Advancing Simplicity and Efficiency on Waymax
Recent advancements in deep-learning-based driving planners have primarily focused on elaborate network engineering, yielding limited improvements. This paper diverges from conventional approaches by exploring three fundamental yet underinvestigated aspects: training policy, data efficiency, and evaluation robustness. We introduce EasyChauffeur, a reproducible and effective planner for both imitation learning (IL) and reinforcement learning (RL) on Waymax, a GPU-accelerated simulator. Notably, our findings indicate that the incorporation of on-policy RL significantly boosts performance and data efficiency. To further enhance this efficiency, we propose SNE-Sampling, a novel method that selectively samples data from the encoder's latent space, substantially improving EasyChauffeur's performance with RL. Additionally, we identify a deficiency in current evaluation methods, which fail to accurately assess the robustness of different planners due to significant performance drops from minor changes in the ego vehicle's initial state. In response, we propose Ego-Shifting, a new evaluation setting for assessing planners' robustness. Our findings advocate for a shift from a primary focus on network architectures to adopting a holistic approach encompassing training strategies, data efficiency, and robust evaluation methods.
☆ Efficient Multi-agent Navigation with Lightweight DRL Policy
In this article, we present an end-to-end collision avoidance policy based on deep reinforcement learning (DRL) for multi-agent systems, demonstrating encouraging outcomes in real-world applications. In particular, our policy calculates the control commands of the agent based on the raw LiDAR observation. In addition, the number of parameters of the proposed basic model is 140,000, and the size of the parameter file is 3.5 MB, which allows the robot to calculate the actions from the CPU alone. We propose a multi-agent training platform based on a physics-based simulator to further bridge the gap between simulation and the real world. The policy is trained on a policy-gradients-based RL algorithm in a dense and messy training environment. A novel reward function is introduced to address the issue of agents choosing suboptimal actions in some common scenarios. Although the data used for training is exclusively from the simulation platform, the policy can be successfully transferred and deployed in real-world robots. Finally, our policy effectively responds to intentional obstructions and avoids collisions. The website is available at \url{https://sites.google.com/view/xingrong2024efficient/%E9%A6%96%E9%A1%B5}.
☆ An Accurate Filter-based Visual Inertial External Force Estimator via Instantaneous Accelerometer Update ICRA
Accurate disturbance estimation is crucial for reliable robotic physical interaction. To estimate environmental interference in a low-cost and sensorless way (without force sensor), a variety of tightly-coupled visual inertial external force estimators are proposed in the literature. However, existing solutions may suffer from relatively low-frequency preintegration. In this paper, a novel estimator is designed to overcome this issue via high-frequency instantaneous accelerometer update.
comment: Accepted by the 40th Anniversary of the IEEE Conference on Robotics and Automation (ICRA@40)
☆ BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications.
☆ Safe Bayesian Optimization for High-Dimensional Control Systems via Additive Gaussian Processes
Controller tuning and optimization have been among the most fundamental problems in robotics and mechatronic systems. The traditional methodology is usually model-based, but its performance heavily relies on an accurate mathematical model of the system. In control applications with complex dynamics, obtaining a precise model is often challenging, leading us towards a data-driven approach. While optimizing a single controller has been explored by various researchers, it remains a challenge to obtain the optimal controller parameters safely and efficiently when multiple controllers are involved. In this paper, we propose a high-dimensional safe Bayesian optimization method based on additive Gaussian processes to optimize multiple controllers simultaneously and safely. Additive Gaussian kernels replace the traditional squared-exponential kernels or Mat\'ern kernels, enhancing the efficiency with which Gaussian processes update information on unknown functions. Experimental results on a permanent magnet synchronous motor (PMSM) demonstrate that compared to existing safe Bayesian optimization algorithms, our method can obtain optimal parameters more efficiently while ensuring safety.
☆ Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation
Learned language-conditioned robot policies often struggle to effectively adapt to new real-world tasks even when pre-trained across a diverse set of instructions. We propose a novel approach for few-shot adaptation to unseen tasks that exploits the semantic understanding of task decomposition provided by vision-language models (VLMs). Our method, Policy Adaptation via Language Optimization (PALO), combines a handful of demonstrations of a task with proposed language decompositions sampled from a VLM to quickly enable rapid nonparametric adaptation, avoiding the need for a larger fine-tuning dataset. We evaluate PALO on extensive real-world experiments consisting of challenging unseen, long-horizon robot manipulation tasks. We find that PALO is able of consistently complete long-horizon, multi-tier tasks in the real world, outperforming state of the art pre-trained generalist policies, and methods that have access to the same demonstrations.
comment: 27 pages, 14 figures
☆ RMMI: Enhanced Obstacle Avoidance for Reactive Mobile Manipulation using an Implicit Neural Map
We introduce RMMI, a novel reactive control framework for mobile manipulators operating in complex, static environments. Our approach leverages a neural Signed Distance Field (SDF) to model intricate environment details and incorporates this representation as inequality constraints within a Quadratic Program (QP) to coordinate robot joint and base motion. A key contribution is the introduction of an active collision avoidance cost term that maximises the total robot distance to obstacles during the motion. We first evaluate our approach in a simulated reaching task, outperforming previous methods that rely on representing both the robot and the scene as a set of primitive geometries. Compared with the baseline, we improved the task success rate by 25% in total, which includes increases of 10% by using the active collision cost. We also demonstrate our approach on a real-world platform, showing its effectiveness in reaching target poses in cluttered and confined spaces using environment models built directly from sensor data. For additional details and experiment videos, visit https://rmmi.github.io/.
comment: 8 pages, 6 figures, Paper under review
☆ FlowRetrieval: Flow-Guided Data Retrieval for Few-Shot Imitation Learning
Few-shot imitation learning relies on only a small amount of task-specific demonstrations to efficiently adapt a policy for a given downstream tasks. Retrieval-based methods come with a promise of retrieving relevant past experiences to augment this target data when learning policies. However, existing data retrieval methods fall under two extremes: they either rely on the existence of exact behaviors with visually similar scenes in the prior data, which is impractical to assume; or they retrieve based on semantic similarity of high-level language descriptions of the task, which might not be that informative about the shared low-level behaviors or motions across tasks that is often a more important factor for retrieving relevant data for policy learning. In this work, we investigate how we can leverage motion similarity in the vast amount of cross-task data to improve few-shot imitation learning of the target task. Our key insight is that motion-similar data carries rich information about the effects of actions and object interactions that can be leveraged during few-shot adaptation. We propose FlowRetrieval, an approach that leverages optical flow representations for both extracting similar motions to target tasks from prior data, and for guiding learning of a policy that can maximally benefit from such data. Our results show FlowRetrieval significantly outperforms prior methods across simulated and real-world domains, achieving on average 27% higher success rate than the best retrieval-based prior method. In the Pen-in-Cup task with a real Franka Emika robot, FlowRetrieval achieves 3.7x the performance of the baseline imitation learning technique that learns from all prior and target data. Website: https://flow-retrieval.github.io
☆ Autonomous Image-to-Grasp Robotic Suturing Using Reliability-Driven Suture Thread Reconstruction RAL
Automating suturing during robotically-assisted surgery reduces the burden on the operating surgeon, enabling them to focus on making higher-level decisions rather than fatiguing themselves in the numerous intricacies of a surgical procedure. Accurate suture thread reconstruction and grasping are vital prerequisites for suturing, particularly for avoiding entanglement with surgical tools and performing complex thread manipulation. However, such methods must be robust to heavy perceptual degradation resulting from heavy noise and thread feature sparsity from endoscopic images. We develop a reconstruction algorithm that utilizes quadratic programming optimization to fit smooth splines to thread observations, satisfying reliability bounds estimated from measured observation noise. Additionally, we craft a grasping policy that generates gripper trajectories that maximize the probability of a successful grasp. Our full image-to-grasp pipeline is rigorously evaluated with over 400 grasping trials, exhibiting state-of-the-art accuracy. We show that this strategy can be applied to the various techniques in autonomous suture needle manipulation to achieve autonomous surgery in a generalizable way.
comment: 8 pages, 6 figures, Submitted to RAL
☆ Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search
The rapid deployment of robotics technologies requires dedicated optimization algorithms to manage large fleets of autonomous agents. This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations. The model maximizes throughput, while managing human workload at the workstations and congestion in the facility. We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation. The algorithm relies on an offline machine learning procedure to predict objective improvements based on subproblem features, and an online optimization model to generate a new subproblem at each iteration. In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches. In particular, our solution enhances the utilization of robotic fleets by coordinating robotic tasks for human operators to pick multiple items at once, and by coordinating robotic routes to avoid congestion in the facility.
☆ Learning Multi-agent Multi-machine Tending by Mobile Robots
Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborative robots can tackle that can also highly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibility and scalability. In this work, we introduce a multi-agent multi-machine tending learning framework by mobile robots based on Multi-agent Reinforcement Learning (MARL) techniques with the design of a suitable observation and reward. Moreover, an attention-based encoding mechanism is developed and integrated into Multi-agent Proximal Policy Optimization (MAPPO) algorithm to boost its performance for machine tending scenarios. Our model (AB-MAPPO) outperformed MAPPO in this new challenging scenario in terms of task success, safety, and resources utilization. Furthermore, we provided an extensive ablation study to support our various design decisions.
comment: 7 pages, 4 figures
☆ CalTag: Robust calibration of mmWave Radar and LiDAR using backscatter tags
The rise of automation in robotics necessitates the use of high-quality perception systems, often through the use of multiple sensors. A crucial aspect of a successfully deployed multi-sensor systems is the calibration with a known object typically named fiducial. In this work, we propose a novel fiducial system for millimeter wave radars, termed as \name. \name addresses the limitations of traditional corner reflector-based calibration methods in extremely cluttered environments. \name leverages millimeter wave backscatter technology to achieve more reliable calibration than corner reflectors, enhancing the overall performance of multi-sensor perception systems. We compare the performance in several real-world environments and show the improvement achieved by using \name as the radar fiducial over a corner reflector.
☆ Measuring Transparency in Intelligent Robots
As robots become increasingly integrated into our daily lives, the need to make them transparent has never been more critical. Yet, despite its importance in human-robot interaction, a standardized measure of robot transparency has been missing until now. This paper addresses this gap by presenting the first comprehensive scale to measure perceived transparency in robotic systems, available in English, German, and Italian languages. Our approach conceptualizes transparency as a multidimensional construct, encompassing explainability, legibility, predictability, and meta-understanding. The proposed scale was a product of a rigorous three-stage process involving 1,223 participants. Firstly, we generated the items of our scale, secondly, we conducted an exploratory factor analysis, and thirdly, a confirmatory factor analysis served to validate the factor structure of the newly developed TOROS scale. The final scale encompasses 26 items and comprises three factors: Illegibility, Explainability, and Predictability. TOROS demonstrates high cross-linguistic reliability, inter-factor correlation, model fit, internal consistency, and convergent validity across the three cross-national samples. This empirically validated tool enables the assessment of robot transparency and contributes to the theoretical understanding of this complex construct. By offering a standardized measure, we facilitate consistent and comparable research in human-robot interaction in which TOROS can serve as a benchmark.
☆ A framework for training and benchmarking algorithms that schedule robot tasks
Service robots work in a changing environment habited by exogenous agents like humans. In the service robotics domain, lots of uncertainties result from exogenous actions and inaccurate localisation of objects and the robot itself. This makes the robot task scheduling problem incredibly challenging. In this article, we propose a benchmarking system for systematically assessing the performance of algorithms scheduling robot tasks. The robot environment incorporates a room map, furniture, transportable objects, and moving humans; the system defines interfaces for the algorithms, tasks to be executed, and evaluation methods. The system consists of several tools, easing testing scenario generation for training AI-based scheduling algorithms and statistical testing. For benchmarking purposes, a set of scenarios is chosen, and the performance of several scheduling algorithms is assessed. The system source is published to serve the community for tuning and comparable assessment of robot task scheduling algorithms for service robots.
♻ ☆ No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery
What data or environments to use for training to improve downstream performance is a longstanding and very topical question in reinforcement learning. In particular, Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula enable agents to be robust to in- and out-of-distribution tasks. We ask to what extent these methods are themselves robust when applied to a novel setting, closely inspired by a real-world robotics problem. Surprisingly, we find that the state-of-the-art UED methods either do not improve upon the na\"{i}ve baseline of Domain Randomisation (DR), or require substantial hyperparameter tuning to do so. Our analysis shows that this is due to their underlying scoring functions failing to predict intuitive measures of ``learnability'', i.e., in finding the settings that the agent sometimes solves, but not always. Based on this, we instead directly train on levels with high learnability and find that this simple and intuitive approach outperforms UED methods and DR in several binary-outcome environments, including on our domain and the standard UED domain of Minigrid. We further introduce a new adversarial evaluation procedure for directly measuring robustness, closely mirroring the conditional value at risk (CVaR). We open-source all our code and present visualisations of final policies here: https://github.com/amacrutherford/sampling-for-learnability.
♻ ☆ Stochastic Adaptive Estimation in Polynomial Curvature Shape State Space for Continuum Robots
In continuum robotics, real-time robust shape estimation is crucial for planning and control tasks that involve physical manipulation in complex environments. In this paper, we present a novel stochastic observer-based shape estimation framework designed specifically for continuum robots. The shape state space is uniquely represented by the modal coefficients of a polynomial, enabled by leveraging polynomial curvature kinematics to describe the curvature distribution along the arclength. Our framework processes noisy measurements from limited discrete position, orientation, or pose sensors to estimate the shape state robustly. We derive a novel noise-weighted observability matrix, providing a detailed assessment of observability variations under diverse sensor configurations. To overcome the limitations of a single model, our observer employs the Interacting Multiple Model (IMM) method, coupled with Extended Kalman Filters (EKFs), to mix polynomial curvature models of different orders. The IMM approach, rooted in Markov processes, effectively manages multiple model scenarios by dynamically adapting to different polynomial orders based on real-time model probabilities. This adaptability is key to ensuring robust shape estimation of the robot's behaviors under various conditions. Our comprehensive analysis, supported by both simulation studies and experimental validations, confirms the robustness and accuracy of our proposed methods.
comment: 20 pages, submitted to IEEE Transactions on Robotics, under review
♻ ☆ Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
Large-scale endeavors like and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 7 real-world and 14 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe Manipulate-Anything can be a scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Project page: https://robot-ma.github.io/.
comment: Project page: https://robot-ma.github.io/. All supplementary material, prompts and code can be found on the project page
♻ ☆ Gameplay Filters: Robust Zero-Shot Safety through Adversarial Imagination
Despite the impressive recent advances in learning-based robot control, ensuring robustness to out-of-distribution conditions remains an open challenge. Safety filters can, in principle, keep arbitrary control policies from incurring catastrophic failures by overriding unsafe actions, but existing solutions for complex (e.g., legged) robot dynamics do not span the full motion envelope and instead rely on local, reduced-order models. These filters tend to overly restrict agility and can still fail when perturbed away from nominal conditions. This paper presents the gameplay filter, a new class of predictive safety filter that continually plays out hypothetical matches between its simulation-trained safety strategy and a virtual adversary co-trained to invoke worst-case events and sim-to-real error, and precludes actions that would cause it to fail down the line. We demonstrate the scalability and robustness of the approach with a first-of-its-kind full-order safety filter for (36-D) quadrupedal dynamics. Physical experiments on two different quadruped platforms demonstrate the superior zero-shot effectiveness of the gameplay filter under large perturbations such as tugging and unmodeled terrain.
♻ ☆ Trajectory Forecasting through Low-Rank Adaptation of Discrete Latent Codes
Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.
comment: 15 pages, 3 figures, 5 tables
♻ ☆ In-Hand Following of Deformable Linear Objects Using Dexterous Fingers with Tactile Sensing IROS 2024
Most research on deformable linear object (DLO) manipulation assumes rigid grasping. However, beyond rigid grasping and re-grasping, in-hand following is also an essential skill that humans use to dexterously manipulate DLOs, which requires continuously changing the grasp point by in-hand sliding while holding the DLO to prevent it from falling. Achieving such a skill is very challenging for robots without using specially designed but not versatile end-effectors. Previous works have attempted using generic parallel grippers, but their robustness is unsatisfactory owing to the conflict between following and holding, which is hard to balance with a one-degree-of-freedom gripper. In this work, inspired by how humans use fingers to follow DLOs, we explore the usage of a generic dexterous hand with tactile sensing to imitate human skills and achieve robust in-hand DLO following. To enable the hardware system to function in the real world, we develop a framework that includes Cartesian-space arm-hand control, tactile-based in-hand 3-D DLO pose estimation, and task-specific motion design. Experimental results demonstrate the significant superiority of our method over using parallel grippers, as well as its great robustness, generalizability, and efficiency.
comment: IROS 2024 Oral. Project website: https://mingrui-yu.github.io/DLO_following/
♻ ☆ Asynchronous Spatial-Temporal Allocation for Trajectory Planning of Heterogeneous Multi-Agent Systems
To plan the trajectories of a large-scale heterogeneous swarm, sequentially or synchronously distributed methods usually become intractable due to the lack of global clock synchronization. To this end, we provide a novel asynchronous spatial-temporal allocation method. Specifically, between a pair of agents, the allocation is proposed to determine their corresponding derivable time-stamped space and can be updated in an asynchronous way, by inserting a waiting duration between two consecutive replanning steps. Via theoretical analysis, the inter-agent collision is proved to be avoided and the allocation ensures timely updates. Comprehensive simulations and comparisons with five baselines validate the effectiveness of the proposed method and illustrate its improvement in completion time and moving distance. Finally, hardware experiments are carried out, where $8$ heterogeneous unmanned ground vehicles with onboard computation navigate in cluttered scenarios with high agility.
comment: 8 pages
♻ ☆ CafkNet: GNN-Empowered Forward Kinematic Modeling for Cable-Driven Parallel Robots
Cable-driven parallel robots (CDPRs) have gained significant attention due to their promising advantages. When deploying CDPRs in practice, the kinematic modeling is a key question. Unlike serial robots, CDPRs have a simple inverse kinematics problem but a complex forward kinematics (FK) issue. So, the development of accurate and efficient FK solvers has been a prominent research focus in CDPR applications. By observing the topology within CDPRs, in this paper, we propose a graph-based representation to model CDPRs and introduce CafkNet, a fast and general FK solving method, leveraging Graph Neural Network (GNN) to learn the topological structure and yield the real FK solutions with superior generality, high accuracy, and low time cost. CafkNet is extensively tested on 3D and 2D CDPRs in different configurations, both in simulators and real scenarios. The results demonstrate its ability to learn CDPRs' internal topology and accurately solve the FK problem. Then, the zero-shot generalization from one configuration to another is validated. Also, the sim2real gap can be bridged by CafkNet using both simulation and real-world data. To the best of our knowledge, it is the first study that employs the GNN to solve the FK problem for CDPRs.
comment: To the best of our knowledge, it is the first study to employ the GNN for the FK problem of CDPRs. The first two authors have equal contributions. Videos and codes are available at https://sites.google.com/view/cafknet/site
♻ ☆ Neuromorphic force-control in an industrial task: validating energy and latency benefits IROS 2024
As robots become smarter and more ubiquitous, optimizing the power consumption of intelligent compute becomes imperative towards ensuring the sustainability of technological advancements. Neuromorphic computing hardware makes use of biologically inspired neural architectures to achieve energy and latency improvements compared to conventional von Neumann computing architecture. Applying these benefits to robots has been demonstrated in several works in the field of neurorobotics, typically on relatively simple control tasks. Here, we introduce an example of neuromorphic computing applied to the real-world industrial task of object insertion. We trained a spiking neural network (SNN) to perform force-torque feedback control using a reinforcement learning approach in simulation. We then ported the SNN to the Intel neuromorphic research chip Loihi interfaced with a KUKA robotic arm. At inference time we show latency competitive with current CPU/GPU architectures, and one order of magnitude less energy usage in comparison to state-of-the-art low-energy edge-hardware. We offer this example as a proof of concept implementation of a neuromoprhic controller in real-world robotic setting, highlighting the benefits of neuromorphic hardware for the development of intelligent controllers for robots.
comment: Accepted at IROS 2024
♻ ☆ Learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects
Reorienting diverse objects with a multi-fingered hand is a challenging task. Current methods in robotic in-hand manipulation are either object-specific or require permanent supervision of the object state from visual sensors. This is far from human capabilities and from what is needed in real-world applications. In this work, we address this gap by training shape-conditioned agents to reorient diverse objects in hand, relying purely on tactile feedback (via torque and position measurements of the fingers' joints). To achieve this, we propose a learning framework that exploits shape information in a reinforcement learning policy and a learned state estimator. We find that representing 3D shapes by vectors from a fixed set of basis points to the shape's surface, transformed by its predicted 3D pose, is especially helpful for learning dexterous in-hand manipulation. In simulation and real-world experiments, we show the reorientation of many objects with high success rates, on par with state-of-the-art results obtained with specialized single-object agents. Moreover, we show generalization to novel objects, achieving success rates of $\sim$90% even for non-convex shapes.
♻ ☆ Toward An Analytic Theory of Intrinsic Robustness for Dexterous Grasping IROS 2024
Conventional approaches to grasp planning require perfect knowledge of an object's pose and geometry. Uncertainties in these quantities induce uncertainties in the quality of planned grasps, which can lead to failure. Classically, grasp robustness refers to the ability to resist external disturbances after grasping an object. In contrast, this work studies robustness to intrinsic sources of uncertainty like object pose or geometry affecting grasp planning before execution. To do so, we develop a novel analytic theory of grasping that reasons about this intrinsic robustness by characterizing the effect of friction cone uncertainty on a grasp's force closure status. We apply this result in two ways. First, we analyze the theoretical guarantees on intrinsic robustness of two grasp metrics in the literature, the classical Ferrari-Canny metric and more recent min-weight metric. We validate these results with hardware trials that compare grasps synthesized with and without robustness guarantees, showing a clear improvement in success rates. Second, we use our theory to develop a novel analytic notion of probabilistic force closure, which we show can generate unique, uncertainty-aware grasps in simulation.
comment: Accepted to IROS 2024
♻ ☆ DuoSpaceNet: Leveraging Both Bird's-Eye-View and Perspective View Representations for 3D Object Detection
Recent advances in multi-view camera-only 3D object detection either rely on an accurate reconstruction of bird's-eye-view (BEV) 3D features or on traditional 2D perspective view (PV) image features. While both have their own pros and cons, few have found a way to stitch them together in order to benefit from "the best of both worlds". To this end, we explore a duo space (i.e., BEV and PV) 3D perception framework, in conjunction with some useful duo space fusion strategies that allow effective aggregation of the two feature representations. To the best of our knowledge, our proposed method, DuoSpaceNet, is the first to leverage two distinct feature spaces and achieves the state-of-the-art 3D object detection and BEV map segmentation results on nuScenes dataset.
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ Survey of Simulators for Aerial Robots
Uncrewed Aerial Vehicle (UAV) research faces challenges with safety, scalability, costs, and ecological impact when conducting hardware testing. High-fidelity simulators offer a vital solution by replicating real-world conditions to enable the development and evaluation of novel perception and control algorithms. However, the large number of available simulators poses a significant challenge for researchers to determine which simulator best suits their specific use-case, based on each simulator's limitations and customization readiness. In this paper we present an overview of 44 UAV simulators, including in-depth, systematic comparisons for 14 of the simulators. Additionally, we present a set of decision factors for selection of simulators, aiming to enhance the efficiency and safety of research endeavors.
comment: \copyright 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Computer Vision 145
☆ 3D Whole-body Grasp Synthesis with Directional Controllability
Synthesizing 3D whole-bodies that realistically grasp objects is useful for animation, mixed reality, and robotics. This is challenging, because the hands and body need to look natural w.r.t. each other, the grasped object, as well as the local scene (i.e., a receptacle supporting the object). Only recent work tackles this, with a divide-and-conquer approach; it first generates a "guiding" right-hand grasp, and then searches for bodies that match this. However, the guiding-hand synthesis lacks controllability and receptacle awareness, so it likely has an implausible direction (i.e., a body can't match this without penetrating the receptacle) and needs corrections through major post-processing. Moreover, the body search needs exhaustive sampling and is expensive. These are strong limitations. We tackle these with a novel method called CWGrasp. Our key idea is that performing geometry-based reasoning "early on," instead of "too late," provides rich "control" signals for inference. To this end, CWGrasp first samples a plausible reaching-direction vector (used later for both the arm and hand) from a probabilistic model built via raycasting from the object and collision checking. Then, it generates a reaching body with a desired arm direction, as well as a "guiding" grasping hand with a desired palm direction that complies with the arm's one. Eventually, CWGrasp refines the body to match the "guiding" hand, while plausibly contacting the scene. Notably, generating already-compatible "parts" greatly simplifies the "whole." Moreover, CWGrasp uniquely tackles both right- and left-hand grasps. We evaluate on the GRAB and ReplicaGrasp datasets. CWGrasp outperforms baselines, at lower runtime and budget, while all components help performance. Code and models will be released.
☆ SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners
We introduce SAM2Point, a preliminary exploration adapting Segment Anything Model 2 (SAM 2) for zero-shot and promptable 3D segmentation. SAM2Point interprets any 3D data as a series of multi-directional videos, and leverages SAM 2 for 3D-space segmentation, without further training or 2D-3D projection. Our framework supports various prompt types, including 3D points, boxes, and masks, and can generalize across diverse scenarios, such as 3D objects, indoor scenes, outdoor environments, and raw sparse LiDAR. Demonstrations on multiple 3D datasets, e.g., Objaverse, S3DIS, ScanNet, Semantic3D, and KITTI, highlight the robust generalization capabilities of SAM2Point. To our best knowledge, we present the most faithful implementation of SAM in 3D, which may serve as a starting point for future research in promptable 3D segmentation. Online Demo: https://huggingface.co/spaces/ZiyuG/SAM2Point . Code: https://github.com/ZiyuGuo99/SAM2Point .
comment: Work in progress. Online Demo: https://huggingface.co/spaces/ZiyuG/SAM2Point . Code: https://github.com/ZiyuGuo99/SAM2Point
☆ PromptSmooth: Certifying Robustness of Medical Vision-Language Models via Prompt Learning MICCAI 2024
Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/promptsmooth.
comment: Accepted to MICCAI 2024
☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
☆ CSGO: Content-Style Composition in Text-to-Image Generation
The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: \url{https://csgo-gen.github.io/}.
☆ UV-free Texture Generation with Denoising and Geodesic Heat Diffusions
Seams, distortions, wasted UV space, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure long-distance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusion-based self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.
OmniRe: Omni Urban Scene Reconstruction
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs. Recent methods for modeling driving sequences using neural radiance fields or Gaussian Splatting have demonstrated the potential of reconstructing challenging dynamic scenes, but often overlook pedestrians and other non-vehicle dynamic actors, hindering a complete pipeline for dynamic urban scene reconstruction. To that end, we propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log. OmniRe builds dynamic neural scene graphs based on Gaussian representations and constructs multiple local canonical spaces that model various dynamic actors, including vehicles, pedestrians, and cyclists, among many others. This capability is unmatched by existing methods. OmniRe allows us to holistically reconstruct different objects present in the scene, subsequently enabling the simulation of reconstructed scenarios with all actors participating in real-time (~60Hz). Extensive evaluations on the Waymo dataset show that our approach outperforms prior state-of-the-art methods quantitatively and qualitatively by a large margin. We believe our work fills a critical gap in driving reconstruction.
comment: See the project page for code, video results and demos: https://ziyc.github.io/omnire/
☆ Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks
Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: \url{https://github.com/Visual-AI/Dissect-OOD-OSR}
comment: Accepted to IJCV, preprint version
☆ VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation
A well-known dilemma in large vision-language models (e.g., GPT-4, LLaVA) is that while increasing the number of vision tokens generally enhances visual understanding, it also significantly raises memory and computational costs, especially in long-term, dense video frame streaming scenarios. Although learnable approaches like Q-Former and Perceiver Resampler have been developed to reduce the vision token burden, they overlook the context causally modeled by LLMs (i.e., key-value cache), potentially leading to missed visual cues when addressing user queries. In this paper, we introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens. Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video. Specifically, for each transformer layer, we learn to skip the computation for a high proportion (e.g., 80\%) of vision tokens, passing them directly to the next layer. This approach significantly enhances model efficiency, achieving approximately \textasciitilde42\% time and \textasciitilde30\% memory savings for the entire training. Moreover, our method reduces the computation in the context and avoid decreasing the vision tokens, thus preserving or even improving performance compared to the vanilla model. We conduct extensive experiments to demonstrate the effectiveness of VideoLLM-MoD, showing its state-of-the-art results on multiple benchmarks, including narration, forecasting, and summarization tasks in COIN, Ego4D, and Ego-Exo4D datasets.
☆ Prediction-Feedback DETR for Temporal Action Detection
Temporal Action Detection (TAD) is fundamental yet challenging for real-world video applications. Leveraging the unique benefits of transformers, various DETR-based approaches have been adopted in TAD. However, it has recently been identified that the attention collapse in self-attention causes the performance degradation of DETR for TAD. Building upon previous research, this paper newly addresses the attention collapse problem in cross-attention within DETR-based TAD methods. Moreover, our findings reveal that cross-attention exhibits patterns distinct from predictions, indicating a short-cut phenomenon. To resolve this, we propose a new framework, Prediction-Feedback DETR (Pred-DETR), which utilizes predictions to restore the collapse and align the cross- and self-attention with predictions. Specifically, we devise novel prediction-feedback objectives using guidance from the relations of the predictions. As a result, Pred-DETR significantly alleviates the collapse and achieves state-of-the-art performance among DETR-based methods on various challenging benchmarks including THUMOS14, ActivityNet-v1.3, HACS, and FineAction.
☆ H-SGANet: Hybrid Sparse Graph Attention Network for Deformable Medical Image Registration
The integration of Convolutional Neural Network (ConvNet) and Transformer has emerged as a strong candidate for image registration, leveraging the strengths of both models and a large parameter space. However, this hybrid model, treating brain MRI volumes as grid or sequence structures, faces challenges in accurately representing anatomical connectivity, diverse brain regions, and vital connections contributing to the brain's internal architecture. Concerns also arise regarding the computational expense and GPU memory usage associated with this model. To tackle these issues, a lightweight hybrid sparse graph attention network (H-SGANet) has been developed. This network incorporates a central mechanism, Sparse Graph Attention (SGA), based on a Vision Graph Neural Network (ViG) with predetermined anatomical connections. The SGA module expands the model's receptive field and seamlessly integrates into the network. To further amplify the advantages of the hybrid network, the Separable Self-Attention (SSA) is employed as an enhanced token mixer, integrated with depth-wise convolution to constitute SSAFormer. This strategic integration is designed to more effectively extract long-range dependencies. As a hybrid ConvNet-ViG-Transformer model, H-SGANet offers threefold benefits for volumetric medical image registration. It optimizes fixed and moving images concurrently through a hybrid feature fusion layer and an end-to-end learning framework. Compared to VoxelMorph, a model with a similar parameter count, H-SGANet demonstrates significant performance enhancements of 3.5% and 1.5% in Dice score on the OASIS dataset and LPBA40 dataset, respectively.
☆ One-Shot Learning Meets Depth Diffusion in Multi-Object Videos
Creating editable videos that depict complex interactions between multiple objects in various artistic styles has long been a challenging task in filmmaking. Progress is often hampered by the scarcity of data sets that contain paired text descriptions and corresponding videos that showcase these interactions. This paper introduces a novel depth-conditioning approach that significantly advances this field by enabling the generation of coherent and diverse videos from just a single text-video pair using a pre-trained depth-aware Text-to-Image (T2I) model. Our method fine-tunes the pre-trained model to capture continuous motion by employing custom-designed spatial and temporal attention mechanisms. During inference, we use the DDIM inversion to provide structural guidance for video generation. This innovative technique allows for continuously controllable depth in videos, facilitating the generation of multiobject interactions while maintaining the concept generation and compositional strengths of the original T2I model across various artistic styles, such as photorealism, animation, and impressionism.
☆ GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models
Recent progress in Text-to-Image (T2I) generative models has enabled high-quality image generation. As performance and accessibility increase, these models are gaining significant attraction and popularity: ensuring their fairness and safety is a priority to prevent the dissemination and perpetuation of biases. However, existing studies in bias detection focus on closed sets of predefined biases (e.g., gender, ethnicity). In this paper, we propose a general framework to identify, quantify, and explain biases in an open set setting, i.e. without requiring a predefined set. This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions. Next, these captions are used by the target generative model for generating a set of images. Finally, Vision Question Answering (VQA) is leveraged for bias evaluation. We show two variations of this framework: OpenBias and GradBias. OpenBias detects and quantifies biases, while GradBias determines the contribution of individual prompt words on biases. OpenBias effectively detects both well-known and novel biases related to people, objects, and animals and highly aligns with existing closed-set bias detection methods and human judgment. GradBias shows that neutral words can significantly influence biases and it outperforms several baselines, including state-of-the-art foundation models. Code available here: https://github.com/Moreno98/GradBias.
comment: Under review. Code: https://github.com/Moreno98/GradBias
☆ Generic Objects as Pose Probes for Few-Shot View Synthesis
Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction, while they require a substantial number of posed images as inputs. COLMAP is frequently employed for preprocessing to estimate poses, while it necessitates a large number of feature matches to operate effectively, and it struggles with scenes characterized by sparse features, large baselines between images, or a limited number of input images. We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images. Traditional methods often use calibration boards but they are not common in images. We propose a novel idea of utilizing everyday objects, commonly found in both images and real life, as "pose probes". The probe object is automatically segmented by SAM, whose shape is initialized from a cube. We apply a dual-branch volume rendering optimization (object NeRF and scene NeRF) to constrain the pose optimization and jointly refine the geometry. Specifically, object poses of two views are first estimated by PnP matching in an SDF representation, which serves as initial poses. PnP matching, requiring only a few features, is suitable for feature-sparse scenes. Additional views are incrementally incorporated to refine poses from preceding views. In experiments, PoseProbe achieves state-of-the-art performance in both pose estimation and novel view synthesis across multiple datasets. We demonstrate its effectiveness, particularly in few-view and large-baseline scenes where COLMAP struggles. In ablations, using different objects in a scene yields comparable performance.
☆ PartFormer: Awakening Latent Diverse Representation from Vision Transformer for Object Re-Identification
Extracting robust feature representation is critical for object re-identification to accurately identify objects across non-overlapping cameras. Although having a strong representation ability, the Vision Transformer (ViT) tends to overfit on most distinct regions of training data, limiting its generalizability and attention to holistic object features. Meanwhile, due to the structural difference between CNN and ViT, fine-grained strategies that effectively address this issue in CNN do not continue to be successful in ViT. To address this issue, by observing the latent diverse representation hidden behind the multi-head attention, we present PartFormer, an innovative adaptation of ViT designed to overcome the granularity limitations in object Re-ID tasks. The PartFormer integrates a Head Disentangling Block (HDB) that awakens the diverse representation of multi-head self-attention without the typical loss of feature richness induced by concatenation and FFN layers post-attention. To avoid the homogenization of attention heads and promote robust part-based feature learning, two head diversity constraints are imposed: attention diversity constraint and correlation diversity constraint. These constraints enable the model to exploit diverse and discriminative feature representations from different attention heads. Comprehensive experiments on various object Re-ID benchmarks demonstrate the superiority of the PartFormer. Specifically, our framework significantly outperforms state-of-the-art by 2.4\% mAP scores on the most challenging MSMT17 dataset.
Space3D-Bench: Spatial 3D Question Answering Benchmark
Answering questions about the spatial properties of the environment poses challenges for existing language and vision foundation models due to a lack of understanding of the 3D world notably in terms of relationships between objects. To push the field forward, multiple 3D Q&A datasets were proposed which, overall, provide a variety of questions, but they individually focus on particular aspects of 3D reasoning or are limited in terms of data modalities. To address this, we present Space3D-Bench - a collection of 1000 general spatial questions and answers related to scenes of the Replica dataset which offers a variety of data modalities: point clouds, posed RGB-D images, navigation meshes and 3D object detections. To ensure that the questions cover a wide range of 3D objectives, we propose an indoor spatial questions taxonomy inspired by geographic information systems and use it to balance the dataset accordingly. Moreover, we provide an assessment system that grades natural language responses based on predefined ground-truth answers by leveraging a Vision Language Model's comprehension of both text and images to compare the responses with ground-truth textual information or relevant visual data. Finally, we introduce a baseline called RAG3D-Chat integrating the world understanding of foundation models with rich context retrieval, achieving an accuracy of 67% on the proposed dataset.
☆ Eigen-Cluster VIS: Improving Weakly-supervised Video Instance Segmentation by Leveraging Spatio-temporal Consistency
The performance of Video Instance Segmentation (VIS) methods has improved significantly with the advent of transformer networks. However, these networks often face challenges in training due to the high annotation cost. To address this, unsupervised and weakly-supervised methods have been developed to reduce the dependency on annotations. This work introduces a novel weakly-supervised method called Eigen-cluster VIS that, without requiring any mask annotations, achieves competitive accuracy compared to other VIS approaches. This method is based on two key innovations: a Temporal Eigenvalue Loss (TEL) and a clip-level Quality Cluster Coefficient (QCC). The TEL ensures temporal coherence by leveraging the eigenvalues of the Laplacian matrix derived from graph adjacency matrices. By minimizing the mean absolute error (MAE) between the eigenvalues of adjacent frames, this loss function promotes smooth transitions and stable segmentation boundaries over time, reducing temporal discontinuities and improving overall segmentation quality. The QCC employs the K-means method to ensure the quality of spatio-temporal clusters without relying on ground truth masks. Using the Davies-Bouldin score, the QCC provides an unsupervised measure of feature discrimination, allowing the model to self-evaluate and adapt to varying object distributions, enhancing robustness during the testing phase. These enhancements are computationally efficient and straightforward, offering significant performance gains without additional annotated data. The proposed Eigen-Cluster VIS method is evaluated on the YouTube-VIS 2019/2021 and OVIS datasets, demonstrating that it effectively narrows the performance gap between the fully-supervised and weakly-supervised VIS approaches. The code is available on: https://github.com/farnooshar/EigenClusterVIS
comment: 12 pages, 6 Figures, 5 tabels
☆ DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving
The advancement of autonomous driving technologies necessitates increasingly sophisticated methods for understanding and predicting real-world scenarios. Vision language models (VLMs) are emerging as revolutionary tools with significant potential to influence autonomous driving. In this paper, we propose the DriveGenVLM framework to generate driving videos and use VLMs to understand them. To achieve this, we employ a video generation framework grounded in denoising diffusion probabilistic models (DDPM) aimed at predicting real-world video sequences. We then explore the adequacy of our generated videos for use in VLMs by employing a pre-trained model known as Efficient In-context Learning on Egocentric Videos (EILEV). The diffusion model is trained with the Waymo open dataset and evaluated using the Fr\'echet Video Distance (FVD) score to ensure the quality and realism of the generated videos. Corresponding narrations are provided by EILEV for these generated videos, which may be beneficial in the autonomous driving domain. These narrations can enhance traffic scene understanding, aid in navigation, and improve planning capabilities. The integration of video generation with VLMs in the DriveGenVLM framework represents a significant step forward in leveraging advanced AI models to address complex challenges in autonomous driving.
☆ SODAWideNet++: Combining Attention and Convolutions for Salient Object Detection ICPR 2024
Salient Object Detection (SOD) has traditionally relied on feature refinement modules that utilize the features of an ImageNet pre-trained backbone. However, this approach limits the possibility of pre-training the entire network because of the distinct nature of SOD and image classification. Additionally, the architecture of these backbones originally built for Image classification is sub-optimal for a dense prediction task like SOD. To address these issues, we propose a novel encoder-decoder-style neural network called SODAWideNet++ that is designed explicitly for SOD. Inspired by the vision transformers ability to attain a global receptive field from the initial stages, we introduce the Attention Guided Long Range Feature Extraction (AGLRFE) module, which combines large dilated convolutions and self-attention. Specifically, we use attention features to guide long-range information extracted by multiple dilated convolutions, thus taking advantage of the inductive biases of a convolution operation and the input dependency brought by self-attention. In contrast to the current paradigm of ImageNet pre-training, we modify 118K annotated images from the COCO semantic segmentation dataset by binarizing the annotations to pre-train the proposed model end-to-end. Further, we supervise the background predictions along with the foreground to push our model to generate accurate saliency predictions. SODAWideNet++ performs competitively on five different datasets while only containing 35% of the trainable parameters compared to the state-of-the-art models. The code and pre-computed saliency maps are provided at https://github.com/VimsLab/SODAWideNetPlusPlus.
comment: Accepted at ICPR 2024
☆ 3D Pose-Based Temporal Action Segmentation for Figure Skating: A Fine-Grained and Jump Procedure-Aware Annotation Approach
Understanding human actions from videos is essential in many domains, including sports. In figure skating, technical judgments are performed by watching skaters' 3D movements, and its part of the judging procedure can be regarded as a Temporal Action Segmentation (TAS) task. TAS tasks in figure skating that automatically assign temporal semantics to video are actively researched. However, there is a lack of datasets and effective methods for TAS tasks requiring 3D pose data. In this study, we first created the FS-Jump3D dataset of complex and dynamic figure skating jumps using optical markerless motion capture. We also propose a new fine-grained figure skating jump TAS dataset annotation method with which TAS models can learn jump procedures. In the experimental results, we validated the usefulness of 3D pose features as input and the fine-grained dataset for the TAS model in figure skating. FS-Jump3D Dataset is available at https://github.com/ryota-skating/FS-Jump3D.
comment: 10 pages, 7th ACM International Workshop on Multimedia Content Analysis in Sports
☆ Turbulence Strength $C_n^2$ Estimation from Video using Physics-based Deep Learning
Images captured from a long distance suffer from dynamic image distortion due to turbulent flow of air cells with random temperatures, and thus refractive indices. This phenomenon, known as image dancing, is commonly characterized by its refractive-index structure constant $C_n^2$ as a measure of the turbulence strength. For many applications such as atmospheric forecast model, long-range/astronomy imaging, and aviation safety, optical communication technology, $C_n^2$ estimation is critical for accurately sensing the turbulent environment. Previous methods for $C_n^2$ estimation include estimation from meteorological data (temperature, relative humidity, wind shear, etc.) for single-point measurements, two-ended pathlength measurements from optical scintillometer for path-averaged $C_n^2$, and more recently estimating $C_n^2$ from passive video cameras for low cost and hardware complexity. In this paper, we present a comparative analysis of classical image gradient methods for $C_n^2$ estimation and modern deep learning-based methods leveraging convolutional neural networks. To enable this, we collect a dataset of video capture along with reference scintillometer measurements for ground truth, and we release this unique dataset to the scientific community. We observe that deep learning methods can achieve higher accuracy when trained on similar data, but suffer from generalization errors to other, unseen imagery as compared to classical methods. To overcome this trade-off, we present a novel physics-based network architecture that combines learned convolutional layers with a differentiable image gradient method that maintains high accuracy while being generalizable across image datasets.
comment: Code Available: https://github.com/Riponcs/Cn2Estimation
☆ Sparse Signal Reconstruction for Overdispersed Low-photon Count Biomedical Imaging Using $\ell_p$ Total Variation
The negative binomial model, which generalizes the Poisson distribution model, can be found in applications involving low-photon signal recovery, including medical imaging. Recent studies have explored several regularization terms for the negative binomial model, such as the $\ell_p$ quasi-norm with $0 < p < 1$, $\ell_1$ norm, and the total variation (TV) quasi-seminorm for promoting sparsity in signal recovery. These penalty terms have been shown to improve image reconstruction outcomes. In this paper, we investigate the $\ell_p$ quasi-seminorm, both isotropic and anisotropic $\ell_p$ TV quasi-seminorms, within the framework of the negative binomial statistical model. This problem can be formulated as an optimization problem, which we solve using a gradient-based approach. We present comparisons between the negative binomial and Poisson statistical models using the $\ell_p$ TV quasi-seminorm as well as common penalty terms. Our experimental results highlight the efficacy of the proposed method.
comment: 5 pages, Accepted by the IEEE International Symposium on Biomedical Imaging (ISBI)
☆ Towards Infusing Auxiliary Knowledge for Distracted Driver Detection KDD
Distracted driving is a leading cause of road accidents globally. Identification of distracted driving involves reliably detecting and classifying various forms of driver distraction (e.g., texting, eating, or using in-car devices) from in-vehicle camera feeds to enhance road safety. This task is challenging due to the need for robust models that can generalize to a diverse set of driver behaviors without requiring extensive annotated datasets. In this paper, we propose KiD3, a novel method for distracted driver detection (DDD) by infusing auxiliary knowledge about semantic relations between entities in a scene and the structural configuration of the driver's pose. Specifically, we construct a unified framework that integrates the scene graphs, and driver pose information with the visual cues in video frames to create a holistic representation of the driver's actions.Our results indicate that KiD3 achieves a 13.64% accuracy improvement over the vision-only baseline by incorporating such auxiliary knowledge with visual information.
comment: Accepted at KiL 2024: Workshop on Knowledge-infused Learning co-located with 30th ACM KDD Conference
☆ FastForensics: Efficient Two-Stream Design for Real-Time Image Manipulation Detection BMVC 2024
With the rise in popularity of portable devices, the spread of falsified media on social platforms has become rampant. This necessitates the timely identification of authentic content. However, most advanced detection methods are computationally heavy, hindering their real-time application. In this paper, we describe an efficient two-stream architecture for real-time image manipulation detection. Our method consists of two-stream branches targeting the cognitive and inspective perspectives. In the cognitive branch, we propose efficient wavelet-guided Transformer blocks to capture the global manipulation traces related to frequency. This block contains an interactive wavelet-guided self-attention module that integrates wavelet transformation with efficient attention design, interacting with the knowledge from the inspective branch. The inspective branch consists of simple convolutions that capture fine-grained traces and interact bidirectionally with Transformer blocks to provide mutual support. Our method is lightweight ($\sim$ 8M) but achieves competitive performance compared to many other counterparts, demonstrating its efficacy in image manipulation detection and its potential for portable integration.
comment: BMVC 2024
☆ MST-KD: Multiple Specialized Teachers Knowledge Distillation for Fair Face Recognition ECCV 2024
As in school, one teacher to cover all subjects is insufficient to distill equally robust information to a student. Hence, each subject is taught by a highly specialised teacher. Following a similar philosophy, we propose a multiple specialized teacher framework to distill knowledge to a student network. In our approach, directed at face recognition use cases, we train four teachers on one specific ethnicity, leading to four highly specialized and biased teachers. Our strategy learns a project of these four teachers into a common space and distill that information to a student network. Our results highlighted increased performance and reduced bias for all our experiments. In addition, we further show that having biased/specialized teachers is crucial by showing that our approach achieves better results than when knowledge is distilled from four teachers trained on balanced datasets. Our approach represents a step forward to the understanding of the importance of ethnicity-specific features.
comment: Accepted at ECCV 2024 ABAW
☆ OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation ECCV2024
Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset.
comment: to be published in ECCV2024
☆ Spurfies: Sparse Surface Reconstruction using Local Geometry Priors
We introduce Spurfies, a novel method for sparse-view surface reconstruction that disentangles appearance and geometry information to utilize local geometry priors trained on synthetic data. Recent research heavily focuses on 3D reconstruction using dense multi-view setups, typically requiring hundreds of images. However, these methods often struggle with few-view scenarios. Existing sparse-view reconstruction techniques often rely on multi-view stereo networks that need to learn joint priors for geometry and appearance from a large amount of data. In contrast, we introduce a neural point representation that disentangles geometry and appearance to train a local geometry prior using a subset of the synthetic ShapeNet dataset only. During inference, we utilize this surface prior as additional constraint for surface and appearance reconstruction from sparse input views via differentiable volume rendering, restricting the space of possible solutions. We validate the effectiveness of our method on the DTU dataset and demonstrate that it outperforms previous state of the art by 35% in surface quality while achieving competitive novel view synthesis quality. Moreover, in contrast to previous works, our method can be applied to larger, unbounded scenes, such as Mip-NeRF 360.
comment: https://geometric-rl.mpi-inf.mpg.de/spurfies/
☆ GRPose: Learning Graph Relations for Human Image Generation with Pose Priors
Recent methods using diffusion models have made significant progress in human image generation with various additional controls such as pose priors. However, existing approaches still struggle to generate high-quality images with consistent pose alignment, resulting in unsatisfactory outputs. In this paper, we propose a framework delving into the graph relations of pose priors to provide control information for human image generation. The main idea is to establish a graph topological structure between the pose priors and latent representation of diffusion models to capture the intrinsic associations between different pose parts. A Progressive Graph Integrator (PGI) is designed to learn the spatial relationships of the pose priors with the graph structure, adopting a hierarchical strategy within an Adapter to gradually propagate information across different pose parts. A pose perception loss is further introduced based on a pretrained pose estimation network to minimize the pose differences. Extensive qualitative and quantitative experiments conducted on the Human-Art and LAION-Human datasets demonstrate that our model achieves superior performance, with a 9.98% increase in pose average precision compared to the latest benchmark model. The code is released on *******.
comment: The code will be released at https://github.com/XiangchenYin/GRPose
Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment
Label-efficient segmentation aims to perform effective segmentation on input data using only sparse and limited ground-truth labels for training. This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely, while it is also essential for cost-effective segmentation on 2D images. Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels, and promising progress has been witnessed in both the 2D and 3D segmentation. However, existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data, which would result in significant discrepancies between generated pseudo-labels and current model predictions during training. We analyze that this can further confuse and affect the model learning process, which shows to be a shared problem in label-efficient learning across both 2D and 3D modalities. To address this issue, we propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions. More specifically, our method introduces an Entropy Regularization loss and a Distribution Alignment loss for label-efficient learning, resulting in an ERDA learning strategy. Interestingly, by using KL distance to formulate the distribution alignment loss, ERDA reduces to a deceptively simple cross-entropy-based loss which optimizes both the pseudo-label generation module and the segmentation model simultaneously. In addition, we innovate in the pseudo-label generation to make our ERDA consistently effective across both 2D and 3D data modalities for segmentation. Enjoying simplicity and more modality-agnostic pseudo-label generation, our method has shown outstanding performance in fully utilizing all unlabeled data points for training across ...
comment: Extended version of arXiv:2305.15832; Code at https://github.com/LiyaoTang/ERDA
☆ Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation ICML 2024
Character animation is a transformative field in computer graphics and vision, enabling dynamic and realistic video animations from static images. Despite advancements, maintaining appearance consistency in animations remains a challenge. Our approach addresses this by introducing a training-free framework that ensures the generated video sequence preserves the reference image's subtleties, such as physique and proportions, through a dual alignment strategy. We decouple skeletal and motion priors from pose information, enabling precise control over animation generation. Our method also improves pixel-level alignment for conditional control from the reference character, enhancing the temporal consistency and visual cohesion of animations. Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
comment: CVG@ICML 2024
☆ A Simple and Generalist Approach for Panoptic Segmentation
Generalist vision models aim for one and the same architecture for a variety of vision tasks. While such shared architecture may seem attractive, generalist models tend to be outperformed by their bespoken counterparts, especially in the case of panoptic segmentation. We address this problem by introducing two key contributions, without compromising the desirable properties of generalist models. These contributions are: (i) a positional-embedding (PE) based loss for improved centroid regressions; (ii) Edge Distance Sampling (EDS) for the better separation of instance boundaries. The PE-based loss facilitates a better per-pixel regression of the associated instance's centroid, whereas EDS contributes by carefully handling the void regions (caused by missing labels) and smaller instances. These two simple yet effective modifications significantly improve established baselines, while achieving state-of-the-art results among all generalist solutions. More specifically, our method achieves a panoptic quality(PQ) of 52.5 on the COCO dataset, which is an improvement of 10 points over the best model with similar approach (Painter), and is superior by 2 to the best performing diffusion-based method Pix2Seq-$\mathcal{D}$. Furthermore, we provide insights into and an in-depth analysis of our contributions through exhaustive experiments. Our source code and model weights will be made publicly available.
☆ Locally Grouped and Scale-Guided Attention for Dense Pest Counting
This study introduces a new dense pest counting problem to predict densely distributed pests captured by digital traps. Unlike traditional detection-based counting models for sparsely distributed objects, trap-based pest counting must deal with dense pest distributions that pose challenges such as severe occlusion, wide pose variation, and similar appearances in colors and textures. To address these problems, it is essential to incorporate the local attention mechanism, which identifies locally important and unimportant areas to learn locally grouped features, thereby enhancing discriminative performance. Accordingly, this study presents a novel design that integrates locally grouped and scale-guided attention into a multiscale CenterNet framework. To group local features with similar attributes, a straightforward method is introduced using the heatmap predicted by the first hourglass containing pest centroid information, which eliminates the need for complex clustering models. To enhance attentiveness, the pixel attention module transforms the heatmap into a learnable map. Subsequently, scale-guided attention is deployed to make the object and background features more discriminative, achieving multiscale feature fusion. Through experiments, the proposed model is verified to enhance object features based on local grouping and discriminative feature attention learning. Additionally, the proposed model is highly effective in overcoming occlusion and pose variation problems, making it more suitable for dense pest counting. In particular, the proposed model outperforms state-of-the-art models by a large margin, with a remarkable contribution to dense pest counting.
UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs). This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution, in addition to the fusion of detection results from teams of UAVs for the purpose of accurately and reliably geolocating objects of interest in a timely manner. In an offline step, an application-independent evaluation of vision-based detectors from a system perspective is first performed. Based on this evaluation, the most appropriate algorithms for online object detection for each platform are selected automatically before a mission, taking into account a number of practical system considerations, such as the available communication links, video compression used, and the available computational resources. The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations. A number of simulated and real flight experiments are also presented, validating the proposed method.
comment: 42 pages, 19 figures
☆ CogVLM2: Visual Language Models for Image and Video Understanding
Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to $1344 \times 1344$ pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.
☆ Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning
Adapting pre-trained models to open classes is a challenging problem in machine learning. Vision-language models fully explore the knowledge of text modality, demonstrating strong zero-shot recognition performance, which is naturally suited for various open-set problems. More recently, some research focuses on fine-tuning such models to downstream tasks. Prompt tuning methods achieved huge improvements by learning context vectors on few-shot data. However, through the evaluation under open-set adaptation setting with the test data including new classes, we find that there exists a dilemma that learned prompts have worse generalization abilities than hand-crafted prompts. In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach, which leverages the maximum concept matching (MCM) scores as dynamic weights to generate an input-conditioned prompt for each image during test. Through extensive experiments on 11 different datasets, we show that our proposed method outperforms all comparison methods on average considering both base and new classes. The code is available at https://github.com/gaozhengqing/TTPT
comment: PRCV 2024
☆ A Deep-Learning-Based Lable-free No-Reference Image Quality Assessment Metric: Application in Sodium MRI Denoising
New multinuclear MRI techniques, such as sodium MRI, generally suffer from low image quality due to an inherently low signal. Postprocessing methods, such as image denoising, have been developed for image enhancement. However, the assessment of these enhanced images is challenging especially considering when there is a lack of high resolution and high signal images as reference, such as in sodium MRI. No-reference Image Quality Assessment (NR-IQA) metrics are approaches to solve this problem. Existing learning-based NR-IQA metrics rely on labels derived from subjective human opinions or metrics like Signal-to-Noise Ratio (SNR), which are either time-consuming or lack accurate ground truths, resulting in unreliable assessment. We note that deep learning (DL) models have a unique characteristic in that they are specialized to a characteristic training set, meaning that deviations between the input testing data from the training data will reduce prediction accuracy. Therefore, we propose a novel DL-based NR-IQA metric, the Model Specialization Metric (MSM), which does not depend on ground-truth images or labels. MSM measures the difference between the input image and the model's prediction for evaluating the quality of the input image. Experiments conducted on both simulated distorted proton T1-weighted MR images and denoised sodium MR images demonstrate that MSM exhibits a superior evaluation performance on various simulated noises and distortions. MSM also has a substantial agreement with the expert evaluations, achieving an averaged Cohen's Kappa coefficient of 0.6528, outperforming the existing NR-IQA metrics.
comment: 13 pages, 3 figures
MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain, e.g., synthetic data, and an unlabeled target domain. We observe that current UDA methods show inferior results on fine structures and tend to oversegment objects with ambiguous appearance. To address these shortcomings, we propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries. We show that naively incorporating depth into current UDA methods does not fully exploit the potential of this complementary information. To this end, we present MICDrop, which learns a joint feature representation by masking image encoder features while inversely masking depth encoder features. With this simple yet effective complementary masking strategy, we enforce the use of both modalities when learning the joint feature representation. To aid this process, we propose a feature fusion module to improve both global as well as local information sharing while being robust to errors in the depth predictions. We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks, obtaining new state-of-the-art performances.
☆ Creating a Segmented Pointcloud of Grapevines by Combining Multiple Viewpoints Through Visual Odometry
Grapevine winter pruning is a labor-intensive and repetitive process that significantly influences the quality and quantity of the grape harvest and produced wine of the following season. It requires a careful and expert detection of the point to be cut. Because of its complexity, repetitive nature and time constraint, the task requires skilled labor that needs to be trained. This extended abstract presents the computer vision pipeline employed in project Vinum, using detectron2 as a segmentation network and keypoint visual odometry to merge different observation into a single pointcloud used to make informed pruning decisions.
☆ Improving 3D deep learning segmentation with biophysically motivated cell synthesis
Biomedical research increasingly relies on 3D cell culture models and AI-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets. To address this, we present a novel framework for generating 3D training data, which integrates biophysical modeling for realistic cell shape and alignment. Our approach allows the in silico generation of coherent membrane and nuclei signals, that enable the training of segmentation models utilizing both channels for improved performance. Furthermore, we present a new GAN training scheme that generates not only image data but also matching labels. Quantitative evaluation shows superior performance of biophysical motivated synthetic training data, even outperforming manual annotation and pretrained models. This underscores the potential of incorporating biophysical modeling for enhancing synthetic training data quality.
☆ Multi-source Domain Adaptation for Panoramic Semantic Segmentation
Panoramic semantic segmentation has received widespread attention recently due to its comprehensive 360\degree field of view. However, labeling such images demands greater resources compared to pinhole images. As a result, many unsupervised domain adaptation methods for panoramic semantic segmentation have emerged, utilizing real pinhole images or low-cost synthetic panoramic images. But, the segmentation model lacks understanding of the panoramic structure when only utilizing real pinhole images, and it lacks perception of real-world scenes when only adopting synthetic panoramic images. Therefore, in this paper, we propose a new task of multi-source domain adaptation for panoramic semantic segmentation, aiming to utilize both real pinhole and synthetic panoramic images in the source domains, enabling the segmentation model to perform well on unlabeled real panoramic images in the target domain. Further, we propose Deformation Transform Aligner for Panoramic Semantic Segmentation (DTA4PASS), which converts all pinhole images in the source domains into panoramic-like images, and then aligns the converted source domains with the target domain. Specifically, DTA4PASS consists of two main components: Unpaired Semantic Morphing (USM) and Distortion Gating Alignment (DGA). Firstly, in USM, the Semantic Dual-view Discriminator (SDD) assists in training the diffeomorphic deformation network, enabling the effective transformation of pinhole images without paired panoramic views. Secondly, DGA assigns pinhole-like and panoramic-like features to each image by gating, and aligns these two features through uncertainty estimation. DTA4PASS outperforms the previous state-of-the-art methods by 1.92% and 2.19% on the outdoor and indoor multi-source domain adaptation scenarios, respectively. The source code will be released.
comment: 9 pages, 7 figures, 5 tables
☆ Spiking Diffusion Models
Recent years have witnessed Spiking Neural Networks (SNNs) gaining attention for their ultra-low energy consumption and high biological plausibility compared with traditional Artificial Neural Networks (ANNs). Despite their distinguished properties, the application of SNNs in the computationally intensive field of image generation is still under exploration. In this paper, we propose the Spiking Diffusion Models (SDMs), an innovative family of SNN-based generative models that excel in producing high-quality samples with significantly reduced energy consumption. In particular, we propose a Temporal-wise Spiking Mechanism (TSM) that allows SNNs to capture more temporal features from a bio-plasticity perspective. In addition, we propose a threshold-guided strategy that can further improve the performances by up to 16.7% without any additional training. We also make the first attempt to use the ANN-SNN approach for SNN-based generation tasks. Extensive experimental results reveal that our approach not only exhibits comparable performance to its ANN counterpart with few spiking time steps, but also outperforms previous SNN-based generative models by a large margin. Moreover, we also demonstrate the high-quality generation ability of SDM on large-scale datasets, e.g., LSUN bedroom. This development marks a pivotal advancement in the capabilities of SNN-based generation, paving the way for future research avenues to realize low-energy and low-latency generative applications. Our code is available at https://github.com/AndyCao1125/SDM.
comment: Accepted by IEEE Transactions on Artificial Intelligence
☆ Weakly Supervised Object Detection for Automatic Tooth-marked Tongue Recognition
Tongue diagnosis in Traditional Chinese Medicine (TCM) is a crucial diagnostic method that can reflect an individual's health status. Traditional methods for identifying tooth-marked tongues are subjective and inconsistent because they rely on practitioner experience. We propose a novel fully automated Weakly Supervised method using Vision transformer and Multiple instance learning WSVM for tongue extraction and tooth-marked tongue recognition. Our approach first accurately detects and extracts the tongue region from clinical images, removing any irrelevant background information. Then, we implement an end-to-end weakly supervised object detection method. We utilize Vision Transformer (ViT) to process tongue images in patches and employ multiple instance loss to identify tooth-marked regions with only image-level annotations. WSVM achieves high accuracy in tooth-marked tongue classification, and visualization experiments demonstrate its effectiveness in pinpointing these regions. This automated approach enhances the objectivity and accuracy of tooth-marked tongue diagnosis. It provides significant clinical value by assisting TCM practitioners in making precise diagnoses and treatment recommendations. Code is available at https://github.com/yc-zh/WSVM.
☆ What to Preserve and What to Transfer: Faithful, Identity-Preserving Diffusion-based Hairstyle Transfer
Hairstyle transfer is a challenging task in the image editing field that modifies the hairstyle of a given face image while preserving its other appearance and background features. The existing hairstyle transfer approaches heavily rely on StyleGAN, which is pre-trained on cropped and aligned face images. Hence, they struggle to generalize under challenging conditions such as extreme variations of head poses or focal lengths. To address this issue, we propose a one-stage hairstyle transfer diffusion model, HairFusion, that applies to real-world scenarios. Specifically, we carefully design a hair-agnostic representation as the input of the model, where the original hair information is thoroughly eliminated. Next, we introduce a hair align cross-attention (Align-CA) to accurately align the reference hairstyle with the face image while considering the difference in their face shape. To enhance the preservation of the face image's original features, we leverage adaptive hair blending during the inference, where the output's hair regions are estimated by the cross-attention map in Align-CA and blended with non-hair areas of the face image. Our experimental results show that our method achieves state-of-the-art performance compared to the existing methods in preserving the integrity of both the transferred hairstyle and the surrounding features. The codes are available at https://github.com/cychungg/HairFusion.
☆ Enhancing Sound Source Localization via False Negative Elimination
Sound source localization aims to localize objects emitting the sound in visual scenes. Recent works obtaining impressive results typically rely on contrastive learning. However, the common practice of randomly sampling negatives in prior arts can lead to the false negative issue, where the sounds semantically similar to visual instance are sampled as negatives and incorrectly pushed away from the visual anchor/query. As a result, this misalignment of audio and visual features could yield inferior performance. To address this issue, we propose a novel audio-visual learning framework which is instantiated with two individual learning schemes: self-supervised predictive learning (SSPL) and semantic-aware contrastive learning (SACL). SSPL explores image-audio positive pairs alone to discover semantically coherent similarities between audio and visual features, while a predictive coding module for feature alignment is introduced to facilitate the positive-only learning. In this regard SSPL acts as a negative-free method to eliminate false negatives. By contrast, SACL is designed to compact visual features and remove false negatives, providing reliable visual anchor and audio negatives for contrast. Different from SSPL, SACL releases the potential of audio-visual contrastive learning, offering an effective alternative to achieve the same goal. Comprehensive experiments demonstrate the superiority of our approach over the state-of-the-arts. Furthermore, we highlight the versatility of the learned representation by extending the approach to audio-visual event classification and object detection tasks. Code and models are available at: https://github.com/zjsong/SACL.
comment: arXiv admin note: substantial text overlap with arXiv:2203.13412
☆ Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks
Three-dimensional (3D) reconstruction from two-dimensional images is an active research field in computer vision, with applications ranging from navigation and object tracking to segmentation and three-dimensional modeling. Traditionally, parametric techniques have been employed for this task. However, recent advancements have seen a shift towards learning-based methods. Given the rapid pace of research and the frequent introduction of new image matching methods, it is essential to evaluate them. In this paper, we present a comprehensive evaluation of various image matching methods using a structure-from-motion pipeline. We assess the performance of these methods on both in-domain and out-of-domain datasets, identifying key limitations in both the methods and benchmarks. We also investigate the impact of edge detection as a pre-processing step. Our analysis reveals that image matching for 3D reconstruction remains an open challenge, necessitating careful selection and tuning of models for specific scenarios, while also highlighting mismatches in how metrics currently represent method performance.
comment: 19 pages, 5 figures
☆ Integrating Features for Recognizing Human Activities through Optimized Parameters in Graph Convolutional Networks and Transformer Architectures
Human activity recognition is a major field of study that employs computer vision, machine vision, and deep learning techniques to categorize human actions. The field of deep learning has made significant progress, with architectures that are extremely effective at capturing human dynamics. This study emphasizes the influence of feature fusion on the accuracy of activity recognition. This technique addresses the limitation of conventional models, which face difficulties in identifying activities because of their limited capacity to understand spatial and temporal features. The technique employs sensory data obtained from four publicly available datasets: HuGaDB, PKU-MMD, LARa, and TUG. The accuracy and F1-score of two deep learning models, specifically a Transformer model and a Parameter-Optimized Graph Convolutional Network (PO-GCN), were evaluated using these datasets. The feature fusion technique integrated the final layer features from both models and inputted them into a classifier. Empirical evidence demonstrates that PO-GCN outperforms standard models in activity recognition. HuGaDB demonstrated a 2.3% improvement in accuracy and a 2.2% increase in F1-score. TUG showed a 5% increase in accuracy and a 0.5% rise in F1-score. On the other hand, LARa and PKU-MMD achieved lower accuracies of 64% and 69% respectively. This indicates that the integration of features enhanced the performance of both the Transformer model and PO-GCN.
comment: 6 pages, 1 figure, conference
☆ Discriminative Spatial-Semantic VOS Solution: 1st Place Solution for 6th LSVOS
Video object segmentation (VOS) is a crucial task in computer vision, but current VOS methods struggle with complex scenes and prolonged object motions. To address these challenges, the MOSE dataset aims to enhance object recognition and differentiation in complex environments, while the LVOS dataset focuses on segmenting objects exhibiting long-term, intricate movements. This report introduces a discriminative spatial-temporal VOS model that utilizes discriminative object features as query representations. The semantic understanding of spatial-semantic modules enables it to recognize object parts, while salient features highlight more distinctive object characteristics. Our model, trained on extensive VOS datasets, achieved first place (\textbf{80.90\%} $\mathcal{J \& F}$) on the test set of the 6th LSVOS challenge in the VOS Track, demonstrating its effectiveness in tackling the aforementioned challenges. The code will be available at \href{https://github.com/yahooo-m/VOS-Solution}{code}.
comment: 1st Place Solution for 6th LSVOS VOS Track. arXiv admin note: substantial text overlap with arXiv:2406.04600
☆ COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation ECCV 2024
Estimating global human motion from moving cameras is challenging due to the entanglement of human and camera motions. To mitigate the ambiguity, existing methods leverage learned human motion priors, which however often result in oversmoothed motions with misaligned 2D projections. To tackle this problem, we propose COIN, a control-inpainting motion diffusion prior that enables fine-grained control to disentangle human and camera motions. Although pre-trained motion diffusion models encode rich motion priors, we find it non-trivial to leverage such knowledge to guide global motion estimation from RGB videos. COIN introduces a novel control-inpainting score distillation sampling method to ensure well-aligned, consistent, and high-quality motion from the diffusion prior within a joint optimization framework. Furthermore, we introduce a new human-scene relation loss to alleviate the scale ambiguity by enforcing consistency among the humans, camera, and scene. Experiments on three challenging benchmarks demonstrate the effectiveness of COIN, which outperforms the state-of-the-art methods in terms of global human motion estimation and camera motion estimation. As an illustrative example, COIN outperforms the state-of-the-art method by 33% in world joint position error (W-MPJPE) on the RICH dataset.
comment: ECCV 2024
☆ Text-Enhanced Zero-Shot Action Recognition: A training-free approach ICPR 2024
Vision-language models (VLMs) have demonstrated remarkable performance across various visual tasks, leveraging joint learning of visual and textual representations. While these models excel in zero-shot image tasks, their application to zero-shot video action recognition (ZSVAR) remains challenging due to the dynamic and temporal nature of actions. Existing methods for ZS-VAR typically require extensive training on specific datasets, which can be resource-intensive and may introduce domain biases. In this work, we propose Text-Enhanced Action Recognition (TEAR), a simple approach to ZS-VAR that is training-free and does not require the availability of training data or extensive computational resources. Drawing inspiration from recent findings in vision and language literature, we utilize action descriptors for decomposition and contextual information to enhance zero-shot action recognition. Through experiments on UCF101, HMDB51, and Kinetics-600 datasets, we showcase the effectiveness and applicability of our proposed approach in addressing the challenges of ZS-VAR.
comment: accepted to ICPR 2024
☆ IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology
Histopathological image analysis is crucial for accurate cancer diagnosis and treatment planning. While deep learning models, especially convolutional neural networks, have advanced this field, their "black-box" nature raises concerns about interpretability and trustworthiness. Explainable Artificial Intelligence (XAI) techniques aim to address these concerns, but evaluating their effectiveness remains challenging. A significant issue with current occlusion-based XAI methods is that they often generate Out-of-Distribution (OoD) samples, leading to inaccurate evaluations. In this paper, we introduce Inpainting-Based Occlusion (IBO), a novel occlusion strategy that utilizes a Denoising Diffusion Probabilistic Model to inpaint occluded regions in histopathological images. By replacing cancerous areas with realistic, non-cancerous tissue, IBO minimizes OoD artifacts and preserves data integrity. We evaluate our method on the CAMELYON16 dataset through two phases: first, by assessing perceptual similarity using the Learned Perceptual Image Patch Similarity (LPIPS) metric, and second, by quantifying the impact on model predictions through Area Under the Curve (AUC) analysis. Our results demonstrate that IBO significantly improves perceptual fidelity, achieving nearly twice the improvement in LPIPS scores compared to the best existing occlusion strategy. Additionally, IBO increased the precision of XAI performance prediction from 42% to 71% compared to traditional methods. These results demonstrate IBO's potential to provide more reliable evaluations of XAI techniques, benefiting histopathology and other applications. The source code for this study is available at https://github.com/a-fsh-r/IBO.
comment: 19 pages, 6 figures
☆ Exploiting temporal information to detect conversational groups in videos and predict the next speaker
Studies in human human interaction have introduced the concept of F formation to describe the spatial arrangement of participants during social interactions. This paper has two objectives. It aims at detecting F formations in video sequences and predicting the next speaker in a group conversation. The proposed approach exploits time information and human multimodal signals in video sequences. In particular, we rely on measuring the engagement level of people as a feature of group belonging. Our approach makes use of a recursive neural network, the Long Short Term Memory (LSTM), to predict who will take the speaker's turn in a conversation group. Experiments on the MatchNMingle dataset led to 85% true positives in group detection and 98% accuracy in predicting the next speaker.
comment: Accepted to Pattern Recognition Letter, 8 pages, 10 figures
☆ Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
comment: The code is available at https://github.com/bronyayang/Law_of_Vision_Representation_in_MLLMs
☆ NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Challenges include sparse-view settings, intra-scan motion, and complex vessel morphology such as structure sparsity and background occlusion. Existing CA reconstruction methods often require extensive user interaction or large training datasets. On the other hand, Neural Radiance Field (NeRF), a promising deep learning technique, has successfully reconstructed high-fidelity static scenes for natural and medical scenes. Recent work, however, identified that sparse-views, background occlusion, and dynamics still pose a challenge when applying NeRF in the X-ray angiography context. Meanwhile, many successful works for natural scenes propose regularization for sparse-view reconstruction or scene decomposition to handle dynamics. However, these techniques do not directly translate to the CA context, where both challenges and background occlusion are significant. This paper introduces NeRF-CA, the first step toward a 4D CA reconstruction method that achieves reconstructions from sparse coronary angiograms with cardiac motion. We leverage the motion of the coronary artery to decouple the scene into a dynamic coronary artery component and static background. We combine this scene decomposition with tailored regularization techniques. These techniques enforce the separation of the coronary artery from the background by enforcing dynamic structure sparsity and scene smoothness. By uniquely combining these approaches, we achieve 4D reconstructions from as few as four angiogram sequences. This setting aligns with clinical workflows while outperforming state-of-the-art X-ray sparse-view NeRF reconstruction techniques. We validate our approach quantitatively and qualitatively using 4D phantom datasets and ablation studies.
☆ Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes. Early diagnosis is challenging due to subtle symptoms and varied presentations, often leading to misdiagnosis with traditional unimodal diagnostic methods due to their limited scope. This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data to enhance diagnostic accuracy. The model incorporates a feature tagger with a tabular data coding architecture and utilizes the TimesBlock module to capture intricate temporal patterns in Electroencephalograms (EEG) data. By employing Cross-modal Attention Aggregation module, the model effectively fuses Magnetic Resonance Imaging (MRI) spatial information with EEG temporal data, significantly improving the distinction between AD, Mild Cognitive Impairment, and Normal Cognition. Simultaneously, we have constructed the first AD classification dataset that includes three modalities: EEG, MRI, and tabular data. Our innovative approach aims to facilitate early diagnosis and intervention, potentially slowing the progression of AD. The source code and our private ADMC dataset are available at https://github.com/JustlfC03/MSTNet.
comment: 5 pages, 2 figures
☆ Learned Image Transmission with Hierarchical Variational Autoencoder
In this paper, we introduce an innovative hierarchical joint source-channel coding (HJSCC) framework for image transmission, utilizing a hierarchical variational autoencoder (VAE). Our approach leverages a combination of bottom-up and top-down paths at the transmitter to autoregressively generate multiple hierarchical representations of the original image. These representations are then directly mapped to channel symbols for transmission by the JSCC encoder. We extend this framework to scenarios with a feedback link, modeling transmission over a noisy channel as a probabilistic sampling process and deriving a novel generative formulation for JSCC with feedback. Compared with existing approaches, our proposed HJSCC provides enhanced adaptability by dynamically adjusting transmission bandwidth, encoding these representations into varying amounts of channel symbols. Additionally, we introduce a rate attention module to guide the JSCC encoder in optimizing its encoding strategy based on prior information. Extensive experiments on images of varying resolutions demonstrate that our proposed model outperforms existing baselines in rate-distortion performance and maintains robustness against channel noise.
P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising ECCV 2024
In this work, we tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr\"odinger bridges to points clouds. Unlike previous approaches that predict point-wise displacements from point features or learned noise distributions, our method learns an optimal transport plan between paired point clouds. Experiments on object datasets like PU-Net and real-world datasets such as ScanNet++ and ARKitScenes show that P2P-Bridge achieves significant improvements over existing methods. While our approach demonstrates strong results using only point coordinates, we also show that incorporating additional features, such as color information or point-wise DINOv2 features, further enhances the performance. Code and pretrained models are available at https://p2p-bridge.github.io.
comment: ECCV 2024 Project page: https://p2p-bridge.github.io
☆ BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications.
☆ ResVG: Enhancing Relation and Semantic Understanding in Multiple Instances for Visual Grounding ACM MM 2024
Visual grounding aims to localize the object referred to in an image based on a natural language query. Although progress has been made recently, accurately localizing target objects within multiple-instance distractions (multiple objects of the same category as the target) remains a significant challenge. Existing methods demonstrate a significant performance drop when there are multiple distractions in an image, indicating an insufficient understanding of the fine-grained semantics and spatial relationships between objects. In this paper, we propose a novel approach, the Relation and Semantic-sensitive Visual Grounding (ResVG) model, to address this issue. Firstly, we enhance the model's understanding of fine-grained semantics by injecting semantic prior information derived from text queries into the model. This is achieved by leveraging text-to-image generation models to produce images representing the semantic attributes of target objects described in queries. Secondly, we tackle the lack of training samples with multiple distractions by introducing a relation-sensitive data augmentation method. This method generates additional training data by synthesizing images containing multiple objects of the same category and pseudo queries based on their spatial relationships. The proposed ReSVG model significantly improves the model's ability to comprehend both object semantics and spatial relations, leading to enhanced performance in visual grounding tasks, particularly in scenarios with multiple-instance distractions. We conduct extensive experiments to validate the effectiveness of our methods on five datasets. Code is available at https://github.com/minghangz/ResVG.
comment: Accepted by ACM MM 2024
☆ FA-YOLO: Research On Efficient Feature Selection YOLO Improved Algorithm Based On FMDS and AGMF Modules
Over the past few years, the YOLO series of models has emerged as one of the dominant methodologies in the realm of object detection. Many studies have advanced these baseline models by modifying their architectures, enhancing data quality, and developing new loss functions. However, current models still exhibit deficiencies in processing feature maps, such as overlooking the fusion of cross-scale features and a static fusion approach that lacks the capability for dynamic feature adjustment. To address these issues, this paper introduces an efficient Fine-grained Multi-scale Dynamic Selection Module (FMDS Module), which applies a more effective dynamic feature selection and fusion method on fine-grained multi-scale feature maps, significantly enhancing the detection accuracy of small, medium, and large-sized targets in complex environments. Furthermore, this paper proposes an Adaptive Gated Multi-branch Focus Fusion Module (AGMF Module), which utilizes multiple parallel branches to perform complementary fusion of various features captured by the gated unit branch, FMDS Module branch, and TripletAttention branch. This approach further enhances the comprehensiveness, diversity, and integrity of feature fusion. This paper has integrated the FMDS Module, AGMF Module, into Yolov9 to develop a novel object detection model named FA-YOLO. Extensive experimental results show that under identical experimental conditions, FA-YOLO achieves an outstanding 66.1% mean Average Precision (mAP) on the PASCAL VOC 2007 dataset, representing 1.0% improvement over YOLOv9's 65.1%. Additionally, the detection accuracies of FA-YOLO for small, medium, and large targets are 44.1%, 54.6%, and 70.8%, respectively, showing improvements of 2.0%, 3.1%, and 0.9% compared to YOLOv9's 42.1%, 51.5%, and 69.9%.
comment: 11 pages and 4 figures
☆ Bootstrap Segmentation Foundation Model under Distribution Shift via Object-Centric Learning ECCV 2024
Foundation models have made incredible strides in achieving zero-shot or few-shot generalization, leveraging prompt engineering to mimic the problem-solving approach of human intelligence. However, when it comes to some foundation models like Segment Anything, there is still a challenge in performing well on out-of-distribution data, including camouflaged and medical images. Inconsistent prompting strategies during fine-tuning and testing further compound the issue, leading to decreased performance. Drawing inspiration from how human cognition processes new environments, we introduce SlotSAM, a method that reconstructs features from the encoder in a self-supervised manner to create object-centric representations. These representations are then integrated into the foundation model, bolstering its object-level perceptual capabilities while reducing the impact of distribution-related variables. The beauty of SlotSAM lies in its simplicity and adaptability to various tasks, making it a versatile solution that significantly enhances the generalization abilities of foundation models. Through limited parameter fine-tuning in a bootstrap manner, our approach paves the way for improved generalization in novel environments. The code is available at github.com/lytang63/SlotSAM.
comment: This work is accepted by ECCV 2024 EVAL-FoMo Workshop
☆ Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach
In recent years, the multimedia forensics and security community has seen remarkable progress in multitask learning for DeepFake (i.e., face forgery) detection. The prevailing strategy has been to frame DeepFake detection as a binary classification problem augmented by manipulation-oriented auxiliary tasks. This strategy focuses on learning features specific to face manipulations, which exhibit limited generalizability. In this paper, we delve deeper into semantics-oriented multitask learning for DeepFake detection, leveraging the relationships among face semantics via joint embedding. We first propose an automatic dataset expansion technique that broadens current face forgery datasets to support semantics-oriented DeepFake detection tasks at both the global face attribute and local face region levels. Furthermore, we resort to joint embedding of face images and their corresponding labels (depicted by textual descriptions) for prediction. This approach eliminates the need for manually setting task-agnostic and task-specific parameters typically required when predicting labels directly from images. In addition, we employ a bi-level optimization strategy to dynamically balance the fidelity loss weightings of various tasks, making the training process fully automated. Extensive experiments on six DeepFake datasets show that our method improves the generalizability of DeepFake detection and, meanwhile, renders some degree of model interpretation by providing human-understandable explanations.
☆ Enhanced Control for Diffusion Bridge in Image Restoration
Image restoration refers to the process of restoring a damaged low-quality image back to its corresponding high-quality image. Typically, we use convolutional neural networks to directly learn the mapping from low-quality images to high-quality images achieving image restoration. Recently, a special type of diffusion bridge model has achieved more advanced results in image restoration. It can transform the direct mapping from low-quality to high-quality images into a diffusion process, restoring low-quality images through a reverse process. However, the current diffusion bridge restoration models do not emphasize the idea of conditional control, which may affect performance. This paper introduces the ECDB model enhancing the control of the diffusion bridge with low-quality images as conditions. Moreover, in response to the characteristic of diffusion models having low denoising level at larger values of \(\bm t \), we also propose a Conditional Fusion Schedule, which more effectively handles the conditional feature information of various modules. Experimental results prove that the ECDB model has achieved state-of-the-art results in many image restoration tasks, including deraining, inpainting and super-resolution. Code is avaliable at https://github.com/Hammour-steak/ECDB.
☆ Rethinking Sparse Lexical Representations for Image Retrieval in the Age of Rising Multi-Modal Large Language Models ECCV 2024
In this paper, we rethink sparse lexical representations for image retrieval. By utilizing multi-modal large language models (M-LLMs) that support visual prompting, we can extract image features and convert them into textual data, enabling us to utilize efficient sparse retrieval algorithms employed in natural language processing for image retrieval tasks. To assist the LLM in extracting image features, we apply data augmentation techniques for key expansion and analyze the impact with a metric for relevance between images and textual data. We empirically show the superior precision and recall performance of our image retrieval method compared to conventional vision-language model-based methods on the MS-COCO, PASCAL VOC, and NUS-WIDE datasets in a keyword-based image retrieval scenario, where keywords serve as search queries. We also demonstrate that the retrieval performance can be improved by iteratively incorporating keywords into search queries.
comment: Accepted to ECCV 2024 Workshops: 2nd Workshop on Traditional Computer Vision in the Age of Deep Learning (TradiCV)
☆ Convolutional Neural Network Compression Based on Low-Rank Decomposition
Deep neural networks typically impose significant computational loads and memory consumption. Moreover, the large parameters pose constraints on deploying the model on edge devices such as embedded systems. Tensor decomposition offers a clear advantage in compressing large-scale weight tensors. Nevertheless, direct utilization of low-rank decomposition typically leads to significant accuracy loss. This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization (VBMF) with orthogonal regularization. Initially, the model undergoes over-parameterization and training, with orthogonal regularization applied to enhance its likelihood of achieving the accuracy of the original model. Secondly, VBMF is employed to estimate the rank of the weight tensor at each layer. Our framework is sufficiently general to apply to other convolutional neural networks and easily adaptable to incorporate other tensor decomposition methods. Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
comment: 10 pages, 1 figures
☆ Fine-grained Classification of Port Wine Stains Using Optical Coherence Tomography Angiography
Accurate classification of port wine stains (PWS, vascular malformations present at birth), is critical for subsequent treatment planning. However, the current method of classifying PWS based on the external skin appearance rarely reflects the underlying angiopathological heterogeneity of PWS lesions, resulting in inconsistent outcomes with the common vascular-targeted photodynamic therapy (V-PDT) treatments. Conversely, optical coherence tomography angiography (OCTA) is an ideal tool for visualizing the vascular malformations of PWS. Previous studies have shown no significant correlation between OCTA quantitative metrics and the PWS subtypes determined by the current classification approach. This study proposes a new classification approach for PWS using both OCT and OCTA. By examining the hypodermic histopathology and vascular structure of PWS, we have devised a fine-grained classification method that subdivides PWS into five distinct types. To assess the angiopathological differences of various PWS subtypes, we have analyzed six metrics related to vascular morphology and depth information of PWS lesions. The five PWS types present significant differences across all metrics compared to the conventional subtypes. Our findings suggest that an angiopathology-based classification accurately reflects the heterogeneity in PWS lesions. This research marks the first attempt to classify PWS based on angiopathology, potentially guiding more effective subtyping and treatment strategies for PWS.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ SAU: A Dual-Branch Network to Enhance Long-Tailed Recognition via Generative Models
Long-tailed distributions in image recognition pose a considerable challenge due to the severe imbalance between a few dominant classes with numerous examples and many minority classes with few samples. Recently, the use of large generative models to create synthetic data for image classification has been realized, but utilizing synthetic data to address the challenge of long-tailed recognition remains relatively unexplored. In this work, we proposed the use of synthetic data as a complement to long-tailed datasets to eliminate the impact of data imbalance. To tackle this real-synthetic mixed dataset, we designed a two-branch model that contains Synthetic-Aware and Unaware branches (SAU). The core ideas are (1) a synthetic-unaware branch for classification that mixes real and synthetic data and treats all data equally without distinguishing between them. (2) A synthetic-aware branch for improving the robustness of the feature extractor by distinguishing between real and synthetic data and learning their discrepancies. Extensive experimental results demonstrate that our method can improve the accuracy of long-tailed image recognition. Notably, our approach achieves state-of-the-art Top-1 accuracy and significantly surpasses other methods on CIFAR-10-LT and CIFAR-100-LT datasets across various imbalance factors. Our code is available at https://github.com/lgX1123/gm4lt.
comment: 15 pages
☆ Beyond Uncertainty: Evidential Deep Learning for Robust Video Temporal Grounding RAM
Existing Video Temporal Grounding (VTG) models excel in accuracy but often overlook open-world challenges posed by open-vocabulary queries and untrimmed videos. This leads to unreliable predictions for noisy, corrupted, and out-of-distribution data. Adapting VTG models to dynamically estimate uncertainties based on user input can address this issue. To this end, we introduce SRAM, a robust network module that benefits from a two-stage cross-modal alignment task. More importantly, it integrates Deep Evidential Regression (DER) to explicitly and thoroughly quantify uncertainty during training, thus allowing the model to say "I do not know" in scenarios beyond its handling capacity. However, the direct application of traditional DER theory and its regularizer reveals structural flaws, leading to unintended constraints in VTG tasks. In response, we develop a simple yet effective Geom-regularizer that enhances the uncertainty learning framework from the ground up. To the best of our knowledge, this marks the first successful attempt of DER in VTG. Our extensive quantitative and qualitative results affirm the effectiveness, robustness, and interpretability of our modules and the uncertainty learning paradigm in VTG tasks. The code will be made available.
comment: Ongoing work: 28pages, 19 figures, 7 tables. Code is available at: https://kaijing.space/SRAM/
☆ UDD: Dataset Distillation via Mining Underutilized Regions
Dataset distillation synthesizes a small dataset such that a model trained on this set approximates the performance of the original dataset. Recent studies on dataset distillation focused primarily on the design of the optimization process, with methods such as gradient matching, feature alignment, and training trajectory matching. However, little attention has been given to the issue of underutilized regions in synthetic images. In this paper, we propose UDD, a novel approach to identify and exploit the underutilized regions to make them informative and discriminate, and thus improve the utilization of the synthetic dataset. Technically, UDD involves two underutilized regions searching policies for different conditions, i.e., response-based policy and data jittering-based policy. Compared with previous works, such two policies are utilization-sensitive, equipping with the ability to dynamically adjust the underutilized regions during the training process. Additionally, we analyze the current model optimization problem and design a category-wise feature contrastive loss, which can enhance the distinguishability of different categories and alleviate the shortcomings of the existing multi-formation methods. Experimentally, our method improves the utilization of the synthetic dataset and outperforms the state-of-the-art methods on various datasets, such as MNIST, FashionMNIST, SVHN, CIFAR-10, and CIFAR-100. For example, the improvements on CIFAR-10 and CIFAR-100 are 4.0\% and 3.7\% over the next best method with IPC=1, by mining the underutilized regions.
comment: PRCV2024
☆ Improving Diffusion-based Data Augmentation with Inversion Spherical Interpolation
Data Augmentation (DA), \ie, synthesizing faithful and diverse samples to expand the original training set, is a prevalent and effective strategy to improve various visual recognition tasks. With the powerful image generation ability, diffusion-based DA has shown strong performance gains on different benchmarks. In this paper, we analyze today's diffusion-based DA methods, and argue that they cannot take account of both faithfulness and diversity, which are two critical keys for generating high-quality samples and boosting final classification performance. To this end, we propose a novel Diffusion-based Inversion Interpolation DA method: Diff-II. Specifically, Diff-II consists of three main steps: 1) Category concepts learning: Learning concept embeddings for each category. 2) Inversion interpolation: Calculating the inversion for each image, and conducting spherical interpolation for two randomly sampled inversions from the same category. 3) Two-stage denoising: Using different prompts to generate synthesized images in a coarse-to-fine manner. Extensive experiments on multiple image classification tasks (\eg, few-shot, long-tailed, and out-of-distribution classification) have demonstrated its effectiveness over state-of-the-art diffusion-based DA methods.
☆ Low Saturation Confidence Distribution-based Test-Time Adaptation for Cross-Domain Remote Sensing Image Classification
Although the Unsupervised Domain Adaptation (UDA) method has improved the effect of remote sensing image classification tasks, most of them are still limited by access to the source domain (SD) data. Designs such as Source-free Domain Adaptation (SFDA) solve the challenge of a lack of SD data, however, they still rely on a large amount of target domain data and thus cannot achieve fast adaptations, which seriously hinders their further application in broader scenarios. The real-world applications of cross-domain remote sensing image classification require a balance of speed and accuracy at the same time. Therefore, we propose a novel and comprehensive test time adaptation (TTA) method -- Low Saturation Confidence Distribution Test Time Adaptation (LSCD-TTA), which is the first attempt to solve such scenarios through the idea of TTA. LSCD-TTA specifically considers the distribution characteristics of remote sensing images, including three main parts that concentrate on different optimization directions: First, low saturation distribution (LSD) considers the dominance of low-confidence samples during the later TTA stage. Second, weak-category cross-entropy (WCCE) increases the weight of categories that are more difficult to classify with less prior knowledge. Finally, diverse categories confidence (DIV) comprehensively considers the category diversity to alleviate the deviation of the sample distribution. By weighting the abovementioned three modules, the model can widely, quickly and accurately adapt to the target domain without much prior target distributions, repeated data access, and manual annotation. We evaluate LSCD-TTA on three remote-sensing image datasets. The experimental results show that LSCD-TTA achieves a significant gain of 4.96%-10.51% with Resnet-50 and 5.33%-12.49% with Resnet-101 in average accuracy compared to other state-of-the-art DA and TTA methods.
☆ Advancing Architectural Floorplan Design with Geometry-enhanced Graph Diffusion
Automating architectural floorplan design is vital for housing and interior design, offering a faster, cost-effective alternative to manual sketches by architects. However, existing methods, including rule-based and learning-based approaches, face challenges in design complexity and constrained generation with extensive post-processing, and tend to obvious geometric inconsistencies such as misalignment, overlap, and gaps. In this work, we propose a novel generative framework for vector floorplan design via structural graph generation, called GSDiff, focusing on wall junction generation and wall segment prediction to capture both geometric and semantic aspects of structural graphs. To improve the geometric rationality of generated structural graphs, we propose two innovative geometry enhancement methods. In wall junction generation, we propose a novel alignment loss function to improve geometric consistency. In wall segment prediction, we propose a random self-supervision method to enhance the model's perception of the overall geometric structure, thereby promoting the generation of reasonable geometric structures. Employing the diffusion model and the Transformer model, as well as the geometry enhancement strategies, our framework can generate wall junctions, wall segments and room polygons with structural and semantic information, resulting in structural graphs that accurately represent floorplans. Extensive experiments show that the proposed method surpasses existing techniques, enabling free generation and constrained generation, marking a shift towards structure generation in architectural design.
☆ EvLight++: Low-Light Video Enhancement with an Event Camera: A Large-Scale Real-World Dataset, Novel Method, and More
Event cameras offer significant advantages for low-light video enhancement, primarily due to their high dynamic range. Current research, however, is severely limited by the absence of large-scale, real-world, and spatio-temporally aligned event-video datasets. To address this, we introduce a large-scale dataset with over 30,000 pairs of frames and events captured under varying illumination. This dataset was curated using a robotic arm that traces a consistent non-linear trajectory, achieving spatial alignment precision under 0.03mm and temporal alignment with errors under 0.01s for 90% of the dataset. Based on the dataset, we propose \textbf{EvLight++}, a novel event-guided low-light video enhancement approach designed for robust performance in real-world scenarios. Firstly, we design a multi-scale holistic fusion branch to integrate structural and textural information from both images and events. To counteract variations in regional illumination and noise, we introduce Signal-to-Noise Ratio (SNR)-guided regional feature selection, enhancing features from high SNR regions and augmenting those from low SNR regions by extracting structural information from events. To incorporate temporal information and ensure temporal coherence, we further introduce a recurrent module and temporal loss in the whole pipeline. Extensive experiments on our and the synthetic SDSD dataset demonstrate that EvLight++ significantly outperforms both single image- and video-based methods by 1.37 dB and 3.71 dB, respectively. To further explore its potential in downstream tasks like semantic segmentation and monocular depth estimation, we extend our datasets by adding pseudo segmentation and depth labels via meticulous annotation efforts with foundation models. Experiments under diverse low-light scenes show that the enhanced results achieve a 15.97% improvement in mIoU for semantic segmentation.
comment: Journal extension based on EvLight (arXiv:2404.00834)
☆ Anno-incomplete Multi-dataset Detection
Object detectors have shown outstanding performance on various public datasets. However, annotating a new dataset for a new task is usually unavoidable in real, since 1) a single existing dataset usually does not contain all object categories needed; 2) using multiple datasets usually suffers from annotation incompletion and heterogeneous features. We propose a novel problem as "Annotation-incomplete Multi-dataset Detection", and develop an end-to-end multi-task learning architecture which can accurately detect all the object categories with multiple partially annotated datasets. Specifically, we propose an attention feature extractor which helps to mine the relations among different datasets. Besides, a knowledge amalgamation training strategy is incorporated to accommodate heterogeneous features from different sources. Extensive experiments on different object detection datasets demonstrate the effectiveness of our methods and an improvement of 2.17%, 2.10% in mAP can be achieved on COCO and VOC respectively.
comment: 12 pages, 9 figures
☆ Neural Spectral Decomposition for Dataset Distillation ECCV 2024
In this paper, we propose Neural Spectrum Decomposition, a generic decomposition framework for dataset distillation. Unlike previous methods, we consider the entire dataset as a high-dimensional observation that is low-rank across all dimensions. We aim to discover the low-rank representation of the entire dataset and perform distillation efficiently. Toward this end, we learn a set of spectrum tensors and transformation matrices, which, through simple matrix multiplication, reconstruct the data distribution. Specifically, a spectrum tensor can be mapped back to the image space by a transformation matrix, and efficient information sharing during the distillation learning process is achieved through pairwise combinations of different spectrum vectors and transformation matrices. Furthermore, we integrate a trajectory matching optimization method guided by a real distribution. Our experimental results demonstrate that our approach achieves state-of-the-art performance on benchmarks, including CIFAR10, CIFAR100, Tiny Imagenet, and ImageNet Subset. Our code are available at \url{https://github.com/slyang2021/NSD}.
comment: ECCV 2024
☆ LMT-GP: Combined Latent Mean-Teacher and Gaussian Process for Semi-supervised Low-light Image Enhancement
While recent low-light image enhancement (LLIE) methods have made significant advancements, they still face challenges in terms of low visual quality and weak generalization ability when applied to complex scenarios. To address these issues, we propose a semi-supervised method based on latent mean-teacher and Gaussian process, named LMT-GP. We first design a latent mean-teacher framework that integrates both labeled and unlabeled data, as well as their latent vectors, into model training. Meanwhile, we use a mean-teacher-assisted Gaussian process learning strategy to establish a connection between the latent and pseudo-latent vectors obtained from the labeled and unlabeled data. To guide the learning process, we utilize an assisted Gaussian process regression (GPR) loss function. Furthermore, we design a pseudo-label adaptation module (PAM) to ensure the reliability of the network learning. To demonstrate our method's generalization ability and effectiveness, we apply it to multiple LLIE datasets and high-level vision tasks. Experiment results demonstrate that our method achieves high generalization performance and image quality. The code is available at https://github.com/HFUT-CV/LMT-GP.
☆ PSE-Net: Channel Pruning for Convolutional Neural Networks with Parallel-subnets Estimator
Channel Pruning is one of the most widespread techniques used to compress deep neural networks while maintaining their performances. Currently, a typical pruning algorithm leverages neural architecture search to directly find networks with a configurable width, the key step of which is to identify representative subnet for various pruning ratios by training a supernet. However, current methods mainly follow a serial training strategy to optimize supernet, which is very time-consuming. In this work, we introduce PSE-Net, a novel parallel-subnets estimator for efficient channel pruning. Specifically, we propose a parallel-subnets training algorithm that simulate the forward-backward pass of multiple subnets by droping extraneous features on batch dimension, thus various subnets could be trained in one round. Our proposed algorithm facilitates the efficiency of supernet training and equips the network with the ability to interpolate the accuracy of unsampled subnets, enabling PSE-Net to effectively evaluate and rank the subnets. Over the trained supernet, we develop a prior-distributed-based sampling algorithm to boost the performance of classical evolutionary search. Such algorithm utilizes the prior information of supernet training phase to assist in the search of optimal subnets while tackling the challenge of discovering samples that satisfy resource constraints due to the long-tail distribution of network configuration. Extensive experiments demonstrate PSE-Net outperforms previous state-of-the-art channel pruning methods on the ImageNet dataset while retaining superior supernet training efficiency. For example, under 300M FLOPs constraint, our pruned MobileNetV2 achieves 75.2% Top-1 accuracy on ImageNet dataset, exceeding the original MobileNetV2 by 2.6 units while only cost 30%/16% times than BCNet/AutoAlim.
comment: 10pages, Neural Networks
☆ Enhancing Conditional Image Generation with Explainable Latent Space Manipulation
In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
comment: 7 pages , 5 figures
☆ Revisiting 360 Depth Estimation with PanoGabor: A New Fusion Perspective
Depth estimation from a monocular 360 image is important to the perception of the entire 3D environment. However, the inherent distortion and large field of view (FoV) in 360 images pose great challenges for this task. To this end, existing mainstream solutions typically introduce additional perspective-based 360 representations (\textit{e.g.}, Cubemap) to achieve effective feature extraction. Nevertheless, regardless of the introduced representations, they eventually need to be unified into the equirectangular projection (ERP) format for the subsequent depth estimation, which inevitably reintroduces the troublesome distortions. In this work, we propose an oriented distortion-aware Gabor Fusion framework (PGFuse) to address the above challenges. First, we introduce Gabor filters that analyze texture in the frequency domain, thereby extending the receptive fields and enhancing depth cues. To address the reintroduced distortions, we design a linear latitude-aware distortion representation method to generate customized, distortion-aware Gabor filters (PanoGabor filters). Furthermore, we design a channel-wise and spatial-wise unidirectional fusion module (CS-UFM) that integrates the proposed PanoGabor filters to unify other representations into the ERP format, delivering effective and distortion-free features. Considering the orientation sensitivity of the Gabor transform, we introduce a spherical gradient constraint to stabilize this sensitivity. Experimental results on three popular indoor 360 benchmarks demonstrate the superiority of the proposed PGFuse to existing state-of-the-art solutions. Code can be available upon acceptance.
☆ LLaVA-SG: Leveraging Scene Graphs as Visual Semantic Expression in Vision-Language Models
Recent advances in large vision-language models (VLMs) typically employ vision encoders based on the Vision Transformer (ViT) architecture. The division of the images into patches by ViT results in a fragmented perception, thereby hindering the visual understanding capabilities of VLMs. In this paper, we propose an innovative enhancement to address this limitation by introducing a Scene Graph Expression (SGE) module in VLMs. This module extracts and structurally expresses the complex semantic information within images, thereby improving the foundational perception and understanding abilities of VLMs. Extensive experiments demonstrate that integrating our SGE module significantly enhances the VLM's performance in vision-language tasks, indicating its effectiveness in preserving intricate semantic details and facilitating better visual understanding. Code and data would be available.
☆ Training-free Video Temporal Grounding using Large-scale Pre-trained Models ECCV 2024
Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query. Existing video temporal localization models rely on specific datasets for training and have high data collection costs, but they exhibit poor generalization capability under the across-dataset and out-of-distribution (OOD) settings. In this paper, we propose a Training-Free Video Temporal Grounding (TFVTG) approach that leverages the ability of pre-trained large models. A naive baseline is to enumerate proposals in the video and use the pre-trained visual language models (VLMs) to select the best proposal according to the vision-language alignment. However, most existing VLMs are trained on image-text pairs or trimmed video clip-text pairs, making it struggle to (1) grasp the relationship and distinguish the temporal boundaries of multiple events within the same video; (2) comprehend and be sensitive to the dynamic transition of events (the transition from one event to another) in the video. To address these issues, we propose leveraging large language models (LLMs) to analyze multiple sub-events contained in the query text and analyze the temporal order and relationships between these events. Secondly, we split a sub-event into dynamic transition and static status parts and propose the dynamic and static scoring functions using VLMs to better evaluate the relevance between the event and the description. Finally, for each sub-event description, we use VLMs to locate the top-k proposals and leverage the order and relationships between sub-events provided by LLMs to filter and integrate these proposals. Our method achieves the best performance on zero-shot video temporal grounding on Charades-STA and ActivityNet Captions datasets without any training and demonstrates better generalization capabilities in cross-dataset and OOD settings.
comment: Accepted by ECCV 2024
☆ M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation
The rapid evolution of artificial intelligence, especially in large language models (LLMs), has significantly impacted various domains, including healthcare. In chest X-ray (CXR) analysis, previous studies have employed LLMs, but with limitations: either underutilizing the multi-tasking capabilities of LLMs or lacking clinical accuracy. This paper presents M4CXR, a multi-modal LLM designed to enhance CXR interpretation. The model is trained on a visual instruction-following dataset that integrates various task-specific datasets in a conversational format. As a result, the model supports multiple tasks such as medical report generation (MRG), visual grounding, and visual question answering (VQA). M4CXR achieves state-of-the-art clinical accuracy in MRG by employing a chain-of-thought prompting strategy, in which it identifies findings in CXR images and subsequently generates corresponding reports. The model is adaptable to various MRG scenarios depending on the available inputs, such as single-image, multi-image, and multi-study contexts. In addition to MRG, M4CXR performs visual grounding at a level comparable to specialized models and also demonstrates outstanding performance in VQA. Both quantitative and qualitative assessments reveal M4CXR's versatility in MRG, visual grounding, and VQA, while consistently maintaining clinical accuracy.
☆ Uni-3DAD: GAN-Inversion Aided Universal 3D Anomaly Detection on Model-free Products
Anomaly detection is a long-standing challenge in manufacturing systems. Traditionally, anomaly detection has relied on human inspectors. However, 3D point clouds have gained attention due to their robustness to environmental factors and their ability to represent geometric data. Existing 3D anomaly detection methods generally fall into two categories. One compares scanned 3D point clouds with design files, assuming these files are always available. However, such assumptions are often violated in many real-world applications where model-free products exist, such as fresh produce (i.e., ``Cookie", ``Potato", etc.), dentures, bone, etc. The other category compares patches of scanned 3D point clouds with a library of normal patches named memory bank. However, those methods usually fail to detect incomplete shapes, which is a fairly common defect type (i.e., missing pieces of different products). The main challenge is that missing areas in 3D point clouds represent the absence of scanned points. This makes it infeasible to compare the missing region with existing point cloud patches in the memory bank. To address these two challenges, we proposed a unified, unsupervised 3D anomaly detection framework capable of identifying all types of defects on model-free products. Our method integrates two detection modules: a feature-based detection module and a reconstruction-based detection module. Feature-based detection covers geometric defects, such as dents, holes, and cracks, while the reconstruction-based method detects missing regions. Additionally, we employ a One-class Support Vector Machine (OCSVM) to fuse the detection results from both modules. The results demonstrate that (1) our proposed method outperforms the state-of-the-art methods in identifying incomplete shapes and (2) it still maintains comparable performance with the SOTA methods in detecting all other types of anomalies.
☆ PolarBEVDet: Exploring Polar Representation for Multi-View 3D Object Detection in Bird's-Eye-View
Recently, LSS-based multi-view 3D object detection provides an economical and deployment-friendly solution for autonomous driving. However, all the existing LSS-based methods transform multi-view image features into a Cartesian Bird's-Eye-View(BEV) representation, which does not take into account the non-uniform image information distribution and hardly exploits the view symmetry. In this paper, in order to adapt the image information distribution and preserve the view symmetry by regular convolution, we propose to employ the polar BEV representation to substitute the Cartesian BEV representation. To achieve this, we elaborately tailor three modules: a polar view transformer to generate the polar BEV representation, a polar temporal fusion module for fusing historical polar BEV features and a polar detection head to predict the polar-parameterized representation of the object. In addition, we design a 2D auxiliary detection head and a spatial attention enhancement module to improve the quality of feature extraction in perspective view and BEV, respectively. Finally, we integrate the above improvements into a novel multi-view 3D object detector, PolarBEVDet. Experiments on nuScenes show that PolarBEVDet achieves the superior performance. The code is available at https://github.com/Yzichen/PolarBEVDet.git.
comment: 11 pages, 6 figures
☆ DLM-VMTL:A Double Layer Mapper for heterogeneous data video Multi-task prompt learning
In recent years, the parameters of backbones of Video Understanding tasks continue to increase and even reach billion-level. Whether fine-tuning a specific task on the Video Foundation Model or pre-training the model designed for the specific task, incurs a lot of overhead. How to make these models play other values than their own tasks becomes a worthy question. Multi-Task Learning(MTL) makes the visual task acquire the rich shareable knowledge from other tasks while joint training. It is fully explored in Image Recognition tasks especially dense predict tasks. Nevertheless, it is rarely used in video domain due to the lack of multi-labels video data. In this paper, a heterogenous data video multi-task prompt learning (VMTL) method is proposed to address above problem. It's different from it in image domain, a Double-Layers Mapper(DLM) is proposed to extract the shareable knowledge into visual promptS and align it with representation of primary task. Extensive experiments prove that our DLM-VMTL performs better than baselines on 6 different video understanding tasks and 11 datasets.
☆ Estimating Dynamic Flow Features in Groups of Tracked Objects
Interpreting motion captured in image sequences is crucial for a wide range of computer vision applications. Typical estimation approaches include optical flow (OF), which approximates the apparent motion instantaneously in a scene, and multiple object tracking (MOT), which tracks the motion of subjects over time. Often, the motion of objects in a scene is governed by some underlying dynamical system which could be inferred by analyzing the motion of groups of objects. Standard motion analyses, however, are not designed to intuit flow dynamics from trajectory data, making such measurements difficult in practice. The goal of this work is to extend gradient-based dynamical systems analyses to real-world applications characterized by complex, feature-rich image sequences with imperfect tracers. The tracer trajectories are tracked using deep vision networks and gradients are approximated using Lagrangian gradient regression (LGR), a tool designed to estimate spatial gradients from sparse data. From gradients, dynamical features such as regions of coherent rotation and transport barriers are identified. The proposed approach is affordably implemented and enables advanced studies including the motion analysis of two distinct object classes in a single image sequence. Two examples of the method are presented on data sets for which standard gradient-based analyses do not apply.
comment: 21 pages, 6 figures
☆ VLM-KD: Knowledge Distillation from VLM for Long-Tail Visual Recognition
For visual recognition, knowledge distillation typically involves transferring knowledge from a large, well-trained teacher model to a smaller student model. In this paper, we introduce an effective method to distill knowledge from an off-the-shelf vision-language model (VLM), demonstrating that it provides novel supervision in addition to those from a conventional vision-only teacher model. Our key technical contribution is the development of a framework that generates novel text supervision and distills free-form text into a vision encoder. We showcase the effectiveness of our approach, termed VLM-KD, across various benchmark datasets, showing that it surpasses several state-of-the-art long-tail visual classifiers. To our knowledge, this work is the first to utilize knowledge distillation with text supervision generated by an off-the-shelf VLM and apply it to vanilla randomly initialized vision encoders.
☆ Enhancing Autism Spectrum Disorder Early Detection with the Parent-Child Dyads Block-Play Protocol and an Attention-enhanced GCN-xLSTM Hybrid Deep Learning Framework
Autism Spectrum Disorder (ASD) is a rapidly growing neurodevelopmental disorder. Performing a timely intervention is crucial for the growth of young children with ASD, but traditional clinical screening methods lack objectivity. This study introduces an innovative approach to early detection of ASD. The contributions are threefold. First, this work proposes a novel Parent-Child Dyads Block-Play (PCB) protocol, grounded in kinesiological and neuroscientific research, to identify behavioral patterns distinguishing ASD from typically developing (TD) toddlers. Second, we have compiled a substantial video dataset, featuring 40 ASD and 89 TD toddlers engaged in block play with parents. This dataset exceeds previous efforts on both the scale of participants and the length of individual sessions. Third, our approach to action analysis in videos employs a hybrid deep learning framework, integrating a two-stream graph convolution network with attention-enhanced xLSTM (2sGCN-AxLSTM). This framework is adept at capturing dynamic interactions between toddlers and parents by extracting spatial features correlated with upper body and head movements and focusing on global contextual information of action sequences over time. By learning these global features with spatio-temporal correlations, our 2sGCN-AxLSTM effectively analyzes dynamic human behavior patterns and demonstrates an unprecedented accuracy of 89.6\% in early detection of ASD. Our approach shows strong potential for enhancing early ASD diagnosis by accurately analyzing parent-child interactions, providing a critical tool to support timely and informed clinical decision-making.
comment: 18 pages, 8 figures, and 4 tables
☆ Ig3D: Integrating 3D Face Representations in Facial Expression Inference ECCV
Reconstructing 3D faces with facial geometry from single images has allowed for major advances in animation, generative models, and virtual reality. However, this ability to represent faces with their 3D features is not as fully explored by the facial expression inference (FEI) community. This study therefore aims to investigate the impacts of integrating such 3D representations into the FEI task, specifically for facial expression classification and face-based valence-arousal (VA) estimation. To accomplish this, we first assess the performance of two 3D face representations (both based on the 3D morphable model, FLAME) for the FEI tasks. We further explore two fusion architectures, intermediate fusion and late fusion, for integrating the 3D face representations with existing 2D inference frameworks. To evaluate our proposed architecture, we extract the corresponding 3D representations and perform extensive tests on the AffectNet and RAF-DB datasets. Our experimental results demonstrate that our proposed method outperforms the state-of-the-art AffectNet VA estimation and RAF-DB classification tasks. Moreover, our method can act as a complement to other existing methods to boost performance in many emotion inference tasks.
comment: Accepted by ECCVW 2024
☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
☆ LV-UNet: A Lightweight and Vanilla Model for Medical Image Segmentation
Although the progress made by large models in computer vision, optimization challenges, the complexity of transformer models, computational limitations, and the requirements of practical applications call for simpler designs in model architecture for medical image segmentation, especially in mobile medical devices that require lightweight and deployable models with real-time performance. However, some of the current lightweight models exhibit poor robustness across different datasets, which hinders their broader adoption. This paper proposes a lightweight and vanilla model called LV-UNet, which effectively utilizes pre-trained MobileNetv3-Large models and introduces fusible modules. It can be trained using an improved deep training strategy and switched to deployment mode during inference, reducing both parameter count and computational load. Experiments are conducted on ISIC 2016, BUSI, CVC- ClinicDB, CVC-ColonDB, and Kvair-SEG datasets, achieving better performance compared to the state-of-the-art and classic models.
☆ Revising Multimodal VAEs with Diffusion Decoders
Multimodal VAEs often struggle with generating high-quality outputs, a challenge that extends beyond the inherent limitations of the VAE framework. The core issue lies in the restricted joint representation of the latent space, particularly when complex modalities like images are involved. Feedforward decoders, commonly used for these intricate modalities, inadvertently constrain the joint latent space, leading to a degradation in the quality of the other modalities as well. Although recent studies have shown improvement by introducing modality-specific representations, the issue remains significant. In this work, we demonstrate that incorporating a flexible diffusion decoder specifically for the image modality not only enhances the generation quality of the images but also positively impacts the performance of the other modalities that rely on feedforward decoders. This approach addresses the limitations imposed by conventional joint representations and opens up new possibilities for improving multimodal generation tasks using the multimodal VAE framework. Our model provides state-of-the-art results compared to other multimodal VAEs in different datasets with higher coherence and superior quality in the generated modalities
☆ FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features
Published research highlights the presence of demographic bias in automated facial attribute classification algorithms, particularly impacting women and individuals with darker skin tones. Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy, i.e., Pareto inefficiency. Facial attributes, whether common ones like gender or others such as "chubby" or "high cheekbones", exhibit high interclass similarity and intraclass variation across demographics leading to unequal accuracy. This requires the use of local and subtle cues using fine-grained analysis for differentiation. This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem. Our approach effectively integrates both low-level local features (like edges and color) and high-level semantic features (like shapes and structures) through cross-layer mutual attention learning. Here, shallow to deep CNN layers function as experts, offering category predictions and attention regions. An exhaustive evaluation on facial attribute annotated datasets demonstrates that our FineFACE model improves accuracy by 1.32% to 1.74% and fairness by 67% to 83.6%, over the SOTA bias mitigation techniques. Importantly, our approach obtains a Pareto-efficient balance between accuracy and fairness between demographic groups. In addition, our approach does not require demographic annotations and is applicable to diverse downstream classification tasks. To facilitate reproducibility, the code and dataset information is available at https://github.com/VCBSL-Fairness/FineFACE.
☆ MSLIQA: Enhancing Learning Representations for Image Quality Assessment through Multi-Scale Learning
No-Reference Image Quality Assessment (NR-IQA) remains a challenging task due to the diversity of distortions and the lack of large annotated datasets. Many studies have attempted to tackle these challenges by developing more accurate NR-IQA models, often employing complex and computationally expensive networks, or by bridging the domain gap between various distortions to enhance performance on test datasets. In our work, we improve the performance of a generic lightweight NR-IQA model by introducing a novel augmentation strategy that boosts its performance by almost 28\%. This augmentation strategy enables the network to better discriminate between different distortions in various parts of the image by zooming in and out. Additionally, the inclusion of test-time augmentation further enhances performance, making our lightweight network's results comparable to the current state-of-the-art models, simply through the use of augmentations.
☆ GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content
Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.
☆ Comparative Analysis of Transfer Learning Models for Breast Cancer Classification
The classification of histopathological images is crucial for the early and precise detection of breast cancer. This study investigates the efficiency of deep learning models in distinguishing between Invasive Ductal Carcinoma (IDC) and non-IDC in histopathology slides. We conducted a thorough comparison examination of eight sophisticated models: ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet. This analysis was carried out using a large dataset of 277,524 image patches. Our research makes a substantial contribution to the field by offering a comprehensive assessment of the performance of each model. We particularly highlight the exceptional efficacy of attention-based mechanisms in the ViT model, which achieved a remarkable validation accuracy of 93\%, surpassing conventional convolutional networks. This study highlights the promise of advanced machine learning approaches in clinical settings, offering improved precision as well as efficiency in breast cancer diagnosis.
☆ Enabling Local Editing in Diffusion Models by Joint and Individual Component Analysis
Recent advances in Diffusion Models (DMs) have led to significant progress in visual synthesis and editing tasks, establishing them as a strong competitor to Generative Adversarial Networks (GANs). However, the latent space of DMs is not as well understood as that of GANs. Recent research has focused on unsupervised semantic discovery in the latent space of DMs by leveraging the bottleneck layer of the denoising network, which has been shown to exhibit properties of a semantic latent space. However, these approaches are limited to discovering global attributes. In this paper we address, the challenge of local image manipulation in DMs and introduce an unsupervised method to factorize the latent semantics learned by the denoising network of pre-trained DMs. Given an arbitrary image and defined regions of interest, we utilize the Jacobian of the denoising network to establish a relation between the regions of interest and their corresponding subspaces in the latent space. Furthermore, we disentangle the joint and individual components of these subspaces to identify latent directions that enable local image manipulation. Once discovered, these directions can be applied to different images to produce semantically consistent edits, making our method suitable for practical applications. Experimental results on various datasets demonstrate that our method can produce semantic edits that are more localized and have better fidelity compared to the state-of-the-art.
comment: Code available here: https://zelaki.github.io/localdiff/
☆ Fluent and Accurate Image Captioning with a Self-Trained Reward Model ICPR 2024
Fine-tuning image captioning models with hand-crafted rewards like the CIDEr metric has been a classical strategy for promoting caption quality at the sequence level. This approach, however, is known to limit descriptiveness and semantic richness and tends to drive the model towards the style of ground-truth sentences, thus losing detail and specificity. On the contrary, recent attempts to employ image-text models like CLIP as reward have led to grammatically incorrect and repetitive captions. In this paper, we propose Self-Cap, a captioning approach that relies on a learnable reward model based on self-generated negatives that can discriminate captions based on their consistency with the image. Specifically, our discriminator is a fine-tuned contrastive image-text model trained to promote caption correctness while avoiding the aberrations that typically happen when training with a CLIP-based reward. To this end, our discriminator directly incorporates negative samples from a frozen captioner, which significantly improves the quality and richness of the generated captions but also reduces the fine-tuning time in comparison to using the CIDEr score as the sole metric for optimization. Experimental results demonstrate the effectiveness of our training strategy on both standard and zero-shot image captioning datasets.
comment: ICPR 2024
☆ See or Guess: Counterfactually Regularized Image Captioning ACM MM 2024
Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
comment: Accepted by ACM MM 2024
☆ STEREO: Towards Adversarially Robust Concept Erasing from Text-to-Image Generation Models
The rapid proliferation of large-scale text-to-image generation (T2IG) models has led to concerns about their potential misuse in generating harmful content. Though many methods have been proposed for erasing undesired concepts from T2IG models, they only provide a false sense of security, as recent works demonstrate that concept-erased models (CEMs) can be easily deceived to generate the erased concept through adversarial attacks. The problem of adversarially robust concept erasing without significant degradation to model utility (ability to generate benign concepts) remains an unresolved challenge, especially in the white-box setting where the adversary has access to the CEM. To address this gap, we propose an approach called STEREO that involves two distinct stages. The first stage searches thoroughly enough for strong and diverse adversarial prompts that can regenerate an erased concept from a CEM, by leveraging robust optimization principles from adversarial training. In the second robustly erase once stage, we introduce an anchor-concept-based compositional objective to robustly erase the target concept at one go, while attempting to minimize the degradation on model utility. By benchmarking the proposed STEREO approach against four state-of-the-art concept erasure methods under three adversarial attacks, we demonstrate its ability to achieve a better robustness vs. utility trade-off. Our code and models are available at https://github.com/koushiksrivats/robust-concept-erasing.
comment: Project Page: https://koushiksrivats.github.io/robust-concept-erasing/
♻ ☆ Spatio-Temporal Context Prompting for Zero-Shot Action Detection
Spatio-temporal action detection encompasses the tasks of localizing and classifying individual actions within a video. Recent works aim to enhance this process by incorporating interaction modeling, which captures the relationship between people and their surrounding context. However, these approaches have primarily focused on fully-supervised learning, and the current limitation lies in the lack of generalization capability to recognize unseen action categories. In this paper, we aim to adapt the pretrained image-language models to detect unseen actions. To this end, we propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction. Meanwhile, our Context Prompting module will utilize contextual information to prompt labels, thereby enhancing the generation of more representative text features. Moreover, to address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism which employs pretrained visual knowledge to find each person's interest context tokens, and then these tokens will be used for prompting to generate text features tailored to each individual. To evaluate the ability to detect unseen actions, we propose a comprehensive benchmark on J-HMDB, UCF101-24, and AVA datasets. The experiments show that our method achieves superior results compared to previous approaches and can be further extended to multi-action videos, bringing it closer to real-world applications. The code and data can be found in https://webber2933.github.io/ST-CLIP-project-page.
comment: Project page: https://webber2933.github.io/ST-CLIP-project-page
♻ ☆ Shot Segmentation Based on Von Neumann Entropy for Key Frame Extraction
Video key frame extraction is important in various fields, such as video summary, retrieval, and compression. Therefore, we suggest a video key frame extraction algorithm based on shot segmentation using Von Neumann entropy. The segmentation of shots is achieved through the computation of Von Neumann entropy of the similarity matrix among frames within the video sequence. The initial frame of each shot is selected as key frames, which combines the temporal sequence information of frames. The experimental results show the extracted key frames can fully and accurately represent the original video content while minimizing the number of repeated frames.
comment: 14 pages, 5 figures
♻ ☆ SITransformer: Shared Information-Guided Transformer for Extreme Multimodal Summarization
Extreme Multimodal Summarization with Multimodal Output (XMSMO) becomes an attractive summarization approach by integrating various types of information to create extremely concise yet informative summaries for individual modalities. Existing methods overlook the issue that multimodal data often contains more topic irrelevant information, which can mislead the model into producing inaccurate summaries especially for extremely short ones. In this paper, we propose SITransformer, a Shared Information-guided Transformer for extreme multimodal summarization. It has a shared information guided pipeline which involves a cross-modal shared information extractor and a cross-modal interaction module. The extractor formulates semantically shared salient information from different modalities by devising a novel filtering process consisting of a differentiable top-k selector and a shared-information guided gating unit. As a result, the common, salient, and relevant contents across modalities are identified. Next, a transformer with cross-modal attentions is developed for intra- and inter-modality learning with the shared information guidance to produce the extreme summary. Comprehensive experiments demonstrate that SITransformer significantly enhances the summarization quality for both video and text summaries for XMSMO. Our code will be publicly available at https://github.com/SichengLeoLiu/MMAsia24-XMSMO.
comment: 8 pages, 5 figures, submitted to ACM Multimedia Asia 2024
♻ ☆ Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1
Speckle suppression in synthetic aperture radar (SAR) images is a key processing step which continues to be a research topic. A wide variety of methods, using either spatially-based approaches or transform-based strategies, have been developed and have shown to provide outstanding results. However, recent advances in deep learning techniques and their application to SAR image despeckling have been demonstrated to offer state-of-the-art results. Unfortunately, they have been mostly applied to single-polarimetric images. The extension of a deep learning-based approach for speckle removal to polarimetric SAR (PolSAR) images is complicated because of the complex nature of the measured covariance matrices for every image pixel, the properties of which must be preserved during filtering. In this work, we propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network. The methodology includes a reversible transformation of the original complex covariance matrix to obtain a set of real-valued intensity bands which are fed to the neural network. In addition, the proposed method includes a change detection strategy to avoid the neural network to learn erroneous features in areas strongly affected by temporal changes, so that the network only learns the underlying speckle component present in the data. The method is implemented and tested with dual-polarimetric images acquired by Sentinel-1. Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation. More importantly, it is also shown that the neural network is not generating artifacts or introducing bias in the filtered images, making them suitable for further polarimetric processing and exploitation.
comment: 23 pages, 32 figures
♻ ☆ RIDE: Boosting 3D Object Detection for LiDAR Point Clouds via Rotation-Invariant Analysis
The rotation robustness property has drawn much attention to point cloud analysis, whereas it still poses a critical challenge in 3D object detection. When subjected to arbitrary rotation, most existing detectors fail to produce expected outputs due to the poor rotation robustness. In this paper, we present RIDE, a pioneering exploration of Rotation-Invariance for the 3D LiDAR-point-based object DEtector, with the key idea of designing rotation-invariant features from LiDAR scenes and then effectively incorporating them into existing 3D detectors. Specifically, we design a bi-feature extractor that extracts (i) object-aware features though sensitive to rotation but preserve geometry well, and (ii) rotation-invariant features, which lose geometric information to a certain extent but are robust to rotation. These two kinds of features complement each other to decode 3D proposals that are robust to arbitrary rotations. Particularly, our RIDE is compatible and easy to plug into the existing one-stage and two-stage 3D detectors, and boosts both detection performance and rotation robustness. Extensive experiments on the standard benchmarks showcase that the mean average precision (mAP) and rotation robustness can be significantly boosted by integrating with our RIDE, with +5.6% mAP and 53% rotation robustness improvement on KITTI, +5.1% and 28% improvement correspondingly on nuScenes. The code will be available soon.
♻ ☆ VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation
In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons, sketches and scientific figures. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs and (f) comparison with VLMs on rasterized representations. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced at https://vgbench.github.io.
comment: Project Page: https://vgbench.github.io
♻ ☆ GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models
Large multimodal models (LMMs) have exhibited proficiencies across many visual tasks. Although numerous well-known benchmarks exist to evaluate model performance, they increasingly have insufficient headroom. As such, there is a pressing need for a new generation of benchmarks challenging enough for the next generation of LMMs. One area that LMMs show potential is graph analysis, specifically, the tasks an analyst might typically perform when interpreting figures such as estimating the mean, intercepts or correlations of functions and data series. In this work, we introduce GRAB, a graph analysis benchmark, fit for current and future frontier LMMs. Our benchmark is entirely synthetic, ensuring high-quality, noise-free questions. GRAB is comprised of 2170 questions, covering four tasks and 23 graph properties. We evaluate 20 LMMs on GRAB, finding it to be a challenging benchmark, with the highest performing model attaining a score of just 21.7%. Finally, we conduct various ablations to investigate where the models succeed and struggle. We release GRAB to encourage progress in this important, growing domain.
comment: V2: Fixed references formatting
♻ ☆ Evaluation Framework for Feedback Generation Methods in Skeletal Movement Assessment ECCV 2024
The application of machine-learning solutions to movement assessment from skeleton videos has attracted significant research attention in recent years. This advancement has made rehabilitation at home more accessible, utilizing movement assessment algorithms that can operate on affordable equipment for human pose detection and analysis from 2D or 3D videos. While the primary objective of automatic assessment tasks is to score movements, the automatic generation of feedback highlighting key movement issues has the potential to significantly enhance and accelerate the rehabilitation process. While numerous research works exist in the field of automatic movement assessment, only a handful address feedback generation. In this study, we propose terminology and criteria for the classification, evaluation, and comparison of feedback generation solutions. We discuss the challenges associated with each feedback generation approach and use our proposed criteria to classify existing solutions. To our knowledge, this is the first work that formulates feedback generation in skeletal movement assessment.
comment: Accepted to xAI4Biometrics 2024 at ECCV 2024
♻ ☆ OpticalRS-4M: Scaling Efficient Masked Autoencoder Learning on Large Remote Sensing Dataset
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-4M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-4M comprises 4 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments demonstrate that OpticalRS-4M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2 times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models.
♻ ☆ Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
Large-scale endeavors like and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 7 real-world and 14 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe Manipulate-Anything can be a scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Project page: https://robot-ma.github.io/.
comment: Project page: https://robot-ma.github.io/. All supplementary material, prompts and code can be found on the project page
♻ ☆ Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition
Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition.
♻ ☆ Trajectory Forecasting through Low-Rank Adaptation of Discrete Latent Codes
Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.
comment: 15 pages, 3 figures, 5 tables
♻ ☆ Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation. The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz optimisation. The method obtains provably tighter over-approximations of the perturbation region than the present state-of-the-art. We report results from experiments on a comprehensive set of verification benchmarks on MNIST and CIFAR10. We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
comment: ECAI 2024
♻ ☆ Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express CIKM 2024
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
comment: CIKM 2024 (International Conference on Information and Knowledge Management), Multimodal Search and Recommendations Workshop
♻ ☆ On the Efficacy of Text-Based Input Modalities for Action Anticipation
Anticipating future actions is a highly challenging task due to the diversity and scale of potential future actions; yet, information from different modalities help narrow down plausible action choices. Each modality can provide diverse and often complementary context for the model to learn from. While previous multi-modal methods leverage information from modalities such as video and audio, we primarily explore how text descriptions of actions and objects can also lead to more accurate action anticipation by providing additional contextual cues, e.g., about the environment and its contents. We propose a Multi-modal Contrastive Anticipative Transformer (M-CAT), a video transformer architecture that jointly learns from multi-modal features and text descriptions of actions and objects. We train our model in two stages, where the model first learns to align video clips with descriptions of future actions, and is subsequently fine-tuned to predict future actions. Compared to existing methods, M-CAT has the advantage of learning additional context from two types of text inputs: rich descriptions of future actions during pre-training, and, text descriptions for detected objects and actions during modality feature fusion. Through extensive experimental evaluation, we demonstrate that our model outperforms previous methods on the EpicKitchens datasets, and show that using simple text descriptions of actions and objects aid in more effective action anticipation. In addition, we examine the impact of object and action information obtained via text, and perform extensive ablations.
♻ ☆ Mumpy: Multilateral Temporal-view Pyramid Transformer for Video Inpainting Detection BMVC 2024
The task of video inpainting detection is to expose the pixel-level inpainted regions within a video sequence. Existing methods usually focus on leveraging spatial and temporal inconsistencies. However, these methods typically employ fixed operations to combine spatial and temporal clues, limiting their applicability in different scenarios. In this paper, we introduce a novel Multilateral Temporal-view Pyramid Transformer ({\em MumPy}) that collaborates spatial-temporal clues flexibly. Our method utilizes a newly designed multilateral temporal-view encoder to extract various collaborations of spatial-temporal clues and introduces a deformable window-based temporal-view interaction module to enhance the diversity of these collaborations. Subsequently, we develop a multi-pyramid decoder to aggregate the various types of features and generate detection maps. By adjusting the contribution strength of spatial and temporal clues, our method can effectively identify inpainted regions. We validate our method on existing datasets and also introduce a new challenging and large-scale Video Inpainting dataset based on the YouTube-VOS dataset, which employs several more recent inpainting methods. The results demonstrate the superiority of our method in both in-domain and cross-domain evaluation scenarios.
comment: BMVC 2024
♻ ☆ Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging
Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive optics scanning light ophthalmoscope (AOSLO) imaging enables visualization of the cones from reflections of waveguiding cone photoreceptors. While there have been significant improvements in automated algorithms for segmenting cones in confocal AOSLO images, the process of labelling data remains labor-intensive and manual. This paper introduces a method based on deep learning (DL) for detecting and segmenting cones in AOSLO images. The models were trained on a semi-automatically labelled dataset of 20 AOSLO batches of images of 18 participants for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$ from the foveal center. F1 scores were 0.968, 0.958, and 0.954 for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$, respectively, which is better than previously reported DL approaches. Our method minimizes the need for labelled data by only necessitating a fraction of labelled cones, which is especially beneficial in the field of ophthalmology, where labelled data can often be limited.
♻ ☆ Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution
Recent progress in remote sensing image (RSI) super-resolution (SR) has exhibited remarkable performance using deep neural networks, e.g., Convolutional Neural Networks and Transformers. However, existing SR methods often suffer from either a limited receptive field or quadratic computational overhead, resulting in sub-optimal global representation and unacceptable computational costs in large-scale RSI. To alleviate these issues, we develop the first attempt to integrate the Vision State Space Model (Mamba) for RSI-SR, which specializes in processing large-scale RSI by capturing long-range dependency with linear complexity. To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR, to explore the spatial and frequent correlations. In particular, our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM) to grasp their merits for effective spatial-frequency fusion. Considering that global and local dependencies are complementary and both beneficial for SR, we further recalibrate these multi-level features for accurate feature fusion via learnable scaling adaptors. Extensive experiments on AID, DOTA, and DIOR benchmarks demonstrate that our FMSR outperforms state-of-the-art Transformer-based methods HAT-L in terms of PSNR by 0.11 dB on average, while consuming only 28.05% and 19.08% of its memory consumption and complexity, respectively. Code will be available at https://github.com/XY-boy/FreMamba
comment: Accepted by IEEE TMM
♻ ☆ On Feasibility of Intent Obfuscating Attacks
Intent obfuscation is a common tactic in adversarial situations, enabling the attacker to both manipulate the target system and avoid culpability. Surprisingly, it has rarely been implemented in adversarial attacks on machine learning systems. We are the first to propose using intent obfuscation to generate adversarial examples for object detectors: by perturbing another non-overlapping object to disrupt the target object, the attacker hides their intended target. We conduct a randomized experiment on 5 prominent detectors -- YOLOv3, SSD, RetinaNet, Faster R-CNN, and Cascade R-CNN -- using both targeted and untargeted attacks and achieve success on all models and attacks. We analyze the success factors characterizing intent obfuscating attacks, including target object confidence and perturb object sizes. We then demonstrate that the attacker can exploit these success factors to increase success rates for all models and attacks. Finally, we discuss main takeaways and legal repercussions.
comment: 33 pages, 21 Figures. Includes technical appendix. To appear in AIES 2024
♻ ☆ VideoMambaPro: A Leap Forward for Mamba in Video Understanding
Video understanding requires the extraction of rich spatio-temporal representations, which transformer models achieve through self-attention. Unfortunately, self-attention poses a computational burden. In NLP, Mamba has surfaced as an efficient alternative for transformers. However, Mamba's successes do not trivially extend to computer vision tasks, including those in video analysis. In this paper, we theoretically analyze the differences between self-attention and Mamba. We identify two limitations in Mamba's token processing: historical decay and element contradiction. We propose VideoMambaPro (VMP) that solves the identified limitations by adding masked backward computation and elemental residual connections to a VideoMamba backbone. VideoMambaPro shows state-of-the-art video action recognition performance compared to transformer models, and surpasses VideoMamba by clear margins: 7.9% and 8.1% top-1 on Kinetics-400 and Something-Something V2, respectively. Our VideoMambaPro-M model achieves 91.9% top-1 on Kinetics-400, only 0.2% below InternVideo2-6B but with only 1.2% of its parameters. The combination of high performance and efficiency makes VideoMambaPro an interesting alternative for transformer models.
comment: Model weights are lost due to management error, will re-calculate and update the results
♻ ☆ Learning to Detect and Segment for Open Vocabulary Object Detection CVPR2023
Open vocabulary object detection has been greatly advanced by the recent development of vision-language pretrained model, which helps recognize novel objects with only semantic categories. The prior works mainly focus on knowledge transferring to the object proposal classification and employ class-agnostic box and mask prediction. In this work, we propose CondHead, a principled dynamic network design to better generalize the box regression and mask segmentation for open vocabulary setting. The core idea is to conditionally parameterize the network heads on semantic embedding and thus the model is guided with class-specific knowledge to better detect novel categories. Specifically, CondHead is composed of two streams of network heads, the dynamically aggregated head and the dynamically generated head. The former is instantiated with a set of static heads that are conditionally aggregated, these heads are optimized as experts and are expected to learn sophisticated prediction. The latter is instantiated with dynamically generated parameters and encodes general class-specific information. With such a conditional design, the detection model is bridged by the semantic embedding to offer strongly generalizable class-wise box and mask prediction. Our method brings significant improvement to the state-of-the-art open vocabulary object detection methods with very minor overhead, e.g., it surpasses a RegionClip model by 3.0 detection AP on novel categories, with only 1.1% more computation.
comment: Accepted to CVPR2023, code will be available later
♻ ☆ Fast Text-to-3D-Aware Face Generation and Manipulation via Direct Cross-modal Mapping and Geometric Regularization
Text-to-3D-aware face (T3D Face) generation and manipulation is an emerging research hot spot in machine learning, which still suffers from low efficiency and poor quality. In this paper, we propose an End-to-End Efficient and Effective network for fast and accurate T3D face generation and manipulation, termed $E^3$-FaceNet. Different from existing complex generation paradigms, $E^3$-FaceNet resorts to a direct mapping from text instructions to 3D-aware visual space. We introduce a novel Style Code Enhancer to enhance cross-modal semantic alignment, alongside an innovative Geometric Regularization objective to maintain consistency across multi-view generations. Extensive experiments on three benchmark datasets demonstrate that $E^3$-FaceNet can not only achieve picture-like 3D face generation and manipulation, but also improve inference speed by orders of magnitudes. For instance, compared with Latent3D, $E^3$-FaceNet speeds up the five-view generations by almost 470 times, while still exceeding in generation quality. Our code is released at https://github.com/Aria-Zhangjl/E3-FaceNet.
♻ ☆ HDRTransDC: High Dynamic Range Image Reconstruction with Transformer Deformation Convolution
High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.
comment: We request to withdraw our manuscript due to identified issues: inaccuracies in the description of a submodule's composition, principles, and functionality in Section 3.2, and potential problems in metric calculation in Sections 4.2 and 4.3. To prevent the spread of misleading information, we believe it is necessary to temporarily withdraw the manuscript for further research and verification
♻ ☆ A comparison between humans and AI at recognizing objects in unusual poses
Deep learning is closing the gap with human vision on several object recognition benchmarks. Here we investigate this gap for challenging images where objects are seen in unusual poses. We find that humans excel at recognizing objects in such poses. In contrast, state-of-the-art deep networks for vision (EfficientNet, SWAG, ViT, SWIN, BEiT, ConvNext) and state-of-the-art large vision-language models (Claude 3.5, Gemini 1.5, GPT-4) are systematically brittle on unusual poses, with the exception of Gemini showing excellent robustness in that condition. As we limit image exposure time, human performance degrades to the level of deep networks, suggesting that additional mental processes (requiring additional time) are necessary to identify objects in unusual poses. An analysis of error patterns of humans vs. networks reveals that even time-limited humans are dissimilar to feed-forward deep networks. In conclusion, our comparison reveals that humans and deep networks rely on different mechanisms for recognizing objects in unusual poses. Understanding the nature of the mental processes taking place during extra viewing time may be key to reproduce the robustness of human vision in silico.
♻ ☆ Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference
Parameter-efficient fine-tuning (PEFT) has emerged as a popular solution for adapting pre-trained Vision Transformer (ViT) models to downstream applications. While current PEFT methods have achieved parameter efficiency, they overlook the efficiency of computation and GPU memory during both fine-tuning and inference, falling short of practical requirements. In this paper, we propose \textbf{Sparse-Tuning}, a novel PEFT method that accounts for the information redundancy in images and videos to boost the above efficiency. By sparsely preserving the semantic-relevant tokens and merging irrelevant ones, Sparse-Tuning minimizes the quantity of tokens processed at each layer, leading to a quadratic reduction in computational and memory overhead. To align our token sparsification strategy suitably with fine-tuning purposes, we further design Dense Adapters that establish dense connections from shallow layers to deeper layers. These Dense Adapters integrate multi-level local features to enrich the current tokens, improving both token preservation and model adaptation. Empirical results on VTAB-1K, three image datasets, and two video datasets show that our Sparse-Tuning reduces GFLOPs to \textbf{62\%-70\%} of the original ViT-B while achieving state-of-the-art performance. Source code is available at \url{https://github.com/liuting20/Sparse-Tuning}.
♻ ☆ Dual-Domain CLIP-Assisted Residual Optimization Perception Model for Metal Artifact Reduction
Metal artifacts in computed tomography (CT) imaging pose significant challenges to accurate clinical diagnosis. The presence of high-density metallic implants results in artifacts that deteriorate image quality, manifesting in the forms of streaking, blurring, or beam hardening effects, etc. Nowadays, various deep learning-based approaches, particularly generative models, have been proposed for metal artifact reduction (MAR). However, these methods have limited perception ability in the diverse morphologies of different metal implants with artifacts, which may generate spurious anatomical structures and exhibit inferior generalization capability. To address the issues, we leverage visual-language model (VLM) to identify these morphological features and introduce them into a dual-domain CLIP-assisted residual optimization perception model (DuDoCROP) for MAR. Specifically, a dual-domain CLIP (DuDoCLIP) is fine-tuned on the image domain and sinogram domain using contrastive learning to extract semantic descriptions from anatomical structures and metal artifacts. Subsequently, a diffusion model is guided by the embeddings of DuDoCLIP, thereby enabling the dual-domain prior generation. Additionally, we design prompt engineering for more precise image-text descriptions that can enhance the model's perception capability. Then, a downstream task is devised for the one-step residual optimization and integration of dual-domain priors, while incorporating raw data fidelity. Ultimately, a new perceptual indicator is proposed to validate the model's perception and generation performance. With the assistance of DuDoCLIP, our DuDoCROP exhibits at least 63.7% higher generalization capability compared to the baseline model. Numerical experiments demonstrate that the proposed method can generate more realistic image structures and outperform other SOTA approaches both qualitatively and quantitatively.
comment: 14 pages, 18 figures
♻ ☆ Enhancing Adaptive Deep Networks for Image Classification via Uncertainty-aware Decision Fusion
Handling varying computational resources is a critical issue in modern AI applications. Adaptive deep networks, featuring the dynamic employment of multiple classifier heads among different layers, have been proposed to address classification tasks under varying computing resources. Existing approaches typically utilize the last classifier supported by the available resources for inference, as they believe that the last classifier always performs better across all classes. However, our findings indicate that earlier classifier heads can outperform the last head for certain classes. Based on this observation, we introduce the Collaborative Decision Making (CDM) module, which fuses the multiple classifier heads to enhance the inference performance of adaptive deep networks. CDM incorporates an uncertainty-aware fusion method based on evidential deep learning (EDL), that utilizes the reliability (uncertainty values) from the first c-1 classifiers to improve the c-th classifier' accuracy. We also design a balance term that reduces fusion saturation and unfairness issues caused by EDL constraints to improve the fusion quality of CDM. Finally, a regularized training strategy that uses the last classifier to guide the learning process of early classifiers is proposed to further enhance the CDM module's effect, called the Guided Collaborative Decision Making (GCDM) framework. The experimental evaluation demonstrates the effectiveness of our approaches. Results on ImageNet datasets show CDM and GCDM obtain 0.4% to 2.8% accuracy improvement (under varying computing resources) on popular adaptive networks. The code is available at the link https://github.com/Meteor-Stars/GCDM_AdaptiveNet.
comment: 13 pages, 27 figures. In ACM Multimedia 2024
♻ ☆ A Flying Bird Object Detection Method for Surveillance Video
Aiming at the specific characteristics of flying bird objects in surveillance video, such as the typically non-obvious features in single-frame images, small size in most instances, and asymmetric shapes, this paper proposes a Flying Bird Object Detection method for Surveillance Video (FBOD-SV). Firstly, a new feature aggregation module, the Correlation Attention Feature Aggregation (Co-Attention-FA) module, is designed to aggregate the features of the flying bird object according to the bird object's correlation on multiple consecutive frames of images. Secondly, a Flying Bird Object Detection Network (FBOD-Net) with down-sampling followed by up-sampling is designed, which utilizes a large feature layer that fuses fine spatial information and large receptive field information to detect special multi-scale (mostly small-scale) bird objects. Finally, the SimOTA dynamic label allocation method is applied to One-Category object detection, and the SimOTA-OC dynamic label strategy is proposed to solve the difficult problem of label allocation caused by irregular flying bird objects. In this paper, the performance of the FBOD-SV is validated using experimental datasets of flying bird objects in traction substation surveillance videos. The experimental results show that the FBOD-SV effectively improves the detection performance of flying bird objects in surveillance video.
♻ ☆ Conformal Performance Range Prediction for Segmentation Output Quality Control MICCAI
Recent works have introduced methods to estimate segmentation performance without ground truth, relying solely on neural network softmax outputs. These techniques hold potential for intuitive output quality control. However, such performance estimates rely on calibrated softmax outputs, which is often not the case in modern neural networks. Moreover, the estimates do not take into account inherent uncertainty in segmentation tasks. These limitations may render precise performance predictions unattainable, restricting the practical applicability of performance estimation methods. To address these challenges, we develop a novel approach for predicting performance ranges with statistical guarantees of containing the ground truth with a user specified probability. Our method leverages sampling-based segmentation uncertainty estimation to derive heuristic performance ranges, and applies split conformal prediction to transform these estimates into rigorous prediction ranges that meet the desired guarantees. We demonstrate our approach on the FIVES retinal vessel segmentation dataset and compare five commonly used sampling-based uncertainty estimation techniques. Our results show that it is possible to achieve the desired coverage with small prediction ranges, highlighting the potential of performance range prediction as a valuable tool for output quality control.
comment: Accepted as an oral presentation at MICCAI UNSURE 2024
♻ ☆ Text-Region Matching for Multi-Label Image Recognition with Missing Labels ACM MM
Recently, large-scale visual language pre-trained (VLP) models have demonstrated impressive performance across various downstream tasks. Motivated by these advancements, pioneering efforts have emerged in multi-label image recognition with missing labels, leveraging VLP prompt-tuning technology. However, they usually cannot match text and vision features well, due to complicated semantics gaps and missing labels in a multi-label image. To tackle this challenge, we propose $\textbf{T}$ext-$\textbf{R}$egion $\textbf{M}$atching for optimizing $\textbf{M}$ulti-$\textbf{L}$abel prompt tuning, namely TRM-ML, a novel method for enhancing meaningful cross-modal matching. Compared to existing methods, we advocate exploring the information of category-aware regions rather than the entire image or pixels, which contributes to bridging the semantic gap between textual and visual representations in a one-to-one matching manner. Concurrently, we further introduce multimodal contrastive learning to narrow the semantic gap between textual and visual modalities and establish intra-class and inter-class relationships. Additionally, to deal with missing labels, we propose a multimodal category prototype that leverages intra- and inter-category semantic relationships to estimate unknown labels, facilitating pseudo-label generation. Extensive experiments on the MS-COCO, PASCAL VOC, Visual Genome, NUS-WIDE, and CUB-200-211 benchmark datasets demonstrate that our proposed framework outperforms the state-of-the-art methods by a significant margin. Our code is available here: https://github.com/yu-gi-oh-leilei/TRM-ML.
comment: Accepted to ACM International Conference on Multimedia (ACM MM) 2024
♻ ☆ Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning BMVC2024
Generating images from text has become easier because of the scaling of diffusion models and advancements in the field of vision and language. These models are trained using vast amounts of data from the Internet. Hence, they often contain undesirable content such as copyrighted material. As it is challenging to remove such data and retrain the models, methods for erasing specific concepts from pre-trained models have been investigated. We propose a novel concept-erasure method that updates the text encoder using few-shot unlearning in which a few real images are used. The discussion regarding the generated images after erasing a concept has been lacking. While there are methods for specifying the transition destination for concepts, the validity of the specified concepts is unclear. Our method implicitly achieves this by transitioning to the latent concepts inherent in the model or the images. Our method can erase a concept within 10 s, making concept erasure more accessible than ever before. Implicitly transitioning to related concepts leads to more natural concept erasure. We applied the proposed method to various concepts and confirmed that concept erasure can be achieved tens to hundreds of times faster than with current methods. By varying the parameters to be updated, we obtained results suggesting that, like previous research, knowledge is primarily accumulated in the feed-forward networks of the text encoder. Our code is available at \url{https://github.com/fmp453/few-shot-erasing}
comment: 25 pages, 28 figures, accepted by BMVC2024
♻ ☆ CorMulT: A Semi-supervised Modality Correlation-aware Multimodal Transformer for Sentiment Analysis
Multimodal sentiment analysis is an active research area that combines multiple data modalities, e.g., text, image and audio, to analyze human emotions and benefits a variety of applications. Existing multimodal sentiment analysis methods can be classified as modality interaction-based methods, modality transformation-based methods and modality similarity-based methods. However, most of these methods highly rely on the strong correlations between modalities, and cannot fully uncover and utilize the correlations between modalities to enhance sentiment analysis. Therefore, these methods usually achieve bad performance for identifying the sentiment of multimodal data with weak correlations. To address this issue, we proposed a two-stage semi-supervised model termed Correlation-aware Multimodal Transformer (CorMulT) which consists pre-training stage and prediction stage. At the pre-training stage, a modality correlation contrastive learning module is designed to efficiently learn modality correlation coefficients between different modalities. At the prediction stage, the learned correlation coefficients are fused with modality representations to make the sentiment prediction. According to the experiments on the popular multimodal dataset CMU-MOSEI, CorMulT obviously surpasses state-of-the-art multimodal sentiment analysis methods.
♻ ☆ KeyMatchNet: Zero-Shot Pose Estimation in 3D Point Clouds by Generalized Keypoint Matching
In this paper, we present KeyMatchNet, a novel network for zero-shot pose estimation in 3D point clouds. Our method uses only depth information, making it more applicable for many industrial use cases, as color information is seldom available. The network is composed of two parallel components for computing object and scene features. The features are then combined to create matches used for pose estimation. The parallel structure allows for pre-processing of the individual parts, which decreases the run-time. Using a zero-shot network allows for a very short set-up time, as it is not necessary to train models for new objects. However, as the network is not trained for the specific object, zero-shot pose estimation methods generally have lower accuracy compared with conventional methods. To address this, we reduce the complexity of the task by including the scenario information during training. This is typically not feasible as collecting real data for new tasks drastically increases the cost. However, for zero-shot pose estimation, training for new objects is not necessary and the expensive data collection can thus be performed only once. Our method is trained on 1,500 objects and is only tested on unseen objects. We demonstrate that the trained network can not only accurately estimate poses for novel objects, but also demonstrate the ability of the network on objects outside of the trained class. Test results are also shown on real data. We believe that the presented method is valuable for many real-world scenarios. Project page available at keymatchnet.github.io
comment: 8 pages, 6 figures, 5 tables
♻ ☆ Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
The transition to renewable energy, particularly solar, is key to mitigating climate change. Google's Solar API aids this transition by estimating solar potential from aerial imagery, but its impact is constrained by geographical coverage. This paper proposes expanding the API's reach using satellite imagery, enabling global solar potential assessment. We tackle challenges involved in building a Digital Surface Model (DSM) and roof instance segmentation from lower resolution and single oblique views using deep learning models. Our models, trained on aligned satellite and aerial datasets, produce 25cm DSMs and roof segments. With ~1m DSM MAE on buildings, ~5deg roof pitch error and ~56% IOU on roof segmentation, they significantly enhance the Solar API's potential to promote solar adoption.
comment: 14 pages
♻ ☆ Content Significance Distribution of Sub-Text Blocks in Articles and Its Application to Article-Organization Assessment
We explore how to capture the significance of a sub-text block in an article and how it may be used for text mining tasks. A sub-text block is a sub-sequence of sentences in the article. We formulate the notion of content significance distribution (CSD) of sub-text blocks, referred to as CSD of the first kind and denoted by CSD-1. In particular, we leverage Hugging Face's SentenceTransformer to generate contextual sentence embeddings, and use MoverScore over text embeddings to measure how similar a sub-text block is to the entire text. To overcome the exponential blowup on the number of sub-text blocks, we present an approximation algorithm and show that the approximated CSD-1 is almost identical to the exact CSD-1. Under this approximation, we show that the average and median CSD-1's for news, scholarly research, argument, and narrative articles share the same pattern. We also show that under a certain linear transformation, the complement of the cumulative distribution function of the beta distribution with certain values of $\alpha$ and $\beta$ resembles a CSD-1 curve. We then use CSD-1's to extract linguistic features to train an SVC classifier for assessing how well an article is organized. Through experiments, we show that this method achieves high accuracy for assessing student essays. Moreover, we study CSD of sentence locations, referred to as CSD of the second kind and denoted by CSD-2, and show that average CSD-2's for different types of articles possess distinctive patterns, which either conform common perceptions of article structures or provide rectification with minor deviation.
♻ ☆ SegVol: Universal and Interactive Volumetric Medical Image Segmentation
Precise image segmentation provides clinical study with instructive information. Despite the remarkable progress achieved in medical image segmentation, there is still an absence of a 3D foundation segmentation model that can segment a wide range of anatomical categories with easy user interaction. In this paper, we propose a 3D foundation segmentation model, named SegVol, supporting universal and interactive volumetric medical image segmentation. By scaling up training data to 90K unlabeled Computed Tomography (CT) volumes and 6K labeled CT volumes, this foundation model supports the segmentation of over 200 anatomical categories using semantic and spatial prompts. To facilitate efficient and precise inference on volumetric images, we design a zoom-out-zoom-in mechanism. Extensive experiments on 22 anatomical segmentation tasks verify that SegVol outperforms the competitors in 19 tasks, with improvements up to 37.24% compared to the runner-up methods. We demonstrate the effectiveness and importance of specific designs by ablation study. We expect this foundation model can promote the development of volumetric medical image analysis. The model and code are publicly available at: https://github.com/BAAI-DCAI/SegVol.
♻ ☆ DiffiT: Diffusion Vision Transformers for Image Generation ECCV'24
Diffusion models with their powerful expressivity and high sample quality have achieved State-Of-The-Art (SOTA) performance in the generative domain. The pioneering Vision Transformer (ViT) has also demonstrated strong modeling capabilities and scalability, especially for recognition tasks. In this paper, we study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT). Specifically, we propose a methodology for finegrained control of the denoising process and introduce the Time-dependant Multihead Self Attention (TMSA) mechanism. DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency. We also propose latent and image space DiffiT models and show SOTA performance on a variety of class-conditional and unconditional synthesis tasks at different resolutions. The Latent DiffiT model achieves a new SOTA FID score of 1.73 on ImageNet256 dataset while having 19.85%, 16.88% less parameters than other Transformer-based diffusion models such as MDT and DiT,respectively. Code: https://github.com/NVlabs/DiffiT
comment: Accepted to ECCV'24
♻ ☆ EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting
3D deblurring reconstruction techniques have recently seen significant advancements with the development of Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although these techniques can recover relatively clear 3D reconstructions from blurry image inputs, they still face limitations in handling severe blurring and complex camera motion. To address these issues, we propose Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS), which integrates event camera data to enhance the robustness of 3DGS against motion blur. By employing an Adaptive Deviation Estimator (ADE) network to estimate Gaussian center deviations and using novel loss functions, EaDeblur-GS achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
♻ ☆ Pre-training on Synthetic Driving Data for Trajectory Prediction
Accumulating substantial volumes of real-world driving data proves pivotal in the realm of trajectory forecasting for autonomous driving. Given the heavy reliance of current trajectory forecasting models on data-driven methodologies, we aim to tackle the challenge of learning general trajectory forecasting representations under limited data availability. We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting. The solution is composed of two parts: firstly, we adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them. Specifically, we apply vector transformations to reshape the maps, and then employ a rule-based model to generate trajectories on both original and augmented scenes; thus enlarging the driving data without collecting additional real ones. To foster the learning of general representations within this augmented dataset, we comprehensively explore the different pre-training strategies, including extending the concept of a Masked AutoEncoder (MAE) for trajectory forecasting. Without bells and whistles, our proposed pipeline-level solution is general, simple, yet effective: we conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies, which outperform the baseline prediction model by large margins, e.g. 5.04%, 3.84% and 8.30% in terms of $MR_6$, $minADE_6$ and $minFDE_6$. The pre-training dataset and the codes for pre-training and fine-tuning are released at https://github.com/yhli123/Pretraining_on_Synthetic_Driving_Data_for_Trajectory_Prediction.
♻ ☆ Improving Deep Representation Learning via Auxiliary Learnable Target Coding
Deep representation learning is a subfield of machine learning that focuses on learning meaningful and useful representations of data through deep neural networks. However, existing methods for semantic classification typically employ pre-defined target codes such as the one-hot and the Hadamard codes, which can either fail or be less flexible to model inter-class correlation. In light of this, this paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning, which can not only incorporate latent dependency across classes but also impose geometric properties of target codes into representation space. Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations owing to enlarging between-class margins in representation space and favoring equal semantic correlation of learnable target codes respectively. Experimental results on several popular visual classification and retrieval benchmarks can demonstrate the effectiveness of our method on improving representation learning, especially for imbalanced data. Source codes are made publicly available at \href{https://github.com/AkonLau/LTC}{https://github.com/AkonLau/LTC}.
comment: Accepted by Pattern Recognition, 33 pages, 8 figures, 11 tables
♻ ☆ Hierarchical Spatial Proximity Reasoning for Vision-and-Language Navigation
Most Vision-and-Language Navigation (VLN) algorithms are prone to making decision due to a lack of visual common sense and insufficient reasoning capabilities. To address this issue, we propose a Hierarchical Spatial Proximity Reasoning (HSPR) method. First, we introduce a scene understanding auxiliary task to help the agent build a knowledge base of hierarchical spatial proximity. This task utilizes panoramic views and object features to identify types of nodes and uncover the adjacency relationships between nodes, objects, and between nodes and objects. Second, we propose a multi-step reasoning navigation algorithm based on hierarchical spatial proximity knowledge base, which continuously plans feasible paths to enhance exploration efficiency. Third, we introduce a residual fusion method to improve navigation decision accuracy. Finally, we validate our approach with experiments on publicly available datasets including REVERIE, SOON, R2R, and R4R. Our code is available at https://github.com/iCityLab/HSPR.
♻ ☆ DuoSpaceNet: Leveraging Both Bird's-Eye-View and Perspective View Representations for 3D Object Detection
Recent advances in multi-view camera-only 3D object detection either rely on an accurate reconstruction of bird's-eye-view (BEV) 3D features or on traditional 2D perspective view (PV) image features. While both have their own pros and cons, few have found a way to stitch them together in order to benefit from "the best of both worlds". To this end, we explore a duo space (i.e., BEV and PV) 3D perception framework, in conjunction with some useful duo space fusion strategies that allow effective aggregation of the two feature representations. To the best of our knowledge, our proposed method, DuoSpaceNet, is the first to leverage two distinct feature spaces and achieves the state-of-the-art 3D object detection and BEV map segmentation results on nuScenes dataset.
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception
Existing panoramic layout estimation solutions tend to recover room boundaries from a vertically compressed sequence, yielding imprecise results as the compression process often muddles the semantics between various planes. Besides, these data-driven approaches impose an urgent demand for massive data annotations, which are laborious and time-consuming. For the first problem, we propose an orthogonal plane disentanglement network (termed DOPNet) to distinguish ambiguous semantics. DOPNet consists of three modules that are integrated to deliver distortion-free, semantics-clean, and detail-sharp disentangled representations, which benefit the subsequent layout recovery. For the second problem, we present an unsupervised adaptation technique tailored for horizon-depth and ratio representations. Concretely, we introduce an optimization strategy for decision-level layout analysis and a 1D cost volume construction method for feature-level multi-view aggregation, both of which are designed to fully exploit the geometric consistency across multiple perspectives. The optimizer provides a reliable set of pseudo-labels for network training, while the 1D cost volume enriches each view with comprehensive scene information derived from other perspectives. Extensive experiments demonstrate that our solution outperforms other SoTA models on both monocular layout estimation and multi-view layout estimation tasks. Cobe can be available at https://github.com/zhijieshen-bjtu/MV-DOPNet.
comment: Accept to TPAMI2024. arXiv admin note: substantial text overlap with arXiv:2303.00971
♻ ☆ Embodiment: Self-Supervised Depth Estimation Based on Camera Models
Depth estimation is a critical topic for robotics and vision-related tasks. In monocular depth estimation, in comparison with supervised learning that requires expensive ground truth labeling, self-supervised methods possess great potential due to no labeling cost. However, self-supervised learning still has a large gap with supervised learning in 3D reconstruction and depth estimation performance. Meanwhile, scaling is also a major issue for monocular unsupervised depth estimation, which commonly still needs ground truth scale from GPS, LiDAR, or existing maps to correct. In the era of deep learning, existing methods primarily rely on exploring image relationships to train unsupervised neural networks, while the physical properties of the camera itself such as intrinsics and extrinsics are often overlooked. These physical properties are not just mathematical parameters; they are embodiments of the camera's interaction with the physical world. By embedding these physical properties into the deep learning model, we can calculate depth priors for ground regions and regions connected to the ground based on physical principles, providing free supervision signals without the need for additional sensors. This approach is not only easy to implement but also enhances the effects of all unsupervised methods by embedding the camera's physical properties into the model, thereby achieving an embodied understanding of the real world.
♻ ☆ Using Texture to Classify Forests Separately from Vegetation
Identifying terrain within satellite image data is a key issue in geographical information sciences, with numerous environmental and safety implications. Many techniques exist to derive classifications from spectral data captured by satellites. However, the ability to reliably classify vegetation remains a challenge. In particular, no precise methods exist for classifying forest vs. non-forest vegetation in high-level satellite images. This paper provides an initial proposal for a static, algorithmic process to identify forest regions in satellite image data through texture features created from detected edges and the NDVI ratio captured by Sentinel-2 satellite images. With strong initial results, this paper also identifies the next steps to improve the accuracy of the classification and verification processes.
Artificial Intelligence 121
☆ SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners
We introduce SAM2Point, a preliminary exploration adapting Segment Anything Model 2 (SAM 2) for zero-shot and promptable 3D segmentation. SAM2Point interprets any 3D data as a series of multi-directional videos, and leverages SAM 2 for 3D-space segmentation, without further training or 2D-3D projection. Our framework supports various prompt types, including 3D points, boxes, and masks, and can generalize across diverse scenarios, such as 3D objects, indoor scenes, outdoor environments, and raw sparse LiDAR. Demonstrations on multiple 3D datasets, e.g., Objaverse, S3DIS, ScanNet, Semantic3D, and KITTI, highlight the robust generalization capabilities of SAM2Point. To our best knowledge, we present the most faithful implementation of SAM in 3D, which may serve as a starting point for future research in promptable 3D segmentation. Online Demo: https://huggingface.co/spaces/ZiyuG/SAM2Point . Code: https://github.com/ZiyuGuo99/SAM2Point .
comment: Work in progress. Online Demo: https://huggingface.co/spaces/ZiyuG/SAM2Point . Code: https://github.com/ZiyuGuo99/SAM2Point
☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
☆ A Score-Based Density Formula, with Applications in Diffusion Generative Models
Score-based generative models (SGMs) have revolutionized the field of generative modeling, achieving unprecedented success in generating realistic and diverse content. Despite empirical advances, the theoretical basis for why optimizing the evidence lower bound (ELBO) on the log-likelihood is effective for training diffusion generative models, such as DDPMs, remains largely unexplored. In this paper, we address this question by establishing a density formula for a continuous-time diffusion process, which can be viewed as the continuous-time limit of the forward process in an SGM. This formula reveals the connection between the target density and the score function associated with each step of the forward process. Building on this, we demonstrate that the minimizer of the optimization objective for training DDPMs nearly coincides with that of the true objective, providing a theoretical foundation for optimizing DDPMs using the ELBO. Furthermore, we offer new insights into the role of score-matching regularization in training GANs, the use of ELBO in diffusion classifiers, and the recently proposed diffusion loss.
☆ Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks
Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: \url{https://github.com/Visual-AI/Dissect-OOD-OSR}
comment: Accepted to IJCV, preprint version
☆ Assessing Large Language Models for Online Extremism Research: Identification, Explanation, and New Knowledge
The United States has experienced a significant increase in violent extremism, prompting the need for automated tools to detect and limit the spread of extremist ideology online. This study evaluates the performance of Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformers (GPT) in detecting and classifying online domestic extremist posts. We collected social media posts containing "far-right" and "far-left" ideological keywords and manually labeled them as extremist or non-extremist. Extremist posts were further classified into one or more of five contributing elements of extremism based on a working definitional framework. The BERT model's performance was evaluated based on training data size and knowledge transfer between categories. We also compared the performance of GPT 3.5 and GPT 4 models using different prompts: na\"ive, layperson-definition, role-playing, and professional-definition. Results showed that the best performing GPT models outperformed the best performing BERT models, with more detailed prompts generally yielding better results. However, overly complex prompts may impair performance. Different versions of GPT have unique sensitives to what they consider extremist. GPT 3.5 performed better at classifying far-left extremist posts, while GPT 4 performed better at classifying far-right extremist posts. Large language models, represented by GPT models, hold significant potential for online extremism classification tasks, surpassing traditional BERT models in a zero-shot setting. Future research should explore human-computer interactions in optimizing GPT models for extremist detection and classification tasks to develop more efficient (e.g., quicker, less effort) and effective (e.g., fewer errors or mistakes) methods for identifying extremist content.
☆ Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
Training on high-quality synthetic data from strong language models (LMs) is a common strategy to improve the reasoning performance of LMs. In this work, we revisit whether this strategy is compute-optimal under a fixed inference budget (e.g., FLOPs). To do so, we investigate the trade-offs between generating synthetic data using a stronger but more expensive (SE) model versus a weaker but cheaper (WC) model. We evaluate the generated data across three key metrics: coverage, diversity, and false positive rate, and show that the data from WC models may have higher coverage and diversity, but also exhibit higher false positive rates. We then finetune LMs on data from SE and WC models in different settings: knowledge distillation, self-improvement, and a novel weak-to-strong improvement setup where a weaker LM teaches reasoning to a stronger LM. Our findings reveal that models finetuned on WC-generated data consistently outperform those trained on SE-generated data across multiple benchmarks and multiple choices of WC and SE models. These results challenge the prevailing practice of relying on SE models for synthetic data generation, suggesting that WC may be the compute-optimal approach for training advanced LM reasoners.
☆ Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Recent advances in language models have achieved significant progress. GPT-4o, as a new milestone, has enabled real-time conversations with humans, demonstrating near-human natural fluency. Such human-computer interaction necessitates models with the capability to perform reasoning directly with the audio modality and generate output in streaming. However, this remains beyond the reach of current academic models, as they typically depend on extra TTS systems for speech synthesis, resulting in undesirable latency. This paper introduces the Mini-Omni, an audio-based end-to-end conversational model, capable of real-time speech interaction. To achieve this capability, we propose a text-instructed speech generation method, along with batch-parallel strategies during inference to further boost the performance. Our method also helps to retain the original model's language capabilities with minimal degradation, enabling other works to establish real-time interaction capabilities. We call this training method "Any Model Can Talk". We also introduce the VoiceAssistant-400K dataset to fine-tune models optimized for speech output. To our best knowledge, Mini-Omni is the first fully end-to-end, open-source model for real-time speech interaction, offering valuable potential for future research.
comment: 10 pages
☆ A GREAT Architecture for Edge-Based Graph Problems Like TSP
In the last years, many neural network-based approaches have been proposed to tackle combinatorial optimization problems such as routing problems. Many of these approaches are based on graph neural networks (GNNs) or related transformers, operating on the Euclidean coordinates representing the routing problems. However, GNNs are inherently not well suited to operate on dense graphs, such as in routing problems. Furthermore, models operating on Euclidean coordinates cannot be applied to non-Euclidean versions of routing problems that are often found in real-world settings. To overcome these limitations, we propose a novel GNN-related edge-based neural model called Graph Edge Attention Network (GREAT). We evaluate the performance of GREAT in the edge-classification task to predict optimal edges in the Traveling Salesman Problem (TSP). We can use such a trained GREAT model to produce sparse TSP graph instances, keeping only the edges GREAT finds promising. Compared to other, non-learning-based methods to sparsify TSP graphs, GREAT can produce very sparse graphs while keeping most of the optimal edges. Furthermore, we build a reinforcement learning-based GREAT framework which we apply to Euclidean and non-Euclidean asymmetric TSP. This framework achieves state-of-the-art results.
comment: 15 pages, 7 figures
☆ Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever
Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT's late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce several improvements to the ColBERT model architecture and training pipeline, leveraging techniques successful in the more established single-vector embedding model paradigm, particularly those suited for heterogeneous multilingual data. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks, while also cutting storage requirements by up to 50% compared to previous models.
☆ Entropic Distribution Matching in Supervised Fine-tuning of LLMs: Less Overfitting and Better Diversity
Large language models rely on Supervised Fine-Tuning (SFT) to specialize in downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT, but it often leads to overfitting and limited output diversity due to its aggressive updates to the data distribution. This paper aim to address these issues by introducing the maximum entropy principle, which favors models with flatter distributions that still effectively capture the data. Specifically, we develop a new distribution matching method called GEM, which solves reverse Kullback-Leibler divergence minimization with an entropy regularizer. For the SFT of Llama-3-8B models, GEM outperforms CE in several aspects. First, when applied to the UltraFeedback dataset to develop general instruction-following abilities, GEM exhibits reduced overfitting, evidenced by lower perplexity and better performance on the IFEval benchmark. Furthermore, GEM enhances output diversity, leading to performance gains of up to 7 points on math reasoning and code generation tasks using best-of-n sampling, even without domain-specific data. Second, when fine-tuning with domain-specific datasets for math reasoning and code generation, GEM also shows less overfitting and improvements of up to 10 points compared with CE.
☆ Iterative Graph Alignment
By compressing diverse narratives, LLMs go beyond memorization, achieving intelligence by capturing generalizable causal relationships. However, they suffer from local 'representation gaps' due to insufficient training data diversity, limiting their real-world utility, especially in tasks requiring strict alignment to rules. Traditional alignment methods relying on heavy human annotations are inefficient and unscalable. Recent self-alignment techniques also fall short, as they often depend on self-selection based prompting and memorization-based learning. To address these issues, we introduce Iterative Graph Alignment (IGA), an annotation-free rule-based alignment algorithm. A teacher model (VLM) employs Iterative Graph Prompting (IGP) to create logical graphs and reference answers. The student model (LLM) identifies local knowledge gaps by attempting to align its responses with these references, collaborating with helper models to generate diverse answers. These aligned responses are then used for iterative supervised fine-tuning (SFT). Our evaluations across five rule-based scenarios demonstrate IGP's effectiveness, with a 73.12\% alignment improvement in Claude Sonnet 3.5, and Llama3-8B-Instruct achieving an 86.20\% improvement, outperforming Claude Sonnet 3.5 in rule-based alignment.
comment: 12 pages, 4 figures
☆ DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving
The advancement of autonomous driving technologies necessitates increasingly sophisticated methods for understanding and predicting real-world scenarios. Vision language models (VLMs) are emerging as revolutionary tools with significant potential to influence autonomous driving. In this paper, we propose the DriveGenVLM framework to generate driving videos and use VLMs to understand them. To achieve this, we employ a video generation framework grounded in denoising diffusion probabilistic models (DDPM) aimed at predicting real-world video sequences. We then explore the adequacy of our generated videos for use in VLMs by employing a pre-trained model known as Efficient In-context Learning on Egocentric Videos (EILEV). The diffusion model is trained with the Waymo open dataset and evaluated using the Fr\'echet Video Distance (FVD) score to ensure the quality and realism of the generated videos. Corresponding narrations are provided by EILEV for these generated videos, which may be beneficial in the autonomous driving domain. These narrations can enhance traffic scene understanding, aid in navigation, and improve planning capabilities. The integration of video generation with VLMs in the DriveGenVLM framework represents a significant step forward in leveraging advanced AI models to address complex challenges in autonomous driving.
☆ RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
The increasing sophistication of text-to-image generative models has led to complex challenges in defining and enforcing copyright infringement criteria and protection. Existing methods, such as watermarking and dataset deduplication, fail to provide comprehensive solutions due to the lack of standardized metrics and the inherent complexity of addressing copyright infringement in diffusion models. To deal with these challenges, we propose a Reinforcement Learning-based Copyright Protection(RLCP) method for Text-to-Image Diffusion Model, which minimizes the generation of copyright-infringing content while maintaining the quality of the model-generated dataset. Our approach begins with the introduction of a novel copyright metric grounded in copyright law and court precedents on infringement. We then utilize the Denoising Diffusion Policy Optimization (DDPO) framework to guide the model through a multi-step decision-making process, optimizing it using a reward function that incorporates our proposed copyright metric. Additionally, we employ KL divergence as a regularization term to mitigate some failure modes and stabilize RL fine-tuning. Experiments conducted on 3 mixed datasets of copyright and non-copyright images demonstrate that our approach significantly reduces copyright infringement risk while maintaining image quality.
comment: arXiv admin note: text overlap with arXiv:2403.12052 by other authors
☆ Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning
With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.
☆ Maelstrom Networks
Artificial Neural Networks has struggled to devise a way to incorporate working memory into neural networks. While the ``long term'' memory can be seen as the learned weights, the working memory consists likely more of dynamical activity, that is missing from feed-forward models. Current state of the art models such as transformers tend to ``solve'' this by ignoring working memory entirely and simply process the sequence as an entire piece of data; however this means the network cannot process the sequence in an online fashion, and leads to an immense explosion in memory requirements. Here, inspired by a combination of controls, reservoir computing, deep learning, and recurrent neural networks, we offer an alternative paradigm that combines the strength of recurrent networks, with the pattern matching capability of feed-forward neural networks, which we call the \textit{Maelstrom Networks} paradigm. This paradigm leaves the recurrent component - the \textit{Maelstrom} - unlearned, and offloads the learning to a powerful feed-forward network. This allows the network to leverage the strength of feed-forward training without unrolling the network, and allows for the memory to be implemented in new neuromorphic hardware. It endows a neural network with a sequential memory that takes advantage of the inductive bias that data is organized causally in the temporal domain, and imbues the network with a state that represents the agent's ``self'', moving through the environment. This could also lead the way to continual learning, with the network modularized and ``'protected'' from overwrites that come with new data. In addition to aiding in solving these performance problems that plague current non-temporal deep networks, this also could finally lead towards endowing artificial networks with a sense of ``self''.
☆ LLMs generate structurally realistic social networks but overestimate political homophily
Generating social networks is essential for many applications, such as epidemic modeling and social simulations. Prior approaches either involve deep learning models, which require many observed networks for training, or stylized models, which are limited in their realism and flexibility. In contrast, LLMs offer the potential for zero-shot and flexible network generation. However, two key questions are: (1) are LLM's generated networks realistic, and (2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, community structure, and degree. However, we find that LLMs emphasize political homophily over all other types of homophily and overestimate political homophily relative to real-world measures.
☆ Towards Infusing Auxiliary Knowledge for Distracted Driver Detection KDD
Distracted driving is a leading cause of road accidents globally. Identification of distracted driving involves reliably detecting and classifying various forms of driver distraction (e.g., texting, eating, or using in-car devices) from in-vehicle camera feeds to enhance road safety. This task is challenging due to the need for robust models that can generalize to a diverse set of driver behaviors without requiring extensive annotated datasets. In this paper, we propose KiD3, a novel method for distracted driver detection (DDD) by infusing auxiliary knowledge about semantic relations between entities in a scene and the structural configuration of the driver's pose. Specifically, we construct a unified framework that integrates the scene graphs, and driver pose information with the visual cues in video frames to create a holistic representation of the driver's actions.Our results indicate that KiD3 achieves a 13.64% accuracy improvement over the vision-only baseline by incorporating such auxiliary knowledge with visual information.
comment: Accepted at KiL 2024: Workshop on Knowledge-infused Learning co-located with 30th ACM KDD Conference
☆ Hyperdimensional Vector Tsetlin Machines with Applications to Sequence Learning and Generation
We construct a two-layered model for learning and generating sequential data that is both computationally fast and competitive with vanilla Tsetlin machines, adding numerous advantages. Through the use of hyperdimensional vector computing (HVC) algebras and Tsetlin machine clause structures, we demonstrate that the combination of both inherits the generality of data encoding and decoding of HVC with the fast interpretable nature of Tsetlin machines to yield a powerful machine learning model. We apply the approach in two areas, namely in forecasting, generating new sequences, and classification. For the latter, we derive results for the entire UCR Time Series Archive and compare with the standard benchmarks to see how well the method competes in time series classification.
☆ Examination of Code generated by Large Language Models
Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
☆ Enhancing Dialogue Generation in Werewolf Game Through Situation Analysis and Persuasion Strategies
Recent advancements in natural language processing, particularly with large language models (LLMs) like GPT-4, have significantly enhanced dialogue systems, enabling them to generate more natural and fluent conversations. Despite these improvements, challenges persist, such as managing continuous dialogues, memory retention, and minimizing hallucinations. The AIWolfDial2024 addresses these challenges by employing the Werewolf Game, an incomplete information game, to test the capabilities of LLMs in complex interactive environments. This paper introduces a LLM-based Werewolf Game AI, where each role is supported by situation analysis to aid response generation. Additionally, for the werewolf role, various persuasion strategies, including logical appeal, credibility appeal, and emotional appeal, are employed to effectively persuade other players to align with its actions.
comment: Accepted to the AIWolfDial2024 workshop at INLG 2024
☆ Seeking the Sufficiency and Necessity Causal Features in Multimodal Representation Learning
Learning representations with a high Probability of Necessary and Sufficient Causes (PNS) has been shown to enhance deep learning models' ability. This task involves identifying causal features that are both sufficient (guaranteeing the outcome) and necessary (without which the outcome cannot occur). However, current research predominantly focuses on unimodal data, and extending PNS learning to multimodal settings presents significant challenges. The challenges arise as the conditions for PNS identifiability, Exogeneity and Monotonicity, need to be reconsidered in a multimodal context, where sufficient and necessary causal features are distributed across different modalities. To address this, we first propose conceptualizing multimodal representations as comprising modality-invariant and modality-specific components. We then analyze PNS identifiability for each component, while ensuring non-trivial PNS estimation. Finally, we formulate tractable optimization objectives that enable multimodal models to learn high-PNS representations, thereby enhancing their predictive performance. Experiments demonstrate the effectiveness of our method on both synthetic and real-world data.
☆ SFR-GNN: Simple and Fast Robust GNNs against Structural Attacks
Graph Neural Networks (GNNs) have demonstrated commendable performance for graph-structured data. Yet, GNNs are often vulnerable to adversarial structural attacks as embedding generation relies on graph topology. Existing efforts are dedicated to purifying the maliciously modified structure or applying adaptive aggregation, thereby enhancing the robustness against adversarial structural attacks. It is inevitable for a defender to consume heavy computational costs due to lacking prior knowledge about modified structures. To this end, we propose an efficient defense method, called Simple and Fast Robust Graph Neural Network (SFR-GNN), supported by mutual information theory. The SFR-GNN first pre-trains a GNN model using node attributes and then fine-tunes it over the modified graph in the manner of contrastive learning, which is free of purifying modified structures and adaptive aggregation, thus achieving great efficiency gains. Consequently, SFR-GNN exhibits a 24%--162% speedup compared to advanced robust models, demonstrating superior robustness for node classification tasks.
☆ Adaptive Variational Continual Learning via Task-Heuristic Modelling
Variational continual learning (VCL) is a turn-key learning algorithm that has state-of-the-art performance among the best continual learning models. In our work, we explore an extension of the generalized variational continual learning (GVCL) model, named AutoVCL, which combines task heuristics for informed learning and model optimization. We demonstrate that our model outperforms the standard GVCL with fixed hyperparameters, benefiting from the automatic adjustment of the hyperparameter based on the difficulty and similarity of the incoming task compared to the previous tasks.
comment: 4 pages, 2 figures, 3 tables
☆ On-device AI: Quantization-aware Training of Transformers in Time-Series
Artificial Intelligence (AI) models for time-series in pervasive computing keep getting larger and more complicated. The Transformer model is by far the most compelling of these AI models. However, it is difficult to obtain the desired performance when deploying such a massive model on a sensor device with limited resources. My research focuses on optimizing the Transformer model for time-series forecasting tasks. The optimized model will be deployed as hardware accelerators on embedded Field Programmable Gate Arrays (FPGAs). I will investigate the impact of applying Quantization-aware Training to the Transformer model to reduce its size and runtime memory footprint while maximizing the advantages of FPGAs.
comment: This paper is accepted by 2023 IEEE International Conference on Pervasive Computing and Communications(PhD Forum)
☆ Integrating Features for Recognizing Human Activities through Optimized Parameters in Graph Convolutional Networks and Transformer Architectures
Human activity recognition is a major field of study that employs computer vision, machine vision, and deep learning techniques to categorize human actions. The field of deep learning has made significant progress, with architectures that are extremely effective at capturing human dynamics. This study emphasizes the influence of feature fusion on the accuracy of activity recognition. This technique addresses the limitation of conventional models, which face difficulties in identifying activities because of their limited capacity to understand spatial and temporal features. The technique employs sensory data obtained from four publicly available datasets: HuGaDB, PKU-MMD, LARa, and TUG. The accuracy and F1-score of two deep learning models, specifically a Transformer model and a Parameter-Optimized Graph Convolutional Network (PO-GCN), were evaluated using these datasets. The feature fusion technique integrated the final layer features from both models and inputted them into a classifier. Empirical evidence demonstrates that PO-GCN outperforms standard models in activity recognition. HuGaDB demonstrated a 2.3% improvement in accuracy and a 2.2% increase in F1-score. TUG showed a 5% increase in accuracy and a 0.5% rise in F1-score. On the other hand, LARa and PKU-MMD achieved lower accuracies of 64% and 69% respectively. This indicates that the integration of features enhanced the performance of both the Transformer model and PO-GCN.
comment: 6 pages, 1 figure, conference
☆ Gradient-free variational learning with conditional mixture networks
Balancing computational efficiency with robust predictive performance is crucial in supervised learning, especially for critical applications. Standard deep learning models, while accurate and scalable, often lack probabilistic features like calibrated predictions and uncertainty quantification. Bayesian methods address these issues but can be computationally expensive as model and data complexity increase. Previous work shows that fast variational methods can reduce the compute requirements of Bayesian methods by eliminating the need for gradient computation or sampling, but are often limited to simple models. We demonstrate that conditional mixture networks (CMNs), a probabilistic variant of the mixture-of-experts (MoE) model, are suitable for fast, gradient-free inference and can solve complex classification tasks. CMNs employ linear experts and a softmax gating network. By exploiting conditional conjugacy and P\'olya-Gamma augmentation, we furnish Gaussian likelihoods for the weights of both the linear experts and the gating network. This enables efficient variational updates using coordinate ascent variational inference (CAVI), avoiding traditional gradient-based optimization. We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository. Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation, while maintaining competitive runtime and full posterior distributions over all model parameters. Moreover, as input size or the number of experts increases, computation time scales competitively with MLE and other gradient-based solutions like black-box variational inference (BBVI), making CAVI-CMN a promising tool for deep, fast, and gradient-free Bayesian networks.
comment: 16 pages main text (3 figures), including references. 9 pages supplementary material (5 figures)
☆ COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation ECCV 2024
Estimating global human motion from moving cameras is challenging due to the entanglement of human and camera motions. To mitigate the ambiguity, existing methods leverage learned human motion priors, which however often result in oversmoothed motions with misaligned 2D projections. To tackle this problem, we propose COIN, a control-inpainting motion diffusion prior that enables fine-grained control to disentangle human and camera motions. Although pre-trained motion diffusion models encode rich motion priors, we find it non-trivial to leverage such knowledge to guide global motion estimation from RGB videos. COIN introduces a novel control-inpainting score distillation sampling method to ensure well-aligned, consistent, and high-quality motion from the diffusion prior within a joint optimization framework. Furthermore, we introduce a new human-scene relation loss to alleviate the scale ambiguity by enforcing consistency among the humans, camera, and scene. Experiments on three challenging benchmarks demonstrate the effectiveness of COIN, which outperforms the state-of-the-art methods in terms of global human motion estimation and camera motion estimation. As an illustrative example, COIN outperforms the state-of-the-art method by 33% in world joint position error (W-MPJPE) on the RICH dataset.
comment: ECCV 2024
☆ Fourier Spectral Physics Informed Neural Network: An Efficient and Low-Memory PINN
With growing investigations into solving partial differential equations by physics-informed neural networks (PINNs), more accurate and efficient PINNs are required to meet the practical demands of scientific computing. One bottleneck of current PINNs is computing the high-order derivatives via automatic differentiation which often necessitates substantial computing resources. In this paper, we focus on removing the automatic differentiation of the spatial derivatives and propose a spectral-based neural network that substitutes the differential operator with a multiplication. Compared to the PINNs, our approach requires lower memory and shorter training time. Thanks to the exponential convergence of the spectral basis, our approach is more accurate. Moreover, to handle the different situations between physics domain and spectral domain, we provide two strategies to train networks by their spectral information. Through a series of comprehensive experiments, We validate the aforementioned merits of our proposed network.
DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware
Recent advancements in ML and DL have significantly improved Android malware detection, yet many methodologies still rely on basic static analysis, bytecode, or function call graphs that often fail to capture complex malicious behaviors. DexBERT, a pre-trained BERT-like model tailored for Android representation learning, enriches class-level representations by analyzing Smali code extracted from APKs. However, its functionality is constrained by its inability to process multiple Smali classes simultaneously. This paper introduces DetectBERT, which integrates correlated Multiple Instance Learning (c-MIL) with DexBERT to handle the high dimensionality and variability of Android malware, enabling effective app-level detection. By treating class-level features as instances within MIL bags, DetectBERT aggregates these into a comprehensive app-level representation. Our evaluation demonstrates that DetectBERT not only surpasses existing state-of-the-art detection methods but also adapts to evolving malware threats. Moreover, the versatility of the DetectBERT framework holds promising potential for broader applications in app-level analysis and other software engineering tasks, offering new avenues for research and development.
comment: Accepted at ESEM 2024
☆ Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes. Early diagnosis is challenging due to subtle symptoms and varied presentations, often leading to misdiagnosis with traditional unimodal diagnostic methods due to their limited scope. This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data to enhance diagnostic accuracy. The model incorporates a feature tagger with a tabular data coding architecture and utilizes the TimesBlock module to capture intricate temporal patterns in Electroencephalograms (EEG) data. By employing Cross-modal Attention Aggregation module, the model effectively fuses Magnetic Resonance Imaging (MRI) spatial information with EEG temporal data, significantly improving the distinction between AD, Mild Cognitive Impairment, and Normal Cognition. Simultaneously, we have constructed the first AD classification dataset that includes three modalities: EEG, MRI, and tabular data. Our innovative approach aims to facilitate early diagnosis and intervention, potentially slowing the progression of AD. The source code and our private ADMC dataset are available at https://github.com/JustlfC03/MSTNet.
comment: 5 pages, 2 figures
☆ Self-Improving Diffusion Models with Synthetic Data
The artificial intelligence (AI) world is running out of real data for training increasingly large generative models, resulting in accelerating pressure to train on synthetic data. Unfortunately, training new generative models with synthetic data from current or past generation models creates an autophagous (self-consuming) loop that degrades the quality and/or diversity of the synthetic data in what has been termed model autophagy disorder (MAD) and model collapse. Current thinking around model autophagy recommends that synthetic data is to be avoided for model training lest the system deteriorate into MADness. In this paper, we take a different tack that treats synthetic data differently from real data. Self-IMproving diffusion models with Synthetic data (SIMS) is a new training concept for diffusion models that uses self-synthesized data to provide negative guidance during the generation process to steer a model's generative process away from the non-ideal synthetic data manifold and towards the real data distribution. We demonstrate that SIMS is capable of self-improvement; it establishes new records based on the Fr\'echet inception distance (FID) metric for CIFAR-10 and ImageNet-64 generation and achieves competitive results on FFHQ-64 and ImageNet-512. Moreover, SIMS is, to the best of our knowledge, the first prophylactic generative AI algorithm that can be iteratively trained on self-generated synthetic data without going MAD. As a bonus, SIMS can adjust a diffusion model's synthetic data distribution to match any desired in-domain target distribution to help mitigate biases and ensure fairness.
☆ Guided Reasoning: A Non-Technical Introduction
We introduce the concept and a default implementation of Guided Reasoning. A multi-agent system is a Guided Reasoning system iff one agent (the guide) primarily interacts with other agents in order to improve reasoning quality. We describe Logikon's default implementation of Guided Reasoning in non-technical terms. This is a living document we'll gradually enrich with more detailed information and examples. Code: https://github.com/logikon-ai/logikon
☆ FA-YOLO: Research On Efficient Feature Selection YOLO Improved Algorithm Based On FMDS and AGMF Modules
Over the past few years, the YOLO series of models has emerged as one of the dominant methodologies in the realm of object detection. Many studies have advanced these baseline models by modifying their architectures, enhancing data quality, and developing new loss functions. However, current models still exhibit deficiencies in processing feature maps, such as overlooking the fusion of cross-scale features and a static fusion approach that lacks the capability for dynamic feature adjustment. To address these issues, this paper introduces an efficient Fine-grained Multi-scale Dynamic Selection Module (FMDS Module), which applies a more effective dynamic feature selection and fusion method on fine-grained multi-scale feature maps, significantly enhancing the detection accuracy of small, medium, and large-sized targets in complex environments. Furthermore, this paper proposes an Adaptive Gated Multi-branch Focus Fusion Module (AGMF Module), which utilizes multiple parallel branches to perform complementary fusion of various features captured by the gated unit branch, FMDS Module branch, and TripletAttention branch. This approach further enhances the comprehensiveness, diversity, and integrity of feature fusion. This paper has integrated the FMDS Module, AGMF Module, into Yolov9 to develop a novel object detection model named FA-YOLO. Extensive experimental results show that under identical experimental conditions, FA-YOLO achieves an outstanding 66.1% mean Average Precision (mAP) on the PASCAL VOC 2007 dataset, representing 1.0% improvement over YOLOv9's 65.1%. Additionally, the detection accuracies of FA-YOLO for small, medium, and large targets are 44.1%, 54.6%, and 70.8%, respectively, showing improvements of 2.0%, 3.1%, and 0.9% compared to YOLOv9's 42.1%, 51.5%, and 69.9%.
comment: 11 pages and 4 figures
☆ Safe Bayesian Optimization for High-Dimensional Control Systems via Additive Gaussian Processes
Controller tuning and optimization have been among the most fundamental problems in robotics and mechatronic systems. The traditional methodology is usually model-based, but its performance heavily relies on an accurate mathematical model of the system. In control applications with complex dynamics, obtaining a precise model is often challenging, leading us towards a data-driven approach. While optimizing a single controller has been explored by various researchers, it remains a challenge to obtain the optimal controller parameters safely and efficiently when multiple controllers are involved. In this paper, we propose a high-dimensional safe Bayesian optimization method based on additive Gaussian processes to optimize multiple controllers simultaneously and safely. Additive Gaussian kernels replace the traditional squared-exponential kernels or Mat\'ern kernels, enhancing the efficiency with which Gaussian processes update information on unknown functions. Experimental results on a permanent magnet synchronous motor (PMSM) demonstrate that compared to existing safe Bayesian optimization algorithms, our method can obtain optimal parameters more efficiently while ensuring safety.
☆ Physics of Language Models: Part 2.2, How to Learn From Mistakes on Grade-School Math Problems
Language models have demonstrated remarkable performance in solving reasoning tasks; however, even the strongest models still occasionally make reasoning mistakes. Recently, there has been active research aimed at improving reasoning accuracy, particularly by using pretrained language models to "self-correct" their mistakes via multi-round prompting. In this paper, we follow this line of work but focus on understanding the usefulness of incorporating "error-correction" data directly into the pretraining stage. This data consists of erroneous solution steps immediately followed by their corrections. Using a synthetic math dataset, we show promising results: this type of pretrain data can help language models achieve higher reasoning accuracy directly (i.e., through simple auto-regression, without multi-round prompting) compared to pretraining on the same amount of error-free data. We also delve into many details, such as (1) how this approach differs from beam search, (2) how such data can be prepared, (3) whether masking is needed on the erroneous tokens, (4) the amount of error required, (5) whether such data can be deferred to the fine-tuning stage, and many others.
comment: arXiv admin note: text overlap with arXiv:2407.20311
☆ OpenFGL: A Comprehensive Benchmarks for Federated Graph Learning
Federated graph learning (FGL) has emerged as a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing. This approach is particularly beneficial in privacy-sensitive scenarios and offers a new perspective on addressing scalability challenges in large-scale graph learning. Despite the proliferation of FGL, the diverse motivations from practical applications, spanning various research backgrounds and experimental settings, pose a significant challenge to fair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically, OpenFGL includes 38 graph datasets from 16 application domains, 8 federated data simulation strategies that emphasize graph properties, and 5 graph-based downstream tasks. Additionally, it offers 18 recently proposed SOTA FGL algorithms through a user-friendly API, enabling a thorough comparison and comprehensive evaluation of their effectiveness, robustness, and efficiency. Empirical results demonstrate the ability of FGL while also revealing its potential limitations, offering valuable insights for future exploration in this thriving field.
comment: Under Review
☆ Beyond Uncertainty: Evidential Deep Learning for Robust Video Temporal Grounding RAM
Existing Video Temporal Grounding (VTG) models excel in accuracy but often overlook open-world challenges posed by open-vocabulary queries and untrimmed videos. This leads to unreliable predictions for noisy, corrupted, and out-of-distribution data. Adapting VTG models to dynamically estimate uncertainties based on user input can address this issue. To this end, we introduce SRAM, a robust network module that benefits from a two-stage cross-modal alignment task. More importantly, it integrates Deep Evidential Regression (DER) to explicitly and thoroughly quantify uncertainty during training, thus allowing the model to say "I do not know" in scenarios beyond its handling capacity. However, the direct application of traditional DER theory and its regularizer reveals structural flaws, leading to unintended constraints in VTG tasks. In response, we develop a simple yet effective Geom-regularizer that enhances the uncertainty learning framework from the ground up. To the best of our knowledge, this marks the first successful attempt of DER in VTG. Our extensive quantitative and qualitative results affirm the effectiveness, robustness, and interpretability of our modules and the uncertainty learning paradigm in VTG tasks. The code will be made available.
comment: Ongoing work: 28pages, 19 figures, 7 tables. Code is available at: https://kaijing.space/SRAM/
☆ LoraMap: Harnessing the Power of LoRA Connections
Large Language Models (LLMs) can benefit from mitigating hallucinations through fact-checking and overcoming substantial computational overhead with parameter-efficient techniques such as Low-Rank Adaptation (LoRA). While some studies have explored the parallel integration of multiple LoRAs, these approaches need attention to the connections between them. This paper investigates methods to establish connections among multiple LoRAs. We create three reasoning datasets tailored to fact-checking and fine-tune individual LoRAs, allowing them to view and reason from diverse perspectives. Then, we explore strategies for allocating these reasoning LoRAs and introduce LoraMap, an approach to map connections between them. The results on the fact-checking task demonstrate that the performance of LoraMap is superior to LoraHub, an existing LoRA composition method. LoraMap also outperforms with significantly fewer parameters than LoraConcat, which concatenates LoRAs and further fine-tunes them.
comment: 13 pages, 9 figures, 5 tables
☆ Evaluating Time-Series Training Dataset through Lens of Spectrum in Deep State Space Models
This study investigates a method to evaluate time-series datasets in terms of the performance of deep neural networks (DNNs) with state space models (deep SSMs) trained on the dataset. SSMs have attracted attention as components inside DNNs to address time-series data. Since deep SSMs have powerful representation capacities, training datasets play a crucial role in solving a new task. However, the effectiveness of training datasets cannot be known until deep SSMs are actually trained on them. This can increase the cost of data collection for new tasks, as a trial-and-error process of data collection and time-consuming training are needed to achieve the necessary performance. To advance the practical use of deep SSMs, the metric of datasets to estimate the performance early in the training can be one key element. To this end, we introduce the concept of data evaluation methods used in system identification. In system identification of linear dynamical systems, the effectiveness of datasets is evaluated by using the spectrum of input signals. We introduce this concept to deep SSMs, which are nonlinear dynamical systems. We propose the K-spectral metric, which is the sum of the top-K spectra of signals inside deep SSMs, by focusing on the fact that each layer of a deep SSM can be regarded as a linear dynamical system. Our experiments show that the K-spectral metric has a large absolute value of the correlation coefficient with the performance and can be used to evaluate the quality of training datasets.
comment: 11 pages, 5 figures
☆ Coalitions of AI-based Methods Predict 15-Year Risks of Breast Cancer Metastasis Using Real-World Clinical Data with AUC up to 0.9
Breast cancer is one of the two cancers responsible for the most deaths in women, with about 42,000 deaths each year in the US. That there are over 300,000 breast cancers newly diagnosed each year suggests that only a fraction of the cancers result in mortality. Thus, most of the women undergo seemingly curative treatment for localized cancers, but a significant later succumb to metastatic disease for which current treatments are only temporizing for the vast majority. The current prognostic metrics are of little actionable value for 4 of the 5 women seemingly cured after local treatment, and many women are exposed to morbid and even mortal adjuvant therapies unnecessarily, with these adjuvant therapies reducing metastatic recurrence by only a third. Thus, there is a need for better prognostics to target aggressive treatment at those who are likely to relapse and spare those who were actually cured. While there is a plethora of molecular and tumor-marker assays in use and under-development to detect recurrence early, these are time consuming, expensive and still often un-validated as to actionable prognostic utility. A different approach would use large data techniques to determine clinical and histopathological parameters that would provide accurate prognostics using existing data. Herein, we report on machine learning, together with grid search and Bayesian Networks to develop algorithms that present a AUC of up to 0.9 in ROC analyses, using only extant data. Such algorithms could be rapidly translated to clinical management as they do not require testing beyond routine tumor evaluations.
☆ Enhancing Conditional Image Generation with Explainable Latent Space Manipulation
In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
comment: 7 pages , 5 figures
☆ Anchor-Controlled Generative Adversarial Network for High-Fidelity Electromagnetic and Structurally Diverse Metasurface Design
In optoelectronics, designing free-form metasurfaces presents significant challenges, particularly in achieving high electromagnetic response fidelity due to the complex relationship between physical structures and electromagnetic behaviors. A key difficulty arises from the one-to-many mapping dilemma, where multiple distinct physical structures can yield similar electromagnetic responses, complicating the design process. This paper introduces a novel generative framework, the Anchor-controlled Generative Adversarial Network (AcGAN), which prioritizes electromagnetic fidelity while effectively navigating the one-to-many challenge to create structurally diverse metasurfaces. Unlike existing methods that mainly replicate physical appearances, AcGAN excels in generating a variety of structures that, despite their differences in physical attributes, exhibit similar electromagnetic responses, thereby accommodating fabrication constraints and tolerances. We introduce the Spectral Overlap Coefficient (SOC) as a precise metric to measure the spectral fidelity between generated designs and their targets. Additionally, a cluster-guided controller refines input processing, ensuring multi-level spectral integration and enhancing electromagnetic fidelity. The integration of AnchorNet into our loss function facilitates a nuanced assessment of electromagnetic qualities, supported by a dynamic loss weighting strategy that optimizes spectral alignment. Collectively, these innovations represent a transformative stride in metasurface inverse design, advancing electromagnetic response-oriented engineering and overcoming the complexities of the one-to-many mapping dilemma.Empirical evidence underscores AcGAN's effectiveness in streamlining the design process, achieving superior electromagnetic precision, and fostering a broad spectrum of design possibilities.
☆ LLaVA-SG: Leveraging Scene Graphs as Visual Semantic Expression in Vision-Language Models
Recent advances in large vision-language models (VLMs) typically employ vision encoders based on the Vision Transformer (ViT) architecture. The division of the images into patches by ViT results in a fragmented perception, thereby hindering the visual understanding capabilities of VLMs. In this paper, we propose an innovative enhancement to address this limitation by introducing a Scene Graph Expression (SGE) module in VLMs. This module extracts and structurally expresses the complex semantic information within images, thereby improving the foundational perception and understanding abilities of VLMs. Extensive experiments demonstrate that integrating our SGE module significantly enhances the VLM's performance in vision-language tasks, indicating its effectiveness in preserving intricate semantic details and facilitating better visual understanding. Code and data would be available.
☆ SSDM: Scalable Speech Dysfluency Modeling
Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose \textit{SSDM: Scalable Speech Dysfluency Modeling}, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a large-scale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling. Demo is available at \url{https://eureka235.github.io}.
☆ M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation
The rapid evolution of artificial intelligence, especially in large language models (LLMs), has significantly impacted various domains, including healthcare. In chest X-ray (CXR) analysis, previous studies have employed LLMs, but with limitations: either underutilizing the multi-tasking capabilities of LLMs or lacking clinical accuracy. This paper presents M4CXR, a multi-modal LLM designed to enhance CXR interpretation. The model is trained on a visual instruction-following dataset that integrates various task-specific datasets in a conversational format. As a result, the model supports multiple tasks such as medical report generation (MRG), visual grounding, and visual question answering (VQA). M4CXR achieves state-of-the-art clinical accuracy in MRG by employing a chain-of-thought prompting strategy, in which it identifies findings in CXR images and subsequently generates corresponding reports. The model is adaptable to various MRG scenarios depending on the available inputs, such as single-image, multi-image, and multi-study contexts. In addition to MRG, M4CXR performs visual grounding at a level comparable to specialized models and also demonstrates outstanding performance in VQA. Both quantitative and qualitative assessments reveal M4CXR's versatility in MRG, visual grounding, and VQA, while consistently maintaining clinical accuracy.
☆ Short-Term Electricity-Load Forecasting by Deep Learning: A Comprehensive Survey
Short-Term Electricity-Load Forecasting (STELF) refers to the prediction of the immediate demand (in the next few hours to several days) for the power system. Various external factors, such as weather changes and the emergence of new electricity consumption scenarios, can impact electricity demand, causing load data to fluctuate and become non-linear, which increases the complexity and difficulty of STELF. In the past decade, deep learning has been applied to STELF, modeling and predicting electricity demand with high accuracy, and contributing significantly to the development of STELF. This paper provides a comprehensive survey on deep-learning-based STELF over the past ten years. It examines the entire forecasting process, including data pre-processing, feature extraction, deep-learning modeling and optimization, and results evaluation. This paper also identifies some research challenges and potential research directions to be further investigated in future work.
☆ PolarBEVDet: Exploring Polar Representation for Multi-View 3D Object Detection in Bird's-Eye-View
Recently, LSS-based multi-view 3D object detection provides an economical and deployment-friendly solution for autonomous driving. However, all the existing LSS-based methods transform multi-view image features into a Cartesian Bird's-Eye-View(BEV) representation, which does not take into account the non-uniform image information distribution and hardly exploits the view symmetry. In this paper, in order to adapt the image information distribution and preserve the view symmetry by regular convolution, we propose to employ the polar BEV representation to substitute the Cartesian BEV representation. To achieve this, we elaborately tailor three modules: a polar view transformer to generate the polar BEV representation, a polar temporal fusion module for fusing historical polar BEV features and a polar detection head to predict the polar-parameterized representation of the object. In addition, we design a 2D auxiliary detection head and a spatial attention enhancement module to improve the quality of feature extraction in perspective view and BEV, respectively. Finally, we integrate the above improvements into a novel multi-view 3D object detector, PolarBEVDet. Experiments on nuScenes show that PolarBEVDet achieves the superior performance. The code is available at https://github.com/Yzichen/PolarBEVDet.git.
comment: 11 pages, 6 figures
☆ A More Unified Theory of Transfer Learning
We show that some basic moduli of continuity $\delta$ -- which measure how fast target risk decreases as source risk decreases -- appear to be at the root of many of the classical relatedness measures in transfer learning and related literature. Namely, bounds in terms of $\delta$ recover many of the existing bounds in terms of other measures of relatedness -- both in regression and classification -- and can at times be tighter. We are particularly interested in general situations where the learner has access to both source data and some or no target data. The unified perspective allowed by the moduli $\delta$ allow us to extend many existing notions of relatedness at once to these scenarios involving target data: interestingly, while $\delta$ itself might not be efficiently estimated, adaptive procedures exist -- based on reductions to confidence sets -- which can get nearly tight rates in terms of $\delta$ with no prior distributional knowledge. Such adaptivity to unknown $\delta$ immediately implies adaptivity to many classical relatedness notions, in terms of combined source and target samples' sizes.
☆ Real-Time Energy Pricing in New Zealand: An Evolving Stream Analysis PRICAI
This paper introduces a group of novel datasets representing real-time time-series and streaming data of energy prices in New Zealand, sourced from the Electricity Market Information (EMI) website maintained by the New Zealand government. The datasets are intended to address the scarcity of proper datasets for streaming regression learning tasks. We conduct extensive analyses and experiments on these datasets, covering preprocessing techniques, regression tasks, prediction intervals, concept drift detection, and anomaly detection. Our experiments demonstrate the datasets' utility and highlight the challenges and opportunities for future research in energy price forecasting.
comment: 12 Pages, 8 figures, short version accepted by PRICAI
☆ Different Victims, Same Layout: Email Visual Similarity Detection for Enhanced Email Protection CCS 2024
In the pursuit of an effective spam detection system, the focus has often been on identifying known spam patterns either through rule-based detection systems or machine learning (ML) solutions. However, both systems are susceptible to evasion techniques and zero-day attacks that can be achieved at low cost. Therefore, an email that bypassed the defense system once can do it again in the following days, even though rules are updated or the ML models are retrained. The recurrence of failures to detect emails that exhibit layout similarities to previously undetected spam is concerning for customers and can erode their trust in a company. Our observations show that threat actors reuse email kits extensively and can bypass detection with little effort, for example, by making changes to the content of emails. In this work, we propose an email visual similarity detection approach, named Pisco, to improve the detection capabilities of an email threat defense system. We apply our proof of concept to some real-world samples received from different sources. Our results show that email kits are being reused extensively and visually similar emails are sent to our customers at various time intervals. Therefore, this method could be very helpful in situations where detection features that rely on contextual information and keywords are bypassed, an occurrence our observations show happens frequently.
comment: To be published in the proceedings of the ACM Conference on Computer and Communications Security (ACM CCS 2024)
☆ A longitudinal sentiment analysis of Sinophobia during COVID-19 using large language models
The COVID-19 pandemic has exacerbated xenophobia, particularly Sinophobia, leading to widespread discrimination against individuals of Chinese descent. Large language models (LLMs) are pre-trained deep learning models used for natural language processing (NLP) tasks. The ability of LLMs to understand and generate human-like text makes them particularly useful for analysing social media data to detect and evaluate sentiments. We present a sentiment analysis framework utilising LLMs for longitudinal sentiment analysis of the Sinophobic sentiments expressed in X (Twitter) during the COVID-19 pandemic. The results show a significant correlation between the spikes in Sinophobic tweets, Sinophobic sentiments and surges in COVID-19 cases, revealing that the evolution of the pandemic influenced public sentiment and the prevalence of Sinophobic discourse. Furthermore, the sentiment analysis revealed a predominant presence of negative sentiments, such as annoyance and denial, which underscores the impact of political narratives and misinformation shaping public opinion. The lack of empathetic sentiment which was present in previous studies related to COVID-19 highlights the way the political narratives in media viewed the pandemic and how it blamed the Chinese community. Our study highlights the importance of transparent communication in mitigating xenophobic sentiments during global crises.
☆ Event Extraction for Portuguese: A QA-driven Approach using ACE-2005
Event extraction is an Information Retrieval task that commonly consists of identifying the central word for the event (trigger) and the event's arguments. This task has been extensively studied for English but lags behind for Portuguese, partly due to the lack of task-specific annotated corpora. This paper proposes a framework in which two separated BERT-based models were fine-tuned to identify and classify events in Portuguese documents. We decompose this task into two sub-tasks. Firstly, we use a token classification model to detect event triggers. To extract event arguments, we train a Question Answering model that queries the triggers about their corresponding event argument roles. Given the lack of event annotated corpora in Portuguese, we translated the original version of the ACE-2005 dataset (a reference in the field) into Portuguese, producing a new corpus for Portuguese event extraction. To accomplish this, we developed an automatic translation pipeline. Our framework obtains F1 marks of 64.4 for trigger classification and 46.7 for argument classification setting, thus a new state-of-the-art reference for these tasks in Portuguese.
☆ ACE-2005-PT: Corpus for Event Extraction in Portuguese
Event extraction is an NLP task that commonly involves identifying the central word (trigger) for an event and its associated arguments in text. ACE-2005 is widely recognised as the standard corpus in this field. While other corpora, like PropBank, primarily focus on annotating predicate-argument structure, ACE-2005 provides comprehensive information about the overall event structure and semantics. However, its limited language coverage restricts its usability. This paper introduces ACE-2005-PT, a corpus created by translating ACE-2005 into Portuguese, with European and Brazilian variants. To speed up the process of obtaining ACE-2005-PT, we rely on automatic translators. This, however, poses some challenges related to automatically identifying the correct alignments between multi-word annotations in the original text and in the corresponding translated sentence. To achieve this, we developed an alignment pipeline that incorporates several alignment techniques: lemmatization, fuzzy matching, synonym matching, multiple translations and a BERT-based word aligner. To measure the alignment effectiveness, a subset of annotations from the ACE-2005-PT corpus was manually aligned by a linguist expert. This subset was then compared against our pipeline results which achieved exact and relaxed match scores of 70.55\% and 87.55\% respectively. As a result, we successfully generated a Portuguese version of the ACE-2005 corpus, which has been accepted for publication by LDC.
☆ Analyzing Inference Privacy Risks Through Gradients in Machine Learning
In distributed learning settings, models are iteratively updated with shared gradients computed from potentially sensitive user data. While previous work has studied various privacy risks of sharing gradients, our paper aims to provide a systematic approach to analyze private information leakage from gradients. We present a unified game-based framework that encompasses a broad range of attacks including attribute, property, distributional, and user disclosures. We investigate how different uncertainties of the adversary affect their inferential power via extensive experiments on five datasets across various data modalities. Our results demonstrate the inefficacy of solely relying on data aggregation to achieve privacy against inference attacks in distributed learning. We further evaluate five types of defenses, namely, gradient pruning, signed gradient descent, adversarial perturbations, variational information bottleneck, and differential privacy, under both static and adaptive adversary settings. We provide an information-theoretic view for analyzing the effectiveness of these defenses against inference from gradients. Finally, we introduce a method for auditing attribute inference privacy, improving the empirical estimation of worst-case privacy through crafting adversarial canary records.
☆ GSTAM: Efficient Graph Distillation with Structural Attention-Matching ECCV
Graph distillation has emerged as a solution for reducing large graph datasets to smaller, more manageable, and informative ones. Existing methods primarily target node classification, involve computationally intensive processes, and fail to capture the true distribution of the full graph dataset. To address these issues, we introduce Graph Distillation with Structural Attention Matching (GSTAM), a novel method for condensing graph classification datasets. GSTAM leverages the attention maps of GNNs to distill structural information from the original dataset into synthetic graphs. The structural attention-matching mechanism exploits the areas of the input graph that GNNs prioritize for classification, effectively distilling such information into the synthetic graphs and improving overall distillation performance. Comprehensive experiments demonstrate GSTAM's superiority over existing methods, achieving 0.45% to 6.5% better performance in extreme condensation ratios, highlighting its potential use in advancing distillation for graph classification tasks (Code available at https://github.com/arashrasti96/GSTAM).
comment: Accepted at ECCV-DD 2024
☆ Physics-Informed Neural Networks and Extensions
In this paper, we review the new method Physics-Informed Neural Networks (PINNs) that has become the main pillar in scientific machine learning, we present recent practical extensions, and provide a specific example in data-driven discovery of governing differential equations.
comment: Frontiers of Science Awards 2024
☆ HLogformer: A Hierarchical Transformer for Representing Log Data
Transformers have gained widespread acclaim for their versatility in handling diverse data structures, yet their application to log data remains underexplored. Log data, characterized by its hierarchical, dictionary-like structure, poses unique challenges when processed using conventional transformer models. Traditional methods often rely on manually crafted templates for parsing logs, a process that is labor-intensive and lacks generalizability. Additionally, the linear treatment of log sequences by standard transformers neglects the rich, nested relationships within log entries, leading to suboptimal representations and excessive memory usage. To address these issues, we introduce HLogformer, a novel hierarchical transformer framework specifically designed for log data. HLogformer leverages the hierarchical structure of log entries to significantly reduce memory costs and enhance representation learning. Unlike traditional models that treat log data as flat sequences, our framework processes log entries in a manner that respects their inherent hierarchical organization. This approach ensures comprehensive encoding of both fine-grained details and broader contextual relationships. Our contributions are threefold: First, HLogformer is the first framework to design a dynamic hierarchical transformer tailored for dictionary-like log data. Second, it dramatically reduces memory costs associated with processing extensive log sequences. Third, comprehensive experiments demonstrate that HLogformer more effectively encodes hierarchical contextual information, proving to be highly effective for downstream tasks such as synthetic anomaly detection and product recommendation.
☆ Generative AI in Ship Design
The process of ship design is intricate, heavily influenced by the hull form which accounts for approximately 70% of the total cost. Traditional methods rely on human-driven iterative processes based on naval architecture principles and engineering analysis. In contrast, generative AI presents a novel approach, utilizing computational algorithms rooted in machine learning and artificial intelligence to optimize ship hull design. This report outlines the systematic creation of a generative AI for this purpose, involving steps such as dataset collection, model architecture selection, training, and validation. Utilizing the "SHIP-D" dataset, consisting of 30,000 hull forms, the report adopts the Gaussian Mixture Model (GMM) as the generative model architecture. GMMs offer a statistical framework to analyze data distribution, crucial for generating innovative ship designs efficiently. Overall, this approach holds promise in revolutionizing ship design by exploring a broader design space and integrating multidisciplinary optimization objectives effectively.
♻ ☆ Spatio-Temporal Context Prompting for Zero-Shot Action Detection
Spatio-temporal action detection encompasses the tasks of localizing and classifying individual actions within a video. Recent works aim to enhance this process by incorporating interaction modeling, which captures the relationship between people and their surrounding context. However, these approaches have primarily focused on fully-supervised learning, and the current limitation lies in the lack of generalization capability to recognize unseen action categories. In this paper, we aim to adapt the pretrained image-language models to detect unseen actions. To this end, we propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction. Meanwhile, our Context Prompting module will utilize contextual information to prompt labels, thereby enhancing the generation of more representative text features. Moreover, to address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism which employs pretrained visual knowledge to find each person's interest context tokens, and then these tokens will be used for prompting to generate text features tailored to each individual. To evaluate the ability to detect unseen actions, we propose a comprehensive benchmark on J-HMDB, UCF101-24, and AVA datasets. The experiments show that our method achieves superior results compared to previous approaches and can be further extended to multi-action videos, bringing it closer to real-world applications. The code and data can be found in https://webber2933.github.io/ST-CLIP-project-page.
comment: Project page: https://webber2933.github.io/ST-CLIP-project-page
♻ ☆ Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks
In recent years, the evolution of machine learning techniques has significantly impacted the field of intrusion detection, particularly within the context of the Internet of Things (IoT). As IoT networks expand, the need for robust security measures to counteract potential threats has become increasingly critical. This paper introduces a hybrid Intrusion Detection System (IDS) that synergistically combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm. Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost, known for its high performance in classification tasks. This hybrid approach not only enhances the detection accuracy but also improves the interpretability of the model, making it suitable for dynamic and intricate IoT environments. Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities. Additionally, we were able to achieve F1 scores, precision, and recall that exceeded 98%. Furthermore, we conduct a comparative analysis against traditional Multi-Layer Perceptron (MLP) networks, assessing performance metrics such as Precision, Recall, and F1-score. The results underscore the efficacy of integrating KANs with XGBoost, highlighting the potential of this innovative approach to significantly strengthen the security framework of IoT networks.
comment: To be presented at the 11th International Symposium on Networks, Computers and Communications (ISNCC'24) will be held in Washington DC- USA, from October 22 to 25, 2024. Accepted (6 pages and 5 figures)
♻ ☆ Easy, Interpretable, Effective: openSMILE for voice deepfake detection
In this paper, we demonstrate that attacks in the latest ASVspoof5 dataset -- a de facto standard in the field of voice authenticity and deepfake detection -- can be identified with surprising accuracy using a small subset of very simplistic features. These are derived from the openSMILE library, and are scalar-valued, easy to compute, and human interpretable. For example, attack A10`s unvoiced segments have a mean length of 0.09 +- 0.02, while bona fide instances have a mean length of 0.18 +- 0.07. Using this feature alone, a threshold classifier achieves an Equal Error Rate (EER) of 10.3% for attack A10. Similarly, across all attacks, we achieve up to 0.8% EER, with an overall EER of 15.7 +- 6.0%. We explore the generalization capabilities of these features and find that some of them transfer effectively between attacks, primarily when the attacks originate from similar Text-to-Speech (TTS) architectures. This finding may indicate that voice anti-spoofing is, in part, a problem of identifying and remembering signatures or fingerprints of individual TTS systems. This allows to better understand anti-spoofing models and their challenges in real-world application.
♻ ☆ GANs Conditioning Methods: A Survey
In recent years, Generative Adversarial Networks (GANs) have seen significant advancements, leading to their widespread adoption across various fields. The original GAN architecture enables the generation of images without any specific control over the content, making it an unconditional generation process. However, many practical applications require precise control over the generated output, which has led to the development of conditional GANs (cGANs) that incorporate explicit conditioning to guide the generation process. cGANs extend the original framework by incorporating additional information (conditions), enabling the generation of samples that adhere to that specific criteria. Various conditioning methods have been proposed, each differing in how they integrate the conditioning information into both the generator and the discriminator networks. In this work, we review the conditioning methods proposed for GANs, exploring the characteristics of each method and highlighting their unique mechanisms and theoretical foundations. Furthermore, we conduct a comparative analysis of these methods, evaluating their performance on various image datasets. Through these analyses, we aim to provide insights into the strengths and limitations of various conditioning techniques, guiding future research and application in generative modeling.
♻ ☆ CGRA4ML: A Framework to Implement Modern Neural Networks for Scientific Edge Computing
Scientific edge computing increasingly relies on hardware-accelerated neural networks to implement complex, near-sensor processing at extremely high throughputs and low latencies. Existing frameworks like HLS4ML are effective for smaller models, but struggle with larger, modern neural networks due to their requirement of spatially implementing the neural network layers and storing all weights in on-chip memory. CGRA4ML is an open-source, modular framework designed to bridge the gap between neural network model complexity and extreme performance requirements. CGRA4ML extends the capabilities of HLS4ML by allowing off-chip data storage and supporting a broader range of neural network architectures, including models like ResNet, PointNet, and transformers. Unlike HLS4ML, CGRA4ML generates SystemVerilog RTL, making it more suitable for targeting ASIC and FPGA design flows. We demonstrate the effectiveness of our framework by implementing and scaling larger models that were previously unattainable with HLS4ML, showcasing its adaptability and efficiency in handling complex computations. CGRA4ML also introduces an extensive verification framework, with a generated runtime firmware that enables its integration into different SoC platforms. CGRA4ML's minimal and modular infrastructure of Python API, SystemVerilog hardware, Tcl toolflows, and C runtime, facilitates easy integration and experimentation, allowing scientists to focus on innovation rather than the intricacies of hardware design and optimization.
♻ ☆ LRP4RAG: Detecting Hallucinations in Retrieval-Augmented Generation via Layer-wise Relevance Propagation
Retrieval-Augmented Generation (RAG) has become a primary technique for mitigating hallucinations in large language models (LLMs). However, incomplete knowledge extraction and insufficient understanding can still mislead LLMs to produce irrelevant or even contradictory responses, which means hallucinations persist in RAG. In this paper, we propose LRP4RAG, a method based on the Layer-wise Relevance Propagation (LRP) algorithm for detecting hallucinations in RAG. Specifically, we first utilize LRP to compute the relevance between the input and output of the RAG generator. We then apply further extraction and resampling to the relevance matrix. The processed relevance data are input into multiple classifiers to determine whether the output contains hallucinations. To the best of our knowledge, this is the first time that LRP has been used for detecting RAG hallucinations, and extensive experiments demonstrate that LRP4RAG outperforms existing baselines.
♻ ☆ No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery
What data or environments to use for training to improve downstream performance is a longstanding and very topical question in reinforcement learning. In particular, Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula enable agents to be robust to in- and out-of-distribution tasks. We ask to what extent these methods are themselves robust when applied to a novel setting, closely inspired by a real-world robotics problem. Surprisingly, we find that the state-of-the-art UED methods either do not improve upon the na\"{i}ve baseline of Domain Randomisation (DR), or require substantial hyperparameter tuning to do so. Our analysis shows that this is due to their underlying scoring functions failing to predict intuitive measures of ``learnability'', i.e., in finding the settings that the agent sometimes solves, but not always. Based on this, we instead directly train on levels with high learnability and find that this simple and intuitive approach outperforms UED methods and DR in several binary-outcome environments, including on our domain and the standard UED domain of Minigrid. We further introduce a new adversarial evaluation procedure for directly measuring robustness, closely mirroring the conditional value at risk (CVaR). We open-source all our code and present visualisations of final policies here: https://github.com/amacrutherford/sampling-for-learnability.
♻ ☆ Post-processing fairness with minimal changes
In this paper, we introduce a novel post-processing algorithm that is both model-agnostic and does not require the sensitive attribute at test time. In addition, our algorithm is explicitly designed to enforce minimal changes between biased and debiased predictions; a property that, while highly desirable, is rarely prioritized as an explicit objective in fairness literature. Our approach leverages a multiplicative factor applied to the logit value of probability scores produced by a black-box classifier. We demonstrate the efficacy of our method through empirical evaluations, comparing its performance against other four debiasing algorithms on two widely used datasets in fairness research.
♻ ☆ Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies
Developing novel predictive models with complex biomedical information is challenging due to various idiosyncrasies related to heterogeneity, standardization or sparseness of the data. We previously introduced a person-centric ontology to organize information about individual patients, and a representation learning framework to extract person-centric knowledge graphs (PKGs) and to train Graph Neural Networks (GNNs). In this paper, we propose a systematic approach to examine the results of GNN models trained with both structured and unstructured information from the MIMIC-III dataset. Through ablation studies on different clinical, demographic, and social data, we show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.
comment: Published in the 34th Medical Informatics Europe Conference
♻ ☆ Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express CIKM 2024
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
comment: CIKM 2024 (International Conference on Information and Knowledge Management), Multimodal Search and Recommendations Workshop
♻ ☆ VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation
In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons, sketches and scientific figures. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs and (f) comparison with VLMs on rasterized representations. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced at https://vgbench.github.io.
comment: Project Page: https://vgbench.github.io
♻ ☆ Conditional score-based diffusion models for solving inverse problems in mechanics
We propose a framework to perform Bayesian inference using conditional score-based diffusion models to solve a class of inverse problems in mechanics involving the inference of a specimen's spatially varying material properties from noisy measurements of its mechanical response to loading. Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution using samples from the joint distribution. More specifically, the score functions corresponding to multiple realizations of the measurement are approximated using a single neural network, the so-called score network, which is subsequently used to sample the posterior distribution using an appropriate Markov chain Monte Carlo scheme based on Langevin dynamics. Training the score network only requires simulating the forward model. Hence, the proposed approach can accommodate black-box forward models and complex measurement noise. Moreover, once the score network has been trained, it can be re-used to solve the inverse problem for different realizations of the measurements. We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics that involve inferring heterogeneous material properties from noisy measurements. Some examples we consider involve synthetic data, while others include data collected from actual elastography experiments. Further, our applications demonstrate that the proposed approach can handle different measurement modalities, complex patterns in the inferred quantities, non-Gaussian and non-additive noise models, and nonlinear black-box forward models. The results show that the proposed framework can solve large-scale physics-based inverse problems efficiently.
♻ ☆ FilFL: Client Filtering for Optimized Client Participation in Federated Learning
Federated learning, an emerging machine learning paradigm, enables clients to collaboratively train a model without exchanging local data. Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization. We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training. The proposed method periodically filters available clients to identify a subset that maximizes a combinatorial objective function with an efficient greedy filtering algorithm. Thus, the clients are assessed as a combination rather than individually. We theoretically analyze the convergence of federated learning with client filtering in heterogeneous settings and evaluate its performance across diverse vision and language tasks, including realistic scenarios with time-varying client availability. Our empirical results demonstrate several benefits of our approach, including improved learning efficiency, faster convergence, and up to 10% higher test accuracy than training without client filtering.
comment: Accepted at ECAI'24
♻ ☆ Evaluation Framework for Feedback Generation Methods in Skeletal Movement Assessment ECCV 2024
The application of machine-learning solutions to movement assessment from skeleton videos has attracted significant research attention in recent years. This advancement has made rehabilitation at home more accessible, utilizing movement assessment algorithms that can operate on affordable equipment for human pose detection and analysis from 2D or 3D videos. While the primary objective of automatic assessment tasks is to score movements, the automatic generation of feedback highlighting key movement issues has the potential to significantly enhance and accelerate the rehabilitation process. While numerous research works exist in the field of automatic movement assessment, only a handful address feedback generation. In this study, we propose terminology and criteria for the classification, evaluation, and comparison of feedback generation solutions. We discuss the challenges associated with each feedback generation approach and use our proposed criteria to classify existing solutions. To our knowledge, this is the first work that formulates feedback generation in skeletal movement assessment.
comment: Accepted to xAI4Biometrics 2024 at ECCV 2024
♻ ☆ Quantifying Geospatial in the Common Crawl Corpus SP
Large language models (LLMs) exhibit emerging geospatial capabilities, stemming from their pre-training on vast unlabelled text datasets that are often derived from the Common Crawl (CC) corpus. However, the geospatial content within CC remains largely unexplored, impacting our understanding of LLMs' spatial reasoning. This paper investigates the prevalence of geospatial data in recent Common Crawl releases using Gemini 1.5, a powerful language model. By analyzing a sample of documents and manually revising the results, we estimate that 18.7% of web documents in CC contain geospatial information such as coordinates and addresses. We find little difference in prevalence between Enlgish- and non-English-language documents. Our findings provide quantitative insights into the nature and extent of geospatial data in CC, and lay the groundwork for future studies of geospatial biases of LLMs.
comment: Accepted as a poster to ACM SIGSPATIAL 2024
♻ ☆ GEAR: An Efficient KV Cache Compression Recipe for Near-Lossless Generative Inference of LLM
Key-value (KV) caching has become the de-facto to accelerate generation speed for large language models (LLMs) inference. However, the growing cache demand with increasing sequence length has transformed LLM inference to be a memory bound problem, significantly constraining the system throughput. Existing methods rely on dropping unimportant tokens or quantizing all entries uniformly. Such methods, however, often incur high approximation errors to represent the compressed matrices. The autoregressive decoding process further compounds the error of each step, resulting in critical deviation in model generation and deterioration of performance. To tackle this challenge, we propose GEAR, an efficient KV cache compression framework that achieves near-lossless high-ratio compression. GEAR first applies quantization to majority of entries of similar magnitudes to ultra-low precision. It then employs a low rank matrix to approximate the quantization error, and a sparse matrix to remedy individual errors from outlier entries. By adeptly integrating three techniques, GEAR is able to fully exploit their synergistic potentials. Our experiments demonstrate that compared to alternatives, GEAR achieves near-lossless 4-bit KV cache compression with up to 2.38x throughput improvement, while reducing peak-memory size up to 2.29x. Our code is publicly available at https://github.com/HaoKang-Timmy/GEAR.
♻ ☆ Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition
Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition.
♻ ☆ Trajectory Forecasting through Low-Rank Adaptation of Discrete Latent Codes
Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.
comment: 15 pages, 3 figures, 5 tables
♻ ☆ Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation. The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz optimisation. The method obtains provably tighter over-approximations of the perturbation region than the present state-of-the-art. We report results from experiments on a comprehensive set of verification benchmarks on MNIST and CIFAR10. We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
comment: ECAI 2024
♻ ☆ On the Efficacy of Text-Based Input Modalities for Action Anticipation
Anticipating future actions is a highly challenging task due to the diversity and scale of potential future actions; yet, information from different modalities help narrow down plausible action choices. Each modality can provide diverse and often complementary context for the model to learn from. While previous multi-modal methods leverage information from modalities such as video and audio, we primarily explore how text descriptions of actions and objects can also lead to more accurate action anticipation by providing additional contextual cues, e.g., about the environment and its contents. We propose a Multi-modal Contrastive Anticipative Transformer (M-CAT), a video transformer architecture that jointly learns from multi-modal features and text descriptions of actions and objects. We train our model in two stages, where the model first learns to align video clips with descriptions of future actions, and is subsequently fine-tuned to predict future actions. Compared to existing methods, M-CAT has the advantage of learning additional context from two types of text inputs: rich descriptions of future actions during pre-training, and, text descriptions for detected objects and actions during modality feature fusion. Through extensive experimental evaluation, we demonstrate that our model outperforms previous methods on the EpicKitchens datasets, and show that using simple text descriptions of actions and objects aid in more effective action anticipation. In addition, we examine the impact of object and action information obtained via text, and perform extensive ablations.
♻ ☆ Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction
Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning. However, their extraction behavior on complex sentences and tasks is unstable, emerging issues such as false positives and missing elements. We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance, and the extraction orders of entities significantly affect the final results of LLMs. This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning. We regard sequential extraction as a Markov decision process, build an LLM-based extraction environment, design a decision module to adaptively provide the optimal order for sequential entity extraction on different sentences, and utilize the DDQN algorithm to train the decision model. We also design the rewards and evaluation metrics suitable for the extraction results of LLMs. We conduct extensive experiments on multiple public datasets to demonstrate the effectiveness of our method in improving the information extraction capabilities of LLMs.
♻ ☆ Standardized Interpretable Fairness Measures for Continuous Risk Scores
We propose a standardized version of fairness measures for continuous scores with a reasonable interpretation based on the Wasserstein distance. Our measures are easily computable and well suited for quantifying and interpreting the strength of group disparities as well as for comparing biases across different models, datasets, or time points. We derive a link between the different families of existing fairness measures for scores and show that the proposed standardized fairness measures outperform ROC-based fairness measures because they are more explicit and can quantify significant biases that ROC-based fairness measures miss.
♻ ☆ Follow-up Attention: An Empirical Study of Developer and Neural Model Code Exploration
Recent neural models of code, such as OpenAI Codex and AlphaCode, have demonstrated remarkable proficiency at code generation due to the underlying attention mechanism. However, it often remains unclear how the models actually process code, and to what extent their reasoning and the way their attention mechanism scans the code matches the patterns of developers. A poor understanding of the model reasoning process limits the way in which current neural models are leveraged today, so far mostly for their raw prediction. To fill this gap, this work studies how the processed attention signal of three open large language models - CodeGen, InCoder and GPT-J - agrees with how developers look at and explore code when each answers the same sensemaking questions about code. Furthermore, we contribute an open-source eye-tracking dataset comprising 92 manually-labeled sessions from 25 developers engaged in sensemaking tasks. We empirically evaluate five heuristics that do not use the attention and ten attention-based post-processing approaches of the attention signal of CodeGen against our ground truth of developers exploring code, including the novel concept of follow-up attention which exhibits the highest agreement between model and human attention. Our follow-up attention method can predict the next line a developer will look at with 47% accuracy. This outperforms the baseline prediction accuracy of 42.3%, which uses the session history of other developers to recommend the next line. These results demonstrate the potential of leveraging the attention signal of pre-trained models for effective code exploration.
comment: Published at IEEE Transactions on Software Engineering
♻ ☆ Innovative Speech-Based Deep Learning Approaches for Parkinson's Disease Classification: A Systematic Review
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder worldwide, frequently presents with early-stage speech impairments. Recent advancements in Artificial Intelligence (AI), particularly deep learning (DL), have significantly enhanced PD diagnosis through the analysis of speech data. Nevertheless, the progress of research is restricted by the limited availability of publicly accessible speech-based PD datasets, primarily due to privacy concerns. The goal of this systematic review is to explore the current landscape of speech-based DL approaches for PD classification, based on 33 scientific works published between 2020 and March 2024. We discuss their available resources, capabilities, potential limitations, and issues related to bias, explainability, and privacy. Furthermore, this review provides an overview of publicly accessible speech-based datasets and open-source material for PD. The DL approaches are categorized into end-to-end (E2E) learning, transfer learning (TL) and deep acoustic features extraction (DAFE) approaches. Among E2E approaches, Convolutional Neural Networks (CNNs) are prevalent, though Transformers are increasingly popular. E2E approaches face challenges such as limited data and computational resources, especially with Transformers. TL addresses these issues by providing more robust PD diagnosis and better generalizability across languages. DAFE aims to improve the explainability and interpretability of results by examining the specific effects of deep features on both other DL approaches and more traditional machine learning (ML) methods. However, it often underperforms compared to E2E and TL approaches.
comment: Submitted in Applied Sciences - peer reviewed Open Access journal. This research was funded by the NWO research programme AiNed Fellowship Grants under the project Responsible AI for Voice Diagnostics (RAIVD) - grant number NGF.1607.22.013
♻ ☆ Can LLMs perform structured graph reasoning? ICPR
Pretrained Large Language Models (LLMs) have demonstrated various reasoning capabilities through language-based prompts alone, particularly in unstructured task settings (tasks purely based on language semantics). However, LLMs often struggle with structured tasks, because of the inherent incompatibility of input representation. Reducing structured tasks to uni-dimensional language semantics often renders the problem trivial. Keeping the trade-off between LLM compatibility and structure complexity in mind, we design various graph reasoning tasks as a proxy to semi-structured tasks in this paper, in order to test the ability to navigate through representations beyond plain text in various LLMs. Particularly, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity, and benchmark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) on the aforementioned tasks. Further, we analyse the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we introduce a new prompting technique specially designed for graph traversal tasks (PathCompare), which demonstrates a notable increase in the performance of LLMs in comparison to standard prompting techniques such as Chain-of-Thought (CoT).
comment: International Conference on Pattern Recognition (ICPR), 2024
♻ ☆ Low-Cost Language Models: Survey and Performance Evaluation on Python Code Generation
Large Language Models (LLMs) have become a popular choice for many Natural Language Processing (NLP) tasks due to their versatility and ability to produce high-quality results. Specifically, they are increasingly used for automatic code generation to help developers tackle repetitive coding tasks. However, LLMs' substantial computational and memory requirements often make them inaccessible to users with limited resources. This paper focuses on very low-cost models which offer a more accessible alternative to resource-intensive LLMs. We notably: (1) propose a thorough semi-manual evaluation of their performance in generating Python code, (2) introduce a Chain-of-Thought (CoT) prompting strategy to improve model reasoning and code quality, and (3) propose a new dataset of 60 programming problems, with varied difficulty levels, designed to extend existing benchmarks like HumanEval and EvalPlus. Our findings show that some low-cost compatible models achieve competitive results compared to larger models like ChatGPT despite using significantly fewer resources. We will make our dataset and prompts publicly available to support further research.
comment: Under review at Elsevier's Engineering Applications of Artificial Intelligence
♻ ☆ The Dark Side of Function Calling: Pathways to Jailbreaking Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities, but their power comes with significant security considerations. While extensive research has been conducted on the safety of LLMs in chat mode, the security implications of their function calling feature have been largely overlooked. This paper uncovers a critical vulnerability in the function calling process of LLMs, introducing a novel "jailbreak function" attack method that exploits alignment discrepancies, user coercion, and the absence of rigorous safety filters. Our empirical study, conducted on six state-of-the-art LLMs including GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-pro, reveals an alarming average success rate of over 90\% for this attack. We provide a comprehensive analysis of why function calls are susceptible to such attacks and propose defensive strategies, including the use of defensive prompts. Our findings highlight the urgent need for enhanced security measures in the function calling capabilities of LLMs, contributing to the field of AI safety by identifying a previously unexplored risk, designing an effective attack method, and suggesting practical defensive measures. Our code is available at https://github.com/wooozihui/jailbreakfunction.
♻ ☆ FRRI: a novel algorithm for fuzzy-rough rule induction
Interpretability is the next frontier in machine learning research. In the search for white box models - as opposed to black box models, like random forests or neural networks - rule induction algorithms are a logical and promising option, since the rules can easily be understood by humans. Fuzzy and rough set theory have been successfully applied to this archetype, almost always separately. As both approaches to rule induction involve granular computing based on the concept of equivalence classes, it is natural to combine them. The QuickRules\cite{JensenCornelis2009} algorithm was a first attempt at using fuzzy rough set theory for rule induction. It is based on QuickReduct, a greedy algorithm for building decision reducts. QuickRules already showed an improvement over other rule induction methods. However, to evaluate the full potential of a fuzzy rough rule induction algorithm, one needs to start from the foundations. In this paper, we introduce a novel rule induction algorithm called Fuzzy Rough Rule Induction (FRRI). We provide background and explain the workings of our algorithm. Furthermore, we perform a computational experiment to evaluate the performance of our algorithm and compare it to other state-of-the-art rule induction approaches. We find that our algorithm is more accurate while creating small rulesets consisting of relatively short rules. We end the paper by outlining some directions for future work.
♻ ☆ Advances and Open Challenges in Federated Foundation Models
The integration of Foundation Models (FMs) with Federated Learning (FL) presents a transformative paradigm in Artificial Intelligence (AI). This integration offers enhanced capabilities while addressing concerns of privacy, data decentralization, and computational efficiency. This paper provides a comprehensive survey of the emerging field of Federated Foundation Models (FedFM), elucidating their synergistic relationship and exploring novel methodologies, challenges, and future directions that the FL research field needs to focus on in order to thrive in the age of FMs. A systematic multi-tiered taxonomy is proposed, categorizing existing FedFM approaches for model training, aggregation, trustworthiness, and incentivization. Key challenges, including how to enable FL to deal with high complexity of computational demands, privacy considerations, contribution evaluation, and communication efficiency, are thoroughly discussed. Moreover, the paper explores the intricate challenges of communication, scalability, and security inherent in training/fine-tuning FMs via FL. It highlights the potential of quantum computing to revolutionize the processes of training, inference, optimization, and data encryption. This survey also introduces the implementation requirement of FedFM and some practical FedFM applications. Then, this survey provides the lessons with a clear understanding of our findings for FedFM. Finally, this survey not only provides insights into the current state and challenges of FedFM but also paves the way for future research directions, emphasizing the need for developing trustworthy solutions. It serves as a foundational guide for researchers and practitioners interested in contributing to this interdisciplinary and rapidly advancing field.
comment: Survey of Federated Foundation Models (FedFM)
♻ ☆ Next Level Message-Passing with Hierarchical Support Graphs
Message-Passing Neural Networks (MPNNs) are extensively employed in graph learning tasks but suffer from limitations such as the restricted scope of information exchange, by being confined to neighboring nodes during each round of message passing. Various strategies have been proposed to address these limitations, including incorporating virtual nodes to facilitate global information exchange. In this study, we introduce the Hierarchical Support Graph (HSG), an extension of the virtual node concept created through recursive coarsening of the original graph. This approach provides a flexible framework for enhancing information flow in graphs, independent of the specific MPNN layers utilized. We present a theoretical analysis of HSGs, investigate their empirical performance, and demonstrate that HSGs can surpass other methods augmented with virtual nodes, achieving state-of-the-art results across multiple datasets.
♻ ☆ PyCSP3: Modeling Combinatorial Constrained Problems in Python
In this document, we introduce PyCSP$3$, a Python library that allows us to write models of combinatorial constrained problems in a declarative manner. Currently, with PyCSP$3$, you can write models of constraint satisfaction and optimization problems. More specifically, you can build CSP (Constraint Satisfaction Problem) and COP (Constraint Optimization Problem) models. Importantly, there is a complete separation between the modeling and solving phases: you write a model, you compile it (while providing some data) in order to generate an XCSP$3$ instance (file), and you solve that problem instance by means of a constraint solver. You can also directly pilot the solving procedure in PyCSP$3$, possibly conducting an incremental solving strategy. In this document, you will find all that you need to know about PyCSP$3$, with more than 50 illustrative models.
comment: 180 pages
♻ ☆ XCSP3-core: A Format for Representing Constraint Satisfaction/Optimization Problems
In this document, we introduce XCSP3-core, a subset of XCSP3 that allows us to represent constraint satisfaction/optimization problems. The interest of XCSP3-core is multiple: (i) focusing on the most popular frameworks (CSP and COP) and constraints, (ii) facilitating the parsing process by means of dedicated XCSP3-core parsers written in Java and C++ (using callback functions), (iii) and defining a core format for comparisons (competitions) of constraint solvers.
comment: arXiv admin note: substantial text overlap with arXiv:1611.03398
♻ ☆ The $μ\mathcal{G}$ Language for Programming Graph Neural Networks
Graph neural networks form a class of deep learning architectures specifically designed to work with graph-structured data. As such, they share the inherent limitations and problems of deep learning, especially regarding the issues of explainability and trustworthiness. We propose $\mu\mathcal{G}$, an original domain-specific language for the specification of graph neural networks that aims to overcome these issues. The language's syntax is introduced, and its meaning is rigorously defined by a denotational semantics. An equivalent characterization in the form of an operational semantics is also provided and, together with a type system, is used to prove the type soundness of $\mu\mathcal{G}$. We show how $\mu\mathcal{G}$ programs can be represented in a more user-friendly graphical visualization, and provide examples of its generality by showing how it can be used to define some of the most popular graph neural network models, or to develop any custom graph processing application.
♻ ☆ Modeling Time-Variant Responses of Optical Compressors with Selective State Space Models
This paper presents a method for modeling optical dynamic range compressors using deep neural networks with Selective State Space models. The proposed approach surpasses previous methods based on recurrent layers by employing a Selective State Space block to encode the input audio. It features a refined technique integrating Feature-wise Linear Modulation and Gated Linear Units to adjust the network dynamically, conditioning the compression's attack and release phases according to external parameters. The proposed architecture is well-suited for low-latency and real-time applications, crucial in live audio processing. The method has been validated on the analog optical compressors TubeTech CL 1B and Teletronix LA-2A, which possess distinct characteristics. Evaluation is performed using quantitative metrics and subjective listening tests, comparing the proposed method with other state-of-the-art models. Results show that our black-box modeling methods outperform all others, achieving accurate emulation of the compression process for both seen and unseen settings during training. We further show a correlation between this accuracy and the sampling density of the control parameters in the dataset and identify settings with fast attack and slow release as the most challenging to emulate.
comment: Submitted to Journal of the Audio Engineering Society
♻ ☆ Comparative Study of State-based Neural Networks for Virtual Analog Audio Effects Modeling RAS
Analog electronic circuits are at the core of an important category of musical devices, which includes a broad range of sound synthesizers and audio effects. The development of software that simulates analog musical devices, known as virtual analog modeling, is a significant sub-field in audio signal processing. Artificial neural networks are a promising technique for virtual analog modeling. While neural approaches have successfully accurately modeled distortion circuits, they require architectural improvements that account for parameter conditioning and low-latency response. This article explores the application of recent machine learning advancements for virtual analog modeling. In particular, we compare State-Space models and Linear Recurrent Units against the more common Long Short-Term Memory networks. Our comparative study uses these black-box neural modeling techniques with various audio effects. We evaluate the performance and limitations of these models using multiple metrics, providing insights for future research and development. Our metrics aim to assess the models' ability to accurately replicate energy envelopes and frequency contents, with a particular focus on transients in the audio signal. To incorporate control parameters into the models, we employ the Feature-wise Linear Modulation method. Long Short-Term Memory networks exhibit better accuracy in emulating distortions and equalizers, while the State-Space model, followed by Long Short-Term Memory networks when integrated in an encoder-decoder structure, and Linear Recurrent Unit outperforms others in emulating saturation and compression. When considering long time-variant characteristics, the State-Space model demonstrates the greatest capability to track history. Long Short-Term Memory networks tend to introduce audio artifacts.
comment: Submitted to EURASIP Journal on Audio, Speech, and Music Processing
Improving Ontology Requirements Engineering with OntoChat and Participatory Prompting
Past ontology requirements engineering (ORE) has primarily relied on manual methods, such as interviews and collaborative forums, to gather user requirements from domain experts, especially in large projects. Current OntoChat offers a framework for ORE that utilises large language models (LLMs) to streamline the process through four key functions: user story creation, competency question (CQ) extraction, CQ filtration and analysis, and ontology testing support. In OntoChat, users are expected to prompt the chatbot to generate user stories. However, preliminary evaluations revealed that they struggle to do this effectively. To address this issue, we experimented with a research method called participatory prompting, which involves researcher-mediated interactions to help users without deep knowledge of LLMs use the chatbot more effectively. This participatory prompting user study produces pre-defined prompt templates based on user queries, focusing on creating and refining personas, goals, scenarios, sample data, and data resources for user stories. These refined user stories will subsequently be converted into CQs.
♻ ☆ Helmsman of the Masses? Evaluate the Opinion Leadership of Large Language Models in the Werewolf Game
Large language models (LLMs) have exhibited memorable strategic behaviors in social deductive games. However, the significance of opinion leadership exhibited by LLM-based agents has been largely overlooked, which is crucial for practical applications in multi-agent and human-AI interaction settings. Opinion leaders are individuals who have a noticeable impact on the beliefs and behaviors of others within a social group. In this work, we employ the Werewolf game as a simulation platform to assess the opinion leadership of LLMs. The game includes the role of the Sheriff, tasked with summarizing arguments and recommending decision options, and therefore serves as a credible proxy for an opinion leader. We develop a framework integrating the Sheriff role and devise two novel metrics based on the critical characteristics of opinion leaders. The first metric measures the reliability of the opinion leader, and the second assesses the influence of the opinion leader on other players' decisions. We conduct extensive experiments to evaluate LLMs of different scales. In addition, we collect a Werewolf question-answering dataset (WWQA) to assess and enhance LLM's grasp of the game rules, and we also incorporate human participants for further analysis. The results suggest that the Werewolf game is a suitable test bed to evaluate the opinion leadership of LLMs, and few LLMs possess the capacity for opinion leadership.
comment: Published as a conference paper at COLM 2024. 37 pages, 6 figures, 27 tables
♻ ☆ LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits
In the realm of electronic and electrical engineering, automation of analog circuit is increasingly vital given the complexity and customized requirements of modern applications. However, existing methods only develop search-based algorithms that require many simulation iterations to design a custom circuit topology, which is usually a time-consuming process. To this end, we introduce LaMAGIC, a pioneering language model-based topology generation model that leverages supervised finetuning for automated analog circuit design. LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass. Our approach involves a meticulous development and analysis of various input and output formulations for circuit. These formulations can ensure canonical representations of circuits and align with the autoregressive nature of LMs to effectively addressing the challenges of representing analog circuits as graphs. The experimental results show that LaMAGIC achieves a success rate of up to 96\% under a strict tolerance of 0.01. We also examine the scalability and adaptability of LaMAGIC, specifically testing its performance on more complex circuits. Our findings reveal the enhanced effectiveness of our adjacency matrix-based circuit formulation with floating-point input, suggesting its suitability for handling intricate circuit designs. This research not only demonstrates the potential of language models in graph generation, but also builds a foundational framework for future explorations in automated analog circuit design.
comment: Proceedings of the 41st International Conference on Machine Learning, PMLR 235:6253-6262 https://proceedings.mlr.press/v235/chang24c.html
♻ ☆ 1 From the Pursuit of Universal AGI Architecture to Systematic Approach to Heterogenous AGI: Addressing Alignment, Energy, & AGI Grand Challenges
AI faces a trifecta of grand challenges: the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. Contemporary AI solutions consume unsustainable amounts of energy during model training and daily operations. Making things worse, the amount of computation required to train each new AI model has been doubling every 2 months since 2020, directly translating to unprecedented increases in energy consumption. The leap from AI to AGI requires multiple functional subsystems operating in a balanced manner, which requires a system architecture. However, the current approach to artificial intelligence lacks system design; even though system characteristics play a key role in the human brain; from the way it processes information to how it makes decisions. System design is the key to alignment, one of the most challenging goals in AI. This difficulty stems from the fact that the complexity of human moral system requires a similarly sophisticated system for alignment. Without accurately reflecting the complexity of these core moral subsystems and systems, aligning AI with human values becomes significantly more challenging. In this paper, we posit that system design is the missing piece in overcoming the grand challenges. We present a Systematic Approach to AGI that utilizes system design principles to AGI, while providing ways to overcome the energy wall and the alignment challenges. This paper asserts that artificial intelligence can be realized through a multiplicity of design-specific pathways, rather than a singular, overarching AGI architecture. AGI systems may exhibit diverse architectural configurations and capabilities, contingent upon their intended use cases. It advocates for a focus on employing system design principles as a guiding framework, rather than solely concentrating on a universal AGI architecture.
comment: International Journal on Semantic Computing (2024) Categories: Artificial Intelligence; AI; Artificial General Intelligence; AGI; System Design; System Architecture
♻ ☆ MSDiagnosis: An EMR-based Dataset for Clinical Multi-Step Diagnosis
Clinical diagnosis is critical in medical practice, typically requiring a continuous and evolving process that includes primary diagnosis, differential diagnosis, and final diagnosis. However, most existing clinical diagnostic tasks are single-step processes, which does not align with the complex multi-step diagnostic procedures found in real-world clinical settings. In this paper, we propose a multi-step diagnostic task and annotate a clinical diagnostic dataset (MSDiagnosis). This dataset includes primary diagnosis, differential diagnosis, and final diagnosis questions. Additionally, we propose a novel and effective framework. This framework combines forward inference, backward inference, reflection, and refinement, enabling the LLM to self-evaluate and adjust its diagnostic results. To assess the effectiveness of our proposed method, we design and conduct extensive experiments. The experimental results demonstrate the effectiveness of the proposed method. We also provide a comprehensive experimental analysis and suggest future research directions for this task.
♻ ☆ A mathematical framework of intelligence and consciousness based on Riemannian Geometry
Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence. Intelligence encompasses learning, problem-solving, creativity, and even consciousness. Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation, exposing intrinsic data structures and dynamic processes within neural and artificial systems. However, a comprehensive framework that unifies the static and dynamic aspects of intelligence is still lacking. This manuscript proposes a mathematical framework based on Riemannian geometry to describe the structure and dynamics of intelligence and consciousness. Intelligence elements are conceptualised as tokens embedded in a high-dimensional space. The learned token embeddings capture the interconnections of tokens across various scenarios and tasks, forming manifolds in the intelligence space. Thought flow is depicted as the sequential activation of tokens along geodesics within these manifolds. During the navigation of geodesics, consciousness, as a self-referential process, perceives the thought flow, evaluates it against predictions, and provides feedback through prediction errors, adjusting the geodesic: non-zero prediction errors, such as learning, lead to the restructuring of the curved manifolds, thus changing the geodesic of thought flow. This dynamic interaction integrates new information, evolves the geometry and facilitates learning. The geometry of intelligence guides consciousness, and consciousness structures the geometry of intelligence. By integrating geometric concepts, this proposed theory offers a unified, mathematically framework for describing the structure and dynamics of intelligence and consciousness. Applicable to biological and artificial intelligence, this framework may pave the way for future research and empirical validation.
♻ ☆ CorMulT: A Semi-supervised Modality Correlation-aware Multimodal Transformer for Sentiment Analysis
Multimodal sentiment analysis is an active research area that combines multiple data modalities, e.g., text, image and audio, to analyze human emotions and benefits a variety of applications. Existing multimodal sentiment analysis methods can be classified as modality interaction-based methods, modality transformation-based methods and modality similarity-based methods. However, most of these methods highly rely on the strong correlations between modalities, and cannot fully uncover and utilize the correlations between modalities to enhance sentiment analysis. Therefore, these methods usually achieve bad performance for identifying the sentiment of multimodal data with weak correlations. To address this issue, we proposed a two-stage semi-supervised model termed Correlation-aware Multimodal Transformer (CorMulT) which consists pre-training stage and prediction stage. At the pre-training stage, a modality correlation contrastive learning module is designed to efficiently learn modality correlation coefficients between different modalities. At the prediction stage, the learned correlation coefficients are fused with modality representations to make the sentiment prediction. According to the experiments on the popular multimodal dataset CMU-MOSEI, CorMulT obviously surpasses state-of-the-art multimodal sentiment analysis methods.
♻ ☆ DiffiT: Diffusion Vision Transformers for Image Generation ECCV'24
Diffusion models with their powerful expressivity and high sample quality have achieved State-Of-The-Art (SOTA) performance in the generative domain. The pioneering Vision Transformer (ViT) has also demonstrated strong modeling capabilities and scalability, especially for recognition tasks. In this paper, we study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT). Specifically, we propose a methodology for finegrained control of the denoising process and introduce the Time-dependant Multihead Self Attention (TMSA) mechanism. DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency. We also propose latent and image space DiffiT models and show SOTA performance on a variety of class-conditional and unconditional synthesis tasks at different resolutions. The Latent DiffiT model achieves a new SOTA FID score of 1.73 on ImageNet256 dataset while having 19.85%, 16.88% less parameters than other Transformer-based diffusion models such as MDT and DiT,respectively. Code: https://github.com/NVlabs/DiffiT
comment: Accepted to ECCV'24
♻ ☆ GenRec: Generative Sequential Recommendation with Large Language Models
Sequential recommendation is a task to capture hidden user preferences from historical user item interaction data and recommend next items for the user. Significant progress has been made in this domain by leveraging classification based learning methods. Inspired by the recent paradigm of 'pretrain, prompt and predict' in NLP, we consider sequential recommendation as a sequence to sequence generation task and propose a novel model named Generative Recommendation (GenRec). Unlike classification based models that learn explicit user and item representations, GenRec utilizes the sequence modeling capability of Transformer and adopts the masked item prediction objective to effectively learn the hidden bidirectional sequential patterns. Different from existing generative sequential recommendation models, GenRec does not rely on manually designed hard prompts. The input to GenRec is textual user item sequence and the output is top ranked next items. Moreover, GenRec is lightweight and requires only a few hours to train effectively in low-resource settings, making it highly applicable to real-world scenarios and helping to democratize large language models in the sequential recommendation domain. Our extensive experiments have demonstrated that GenRec generalizes on various public real-world datasets and achieves state-of-the-art results. Our experiments also validate the effectiveness of the the proposed masked item prediction objective that improves the model performance by a large margin.
♻ ☆ Enhancing Data-Limited Graph Neural Networks by Actively Distilling Knowledge from Large Language Models
Graphs are pervasive in the real-world, such as social network analysis, bioinformatics, and knowledge graphs. Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs. Unfortunately, conventional GNNs still face challenges in scenarios with few labeled nodes, despite the prevalence of few-shot node classification tasks in real-world applications. To address this challenge, various approaches have been proposed, including graph meta-learning, transfer learning, and methods based on Large Language Models (LLMs). However, traditional meta-learning and transfer learning methods often require prior knowledge from base classes or fail to exploit the potential advantages of unlabeled nodes. Meanwhile, LLM-based methods may overlook the zero-shot capabilities of LLMs and rely heavily on the quality of generated contexts. In this paper, we propose a novel approach that integrates LLMs and GNNs, leveraging the zero-shot inference and reasoning capabilities of LLMs and employing a Graph-LLM-based active learning paradigm to enhance GNNs' performance. Extensive experiments demonstrate the effectiveness of our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
comment: 10 pages, 3 Figures
♻ ☆ CityLight: A Universal Model for Coordinated Traffic Signal Control in City-scale Heterogeneous Intersections
The increasingly severe congestion problem in modern cities strengthens the significance of developing city-scale traffic signal control (TSC) methods for traffic efficiency enhancement. While reinforcement learning has been widely explored in TSC, most of them still target small-scale optimization and cannot directly scale to the city level due to unbearable resource demand. Only a few of them manage to tackle city-level optimization, namely a thousand-scale optimization, by incorporating parameter-sharing mechanisms, but hardly have they fully tackled the heterogeneity of intersections and intricate between-intersection interactions inherent in real-world city road networks. To fill in the gap, we target at the two important challenges in adopting parameter-sharing paradigms to solve TSC: inconsistency of inner state representations for intersections heterogeneous in configuration, scale, and orders of available traffic phases; intricacy of impacts from neighborhood intersections that have various relative traffic relationships due to inconsistent phase orders and diverse relative positioning. Our method, CityLight, features a universal representation module that not only aligns the state representations of intersections by reindexing their phases based on their semantics and designing heterogeneity-preserving observations, but also encodes the narrowed relative traffic relation types to project the neighborhood intersections onto a uniform relative traffic impact space. We further attentively fuse neighborhood representations based on their competing relations and incorporate neighborhood-integrated rewards to boost coordination. Extensive experiments with hundreds to tens of thousands of intersections validate the surprising effectiveness and generalizability of CityLight, with an overall performance gain of 11.68% and a 22.59% improvement in transfer scenarios in throughput.
♻ ☆ LlamaDuo: LLMOps Pipeline for Seamless Migration from Service LLMs to Small-Scale Local LLMs
The widespread adoption of cloud-based proprietary large language models (LLMs) has introduced significant challenges, including operational dependencies, privacy concerns, and the necessity of continuous internet connectivity. In this work, we introduce an LLMOps pipeline, "LlamaDuo", for the seamless migration of knowledge and abilities from service-oriented LLMs to smaller, locally manageable models. This pipeline is crucial for ensuring service continuity in the presence of operational failures, strict privacy policies, or offline requirements. Our LlamaDuo involves fine-tuning a small language model against the service LLM using a synthetic dataset generated by the latter. If the performance of the fine-tuned model falls short of expectations, it is enhanced by further fine-tuning with additional similar data created by the service LLM. This iterative process guarantees that the smaller model can eventually match or even surpass the service LLM's capabilities in specific downstream tasks, offering a practical and scalable solution for managing AI deployments in constrained environments. Extensive experiments with leading edge LLMs are conducted to demonstrate the effectiveness, adaptability, and affordability of LlamaDuo across various downstream tasks. Our pipeline implementation is available at https://github.com/deep-diver/llamaduo.
comment: 28 pages, 18 figures, 6 tables
♻ ☆ Scalable Variational Causal Discovery Unconstrained by Acyclicity
Bayesian causal discovery offers the power to quantify epistemic uncertainties among a broad range of structurally diverse causal theories potentially explaining the data, represented in forms of directed acyclic graphs (DAGs). However, existing methods struggle with efficient DAG sampling due to the complex acyclicity constraint. In this study, we propose a scalable Bayesian approach to effectively learn the posterior distribution over causal graphs given observational data thanks to the ability to generate DAGs without explicitly enforcing acyclicity. Specifically, we introduce a novel differentiable DAG sampling method that can generate a valid acyclic causal graph by mapping an unconstrained distribution of implicit topological orders to a distribution over DAGs. Given this efficient DAG sampling scheme, we are able to model the posterior distribution over causal graphs using a simple variational distribution over a continuous domain, which can be learned via the variational inference framework. Extensive empirical experiments on both simulated and real datasets demonstrate the superior performance of the proposed model compared to several state-of-the-art baselines.
comment: Accepted at ECAI 2024
♻ ☆ Enabling Causal Discovery in Post-Nonlinear Models with Normalizing Flows
Post-nonlinear (PNL) causal models stand out as a versatile and adaptable framework for modeling intricate causal relationships. However, accurately capturing the invertibility constraint required in PNL models remains challenging in existing studies. To address this problem, we introduce CAF-PoNo (Causal discovery via Normalizing Flows for Post-Nonlinear models), harnessing the power of the normalizing flows architecture to enforce the crucial invertibility constraint in PNL models. Through normalizing flows, our method precisely reconstructs the hidden noise, which plays a vital role in cause-effect identification through statistical independence testing. Furthermore, the proposed approach exhibits remarkable extensibility, as it can be seamlessly expanded to facilitate multivariate causal discovery via causal order identification, empowering us to efficiently unravel complex causal relationships. Extensive experimental evaluations on both simulated and real datasets consistently demonstrate that the proposed method outperforms several state-of-the-art approaches in both bivariate and multivariate causal discovery tasks.
comment: Acepted at ECAI 2024
♻ ☆ Summaries, Highlights, and Action items: Design, implementation and evaluation of an LLM-powered meeting recap system SC
Meetings play a critical infrastructural role in the coordination of work. In recent years, due to shift to hybrid and remote work, more meetings are moving to online Computer Mediated Spaces. This has led to new problems (e.g. more time spent in less engaging meetings) and new opportunities (e.g. automated transcription/captioning and recap support). Recent advances in large language models (LLMs) for dialog summarization have the potential to improve the experience of meetings by reducing individuals' meeting load and increasing the clarity and alignment of meeting outputs. Despite this potential, they face technological limitation due to long transcripts and inability to capture diverse recap needs based on user's context. To address these gaps, we design, implement and evaluate in-context a meeting recap system. We first conceptualize two salient recap representations -- important highlights, and a structured, hierarchical minutes view. We develop a system to operationalize the representations with dialogue summarization as its building blocks. Finally, we evaluate the effectiveness of the system with seven users in the context of their work meetings. Our findings show promise in using LLM-based dialogue summarization for meeting recap and the need for both representations in different contexts. However, we find that LLM-based recap still lacks an understanding of whats personally relevant to participants, can miss important details, and mis-attributions can be detrimental to group dynamics. We identify collaboration opportunities such as a shared recap document that a high quality recap enables. We report on implications for designing AI systems to partner with users to learn and improve from natural interactions to overcome the limitations related to personal relevance and summarization quality.
comment: in review for CSCW 24
♻ ☆ XCSP3: An Integrated Format for Benchmarking Combinatorial Constrained Problems
We propose a major revision of the format XCSP 2.1, called XCSP3, to build integrated representations of combinatorial constrained problems. This new format is able to deal with mono/multi optimization, many types of variables, cost functions, reification, views, annotations, variable quantification, distributed, probabilistic and qualitative reasoning. The new format is made compact, highly readable, and rather easy to parse. Interestingly, it captures the structure of the problem models, through the possibilities of declaring arrays of variables, and identifying syntactic and semantic groups of constraints. The number of constraints is kept under control by introducing a limited set of basic constraint forms, and producing almost automatically some of their variations through lifting, restriction, sliding, logical combination and relaxation mechanisms. As a result, XCSP3 encompasses practically all constraints that can be found in major constraint solvers developed by the CP community. A website, which is developed conjointly with the format, contains many models and series of instances. The user can make sophisticated queries for selecting instances from very precise criteria. The objective of XCSP3 is to ease the effort required to test and compare different algorithms by providing a common test-bed of combinatorial constrained instances.
comment: 241 pages
♻ ☆ A Machine Learning-based Approach for Solving Recurrence Relations and its use in Cost Analysis of Logic Programs
Automatic static cost analysis infers information about the resources used by programs without actually running them with concrete data, and presents such information as functions of input data sizes. Most of the analysis tools for logic programs (and many for other languages), as CiaoPP, are based on setting up recurrence relations representing (bounds on) the computational cost of predicates, and solving them to find closed-form functions. Such recurrence solving is a bottleneck in current tools: many of the recurrences that arise during the analysis cannot be solved with state-of-the-art solvers, including Computer Algebra Systems (CASs), so that specific methods for different classes of recurrences need to be developed. We address such a challenge by developing a novel, general approach for solving arbitrary, constrained recurrence relations, that uses machine-learning (sparse-linear and symbolic) regression techniques to guess a candidate closed-form function, and a combination of an SMT-solver and a CAS to check if it is actually a solution of the recurrence. Our prototype implementation and its experimental evaluation within the context of the CiaoPP system show quite promising results. Overall, for the considered benchmarks, our approach outperforms state-of-the-art cost analyzers and recurrence solvers, and solves recurrences that cannot be solved by them. Under consideration in Theory and Practice of Logic Programming (TPLP).
comment: Under consideration in Theory and Practice of Logic Programming (TPLP). Extended, revised version of our work published in ICLP (Klemen et al. 2023, arXiv:2309.07259). arXiv admin note: text overlap with arXiv:2309.07259
♻ ☆ Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference
Spatial interference (SI) occurs when the treatment at one location affects the outcomes at other locations. Accounting for spatial interference in spatiotemporal settings poses further challenges as interference violates the stable unit treatment value assumption, making it infeasible for standard causal inference methods to quantify the effects of time-varying treatment at spatially varying outcomes. In this paper, we first formalize the concept of spatial interference in case of time-varying treatment assignments by extending the potential outcome framework under the assumption of no unmeasured confounding. We then propose our deep learning based potential outcome model for spatiotemporal causal inference. We utilize latent factor modeling to reduce the bias due to time-varying confounding while leveraging the power of U-Net architecture to capture global and local spatial interference in data over time. Our causal estimators are an extension of average treatment effect (ATE) for estimating direct (DATE) and indirect effects (IATE) of spatial interference on treated and untreated data. Being the first of its kind deep learning based spatiotemporal causal inference technique, our approach shows advantages over several baseline methods based on the experiment results on two synthetic datasets, with and without spatial interference. Our results on real-world climate dataset also align with domain knowledge, further demonstrating the effectiveness of our proposed method.
♻ ☆ ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction
In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock volatility is a critical challenge that has attracted both academics and investors. While previous studies have used multimodal deep learning-based models to obtain a general view of ECCs for volatility predicting, they often fail to capture detailed, complex information. Our research introduces a novel framework: \textbf{ECC Analyzer}, which utilizes large language models (LLMs) to extract richer, more predictive content from ECCs to aid the model's prediction performance. We use the pre-trained large models to extract textual and audio features from ECCs and implement a hierarchical information extraction strategy to extract more fine-grained information. This strategy first extracts paragraph-level general information by summarizing the text and then extracts fine-grained focus sentences using Retrieval-Augmented Generation (RAG). These features are then fused through multimodal feature fusion to perform volatility prediction. Experimental results demonstrate that our model outperforms traditional analytical benchmarks, confirming the effectiveness of advanced LLM techniques in financial analysis.
comment: 9 pages, 1 figures, 2 tables
♻ ☆ Large Language Multimodal Models for 5-Year Chronic Disease Cohort Prediction Using EHR Data
Chronic diseases such as diabetes are the leading causes of morbidity and mortality worldwide. Numerous research studies have been attempted with various deep learning models in diagnosis. However, most previous studies had certain limitations, including using publicly available datasets (e.g. MIMIC), and imbalanced data. In this study, we collected five-year electronic health records (EHRs) from the Taiwan hospital database, including 1,420,596 clinical notes, 387,392 laboratory test results, and more than 1,505 laboratory test items, focusing on research pre-training large language models. We proposed a novel Large Language Multimodal Models (LLMMs) framework incorporating multimodal data from clinical notes and laboratory test results for the prediction of chronic disease risk. Our method combined a text embedding encoder and multi-head attention layer to learn laboratory test values, utilizing a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space. In our experiments, we observe that clinicalBERT and PubMed-BERT, when combined with attention fusion, can achieve an accuracy of 73% in multiclass chronic diseases and diabetes prediction. By transforming laboratory test values into textual descriptions and employing the Flan T-5 model, we achieved a 76% Area Under the ROC Curve (AUROC), demonstrating the effectiveness of leveraging numerical text data for training and inference in language models. This approach significantly improves the accuracy of early-stage diabetes prediction.
♻ ☆ Use of a Structured Knowledge Base Enhances Metadata Curation by Large Language Models
Metadata play a crucial role in ensuring the findability, accessibility, interoperability, and reusability of datasets. This paper investigates the potential of large language models (LLMs), specifically GPT-4, to improve adherence to metadata standards. We conducted experiments on 200 random data records describing human samples relating to lung cancer from the NCBI BioSample repository, evaluating GPT-4's ability to suggest edits for adherence to metadata standards. We computed the adherence accuracy of field name-field value pairs through a peer review process, and we observed a marginal average improvement in adherence to the standard data dictionary from 79% to 80% (p<0.5). We then prompted GPT-4 with domain information in the form of the textual descriptions of CEDAR templates and recorded a significant improvement to 97% from 79% (p<0.01). These results indicate that, while LLMs may not be able to correct legacy metadata to ensure satisfactory adherence to standards when unaided, they do show promise for use in automated metadata curation when integrated with a structured knowledge base
♻ ☆ Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment
Large Language Models (LLMs) are often aligned using contrastive alignment objectives and preference pair datasets. The interaction between model, paired data, and objective makes alignment a complicated procedure, sometimes producing subpar results. We study this and find that (i) preference data gives a better learning signal when the underlying responses are contrastive, and (ii) alignment objectives lead to better performance when they specify more control over the model during training. Based on these insights, we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation method which leads to more contrastive preference pairs, and Anchored Preference Optimization (APO), a controllable and more stable alignment objective. We align Llama-3-8B-Instruct using various comparable datasets and alignment objectives and measure MixEval-Hard scores, which correlate highly with human judgments. The CLAIR preferences lead to the strongest performance out of all datasets, and APO consistently outperforms less controllable objectives. Our best model, trained on 32K CLAIR preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the gap with GPT4-turbo by 45%. Our code is available at https://github.com/ContextualAI/CLAIR_and_APO.
♻ ☆ AI Consciousness is Inevitable: A Theoretical Computer Science Perspective
We look at consciousness through the lens of Theoretical Computer Science, a branch of mathematics that studies computation under resource limitations. From this perspective, we develop a formal machine model for consciousness. The model is inspired by Alan Turing's simple yet powerful model of computation and Bernard Baars' theater model of consciousness. Though extremely simple, the model aligns at a high level with many of the major scientific theories of human and animal consciousness, supporting our claim that machine consciousness is inevitable.
♻ ☆ A global AI community requires language-diverse publishing ICLR
In this provocation, we discuss the English dominance of the AI research community, arguing that the requirement for English language publishing upholds and reinforces broader regimes of extraction in AI. While large language models and machine translation have been celebrated as a way to break down barriers, we regard their use as a symptom of linguistic exclusion of scientists and potential readers. We propose alternative futures for a healthier publishing culture, organized around three themes: administering conferences in the languages of the country in which they are held, instructing peer reviewers not to adjudicate the language appropriateness of papers, and offering opportunities to publish and present in multiple languages. We welcome new translations of this piece. Please contact the authors if you would like to contribute one.
comment: Translations by Tianyu M. Fang (Mandarin Chinese), Michael Hardy (Guarani), Vandana Sarin and Vivek Sarin (Hindi), Roshna Omer Abdulrahman (Soran\^i Kurdish), Gabriel Poesia (Portuguese), and Mat\'ias Grinberg (Spanish). In the proceedings of the Global AI Cultures Workshop at the Twelfth International Conference on Learning Representations (ICLR) 2024, Vienna, Austria, May 7-11, 2024
♻ ☆ DAISY: Data Adaptive Self-Supervised Early Exit for Speech Representation Models
Self-supervised speech models have shown to be useful for various tasks, but their large size limits the use in devices with low computing power and memory. In this work, we explore early exit, an approach for reducing latency by exiting the forward process of a network early. Most approaches of early exit need a separate early exit model for each task, with some even requiring fine-tuning of the entire pretrained model. We introduce Data Adaptive Self-Supervised Early Exit (DAISY), an approach that decides when to exit based on the self-supervised loss, eliminating the need for multiple round of training and fine-tuning. DAISY matches the performance of HuBERT on the MiniSUPERB benchmark, but with much faster inference times. Our analysis on the adaptivity of DAISY shows that the model exits early (using fewer layers) on clean data while exits late (using more layers) on noisy data, dynamically adjusting the computational cost of inference based on the noise level of each sample.
comment: Accepted by Interspeech 2024
♻ ☆ Are Small Language Models Ready to Compete with Large Language Models for Practical Applications?
The rapid rise of Language Models (LMs) has expanded their use in several applications. Yet, due to constraints of model size, associated cost, or proprietary restrictions, utilizing state-of-the-art (SOTA) LLMs is not always feasible. With open, smaller LMs emerging, more applications can leverage their capabilities, but selecting the right LM can be challenging as smaller LMs don't perform well universally. This work tries to bridge this gap by proposing a framework to experimentally evaluate small, open LMs in practical settings through measuring semantic correctness of outputs across three practical aspects: task types, application domains and reasoning types, using diverse prompt styles. It also conducts an in-depth comparison of 10 small, open LMs to identify best LM and prompt style depending on specific application requirement using the proposed framework. We also show that if selected appropriately, they can outperform SOTA LLMs like DeepSeek-v2, GPT-4o-mini, Gemini-1.5-Pro, and even compete with GPT-4o.
comment: Submitted to ARR
♻ ☆ Recording and Describing Poker Hands
This paper introduces the Poker Hand History (PHH) file format, designed to standardize the recording of poker hands across different game variants. Despite poker's widespread popularity in the mainstream culture as a mind sport and its prominence in the field of artificial intelligence (AI) research as a benchmark for imperfect information AI agents, it lacks a consistent format that humans can use to document poker hands across different variants that can also easily be parsed by machines. To address this gap in the literature, we propose the PHH format which provides a concise human-readable machine-friendly representation of hand history that comprehensively captures various details of the hand, ranging from initial game parameters and actions to contextual parameters including but not limited to the venue, players, and time control information. In the supplementary, we provide 10,088 hands covering 11 different variants in the PHH format. The full specification is available on https://github.com/uoftcprg/phh-std
comment: 8 pages, 2 figures, accepted to the 2024 IEEE Conference on Games
♻ ☆ From the Pursuit of Universal AGI Architecture to Systematic Approach to Heterogenous AGI: Addressing Alignment, Energy, & AGI Grand Challenges
AI faces a trifecta of grand challenges: the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. Contemporary AI solutions consume unsustainable amounts of energy during model training and daily operations. Making things worse, the amount of computation required to train each new AI model has been doubling every 2 months since 2020, directly translating to unprecedented increases in energy consumption. The leap from AI to AGI requires multiple functional subsystems operating in a balanced manner, which requires a system architecture. However, the current approach to artificial intelligence lacks system design; even though system characteristics play a key role in the human brain; from the way it processes information to how it makes decisions. System design is the key to alignment, one of the most challenging goals in AI. This difficulty stems from the fact that the complexity of human moral system requires a similarly sophisticated system for alignment. Without accurately reflecting the complexity of these core moral subsystems and systems, aligning AI with human values becomes significantly more challenging. In this paper, we posit that system design is the missing piece in overcoming the grand challenges. We present a Systematic Approach to AGI that utilizes system design principles to AGI, while providing ways to overcome the energy wall and the alignment challenges. This paper asserts that artificial intelligence can be realized through a multiplicity of design-specific pathways, rather than a singular, overarching AGI architecture. AGI systems may exhibit diverse architectural configurations and capabilities, contingent upon their intended use cases. It advocates for a focus on employing system design principles as a guiding framework, rather than solely concentrating on a universal AGI architecture.
comment: International Journal on Semantic Computing (2024) Categories: Artificial Intelligence; AI; Artificial General Intelligence; AGI; System Design; System Architecture
Graphics 5
☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
☆ UV-free Texture Generation with Denoising and Geodesic Heat Diffusions
Seams, distortions, wasted UV space, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure long-distance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusion-based self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.
☆ Motion-Driven Neural Optimizer for Prophylactic Braces Made by Distributed Microstructures
Joint injuries, and their long-term consequences, present a substantial global health burden. Wearable prophylactic braces are an attractive potential solution to reduce the incidence of joint injuries by limiting joint movements that are related to injury risk. Given human motion and ground reaction forces, we present a computational framework that enables the design of personalized braces by optimizing the distribution of microstructures and elasticity. As varied brace designs yield different reaction forces that influence kinematics and kinetics analysis outcomes, the optimization process is formulated as a differentiable end-to-end pipeline in which the design domain of microstructure distribution is parameterized onto a neural network. The optimized distribution of microstructures is obtained via a self-learning process to determine the network coefficients according to a carefully designed set of losses and the integrated biomechanical and physical analyses. Since knees and ankles are the most commonly injured joints, we demonstrate the effectiveness of our pipeline by designing, fabricating, and testing prophylactic braces for the knee and ankle to prevent potentially harmful joint movements.
☆ Advancing Architectural Floorplan Design with Geometry-enhanced Graph Diffusion
Automating architectural floorplan design is vital for housing and interior design, offering a faster, cost-effective alternative to manual sketches by architects. However, existing methods, including rule-based and learning-based approaches, face challenges in design complexity and constrained generation with extensive post-processing, and tend to obvious geometric inconsistencies such as misalignment, overlap, and gaps. In this work, we propose a novel generative framework for vector floorplan design via structural graph generation, called GSDiff, focusing on wall junction generation and wall segment prediction to capture both geometric and semantic aspects of structural graphs. To improve the geometric rationality of generated structural graphs, we propose two innovative geometry enhancement methods. In wall junction generation, we propose a novel alignment loss function to improve geometric consistency. In wall segment prediction, we propose a random self-supervision method to enhance the model's perception of the overall geometric structure, thereby promoting the generation of reasonable geometric structures. Employing the diffusion model and the Transformer model, as well as the geometry enhancement strategies, our framework can generate wall junctions, wall segments and room polygons with structural and semantic information, resulting in structural graphs that accurately represent floorplans. Extensive experiments show that the proposed method surpasses existing techniques, enabling free generation and constrained generation, marking a shift towards structure generation in architectural design.
♻ ☆ From Top-Right to User-Right: Perceptual Prioritization of Point-Feature Label Positions
In cartography, Geographic Information Systems (GIS), and visualization, the position of a label relative to its point feature is crucial for readability and user experience. Alongside other factors, the point-feature label placement (PFLP) is typically governed by the Position Priority Order (PPO), a systematic raking of potential label positions around a point feature according to predetermined priorities. While there is a broad consensus on factors such as avoiding label conflicts and ensuring clear label-to-feature associations, there is no agreement on PPO. Most PFLP techniques rely on traditional PPOs grounded in typographic and cartographic conventions established decades ago, which may no longer meet today's user expectations. In contrast, commercial products like Google Maps and Mapbox use non-traditional PPOs for unreported reasons. Our extensive user study introduces the Perceptual Position Priority Order (PerceptPPO), a user-validated PPO that significantly departs from traditional conventions. A key finding is that labels placed above point features are significantly preferred by users, contrary to the conventional top-right position. We also conducted a supplementary study on the preferred label density, an area scarcely explored in prior research. Finally, we performed a comparative user study assessing the perceived quality of PerceptPPO over existing PPOs, advocating its adoption in cartographic and GIS applications, as well as in other types of visualizations. Our research, supported by nearly 800 participants from 48 countries and over 45,500 pairwise comparisons, offers practical guidance for designers and application developers aiming to optimize user engagement and comprehension, paving the way for more intuitive and accessible visualizations.
Robotics 42
☆ Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. Models and code: https://github.com/NVlabs/Eagle
comment: Github: https://github.com/NVlabs/Eagle, HuggingFace: https://huggingface.co/NVEagle
☆ In-Context Imitation Learning via Next-Token Prediction
We explore how to enhance next-token prediction models to perform in-context imitation learning on a real robot, where the robot executes new tasks by interpreting contextual information provided during the input phase, without updating its underlying policy parameters. We propose In-Context Robot Transformer (ICRT), a causal transformer that performs autoregressive prediction on sensorimotor trajectories without relying on any linguistic data or reward function. This formulation enables flexible and training-free execution of new tasks at test time, achieved by prompting the model with sensorimotor trajectories of the new task composing of image observations, actions and states tuples, collected through human teleoperation. Experiments with a Franka Emika robot demonstrate that the ICRT can adapt to new tasks specified by prompts, even in environment configurations that differ from both the prompt and the training data. In a multitask environment setup, ICRT significantly outperforms current state-of-the-art next-token prediction models in robotics on generalizing to unseen tasks. Code, checkpoints and data are available on https://icrt.dev/
SLAM2REF: Advancing Long-Term Mapping with 3D LiDAR and Reference Map Integration for Precise 6-DoF Trajectory Estimation and Map Extension
This paper presents a pioneering solution to the task of integrating mobile 3D LiDAR and inertial measurement unit (IMU) data with existing building information models or point clouds, which is crucial for achieving precise long-term localization and mapping in indoor, GPS-denied environments. Our proposed framework, SLAM2REF, introduces a novel approach for automatic alignment and map extension utilizing reference 3D maps. The methodology is supported by a sophisticated multi-session anchoring technique, which integrates novel descriptors and registration methodologies. Real-world experiments reveal the framework's remarkable robustness and accuracy, surpassing current state-of-the-art methods. Our open-source framework's significance lies in its contribution to resilient map data management, enhancing processes across diverse sectors such as construction site monitoring, emergency response, disaster management, and others, where fast-updated digital 3D maps contribute to better decision-making and productivity. Moreover, it offers advancements in localization and mapping research. Link to the repository: https://github.com/MigVega/SLAM2REF, Data: https://doi.org/10.14459/2024mp1743877.
☆ DeMoBot: Deformable Mobile Manipulation with Vision-based Sub-goal Retrieval
Imitation learning (IL) algorithms typically distill experience into parametric behavior policies to mimic expert demonstrations. Despite their effectiveness, previous methods often struggle with data efficiency and accurately aligning the current state with expert demonstrations, especially in deformable mobile manipulation tasks characterized by partial observations and dynamic object deformations. In this paper, we introduce \textbf{DeMoBot}, a novel IL approach that directly retrieves observations from demonstrations to guide robots in \textbf{De}formable \textbf{Mo}bile manipulation tasks. DeMoBot utilizes vision foundation models to identify relevant expert data based on visual similarity and matches the current trajectory with demonstrated trajectories using trajectory similarity and forward reachability constraints to select suitable sub-goals. Once a goal is determined, a motion generation policy will guide the robot to the next state until the task is completed. We evaluated DeMoBot using a Spot robot in several simulated and real-world settings, demonstrating its effectiveness and generalizability. With only 20 demonstrations, DeMoBot significantly outperforms the baselines, reaching a 50\% success rate in curtain opening and 85\% in gap covering in simulation.
☆ Gen-Swarms: Adapting Deep Generative Models to Swarms of Drones
Gen-Swarms is an innovative method that leverages and combines the capabilities of deep generative models with reactive navigation algorithms to automate the creation of drone shows. Advancements in deep generative models, particularly diffusion models, have demonstrated remarkable effectiveness in generating high-quality 2D images. Building on this success, various works have extended diffusion models to 3D point cloud generation. In contrast, alternative generative models such as flow matching have been proposed, offering a simple and intuitive transition from noise to meaningful outputs. However, the application of flow matching models to 3D point cloud generation remains largely unexplored. Gen-Swarms adapts these models to automatically generate drone shows. Existing 3D point cloud generative models create point trajectories which are impractical for drone swarms. In contrast, our method not only generates accurate 3D shapes but also guides the swarm motion, producing smooth trajectories and accounting for potential collisions through a reactive navigation algorithm incorporated into the sampling process. For example, when given a text category like Airplane, Gen-Swarms can rapidly and continuously generate numerous variations of 3D airplane shapes. Our experiments demonstrate that this approach is particularly well-suited for drone shows, providing feasible trajectories, creating representative final shapes, and significantly enhancing the overall performance of drone show generation.
☆ BIM-SLAM: Integrating BIM Models in Multi-session SLAM for Lifelong Mapping using 3D LiDAR
While 3D LiDAR sensor technology is becoming more advanced and cheaper every day, the growth of digitalization in the AEC industry contributes to the fact that 3D building information models (BIM models) are now available for a large part of the built environment. These two facts open the question of how 3D models can support 3D LiDAR long-term SLAM in indoor, GPS-denied environments. This paper proposes a methodology that leverages BIM models to create an updated map of indoor environments with sequential LiDAR measurements. Session data (pose graph-based map and descriptors) are initially generated from BIM models. Then, real-world data is aligned with the session data from the model using multi-session anchoring while minimizing the drift on the real-world data. Finally, the new elements not present in the BIM model are identified, grouped, and reconstructed in a surface representation, allowing a better visualization next to the BIM model. The framework enables the creation of a coherent map aligned with the BIM model that does not require prior knowledge of the initial pose of the robot, and it does not need to be inside the map.
comment: Conference paper in ISARC 2023
☆ FlowAct: A Proactive Multimodal Human-robot Interaction System with Continuous Flow of Perception and Modular Action Sub-systems
The evolution of autonomous systems in the context of human-robot interaction systems necessitates a synergy between the continuous perception of the environment and the potential actions to navigate or interact within it. We present Flowact, a proactive multimodal human-robot interaction architecture, working as an asynchronous endless loop of robot sensors into actuators and organized by two controllers, the Environment State Tracking (EST) and the Action Planner. The EST continuously collects and publishes a representation of the operative environment, ensuring a steady flow of perceptual data. This persistent perceptual flow is pivotal for our advanced Action Planner which orchestrates a collection of modular action subsystems, such as movement and speaking modules, governing their initiation or cessation based on the evolving environmental narrative. The EST employs a fusion of diverse sensory modalities to build a rich, real-time representation of the environment that is distributed to the Action Planner. This planner uses a decision-making framework to dynamically coordinate action modules, allowing them to respond proactively and coherently to changes in the environment. Through a series of real-world experiments, we exhibit the efficacy of the system in maintaining a continuous perception-action loop, substantially enhancing the responsiveness and adaptability of autonomous pro-active agents. The modular architecture of the action subsystems facilitates easy extensibility and adaptability to a broad spectrum of tasks and scenarios.
comment: Paper accepted at WACAI 2024
☆ Towards Optimized Parallel Robots for Human-Robot Collaboration by Combined Structural and Dimensional Synthesis
Parallel robots (PR) offer potential for human-robot collaboration (HRC) due to their lower moving masses and higher speeds. However, the parallel leg chains increase the risks of collision and clamping. In this work, these hazards are described by kinematics and kinetostatics models to minimize them as objective functions by a combined structural and dimensional synthesis in a particle-swarm optimization. In addition to the risk of clamping within and between kinematic chains, the back-drivability is quantified to theoretically guarantee detectability via motor current. Another HRC-relevant objective function is the largest eigenvalue of the mass matrix formulated in the operational-space coordinates to consider collision effects. Multi-objective optimization leads to different Pareto-optimal PR structures. The results show that the optimization leads to significant improvement of the HRC criteria and that a Hexa structure (6-RUS) is to be favored concerning the objective functions and due to its simpler joint structure.
comment: Accepted for publication at VDI Mechatroniktagung 2024
☆ Multi-view Pose Fusion for Occlusion-Aware 3D Human Pose Estimation ECCV
Robust 3D human pose estimation is crucial to ensure safe and effective human-robot collaboration. Accurate human perception,however, is particularly challenging in these scenarios due to strong occlusions and limited camera viewpoints. Current 3D human pose estimation approaches are rather vulnerable in such conditions. In this work we present a novel approach for robust 3D human pose estimation in the context of human-robot collaboration. Instead of relying on noisy 2D features triangulation, we perform multi-view fusion on 3D skeletons provided by absolute monocular methods. Accurate 3D pose estimation is then obtained via reprojection error optimization, introducing limbs length symmetry constraints. We evaluate our approach on the public dataset Human3.6M and on a novel version Human3.6M-Occluded, derived adding synthetic occlusions on the camera views with the purpose of testing pose estimation algorithms under severe occlusions. We further validate our method on real human-robot collaboration workcells, in which we strongly surpass current 3D human pose estimation methods. Our approach outperforms state-of-the-art multi-view human pose estimation techniques and demonstrates superior capabilities in handling challenging scenarios with strong occlusions, representing a reliable and effective solution for real human-robot collaboration setups.
comment: ECCV workshops 2024
☆ Conceptual Design on the Field of View of Celestial Navigation Systems for Maritime Autonomous Surface Ships
In order to understand the appropriate field of view (FOV) size of celestial automatic navigation systems for surface ships, we investigate the variations of measurement accuracy of star position and probability of successful star identification with respect to FOV, focusing on the decreasing number of observable star magnitudes and the presence of physically covered stars in marine environments. The results revealed that, although a larger FOV reduces the measurement accuracy of star positions, it increases the number of observable objects and thus improves the probability of star identification using subgraph isomorphism-based methods. It was also found that, although at least four objects need to be observed for accurate identification, four objects may not be sufficient for wider FOVs. On the other hand, from the point of view of celestial navigation systems, a decrease in the measurement accuracy leads to a decrease in positioning accuracy. Therefore, it was found that maximizing the FOV is required for celestial automatic navigation systems as long as the desired positioning accuracy can be ensured. Furthermore, it was found that algorithms incorporating more than four observed celestial objects are required to achieve highly accurate star identification over a wider FOV.
comment: 15 pages, 10 figures
☆ Addressing the challenges of loop detection in agricultural environments
While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.
☆ Explicit Contact Optimization in Whole-Body Contact-Rich Manipulation
Humans can exploit contacts anywhere on their body surface to manipulate large and heavy items, objects normally out of reach or multiple objects at once. However, such manipulation through contacts using the whole surface of the body remains extremely challenging to achieve on robots. This can be labelled as Whole-Body Contact-Rich Manipulation (WBCRM) problem. In addition to the high-dimensionality of the Contact-Rich Manipulation problem due to the combinatorics of contact modes, admitting contact creation anywhere on the body surface adds complexity, which hinders planning of manipulation within a reasonable time. We address this computational problem by formulating the contact and motion planning of planar WBCRM as hierarchical continuous optimization problems. To enable this formulation, we propose a novel continuous explicit representation of the robot surface, that we believe to be foundational for future research using continuous optimization for WBCRM. Our results demonstrate a significant improvement of convergence, planning time and feasibility - with, on the average, 99% less iterations and 96% reduction in time to find a solution over considered scenarios, without recourse to prone-to-failure trajectory refinement steps.
☆ Benchmarking ML Approaches to UWB-Based Range-Only Posture Recognition for Human Robot-Interaction
Human pose estimation involves detecting and tracking the positions of various body parts using input data from sources such as images, videos, or motion and inertial sensors. This paper presents a novel approach to human pose estimation using machine learning algorithms to predict human posture and translate them into robot motion commands using ultra-wideband (UWB) nodes, as an alternative to motion sensors. The study utilizes five UWB sensors implemented on the human body to enable the classification of still poses and more robust posture recognition. This approach ensures effective posture recognition across a variety of subjects. These range measurements serve as input features for posture prediction models, which are implemented and compared for accuracy. For this purpose, machine learning algorithms including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and deep Multi-Layer Perceptron (MLP) neural network are employed and compared in predicting corresponding postures. We demonstrate the proposed approach for real-time control of different mobile/aerial robots with inference implemented in a ROS 2 node. Experimental results demonstrate the efficacy of the approach, showcasing successful prediction of human posture and corresponding robot movements with high accuracy.
☆ A quantitative model of takeover request time budget for conditionally automated driving
In conditional automation, the automated driving system assumes full control and only issues a takeover request to a human driver to resume driving in critical situations. Previous studies have concluded that the time budget required by drivers to resume driving after a takeover request varies with situations and different takeover variables. However, no comprehensive generalized approaches for estimating in advance the time budget required by drivers to takeover have been provided. In this contribution, fixed (7 s) and variable time budgets (6 s, 5 s, and 4 s) with and without visual imagery assistance were investigated for suitability in three takeover scenarios using performance measures such as average lateral displacement. The results indicate that 7 s is suitable for two of the studied scenarios based on their characteristics. Using the obtained results and known relations between takeover variables, a mathematical formula for estimating takeover request time budget is proposed. The proposed formula integrates individual stimulus response time, driving experience, scenario specific requirements and allows increased safety for takeover maneuvers. Furthermore, the visual imagery resulted in increased takeover time which invariably increases the time budget. Thus the time demand of the visualized information if applicable (such as visual imagery) should be included in the time budget.
comment: Manuscript: 12 pages, 12 figures, 7 tables
NeuroVE: Brain-inspired Linear-Angular Velocity Estimation with Spiking Neural Networks
Vision-based ego-velocity estimation is a fundamental problem in robot state estimation. However, the constraints of frame-based cameras, including motion blur and insufficient frame rates in dynamic settings, readily lead to the failure of conventional velocity estimation techniques. Mammals exhibit a remarkable ability to accurately estimate their ego-velocity during aggressive movement. Hence, integrating this capability into robots shows great promise for addressing these challenges. In this paper, we propose a brain-inspired framework for linear-angular velocity estimation, dubbed NeuroVE. The NeuroVE framework employs an event camera to capture the motion information and implements spiking neural networks (SNNs) to simulate the brain's spatial cells' function for velocity estimation. We formulate the velocity estimation as a time-series forecasting problem. To this end, we design an Astrocyte Leaky Integrate-and-Fire (ALIF) neuron model to encode continuous values. Additionally, we have developed an Astrocyte Spiking Long Short-term Memory (ASLSTM) structure, which significantly improves the time-series forecasting capabilities, enabling an accurate estimate of ego-velocity. Results from both simulation and real-world experiments indicate that NeuroVE has achieved an approximate 60% increase in accuracy compared to other SNN-based approaches.
☆ TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
☆ Learning dynamics models for velocity estimation in autonomous racing
Velocity estimation is of great importance in autonomous racing. Still, existing solutions are characterized by limited accuracy, especially in the case of aggressive driving or poor generalization to unseen road conditions. To address these issues, we propose to utilize Unscented Kalman Filter (UKF) with a learned dynamics model that is optimized directly for the state estimation task. Moreover, we propose to aid this model with the online-estimated friction coefficient, which increases the estimation accuracy and enables zero-shot adaptation to the new road conditions. To evaluate the UKF-based velocity estimator with the proposed dynamics model, we introduced a publicly available dataset of aggressive manoeuvres performed by an F1TENTH car, with sideslip angles reaching 40{\deg}. Using this dataset, we show that learning the dynamics model through UKF leads to improved estimation performance and that the proposed solution outperforms state-of-the-art learning-based state estimators by 17% in the nominal scenario. Moreover, we present unseen zero-shot adaptation abilities of the proposed method to the new road surface thanks to the use of the proposed learning-based tire dynamics model with online friction estimation.
☆ ES-PTAM: Event-based Stereo Parallel Tracking and Mapping
Visual Odometry (VO) and SLAM are fundamental components for spatial perception in mobile robots. Despite enormous progress in the field, current VO/SLAM systems are limited by their sensors' capability. Event cameras are novel visual sensors that offer advantages to overcome the limitations of standard cameras, enabling robots to expand their operating range to challenging scenarios, such as high-speed motion and high dynamic range illumination. We propose a novel event-based stereo VO system by combining two ideas: a correspondence-free mapping module that estimates depth by maximizing ray density fusion and a tracking module that estimates camera poses by maximizing edge-map alignment. We evaluate the system comprehensively on five real-world datasets, spanning a variety of camera types (manufacturers and spatial resolutions) and scenarios (driving, flying drone, hand-held, egocentric, etc). The quantitative and qualitative results demonstrate that our method outperforms the state of the art in majority of the test sequences by a margin, e.g., trajectory error reduction of 45% on RPG dataset, 61% on DSEC dataset, and 21% on TUM-VIE dataset. To benefit the community and foster research on event-based perception systems, we release the source code and results: https://github.com/tub-rip/ES-PTAM
comment: 17 pages, 7 figures, 4 tables, https://github.com/tub-rip/ES-PTAM
☆ On the Benefits of Visual Stabilization for Frame- and Event-based Perception
Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This paper presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%. Code is available at https://github.com/tub-rip/visual_stabilization
comment: 8 pages, 4 figures, 4 tables, https://github.com/tub-rip/visual_stabilization
☆ AeroVerse: UAV-Agent Benchmark Suite for Simulating, Pre-training, Finetuning, and Evaluating Aerospace Embodied World Models
Aerospace embodied intelligence aims to empower unmanned aerial vehicles (UAVs) and other aerospace platforms to achieve autonomous perception, cognition, and action, as well as egocentric active interaction with humans and the environment. The aerospace embodied world model serves as an effective means to realize the autonomous intelligence of UAVs and represents a necessary pathway toward aerospace embodied intelligence. However, existing embodied world models primarily focus on ground-level intelligent agents in indoor scenarios, while research on UAV intelligent agents remains unexplored. To address this gap, we construct the first large-scale real-world image-text pre-training dataset, AerialAgent-Ego10k, featuring urban drones from a first-person perspective. We also create a virtual image-text-pose alignment dataset, CyberAgent Ego500k, to facilitate the pre-training of the aerospace embodied world model. For the first time, we clearly define 5 downstream tasks, i.e., aerospace embodied scene awareness, spatial reasoning, navigational exploration, task planning, and motion decision, and construct corresponding instruction datasets, i.e., SkyAgent-Scene3k, SkyAgent-Reason3k, SkyAgent-Nav3k and SkyAgent-Plan3k, and SkyAgent-Act3k, for fine-tuning the aerospace embodiment world model. Simultaneously, we develop SkyAgentEval, the downstream task evaluation metrics based on GPT-4, to comprehensively, flexibly, and objectively assess the results, revealing the potential and limitations of 2D/3D visual language models in UAV-agent tasks. Furthermore, we integrate over 10 2D/3D visual-language models, 2 pre-training datasets, 5 finetuning datasets, more than 10 evaluation metrics, and a simulator into the benchmark suite, i.e., AeroVerse, which will be released to the community to promote exploration and development of aerospace embodied intelligence.
☆ Feelit: Combining Compliant Shape Displays with Vision-Based Tactile Sensors for Real-Time Teletaction IROS 2024
Teletaction, the transmission of tactile feedback or touch, is a crucial aspect in the field of teleoperation. High-quality teletaction feedback allows users to remotely manipulate objects and increase the quality of the human-machine interface between the operator and the robot, making complex manipulation tasks possible. Advances in the field of teletaction for teleoperation however, have yet to make full use of the high-resolution 3D data provided by modern vision-based tactile sensors. Existing solutions for teletaction lack in one or more areas of form or function, such as fidelity or hardware footprint. In this paper, we showcase our design for a low-cost teletaction device that can utilize real-time high-resolution tactile information from vision-based tactile sensors, through both physical 3D surface reconstruction and shear displacement. We present our device, the Feelit, which uses a combination of a pin-based shape display and compliant mechanisms to accomplish this task. The pin-based shape display utilizes an array of 24 servomotors with miniature Bowden cables, giving the device a resolution of 6x4 pins in a 15x10 mm display footprint. Each pin can actuate up to 3 mm in 200 ms, while providing 80 N of force and 1.5 um of depth resolution. Shear displacement and rotation is achieved using a compliant mechanism design, allowing a minimum of 1 mm displacement laterally and 10 degrees of rotation. This real-time 3D tactile reconstruction is achieved with the use of a vision-based tactile sensor, the GelSight [1], along with an algorithm that samples the depth data and marker tracking to generate actuator commands. Through a series of experiments including shape recognition and relative weight identification, we show that our device has the potential to expand teletaction capabilities in the teleoperation space.
comment: IROS 2024
☆ Power, Control, and Data Acquisition Systems for Rectal Simulator Integrated with Soft Pouch Actuators
Fecal incontinence (FI) is a significant health issue with various underlying causes. Research in this field is limited by social stigma and the lack of effective replication models. To address these challenges, we developed a sophisticated rectal simulator that integrates power, control, and data acquisition systems with soft pouch actuators. The system comprises four key subsystems: mechanical, electrical, pneumatic, and control and data acquisition. The mechanical subsystem utilizes common materials such as aluminum frames, wooden boards, and compact structural components to facilitate the installation and adjustment of electrical and control components. The electrical subsystem supplies power to regulators and sensors. The pneumatic system provides compressed air to actuators, enabling the simulation of FI. The control and data acquisition subsystem collects pressure data and regulates actuator movement. This comprehensive approach allows the robot to accurately replicate human defecation, managing various feces types including liquid, solid, and extremely solid. This innovation enhances our understanding of defecation and holds potential for advancing quality-of-life devices related to this condition.
☆ Bio-inspired circular soft actuators for simulating defecation process of human rectum
Soft robots have found extensive applications in the medical field, particularly in rehabilitation exercises, assisted grasping, and artificial organs. Despite significant advancements in simulating various components of the digestive system, the rectum has been largely neglected due to societal stigma. This study seeks to address this gap by developing soft circular muscle actuators (CMAs) and rectum models to replicate the defecation process. Using soft materials, both the rectum and the actuators were fabricated to enable seamless integration and attachment. We designed, fabricated, and tested three types of CMAs and compared them to the simulated results. A pneumatic system was employed to control the actuators, and simulated stool was synthesized using sodium alginate and calcium chloride. Experimental results indicated that the third type of actuator exhibited superior performance in terms of area contraction and pressure generation. The successful simulation of the defecation process highlights the potential of these soft actuators in biomedical applications, providing a foundation for further research and development in the field of soft robotics.
☆ DECAF: a Discrete-Event based Collaborative Human-Robot Framework for Furniture Assembly
This paper proposes a task planning framework for collaborative Human-Robot scenarios, specifically focused on assembling complex systems such as furniture. The human is characterized as an uncontrollable agent, implying for example that the agent is not bound by a pre-established sequence of actions and instead acts according to its own preferences. Meanwhile, the task planner computes reactively the optimal actions for the collaborative robot to efficiently complete the entire assembly task in the least time possible. We formalize the problem as a Discrete Event Markov Decision Problem (DE-MDP), a comprehensive framework that incorporates a variety of asynchronous behaviors, human change of mind and failure recovery as stochastic events. Although the problem could theoretically be addressed by constructing a graph of all possible actions, such an approach would be constrained by computational limitations. The proposed formulation offers an alternative solution utilizing Reinforcement Learning to derive an optimal policy for the robot. Experiments where conducted both in simulation and on a real system with human subjects assembling a chair in collaboration with a 7-DoF manipulator.
comment: 9 pages, 6 figures, extended version of accepted paper at IRO24
☆ Path planning for autonomous vehicles with minimal collision severity
This paper proposes a path planning algorithm for autonomous vehicles, evaluating collision severity with respect to both static and dynamic obstacles. A collision severity map is generated from ratings, quantifying the severity of collisions. A two-level optimal control problem is designed. At the first level, the objective is to identify paths with the lowest collision severity. Subsequently, at the second level, among the paths with lowest collision severity, the one requiring the minimum steering effort is determined. Finally, numerical simulations were conducted using the optimal control software OCPID-DAE1. The study focuses on scenarios where collisions are unavoidable. Results demonstrate the effectiveness and significance of this approach in finding a path with minimum collision severity for autonomous vehicles. Furthermore, this paper illustrates how the ratings for collision severity influence the behaviour of the automated vehicle.
comment: arXiv admin note: text overlap with arXiv:2203.03681
☆ Hitting the Gym: Reinforcement Learning Control of Exercise-Strengthened Biohybrid Robots in Simulation
Animals can accomplish many incredible behavioral feats across a wide range of operational environments and scales that current robots struggle to match. One explanation for this performance gap is the extraordinary properties of the biological materials that comprise animals, such as muscle tissue. Using living muscle tissue as an actuator can endow robotic systems with highly desirable properties such as self-healing, compliance, and biocompatibility. Unlike traditional soft robotic actuators, living muscle biohybrid actuators exhibit unique adaptability, growing stronger with use. The dependency of a muscle's force output on its use history endows muscular organisms the ability to dynamically adapt to their environment, getting better at tasks over time. While muscle adaptability is a benefit to muscular organisms, it currently presents a challenge for biohybrid researchers: how does one design and control a robot whose actuators' force output changes over time? Here, we incorporate muscle adaptability into a many-muscle biohybrid robot design and modeling tool, leveraging reinforcement learning as both a co-design partner and system controller. As a controller, our learning agents coordinated the independent contraction of 42 muscles distributed on a lattice worm structure to successfully steer it towards eight distinct targets while incorporating muscle adaptability. As a co-design tool, our agents enable users to identify which muscles are important to accomplishing a given task. Our results show that adaptive agents outperform non-adaptive agents in terms of maximum rewards and training time. Together, these contributions can both enable the elucidation of muscle actuator adaptation and inform the design and modeling of adaptive, performant, many-muscle robots.
comment: 11 pages, 6 figures
♻ ☆ Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems
Physics-informed neural networks (PINNs) are trained using physical equations and can also incorporate unmodeled effects by learning from data. PINNs for control (PINCs) of dynamical systems are gaining interest due to their prediction speed compared to classical numerical integration methods for nonlinear state-space models, making them suitable for real-time control applications. We introduce the domain-decoupled physics-informed neural network (DD-PINN) to address current limitations of PINC in handling large and complex nonlinear dynamical systems. The time domain is decoupled from the feed-forward neural network to construct an Ansatz function, allowing for calculation of gradients in closed form. This approach significantly reduces training times, especially for large dynamical systems, compared to PINC, which relies on graph-based automatic differentiation. Additionally, the DD-PINN inherently fulfills the initial condition and supports higher-order excitation inputs, simplifying the training process and enabling improved prediction accuracy. Validation on three systems - a nonlinear mass-spring-damper, a five-mass-chain, and a two-link robot - demonstrates that the DD-PINN achieves significantly shorter training times. In cases where the PINC's prediction diverges, the DD-PINN's prediction remains stable and accurate due to higher physics loss reduction or use of a higher-order excitation input. The DD-PINN allows for fast and accurate learning of large dynamical systems previously out of reach for the PINC.
comment: Accepted to International Conference on Informatics in Control, Automation and Robotics (ICINCO) 2024
FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
This paper proposes FAST-LIVO2: a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks and provide great potential in real-time, onboard robotic applications. FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through an ESIKF. To address the dimension mismatch between the heterogeneous LiDAR and image measurements, we use a sequential update strategy in the Kalman filter. To enhance the efficiency, we use direct methods for both the visual and LiDAR fusion, where the LiDAR module registers raw points without extracting edge or plane features and the visual module minimizes direct photometric errors without extracting ORB or FAST corner features. The fusion of both visual and LiDAR measurements is based on a single unified voxel map where the LiDAR module constructs the geometric structure for registering new LiDAR scans and the visual module attaches image patches to the LiDAR points. To enhance the accuracy of image alignment, we use plane priors from the LiDAR points in the voxel map (and even refine the plane prior) and update the reference patch dynamically after new images are aligned. Furthermore, to enhance the robustness of image alignment, FAST-LIVO2 employs an on-demanding raycast operation and estimates the image exposure time in real time. Lastly, we detail three applications of FAST-LIVO2: UAV onboard navigation demonstrating the system's computation efficiency for real-time onboard navigation, airborne mapping showcasing the system's mapping accuracy, and 3D model rendering (mesh-based and NeRF-based) underscoring the suitability of our reconstructed dense map for subsequent rendering tasks. We open source our code, dataset and application on GitHub to benefit the robotics community.
comment: 30 pages, 31 figures, due to the limitation that 'The abstract field cannot exceed 1,920 characters', the abstract presented here is shorter than the one in the PDF file
Multi-modal Integrated Prediction and Decision-making with Adaptive Interaction Modality Explorations
Navigating dense and dynamic environments poses a significant challenge for autonomous driving systems, owing to the intricate nature of multimodal interaction, wherein the actions of various traffic participants and the autonomous vehicle are complex and implicitly coupled. In this paper, we propose a novel framework, Multi-modal Integrated predictioN and Decision-making (MIND), which addresses the challenges by efficiently generating joint predictions and decisions covering multiple distinctive interaction modalities. Specifically, MIND leverages learning-based scenario predictions to obtain integrated predictions and decisions with social-consistent interaction modality and utilizes a modality-aware dynamic branching mechanism to generate scenario trees that efficiently capture the evolutions of distinctive interaction modalities with low variation of interaction uncertainty along the planning horizon. The scenario trees are seamlessly utilized by the contingency planning under interaction uncertainty to obtain clear and considerate maneuvers accounting for multi-modal evolutions. Comprehensive experimental results in the closed-loop simulation based on the real-world driving dataset showcase superior performance to other strong baselines under various driving contexts.
comment: 8 pages, 9 figures
♻ ☆ ViIK: Flow-based Vision Inverse Kinematics Solver with Fusing Collision Checking
Inverse Kinematics (IK) is to find the robot's configurations that satisfy the target pose of the end effector. In motion planning, diverse configurations were required in case a feasible trajectory was not found. Meanwhile, collision checking (CC), e.g. Oriented bounding box (OBB), Discrete Oriented Polytope (DOP), and Quickhull \cite{quickhull}, needs to be done for each configuration provided by the IK solver to ensure every goal configuration for motion planning is available. This means the classical IK solver and CC algorithm should be executed repeatedly for every configuration. Thus, the preparation time is long when the required number of goal configurations is large, e.g. motion planning in cluster environments. Moreover, structured maps, which might be difficult to obtain, were required by classical collision-checking algorithms. To sidestep such two issues, we propose a flow-based vision method that can output diverse available configurations by fusing inverse kinematics and collision checking, named Vision Inverse Kinematics solver (ViIK). Moreover, ViIK uses RGB images as the perception of environments. ViIK can output 1000 configurations within 40 ms, and the accuracy is about 3 millimeters and 1.5 degrees. The higher accuracy can be obtained by being refined by the classical IK solver within a few iterations. The self-collision rates can be lower than 2%. The collision-with-env rates can be lower than 10% in most scenes. The code is available at: https://github.com/AdamQLMeng/ViIK.
♻ ☆ PAAMP: Polytopic Action-Set And Motion Planning for Long Horizon Dynamic Motion Planning via Mixed Integer Linear Programming IROS 2024
Optimization methods for long-horizon, dynamically feasible motion planning in robotics tackle challenging non-convex and discontinuous optimization problems. Traditional methods often falter due to the nonlinear characteristics of these problems. We introduce a technique that utilizes learned representations of the system, known as Polytopic Action Sets, to efficiently compute long-horizon trajectories. By employing a suitable sequence of Polytopic Action Sets, we transform the long-horizon dynamically feasible motion planning problem into a Linear Program. This reformulation enables us to address motion planning as a Mixed Integer Linear Program (MILP). We demonstrate the effectiveness of a Polytopic Action-Set and Motion Planning (PAAMP) approach by identifying swing-up motions for a torque-constrained pendulum as fast as 0.75 milliseconds. This approach is well-suited for solving complex motion planning and long-horizon Constraint Satisfaction Problems (CSPs) in dynamic and underactuated systems such as legged and aerial robots.
comment: Accepted to 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). 8 pages, 10 figures
♻ ☆ Risk-Aware Non-Myopic Motion Planner for Large-Scale Robotic Swarm Using CVaR Constraints IROS 2024
Swarm robotics has garnered significant attention due to its ability to accomplish elaborate and synchronized tasks. Existing methodologies for motion planning of swarm robotic systems mainly encounter difficulties in scalability and safety guarantee. To address these limitations, we propose a Risk-aware swarm mOtion planner using conditional ValuE at Risk (ROVER) that systematically navigates large-scale swarms through cluttered environments while ensuring safety. ROVER formulates a finite-time model predictive control (FTMPC) problem predicated upon the macroscopic state of the robot swarm represented by a Gaussian Mixture Model (GMM) and integrates conditional value-at-risk (CVaR) to ensure collision avoidance. The key component of ROVER is imposing a CVaR constraint on the distribution of the Signed Distance Function between the swarm GMM and obstacles in the FTMPC to enforce collision avoidance. Utilizing the analytical expression of CVaR of a GMM derived in this work, we develop a computationally efficient solution to solve the non-linear constrained FTMPC through sequential linear programming. Simulations and comparisons with representative benchmark approaches demonstrate the effectiveness of ROVER in flexibility, scalability, and risk mitigation.
comment: accepted to IROS 2024
♻ ☆ Component reusability evaluation and requirement tracing for agent-based cyber-physical-simulated systems
Evaluating early design concepts is crucial as it impacts quality and cost. This process is often hindered by vague and uncertain design information. This article introduces the SysML-based Simulated-Physical Systems Modeling Language (SPSysML). It is a Domain-Specification Language used to evaluate component reusability in cyber-physical systems, incorporating digital twins and other simulated parts. The proposed factors assess the design quantitatively. SPSysML uses a requirement-based system structuring method to couple simulated and physical parts with requirements. SPSysML enables DTs to perceive exogenous actions in the simulated world. SPSysML validation is survey- and application-based. First, a robotic system for an assisted living project was developed. The integrity of simulated and physical parts of the system is improved using SPSysML-based quantitative evaluation. Thus, more system components are shared between the simulated and physical setups. The system was deployed on the physical robot and two simulators based on the Robot Operating System (ROS) or ROS2. SPSysML was used by a third-party developer and was assessed by him and other practitioners in a survey.
comment: This work has been submitted to the Elsevier Journal of Systems Architecture for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field
In this article, a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration is presented. Unlike traditional methods, the proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps, eliminating the need for the time-consuming global feature extraction and feature matching process. The estimated overlapping regions are used to calculate a homogeneous rigid transform, which serves as an initial condition for the GICP point cloud registration algorithm to refine the alignment between the maps. The advantages of this approach include faster processing time, improved accuracy, and increased robustness in challenging environments. Furthermore, the effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration in a variety of different underground environments.
comment: 28 pages, 24 figures. Accepted to the IEEE Transactions on Field Robotics
♻ ☆ Receding-Constraint Model Predictive Control using a Learned Approximate Control-Invariant Set
In recent years, advanced model-based and data-driven control methods are unlocking the potential of complex robotics systems, and we can expect this trend to continue at an exponential rate in the near future. However, ensuring safety with these advanced control methods remains a challenge. A well-known tool to make controllers (either Model Predictive Controllers or Reinforcement Learning policies) safe, is the so-called control-invariant set (a.k.a. safe set). Unfortunately, for nonlinear systems, such a set cannot be exactly computed in general. Numerical algorithms exist for computing approximate control-invariant sets, but classic theoretic control methods break down if the set is not exact. This paper presents our recent efforts to address this issue. We present a novel Model Predictive Control scheme that can guarantee recursive feasibility and/or safety under weaker assumptions than classic methods. In particular, recursive feasibility is guaranteed by making the safe-set constraint move backward over the horizon, and assuming that such set satisfies a condition that is weaker than control invariance. Safety is instead guaranteed under an even weaker assumption on the safe set, triggering a safe task-abortion strategy whenever a risk of constraint violation is detected. We evaluated our approach on a simulated robot manipulator, empirically demonstrating that it leads to less constraint violations than state-of-the-art approaches, while retaining reasonable performance in terms of tracking cost, number of completed tasks, and computation time.
comment: 7 pages, 3 figures, 3 tables, 2 pseudo-algo, conference
♻ ☆ Smooth Path Planning with Subharmonic Artificial Potential Field
When a mobile robot plans its path in an environment with obstacles using Artificial Potential Field (APF) strategy, it may fall into the local minimum point and fail to reach the goal. Also, the derivatives of APF will explode close to obstacles causing poor planning performance. To solve the problems, exponential functions are used to modify potential fields' formulas. The potential functions can be subharmonic when the distance between the robot and obstacles is above a predefined threshold. Subharmonic functions do not have local minimum and the derivatives of exponential functions increase mildly when the robot is close to obstacles, thus eliminate the problems in theory. Circular sampling technique is used to keep the robot outside a danger distance to obstacles and support the construction of subharmonic functions. Through simulations, it is proven that mobile robots can bypass local minimum points and construct a smooth path to reach the goal successfully by the proposed methods.
comment: Accepted by ICARM 2024
♻ ☆ A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks across various research fields. However, transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality. To address this issue, we propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information and train a lane-following and overtaking agent in simulation. This framework facilitates the seamless transfer of the DRL agent to new simulated environments and the real world with minimal effort. We evaluate the performance of the agent in various driving scenarios in both simulation and the real world, and compare it to human players and the PID baseline in simulation. Our proposed framework significantly reduces the gaps between different platforms and the Sim2Real gap, enabling the trained agent to achieve similar performance in both simulation and the real world, driving the vehicle effectively.
♻ ☆ DeepMIF: Deep Monotonic Implicit Fields for Large-Scale LiDAR 3D Mapping
Recently, significant progress has been achieved in sensing real large-scale outdoor 3D environments, particularly by using modern acquisition equipment such as LiDAR sensors. Unfortunately, they are fundamentally limited in their ability to produce dense, complete 3D scenes. To address this issue, recent learning-based methods integrate neural implicit representations and optimizable feature grids to approximate surfaces of 3D scenes. However, naively fitting samples along raw LiDAR rays leads to noisy 3D mapping results due to the nature of sparse, conflicting LiDAR measurements. Instead, in this work we depart from fitting LiDAR data exactly, instead letting the network optimize a non-metric monotonic implicit field defined in 3D space. To fit our field, we design a learning system integrating a monotonicity loss that enables optimizing neural monotonic fields and leverages recent progress in large-scale 3D mapping. Our algorithm achieves high-quality dense 3D mapping performance as captured by multiple quantitative and perceptual measures and visual results obtained for Mai City, Newer College, and KITTI benchmarks. The code of our approach will be made publicly available.
comment: 8 pages, 6 figures
♻ ☆ How Physics and Background Attributes Impact Video Transformers in Robotic Manipulation: A Case Study on Planar Pushing IROS 2024
As model and dataset sizes continue to scale in robot learning, the need to understand how the composition and properties of a dataset affect model performance becomes increasingly urgent to ensure cost-effective data collection and model performance. In this work, we empirically investigate how physics attributes (color, friction coefficient, shape) and scene background characteristics, such as the complexity and dynamics of interactions with background objects, influence the performance of Video Transformers in predicting planar pushing trajectories. We investigate three primary questions: How do physics attributes and background scene characteristics influence model performance? What kind of changes in attributes are most detrimental to model generalization? What proportion of fine-tuning data is required to adapt models to novel scenarios? To facilitate this research, we present CloudGripper-Push-1K, a large real-world vision-based robot pushing dataset comprising 1278 hours and 460,000 videos of planar pushing interactions with objects with different physics and background attributes. We also propose Video Occlusion Transformer (VOT), a generic modular video-transformer-based trajectory prediction framework which features 3 choices of 2D-spatial encoders as the subject of our case study. The dataset and source code are available at https://cloudgripper.org.
comment: IEEE/RSJ IROS 2024
♻ ☆ U2UData: A Large-scale Cooperative Perception Dataset for Swarm UAVs Autonomous Flight ACM MM24
Modern perception systems for autonomous flight are sensitive to occlusion and have limited long-range capability, which is a key bottleneck in improving low-altitude economic task performance. Recent research has shown that the UAV-to-UAV (U2U) cooperative perception system has great potential to revolutionize the autonomous flight industry. However, the lack of a large-scale dataset is hindering progress in this area. This paper presents U2UData, the first large-scale cooperative perception dataset for swarm UAVs autonomous flight. The dataset was collected by three UAVs flying autonomously in the U2USim, covering a 9 km$^2$ flight area. It comprises 315K LiDAR frames, 945K RGB and depth frames, and 2.41M annotated 3D bounding boxes for 3 classes. It also includes brightness, temperature, humidity, smoke, and airflow values covering all flight routes. U2USim is the first real-world mapping swarm UAVs simulation environment. It takes Yunnan Province as the prototype and includes 4 terrains, 7 weather conditions, and 8 sensor types. U2UData introduces two perception tasks: cooperative 3D object detection and cooperative 3D object tracking. This paper provides comprehensive benchmarks of recent cooperative perception algorithms on these tasks.
comment: Accepted by ACM MM24
♻ ☆ MultiGripperGrasp: A Dataset for Robotic Grasping from Parallel Jaw Grippers to Dexterous Hands IROS 2024
We introduce a large-scale dataset named MultiGripperGrasp for robotic grasping. Our dataset contains 30.4M grasps from 11 grippers for 345 objects. These grippers range from two-finger grippers to five-finger grippers, including a human hand. All grasps in the dataset are verified in the robot simulator Isaac Sim to classify them as successful and unsuccessful grasps. Additionally, the object fall-off time for each grasp is recorded as a grasp quality measurement. Furthermore, the grippers in our dataset are aligned according to the orientation and position of their palms, allowing us to transfer grasps from one gripper to another. The grasp transfer significantly increases the number of successful grasps for each gripper in the dataset. Our dataset is useful to study generalized grasp planning and grasp transfer across different grippers. Data, code and videos for the project are available at https://irvlutd.github.io/MultiGripperGrasp
comment: Published in IROS 2024
♻ ☆ PhysPart: Physically Plausible Part Completion for Interactable Objects
Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.
Computer Vision 143
☆ Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. Models and code: https://github.com/NVlabs/Eagle
comment: Github: https://github.com/NVlabs/Eagle, HuggingFace: https://huggingface.co/NVEagle
☆ TEDRA: Text-based Editing of Dynamic and Photoreal Actors
Over the past years, significant progress has been made in creating photorealistic and drivable 3D avatars solely from videos of real humans. However, a core remaining challenge is the fine-grained and user-friendly editing of clothing styles by means of textual descriptions. To this end, we present TEDRA, the first method allowing text-based edits of an avatar, which maintains the avatar's high fidelity, space-time coherency, as well as dynamics, and enables skeletal pose and view control. We begin by training a model to create a controllable and high-fidelity digital replica of the real actor. Next, we personalize a pretrained generative diffusion model by fine-tuning it on various frames of the real character captured from different camera angles, ensuring the digital representation faithfully captures the dynamics and movements of the real person. This two-stage process lays the foundation for our approach to dynamic human avatar editing. Utilizing this personalized diffusion model, we modify the dynamic avatar based on a provided text prompt using our Personalized Normal Aligned Score Distillation Sampling (PNA-SDS) within a model-based guidance framework. Additionally, we propose a time step annealing strategy to ensure high-quality edits. Our results demonstrate a clear improvement over prior work in functionality and visual quality.
comment: For project page, see this https://vcai.mpi-inf.mpg.de/projects/Tedra
☆ Perceive-IR: Learning to Perceive Degradation Better for All-in-One Image Restoration
The limitations of task-specific and general image restoration methods for specific degradation have prompted the development of all-in-one image restoration techniques. However, the diversity of patterns among multiple degradation, along with the significant uncertainties in mapping between degraded images of different severities and their corresponding undistorted versions, pose significant challenges to the all-in-one restoration tasks. To address these challenges, we propose Perceive-IR, an all-in-one image restorer designed to achieve fine-grained quality control that enables restored images to more closely resemble their undistorted counterparts, regardless of the type or severity of degradation. Specifically, Perceive-IR contains two stages: (1) prompt learning stage and (2) restoration stage. In the prompt learning stage, we leverage prompt learning to acquire a fine-grained quality perceiver capable of distinguishing three-tier quality levels by constraining the prompt-image similarity in the CLIP perception space. Subsequently, this quality perceiver and difficulty-adaptive perceptual loss are integrated as a quality-aware learning strategy to realize fine-grained quality control in restoration stage. For the restoration stage, a semantic guidance module (SGM) and compact feature extraction (CFE) are proposed to further promote the restoration process by utilizing the robust semantic information from the pre-trained large scale vision models and distinguishing degradation-specific features. Extensive experiments demonstrate that our Perceive-IR outperforms state-of-the-art methods in all-in-one image restoration tasks and exhibit superior generalization ability when dealing with unseen tasks.
comment: 13 pages, 8 figures
☆ ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution
Detecting and attributing temperature increases due to climate change is crucial for understanding global warming and guiding adaptation strategies. The complexity of distinguishing human-induced climate signals from natural variability has challenged traditional detection and attribution (D&A) approaches, which seek to identify specific "fingerprints" in climate response variables. Deep learning offers potential for discerning these complex patterns in expansive spatial datasets. However, lack of standard protocols has hindered consistent comparisons across studies. We introduce ClimDetect, a standardized dataset of over 816k daily climate snapshots, designed to enhance model accuracy in identifying climate change signals. ClimDetect integrates various input and target variables used in past research, ensuring comparability and consistency. We also explore the application of vision transformers (ViT) to climate data, a novel and modernizing approach in this context. Our open-access data and code serve as a benchmark for advancing climate science through improved model evaluations. ClimDetect is publicly accessible via Huggingface dataet respository at: https://huggingface.co/datasets/ClimDetect/ClimDetect.
☆ CoGen: Learning from Feedback with Coupled Comprehension and Generation
Systems with both language comprehension and generation capabilities can benefit from the tight connection between the two. This work studies coupling comprehension and generation with focus on continually learning from interaction with users. We propose techniques to tightly integrate the two capabilities for both learning and inference. We situate our studies in two-player reference games, and deploy various models for thousands of interactions with human users, while learning from interaction feedback signals. We show dramatic improvements in performance over time, with comprehension-generation coupling leading to performance improvements up to 26% in absolute terms and up to 17% higher accuracies compared to a non-coupled system. Our analysis also shows coupling has substantial qualitative impact on the system's language, making it significantly more human-like.
comment: 17 pages, 9 figures
☆ Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation
Accelerating the sampling speed of diffusion models remains a significant challenge. Recent score distillation methods distill a heavy teacher model into an one-step student generator, which is optimized by calculating the difference between the two score functions on the samples generated by the student model. However, there is a score mismatch issue in the early stage of the distillation process, because existing methods mainly focus on using the endpoint of pre-trained diffusion models as teacher models, overlooking the importance of the convergence trajectory between the student generator and the teacher model. To address this issue, we extend the score distillation process by introducing the entire convergence trajectory of teacher models and propose Distribution Backtracking Distillation (DisBack) for distilling student generators. DisBask is composed of two stages: Degradation Recording and Distribution Backtracking. Degradation Recording is designed to obtain the convergence trajectory of teacher models, which records the degradation path from the trained teacher model to the untrained initial student generator. The degradation path implicitly represents the intermediate distributions of teacher models. Then Distribution Backtracking trains a student generator to backtrack the intermediate distributions for approximating the convergence trajectory of teacher models. Extensive experiments show that DisBack achieves faster and better convergence than the existing distillation method and accomplishes comparable generation performance. Notably, DisBack is easy to implement and can be generalized to existing distillation methods to boost performance. Our code is publicly available on https://github.com/SYZhang0805/DisBack.
☆ More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
☆ Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume
Current anomaly detection methods excel with benchmark industrial data but struggle with natural images and medical data due to varying definitions of 'normal' and 'abnormal.' This makes accurate identification of deviations in these fields particularly challenging. Especially for 3D brain MRI data, all the state-of-the-art models are reconstruction-based with 3D convolutional neural networks which are memory-intensive, time-consuming and producing noisy outputs that require further post-processing. We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost. We aggregate the extracted features to perform anomaly detection tasks on 3D brain MRI volumes. Our model integrates a conditional normalizing flow to calculate log likelihood of features and employs the Semi-Push-Pull Mechanism to enhance anomaly detection accuracy. The results indicate improved performance, showcasing our model's remarkable adaptability and effectiveness when addressing the challenges exists in brain MRI data. In addition, for the large-scale 3D brain volumes, our model SimpleSliceNet outperforms the state-of-the-art 2D and 3D models in terms of accuracy, memory usage and time consumption. Code is available at: https://anonymous.4open.science/r/SimpleSliceNet-8EA3.
comment: 15 pages, 5 figures
☆ Generating Binary Species Range Maps
Accurately predicting the geographic ranges of species is crucial for assisting conservation efforts. Traditionally, range maps were manually created by experts. However, species distribution models (SDMs) and, more recently, deep learning-based variants offer a potential automated alternative. Deep learning-based SDMs generate a continuous probability representing the predicted presence of a species at a given location, which must be binarized by setting per-species thresholds to obtain binary range maps. However, selecting appropriate per-species thresholds to binarize these predictions is non-trivial as different species can require distinct thresholds. In this work, we evaluate different approaches for automatically identifying the best thresholds for binarizing range maps using presence-only data. This includes approaches that require the generation of additional pseudo-absence data, along with ones that only require presence data. We also propose an extension of an existing presence-only technique that is more robust to outliers. We perform a detailed evaluation of different thresholding techniques on the tasks of binary range estimation and large-scale fine-grained visual classification, and we demonstrate improved performance over existing pseudo-absence free approaches using our method.
☆ Fall Detection for Smart Living using YOLOv5
This work introduces a fall detection system using the YOLOv5mu model, which achieved a mean average precision (mAP) of 0.995, demonstrating exceptional accuracy in identifying fall events within smart home environments. Enhanced by advanced data augmentation techniques, the model demonstrates significant robustness and adaptability across various conditions. The integration of YOLOv5mu offers precise, real-time fall detection, which is crucial for improving safety and emergency response for residents. Future research will focus on refining the system by incorporating contextual data and exploring multi-sensor approaches to enhance its performance and practical applicability in diverse environments.
☆ InstanSeg: an embedding-based instance segmentation algorithm optimized for accurate, efficient and portable cell segmentation
Cell and nucleus segmentation are fundamental tasks for quantitative bioimage analysis. Despite progress in recent years, biologists and other domain experts still require novel algorithms to handle increasingly large and complex real-world datasets. These algorithms must not only achieve state-of-the-art accuracy, but also be optimized for efficiency, portability and user-friendliness. Here, we introduce InstanSeg: a novel embedding-based instance segmentation pipeline designed to identify cells and nuclei in microscopy images. Using six public cell segmentation datasets, we demonstrate that InstanSeg can significantly improve accuracy when compared to the most widely used alternative methods, while reducing the processing time by at least 60%. Furthermore, InstanSeg is designed to be fully serializable as TorchScript and supports GPU acceleration on a range of hardware. We provide an open-source implementation of InstanSeg in Python, in addition to a user-friendly, interactive QuPath extension for inference written in Java. Our code and pre-trained models are available at https://github.com/instanseg/instanseg .
comment: 12 pages,6 figures
☆ Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping MICCAI 2024
Dynamic coronary roadmapping is a technology that overlays the vessel maps (the "roadmap") extracted from an offline image sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in real-time. It aims to offer navigational guidance for interventional surgeries without the need for repeated contrast agent injections, thereby reducing the risks associated with radiation exposure and kidney failure. The precision of the roadmaps is contingent upon the accurate alignment of angiographic and fluoroscopic images based on their cardiac phases, as well as precise catheter tip tracking. The former ensures the selection of a roadmap that closely matches the vessel shape in the current frame, while the latter uses catheter tips as reference points to adjust for translational motion between the roadmap and the present vessel tree. Training deep learning models for both tasks is challenging and underexplored. However, incorporating catheter features into the models could offer substantial benefits, given humans heavily rely on catheters to complete the tasks. To this end, we introduce a simple but effective method, auxiliary input in training (AIT), and demonstrate that it enhances model performance across both tasks, outperforming baseline methods in knowledge incorporation and transfer learning.
comment: MICCAI 2024
☆ Sigma Flows for Image and Data Labeling and Learning Structured Prediction
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifolds, including Euclidean image domains as special case. The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors. The sigma flow arises as Riemannian gradient flow of generalized harmonic energies and thus is governed by a nonlinear geometric PDE which determines a harmonic map from a closed Riemannian domain manifold to a statistical manifold, equipped with the Fisher-Rao metric from information geometry. A specific ingredient of the sigma flow is the mutual dependency of the Riemannian metric of the domain manifold on the evolving state. This makes the approach amenable to machine learning in a specific way, by realizing this dependency through a mapping with compact time-variant parametrization that can be learned from data. Proof of concept experiments demonstrate the expressivity of the sigma flow model and prediction performance. Structural similarities to transformer network architectures and networks generated by the geometric integration of sigma flows are pointed out, which highlights the connection to deep learning and, conversely, may stimulate the use of geometric design principles for structured prediction in other areas of scientific machine learning.
comment: 51 pages
☆ Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
Few-shot image classification is a challenging task in the field of machine learning, involving the identification of new categories using a limited number of labeled samples. In recent years, methods based on local descriptors have made significant progress in this area. However, the key to improving classification accuracy lies in effectively filtering background noise and accurately selecting critical local descriptors highly relevant to image category information. To address this challenge, we propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors. This strategy can dynamically adjust based on the current task and image context, thereby selecting local descriptors most relevant to the image category. This enables the model to better focus on category-related information while effectively mitigating interference from irrelevant background regions. To evaluate the effectiveness of our method, we adopted the N-way K-shot experimental framework. Experimental results show that our method not only improves the clustering effect of selected local descriptors but also significantly enhances the discriminative ability between image categories. Notably, our method maintains a simple and lightweight design philosophy without introducing additional learnable parameters. This feature ensures consistency in filtering capability during both training and testing phases, further enhancing the reliability and practicality of the method.
☆ DiffAge3D: Diffusion-based 3D-aware Face Aging
Face aging is the process of converting an individual's appearance to a younger or older version of themselves. Existing face aging techniques have been limited to 2D settings, which often weaken their applications as there is a growing demand for 3D face modeling. Moreover, existing aging methods struggle to perform faithful aging, maintain identity, and retain the fine details of the input images. Given these limitations and the need for a 3D-aware aging method, we propose DiffAge3D, the first 3D-aware aging framework that not only performs faithful aging and identity preservation but also operates in a 3D setting. Our aging framework allows to model the aging and camera pose separately by only taking a single image with a target age. Our framework includes a robust 3D-aware aging dataset generation pipeline by utilizing a pre-trained 3D GAN and the rich text embedding capabilities within CLIP model. Notably, we do not employ any inversion bottleneck in dataset generation. Instead, we randomly generate training samples from the latent space of 3D GAN, allowing us to manipulate the rich latent space of GAN to generate ages even with large gaps. With the generated dataset, we train a viewpoint-aware diffusion-based aging model to control the camera pose and facial age. Through quantitative and qualitative evaluations, we demonstrate that DiffAge3D outperforms existing methods, particularly in multiview-consistent aging and fine details preservation.
Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.
comment: 28 pages, 12 tables, 10 figures
☆ CoRe: Context-Regularized Text Embedding Learning for Text-to-Image Personalization
Recent advances in text-to-image personalization have enabled high-quality and controllable image synthesis for user-provided concepts. However, existing methods still struggle to balance identity preservation with text alignment. Our approach is based on the fact that generating prompt-aligned images requires a precise semantic understanding of the prompt, which involves accurately processing the interactions between the new concept and its surrounding context tokens within the CLIP text encoder. To address this, we aim to embed the new concept properly into the input embedding space of the text encoder, allowing for seamless integration with existing tokens. We introduce Context Regularization (CoRe), which enhances the learning of the new concept's text embedding by regularizing its context tokens in the prompt. This is based on the insight that appropriate output vectors of the text encoder for the context tokens can only be achieved if the new concept's text embedding is correctly learned. CoRe can be applied to arbitrary prompts without requiring the generation of corresponding images, thus improving the generalization of the learned text embedding. Additionally, CoRe can serve as a test-time optimization technique to further enhance the generations for specific prompts. Comprehensive experiments demonstrate that our method outperforms several baseline methods in both identity preservation and text alignment. Code will be made publicly available.
☆ Gen-Swarms: Adapting Deep Generative Models to Swarms of Drones
Gen-Swarms is an innovative method that leverages and combines the capabilities of deep generative models with reactive navigation algorithms to automate the creation of drone shows. Advancements in deep generative models, particularly diffusion models, have demonstrated remarkable effectiveness in generating high-quality 2D images. Building on this success, various works have extended diffusion models to 3D point cloud generation. In contrast, alternative generative models such as flow matching have been proposed, offering a simple and intuitive transition from noise to meaningful outputs. However, the application of flow matching models to 3D point cloud generation remains largely unexplored. Gen-Swarms adapts these models to automatically generate drone shows. Existing 3D point cloud generative models create point trajectories which are impractical for drone swarms. In contrast, our method not only generates accurate 3D shapes but also guides the swarm motion, producing smooth trajectories and accounting for potential collisions through a reactive navigation algorithm incorporated into the sampling process. For example, when given a text category like Airplane, Gen-Swarms can rapidly and continuously generate numerous variations of 3D airplane shapes. Our experiments demonstrate that this approach is particularly well-suited for drone shows, providing feasible trajectories, creating representative final shapes, and significantly enhancing the overall performance of drone show generation.
☆ Disentangled Diffusion Autoencoder for Harmonization of Multi-site Neuroimaging Data
Combining neuroimaging datasets from multiple sites and scanners can help increase statistical power and thus provide greater insight into subtle neuroanatomical effects. However, site-specific effects pose a challenge by potentially obscuring the biological signal and introducing unwanted variance. Existing harmonization techniques, which use statistical models to remove such effects, have been shown to incompletely remove site effects while also failing to preserve biological variability. More recently, generative models using GANs or autoencoder-based approaches, have been proposed for site adjustment. However, such methods are known for instability during training or blurry image generation. In recent years, diffusion models have become increasingly popular for their ability to generate high-quality synthetic images. In this work, we introduce the disentangled diffusion autoencoder (DDAE), a novel diffusion model designed for controlling specific aspects of an image. We apply the DDAE to the task of harmonizing MR images by generating high-quality site-adjusted images that preserve biological variability. We use data from 7 different sites and demonstrate the DDAE's superiority in generating high-resolution, harmonized 2D MR images over previous approaches. As far as we are aware, this work marks the first diffusion-based model for site adjustment of neuroimaging data.
☆ SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors
Accurate segmentation of 3D clinical medical images is critical in the diagnosis and treatment of spinal diseases. However, the inherent complexity of spinal anatomy and uncertainty inherent in current imaging technologies, poses significant challenges for semantic segmentation of spinal images. Although convolutional neural networks (CNNs) and Transformer-based models have made some progress in spinal segmentation, their limitations in handling long-range dependencies hinder further improvements in segmentation accuracy.To address these challenges, we introduce a residual visual Mamba layer to effectively capture and model the deep semantic features and long-range spatial dependencies of 3D spinal data. To further enhance the structural semantic understanding of the vertebrae, we also propose a novel spinal shape prior module that captures specific anatomical information of the spine from medical images, significantly enhancing the model's ability to extract structural semantic information of the vertebrae. Comparative and ablation experiments on two datasets demonstrate that SpineMamba outperforms existing state-of-the-art models. On the CT dataset, the average Dice similarity coefficient for segmentation reaches as high as 94.40, while on the MR dataset, it reaches 86.95. Notably, compared to the renowned nnU-Net, SpineMamba achieves superior segmentation performance, exceeding it by up to 2 percentage points. This underscores its accuracy, robustness, and excellent generalization capabilities.
comment: 17 pages, 11 figures
☆ LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation
We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.
☆ Unleashing the Temporal-Spatial Reasoning Capacity of GPT for Training-Free Audio and Language Referenced Video Object Segmentation
In this paper, we propose an Audio-Language-Referenced SAM 2 (AL-Ref-SAM 2) pipeline to explore the training-free paradigm for audio and language-referenced video object segmentation, namely AVS and RVOS tasks. The intuitive solution leverages GroundingDINO to identify the target object from a single frame and SAM 2 to segment the identified object throughout the video, which is less robust to spatiotemporal variations due to a lack of video context exploration. Thus, in our AL-Ref-SAM 2 pipeline, we propose a novel GPT-assisted Pivot Selection (GPT-PS) module to instruct GPT-4 to perform two-step temporal-spatial reasoning for sequentially selecting pivot frames and pivot boxes, thereby providing SAM 2 with a high-quality initial object prompt. Within GPT-PS, two task-specific Chain-of-Thought prompts are designed to unleash GPT's temporal-spatial reasoning capacity by guiding GPT to make selections based on a comprehensive understanding of video and reference information. Furthermore, we propose a Language-Binded Reference Unification (LBRU) module to convert audio signals into language-formatted references, thereby unifying the formats of AVS and RVOS tasks in the same pipeline. Extensive experiments on both tasks show that our training-free AL-Ref-SAM 2 pipeline achieves performances comparable to or even better than fully-supervised fine-tuning methods. The code is available at: https://github.com/appletea233/AL-Ref-SAM2.
☆ GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model
Autonomous driving training requires a diverse range of datasets encompassing various traffic conditions, weather scenarios, and road types. Traditional data augmentation methods often struggle to generate datasets that represent rare occurrences. To address this challenge, we propose GenDDS, a novel approach for generating driving scenarios generation by leveraging the capabilities of Stable Diffusion XL (SDXL), an advanced latent diffusion model. Our methodology involves the use of descriptive prompts to guide the synthesis process, aimed at producing realistic and diverse driving scenarios. With the power of the latest computer vision techniques, such as ControlNet and Hotshot-XL, we have built a complete pipeline for video generation together with SDXL. We employ the KITTI dataset, which includes real-world driving videos, to train the model. Through a series of experiments, we demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios. This research contributes to the development of sophisticated training data for autonomous driving systems and opens new avenues for creating virtual environments for simulation and validation purposes.
☆ microYOLO: Towards Single-Shot Object Detection on Microcontrollers ECML
This work-in-progress paper presents results on the feasibility of single-shot object detection on microcontrollers using YOLO. Single-shot object detectors like YOLO are widely used, however due to their complexity mainly on larger GPU-based platforms. We present microYOLO, which can be used on Cortex-M based microcontrollers, such as the OpenMV H7 R2, achieving about 3.5 FPS when classifying 128x128 RGB images while using less than 800 KB Flash and less than 350 KB RAM. Furthermore, we share experimental results for three different object detection tasks, analyzing the accuracy of microYOLO on them.
comment: Published at the ECML PKDD Conference 2023, at the 4th Workshop on IoT, Edge, and Mobile for Embedded Machine Learning
☆ What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector
This study presents a detailed analysis of the YOLOv8 object detection model, focusing on its architecture, training techniques, and performance improvements over previous iterations like YOLOv5. Key innovations, including the CSPNet backbone for enhanced feature extraction, the FPN+PAN neck for superior multi-scale object detection, and the transition to an anchor-free approach, are thoroughly examined. The paper reviews YOLOv8's performance across benchmarks like Microsoft COCO and Roboflow 100, highlighting its high accuracy and real-time capabilities across diverse hardware platforms. Additionally, the study explores YOLOv8's developer-friendly enhancements, such as its unified Python package and CLI, which streamline model training and deployment. Overall, this research positions YOLOv8 as a state-of-the-art solution in the evolving object detection field.
☆ Network transferability of adversarial patches in real-time object detection
Adversarial patches in computer vision can be used, to fool deep neural networks and manipulate their decision-making process. One of the most prominent examples of adversarial patches are evasion attacks for object detectors. By covering parts of objects of interest, these patches suppress the detections and thus make the target object 'invisible' to the object detector. Since these patches are usually optimized on a specific network with a specific train dataset, the transferability across multiple networks and datasets is not given. This paper addresses these issues and investigates the transferability across numerous object detector architectures. Our extensive evaluation across various models on two distinct datasets indicates that patches optimized with larger models provide better network transferability than patches that are optimized with smaller models.
comment: 7 pages, 6 figures, 1 table
☆ Benchmarking foundation models as feature extractors for weakly-supervised computational pathology
Advancements in artificial intelligence have driven the development of numerous pathology foundation models capable of extracting clinically relevant information. However, there is currently limited literature independently evaluating these foundation models on truly external cohorts and clinically-relevant tasks to uncover adjustments for future improvements. In this study, we benchmarked ten histopathology foundation models on 13 patient cohorts with 6,791 patients and 9,493 slides from lung, colorectal, gastric, and breast cancers. The models were evaluated on weakly-supervised tasks related to biomarkers, morphological properties, and prognostic outcomes. We show that a vision-language foundation model, CONCH, yielded the highest performance in 42% of tasks when compared to vision-only foundation models. The experiments reveal that foundation models trained on distinct cohorts learn complementary features to predict the same label, and can be fused to outperform the current state of the art. Creating an ensemble of complementary foundation models outperformed CONCH in 66% of tasks. Moreover, our findings suggest that data diversity outweighs data volume for foundation models. Our work highlights actionable adjustments to improve pathology foundation models.
☆ Mining Field Data for Tree Species Recognition at Scale
Individual tree species labels are particularly hard to acquire due to the expert knowledge needed and the limitations of photointerpretation. Here, we present a methodology to automatically mine species labels from public forest inventory data, using available pretrained tree detection models. We identify tree instances in aerial imagery and match them with field data with close to zero human involvement. We conduct a series of experiments on the resulting dataset, and show a beneficial effect when adding noisy or even unlabeled data points, highlighting a strong potential for large-scale individual species mapping.
☆ DQFormer: Towards Unified LiDAR Panoptic Segmentation with Decoupled Queries
LiDAR panoptic segmentation, which jointly performs instance and semantic segmentation for things and stuff classes, plays a fundamental role in LiDAR perception tasks. While most existing methods explicitly separate these two segmentation tasks and utilize different branches (i.e., semantic and instance branches), some recent methods have embraced the query-based paradigm to unify LiDAR panoptic segmentation. However, the distinct spatial distribution and inherent characteristics of objects(things) and their surroundings(stuff) in 3D scenes lead to challenges, including the mutual competition of things/stuff and the ambiguity of classification/segmentation. In this paper, we propose decoupling things/stuff queries according to their intrinsic properties for individual decoding and disentangling classification/segmentation to mitigate ambiguity. To this end, we propose a novel framework dubbed DQFormer to implement semantic and instance segmentation in a unified workflow. Specifically, we design a decoupled query generator to propose informative queries with semantics by localizing things/stuff positions and fusing multi-level BEV embeddings. Moreover, a query-oriented mask decoder is introduced to decode corresponding segmentation masks by performing masked cross-attention between queries and mask embeddings. Finally, the decoded masks are combined with the semantics of the queries to produce panoptic results. Extensive experiments on nuScenes and SemanticKITTI datasets demonstrate the superiority of our DQFormer framework.
comment: 13 pages, 10 figures
☆ Multi-view Pose Fusion for Occlusion-Aware 3D Human Pose Estimation ECCV
Robust 3D human pose estimation is crucial to ensure safe and effective human-robot collaboration. Accurate human perception,however, is particularly challenging in these scenarios due to strong occlusions and limited camera viewpoints. Current 3D human pose estimation approaches are rather vulnerable in such conditions. In this work we present a novel approach for robust 3D human pose estimation in the context of human-robot collaboration. Instead of relying on noisy 2D features triangulation, we perform multi-view fusion on 3D skeletons provided by absolute monocular methods. Accurate 3D pose estimation is then obtained via reprojection error optimization, introducing limbs length symmetry constraints. We evaluate our approach on the public dataset Human3.6M and on a novel version Human3.6M-Occluded, derived adding synthetic occlusions on the camera views with the purpose of testing pose estimation algorithms under severe occlusions. We further validate our method on real human-robot collaboration workcells, in which we strongly surpass current 3D human pose estimation methods. Our approach outperforms state-of-the-art multi-view human pose estimation techniques and demonstrates superior capabilities in handling challenging scenarios with strong occlusions, representing a reliable and effective solution for real human-robot collaboration setups.
comment: ECCV workshops 2024
☆ Object Detection for Vehicle Dashcams using Transformers
The use of intelligent automation is growing significantly in the automotive industry, as it assists drivers and fleet management companies, thus increasing their productivity. Dash cams are now been used for this purpose which enables the instant identification and understanding of multiple objects and occurrences in the surroundings. In this paper, we propose a novel approach for object detection in dashcams using transformers. Our system is based on the state-of-the-art DEtection TRansformer (DETR), which has demonstrated strong performance in a variety of conditions, including different weather and illumination scenarios. The use of transformers allows for the consideration of contextual information in decisionmaking, improving the accuracy of object detection. To validate our approach, we have trained our DETR model on a dataset that represents real-world conditions. Our results show that the use of intelligent automation through transformers can significantly enhance the capabilities of dashcam systems. The model achieves an mAP of 0.95 on detection.
comment: 7 Pages, and 6 Figures
☆ Visual Prompt Engineering for Medical Vision Language Models in Radiology ECCV 2024
Medical image classification in radiology faces significant challenges, particularly in generalizing to unseen pathologies. In contrast, CLIP offers a promising solution by leveraging multimodal learning to improve zero-shot classification performance. However, in the medical domain, lesions can be small and might not be well represented in the embedding space. Therefore, in this paper, we explore the potential of visual prompt engineering to enhance the capabilities of Vision Language Models (VLMs) in radiology. Leveraging BiomedCLIP, trained on extensive biomedical image-text pairs, we investigate the impact of embedding visual markers directly within radiological images to guide the model's attention to critical regions. Our evaluation on the JSRT dataset, focusing on lung nodule malignancy classification, demonstrates that incorporating visual prompts $\unicode{x2013}$ such as arrows, circles, and contours $\unicode{x2013}$ significantly improves classification metrics including AUROC, AUPRC, F1 score, and accuracy. Moreover, the study provides attention maps, showcasing enhanced model interpretability and focus on clinically relevant areas. These findings underscore the efficacy of visual prompt engineering as a straightforward yet powerful approach to advance VLM performance in medical image analysis.
comment: Accepted at ECCV 2024 Workshop on Emergent Visual Abilities and Limits of Foundation Models
☆ A Survey on Facial Expression Recognition of Static and Dynamic Emotions
Facial expression recognition (FER) aims to analyze emotional states from static images and dynamic sequences, which is pivotal in enhancing anthropomorphic communication among humans, robots, and digital avatars by leveraging AI technologies. As the FER field evolves from controlled laboratory environments to more complex in-the-wild scenarios, advanced methods have been rapidly developed and new challenges and apporaches are encounted, which are not well addressed in existing reviews of FER. This paper offers a comprehensive survey of both image-based static FER (SFER) and video-based dynamic FER (DFER) methods, analyzing from model-oriented development to challenge-focused categorization. We begin with a critical comparison of recent reviews, an introduction to common datasets and evaluation criteria, and an in-depth workflow on FER to establish a robust research foundation. We then systematically review representative approaches addressing eight main challenges in SFER (such as expression disturbance, uncertainties, compound emotions, and cross-domain inconsistency) as well as seven main challenges in DFER (such as key frame sampling, expression intensity variations, and cross-modal alignment). Additionally, we analyze recent advancements, benchmark performances, major applications, and ethical considerations. Finally, we propose five promising future directions and development trends to guide ongoing research. The project page for this paper can be found at https://github.com/wangyanckxx/SurveyFER.
☆ A Survey on Evaluation of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) mimic human perception and reasoning system by integrating powerful Large Language Models (LLMs) with various modality encoders (e.g., vision, audio), positioning LLMs as the "brain" and various modality encoders as sensory organs. This framework endows MLLMs with human-like capabilities, and suggests a potential pathway towards achieving artificial general intelligence (AGI). With the emergence of all-round MLLMs like GPT-4V and Gemini, a multitude of evaluation methods have been developed to assess their capabilities across different dimensions. This paper presents a systematic and comprehensive review of MLLM evaluation methods, covering the following key aspects: (1) the background of MLLMs and their evaluation; (2) "what to evaluate" that reviews and categorizes existing MLLM evaluation tasks based on the capabilities assessed, including general multimodal recognition, perception, reasoning and trustworthiness, and domain-specific applications such as socioeconomic, natural sciences and engineering, medical usage, AI agent, remote sensing, video and audio processing, 3D point cloud analysis, and others; (3) "where to evaluate" that summarizes MLLM evaluation benchmarks into general and specific benchmarks; (4) "how to evaluate" that reviews and illustrates MLLM evaluation steps and metrics; Our overarching goal is to provide valuable insights for researchers in the field of MLLM evaluation, thereby facilitating the development of more capable and reliable MLLMs. We emphasize that evaluation should be regarded as a critical discipline, essential for advancing the field of MLLMs.
☆ Addressing the challenges of loop detection in agricultural environments
While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.
☆ Str-L Pose: Integrating Point and Structured Line for Relative Pose Estimation in Dual-Graph
Relative pose estimation is crucial for various computer vision applications, including Robotic and Autonomous Driving. Current methods primarily depend on selecting and matching feature points prone to incorrect matches, leading to poor performance. Consequently, relying solely on point-matching relationships for pose estimation is a huge challenge. To overcome these limitations, we propose a Geometric Correspondence Graph neural network that integrates point features with extra structured line segments. This integration of matched points and line segments further exploits the geometry constraints and enhances model performance across different environments. We employ the Dual-Graph module and Feature Weighted Fusion Module to aggregate geometric and visual features effectively, facilitating complex scene understanding. We demonstrate our approach through extensive experiments on the DeMoN and KITTI Odometry datasets. The results show that our method is competitive with state-of-the-art techniques.
☆ Segmentation-guided Layer-wise Image Vectorization with Gradient Fills
The widespread use of vector graphics creates a significant demand for vectorization methods. While recent learning-based techniques have shown their capability to create vector images of clear topology, filling these primitives with gradients remains a challenge. In this paper, we propose a segmentation-guided vectorization framework to convert raster images into concise vector graphics with radial gradient fills. With the guidance of an embedded gradient-aware segmentation subroutine, our approach progressively appends gradient-filled B\'ezier paths to the output, where primitive parameters are initiated with our newly designed initialization technique and are optimized to minimize our novel loss function. We build our method on a differentiable renderer with traditional segmentation algorithms to develop it as a model-free tool for raster-to-vector conversion. It is tested on various inputs to demonstrate its feasibility, independent of datasets, to synthesize vector graphics with improved visual quality and layer-wise topology compared to prior work.
☆ MambaPlace:Text-to-Point-Cloud Cross-Modal Place Recognition with Attention Mamba Mechanisms
Vision Language Place Recognition (VLVPR) enhances robot localization performance by incorporating natural language descriptions from images. By utilizing language information, VLVPR directs robot place matching, overcoming the constraint of solely depending on vision. The essence of multimodal fusion lies in mining the complementary information between different modalities. However, general fusion methods rely on traditional neural architectures and are not well equipped to capture the dynamics of cross modal interactions, especially in the presence of complex intra modal and inter modal correlations. To this end, this paper proposes a novel coarse to fine and end to end connected cross modal place recognition framework, called MambaPlace. In the coarse localization stage, the text description and 3D point cloud are encoded by the pretrained T5 and instance encoder, respectively. They are then processed using Text Attention Mamba (TAM) and Point Clouds Mamba (PCM) for data enhancement and alignment. In the subsequent fine localization stage, the features of the text description and 3D point cloud are cross modally fused and further enhanced through cascaded Cross Attention Mamba (CCAM). Finally, we predict the positional offset from the fused text point cloud features, achieving the most accurate localization. Extensive experiments show that MambaPlace achieves improved localization accuracy on the KITTI360Pose dataset compared to the state of the art methods.
comment: 8 pages
☆ Defending Text-to-image Diffusion Models: Surprising Efficacy of Textual Perturbations Against Backdoor Attacks ECCV 2024
Text-to-image diffusion models have been widely adopted in real-world applications due to their ability to generate realistic images from textual descriptions. However, recent studies have shown that these methods are vulnerable to backdoor attacks. Despite the significant threat posed by backdoor attacks on text-to-image diffusion models, countermeasures remain under-explored. In this paper, we address this research gap by demonstrating that state-of-the-art backdoor attacks against text-to-image diffusion models can be effectively mitigated by a surprisingly simple defense strategy - textual perturbation. Experiments show that textual perturbations are effective in defending against state-of-the-art backdoor attacks with minimal sacrifice to generation quality. We analyze the efficacy of textual perturbation from two angles: text embedding space and cross-attention maps. They further explain how backdoor attacks have compromised text-to-image diffusion models, providing insights for studying future attack and defense strategies. Our code is available at https://github.com/oscarchew/t2i-backdoor-defense.
comment: ECCV 2024 Workshop The Dark Side of Generative AIs and Beyond
☆ Pixels to Prose: Understanding the art of Image Captioning
In the era of evolving artificial intelligence, machines are increasingly emulating human-like capabilities, including visual perception and linguistic expression. Image captioning stands at the intersection of these domains, enabling machines to interpret visual content and generate descriptive text. This paper provides a thorough review of image captioning techniques, catering to individuals entering the field of machine learning who seek a comprehensive understanding of available options, from foundational methods to state-of-the-art approaches. Beginning with an exploration of primitive architectures, the review traces the evolution of image captioning models to the latest cutting-edge solutions. By dissecting the components of these architectures, readers gain insights into the underlying mechanisms and can select suitable approaches tailored to specific problem requirements without duplicating efforts. The paper also delves into the application of image captioning in the medical domain, illuminating its significance in various real-world scenarios. Furthermore, the review offers guidance on evaluating the performance of image captioning systems, highlighting key metrics for assessment. By synthesizing theoretical concepts with practical application, this paper equips readers with the knowledge needed to navigate the complex landscape of image captioning and harness its potential for diverse applications in machine learning and beyond.
☆ Towards Realistic Example-based Modeling via 3D Gaussian Stitching
Using parts of existing models to rebuild new models, commonly termed as example-based modeling, is a classical methodology in the realm of computer graphics. Previous works mostly focus on shape composition, making them very hard to use for realistic composition of 3D objects captured from real-world scenes. This leads to combining multiple NeRFs into a single 3D scene to achieve seamless appearance blending. However, the current SeamlessNeRF method struggles to achieve interactive editing and harmonious stitching for real-world scenes due to its gradient-based strategy and grid-based representation. To this end, we present an example-based modeling method that combines multiple Gaussian fields in a point-based representation using sample-guided synthesis. Specifically, as for composition, we create a GUI to segment and transform multiple fields in real time, easily obtaining a semantically meaningful composition of models represented by 3D Gaussian Splatting (3DGS). For texture blending, due to the discrete and irregular nature of 3DGS, straightforwardly applying gradient propagation as SeamlssNeRF is not supported. Thus, a novel sampling-based cloning method is proposed to harmonize the blending while preserving the original rich texture and content. Our workflow consists of three steps: 1) real-time segmentation and transformation of a Gaussian model using a well-tailored GUI, 2) KNN analysis to identify boundary points in the intersecting area between the source and target models, and 3) two-phase optimization of the target model using sampling-based cloning and gradient constraints. Extensive experimental results validate that our approach significantly outperforms previous works in terms of realistic synthesis, demonstrating its practicality. More demos are available at https://ingra14m.github.io/gs_stitching_website.
☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
☆ Synthetic Forehead-creases Biometric Generation for Reliable User Verification
Recent studies have emphasized the potential of forehead-crease patterns as an alternative for face, iris, and periocular recognition, presenting contactless and convenient solutions, particularly in situations where faces are covered by surgical masks. However, collecting forehead data presents challenges, including cost and time constraints, as developing and optimizing forehead verification methods requires a substantial number of high-quality images. To tackle these challenges, the generation of synthetic biometric data has gained traction due to its ability to protect privacy while enabling effective training of deep learning-based biometric verification methods. In this paper, we present a new framework to synthesize forehead-crease image data while maintaining important features, such as uniqueness and realism. The proposed framework consists of two main modules: a Subject-Specific Generation Module (SSGM), based on an image-to-image Brownian Bridge Diffusion Model (BBDM), which learns a one-to-many mapping between image pairs to generate identity-aware synthetic forehead creases corresponding to real subjects, and a Subject-Agnostic Generation Module (SAGM), which samples new synthetic identities with assistance from the SSGM. We evaluate the diversity and realism of the generated forehead-crease images primarily using the Fr\'echet Inception Distance (FID) and the Structural Similarity Index Measure (SSIM). In addition, we assess the utility of synthetically generated forehead-crease images using a forehead-crease verification system (FHCVS). The results indicate an improvement in the verification accuracy of the FHCVS by utilizing synthetic data.
comment: Accepted at Generative AI for Futuristic Biometrics - IJCB'24 Special Session
☆ A quantitative model of takeover request time budget for conditionally automated driving
In conditional automation, the automated driving system assumes full control and only issues a takeover request to a human driver to resume driving in critical situations. Previous studies have concluded that the time budget required by drivers to resume driving after a takeover request varies with situations and different takeover variables. However, no comprehensive generalized approaches for estimating in advance the time budget required by drivers to takeover have been provided. In this contribution, fixed (7 s) and variable time budgets (6 s, 5 s, and 4 s) with and without visual imagery assistance were investigated for suitability in three takeover scenarios using performance measures such as average lateral displacement. The results indicate that 7 s is suitable for two of the studied scenarios based on their characteristics. Using the obtained results and known relations between takeover variables, a mathematical formula for estimating takeover request time budget is proposed. The proposed formula integrates individual stimulus response time, driving experience, scenario specific requirements and allows increased safety for takeover maneuvers. Furthermore, the visual imagery resulted in increased takeover time which invariably increases the time budget. Thus the time demand of the visualized information if applicable (such as visual imagery) should be included in the time budget.
comment: Manuscript: 12 pages, 12 figures, 7 tables
☆ DEAR: Depth-Enhanced Action Recognition ECCV
Detecting actions in videos, particularly within cluttered scenes, poses significant challenges due to the limitations of 2D frame analysis from a camera perspective. Unlike human vision, which benefits from 3D understanding, recognizing actions in such environments can be difficult. This research introduces a novel approach integrating 3D features and depth maps alongside RGB features to enhance action recognition accuracy. Our method involves processing estimated depth maps through a separate branch from the RGB feature encoder and fusing the features to understand the scene and actions comprehensively. Using the Side4Video framework and VideoMamba, which employ CLIP and VisionMamba for spatial feature extraction, our approach outperformed our implementation of the Side4Video network on the Something-Something V2 dataset. Our code is available at: https://github.com/SadeghRahmaniB/DEAR
comment: 5 pages, 1 figure, 1 table, accepted at Human-inspired Computer Vision, ECCV
☆ Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers
Recent advancements in deep learning techniques have sparked performance boosts in various real-world applications including disease diagnosis based on multi-modal medical data. Cough sound data-based respiratory disease (e.g., COVID-19 and Chronic Obstructive Pulmonary Disease) diagnosis has also attracted much attention. However, existing works usually utilise traditional machine learning or deep models of moderate scales. On the other hand, the developed approaches are trained and evaluated on small-scale data due to the difficulty of curating and annotating clinical data on scale. To address these issues in prior works, we create a unified framework to evaluate various deep models from lightweight Convolutional Neural Networks (e.g., ResNet18) to modern vision transformers and compare their performance in respiratory disease classification. Based on the observations from such an extensive empirical study, we propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set. Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
☆ Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas ECCV 2024
Diffusion models have become the State-of-the-Art for text-to-image generation, and increasing research effort has been dedicated to adapting the inference process of pretrained diffusion models to achieve zero-shot capabilities. An example is the generation of panorama images, which has been tackled in recent works by combining independent diffusion paths over overlapping latent features, which is referred to as joint diffusion, obtaining perceptually aligned panoramas. However, these methods often yield semantically incoherent outputs and trade-off diversity for uniformity. To overcome this limitation, we propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting to improve the perceptual and semantical coherence of the generated panorama images. Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space. Extensive quantitative and qualitative experimental analysis, together with a user study, demonstrate that our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence. We release the code at https://github.com/aimagelab/MAD.
comment: Accepted at ECCV 2024
☆ TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
☆ Realigned Softmax Warping for Deep Metric Learning
Deep Metric Learning (DML) loss functions traditionally aim to control the forces of separability and compactness within an embedding space so that the same class data points are pulled together and different class ones are pushed apart. Within the context of DML, a softmax operation will typically normalize distances into a probability for optimization, thus coupling all the push/pull forces together. This paper proposes a potential new class of loss functions that operate within a euclidean domain and aim to take full advantage of the coupled forces governing embedding space formation under a softmax. These forces of compactness and separability can be boosted or mitigated within controlled locations at will by using a warping function. In this work, we provide a simple example of a warping function and use it to achieve competitive, state-of-the-art results on various metric learning benchmarks.
comment: Preprint
☆ Online pre-training with long-form videos
In this study, we investigate the impact of online pre-training with continuous video clips. We will examine three methods for pre-training (masked image modeling, contrastive learning, and knowledge distillation), and assess the performance on downstream action recognition tasks. As a result, online pre-training with contrast learning showed the highest performance in downstream tasks. Our findings suggest that learning from long-form videos can be helpful for action recognition with short videos.
comment: GCCE2024
☆ Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment
Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity. The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of MCI subjects (Early/Late MCI). To achieve this, fMRI time series from two distinct populations are investigated: (i) the publicly accessible ADNI dataset and (ii) our in-house dataset. The study utilizes sliding window embedding to convert each fMRI time series into a sequence of 3-dimensional vectors, facilitating the assessment of changes in regional brain topology. Distinct persistence diagrams are computed for Betti descriptors of dimension-0, 1, and 2. Wasserstein distance metric is used to quantify differences in topological characteristics. We have examined both (i) ROI-specific inter-subject interactions and (ii) subject-specific inter-ROI interactions. Further, a new deep learning model is proposed for classification, achieving a maximum classification accuracy of 95% for the ADNI dataset and 85% for the in-house dataset. This methodology is further adapted for the differential diagnosis of MCI sub-types, resulting in a peak accuracy of 76.5%, 91.1% and 80% in classifying HC Vs. EMCI, HC Vs. LMCI and EMCI Vs. LMCI, respectively. We showed that the proposed approach surpasses current state-of-the-art techniques designed for classifying MCI and its sub-types using fMRI.
comment: 16 pages, 6 figures, 3 tables, accepted at International Conference on Pattern Recognition 2024
☆ μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context ECCV
Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents. For this reason, they are of great interest to scholars in many social and humanities fields. In this work, we focus on Regesta Pontificum Romanum, a large collection of papal registers. Regesta are visually rich documents, where the layout is as important as the text content to convey the contained information through the structure, and are inherently multi-page documents. Among Digital Humanities techniques that can help scholars efficiently exploit regesta and other documental sources in the form of scanned documents, Document Parsing has emerged as a task to process document images and convert them into machine-readable structured representations, usually markup language. However, current models focus on scientific and business documents, and most of them consider only single-paged documents. To overcome this limitation, in this work, we propose {\mu}gat, an extension of the recently proposed Document parsing Nougat architecture, which can handle elements spanning over the single page limits. Specifically, we adapt Nougat to process a larger, multi-page context, consisting of the previous and the following page, while parsing the current page. Experimental results, both qualitative and quantitative, demonstrate the effectiveness of our proposed approach also in the case of the challenging Regesta Pontificum Romanorum.
comment: Accepted at ECCV Workshop "AI4DH: Artificial Intelligence for Digital Humanities"
☆ Can SAR improve RSVQA performance?
Remote sensing visual question answering (RSVQA) has been involved in several research in recent years, leading to an increase in new methods. RSVQA automatically extracts information from satellite images, so far only optical, and a question to automatically search for the answer in the image and provide it in a textual form. In our research, we study whether Synthetic Aperture Radar (SAR) images can be beneficial to this field. We divide our study into three phases which include classification methods and VQA. In the first one, we explore the classification results of SAR alone and investigate the best method to extract information from SAR data. Then, we study the combination of SAR and optical data. In the last phase, we investigate how SAR images and a combination of different modalities behave in RSVQA compared to a method only using optical images. We conclude that adding the SAR modality leads to improved performances, although further research on using SAR data to automatically answer questions is needed as well as more balanced datasets.
comment: 6 pages, 4 figures
☆ MMDRFuse: Distilled Mini-Model with Dynamic Refresh for Multi-Modality Image Fusion
In recent years, Multi-Modality Image Fusion (MMIF) has been applied to many fields, which has attracted many scholars to endeavour to improve the fusion performance. However, the prevailing focus has predominantly been on the architecture design, rather than the training strategies. As a low-level vision task, image fusion is supposed to quickly deliver output images for observation and supporting downstream tasks. Thus, superfluous computational and storage overheads should be avoided. In this work, a lightweight Distilled Mini-Model with a Dynamic Refresh strategy (MMDRFuse) is proposed to achieve this objective. To pursue model parsimony, an extremely small convolutional network with a total of 113 trainable parameters (0.44 KB) is obtained by three carefully designed supervisions. First, digestible distillation is constructed by emphasising external spatial feature consistency, delivering soft supervision with balanced details and saliency for the target network. Second, we develop a comprehensive loss to balance the pixel, gradient, and perception clues from the source images. Third, an innovative dynamic refresh training strategy is used to collaborate history parameters and current supervision during training, together with an adaptive adjust function to optimise the fusion network. Extensive experiments on several public datasets demonstrate that our method exhibits promising advantages in terms of model efficiency and complexity, with superior performance in multiple image fusion tasks and downstream pedestrian detection application. The code of this work is publicly available at https://github.com/yanglinDeng/MMDRFuse.
comment: 10 pages, 8 figures, accpeted by ACM International Conference on Multimedia 2024(Oral)
☆ Transfer Learning from Simulated to Real Scenes for Monocular 3D Object Detection ECCV'24
Accurately detecting 3D objects from monocular images in dynamic roadside scenarios remains a challenging problem due to varying camera perspectives and unpredictable scene conditions. This paper introduces a two-stage training strategy to address these challenges. Our approach initially trains a model on the large-scale synthetic dataset, RoadSense3D, which offers a diverse range of scenarios for robust feature learning. Subsequently, we fine-tune the model on a combination of real-world datasets to enhance its adaptability to practical conditions. Experimental results of the Cube R-CNN model on challenging public benchmarks show a remarkable improvement in detection performance, with a mean average precision rising from 0.26 to 12.76 on the TUM Traffic A9 Highway dataset and from 2.09 to 6.60 on the DAIR-V2X-I dataset when performing transfer learning. Code, data, and qualitative video results are available on the project website: https://roadsense3d.github.io.
comment: 18 pages. Accepted for ECVA European Conference on Computer Vision 2024 (ECCV'24)
☆ CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
To improve logical anomaly detection, some previous works have integrated segmentation techniques with conventional anomaly detection methods. Although these methods are effective, they frequently lead to unsatisfactory segmentation results and require manual annotations. To address these drawbacks, we develop an unsupervised component segmentation technique that leverages foundation models to autonomously generate training labels for a lightweight segmentation network without human labeling. Integrating this new segmentation technique with our proposed Patch Histogram module and the Local-Global Student-Teacher (LGST) module, we achieve a detection AUROC of 95.3% in the MVTec LOCO AD dataset, which surpasses previous SOTA methods. Furthermore, our proposed method provides lower latency and higher throughput than most existing approaches.
☆ Can Visual Language Models Replace OCR-Based Visual Question Answering Pipelines in Production? A Case Study in Retail
Most production-level deployments for Visual Question Answering (VQA) tasks are still build as processing pipelines of independent steps including image pre-processing, object- and text detection, Optical Character Recognition (OCR) and (mostly supervised) object classification. However, the recent advances in vision Foundation Models [25] and Vision Language Models (VLMs) [23] raise the question if these custom trained, multi-step approaches can be replaced with pre-trained, single-step VLMs. This paper analyzes the performance and limits of various VLMs in the context of VQA and OCR [5, 9, 12] tasks in a production-level scenario. Using data from the Retail-786k [10] dataset, we investigate the capabilities of pre-trained VLMs to answer detailed questions about advertised products in images. Our study includes two commercial models, GPT-4V [16] and GPT-4o [17], as well as four open-source models: InternVL [5], LLaVA 1.5 [12], LLaVA-NeXT [13], and CogAgent [9]. Our initial results show, that there is in general no big performance gap between open-source and commercial models. However, we observe a strong task dependent variance in VLM performance: while most models are able to answer questions regarding the product brand and price with high accuracy, they completely fail at the same time to correctly identity the specific product name or discount. This indicates the problem of VLMs to solve fine-grained classification tasks as well to model the more abstract concept of discounts.
☆ Geometry-guided Feature Learning and Fusion for Indoor Scene Reconstruction ICCV2023
In addition to color and textural information, geometry provides important cues for 3D scene reconstruction. However, current reconstruction methods only include geometry at the feature level thus not fully exploiting the geometric information. In contrast, this paper proposes a novel geometry integration mechanism for 3D scene reconstruction. Our approach incorporates 3D geometry at three levels, i.e. feature learning, feature fusion, and network supervision. First, geometry-guided feature learning encodes geometric priors to contain view-dependent information. Second, a geometry-guided adaptive feature fusion is introduced which utilizes the geometric priors as a guidance to adaptively generate weights for multiple views. Third, at the supervision level, taking the consistency between 2D and 3D normals into account, a consistent 3D normal loss is designed to add local constraints. Large-scale experiments are conducted on the ScanNet dataset, showing that volumetric methods with our geometry integration mechanism outperform state-of-the-art methods quantitatively as well as qualitatively. Volumetric methods with ours also show good generalization on the 7-Scenes and TUM RGB-D datasets.
comment: Accepted by ICCV2023
☆ ES-PTAM: Event-based Stereo Parallel Tracking and Mapping
Visual Odometry (VO) and SLAM are fundamental components for spatial perception in mobile robots. Despite enormous progress in the field, current VO/SLAM systems are limited by their sensors' capability. Event cameras are novel visual sensors that offer advantages to overcome the limitations of standard cameras, enabling robots to expand their operating range to challenging scenarios, such as high-speed motion and high dynamic range illumination. We propose a novel event-based stereo VO system by combining two ideas: a correspondence-free mapping module that estimates depth by maximizing ray density fusion and a tracking module that estimates camera poses by maximizing edge-map alignment. We evaluate the system comprehensively on five real-world datasets, spanning a variety of camera types (manufacturers and spatial resolutions) and scenarios (driving, flying drone, hand-held, egocentric, etc). The quantitative and qualitative results demonstrate that our method outperforms the state of the art in majority of the test sequences by a margin, e.g., trajectory error reduction of 45% on RPG dataset, 61% on DSEC dataset, and 21% on TUM-VIE dataset. To benefit the community and foster research on event-based perception systems, we release the source code and results: https://github.com/tub-rip/ES-PTAM
comment: 17 pages, 7 figures, 4 tables, https://github.com/tub-rip/ES-PTAM
☆ On the Benefits of Visual Stabilization for Frame- and Event-based Perception
Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This paper presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%. Code is available at https://github.com/tub-rip/visual_stabilization
comment: 8 pages, 4 figures, 4 tables, https://github.com/tub-rip/visual_stabilization
☆ Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection ICCV2023
Detecting out-of-distribution inputs for visual recognition models has become critical in safe deep learning. This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data through joint representation learning and statistical modeling. We learn a mixture of Gaussian models for each in-distribution category. There are many Gaussian mixture models to model different visual categories. With these Gaussian models, we design an in-distribution score function by aggregating multiple Mahalanobis-based metrics. We don't use any auxiliary outlier data as training samples, which may hurt the generalization ability of out-of-distribution detection algorithms. We split the ImageNet-1k dataset into ten folds randomly. We use one fold as the in-distribution dataset and the others as out-of-distribution datasets to evaluate the proposed method. We also conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O. Extensive experiments indicate that the proposed method outperforms state-of-the-art algorithms clearly. Meanwhile, we find that our visual representation has a competitive performance when compared with features learned by classical methods. These results demonstrate that the proposed method hasn't weakened the discriminative ability of visual recognition models and keeps high efficiency in detecting out-of-distribution samples.
comment: Accepted by ICCV2023
☆ Temporal Attention for Cross-View Sequential Image Localization IROS 2024
This paper introduces a novel approach to enhancing cross-view localization, focusing on the fine-grained, sequential localization of street-view images within a single known satellite image patch, a significant departure from traditional one-to-one image retrieval methods. By expanding to sequential image fine-grained localization, our model, equipped with a novel Temporal Attention Module (TAM), leverages contextual information to significantly improve sequential image localization accuracy. Our method shows substantial reductions in both mean and median localization errors on the Cross-View Image Sequence (CVIS) dataset, outperforming current state-of-the-art single-image localization techniques. Additionally, by adapting the KITTI-CVL dataset into sequential image sets, we not only offer a more realistic dataset for future research but also demonstrate our model's robust generalization capabilities across varying times and areas, evidenced by a 75.3% reduction in mean distance error in cross-view sequential image localization.
comment: Accepted to IROS 2024
☆ TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
Multimodal fusion, leveraging data like vision and language, is rapidly gaining traction. This enriched data representation improves performance across various tasks. Existing methods for out-of-distribution (OOD) detection, a critical area where AI models encounter unseen data in real-world scenarios, rely heavily on whole-image features. These image-level features can include irrelevant information that hinders the detection of OOD samples, ultimately limiting overall performance. In this paper, we propose \textbf{TagOOD}, a novel approach for OOD detection that leverages vision-language representations to achieve label-free object feature decoupling from whole images. This decomposition enables a more focused analysis of object semantics, enhancing OOD detection performance. Subsequently, TagOOD trains a lightweight network on the extracted object features to learn representative class centers. These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection. Finally, our approach efficiently detects OOD samples by calculating distance-based metrics as OOD scores between learned centers and test samples. We conduct extensive experiments to evaluate TagOOD on several benchmark datasets and demonstrate its superior performance compared to existing OOD detection methods. This work presents a novel perspective for further exploration of multimodal information utilization in OOD detection, with potential applications across various tasks.
comment: Accepted by ACMMM2024
☆ Generalization Capabilities of Neural Cellular Automata for Medical Image Segmentation: A Robust and Lightweight Approach
In the field of medical imaging, the U-Net architecture, along with its variants, has established itself as a cornerstone for image segmentation tasks, particularly due to its strong performance when trained on limited datasets. Despite its impressive performance on identically distributed (in-domain) data, U-Nets exhibit a significant decline in performance when tested on data that deviates from the training distribution, out-of-distribution (out-of-domain) data. Current methodologies predominantly address this issue by employing generalization techniques that hinge on various forms of regularization, which have demonstrated moderate success in specific scenarios. This paper, however, ventures into uncharted territory by investigating the implications of utilizing models that are smaller by three orders of magnitude (i.e., x1000) compared to a conventional U-Net. A reduction of this size in U-net parameters typically adversely affects both in-domain and out-of-domain performance, possibly due to a significantly reduced receptive field. To circumvent this issue, we explore the concept of Neural Cellular Automata (NCA), which, despite its simpler model structure, can attain larger receptive fields through recursive processes. Experimental results on two distinct datasets reveal that NCA outperforms traditional methods in terms of generalization, while still maintaining a commendable IID performance.
☆ Divide, Conquer and Combine: A Training-Free Framework for High-Resolution Image Perception in Multimodal Large Language Models
Multimodal large language models (MLLMs) have experienced significant advancements recently, but still struggle to recognize and interpret intricate details in high-resolution (HR) images effectively. While state-of-the-art (SOTA) MLLMs claim to process images at 4K resolution, existing MLLM benchmarks only support up to 2K, leaving the capabilities of SOTA models on true HR images largely untested. Furthermore, existing methods for enhancing HR image perception in MLLMs rely on computationally expensive visual instruction tuning. To address these limitations, we introduce HR-Bench, the first deliberately designed benchmark to rigorously evaluate MLLM performance on 4K&8K images. Through extensive experiments, we demonstrate that while downsampling HR images leads to vision information loss, leveraging complementary modalities, e.g., text, can effectively compensate for this loss. Building upon this insight, we propose Divide, Conquer and Combine (DC$^2$), a novel training-free framework for enhancing MLLM perception of HR images. DC$^2$ follows a three-staged approach: 1) Divide: recursively partitioning the HR image into patches and merging similar patches to minimize computational overhead, 2) Conquer: leveraging the MLLM to generate accurate textual descriptions for each image patch, and 3) Combine: utilizing the generated text descriptions to enhance the MLLM's understanding of the overall HR image. Extensive experiments show that: 1) the SOTA MLLM achieves 63% accuracy, which is markedly lower than the 87% accuracy achieved by humans on HR-Bench; 2) our DC$^2$ brings consistent and significant improvements (a relative increase of +6% on HR-Bench and +8% on general multimodal benchmarks). The benchmark and code will be released to facilitate the multimodal R&D community.
☆ Latent Relationship Mining of Glaucoma Biomarkers: a TRI-LSTM based Deep Learning
In recently years, a significant amount of research has been conducted on applying deep learning methods for glaucoma classification and detection. However, the explainability of those established machine learning models remains a big concern. In this research, in contrast, we learn from cognitive science concept and study how ophthalmologists judge glaucoma detection. Simulating experts' efforts, we propose a hierarchical decision making system, centered around a holistic set of carefully designed biomarker-oriented machine learning models. While biomarkers represent the key indicators of how ophthalmologists identify glaucoma, they usually exhibit latent inter-relations. We thus construct a time series model, named TRI-LSTM, capable of calculating and uncovering potential and latent relationships among various biomarkers of glaucoma. Our model is among the first efforts to explore the intrinsic connections among glaucoma biomarkers. We monitor temporal relationships in patients' disease states over time and to capture and retain the progression of disease-relevant clinical information from prior visits, thereby enriching biomarker's potential relationships. Extensive experiments over real-world dataset have demonstrated the effectiveness of the proposed model.
comment: 9 pages, 4 images
☆ ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame. Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios. However, these methods still face challenges such as poor noise resistance and frequent ID switches. In this research, we propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on perturbed bounding boxes. This progressive denoising strategy significantly improves the model's noise resistance. During the training phase, paired object boxes within two adjacent frames are diffused from ground-truth boxes to a random distribution, and then the model learns to detect and track by reversing this process. In inference, the model refines randomly generated boxes into detection and tracking results through minimal denoising steps. ConsistencyTrack also introduces an innovative target association strategy to address target occlusion. Experiments on the MOT17 and DanceTrack datasets demonstrate that ConsistencyTrack outperforms other compared methods, especially better than DiffusionTrack in inference speed and other performance metrics. Our code is available at https://github.com/Tankowa/ConsistencyTrack.
comment: arXiv admin note: text overlap with arXiv:2308.09905 by other authors
☆ Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input
Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
☆ Ray-Distance Volume Rendering for Neural Scene Reconstruction ECCV2024
Existing methods in neural scene reconstruction utilize the Signed Distance Function (SDF) to model the density function. However, in indoor scenes, the density computed from the SDF for a sampled point may not consistently reflect its real importance in volume rendering, often due to the influence of neighboring objects. To tackle this issue, our work proposes a novel approach for indoor scene reconstruction, which instead parameterizes the density function with the Signed Ray Distance Function (SRDF). Firstly, the SRDF is predicted by the network and transformed to a ray-conditioned density function for volume rendering. We argue that the ray-specific SRDF only considers the surface along the camera ray, from which the derived density function is more consistent to the real occupancy than that from the SDF. Secondly, although SRDF and SDF represent different aspects of scene geometries, their values should share the same sign indicating the underlying spatial occupancy. Therefore, this work introduces a SRDF-SDF consistency loss to constrain the signs of the SRDF and SDF outputs. Thirdly, this work proposes a self-supervised visibility task, introducing the physical visibility geometry to the reconstruction task. The visibility task combines prior from predicted SRDF and SDF as pseudo labels, and contributes to generating more accurate 3D geometry. Our method implemented with different representations has been validated on indoor datasets, achieving improved performance in both reconstruction and view synthesis.
comment: Accepted by ECCV2024
☆ A Simple Baseline with Single-encoder for Referring Image Segmentation
Referring image segmentation (RIS) requires dense vision-language interactions between visual pixels and textual words to segment objects based on a given description. However, commonly adapted dual-encoders in RIS, e.g., Swin transformer and BERT (uni-modal encoders) or CLIP (a multi-modal dual-encoder), lack dense multi-modal interactions during pre-training, leading to a gap with a pixel-level RIS task. To bridge this gap, existing RIS methods often rely on multi-modal fusion modules that interact two encoders, but this approach leads to high computational costs. In this paper, we present a novel RIS method with a single-encoder, i.e., BEiT-3, maximizing the potential of shared self-attention across all framework components. This enables seamless interactions of two modalities from input to final prediction, producing granularly aligned multi-modal features. Furthermore, we propose lightweight yet effective decoder modules, a Shared FPN and a Shared Mask Decoder, which contribute to the high efficiency of our model. Our simple baseline with a single encoder achieves outstanding performances on the RIS benchmark datasets while maintaining computational efficiency, compared to the most recent SoTA methods based on dual-encoders.
comment: ArXiv pre-print
☆ Depth-Weighted Detection of Behaviours of Risk in People with Dementia using Cameras
The behavioural and psychological symptoms of dementia, such as agitation and aggression, present a significant health and safety risk in residential care settings. Many care facilities have video cameras in place for digital monitoring of public spaces, which can be leveraged to develop an automated behaviours of risk detection system that can alert the staff to enable timely intervention and prevent the situation from escalating. However, one of the challenges in our previous study was the presence of false alarms due to obstruction of view by activities happening close to the camera. To address this issue, we proposed a novel depth-weighted loss function to train a customized convolutional autoencoder to enforce equivalent importance to the events happening both near and far from the cameras; thus, helping to reduce false alarms and making the method more suitable for real-world deployment. The proposed method was trained using data from nine participants with dementia across three cameras situated in a specialized dementia unit and achieved an area under the curve of receiver operating characteristic of $0.852$, $0.81$ and $0.768$ for the three cameras. Ablation analysis was conducted for the individual components of the proposed method and the performance of the proposed method was investigated for participant-specific and sex-specific behaviours of risk detection. The proposed method performed reasonably well in detecting behaviours of risk in people with dementia motivating further research toward the development of a behaviours of risk detection system suitable for deployment in video surveillance systems in care facilities.
☆ Continual-learning-based framework for structural damage recognition
Multi-damage is common in reinforced concrete structures and leads to the requirement of large number of neural networks, parameters and data storage, if convolutional neural network (CNN) is used for damage recognition. In addition, conventional CNN experiences catastrophic forgetting and training inefficiency as the number of tasks increases during continual learning, leading to large accuracy decrease of previous learned tasks. To address these problems, this study proposes a continuallearning-based damage recognition model (CLDRM) which integrates the learning without forgetting continual learning method into the ResNet-34 architecture for the recognition of damages in RC structures as well as relevant structural components. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. In this way, it reduces both the prediction time and data storage by about 75% in four tasks of continuous learning. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. By gradual feature fusion, CLDRM outperformed other methods by managed to achieve high accuracy in the damage recognition and classification. As the number of recognition tasks increased, CLDRM also experienced smaller decrease of the previous learned tasks. Results indicate that the CLDRM framework successfully performs damage recognition and classification with reasonable accuracy and effectiveness.
comment: 18 pages, 12 figures
☆ RoboSense: Large-scale Dataset and Benchmark for Multi-sensor Low-speed Autonomous Driving
Robust object detection and tracking under arbitrary sight of view is challenging yet essential for the development of Autonomous Vehicle technology. With the growing demand of unmanned function vehicles, near-field scene understanding becomes an important research topic in the areas of low-speed autonomous driving. Due to the complexity of driving conditions and diversity of near obstacles such as blind spots and high occlusion, the perception capability of near-field environment is still inferior than its farther counterpart. To further enhance the intelligent ability of unmanned vehicles, in this paper, we construct a multimodal data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view for ego vehicle, either global view or local view. Meanwhile, a large-scale multi-sensor dataset is built, named RoboSense, to facilitate near-field scene understanding. RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of near-field obstacles within 5$m$ as the previous single-vehicle datasets such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future development of related research, where the detailed data analysis as well as benchmarks are also provided accordingly.
☆ NAS-BNN: Neural Architecture Search for Binary Neural Networks
Binary Neural Networks (BNNs) have gained extensive attention for their superior inferencing efficiency and compression ratio compared to traditional full-precision networks. However, due to the unique characteristics of BNNs, designing a powerful binary architecture is challenging and often requires significant manpower. A promising solution is to utilize Neural Architecture Search (NAS) to assist in designing BNNs, but current NAS methods for BNNs are relatively straightforward and leave a performance gap between the searched models and manually designed ones. To address this gap, we propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN. We first carefully design a search space based on the unique characteristics of BNNs. Then, we present three training strategies, which significantly enhance the training of supernet and boost the performance of all subnets. Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M. For instance, we achieve 68.20% top-1 accuracy on ImageNet with only 57M OPs. In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS COCO dataset. The source code and models will be released at https://github.com/VDIGPKU/NAS-BNN.
comment: 23 pages
Dynamic Reconstruction from Neuromorphic Data
Unlike traditional cameras which synchronously register pixel intensity, neuromorphic sensors only register `changes' at pixels where a change is occurring asynchronously. This enables neuromorphic sensors to sample at a micro-second level and efficiently capture the dynamics. Since, only sequences of asynchronous event changes are recorded rather than brightness intensities over time, many traditional image processing techniques cannot be directly applied. Furthermore, existing approaches, including the ones recently introduced by the authors, use traditional images combined with neuromorphic event data to carry out reconstructions. The aim of this work is introduce an optimization based approach to reconstruct images and dynamics only from the neuromoprhic event data without any additional knowledge of the events. Each pixel is modeled temporally. The experimental results on real data highlight the efficacy of the presented approach, paving the way for efficient and accurate processing of neuromorphic sensor data in real-world applications.
☆ Hand1000: Generating Realistic Hands from Text with Only 1,000 Images
Text-to-image generation models have achieved remarkable advancements in recent years, aiming to produce realistic images from textual descriptions. However, these models often struggle with generating anatomically accurate representations of human hands. The resulting images frequently exhibit issues such as incorrect numbers of fingers, unnatural twisting or interlacing of fingers, or blurred and indistinct hands. These issues stem from the inherent complexity of hand structures and the difficulty in aligning textual descriptions with precise visual depictions of hands. To address these challenges, we propose a novel approach named Hand1000 that enables the generation of realistic hand images with target gesture using only 1,000 training samples. The training of Hand1000 is divided into three stages with the first stage aiming to enhance the model's understanding of hand anatomy by using a pre-trained hand gesture recognition model to extract gesture representation. The second stage further optimizes text embedding by incorporating the extracted hand gesture representation, to improve alignment between the textual descriptions and the generated hand images. The third stage utilizes the optimized embedding to fine-tune the Stable Diffusion model to generate realistic hand images. In addition, we construct the first publicly available dataset specifically designed for text-to-hand image generation. Based on the existing hand gesture recognition dataset, we adopt advanced image captioning models and LLaMA3 to generate high-quality textual descriptions enriched with detailed gesture information. Extensive experiments demonstrate that Hand1000 significantly outperforms existing models in producing anatomically correct hand images while faithfully representing other details in the text, such as faces, clothing, and colors.
comment: Project page https://haozhuo-zhang.github.io/Hand1000-project-page/
☆ Avoiding Generative Model Writer's Block With Embedding Nudging
Generative image models, since introduction, have become a global phenomenon. From new arts becoming possible to new vectors of abuse, many new capabilities have become available. One of the challenging issues with generative models is controlling the generation process specially to prevent specific generations classes or instances . There are several reasons why one may want to control the output of generative models, ranging from privacy and safety concerns to application limitations or user preferences To address memorization and privacy challenges, there has been considerable research dedicated to filtering prompts or filtering the outputs of these models. What all these solutions have in common is that at the end of the day they stop the model from producing anything, hence limiting the usability of the model. In this paper, we propose a method for addressing this usability issue by making it possible to steer away from unwanted concepts (when detected in model's output) and still generating outputs. In particular we focus on the latent diffusion image generative models and how one can prevent them to generate particular images while generating similar images with limited overhead. We focus on mitigating issues like image memorization, demonstrating our technique's effectiveness through qualitative and quantitative evaluations. Our method successfully prevents the generation of memorized training images while maintaining comparable image quality and relevance to the unmodified model.
☆ VLM4Bio: A Benchmark Dataset to Evaluate Pretrained Vision-Language Models for Trait Discovery from Biological Images
Images are increasingly becoming the currency for documenting biodiversity on the planet, providing novel opportunities for accelerating scientific discoveries in the field of organismal biology, especially with the advent of large vision-language models (VLMs). We ask if pre-trained VLMs can aid scientists in answering a range of biologically relevant questions without any additional fine-tuning. In this paper, we evaluate the effectiveness of 12 state-of-the-art (SOTA) VLMs in the field of organismal biology using a novel dataset, VLM4Bio, consisting of 469K question-answer pairs involving 30K images from three groups of organisms: fishes, birds, and butterflies, covering five biologically relevant tasks. We also explore the effects of applying prompting techniques and tests for reasoning hallucination on the performance of VLMs, shedding new light on the capabilities of current SOTA VLMs in answering biologically relevant questions using images. The code and datasets for running all the analyses reported in this paper can be found at https://github.com/sammarfy/VLM4Bio.
comment: 36 pages, 37 figures, 7 tables
☆ Does Data-Efficient Generalization Exacerbate Bias in Foundation Models? ECCV 2024
Foundation models have emerged as robust models with label efficiency in diverse domains. In medical imaging, these models contribute to the advancement of medical diagnoses due to the difficulty in obtaining labeled data. However, it is unclear whether using a large amount of unlabeled data, biased by the presence of sensitive attributes during pre-training, influences the fairness of the model. This research examines the bias in the Foundation model (RetFound) when it is applied to fine-tune the Brazilian Multilabel Ophthalmological Dataset (BRSET), which has a different population than the pre-training dataset. The model evaluation, in comparison with supervised learning, shows that the Foundation Model has the potential to reduce the gap between the maximum AUC and minimum AUC evaluations across gender and age groups. However, in a data-efficient generalization, the model increases the bias when the data amount decreases. These findings suggest that when deploying a Foundation Model in real-life scenarios with limited data, the possibility of fairness issues should be considered.
comment: Preprint of paper to be presented at Fairness and Ethics Towards Transparent AI: Facing the Challenge through Model Debiasing (FAILED) during ECCV 2024
☆ Single-Photon 3D Imaging with Equi-Depth Photon Histograms
Single-photon cameras present a promising avenue for high-resolution 3D imaging. They have ultra-high sensitivity -- down to individual photons -- and can record photon arrival times with extremely high (sub-nanosecond) resolution. Single-photon 3D cameras estimate the round-trip time of a laser pulse by forming equi-width (EW) histograms of detected photon timestamps. Acquiring and transferring such EW histograms requires high bandwidth and in-pixel memory, making SPCs less attractive in resource-constrained settings such as mobile devices and AR/VR headsets. In this work we propose a 3D sensing technique based on equi-depth (ED) histograms. ED histograms compress timestamp data more efficiently than EW histograms, reducing the bandwidth requirement. Moreover, to reduce the in-pixel memory requirement, we propose a lightweight algorithm to estimate ED histograms in an online fashion without explicitly storing the photon timestamps. This algorithm is amenable to future in-pixel implementations. We propose algorithms that process ED histograms to perform 3D computer-vision tasks of estimating scene distance maps and performing visual odometry under challenging conditions such as high ambient light. Our work paves the way towards lower bandwidth and reduced in-pixel memory requirements for SPCs, making them attractive for resource-constrained 3D vision applications. Project page: $\href{https://www.computational.camera/pedh}{https://www.computational.camera/pedh}$
☆ Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data MICCAI 2024
Ensuring consistent performance across diverse populations and incorporating fairness into machine learning models are crucial for advancing medical image diagnostics and promoting equitable healthcare. However, many databases do not provide protected attributes or contain unbalanced representations of demographic groups, complicating the evaluation of model performance across different demographics and the application of bias mitigation techniques that rely on these attributes. This study aims to investigate the effectiveness of using the backbone of Foundation Models as an embedding extractor for creating groups that represent protected attributes, such as gender and age. We propose utilizing these groups in different stages of bias mitigation, including pre-processing, in-processing, and evaluation. Using databases in and out-of-distribution scenarios, it is possible to identify that the method can create groups that represent gender in both databases and reduce in 4.44% the difference between the gender attribute in-distribution and 6.16% in out-of-distribution. However, the model lacks robustness in handling age attributes, underscoring the need for more fundamentally fair and robust Foundation models. These findings suggest a role in promoting fairness assessment in scenarios where we lack knowledge of attributes, contributing to the development of more equitable medical diagnostics.
comment: Preprint of paper to be presented at Fairness of AI in Medical Imaging (FAIMI) during MICCAI 2024
☆ ChartEye: A Deep Learning Framework for Chart Information Extraction
The widespread use of charts and infographics as a means of data visualization in various domains has inspired recent research in automated chart understanding. However, information extraction from chart images is a complex multitasked process due to style variations and, as a consequence, it is challenging to design an end-to-end system. In this study, we propose a deep learning-based framework that provides a solution for key steps in the chart information extraction pipeline. The proposed framework utilizes hierarchal vision transformers for the tasks of chart-type and text-role classification, while YOLOv7 for text detection. The detected text is then enhanced using Super Resolution Generative Adversarial Networks to improve the recognition output of the OCR. Experimental results on a benchmark dataset show that our proposed framework achieves excellent performance at every stage with F1-scores of 0.97 for chart-type classification, 0.91 for text-role classification, and a mean Average Precision of 0.95 for text detection.
comment: 8 Pages, and 11 Figures
☆ Alternating Direction Method of Multipliers for Negative Binomial Model with The Weighted Difference of Anisotropic and Isotropic Total Variation ICME
In many applications such as medical imaging, the measurement data represent counts of photons hitting a detector. Such counts in low-photon settings are often modeled using a Poisson distribution. However, this model assumes that the mean and variance of the signal's noise distribution are equal. For overdispersed data where the variance is greater than the mean, the negative binomial distribution is a more appropriate statistical model. In this paper, we propose an optimization approach for recovering images corrupted by overdispersed Poisson noise. In particular, we incorporate a weighted anisotropic-isotropic total variation regularizer, which avoids staircasing artifacts that are introduced by a regular total variation penalty. We use an alternating direction method of multipliers, where each subproblem has a closed-form solution. Numerical experiments demonstrate the effectiveness of our proposed approach, especially in very photon-limited settings.
comment: 6 pages, Accepted by the IEEE International Conference on Multimedia and Expo (ICME)
☆ Negative Binomial Matrix Completion SP
Matrix completion focuses on recovering missing or incomplete information in matrices. This problem arises in various applications, including image processing and network analysis. Previous research proposed Poisson matrix completion for count data with noise that follows a Poisson distribution, which assumes that the mean and variance are equal. Since overdispersed count data, whose variance is greater than the mean, is more likely to occur in realistic settings, we assume that the noise follows the negative binomial (NB) distribution, which can be more general than the Poisson distribution. In this paper, we introduce NB matrix completion by proposing a nuclear-norm regularized model that can be solved by proximal gradient descent. In our experiments, we demonstrate that the NB model outperforms Poisson matrix completion in various noise and missing data settings on real data.
comment: 6 pages, Accepted by the IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
☆ 3D Reconstruction with Spatial Memory
We present Spann3R, a novel approach for dense 3D reconstruction from ordered or unordered image collections. Built on the DUSt3R paradigm, Spann3R uses a transformer-based architecture to directly regress pointmaps from images without any prior knowledge of the scene or camera parameters. Unlike DUSt3R, which predicts per image-pair pointmaps each expressed in its local coordinate frame, Spann3R can predict per-image pointmaps expressed in a global coordinate system, thus eliminating the need for optimization-based global alignment. The key idea of Spann3R is to manage an external spatial memory that learns to keep track of all previous relevant 3D information. Spann3R then queries this spatial memory to predict the 3D structure of the next frame in a global coordinate system. Taking advantage of DUSt3R's pre-trained weights, and further fine-tuning on a subset of datasets, Spann3R shows competitive performance and generalization ability on various unseen datasets and can process ordered image collections in real time. Project page: \url{https://hengyiwang.github.io/projects/spanner}
comment: Project page: \url{https://hengyiwang.github.io/projects/spanner}
♻ ☆ Urdu Digital Text Word Optical Character Recognition Using Permuted Auto Regressive Sequence Modeling
This research paper presents a novel word-level Optical Character Recognition (OCR) model developed specifically for digital Urdu text. The model utilizes transformer-based architectures and attention mechanisms to address the unique challenges of recognizing Urdu script, which includes handling a diverse range of text styles, fonts, and variations. Trained on a comprehensive dataset of approximately 160,000 Urdu text images, the model incorporates a permuted autoregressive sequence (PARSeq) architecture. This design enables context-aware inference and iterative refinement by leveraging bidirectional context information, significantly enhancing its ability to accurately recognize Urdu characters. The model achieves a character error rate (CER) of 0.178, highlighting its effectiveness and precision in real-world applications. However, the model has some limitations, such as difficulties with blurred images, non-horizontal orientations, and the presence of trailing punctuation marks, which can introduce noise into the recognition process. Addressing these challenges will be a key focus of future work. Future research will aim to further refine the model through advanced data augmentation techniques, optimization of hyperparameters, and the integration of context-aware language models, ultimately enhancing the model's performance and robustness in Urdu text recognition.
♻ ☆ Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance
Although most existing multi-modal salient object detection (SOD) methods demonstrate effectiveness through training models from scratch, the limited multi-modal data hinders these methods from reaching optimality. In this paper, we propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the pre-trained Segment Anything Model (SAM) for multi-modal SOD. Despite serving as a recent vision fundamental model, driving the class-agnostic SAM to comprehend and detect salient objects accurately is non-trivial, especially in challenging scenes. To this end, we develop \underline{SAM} with se\underline{m}antic f\underline{e}ature fu\underline{s}ion guidanc\underline{e} (Sammese), which incorporates multi-modal saliency-specific knowledge into SAM to adapt SAM to multi-modal SOD tasks. However, it is difficult for SAM trained on single-modal data to directly mine the complementary benefits of multi-modal inputs and comprehensively utilize them to achieve accurate saliency prediction.To address these issues, we first design a multi-modal complementary fusion module to extract robust multi-modal semantic features by integrating information from visible and thermal or depth image pairs. Then, we feed the extracted multi-modal semantic features into both the SAM image encoder and mask decoder for fine-tuning and prompting, respectively. Specifically, in the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. In the mask decoder, a semantic-geometric prompt generation strategy is proposed to produce corresponding embeddings with various saliency cues. Extensive experiments on both RGB-D and RGB-T SOD benchmarks show the effectiveness of the proposed framework.
comment: 10 pages, 9 figures
♻ ☆ DocLayLLM: An Efficient and Effective Multi-modal Extension of Large Language Models for Text-rich Document Understanding
Text-rich document understanding (TDU) refers to analyzing and comprehending documents containing substantial textual content. With the rapid evolution of large language models (LLMs), they have been widely leveraged for TDU due to their remarkable versatility and generalization. In this paper, we introduce DocLayLLM, an efficient and effective multi-modal extension of LLMs specifically designed for TDU. By integrating visual patch tokens and 2D positional tokens into LLMs and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of the chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM surpasses existing OCR-dependent methods and also outperforms OCR-free competitors.
♻ ☆ CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring ECCV2024
Video deblurring aims to enhance the quality of restored results in motion-blurred videos by effectively gathering information from adjacent video frames to compensate for the insufficient data in a single blurred frame. However, when faced with consecutively severe motion blur situations, frame-based video deblurring methods often fail to find accurate temporal correspondence among neighboring video frames, leading to diminished performance. To address this limitation, we aim to solve the video deblurring task by leveraging an event camera with micro-second temporal resolution. To fully exploit the dense temporal resolution of the event camera, we propose two modules: 1) Intra-frame feature enhancement operates within the exposure time of a single blurred frame, iteratively enhancing cross-modality features in a recurrent manner to better utilize the rich temporal information of events, 2) Inter-frame temporal feature alignment gathers valuable long-range temporal information to target frames, aggregating sharp features leveraging the advantages of the events. In addition, we present a novel dataset composed of real-world blurred RGB videos, corresponding sharp videos, and event data. This dataset serves as a valuable resource for evaluating event-guided deblurring methods. We demonstrate that our proposed methods outperform state-of-the-art frame-based and event-based motion deblurring methods through extensive experiments conducted on both synthetic and real-world deblurring datasets. The code and dataset are available at https://github.com/intelpro/CMTA.
comment: Accepted in ECCV2024
♻ ☆ VHAKG: A Multi-modal Knowledge Graph Based on Synchronized Multi-view Videos of Daily Activities CIKM2024
Multi-modal knowledge graphs (MMKGs), which ground various non-symbolic data (e.g., images and videos) into symbols, have attracted attention as resources enabling knowledge processing and machine learning across modalities. However, the construction of MMKGs for videos consisting of multiple events, such as daily activities, is still in the early stages. In this paper, we construct an MMKG based on synchronized multi-view simulated videos of daily activities. Besides representing the content of daily life videos as event-centric knowledge, our MMKG also includes frame-by-frame fine-grained changes, such as bounding boxes within video frames. In addition, we provide support tools for querying our MMKG. As an application example, we demonstrate that our MMKG facilitates benchmarking vision-language models by providing the necessary vision-language datasets for a tailored task.
comment: 5 pages, 4 figures, accepted by CIKM2024 Resource Track
♻ ☆ Classification Matters: Improving Video Action Detection with Class-Specific Attention ECCV 2024
Video action detection (VAD) aims to detect actors and classify their actions in a video. We figure that VAD suffers more from classification rather than localization of actors. Hence, we analyze how prevailing methods form features for classification and find that they prioritize actor regions, yet often overlooking the essential contextual information necessary for accurate classification. Accordingly, we propose to reduce the bias toward actor and encourage paying attention to the context that is relevant to each action class. By assigning a class-dedicated query to each action class, our model can dynamically determine where to focus for effective classification. The proposed model demonstrates superior performance on three challenging benchmarks with significantly fewer parameters and less computation.
comment: 31 pages, accepted to ECCV 2024 (oral)
♻ ☆ Research on the Spatial Data Intelligent Foundation Model
This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
comment: V1 and V2 are in Chinese language, other versions are in English
♻ ☆ HER2 and FISH Status Prediction in Breast Biopsy H&E-Stained Images Using Deep Learning
The current standard for detecting human epidermal growth factor receptor 2 (HER2) status in breast cancer patients relies on HER2 amplification, identified through fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC). However, hematoxylin and eosin (H\&E) tumor stains are more widely available, and accurately predicting HER2 status using H\&E could reduce costs and expedite treatment selection. Deep Learning algorithms for H&E have shown effectiveness in predicting various cancer features and clinical outcomes, including moderate success in HER2 status prediction. In this work, we employed a customized weak supervision classification technique combined with MoCo-v2 contrastive learning to predict HER2 status. We trained our pipeline on 182 publicly available H&E Whole Slide Images (WSIs) from The Cancer Genome Atlas (TCGA), for which annotations by the pathology team at Yale School of Medicine are publicly available. Our pipeline achieved an Area Under the Curve (AUC) of 0.85 across four different test folds. Additionally, we tested our model on 44 H&E slides from the TCGA-BRCA dataset, which had an HER2 score of 2+ and included corresponding HER2 status and FISH test results. These cases are considered equivocal for IHC, requiring an expensive FISH test on their IHC slides for disambiguation. Our pipeline demonstrated an AUC of 0.81 on these challenging H&E slides. Reducing the need for FISH test can have significant implications in cancer treatment equity for underserved populations.
♻ ☆ SCP: Soft Conditional Prompt Learning for Aerial Video Action Recognition IROS2024
We present a new learning approach, Soft Conditional Prompt Learning (SCP), which leverages the strengths of prompt learning for aerial video action recognition. Our approach is designed to predict the action of each agent by helping the models focus on the descriptions or instructions associated with actions in the input videos for aerial/robot visual perception. Our formulation supports various prompts, including learnable prompts, auxiliary visual information, and large vision models to improve the recognition performance. We present a soft conditional prompt method that learns to dynamically generate prompts from a pool of prompt experts under different video inputs. By sharing the same objective with the task, our proposed SCP can optimize prompts that guide the model's predictions while explicitly learning input-invariant (prompt experts pool) and input-specific (data-dependent) prompt knowledge. In practice, we observe a 3.17-10.2% accuracy improvement on the aerial video datasets (Okutama, NECDrone), which consist of scenes with single-agent and multi-agent actions. We further evaluate our approach on ground camera videos to verify the effectiveness and generalization and achieve a 1.0-3.6% improvement on dataset SSV2. We integrate our method into the ROS2 as well.
comment: IROS2024
♻ ☆ Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model
Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.
♻ ☆ Infusion: internal diffusion for inpainting of dynamic textures and complex motion
Video inpainting is the task of filling a region in a video in a visually convincing manner. It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling complex data distributions, including images and videos. Such models remain nonetheless very expensive to train and to perform inference with, which strongly reduce their applicability to videos, and yields unreasonable computational loads. We show that in the case of video inpainting, thanks to the highly auto-similar nature of videos, the training data of a diffusion model can be restricted to the input video and still produce very satisfying results. This leads us to adopt an internal learning approach, which also allows us to greatly reduce the neural network size by about three orders of magnitude less than current diffusion models used for image inpainting. We also introduce a new method for efficient training and inference of diffusion models in the context of internal learning, by splitting the diffusion process into different learning intervals corresponding to different noise levels of the diffusion process. To the best of our knowledge, this is the first video inpainting method based purely on diffusion. Other methods require additional components such as optical flow estimation, which limits their performance in the case of dynamic textures and complex motions. We show qualitative and quantitative results, demonstrating that our method reaches state of the art performance in the case of dynamic textures and complex dynamic backgrounds.
comment: 11 pages, 10 figures
♻ ☆ Provable Probabilistic Imaging using Score-Based Generative Priors
Estimating high-quality images while also quantifying their uncertainty are two desired features in an image reconstruction algorithm for solving ill-posed inverse problems. In this paper, we propose plug-and-play Monte Carlo (PMC) as a principled framework for characterizing the space of possible solutions to a general inverse problem. PMC is able to incorporate expressive score-based generative priors for high-quality image reconstruction while also performing uncertainty quantification via posterior sampling. In particular, we develop two PMC algorithms that can be viewed as the sampling analogues of the traditional plug-and-play priors (PnP) and regularization by denoising (RED) algorithms. To improve the sampling efficiency, we introduce weighted annealing into these PMC algorithms, further developing two additional annealed PMC algorithms (APMC). We establish a theoretical analysis for characterizing the convergence behavior of PMC algorithms. Our analysis provides non-asymptotic stationarity guarantees in terms of the Fisher information, fully compatible with the joint presence of weighted annealing, potentially non-log-concave likelihoods, and imperfect score networks. We demonstrate the performance of the PMC algorithms on multiple representative inverse problems with both linear and nonlinear forward models. Experimental results show that PMC significantly improves reconstruction quality and enables high-fidelity uncertainty quantification.
♻ ☆ Imperceptible Protection against Style Imitation from Diffusion Models
Recent progress in diffusion models has profoundly enhanced the fidelity of image generation, but it has raised concerns about copyright infringements. While prior methods have introduced adversarial perturbations to prevent style imitation, most are accompanied by the degradation of artworks' visual quality. Recognizing the importance of maintaining this, we introduce a visually improved protection method while preserving its protection capability. To this end, we devise a perceptual map to highlight areas sensitive to human eyes, guided by instance-aware refinement, which refines the protection intensity accordingly. We also introduce a difficulty-aware protection by predicting how difficult the artwork is to protect and dynamically adjusting the intensity based on this. Lastly, we integrate a perceptual constraints bank to further improve the imperceptibility. Results show that our method substantially elevates the quality of the protected image without compromising on protection efficacy.
♻ ☆ u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model
Recent advancements in multi-modal large language models (MLLMs) have led to substantial improvements in visual understanding, primarily driven by sophisticated modality alignment strategies. However, predominant approaches prioritize global or regional comprehension, with less focus on fine-grained, pixel-level tasks. To address this gap, we introduce u-LLaVA, an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs. We commence by leveraging an efficient modality alignment approach, harnessing both image and video datasets to bolster the model's foundational understanding across diverse visual contexts. Subsequently, a joint instruction tuning method with task-specific projectors and decoders for end-to-end downstream training is presented. Furthermore, this work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs. The overall framework is simple, effective, and achieves state-of-the-art performance across multiple benchmarks. We also make our model, data, and code publicly accessible at https://github.com/OPPOMKLab/u-LLaVA.
♻ ☆ Automated Real-World Sustainability Data Generation from Images of Buildings
When data on building features is unavailable, the task of determining how to improve that building in terms of carbon emissions becomes infeasible. We show that from only a set of images, a Large Language Model with appropriate prompt engineering and domain knowledge can successfully estimate a range of building features relevant for sustainability calculations. We compare our novel image-to-data method with a ground truth comprising real building data for 47 apartments and achieve accuracy better than a human performing the same task. We also demonstrate that the method can generate tailored recommendations to the owner on how best to improve their properties and discuss methods to scale the approach.
comment: 6 pages
♻ ☆ When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships. By using shared resources to simultaneously calculate multiple outputs, this learning paradigm has the potential to have lower memory requirements and inference times compared to the traditional approach of using separate methods for each task. Previous work in MTL has mainly focused on fully-supervised methods, as task relationships can not only be leveraged to lower the level of data-dependency of those methods but they can also improve performance. However, MTL introduces a set of challenges due to a complex optimisation scheme and a higher labeling requirement. This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges. First, this review analyses how MTL traditionally uses different parameter sharing techniques to transfer knowledge in between tasks. Second, it presents the different challenges arising from such a multi-objective optimisation scheme. Third, it introduces how task groupings can be achieved by analysing task relationships. Fourth, it focuses on how partially supervised methods applied to MTL can tackle the aforementioned challenges. Lastly, this review presents the available datasets, tools and benchmarking results of such methods.
comment: Accepted by Proceedings of the IEEE
♻ ☆ FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field
In this article, a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration is presented. Unlike traditional methods, the proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps, eliminating the need for the time-consuming global feature extraction and feature matching process. The estimated overlapping regions are used to calculate a homogeneous rigid transform, which serves as an initial condition for the GICP point cloud registration algorithm to refine the alignment between the maps. The advantages of this approach include faster processing time, improved accuracy, and increased robustness in challenging environments. Furthermore, the effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration in a variety of different underground environments.
comment: 28 pages, 24 figures. Accepted to the IEEE Transactions on Field Robotics
♻ ☆ Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis
Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities but require hundreds of images of the scene from diverse viewpoints to render high-quality novel views. With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry and converge to a non-optimal solution. These failures can manifest as floaters or blurry renderings in sparsely observed areas of the scene. In this paper, we propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem. Using an already trained NVS method, we render novel views between existing ones and augment the training data to optimize a second model. This introduces additional multi-view constraints and allows the second model to converge to a better solution. With Re-Nerfing we achieve significant improvements upon multiple pipelines based on NeRF and Gaussian-Splatting in sparse view settings of the mip-NeRF 360 and LLFF datasets. Notably, Re-Nerfing does not require prior knowledge or extra supervision signals, making it a flexible and practical add-on.
comment: Code will be released upon acceptance
FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
This paper proposes FAST-LIVO2: a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks and provide great potential in real-time, onboard robotic applications. FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through an ESIKF. To address the dimension mismatch between the heterogeneous LiDAR and image measurements, we use a sequential update strategy in the Kalman filter. To enhance the efficiency, we use direct methods for both the visual and LiDAR fusion, where the LiDAR module registers raw points without extracting edge or plane features and the visual module minimizes direct photometric errors without extracting ORB or FAST corner features. The fusion of both visual and LiDAR measurements is based on a single unified voxel map where the LiDAR module constructs the geometric structure for registering new LiDAR scans and the visual module attaches image patches to the LiDAR points. To enhance the accuracy of image alignment, we use plane priors from the LiDAR points in the voxel map (and even refine the plane prior) and update the reference patch dynamically after new images are aligned. Furthermore, to enhance the robustness of image alignment, FAST-LIVO2 employs an on-demanding raycast operation and estimates the image exposure time in real time. Lastly, we detail three applications of FAST-LIVO2: UAV onboard navigation demonstrating the system's computation efficiency for real-time onboard navigation, airborne mapping showcasing the system's mapping accuracy, and 3D model rendering (mesh-based and NeRF-based) underscoring the suitability of our reconstructed dense map for subsequent rendering tasks. We open source our code, dataset and application on GitHub to benefit the robotics community.
comment: 30 pages, 31 figures, due to the limitation that 'The abstract field cannot exceed 1,920 characters', the abstract presented here is shorter than the one in the PDF file
♻ ☆ Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs
Deep supervised models possess significant capability to assimilate extensive training data, thereby presenting an opportunity to enhance model performance through training on multiple datasets. However, conflicts arising from different label spaces among datasets may adversely affect model performance. In this paper, we propose a novel approach to automatically construct a unified label space across multiple datasets using graph neural networks. This enables semantic segmentation models to be trained simultaneously on multiple datasets, resulting in performance improvements. Unlike existing methods, our approach facilitates seamless training without the need for additional manual reannotation or taxonomy reconciliation. This significantly enhances the efficiency and effectiveness of multi-dataset segmentation model training. The results demonstrate that our method significantly outperforms other multi-dataset training methods when trained on seven datasets simultaneously, and achieves state-of-the-art performance on the WildDash 2 benchmark.
♻ ☆ AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results
Video quality assessment (VQA) is a crucial task in the development of video compression standards, as it directly impacts the viewer experience. This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024. The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H.264, HEVC/H.265, AV1, and VVC/H.266) and containing a comprehensive collection of compression artifacts. To measure the methods performance, we employed traditional correlation coefficients between their predictions and subjective scores, which were collected via large-scale crowdsourced pairwise human comparisons. For training purposes, participants were provided with the Compressed Video Quality Assessment Dataset (CVQAD), a previously developed dataset of 1022 videos. Up to 30 participating teams registered for the challenge, while we report the results of 6 teams, which submitted valid final solutions and code for reproducing the results. Moreover, we calculated and present the performance of state-of-the-art VQA methods on the developed dataset, providing a comprehensive benchmark for future research. The dataset, results, and online leaderboard are publicly available at https://challenges.videoprocessing.ai/challenges/compressedvideo-quality-assessment.html.
♻ ☆ DeepMIF: Deep Monotonic Implicit Fields for Large-Scale LiDAR 3D Mapping
Recently, significant progress has been achieved in sensing real large-scale outdoor 3D environments, particularly by using modern acquisition equipment such as LiDAR sensors. Unfortunately, they are fundamentally limited in their ability to produce dense, complete 3D scenes. To address this issue, recent learning-based methods integrate neural implicit representations and optimizable feature grids to approximate surfaces of 3D scenes. However, naively fitting samples along raw LiDAR rays leads to noisy 3D mapping results due to the nature of sparse, conflicting LiDAR measurements. Instead, in this work we depart from fitting LiDAR data exactly, instead letting the network optimize a non-metric monotonic implicit field defined in 3D space. To fit our field, we design a learning system integrating a monotonicity loss that enables optimizing neural monotonic fields and leverages recent progress in large-scale 3D mapping. Our algorithm achieves high-quality dense 3D mapping performance as captured by multiple quantitative and perceptual measures and visual results obtained for Mai City, Newer College, and KITTI benchmarks. The code of our approach will be made publicly available.
comment: 8 pages, 6 figures
♻ ☆ FERGI: Automatic Annotation of User Preferences for Text-to-Image Generation from Spontaneous Facial Expression Reaction
Researchers have proposed to use data of human preference feedback to fine-tune text-to-image generative models. However, the scalability of human feedback collection has been limited by its reliance on manual annotation. Therefore, we develop and test a method to automatically score user preferences from their spontaneous facial expression reaction to the generated images. We collect a dataset of Facial Expression Reaction to Generated Images (FERGI) and show that the activations of multiple facial action units (AUs) are highly correlated with user evaluations of the generated images. We develop an FAU-Net (Facial Action Units Neural Network), which receives inputs from an AU estimation model, to automatically score user preferences for text-to-image generation based on their facial expression reactions, which is complementary to the pre-trained scoring models based on the input text prompts and generated images. Integrating our FAU-Net valence score with the pre-trained scoring models improves their consistency with human preferences. This method of automatic annotation with facial expression analysis can be potentially generalized to other generation tasks. The code is available at https://github.com/ShuangquanFeng/FERGI, and the dataset is also available at the same link for research purposes.
♻ ☆ Training-Free Action Recognition and Goal Inference with Dynamic Frame Selection
We introduce VidTFS, a Training-free, open-vocabulary video goal and action inference framework that combines the frozen vision foundational model (VFM) and large language model (LLM) with a novel dynamic Frame Selection module. Our experiments demonstrate that the proposed frame selection module improves the performance of the framework significantly. We validate the performance of the proposed VidTFS on four widely used video datasets, including CrossTask, COIN, UCF101, and ActivityNet, covering goal inference and action recognition tasks under open-vocabulary settings without requiring any training or fine-tuning. The results show that VidTFS outperforms pretrained and instruction-tuned multimodal language models that directly stack LLM and VFM for downstream video inference tasks. Our VidTFS with its adaptability shows the future potential for generalizing to new training-free video inference tasks.
♻ ☆ Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings
Biometric authentication systems play a crucial role in modern security systems. However, maintaining the balance of privacy and integrity of stored biometrics derivative data while achieving high recognition accuracy is often challenging. Addressing this issue, we introduce an innovative image transformation technique that effectively renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models, which allows the distorted photo version to be stored for further verification. While initially intended for biometrics systems, the proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close. By experimenting with widely used datasets LFW and MNIST, we show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy. We compare our method with previously state-of-the-art approaches. We publically release the source code.
♻ ☆ How Physics and Background Attributes Impact Video Transformers in Robotic Manipulation: A Case Study on Planar Pushing IROS 2024
As model and dataset sizes continue to scale in robot learning, the need to understand how the composition and properties of a dataset affect model performance becomes increasingly urgent to ensure cost-effective data collection and model performance. In this work, we empirically investigate how physics attributes (color, friction coefficient, shape) and scene background characteristics, such as the complexity and dynamics of interactions with background objects, influence the performance of Video Transformers in predicting planar pushing trajectories. We investigate three primary questions: How do physics attributes and background scene characteristics influence model performance? What kind of changes in attributes are most detrimental to model generalization? What proportion of fine-tuning data is required to adapt models to novel scenarios? To facilitate this research, we present CloudGripper-Push-1K, a large real-world vision-based robot pushing dataset comprising 1278 hours and 460,000 videos of planar pushing interactions with objects with different physics and background attributes. We also propose Video Occlusion Transformer (VOT), a generic modular video-transformer-based trajectory prediction framework which features 3 choices of 2D-spatial encoders as the subject of our case study. The dataset and source code are available at https://cloudgripper.org.
comment: IEEE/RSJ IROS 2024
♻ ☆ Evidential Deep Partial Multi-View Classification With Discount Fusion
Incomplete multi-view data classification poses significant challenges due to the common issue of missing views in real-world scenarios. Despite advancements, existing methods often fail to provide reliable predictions, largely due to the uncertainty of missing views and the inconsistent quality of imputed data. To tackle these problems, we propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC). Initially, we use K-means imputation to address missing views, creating a complete set of multi-view data. However, the potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences. To manage this, we introduce a Conflict-Aware Evidential Fusion Network (CAEFN), which dynamically adjusts based on the reliability of the evidence, ensuring trustworthy discount fusion and producing reliable inference outcomes. Comprehensive experiments on various benchmark datasets reveal EDP-MVC not only matches but often surpasses the performance of state-of-the-art methods.
comment: Ongoing work. 13 pages, 3 figures, 6 tables
When ControlNet Meets Inexplicit Masks: A Case Study of ControlNet on its Contour-following Ability
ControlNet excels at creating content that closely matches precise contours in user-provided masks. However, when these masks contain noise, as a frequent occurrence with non-expert users, the output would include unwanted artifacts. This paper first highlights the crucial role of controlling the impact of these inexplicit masks with diverse deterioration levels through in-depth analysis. Subsequently, to enhance controllability with inexplicit masks, an advanced Shape-aware ControlNet consisting of a deterioration estimator and a shape-prior modulation block is devised. The deterioration estimator assesses the deterioration factor of the provided masks. Then this factor is utilized in the modulation block to adaptively modulate the model's contour-following ability, which helps it dismiss the noise part in the inexplicit masks. Extensive experiments prove its effectiveness in encouraging ControlNet to interpret inaccurate spatial conditions robustly rather than blindly following the given contours. We showcase application scenarios like modifying shape priors and composable shape-controllable generation. Codes are soon available.
comment: Accepted by ACM-MM 2024
♻ ☆ Deep Learning for Computer Vision based Activity Recognition and Fall Detection of the Elderly: a Systematic Review
As the percentage of elderly people in developed countries increases worldwide, the healthcare of this collective is a worrying matter, especially if it includes the preservation of their autonomy. In this direction, many studies are being published on Ambient Assisted Living (AAL) systems, which help to reduce the preoccupations raised by the independent living of the elderly. In this study, a systematic review of the literature is presented on fall detection and Human Activity Recognition (HAR) for the elderly, as the two main tasks to solve to guarantee the safety of elderly people living alone. To address the current tendency to perform these two tasks, the review focuses on the use of Deep Learning (DL) based approaches on computer vision data. In addition, different collections of data like DL models, datasets or hardware (e.g. depth or thermal cameras) are gathered from the reviewed studies and provided for reference in future studies. Strengths and weaknesses of existing approaches are also discussed and, based on them, our recommendations for future works are provided.
♻ ☆ LLaVA-VSD: Large Language-and-Vision Assistant for Visual Spatial Description
Visual Spatial Description (VSD) aims to generate texts that describe the spatial relationships between objects within images. Traditional visual spatial relationship classification (VSRC) methods typically output the spatial relationship between two objects in an image, often neglecting world knowledge and lacking general language capabilities. In this paper, we propose a Large Language-and-Vision Assistant for Visual Spatial Description, named LLaVA-VSD, which is designed for the classification, description, and open-ended description of visual spatial relationships. Specifically, the model first constructs a VSD instruction-following dataset using given figure-caption pairs for the three tasks. It then employs LoRA to fine-tune a Large Language and Vision Assistant for VSD, which has 13 billion parameters and supports high-resolution images. Finally, a large language model (Qwen-2) is used to refine the generated sentences, enhancing their diversity and accuracy. LLaVA-VSD demonstrates excellent multimodal conversational capabilities and can follow open-ended instructions to assist with inquiries about object relationships in images.
comment: We have discovered a significant error in the paper that affects the main conclusions. To ensure the accuracy of our research, we have decided to withdraw this paper and will resubmit it after making the necessary corrections
♻ ☆ Solid Waste Detection, Monitoring and Mapping in Remote Sensing Images: A Survey
The detection and characterization of illegal solid waste disposal sites are essential for environmental protection, particularly for mitigating pollution and health hazards. Improperly managed landfills contaminate soil and groundwater via rainwater infiltration, posing threats to both animals and humans. Traditional landfill identification approaches, such as on-site inspections, are time-consuming and expensive. Remote sensing is a cost-effective solution for the identification and monitoring of solid waste disposal sites that enables broad coverage and repeated acquisitions over time. Earth Observation (EO) satellites, equipped with an array of sensors and imaging capabilities, have been providing high-resolution data for several decades. Researchers proposed specialized techniques that leverage remote sensing imagery to perform a range of tasks such as waste site detection, dumping site monitoring, and assessment of suitable locations for new landfills. This review aims to provide a detailed illustration of the most relevant proposals for the detection and monitoring of solid waste sites by describing and comparing the approaches, the implemented techniques, and the employed data. Furthermore, since the data sources are of the utmost importance for developing an effective solid waste detection model, a comprehensive overview of the satellites and publicly available data sets is presented. Finally, this paper identifies the open issues in the state-of-the-art and discusses the relevant research directions for reducing the costs and improving the effectiveness of novel solid waste detection methods.
♻ ☆ TokenPacker: Efficient Visual Projector for Multimodal LLM
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM) in a Multimodal LLM (MLLM). Typically, MLLMs adopt a simple MLP to preserve all visual contexts via one-to-one transformation. However, the visual tokens are redundant and can be considerably increased when dealing with high-resolution images, impairing the efficiency of MLLMs significantly. Some recent works have introduced resampler or abstractor to reduce the number of resulting visual tokens. Unfortunately, they fail to capture finer details and undermine the visual reasoning capabilities of MLLMs. In this work, we propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens. In specific, we first interpolate the visual features as a low-resolution point query, providing the overall visual representation as the foundation. Then, we introduce a region-to-point injection module that utilizes high-resolution, multi-level region-based cues as fine-grained reference keys and values, allowing them to be fully absorbed within the corresponding local context region. This step effectively updates the coarse point query, transforming it into an enriched one for the subsequent LLM reasoning. Extensive experiments demonstrate that our approach compresses the visual tokens by 75%~89%, while achieves comparable or even better performance across diverse benchmarks with significantly higher efficiency. The source codes can be found at https://github.com/CircleRadon/TokenPacker.
comment: 16 pages, Codes:https://github.com/CircleRadon/TokenPacker
♻ ☆ Unveiling the Human-like Similarities of Automatic Facial Expression Recognition: An Empirical Exploration through Explainable AI
Facial expression recognition is vital for human behavior analysis, and deep learning has enabled models that can outperform humans. However, it is unclear how closely they mimic human processing. This study aims to explore the similarity between deep neural networks and human perception by comparing twelve different networks, including both general object classifiers and FER-specific models. We employ an innovative global explainable AI method to generate heatmaps, revealing crucial facial regions for the twelve networks trained on six facial expressions. We assess these results both quantitatively and qualitatively, comparing them to ground truth masks based on Friesen and Ekman's description and among them. We use Intersection over Union (IoU) and normalized correlation coefficients for comparisons. We generate 72 heatmaps to highlight critical regions for each expression and architecture. Qualitatively, models with pre-trained weights show more similarity in heatmaps compared to those without pre-training. Specifically, eye and nose areas influence certain facial expressions, while the mouth is consistently important across all models and expressions. Quantitatively, we find low average IoU values (avg. 0.2702) across all expressions and architectures. The best-performing architecture averages 0.3269, while the worst-performing one averages 0.2066. Dendrograms, built with the normalized correlation coefficient, reveal two main clusters for most expressions: models with pre-training and models without pre-training. Findings suggest limited alignment between human and AI facial expression recognition, with network architectures influencing the similarity, as similar architectures prioritize similar facial regions.
comment: Multimed Tools Appl (2024)
♻ ☆ Beyond Uniform Query Distribution: Key-Driven Grouped Query Attention
The Transformer architecture has revolutionized deep learning through its Self-Attention mechanism, which effectively captures contextual information. However, the memory footprint of Self-Attention presents significant challenges for long-sequence tasks. Grouped Query Attention (GQA) addresses this issue by grouping queries and mean-pooling the corresponding key-value heads - reducing the number of overall parameters and memory requirements in a flexible manner without adversely compromising model accuracy. In this work, we introduce enhancements to GQA, focusing on two novel approaches that deviate from the static nature of grouping: Key-Distributed GQA (KDGQA) and Dynamic Key-Distributed GQA (DGQA), which leverage information from the norms of the key heads to inform query allocation. Specifically, KDGQA looks at the ratios of the norms of the key heads during each forward pass, while DGQA examines the ratios of the norms as they evolve through training. Additionally, we present Perturbed GQA (PGQA) as a case-study, which introduces variability in (static) group formation via subtracting noise from the attention maps. Our experiments with up-trained Vision Transformers, for Image Classification on datasets such as CIFAR-10, CIFAR-100, Food101, and Tiny ImageNet, demonstrate the promise of these variants in improving upon the original GQA through more informed and adaptive grouping mechanisms: specifically ViT-L experiences accuracy gains of up to 8% when utilizing DGQA in comparison to GQA and other variants. We further analyze the impact of the number of Key-Value Heads on performance, underscoring the importance of utilizing query-key affinities. Code is available on GitHub.
comment: 11 pages, 9 figures
♻ ☆ HAIR: Hypernetworks-based All-in-One Image Restoration
Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}
comment: 16 pages
♻ ☆ Boost Your NeRF: A Model-Agnostic Mixture of Experts Framework for High Quality and Efficient Rendering ECCV 2024
Since the introduction of NeRFs, considerable attention has been focused on improving their training and inference times, leading to the development of Fast-NeRFs models. Despite demonstrating impressive rendering speed and quality, the rapid convergence of such models poses challenges for further improving reconstruction quality. Common strategies to improve rendering quality involves augmenting model parameters or increasing the number of sampled points. However, these computationally intensive approaches encounter limitations in achieving significant quality enhancements. This study introduces a model-agnostic framework inspired by Sparsely-Gated Mixture of Experts to enhance rendering quality without escalating computational complexity. Our approach enables specialization in rendering different scene components by employing a mixture of experts with varying resolutions. We present a novel gate formulation designed to maximize expert capabilities and propose a resolution-based routing technique to effectively induce sparsity and decompose scenes. Our work significantly improves reconstruction quality while maintaining competitive performance.
comment: The paper has been accepted to the ECCV 2024 conference
♻ ☆ Enhancing Quantitative Image Synthesis through Pretraining and Resolution Scaling for Bone Mineral Density Estimation from a Plain X-ray Image MICCAI
While most vision tasks are essentially visual in nature (for recognition), some important tasks, especially in the medical field, also require quantitative analysis (for quantification) using quantitative images. Unlike in visual analysis, pixel values in quantitative images correspond to physical metrics measured by specific devices (e.g., a depth image). However, recent work has shown that it is sometimes possible to synthesize accurate quantitative values from visual ones (e.g., depth from visual cues or defocus). This research aims to improve quantitative image synthesis (QIS) by exploring pretraining and image resolution scaling. We propose a benchmark for evaluating pretraining performance using the task of QIS-based bone mineral density (BMD) estimation from plain X-ray images, where the synthesized quantitative image is used to derive BMD. Our results show that appropriate pretraining can improve QIS performance, significantly raising the correlation of BMD estimation from 0.820 to 0.898, while others do not help or even hinder it. Scaling-up the resolution can further boost the correlation up to 0.923, a significant enhancement over conventional methods. Future work will include exploring more pretraining strategies and validating them on other image synthesis tasks.
comment: SASHIMI, 2024 (MICCAI workshop). 13 pages, 3 figures
♻ ☆ NOVUM: Neural Object Volumes for Robust Object Classification ECCV 2024
Discriminative models for object classification typically learn image-based representations that do not capture the compositional and 3D nature of objects. In this work, we show that explicitly integrating 3D compositional object representations into deep networks for image classification leads to a largely enhanced generalization in out-of-distribution scenarios. In particular, we introduce a novel architecture, referred to as NOVUM, that consists of a feature extractor and a neural object volume for every target object class. Each neural object volume is a composition of 3D Gaussians that emit feature vectors. This compositional object representation allows for a highly robust and fast estimation of the object class by independently matching the features of the 3D Gaussians of each category to features extracted from an input image. Additionally, the object pose can be estimated via inverse rendering of the corresponding neural object volume. To enable the classification of objects, the neural features at each 3D Gaussian are trained discriminatively to be distinct from (i) the features of 3D Gaussians in other categories, (ii) features of other 3D Gaussians of the same object, and (iii) the background features. Our experiments show that NOVUM offers intriguing advantages over standard architectures due to the 3D compositional structure of the object representation, namely: (1) An exceptional robustness across a spectrum of real-world and synthetic out-of-distribution shifts and (2) an enhanced human interpretability compared to standard models, all while maintaining real-time inference and a competitive accuracy on in-distribution data.
comment: 14 pages, 4 figures, accepted at ECCV 2024, code is accessible at https://github.com/GenIntel/NOVUM
♻ ☆ Brain3D: Generating 3D Objects from fMRI
Understanding the hidden mechanisms behind human's visual perception is a fundamental question in neuroscience. To that end, investigating into the neural responses of human mind activities, such as functional Magnetic Resonance Imaging (fMRI), has been a significant research vehicle. However, analyzing fMRI signals is challenging, costly, daunting, and demanding for professional training. Despite remarkable progress in fMRI analysis, existing approaches are limited to generating 2D images and far away from being biologically meaningful and practically useful. Under this insight, we propose to generate visually plausible and functionally more comprehensive 3D outputs decoded from brain signals, enabling more sophisticated modeling of fMRI data. Conceptually, we reformulate this task as a {\em fMRI conditioned 3D object generation} problem. We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject who was presented with a 2D image, and yields as output the corresponding 3D object images. The key capabilities of this model include tackling the noises with high-level semantic signals and a two-stage architecture design for progressive high-level information integration. Extensive experiments validate the superior capability of our model over previous state-of-the-art 3D object generation methods. Importantly, we show that our model captures the distinct functionalities of each region of human vision system as well as their intricate interplay relationships, aligning remarkably with the established discoveries in neuroscience. Further, preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios, such as V1, V2, V3, V4, and the medial temporal lobe (MTL) within the human visual system. Our data and code will be available at https://brain-3d.github.io/.
comment: 20 pages, 11 figures, project page: https://brain-3d.github.io/
♻ ☆ DualAnoDiff: Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation
The performance of anomaly inspection in industrial manufacturing is constrained by the scarcity of anomaly data. To overcome this challenge, researchers have started employing anomaly generation approaches to augment the anomaly dataset. However, existing anomaly generation methods suffer from limited diversity in the generated anomalies and struggle to achieve a seamless blending of this anomaly with the original image. In this paper, we overcome these challenges from a new perspective, simultaneously generating a pair of the overall image and the corresponding anomaly part. We propose DualAnoDiff, a novel diffusion-based few-shot anomaly image generation model, which can generate diverse and realistic anomaly images by using a dual-interrelated diffusion model, where one of them is employed to generate the whole image while the other one generates the anomaly part. Moreover, we extract background and shape information to mitigate the distortion and blurriness phenomenon in few-shot image generation. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods in terms of both realism and diversity. Overall, our approach significantly improves the performance of downstream anomaly detection tasks, including anomaly detection, anomaly localization, and anomaly classification tasks.
comment: Code: https://github.com/yinyjin/DualAnoDiff
♻ ☆ Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos
The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing. However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms. To address this challenge, leveraging a coded exposure setup to encode a frame sequence into a blurry snapshot and subsequently retrieve the latent sharp video presents a lightweight solution. Nevertheless, restoring motion from blur remains a formidable challenge due to the inherent ill-posedness of motion blur decomposition, the intrinsic ambiguity in motion direction, and the diverse motions present in natural videos. In this study, we propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos. We strategically embed motion direction cues into the blurry image during the imaging process. Additionally, we develop a novel implicit neural representation based blur decomposition network to sequentially extract the latent video frames from the blurry image, leveraging the embedded motion direction cues. To validate the effectiveness and efficiency of our proposed framework, we conduct extensive experiments using benchmark datasets and real-captured blurry images. The results demonstrate that our approach significantly outperforms existing methods in terms of both quality and flexibility. The code for our work is available at .https://github.com/zhihongz/BDINR
comment: Accepted by IJCV
♻ ☆ Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis MICCAI
Unpaired medical image synthesis aims to provide complementary information for an accurate clinical diagnostics, and address challenges in obtaining aligned multi-modal medical scans. Transformer-based models excel in imaging translation tasks thanks to their ability to capture long-range dependencies. Although effective in supervised training settings, their performance falters in unpaired image synthesis, particularly in synthesizing structural details. This paper empirically demonstrates that, lacking strong inductive biases, Transformer can converge to non-optimal solutions in the absence of paired data. To address this, we introduce UNet Structured Transformer (UNest), a novel architecture incorporating structural inductive biases for unpaired medical image synthesis. We leverage the foundational Segment-Anything Model to precisely extract the foreground structure and perform structural attention within the main anatomy. This guides the model to learn key anatomical regions, thus improving structural synthesis under the lack of supervision in unpaired training. Evaluated on two public datasets, spanning three modalities, i.e., MR, CT, and PET, UNest improves recent methods by up to 19.30% across six medical image synthesis tasks. Our code is released at https://github.com/HieuPhan33/MICCAI2024-UNest.
comment: MICCAI version before camera ready
♻ ☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
♻ ☆ Drone Referring Localization: An Efficient Heterogeneous Spatial Feature Interaction Method For UAV Self-Localization
Image retrieval (IR) has emerged as a promising approach for self-localization in unmanned aerial vehicles (UAVs). However, IR-based methods face several challenges: 1) Pre- and post-processing incur significant computational and storage overhead; 2) The lack of interaction between dual-source features impairs precise spatial perception. In this paper, we propose an efficient heterogeneous spatial feature interaction method, termed Drone Referring Localization (DRL), which aims to localize UAV-view images within satellite imagery. Unlike conventional methods that treat different data sources in isolation, followed by cosine similarity computations, DRL facilitates the learnable interaction of heterogeneous features. To implement the proposed DRL, we design two transformer-based frameworks, Post-Fusion and Mix-Fusion, enabling end-to-end training and inference. Furthermore, we introduce random scale cropping and weight balance loss techniques to augment paired data and optimize the balance between positive and negative sample weights. Additionally, we construct a new dataset, UL14, and establish a benchmark tailored to the DRL framework. Compared to traditional IR methods, DRL achieves superior localization accuracy (MA@20 +9.4\%) while significantly reducing computational time (1/7) and storage overhead (1/3). The dataset and code will be made publicly available. The dataset and code are available at \url{https://github.com/Dmmm1997/DRL} .
comment: 15 pages, 14 figures
♻ ☆ MolNexTR: A Generalized Deep Learning Model for Molecular Image Recognition
In the field of chemical structure recognition, the task of converting molecular images into machine-readable data formats such as SMILES string stands as a significant challenge, primarily due to the varied drawing styles and conventions prevalent in chemical literature. To bridge this gap, we proposed MolNexTR, a novel image-to-graph deep learning model that collaborates to fuse the strengths of ConvNext, a powerful Convolutional Neural Network variant, and Vision-TRansformer. This integration facilitates a more detailed extraction of both local and global features from molecular images. MolNexTR can predict atoms and bonds simultaneously and understand their layout rules. It also excels at flexibly integrating symbolic chemistry principles to discern chirality and decipher abbreviated structures. We further incorporate a series of advanced algorithms, including an improved data augmentation module, an image contamination module, and a post-processing module for getting the final SMILES output. These modules cooperate to enhance the model's robustness to diverse styles of molecular images found in real literature. In our test sets, MolNexTR has demonstrated superior performance, achieving an accuracy rate of 81-97%, marking a significant advancement in the domain of molecular structure recognition.
♻ ☆ Phase Matching for Out-of-Distribution Generalization
The Fourier transform, an explicit decomposition method for visual signals, has been employed to explain the out-of-distribution generalization behaviors of Deep Neural Networks (DNNs). Previous studies indicate that the amplitude spectrum is susceptible to the disturbance caused by distribution shifts, whereas the phase spectrum preserves highly-structured spatial information that is crucial for robust visual representation learning. Inspired by this insight, this paper is dedicated to clarifying the relationships between Domain Generalization (DG) and the frequency components. Specifically, we provide distribution analysis and empirical experiments for the frequency components. Based on these observations, we propose a Phase Matching approach, termed PhaMa, to address DG problems. To this end, PhaMa introduces perturbations on the amplitude spectrum and establishes spatial relationships to match the phase components with patch contrastive learning. Experiments on multiple benchmarks demonstrate that our proposed method achieves state-of-the-art performance in domain generalization and out-of-distribution robustness tasks. Beyond vanilla analysis and experiments, we further clarify the relationships between the Fourier components and DG problems by introducing a Fourier-based Structural Causal Model (SCM).
♻ ☆ SGNet: Salient Geometric Network for Point Cloud Registration
Point Cloud Registration (PCR) is a critical and challenging task in computer vision. One of the primary difficulties in PCR is identifying salient and meaningful points that exhibit consistent semantic and geometric properties across different scans. Previous methods have encountered challenges with ambiguous matching due to the similarity among patch blocks throughout the entire point cloud and the lack of consideration for efficient global geometric consistency. To address these issues, we propose a new framework that includes several novel techniques. Firstly, we introduce a semantic-aware geometric encoder that combines object-level and patch-level semantic information. This encoder significantly improves registration recall by reducing ambiguity in patch-level superpoint matching. Additionally, we incorporate a prior knowledge approach that utilizes an intrinsic shape signature to identify salient points. This enables us to extract the most salient super points and meaningful dense points in the scene. Secondly, we introduce an innovative transformer that encodes High-Order (HO) geometric features. These features are crucial for identifying salient points within initial overlap regions while considering global high-order geometric consistency. To optimize this high-order transformer further, we introduce an anchor node selection strategy. By encoding inter-frame triangle or polyhedron consistency features based on these anchor nodes, we can effectively learn high-order geometric features of salient super points. These high-order features are then propagated to dense points and utilized by a Sinkhorn matching module to identify key correspondences for successful registration. In our experiments conducted on well-known datasets such as 3DMatch/3DLoMatch and KITTI, our approach has shown promising results, highlighting the effectiveness of our novel method.
♻ ☆ Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning
In this work, we propose a geometry-aware semi-supervised method for fine-grained building function recognition. This method leverages the geometric relationships between multi-source data to improve the accuracy of pseudo labels in semi-supervised learning, extending the task's scope and making it applicable to cross-categorization systems of building function recognition. Firstly, we design an online semi-supervised pre-training stage, which facilitates the precise acquisition of building facade location information in street-view images. In the second stage, we propose a geometry-aware coarse annotation generation module. This module effectively combines GIS data and street-view data based on the geometric relationships, improving the accuracy of pseudo annotations. In the third stage, we combine the newly generated coarse annotations with the existing labeled dataset to achieve fine-grained functional recognition of buildings across multiple cities at a large scale. Extensive experiments demonstrate that our proposed framework exhibits superior performance in fine-grained functional recognition of buildings. Within the same categorization system, it achieves improvements of 7.6% and 4.8% compared to fully-supervised methods and state-of-the-art semi-supervised methods, respectively. Additionally, our method also performs well in cross-city tasks, i.e., extending the model trained on OmniCity (New York) to new areas (i.e., Los Angeles and Boston). This study provides a novel solution for the fine-grained function recognition of large-scale buildings across multiple cities, offering essential data for understanding urban infrastructure planning, human activity patterns, and the interactions between humans and buildings.
comment: This paper is currently under review
♻ ☆ Multi-weather Cross-view Geo-localization Using Denoising Diffusion Models ACM MM24
Cross-view geo-localization in GNSS-denied environments aims to determine an unknown location by matching drone-view images with the correct geo-tagged satellite-view images from a large gallery. Recent research shows that learning discriminative image representations under specific weather conditions can significantly enhance performance. However, the frequent occurrence of unseen extreme weather conditions hinders progress. This paper introduces MCGF, a Multi-weather Cross-view Geo-localization Framework designed to dynamically adapt to unseen weather conditions. MCGF establishes a joint optimization between image restoration and geo-localization using denoising diffusion models. For image restoration, MCGF incorporates a shared encoder and a lightweight restoration module to help the backbone eliminate weather-specific information. For geo-localization, MCGF uses EVA-02 as a backbone for feature extraction, with cross-entropy loss for training and cosine distance for testing. Extensive experiments on University160k-WX demonstrate that MCGF achieves competitive results for geo-localization in varying weather conditions.
comment: Accepted by ACM MM24 workshop
♻ ☆ Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models ECCV 2024
Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot video motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapts it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling. To disentangle the spatial and temporal information during training, we introduce a novel concept of appearance absorbers that detach the original appearance from the reference video prior to motion learning. The proposed modules are trained in a staged pipeline and inferred in a plug-and-play fashion, enabling easy extensions to various downstream tasks such as custom video generation and editing, video appearance customization and multiple motion combination. Our project page can be found at https://customize-a-video.github.io.
comment: Accepted by ECCV 2024. Project page: https://customize-a-video.github.io
♻ ☆ AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans IROS
Recently, progress in acquisition equipment such as LiDAR sensors has enabled sensing increasingly spacious outdoor 3D environments. Making sense of such 3D acquisitions requires fine-grained scene understanding, such as constructing instance-based 3D scene segmentations. Commonly, a neural network is trained for this task; however, this requires access to a large, densely annotated dataset, which is widely known to be challenging to obtain. To address this issue, in this work we propose to predict instance segmentations for 3D scenes in an unsupervised way, without relying on ground-truth annotations. To this end, we construct a learning framework consisting of two components: (1) a pseudo-annotation scheme for generating initial unsupervised pseudo-labels; and (2) a self-training algorithm for instance segmentation to fit robust, accurate instances from initial noisy proposals. To enable generating 3D instance mask proposals, we construct a weighted proxy-graph by connecting 3D points with edges integrating multi-modal image- and point-based self-supervised features, and perform graph-cuts to isolate individual pseudo-instances. We then build on a state-of-the-art point-based architecture and train a 3D instance segmentation model, resulting in significant refinement of initial proposals. To scale to arbitrary complexity 3D scenes, we design our algorithm to operate on local 3D point chunks and construct a merging step to generate scene-level instance segmentations. Experiments on the challenging SemanticKITTI benchmark demonstrate the potential of our approach, where it attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline. The code will be made publicly available at https://github.com/artonson/autoinst.
comment: 8 pages, 7 figures, to be published in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
♻ ☆ AnomalousPatchCore: Exploring the Use of Anomalous Samples in Industrial Anomaly Detection ECCV
Visual inspection, or industrial anomaly detection, is one of the most common quality control types in manufacturing. The task is to identify the presence of an anomaly given an image, e.g., a missing component on an image of a circuit board, for subsequent manual inspection. While industrial anomaly detection has seen a surge in recent years, most anomaly detection methods still utilize knowledge only from normal samples, failing to leverage the information from the frequently available anomalous samples. Additionally, they heavily rely on very general feature extractors pre-trained on common image classification datasets. In this paper, we address these shortcomings and propose the new anomaly detection system AnomalousPatchCore~(APC) based on a feature extractor fine-tuned with normal and anomalous in-domain samples and a subsequent memory bank for identifying unusual features. To fine-tune the feature extractor in APC, we propose three auxiliary tasks that address the different aspects of anomaly detection~(classification vs. localization) and mitigate the effect of the imbalance between normal and anomalous samples. Our extensive evaluation on the MVTec dataset shows that APC outperforms state-of-the-art systems in detecting anomalies, which is especially important in industrial anomaly detection given the subsequent manual inspection. In detailed ablation studies, we further investigate the properties of our APC.
comment: Accepted at the 2nd workshop on Vision-based InduStrial InspectiON (VISION) @ ECCV
♻ ☆ MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
Autism spectrum disorder (ASD) is characterized by significant challenges in social interaction and comprehending communication signals. Recently, therapeutic interventions for ASD have increasingly utilized Deep learning powered-computer vision techniques to monitor individual progress over time. These models are trained on private, non-public datasets from the autism community, creating challenges in comparing results across different models due to privacy-preserving data-sharing issues. This work introduces MMASD+, an enhanced version of the novel open-source dataset called Multimodal ASD (MMASD). MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data. It integrates the capabilities of Yolov8 and Deep SORT algorithms to distinguish between the therapist and children, addressing a significant barrier in the original dataset. Additionally, a Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD. This framework achieves an accuracy of 95.03% for predicting action types and 96.42% for predicting ASD presence, demonstrating over a 10% improvement compared to models trained on single data modalities. These findings highlight the advantages of integrating multiple data modalities within the Multimodal Transformer framework.
♻ ☆ Field-of-View Extension for Brain Diffusion MRI via Deep Generative Models
Purpose: In diffusion MRI (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field-of-view (FOV). This work aims to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with complete FOV can improve the whole-brain tractography for corrupted data with incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data. Approach: We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWI) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWI outside of incomplete FOV. Results: For evaluating the imputed slices, on the WRAP dataset the proposed framework achieved PSNRb0=22.397, SSIMb0=0.905, PSNRb1300=22.479, SSIMb1300=0.893; on the NACC dataset it achieved PSNRb0=21.304, SSIMb0=0.892, PSNRb1300=21.599, SSIMb1300= 0.877. The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts (p < 0.001) on both the WRAP and NACC datasets. Conclusions: Results suggest that the proposed framework achieved sufficient imputation performance in dMRI data with incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's Disease.
comment: 20 pages, 11 figures
♻ ☆ Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods
Biomedical image segmentation plays a vital role in diagnosis of diseases across various organs. Deep learning-based object detection methods are commonly used for such segmentation. There exists an extensive research in this topic. However, there is no standard review on this topic. Existing surveys often lack a standardized approach or focus on broader segmentation techniques. In this paper, we conducted a systematic literature review (SLR), collected and analysed 148 articles that explore deep learning object detection methods for biomedical image segmentation. We critically analyzed these methods, identified the key challenges, and discussed the future directions. From the selected articles we extracted the results including the deep learning models, targeted imaging modalities, targeted diseases, and the metrics for the analysis of the methods. The results have been presented in tabular and/or charted forms. The results are presented in three major categories including two stage detection models, one stage detection models and point-based detection models. Each article is individually analyzed along with its pros and cons. Finally, we discuss open challenges, potential benefits, and future research directions. This SLR aims to provide the research community with a quick yet deeper understanding of these segmentation models, ultimately facilitating the development of more powerful solutions for biomedical image analysis.
♻ ☆ PhysPart: Physically Plausible Part Completion for Interactable Objects
Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.
♻ ☆ SurGen: Text-Guided Diffusion Model for Surgical Video Generation
Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
♻ ☆ Interpretable Image Emotion Recognition: A Domain Adaptation Approach Using Facial Expressions
This paper proposes a feature-based domain adaptation technique for identifying emotions in generic images, encompassing both facial and non-facial objects, as well as non-human components. This approach addresses the challenge of the limited availability of pre-trained models and well-annotated datasets for Image Emotion Recognition (IER). Initially, a deep-learning-based Facial Expression Recognition (FER) system is developed, classifying facial images into discrete emotion classes. Maintaining the same network architecture, this FER system is then adapted to recognize emotions in generic images through the application of discrepancy loss, enabling the model to effectively learn IER features while classifying emotions into categories such as 'happy,' 'sad,' 'hate,' and 'anger.' Additionally, a novel interpretability method, Divide and Conquer based Shap (DnCShap), is introduced to elucidate the visual features most relevant for emotion recognition. The proposed IER system demonstrated emotion classification accuracies of 60.98% for the IAPSa dataset, 58.86% for the ArtPhoto dataset, 69.13% for the FI dataset, and 58.06% for the EMOTIC dataset. The system effectively identifies the important visual features leading to specific emotion classifications and provides detailed embedding plots to explain the predictions, enhancing the understanding and trust in AI-driven emotion recognition systems.
Artificial Intelligence 117
☆ Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. Models and code: https://github.com/NVlabs/Eagle
comment: Github: https://github.com/NVlabs/Eagle, HuggingFace: https://huggingface.co/NVEagle
☆ Mamba or Transformer for Time Series Forecasting? Mixture of Universals (MoU) Is All You Need
Time series forecasting requires balancing short-term and long-term dependencies for accurate predictions. Existing methods mainly focus on long-term dependency modeling, neglecting the complexities of short-term dynamics, which may hinder performance. Transformers are superior in modeling long-term dependencies but are criticized for their quadratic computational cost. Mamba provides a near-linear alternative but is reported less effective in time series longterm forecasting due to potential information loss. Current architectures fall short in offering both high efficiency and strong performance for long-term dependency modeling. To address these challenges, we introduce Mixture of Universals (MoU), a versatile model to capture both short-term and long-term dependencies for enhancing performance in time series forecasting. MoU is composed of two novel designs: Mixture of Feature Extractors (MoF), an adaptive method designed to improve time series patch representations for short-term dependency, and Mixture of Architectures (MoA), which hierarchically integrates Mamba, FeedForward, Convolution, and Self-Attention architectures in a specialized order to model long-term dependency from a hybrid perspective. The proposed approach achieves state-of-the-art performance while maintaining relatively low computational costs. Extensive experiments on seven real-world datasets demonstrate the superiority of MoU. Code is available at https://github.com/lunaaa95/mou/.
comment: Code at https://github.com/lunaaa95/mou/
☆ CoGen: Learning from Feedback with Coupled Comprehension and Generation
Systems with both language comprehension and generation capabilities can benefit from the tight connection between the two. This work studies coupling comprehension and generation with focus on continually learning from interaction with users. We propose techniques to tightly integrate the two capabilities for both learning and inference. We situate our studies in two-player reference games, and deploy various models for thousands of interactions with human users, while learning from interaction feedback signals. We show dramatic improvements in performance over time, with comprehension-generation coupling leading to performance improvements up to 26% in absolute terms and up to 17% higher accuracies compared to a non-coupled system. Our analysis also shows coupling has substantial qualitative impact on the system's language, making it significantly more human-like.
comment: 17 pages, 9 figures
☆ In-Context Imitation Learning via Next-Token Prediction
We explore how to enhance next-token prediction models to perform in-context imitation learning on a real robot, where the robot executes new tasks by interpreting contextual information provided during the input phase, without updating its underlying policy parameters. We propose In-Context Robot Transformer (ICRT), a causal transformer that performs autoregressive prediction on sensorimotor trajectories without relying on any linguistic data or reward function. This formulation enables flexible and training-free execution of new tasks at test time, achieved by prompting the model with sensorimotor trajectories of the new task composing of image observations, actions and states tuples, collected through human teleoperation. Experiments with a Franka Emika robot demonstrate that the ICRT can adapt to new tasks specified by prompts, even in environment configurations that differ from both the prompt and the training data. In a multitask environment setup, ICRT significantly outperforms current state-of-the-art next-token prediction models in robotics on generalizing to unseen tasks. Code, checkpoints and data are available on https://icrt.dev/
☆ WebPilot: A Versatile and Autonomous Multi-Agent System for Web Task Execution with Strategic Exploration
LLM-based autonomous agents often fail to execute complex web tasks that require dynamic interaction due to the inherent uncertainty and complexity of these environments. Existing LLM-based web agents typically rely on rigid, expert-designed policies specific to certain states and actions, which lack the flexibility and generalizability needed to adapt to unseen tasks. In contrast, humans excel by exploring unknowns, continuously adapting strategies, and resolving ambiguities through exploration. To emulate human-like adaptability, web agents need strategic exploration and complex decision-making. Monte Carlo Tree Search (MCTS) is well-suited for this, but classical MCTS struggles with vast action spaces, unpredictable state transitions, and incomplete information in web tasks. In light of this, we develop WebPilot, a multi-agent system with a dual optimization strategy that improves MCTS to better handle complex web environments. Specifically, the Global Optimization phase involves generating a high-level plan by breaking down tasks into manageable subtasks and continuously refining this plan, thereby focusing the search process and mitigating the challenges posed by vast action spaces in classical MCTS. Subsequently, the Local Optimization phase executes each subtask using a tailored MCTS designed for complex environments, effectively addressing uncertainties and managing incomplete information. Experimental results on WebArena and MiniWoB++ demonstrate the effectiveness of WebPilot. Notably, on WebArena, WebPilot achieves SOTA performance with GPT-4, achieving a 93% relative increase in success rate over the concurrent tree search-based method. WebPilot marks a significant advancement in general autonomous agent capabilities, paving the way for more advanced and reliable decision-making in practical environments.
☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we provide a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of various primal-dual dynamics as well as (linear) convergence of discrete-time methods, e.g., standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed dynamics for parallel and distributed computing applications.
comment: 31 pages; 4 figures
☆ More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
☆ Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games
Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.
comment: Currently under review
☆ Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
Few-shot image classification is a challenging task in the field of machine learning, involving the identification of new categories using a limited number of labeled samples. In recent years, methods based on local descriptors have made significant progress in this area. However, the key to improving classification accuracy lies in effectively filtering background noise and accurately selecting critical local descriptors highly relevant to image category information. To address this challenge, we propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors. This strategy can dynamically adjust based on the current task and image context, thereby selecting local descriptors most relevant to the image category. This enables the model to better focus on category-related information while effectively mitigating interference from irrelevant background regions. To evaluate the effectiveness of our method, we adopted the N-way K-shot experimental framework. Experimental results show that our method not only improves the clustering effect of selected local descriptors but also significantly enhances the discriminative ability between image categories. Notably, our method maintains a simple and lightweight design philosophy without introducing additional learnable parameters. This feature ensures consistency in filtering capability during both training and testing phases, further enhancing the reliability and practicality of the method.
Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.
comment: 28 pages, 12 tables, 10 figures
☆ Nexus: Specialization meets Adaptability for Efficiently Training Mixture of Experts
Efficiency, specialization, and adaptability to new data distributions are qualities that are hard to combine in current Large Language Models. The Mixture of Experts (MoE) architecture has been the focus of significant research because its inherent conditional computation enables such desirable properties. In this work, we focus on "upcycling" dense expert models into an MoE, aiming to improve specialization while also adding the ability to adapt to new tasks easily. We introduce Nexus, an enhanced MoE architecture with adaptive routing where the model learns to project expert embeddings from domain representations. This approach allows Nexus to flexibly add new experts after the initial upcycling through separately trained dense models, without requiring large-scale MoE training for unseen data domains. Our experiments show that Nexus achieves a relative gain of up to 2.1% over the baseline for initial upcycling, and a 18.8% relative gain for extending the MoE with a new expert by using limited finetuning data. This flexibility of Nexus is crucial to enable an open-source ecosystem where every user continuously assembles their own MoE-mix according to their needs.
☆ Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation
The design of aerodynamic shapes, such as airfoils, has traditionally required significant computational resources and relied on predefined design parameters, which limit the potential for novel shape synthesis. In this work, we introduce a data-driven methodology for airfoil generation using a diffusion model. Trained on a dataset of preexisting airfoils, our model can generate an arbitrary number of new airfoils from random vectors, which can be conditioned on specific aerodynamic performance metrics such as lift and drag, or geometric criteria. Our results demonstrate that the diffusion model effectively produces airfoil shapes with realistic aerodynamic properties, offering substantial improvements in efficiency, flexibility, and the potential for discovering innovative airfoil designs. This approach significantly expands the design space, facilitating the synthesis of high-performance aerodynamic shapes that transcend the limitations of traditional methods.
comment: 12 Pages, 6 figures
☆ A New Method for Cross-Lingual-based Semantic Role Labeling
Semantic role labeling is a crucial task in natural language processing, enabling better comprehension of natural language. However, the lack of annotated data in multiple languages has posed a challenge for researchers. To address this, a deep learning algorithm based on model transfer has been proposed. The algorithm utilizes a dataset consisting of the English portion of CoNLL2009 and a corpus of semantic roles in Persian. To optimize the efficiency of training, only ten percent of the educational data from each language is used. The results of the proposed model demonstrate significant improvements compared to Niksirt et al.'s model. In monolingual mode, the proposed model achieved a 2.05 percent improvement on F1-score, while in cross-lingual mode, the improvement was even more substantial, reaching 6.23 percent. Worth noting is that the compared model only trained two of the four stages of semantic role labeling and employed golden data for the remaining two stages. This suggests that the actual superiority of the proposed model surpasses the reported numbers by a significant margin. The development of cross-lingual methods for semantic role labeling holds promise, particularly in addressing the scarcity of annotated data for various languages. These advancements pave the way for further research in understanding and processing natural language across different linguistic contexts.
☆ Persuasion Games using Large Language Models
Large Language Models (LLMs) have emerged as formidable instruments capable of comprehending and producing human-like text. This paper explores the potential of LLMs, to shape human perspectives and subsequently influence their decisions on particular tasks. This capability finds applications in diverse domains such as Investment, Credit cards and Insurance, wherein they assist users in selecting appropriate insurance policies, investment plans, Credit cards, Retail, as well as in Behavioral Change Support Systems (BCSS). We present a sophisticated multi-agent framework wherein a consortium of agents operate in collaborative manner. The primary agent engages directly with users through persuasive dialogue, while the auxiliary agents perform tasks such as information retrieval, response analysis, development of persuasion strategies, and validation of facts. Empirical evidence from our experiments demonstrates that this collaborative methodology significantly enhances the persuasive efficacy of the LLM. We analyze user resistance to persuasive efforts continuously and counteract it by employing a combination of rule-based and LLM-based resistance-persuasion mapping techniques. We employ simulated personas and generate conversations in insurance, banking, and retail domains to evaluate the proficiency of large language models (LLMs) in recognizing, adjusting to, and influencing various personality types. Concurrently, we examine the resistance mechanisms employed by LLM simulated personas. Persuasion is quantified via measurable surveys before and after interaction, LLM-generated scores on conversation, and user decisions (purchase or non-purchase).
☆ Robust Statistical Scaling of Outlier Scores: Improving the Quality of Outlier Probabilities for Outliers (Extended Version)
Outlier detection algorithms typically assign an outlier score to each observation in a dataset, indicating the degree to which an observation is an outlier. However, these scores are often not comparable across algorithms and can be difficult for humans to interpret. Statistical scaling addresses this problem by transforming outlier scores into outlier probabilities without using ground-truth labels, thereby improving interpretability and comparability across algorithms. However, the quality of this transformation can be different for outliers and inliers. Missing outliers in scenarios where they are of particular interest - such as healthcare, finance, or engineering - can be costly or dangerous. Thus, ensuring good probabilities for outliers is essential. This paper argues that statistical scaling, as commonly used in the literature, does not produce equally good probabilities for outliers as for inliers. Therefore, we propose robust statistical scaling, which uses robust estimators to improve the probabilities for outliers. We evaluate several variants of our method against other outlier score transformations for real-world datasets and outlier detection algorithms, where it can improve the probabilities for outliers.
comment: 15 pages, 4 figures, accepted for publication in SISAP 2024
☆ GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model
Autonomous driving training requires a diverse range of datasets encompassing various traffic conditions, weather scenarios, and road types. Traditional data augmentation methods often struggle to generate datasets that represent rare occurrences. To address this challenge, we propose GenDDS, a novel approach for generating driving scenarios generation by leveraging the capabilities of Stable Diffusion XL (SDXL), an advanced latent diffusion model. Our methodology involves the use of descriptive prompts to guide the synthesis process, aimed at producing realistic and diverse driving scenarios. With the power of the latest computer vision techniques, such as ControlNet and Hotshot-XL, we have built a complete pipeline for video generation together with SDXL. We employ the KITTI dataset, which includes real-world driving videos, to train the model. Through a series of experiments, we demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios. This research contributes to the development of sophisticated training data for autonomous driving systems and opens new avenues for creating virtual environments for simulation and validation purposes.
☆ Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection ECML
The current technology landscape lacks a foundational AI model for solving process engineering calculations. In this work, we introduce a novel autonomous agent framework leveraging Retrieval-Augmented Instruction-Tuning (RAIT) to enhance open, customizable small code language models (SLMs) for these calculations. By combining instruction tuned code SLMs with Retrieval-Augmented Code Generation (RACG) using external tools, the agent generates, debugs, and optimizes code from natural language specifications. Our approach addresses the limitations of the current lack of a foundational AI model for specialized process engineering tasks and offers benefits of explainability, knowledge editing, and cost-effectiveness. Additionally, we curate custom datasets of chemical and process engineering problems and solutions to overcome data scarcity. Experimental results show that our framework matches the performance of large-scale proprietary models on benchmark datasets, proving its effectiveness and usability.
comment: Accepted for publication at ML4CCE workshop at ECML PKDD 2024. Please find the link: https://ml4cce-ecml.com/#agenda
☆ microYOLO: Towards Single-Shot Object Detection on Microcontrollers ECML
This work-in-progress paper presents results on the feasibility of single-shot object detection on microcontrollers using YOLO. Single-shot object detectors like YOLO are widely used, however due to their complexity mainly on larger GPU-based platforms. We present microYOLO, which can be used on Cortex-M based microcontrollers, such as the OpenMV H7 R2, achieving about 3.5 FPS when classifying 128x128 RGB images while using less than 800 KB Flash and less than 350 KB RAM. Furthermore, we share experimental results for three different object detection tasks, analyzing the accuracy of microYOLO on them.
comment: Published at the ECML PKDD Conference 2023, at the 4th Workshop on IoT, Edge, and Mobile for Embedded Machine Learning
☆ Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
☆ Object Detection for Vehicle Dashcams using Transformers
The use of intelligent automation is growing significantly in the automotive industry, as it assists drivers and fleet management companies, thus increasing their productivity. Dash cams are now been used for this purpose which enables the instant identification and understanding of multiple objects and occurrences in the surroundings. In this paper, we propose a novel approach for object detection in dashcams using transformers. Our system is based on the state-of-the-art DEtection TRansformer (DETR), which has demonstrated strong performance in a variety of conditions, including different weather and illumination scenarios. The use of transformers allows for the consideration of contextual information in decisionmaking, improving the accuracy of object detection. To validate our approach, we have trained our DETR model on a dataset that represents real-world conditions. Our results show that the use of intelligent automation through transformers can significantly enhance the capabilities of dashcam systems. The model achieves an mAP of 0.95 on detection.
comment: 7 Pages, and 6 Figures
☆ ModalityMirror: Improving Audio Classification in Modality Heterogeneity Federated Learning with Multimodal Distillation
Multimodal Federated Learning frequently encounters challenges of client modality heterogeneity, leading to undesired performances for secondary modality in multimodal learning. It is particularly prevalent in audiovisual learning, with audio is often assumed to be the weaker modality in recognition tasks. To address this challenge, we introduce ModalityMirror to improve audio model performance by leveraging knowledge distillation from an audiovisual federated learning model. ModalityMirror involves two phases: a modality-wise FL stage to aggregate uni-modal encoders; and a federated knowledge distillation stage on multi-modality clients to train an unimodal student model. Our results demonstrate that ModalityMirror significantly improves the audio classification compared to the state-of-the-art FL methods such as Harmony, particularly in audiovisual FL facing video missing. Our approach unlocks the potential for exploiting the diverse modality spectrum inherent in multi-modal FL.
☆ Emulating Brain-like Rapid Learning in Neuromorphic Edge Computing
Achieving personalized intelligence at the edge with real-time learning capabilities holds enormous promise in enhancing our daily experiences and helping decision making, planning, and sensing. However, efficient and reliable edge learning remains difficult with current technology due to the lack of personalized data, insufficient hardware capabilities, and inherent challenges posed by online learning. Over time and across multiple developmental stages, the brain has evolved to efficiently incorporate new knowledge by gradually building on previous knowledge. In this work, we emulate the multiple stages of learning with digital neuromorphic technology that simulates the neural and synaptic processes of the brain using two stages of learning. First, a meta-training stage trains the hyperparameters of synaptic plasticity for one-shot learning using a differentiable simulation of the neuromorphic hardware. This meta-training process refines a hardware local three-factor synaptic plasticity rule and its associated hyperparameters to align with the trained task domain. In a subsequent deployment stage, these optimized hyperparameters enable fast, data-efficient, and accurate learning of new classes. We demonstrate our approach using event-driven vision sensor data and the Intel Loihi neuromorphic processor with its plasticity dynamics, achieving real-time one-shot learning of new classes that is vastly improved over transfer learning. Our methodology can be deployed with arbitrary plasticity models and can be applied to situations demanding quick learning and adaptation at the edge, such as navigating unfamiliar environments or learning unexpected categories of data through user engagement.
comment: 17 page journal article. Submitted to IOP NCE
☆ Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models
This paper evaluates Few-Shot Prompting with Large Language Models for Named Entity Recognition (NER). Traditional NER systems rely on extensive labeled datasets, which are costly and time-consuming to obtain. Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples. We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks. Results show that while there is a performance gap, large models excel in adapting to new entity types and domains with very limited data. We also explore the effects of prompt engineering, guided output format and context length on performance. This study underscores Few-Shot Learning's potential to reduce the need for large labeled datasets, enhancing NER scalability and accessibility.
comment: Github repo: https://github.com/GEODE-project/ner-llm
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
☆ A Survey on Evaluation of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) mimic human perception and reasoning system by integrating powerful Large Language Models (LLMs) with various modality encoders (e.g., vision, audio), positioning LLMs as the "brain" and various modality encoders as sensory organs. This framework endows MLLMs with human-like capabilities, and suggests a potential pathway towards achieving artificial general intelligence (AGI). With the emergence of all-round MLLMs like GPT-4V and Gemini, a multitude of evaluation methods have been developed to assess their capabilities across different dimensions. This paper presents a systematic and comprehensive review of MLLM evaluation methods, covering the following key aspects: (1) the background of MLLMs and their evaluation; (2) "what to evaluate" that reviews and categorizes existing MLLM evaluation tasks based on the capabilities assessed, including general multimodal recognition, perception, reasoning and trustworthiness, and domain-specific applications such as socioeconomic, natural sciences and engineering, medical usage, AI agent, remote sensing, video and audio processing, 3D point cloud analysis, and others; (3) "where to evaluate" that summarizes MLLM evaluation benchmarks into general and specific benchmarks; (4) "how to evaluate" that reviews and illustrates MLLM evaluation steps and metrics; Our overarching goal is to provide valuable insights for researchers in the field of MLLM evaluation, thereby facilitating the development of more capable and reliable MLLMs. We emphasize that evaluation should be regarded as a critical discipline, essential for advancing the field of MLLMs.
☆ Adaptive Traffic Signal Control Using Reinforcement Learning
Traffic demand is continuously increasing, leading to significant congestion issues in major urban areas. Constructing new infrastructure is a potential solution but presents a substantial financial burden on national economies. An alternative approach involves optimizing existing traffic networks through the dynamic control of traffic signals at intersections. Recent advancements in Reinforcement Learning (RL) techniques have demonstrated their capability to address the complexities associated with traffic congestion. In this paper, we propose a solution to traffic congestion using reinforcement learning. We define the state as a scalar representing the queue length, demonstrating that the algorithm can effectively learn from this simplified state representation. This approach can potentially reduce deployment costs by minimizing the number of sensors required at intersections. We have developed two RL algorithms: a turn-based agent, which prioritizes traffic signals for the intersection side with higher traffic, and a time-based agent, which adheres to a fixed phase cycle, adjusting the phase duration based on traffic conditions. To assess the performance of these algorithms, we designed four distinct traffic scenarios and computed seven evaluation metrics for each. Simulation results indicate that both algorithms outperform conventional traffic signal control systems.
☆ Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction
Machine learning (ML) classifiers serve as essential tools facilitating classification and prediction across various domains. The performance of these algorithms should be known to ensure their reliable application. In certain fields, receiver operating characteristic and precision-recall curves are frequently employed to assess machine learning algorithms without accounting for the impact of process parameters. However, it may be essential to evaluate the performance of these algorithms in relation to such parameters. As a performance evaluation metric capable of considering the effects of process parameters, this paper uses a modified probability of detection (POD) approach to assess the reliability of ML-based algorithms. As an example, the POD-based approach is employed to assess ML models used for predicting the lane changing behavior of a vehicle driver. The time remaining to the predicted (and therefore unknown) lane changing event is considered as process parameter. The hit/miss approach to POD is taken here and modified by considering the probability of lane changing derived from ML algorithms at each time step, and obtaining the final result of the analysis accordingly. This improves the reliability of results compared to the standard hit/miss approach, which considers the outcome of the classifiers as either 0 or 1, while also simplifying evaluation compared to the \^a versus a approach. Performance evaluation results of the proposed approach are compared with those obtained with the standard hit/miss approach and a pre-developed \^a versus a approach to validate the effectiveness of the proposed method. The comparison shows that this method provides an averaging conservative behavior with the advantage of enhancing the reliability of the hit/miss approach to POD while retaining its simplicity.
comment: Manuscript: 8 pages, 6 figures, 4 tables
☆ Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
Deep Neural Networks have demonstrated remarkable success in various domains but remain susceptible to adversarial examples, which are slightly altered inputs designed to induce misclassification. While adversarial attacks typically optimize under Lp norm constraints, attacks based on the L0 norm, prioritising input sparsity, are less studied due to their complex and non convex nature. These sparse adversarial examples challenge existing defenses by altering a minimal subset of features, potentially uncovering more subtle DNN weaknesses. However, the current L0 norm attack methodologies face a trade off between accuracy and efficiency either precise but computationally intense or expedient but imprecise. This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm, aimed at refining the robustness evaluation of DNNs against such perturbations.
comment: Accepted by the 20th International Conference on Advanced Data Mining and Applications (ADMA 2024)
☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
☆ An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation
Large Language Models (LLMs) have recently advanced many applications on software engineering tasks, particularly the potential for code generation. Among contemporary challenges, code generated by LLMs often suffers from inaccuracies and hallucinations, requiring external inputs to correct. One recent strategy to fix these issues is to refine the code generated from LLMs using the input from the model itself (self-augmented). In this work, we proposed a novel method, namely CoT-SelfEvolve. CoT-SelfEvolve iteratively and automatically refines code through a self-correcting process, guided by a chain of thought constructed from real-world programming problem feedback. Focusing on data science code, including Python libraries such as NumPy and Pandas, our evaluations on the DS-1000 dataset demonstrate that CoT-SelfEvolve significantly outperforms existing models in solving complex problems. The framework shows substantial improvements in both initial code generation and subsequent iterations, with the model's accuracy increasing significantly with each additional iteration. This highlights the effectiveness of using chain-of-thought prompting to address complexities revealed by program executor traceback error messages. We also discuss how CoT-SelfEvolve can be integrated into continuous software engineering environments, providing a practical solution for improving LLM-based code generation.
☆ Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings
Text classification is crucial for applications such as sentiment analysis and toxic text filtering, but it still faces challenges due to the complexity and ambiguity of natural language. Recent advancements in deep learning, particularly transformer architectures and large-scale pretraining, have achieved inspiring success in NLP fields. Building on these advancements, this thesis explores three challenging settings in text classification by leveraging the intrinsic knowledge of pretrained language models (PLMs). Firstly, to address the challenge of selecting misleading yet incorrect distractors for cloze questions, we develop models that utilize features based on contextualized word representations from PLMs, achieving performance that rivals or surpasses human accuracy. Secondly, to enhance model generalization to unseen labels, we create small finetuning datasets with domain-independent task label descriptions, improving model performance and robustness. Lastly, we tackle the sensitivity of large language models to in-context learning prompts by selecting effective demonstrations, focusing on misclassified examples and resolving model ambiguity regarding test example labels.
comment: PhD thesis
☆ Hierarchical Blockmodelling for Knowledge Graphs
In this paper, we investigate the use of probabilistic graphical models, specifically stochastic blockmodels, for the purpose of hierarchical entity clustering on knowledge graphs. These models, seldom used in the Semantic Web community, decompose a graph into a set of probability distributions. The parameters of these distributions are then inferred allowing for their subsequent sampling to generate a random graph. In a non-parametric setting, this allows for the induction of hierarchical clusterings without prior constraints on the hierarchy's structure. Specifically, this is achieved by the integration of the Nested Chinese Restaurant Process and the Stick Breaking Process into the generative model. In this regard, we propose a model leveraging such integration and derive a collapsed Gibbs sampling scheme for its inference. To aid in understanding, we describe the steps in this derivation and provide an implementation for the sampler. We evaluate our model on synthetic and real-world datasets and quantitatively compare against benchmark models. We further evaluate our results qualitatively and find that our model is capable of inducing coherent cluster hierarchies in small scale settings. The work presented in this paper provides the first step for the further application of stochastic blockmodels for knowledge graphs on a larger scale. We conclude the paper with potential avenues for future work on more scalable inference schemes.
comment: 31 pages, 11 figures
☆ Structural Optimization of Lightweight Bipedal Robot via SERL
Designing a bipedal robot is a complex and challenging task, especially when dealing with a multitude of structural parameters. Traditional design methods often rely on human intuition and experience. However, such approaches are time-consuming, labor-intensive, lack theoretical guidance and hard to obtain optimal design results within vast design spaces, thus failing to full exploit the inherent performance potential of robots. In this context, this paper introduces the SERL (Structure Evolution Reinforcement Learning) algorithm, which combines reinforcement learning for locomotion tasks with evolution algorithms. The aim is to identify the optimal parameter combinations within a given multidimensional design space. Through the SERL algorithm, we successfully designed a bipedal robot named Wow Orin, where the optimal leg length are obtained through optimization based on body structure and motor torque. We have experimentally validated the effectiveness of the SERL algorithm, which is capable of optimizing the best structure within specified design space and task conditions. Additionally, to assess the performance gap between our designed robot and the current state-of-the-art robots, we compared Wow Orin with mainstream bipedal robots Cassie and Unitree H1. A series of experimental results demonstrate the Outstanding energy efficiency and performance of Wow Orin, further validating the feasibility of applying the SERL algorithm to practical design.
☆ CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation
The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.
☆ CBF-LLM: Safe Control for LLM Alignment
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the safety filter, designed based on the CBF, to the output generation of the baseline LLM, i.e., the sequence of the token, with the aim of intervening in the generated text. The overall text-generation system is implemented with Llama 3 and a RoBERTa model, and the source code is available at https://github.com/Mya-Mya/CBF-LLM. The experiment demonstrates its control ability and effectiveness in reducing the number of interventions needed for user-specified alignment tasks.
☆ Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems
Artificial Intelligence (AI) has paved the way for revolutionary decision-making processes, which if harnessed appropriately, can contribute to advancements in various sectors, from healthcare to economics. However, its black box nature presents significant ethical challenges related to bias and transparency. AI applications are hugely impacted by biases, presenting inconsistent and unreliable findings, leading to significant costs and consequences, highlighting and perpetuating inequalities and unequal access to resources. Hence, developing safe, reliable, ethical, and Trustworthy AI systems is essential. Our team of researchers working with Trustworthy and Responsible AI, part of the Transdisciplinary Scholarship Initiative within the University of Calgary, conducts research on Trustworthy and Responsible AI, including fairness, bias mitigation, reproducibility, generalization, interpretability, and authenticity. In this paper, we review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias. We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making, as well as guidelines to foster Responsible and Trustworthy AI models.
comment: 45 pages, 2 figures
☆ An Investigation of Warning Erroneous Chat Translations in Cross-lingual Communication
The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
☆ Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input
Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
☆ TrafficGamer: Reliable and Flexible Traffic Simulation for Safety-Critical Scenarios with Game-Theoretic Oracles
While modern Autonomous Vehicle (AV) systems can develop reliable driving policies under regular traffic conditions, they frequently struggle with safety-critical traffic scenarios. This difficulty primarily arises from the rarity of such scenarios in driving datasets and the complexities associated with predictive modeling among multiple vehicles. To support the testing and refinement of AV policies, simulating safety-critical traffic events is an essential challenge to be addressed. In this work, we introduce TrafficGamer, which facilitates game-theoretic traffic simulation by viewing common road driving as a multi-agent game. In evaluating the empirical performance across various real-world datasets, TrafficGamer ensures both fidelity and exploitability of the simulated scenarios, guaranteeing that they not only statically align with real-world traffic distribution but also efficiently capture equilibriums for representing safety-critical scenarios involving multiple agents. Additionally, the results demonstrate that TrafficGamer exhibits highly flexible simulation across various contexts. Specifically, we demonstrate that the generated scenarios can dynamically adapt to equilibriums of varying tightness by configuring risk-sensitive constraints during optimization. To the best of our knowledge, TrafficGamer is the first simulator capable of generating diverse traffic scenarios involving multiple agents. We have provided a demo webpage for the project at https://qiaoguanren.github.io/trafficgamer-demo/.
☆ Improving Thompson Sampling via Information Relaxation for Budgeted Multi-armed Bandits
We consider a Bayesian budgeted multi-armed bandit problem, in which each arm consumes a different amount of resources when selected and there is a budget constraint on the total amount of resources that can be used. Budgeted Thompson Sampling (BTS) offers a very effective heuristic to this problem, but its arm-selection rule does not take into account the remaining budget information. We adopt \textit{Information Relaxation Sampling} framework that generalizes Thompson Sampling for classical $K$-armed bandit problems, and propose a series of algorithms that are randomized like BTS but more carefully optimize their decisions with respect to the budget constraint. In a one-to-one correspondence with these algorithms, a series of performance benchmarks that improve the conventional benchmark are also suggested. Our theoretical analysis and simulation results show that our algorithms (and our benchmarks) make incremental improvements over BTS (respectively, the conventional benchmark) across various settings including a real-world example.
comment: accepted
☆ Continual-learning-based framework for structural damage recognition
Multi-damage is common in reinforced concrete structures and leads to the requirement of large number of neural networks, parameters and data storage, if convolutional neural network (CNN) is used for damage recognition. In addition, conventional CNN experiences catastrophic forgetting and training inefficiency as the number of tasks increases during continual learning, leading to large accuracy decrease of previous learned tasks. To address these problems, this study proposes a continuallearning-based damage recognition model (CLDRM) which integrates the learning without forgetting continual learning method into the ResNet-34 architecture for the recognition of damages in RC structures as well as relevant structural components. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. In this way, it reduces both the prediction time and data storage by about 75% in four tasks of continuous learning. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. By gradual feature fusion, CLDRM outperformed other methods by managed to achieve high accuracy in the damage recognition and classification. As the number of recognition tasks increased, CLDRM also experienced smaller decrease of the previous learned tasks. Results indicate that the CLDRM framework successfully performs damage recognition and classification with reasonable accuracy and effectiveness.
comment: 18 pages, 12 figures
☆ Towards Fully Autonomous Research Powered by LLMs: Case Study on Simulations
The advent of Large Language Models (LLMs) has created new opportunities for the automation of scientific research, spanning both experimental processes and computational simulations. This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by LLM, through sophisticated API integration, to automate the entire research process, from experimental design, remote upload and simulation execution, data analysis, to report compilation. Using a simulation problem of polymer chain conformations as a case study, we assessed the performance of ASAs powered by different LLMs including GPT-4-Turbo. Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions, underscoring the potential of LLMs to manage complete scientific investigations autonomously. The outlined automation can be iteratively performed up to twenty cycles without human intervention, illustrating the potential of LLMs for large-scale autonomous research endeavors. Additionally, we discussed the intrinsic traits of ASAs in managing extensive tasks, focusing on self-validation mechanisms and the balance between local attention and global oversight.
comment: For additional code and data, please visit our GitHub repository: https://github.com/zokaraa/autonomous_simulation_agent
☆ AeroVerse: UAV-Agent Benchmark Suite for Simulating, Pre-training, Finetuning, and Evaluating Aerospace Embodied World Models
Aerospace embodied intelligence aims to empower unmanned aerial vehicles (UAVs) and other aerospace platforms to achieve autonomous perception, cognition, and action, as well as egocentric active interaction with humans and the environment. The aerospace embodied world model serves as an effective means to realize the autonomous intelligence of UAVs and represents a necessary pathway toward aerospace embodied intelligence. However, existing embodied world models primarily focus on ground-level intelligent agents in indoor scenarios, while research on UAV intelligent agents remains unexplored. To address this gap, we construct the first large-scale real-world image-text pre-training dataset, AerialAgent-Ego10k, featuring urban drones from a first-person perspective. We also create a virtual image-text-pose alignment dataset, CyberAgent Ego500k, to facilitate the pre-training of the aerospace embodied world model. For the first time, we clearly define 5 downstream tasks, i.e., aerospace embodied scene awareness, spatial reasoning, navigational exploration, task planning, and motion decision, and construct corresponding instruction datasets, i.e., SkyAgent-Scene3k, SkyAgent-Reason3k, SkyAgent-Nav3k and SkyAgent-Plan3k, and SkyAgent-Act3k, for fine-tuning the aerospace embodiment world model. Simultaneously, we develop SkyAgentEval, the downstream task evaluation metrics based on GPT-4, to comprehensively, flexibly, and objectively assess the results, revealing the potential and limitations of 2D/3D visual language models in UAV-agent tasks. Furthermore, we integrate over 10 2D/3D visual-language models, 2 pre-training datasets, 5 finetuning datasets, more than 10 evaluation metrics, and a simulator into the benchmark suite, i.e., AeroVerse, which will be released to the community to promote exploration and development of aerospace embodied intelligence.
☆ Measuring the Reliability of Causal Probing Methods: Tradeoffs, Limitations, and the Plight of Nullifying Interventions
Causal probing is an approach to interpreting foundation models, such as large language models, by training probes to recognize latent properties of interest from embeddings, intervening on probes to modify this representation, and analyzing the resulting changes in the model's behavior. While some recent works have cast doubt on the theoretical basis of several leading causal probing intervention methods, it has been unclear how to systematically and empirically evaluate their effectiveness in practice. To address this problem, we propose a general empirical analysis framework to evaluate the reliability of causal probing interventions, formally defining and quantifying two key causal probing desiderata: completeness (fully transforming the representation of the target property) and selectivity (minimally impacting other properties). Our formalism allows us to make the first direct comparisons between different families of causal probing methods (e.g., linear vs. nonlinear or counterfactual vs. nullifying interventions). We conduct extensive experiments across several leading methods, finding that (1) there is an inherent tradeoff between these criteria, and no method is able to consistently satisfy both at once; and (2) across the board, nullifying interventions are always far less complete than counterfactual interventions, indicating that nullifying methods may not be an effective approach to causal probing.
☆ EmoAttack: Utilizing Emotional Voice Conversion for Speech Backdoor Attacks on Deep Speech Classification Models ICASSP 2025
Deep speech classification tasks, mainly including keyword spotting and speaker verification, play a crucial role in speech-based human-computer interaction. Recently, the security of these technologies has been demonstrated to be vulnerable to backdoor attacks. Specifically speaking, speech samples are attacked by noisy disruption and component modification in present triggers. We suggest that speech backdoor attacks can strategically focus on emotion, a higher-level subjective perceptual attribute inherent in speech. Furthermore, we proposed that emotional voice conversion technology can serve as the speech backdoor attack trigger, and the method is called EmoAttack. Based on this, we conducted attack experiments on two speech classification tasks, showcasing that EmoAttack method owns impactful trigger effectiveness and its remarkable attack success rate and accuracy variance. Additionally, the ablation experiments found that speech with intensive emotion is more suitable to be targeted for attacks.
comment: Submitted to ICASSP 2025
☆ What Machine Learning Tells Us About the Mathematical Structure of Concepts
This paper examines the connections among various approaches to understanding concepts in philosophy, cognitive science, and machine learning, with a particular focus on their mathematical nature. By categorizing these approaches into Abstractionism, the Similarity Approach, the Functional Approach, and the Invariance Approach, the study highlights how each framework provides a distinct mathematical perspective for modeling concepts. The synthesis of these approaches bridges philosophical theories and contemporary machine learning models, providing a comprehensive framework for future research. This work emphasizes the importance of interdisciplinary dialogue, aiming to enrich our understanding of the complex relationship between human cognition and artificial intelligence.
comment: 25 pages, 3 figures
☆ RoboSense: Large-scale Dataset and Benchmark for Multi-sensor Low-speed Autonomous Driving
Robust object detection and tracking under arbitrary sight of view is challenging yet essential for the development of Autonomous Vehicle technology. With the growing demand of unmanned function vehicles, near-field scene understanding becomes an important research topic in the areas of low-speed autonomous driving. Due to the complexity of driving conditions and diversity of near obstacles such as blind spots and high occlusion, the perception capability of near-field environment is still inferior than its farther counterpart. To further enhance the intelligent ability of unmanned vehicles, in this paper, we construct a multimodal data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view for ego vehicle, either global view or local view. Meanwhile, a large-scale multi-sensor dataset is built, named RoboSense, to facilitate near-field scene understanding. RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of near-field obstacles within 5$m$ as the previous single-vehicle datasets such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future development of related research, where the detailed data analysis as well as benchmarks are also provided accordingly.
☆ MODULI: Unlocking Preference Generalization via Diffusion Models for Offline Multi-Objective Reinforcement Learning
Multi-objective Reinforcement Learning (MORL) seeks to develop policies that simultaneously optimize multiple conflicting objectives, but it requires extensive online interactions. Offline MORL provides a promising solution by training on pre-collected datasets to generalize to any preference upon deployment. However, real-world offline datasets are often conservatively and narrowly distributed, failing to comprehensively cover preferences, leading to the emergence of out-of-distribution (OOD) preference areas. Existing offline MORL algorithms exhibit poor generalization to OOD preferences, resulting in policies that do not align with preferences. Leveraging the excellent expressive and generalization capabilities of diffusion models, we propose MODULI (Multi-objective Diffusion Planner with Sliding Guidance), which employs a preference-conditioned diffusion model as a planner to generate trajectories that align with various preferences and derive action for decision-making. To achieve accurate generation, MODULI introduces two return normalization methods under diverse preferences for refining guidance. To further enhance generalization to OOD preferences, MODULI proposes a novel sliding guidance mechanism, which involves training an additional slider adapter to capture the direction of preference changes. Incorporating the slider, it transitions from in-distribution (ID) preferences to generating OOD preferences, patching, and extending the incomplete Pareto front. Extensive experiments on the D4MORL benchmark demonstrate that our algorithm outperforms state-of-the-art Offline MORL baselines, exhibiting excellent generalization to OOD preferences.
comment: 23 pages, 7 figures
☆ Deep Learning to Predict Late-Onset Breast Cancer Metastasis: the Single Hyperparameter Grid Search (SHGS) Strategy for Meta Tuning Concerning Deep Feed-forward Neural Network
While machine learning has advanced in medicine, its widespread use in clinical applications, especially in predicting breast cancer metastasis, is still limited. We have been dedicated to constructing a DFNN model to predict breast cancer metastasis n years in advance. However, the challenge lies in efficiently identifying optimal hyperparameter values through grid search, given the constraints of time and resources. Issues such as the infinite possibilities for continuous hyperparameters like l1 and l2, as well as the time-consuming and costly process, further complicate the task. To address these challenges, we developed Single Hyperparameter Grid Search (SHGS) strategy, serving as a preselection method before grid search. Our experiments with SHGS applied to DFNN models for breast cancer metastasis prediction focus on analyzing eight target hyperparameters: epochs, batch size, dropout, L1, L2, learning rate, decay, and momentum. We created three figures, each depicting the experiment results obtained from three LSM-I-10-Plus-year datasets. These figures illustrate the relationship between model performance and the target hyperparameter values. For each hyperparameter, we analyzed whether changes in this hyperparameter would affect model performance, examined if there were specific patterns, and explored how to choose values for the particular hyperparameter. Our experimental findings reveal that the optimal value of a hyperparameter is not only dependent on the dataset but is also significantly influenced by the settings of other hyperparameters. Additionally, our experiments suggested some reduced range of values for a target hyperparameter, which may be helpful for low-budget grid search. This approach serves as a prior experience and foundation for subsequent use of grid search to enhance model performance.
☆ Remove Symmetries to Control Model Expressivity
When symmetry is present in the loss function, the model is likely to be trapped in a low-capacity state that is sometimes known as a "collapse." Being trapped in these low-capacity states can be a major obstacle to training across many scenarios where deep learning technology is applied. We first prove two concrete mechanisms through which symmetries lead to reduced capacities and ignored features during training. We then propose a simple and theoretically justified algorithm, syre, to remove almost all symmetry-induced low-capacity states in neural networks. The proposed method is shown to improve the training of neural networks in scenarios when this type of entrapment is especially a concern. A remarkable merit of the proposed method is that it is model-agnostic and does not require any knowledge of the symmetry.
comment: preprint
☆ CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks
Neural networks have continued to gain prevalence in the modern era for their ability to model complex data through pattern recognition and behavior remodeling. However, the static construction of traditional neural networks inhibits dynamic intelligence. This makes them inflexible to temporal changes in data and unfit to capture complex dependencies. With the advent of quantum technology, there has been significant progress in creating quantum algorithms. In recent years, researchers have developed quantum neural networks that leverage the capabilities of qubits to outperform classical networks. However, their current formulation exhibits a static construction limiting the system's dynamic intelligence. To address these weaknesses, we develop a Liquid Quantum Neural Network (LQNet) and a Continuous Time Recurrent Quantum Neural Network (CTRQNet). Both models demonstrate a significant improvement in accuracy compared to existing quantum neural networks (QNNs), achieving accuracy increases as high as 40\% on CIFAR 10 through binary classification. We propose LQNets and CTRQNets might shine a light on quantum machine learning's black box.
☆ LLM-assisted Labeling Function Generation for Semantic Type Detection VLDB'24
Detecting semantic types of columns in data lake tables is an important application. A key bottleneck in semantic type detection is the availability of human annotation due to the inherent complexity of data lakes. In this paper, we propose using programmatic weak supervision to assist in annotating the training data for semantic type detection by leveraging labeling functions. One challenge in this process is the difficulty of manually writing labeling functions due to the large volume and low quality of the data lake table datasets. To address this issue, we explore employing Large Language Models (LLMs) for labeling function generation and introduce several prompt engineering strategies for this purpose. We conduct experiments on real-world web table datasets. Based on the initial results, we perform extensive analysis and provide empirical insights and future directions for researchers in this field.
comment: VLDB'24-DATAI
☆ Simulating realistic short tandem repeat capillary electrophoretic signal using a generative adversarial network
DNA profiles are made up from multiple series of electrophoretic signal measuring fluorescence over time. Typically, human DNA analysts 'read' DNA profiles using their experience to distinguish instrument noise, artefactual signal, and signal corresponding to DNA fragments of interest. Recent work has developed an artificial neural network, ANN, to carry out the task of classifying fluorescence types into categories in DNA profile electrophoretic signal. But the creation of the necessarily large amount of labelled training data for the ANN is time consuming and expensive, and a limiting factor in the ability to robustly train the ANN. If realistic, prelabelled, training data could be simulated then this would remove the barrier to training an ANN with high efficacy. Here we develop a generative adversarial network, GAN, modified from the pix2pix GAN to achieve this task. With 1078 DNA profiles we train the GAN and achieve the ability to simulate DNA profile information, and then use the generator from the GAN as a 'realism filter' that applies the noise and artefact elements exhibited in typical electrophoretic signal.
comment: 29 pages, 9 Figures
☆ FRACTURED-SORRY-Bench: Framework for Revealing Attacks in Conversational Turns Undermining Refusal Efficacy and Defenses over SORRY-Bench
This paper introduces FRACTURED-SORRY-Bench, a framework for evaluating the safety of Large Language Models (LLMs) against multi-turn conversational attacks. Building upon the SORRY-Bench dataset, we propose a simple yet effective method for generating adversarial prompts by breaking down harmful queries into seemingly innocuous sub-questions. Our approach achieves a maximum increase of +46.22\% in Attack Success Rates (ASRs) across GPT-4, GPT-4o, GPT-4o-mini, and GPT-3.5-Turbo models compared to baseline methods. We demonstrate that this technique poses a challenge to current LLM safety measures and highlights the need for more robust defenses against subtle, multi-turn attacks.
comment: 4 pages, 2 tables
☆ Improving Generalization of Speech Separation in Real-World Scenarios: Strategies in Simulation, Optimization, and Evaluation
Achieving robust speech separation for overlapping speakers in various acoustic environments with noise and reverberation remains an open challenge. Although existing datasets are available to train separators for specific scenarios, they do not effectively generalize across diverse real-world scenarios. In this paper, we present a novel data simulation pipeline that produces diverse training data from a range of acoustic environments and content, and propose new training paradigms to improve quality of a general speech separation model. Specifically, we first introduce AC-SIM, a data simulation pipeline that incorporates broad variations in both content and acoustics. Then we integrate multiple training objectives into the permutation invariant training (PIT) to enhance separation quality and generalization of the trained model. Finally, we conduct comprehensive objective and human listening experiments across separation architectures and benchmarks to validate our methods, demonstrating substantial improvement of generalization on both non-homologous and real-world test sets.
comment: In Proceedings of the 25th Annual Conference of the International Speech Communication Association, Interspeech 2024
☆ ChartEye: A Deep Learning Framework for Chart Information Extraction
The widespread use of charts and infographics as a means of data visualization in various domains has inspired recent research in automated chart understanding. However, information extraction from chart images is a complex multitasked process due to style variations and, as a consequence, it is challenging to design an end-to-end system. In this study, we propose a deep learning-based framework that provides a solution for key steps in the chart information extraction pipeline. The proposed framework utilizes hierarchal vision transformers for the tasks of chart-type and text-role classification, while YOLOv7 for text detection. The detected text is then enhanced using Super Resolution Generative Adversarial Networks to improve the recognition output of the OCR. Experimental results on a benchmark dataset show that our proposed framework achieves excellent performance at every stage with F1-scores of 0.97 for chart-type classification, 0.91 for text-role classification, and a mean Average Precision of 0.95 for text detection.
comment: 8 Pages, and 11 Figures
☆ Data Formulator 2: Iteratively Creating Rich Visualizations with AI
To create rich visualizations, data analysts often need to iterate back and forth among data processing and chart specification to achieve their goals. To achieve this, analysts need not only proficiency in data transformation and visualization tools but also efforts to manage the branching history consisting of many different versions of data and charts. Recent LLM-powered AI systems have greatly improved visualization authoring experiences, for example by mitigating manual data transformation barriers via LLMs' code generation ability. However, these systems do not work well for iterative visualization authoring, because they often require analysts to provide, in a single turn, a text-only prompt that fully describes the complex visualization task to be performed, which is unrealistic to both users and models in many cases. In this paper, we present Data Formulator 2, an LLM-powered visualization system to address these challenges. With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI. To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time. In a user study with eight participants, we observed that Data Formulator 2 allows participants to develop their own iteration strategies to complete challenging data exploration sessions.
☆ Logic-Enhanced Language Model Agents for Trustworthy Social Simulations
We introduce the Logic-Enhanced Language Model Agents (LELMA) framework, a novel approach to enhance the trustworthiness of social simulations that utilize large language models (LLMs). While LLMs have gained attention as agents for simulating human behaviour, their applicability in this role is limited by issues such as inherent hallucinations and logical inconsistencies. LELMA addresses these challenges by integrating LLMs with symbolic AI, enabling logical verification of the reasoning generated by LLMs. This verification process provides corrective feedback, refining the reasoning output. The framework consists of three main components: an LLM-Reasoner for producing strategic reasoning, an LLM-Translator for mapping natural language reasoning to logic queries, and a Solver for evaluating these queries. This study focuses on decision-making in game-theoretic scenarios as a model of human interaction. Experiments involving the Hawk-Dove game, Prisoner's Dilemma, and Stag Hunt highlight the limitations of state-of-the-art LLMs, GPT-4 Omni and Gemini 1.0 Pro, in producing correct reasoning in these contexts. LELMA demonstrates high accuracy in error detection and improves the reasoning correctness of LLMs via self-refinement, particularly in GPT-4 Omni.
comment: Source code: https://github.com/dicelab-rhul/LELMA
☆ Verification methods for international AI agreements
What techniques can be used to verify compliance with international agreements about advanced AI development? In this paper, we examine 10 verification methods that could detect two types of potential violations: unauthorized AI training (e.g., training runs above a certain FLOP threshold) and unauthorized data centers. We divide the verification methods into three categories: (a) national technical means (methods requiring minimal or no access from suspected non-compliant nations), (b) access-dependent methods (methods that require approval from the nation suspected of unauthorized activities), and (c) hardware-dependent methods (methods that require rules around advanced hardware). For each verification method, we provide a description, historical precedents, and possible evasion techniques. We conclude by offering recommendations for future work related to the verification and enforcement of international AI governance agreements.
☆ Using Large Language Models to Create AI Personas for Replication and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings
This report analyzes the potential for large language models (LLMs) to expedite accurate replication of published message effects studies. We tested LLM-powered participants (personas) by replicating 133 experimental findings from 14 papers containing 45 recent studies in the Journal of Marketing (January 2023-May 2024). We used a new software tool, Viewpoints AI (https://viewpoints.ai/), that takes study designs, stimuli, and measures as input, automatically generates prompts for LLMs to act as a specified sample of unique personas, and collects their responses to produce a final output in the form of a complete dataset and statistical analysis. The underlying LLM used was Anthropic's Claude Sonnet 3.5. We generated 19,447 AI personas to replicate these studies with the exact same sample attributes, study designs, stimuli, and measures reported in the original human research. Our LLM replications successfully reproduced 76% of the original main effects (84 out of 111), demonstrating strong potential for AI-assisted replication of studies in which people respond to media stimuli. When including interaction effects, the overall replication rate was 68% (90 out of 133). The use of LLMs to replicate and accelerate marketing research on media effects is discussed with respect to the replication crisis in social science, potential solutions to generalizability problems in sampling subjects and experimental conditions, and the ability to rapidly test consumer responses to various media stimuli. We also address the limitations of this approach, particularly in replicating complex interaction effects in media response studies, and suggest areas for future research and improvement in AI-assisted experimental replication of media effects.
comment: 24 pages, 3 figures, 2 tables
☆ Identification of Prognostic Biomarkers for Stage III Non-Small Cell Lung Carcinoma in Female Nonsmokers Using Machine Learning
Lung cancer remains a leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) being the most common subtype. This study aimed to identify key biomarkers associated with stage III NSCLC in non-smoking females using gene expression profiling from the GDS3837 dataset. Utilizing XGBoost, a machine learning algorithm, the analysis achieved a strong predictive performance with an AUC score of 0.835. The top biomarkers identified - CCAAT enhancer binding protein alpha (C/EBP-alpha), lactate dehydrogenase A4 (LDHA), UNC-45 myosin chaperone B (UNC-45B), checkpoint kinase 1 (CHK1), and hypoxia-inducible factor 1 subunit alpha (HIF-1-alpha) - have been validated in the literature as being significantly linked to lung cancer. These findings highlight the potential of these biomarkers for early diagnosis and personalized therapy, emphasizing the value of integrating machine learning with molecular profiling in cancer research.
comment: This paper has been accepted for publication in the IEEE ICBASE 2024 conference
☆ Efficient $k$-NN Search in IoT Data: Overlap Optimization in Tree-Based Indexing Structures
The proliferation of interconnected devices in the Internet of Things (IoT) has led to an exponential increase in data, commonly known as Big IoT Data. Efficient retrieval of this heterogeneous data demands a robust indexing mechanism for effective organization. However, a significant challenge remains: the overlap in data space partitions during index construction. This overlap increases node access during search and retrieval, resulting in higher resource consumption, performance bottlenecks, and impedes system scalability. To address this issue, we propose three innovative heuristics designed to quantify and strategically reduce data space partition overlap. The volume-based method (VBM) offers a detailed assessment by calculating the intersection volume between partitions, providing deeper insights into spatial relationships. The distance-based method (DBM) enhances efficiency by using the distance between partition centers and radii to evaluate overlap, offering a streamlined yet accurate approach. Finally, the object-based method (OBM) provides a practical solution by counting objects across multiple partitions, delivering an intuitive understanding of data space dynamics. Experimental results demonstrate the effectiveness of these methods in reducing search time, underscoring their potential to improve data space partitioning and enhance overall system performance.
comment: 28 pages, 21 figures, 1 table
☆ An Extremely Data-efficient and Generative LLM-based Reinforcement Learning Agent for Recommenders
Recent advancements in large language models (LLMs) have enabled understanding webpage contexts, product details, and human instructions. Utilizing LLMs as the foundational architecture for either reward models or policies in reinforcement learning has gained popularity -- a notable achievement is the success of InstructGPT. RL algorithms have been instrumental in maximizing long-term customer satisfaction and avoiding short-term, myopic goals in industrial recommender systems, which often rely on deep learning models to predict immediate clicks or purchases. In this project, several RL methods are implemented and evaluated using the WebShop benchmark environment, data, simulator, and pre-trained model checkpoints. The goal is to train an RL agent to maximize the purchase reward given a detailed human instruction describing a desired product. The RL agents are developed by fine-tuning a pre-trained BERT model with various objectives, learning from preferences without a reward model, and employing contemporary training techniques such as Proximal Policy Optimization (PPO) as used in InstructGPT, and Direct Preference Optimization (DPO). This report also evaluates the RL agents trained using generative trajectories. Evaluations were conducted using Thompson sampling in the WebShop simulator environment. The simulated online experiments demonstrate that agents trained on generated trajectories exhibited comparable task performance to those trained using human trajectories. This has demonstrated an example of an extremely low-cost data-efficient way of training reinforcement learning agents. Also, with limited training time (<2hours), without utilizing any images, a DPO agent achieved a 19% success rate after approximately 3000 steps or 30 minutes of training on T4 GPUs, compared to a PPO agent, which reached a 15% success rate.
☆ EMP: Enhance Memory in Data Pruning
Recently, large language and vision models have shown strong performance, but due to high pre-training and fine-tuning costs, research has shifted towards faster training via dataset pruning. Previous methods used sample loss as an evaluation criterion, aiming to select the most "difficult" samples for training. However, when the pruning rate increases, the number of times each sample is trained becomes more evenly distributed, which causes many critical or general samples to not be effectively fitted. We refer to this as Low-Frequency Learning (LFL). In other words, LFL prevents the model from remembering most samples. In our work, we decompose the scoring function of LFL, provide a theoretical explanation for the inefficiency of LFL, and propose adding a memory term to the scoring function to enhance the model's memory capability, along with an approximation of this memory term. Similarly, we explore memory in Self-Supervised Learning (SSL), marking the first discussion on SSL memory. Using contrastive learning, we derive the memory term both theoretically and experimentally. Finally, we propose Enhance Memory Pruning (EMP), which addresses the issue of insufficient memory under high pruning rates by enhancing the model's memory of data, thereby improving its performance. We evaluated the performance of EMP in tasks such as image classification, natural language understanding, and model pre-training. The results show that EMP can improve model performance under extreme pruning rates. For example, in the CIFAR100-ResNet50 pre-training task, with 70\% pruning, EMP outperforms current methods by 2.2\%.
☆ A Deep Learning Approach to Localizing Multi-level Airway Collapse Based on Snoring Sounds
This study investigates the application of machine/deep learning to classify snoring sounds excited at different levels of the upper airway in patients with obstructive sleep apnea (OSA) using data from drug-induced sleep endoscopy (DISE). The snoring sounds of 39 subjects were analyzed and labeled according to the Velum, Oropharynx, Tongue Base, and Epiglottis (VOTE) classification system. The dataset, comprising 5,173 one-second segments, was used to train and test models, including Support Vector Machine (SVM), Bidirectional Long Short-Term Memory (BiLSTM), and ResNet-50. The ResNet-50, a convolutional neural network (CNN), showed the best overall performance in classifying snoring acoustics, particularly in identifying multi-level obstructions. The study emphasizes the potential of integrating snoring acoustics with deep learning to improve the diagnosis and treatment of OSA. However, challenges such as limited sample size, data imbalance, and differences between pharmacologically induced and natural snoring sounds were noted, suggesting further research to enhance model accuracy and generalizability.
☆ Meta-Learn Unimodal Signals with Weak Supervision for Multimodal Sentiment Analysis
Multimodal sentiment analysis aims to effectively integrate information from various sources to infer sentiment, where in many cases there are no annotations for unimodal labels. Therefore, most works rely on multimodal labels for training. However, there exists the noisy label problem for the learning of unimodal signals as multimodal annotations are not always the ideal substitutes for the unimodal ones, failing to achieve finer optimization for individual modalities. In this paper, we explore the learning of unimodal labels under the weak supervision from the annotated multimodal labels. Specifically, we propose a novel meta uni-label generation (MUG) framework to address the above problem, which leverages the available multimodal labels to learn the corresponding unimodal labels by the meta uni-label correction network (MUCN). We first design a contrastive-based projection module to bridge the gap between unimodal and multimodal representations, so as to use multimodal annotations to guide the learning of MUCN. Afterwards, we propose unimodal and multimodal denoising tasks to train MUCN with explicit supervision via a bi-level optimization strategy. We then jointly train unimodal and multimodal learning tasks to extract discriminative unimodal features for multimodal inference. Experimental results suggest that MUG outperforms competitive baselines and can learn accurate unimodal labels.
☆ Uncertainty-aware segmentation for rainfall prediction post processing KDD'24
Accurate precipitation forecasts are crucial for applications such as flood management, agricultural planning, water resource allocation, and weather warnings. Despite advances in numerical weather prediction (NWP) models, they still exhibit significant biases and uncertainties, especially at high spatial and temporal resolutions. To address these limitations, we explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts to obtain forecast uncertainties that lead to a better trade-off between accuracy and reliability. Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net, called SDE U-Net, tailored to segmentation problems like ours. We evaluate its performance for both typical and intense precipitation events. Our results show that all deep learning models significantly outperform the average baseline NWP solution, with our implementation of the SDE U-Net showing the best trade-off between accuracy and reliability. Integrating these models, which account for uncertainty, into operational forecasting systems can improve decision-making and preparedness for weather-related events.
comment: Paper accepted at the 3rd Workshop on Uncertainty Reasoning and Quantification in Decision Making at ACM SIGKDD'24 (August 26, 2024, Barcelona)
♻ ☆ Urdu Digital Text Word Optical Character Recognition Using Permuted Auto Regressive Sequence Modeling
This research paper presents a novel word-level Optical Character Recognition (OCR) model developed specifically for digital Urdu text. The model utilizes transformer-based architectures and attention mechanisms to address the unique challenges of recognizing Urdu script, which includes handling a diverse range of text styles, fonts, and variations. Trained on a comprehensive dataset of approximately 160,000 Urdu text images, the model incorporates a permuted autoregressive sequence (PARSeq) architecture. This design enables context-aware inference and iterative refinement by leveraging bidirectional context information, significantly enhancing its ability to accurately recognize Urdu characters. The model achieves a character error rate (CER) of 0.178, highlighting its effectiveness and precision in real-world applications. However, the model has some limitations, such as difficulties with blurred images, non-horizontal orientations, and the presence of trailing punctuation marks, which can introduce noise into the recognition process. Addressing these challenges will be a key focus of future work. Future research will aim to further refine the model through advanced data augmentation techniques, optimization of hyperparameters, and the integration of context-aware language models, ultimately enhancing the model's performance and robustness in Urdu text recognition.
♻ ☆ Halfway Escape Optimization: A Quantum-Inspired Solution for General Optimization Problems
This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a quantum-inspired metaheuristic designed to address general optimization problems characterized by rugged landscapes and high-dimensionality with an efficient convergence rate. The study presents a comprehensive comparative evaluation of HEO's performance against established optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial Fish Swarm Algorithm (AFSA), Grey Wolf Optimizer (GWO), and Quantum behaved Particle Swarm Optimization (QPSO). The primary analysis encompasses 14 benchmark functions with dimension 30, demonstrating HEO's effectiveness and adaptability in navigating general optimization problems and providing valuable insights into its performance. The test of HEO in Pressure Vessel Design and Tubular Column Design infers its feasibility and potential in real-time applications. Further validation in Osmancik-97 and Cammeo Rice Classification proves the effectiveness of HEO and achieves a higher accuracy record.
♻ ☆ VHAKG: A Multi-modal Knowledge Graph Based on Synchronized Multi-view Videos of Daily Activities CIKM2024
Multi-modal knowledge graphs (MMKGs), which ground various non-symbolic data (e.g., images and videos) into symbols, have attracted attention as resources enabling knowledge processing and machine learning across modalities. However, the construction of MMKGs for videos consisting of multiple events, such as daily activities, is still in the early stages. In this paper, we construct an MMKG based on synchronized multi-view simulated videos of daily activities. Besides representing the content of daily life videos as event-centric knowledge, our MMKG also includes frame-by-frame fine-grained changes, such as bounding boxes within video frames. In addition, we provide support tools for querying our MMKG. As an application example, we demonstrate that our MMKG facilitates benchmarking vision-language models by providing the necessary vision-language datasets for a tailored task.
comment: 5 pages, 4 figures, accepted by CIKM2024 Resource Track
♻ ☆ GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks
Neural networks are powerful function approximators, yet their ``black-box" nature often renders them opaque and difficult to interpret. While many post-hoc explanation methods exist, they typically fail to capture the underlying reasoning processes of the networks. A truly interpretable neural network would be trained similarly to conventional models using techniques such as backpropagation, but additionally provide insights into the learned input-output relationships. In this work, we introduce the concept of interpretability pipelineing, to incorporate multiple interpretability techniques to outperform each individual technique. To this end, we first evaluate several architectures that promise such interpretability, with a particular focus on two recent models selected for their potential to incorporate interpretability into standard neural network architectures while still leveraging backpropagation: the Growing Interpretable Neural Network (GINN) and Kolmogorov Arnold Networks (KAN). We analyze the limitations and strengths of each and introduce a novel interpretable neural network GINN-KAN that synthesizes the advantages of both models. When tested on the Feynman symbolic regression benchmark datasets, GINN-KAN outperforms both GINN and KAN. To highlight the capabilities and the generalizability of this approach, we position GINN-KAN as an alternative to conventional black-box networks in Physics-Informed Neural Networks (PINNs). We expect this to have far-reaching implications in the application of deep learning pipelines in the natural sciences. Our experiments with this interpretable PINN on 15 different partial differential equations demonstrate that GINN-KAN augmented PINNs outperform PINNs with black-box networks in solving differential equations and surpass the capabilities of both GINN and KAN.
♻ ☆ Research on the Spatial Data Intelligent Foundation Model
This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
comment: V1 and V2 are in Chinese language, other versions are in English
♻ ☆ AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors
The complexity of financial data, characterized by its variability and low signal-to-noise ratio, necessitates advanced methods in quantitative investment that prioritize both performance and interpretability.Transitioning from early manual extraction to genetic programming, the most advanced approach in the alpha factor mining domain currently employs reinforcement learning to mine a set of combination factors with fixed weights. However, the performance of resultant alpha factors exhibits inconsistency, and the inflexibility of fixed factor weights proves insufficient in adapting to the dynamic nature of financial markets. To address this issue, this paper proposes a two-stage formulaic alpha generating framework AlphaForge, for alpha factor mining and factor combination. This framework employs a generative-predictive neural network to generate factors, leveraging the robust spatial exploration capabilities inherent in deep learning while concurrently preserving diversity. The combination model within the framework incorporates the temporal performance of factors for selection and dynamically adjusts the weights assigned to each component alpha factor. Experiments conducted on real-world datasets demonstrate that our proposed model outperforms contemporary benchmarks in formulaic alpha factor mining. Furthermore, our model exhibits a notable enhancement in portfolio returns within the realm of quantitative investment and real money investment.
comment: 10 pages, 3 figures
♻ ☆ Contextual Bandit with Herding Effects: Algorithms and Recommendation Applications PRICAI 2024
Contextual bandits serve as a fundamental algorithmic framework for optimizing recommendation decisions online. Though extensive attention has been paid to tailoring contextual bandits for recommendation applications, the "herding effects" in user feedback have been ignored. These herding effects bias user feedback toward historical ratings, breaking down the assumption of unbiased feedback inherent in contextual bandits. This paper develops a novel variant of the contextual bandit that is tailored to address the feedback bias caused by the herding effects. A user feedback model is formulated to capture this feedback bias. We design the TS-Conf (Thompson Sampling under Conformity) algorithm, which employs posterior sampling to balance the exploration and exploitation tradeoff. We prove an upper bound for the regret of the algorithm, revealing the impact of herding effects on learning speed. Extensive experiments on datasets demonstrate that TS-Conf outperforms four benchmark algorithms. Analysis reveals that TS-Conf effectively mitigates the negative impact of herding effects, resulting in faster learning and improved recommendation accuracy.
comment: Published as a conference paper at PRICAI 2024
♻ ☆ Language-specific Calibration for Pruning Multilingual Language Models
Recent advances in large language model (LLM) pruning have shown state-of-the-art compression results in post-training and retraining-free settings while maintaining high predictive performance. However, such research mainly considers calibrating pruning using English text, despite the multilingual nature of modern LLMs and their frequent uses in non-English languages. In this paper, we set out to explore effective strategies for calibrating the pruning of multilingual language models. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse tasks, models, and state-of-the-art pruning techniques. Our results present practical suggestions, for example, calibrating in the target language can efficiently yield lower perplexity, but does not necessarily benefit downstream tasks. Our further analysis experiments unveil that calibration in the target language mainly contributes to preserving language-specific features related to fluency and coherence, but might not contribute to capturing language-agnostic features such as language understanding and reasoning. Last, we provide practical recommendations for future practitioners.
♻ ☆ Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. Despite the progress, most of them suffer from training stability issues and scale poorly with growing data size. More importantly, they generally lack control mechanisms to steer the generated trajectories based on spatiotemporal constraints such as fixing specific visits. To address such limitations, we formally define the controlled trajectory generation problem with spatiotemporal constraints and propose Geo-Llama. This novel LLM-inspired framework enforces explicit visit constraints in a contextually coherent way. It fine-tunes pre-trained LLMs on trajectories with a visit-wise permutation strategy where each visit corresponds to a time and location. This enables the model to capture the spatiotemporal patterns regardless of visit orders and allows flexible and in-context constraint integration through prompts during generation. Extensive experiments on real-world and synthetic datasets validate the effectiveness of Geo-Llama, demonstrating its versatility and robustness in handling a broad range of constraints to generate more realistic trajectories compared to existing methods.
♻ ☆ Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems using pretrained large language models (LLMs). In this work, we analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity. To this end, we introduce a multi-step latent variable model that encapsulates the reasoning process, where the latent variable encodes the task information. Under this framework, we demonstrate that when the pretraining dataset is sufficiently large, the estimator formed by CoT prompting is equivalent to a Bayesian estimator. This estimator effectively solves the multi-step reasoning problem by aggregating a posterior distribution inferred from the demonstration examples in the prompt. Moreover, we prove that the statistical error of the CoT estimator can be decomposed into two main components: (i) a prompting error, which arises from inferring the true task using CoT prompts, and (ii) the statistical error of the pretrained LLM. We establish that, under appropriate assumptions, the prompting error decays exponentially to zero as the number of demonstrations increases. Additionally, we explicitly characterize the approximation and generalization errors of the pretrained LLM. Notably, we construct a transformer model that approximates the target distribution of the multi-step reasoning problem with an error that decreases exponentially in the number of transformer blocks. Our analysis extends to other variants of CoT, including Self-Consistent CoT, Tree-of-Thought, and Selection-Inference, offering a broad perspective on the efficacy of these methods. We also provide numerical experiments to validate the theoretical findings.
comment: 150 pages, 18 figures, 3 tables
♻ ☆ Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
This second international workshop on explainable AI for the Arts (XAIxArts) brought together a community of researchers in HCI, Interaction Design, AI, explainable AI (XAI), and digital arts to explore the role of XAI for the Arts. Workshop held at the 16th ACM Conference on Creativity and Cognition (C&C 2024), Chicago, USA.
comment: Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
♻ ☆ Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model
Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.
♻ ☆ Secret Collusion among Generative AI Agents
Recent capability increases in large language models (LLMs) open up applications in which groups of communicating generative AI agents solve joint tasks. This poses privacy and security challenges concerning the unauthorised sharing of information, or other unwanted forms of agent coordination. Modern steganographic techniques could render such dynamics hard to detect. In this paper, we comprehensively formalise the problem of secret collusion in systems of generative AI agents by drawing on relevant concepts from both AI and security literature. We study incentives for the use of steganography, and propose a variety of mitigation measures. Our investigations result in a model evaluation framework that systematically tests capabilities required for various forms of secret collusion. We provide extensive empirical results across a range of contemporary LLMs. While the steganographic capabilities of current models remain limited, GPT-4 displays a capability jump suggesting the need for continuous monitoring of steganographic frontier model capabilities. We conclude by laying out a comprehensive research program to mitigate future risks of collusion between generative AI models.
♻ ☆ HC3 Plus: A Semantic-Invariant Human ChatGPT Comparison Corpus CIKM2023
ChatGPT has garnered significant interest due to its impressive performance; however, there is growing concern about its potential risks, particularly in the detection of AI-generated content (AIGC), which is often challenging for untrained individuals to identify. Current datasets used for detecting ChatGPT-generated text primarily focus on question-answering tasks, often overlooking tasks with semantic-invariant properties, such as summarization, translation, and paraphrasing. In this paper, we demonstrate that detecting model-generated text in semantic-invariant tasks is more challenging. To address this gap, we introduce a more extensive and comprehensive dataset that incorporates a wider range of tasks than previous work, including those with semantic-invariant properties.
comment: This paper has been accepted by CIKM2023 workshop
♻ ☆ Geometric Neural Network based on Phase Space for BCI-EEG decoding
Objective: The integration of Deep Learning (DL) algorithms on brain signal analysis is still in its nascent stages compared to their success in fields like Computer Vision. This is particularly true for BCI, where the brain activity is decoded to control external devices without requiring muscle control. Electroencephalography (EEG) is a widely adopted choice for designing BCI systems due to its non-invasive and cost-effective nature and excellent temporal resolution. Still, it comes at the expense of limited training data, poor signal-to-noise, and a large variability across and within-subject recordings. Finally, setting up a BCI system with many electrodes takes a long time, hindering the widespread adoption of reliable DL architectures in BCIs outside research laboratories. To improve adoption, we need to improve user comfort using, for instance, reliable algorithms that operate with few electrodes. Approach: Our research aims to develop a DL algorithm that delivers effective results with a limited number of electrodes. Taking advantage of the Augmented Covariance Method and the framework of SPDNet, we propose the Phase-SPDNet architecture and analyze its performance and the interpretability of the results. The evaluation is conducted on 5-fold cross-validation, using only three electrodes positioned above the Motor Cortex. The methodology was tested on nearly 100 subjects from several open-source datasets using the Mother Of All BCI Benchmark (MOABB) framework. Main results: The results of our Phase-SPDNet demonstrate that the augmented approach combined with the SPDNet significantly outperforms all the current state-of-the-art DL architecture in MI decoding. Significance: This new architecture is explainable and with a low number of trainable parameters.
♻ ☆ On-Device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers
On-device training of DNNs allows models to adapt and fine-tune to newly collected data or changing domains while deployed on microcontroller units (MCUs). However, DNN training is a resource-intensive task, making the implementation and execution of DNN training algorithms on MCUs challenging due to low processor speeds, constrained throughput, limited floating-point support, and memory constraints. In this work, we explore on-device training of DNNs for Cortex-M MCUs. We present a method that enables efficient training of DNNs completely in place on the MCU using fully quantized training (FQT) and dynamic partial gradient updates. We demonstrate the feasibility of our approach on multiple vision and time-series datasets and provide insights into the tradeoff between training accuracy, memory overhead, energy, and latency on real hardware.
comment: 12 pages, 9 figures
♻ ☆ From Complexity to Clarity: How AI Enhances Perceptions of Scientists and the Public's Understanding of Science
This paper evaluated the effectiveness of using generative AI to simplify science communication and enhance the public's understanding of science. By comparing lay summaries of journal articles from PNAS, yoked to those generated by AI, this work first assessed linguistic simplicity differences across such summaries and public perceptions in follow-up experiments. Specifically, Study 1a analyzed simplicity features of PNAS abstracts (scientific summaries) and significance statements (lay summaries), observing that lay summaries were indeed linguistically simpler, but effect size differences were small. Study 1b used a large language model, GPT-4, to create significance statements based on paper abstracts and this more than doubled the average effect size without fine-tuning. Study 2 experimentally demonstrated that simply-written GPT summaries facilitated more favorable perceptions of scientists (they were perceived as more credible and trustworthy, but less intelligent) than more complexly-written human PNAS summaries. Crucially, Study 3 experimentally demonstrated that participants comprehended scientific writing better after reading simple GPT summaries compared to complex PNAS summaries. In their own words, participants also summarized scientific papers in a more detailed and concrete manner after reading GPT summaries compared to PNAS summaries of the same article. AI has the potential to engage scientific communities and the public via a simple language heuristic, advocating for its integration into scientific dissemination for a more informed society.
comment: 17 pages
♻ ☆ Correlation recurrent units: A novel neural architecture for improving the predictive performance of time-series data
The time-series forecasting (TSF) problem is a traditional problem in the field of artificial intelligence. Models such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), and GRU (Gate Recurrent Units) have contributed to improving the predictive accuracy of TSF. Furthermore, model structures have been proposed to combine time-series decomposition methods, such as seasonal-trend decomposition using Loess (STL) to ensure improved predictive accuracy. However, because this approach is learned in an independent model for each component, it cannot learn the relationships between time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using five univariate time-series datasets and four multivariate time-series data. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results show that the proposed CRU is an excellent method for TSF problems compared to other neural architectures.
♻ ☆ RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
We introduce RecurrentGemma, a family of open language models which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide two sizes of models, containing 2B and 9B parameters, and provide pre-trained and instruction tuned variants for both. Our models achieve comparable performance to similarly-sized Gemma baselines despite being trained on fewer tokens.
♻ ☆ Predictive maintenance solution for industrial systems -- an unsupervised approach based on log periodic power law
A new unsupervised predictive maintenance analysis method based on the renormalization group approach used to discover critical behavior in complex systems has been proposed. The algorithm analyzes univariate time series and detects critical points based on a newly proposed theorem that identifies critical points using a Log Periodic Power Law function fits. Application of a new algorithm for predictive maintenance analysis of industrial data collected from reciprocating compressor systems is presented. Based on the knowledge of the dynamics of the analyzed compressor system, the proposed algorithm predicts valve and piston rod seal failures well in advance.
comment: 14 pages, 4 figures, 1 table
♻ ☆ A Framework to Model ML Engineering Processes
The development of Machine Learning (ML) based systems is complex and requires multidisciplinary teams with diverse skill sets. This may lead to communication issues or misapplication of best practices. Process models can alleviate these challenges by standardizing task orchestration, providing a common language to facilitate communication, and nurturing a collaborative environment. Unfortunately, current process modeling languages are not suitable for describing the development of such systems. In this paper, we introduce a framework for modeling ML-based software development processes, built around a domain-specific language and derived from an analysis of scientific and gray literature. A supporting toolkit is also available.
♻ ☆ Stick to your Role! Stability of Personal Values Expressed in Large Language Models
The standard way to study Large Language Models (LLMs) with benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLMs' highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence (specifically, value stability) should be studied as a specific property of LLMs and used as another dimension of LLM comparison (alongside others such as cognitive abilities, knowledge, or model size). We present a case-study on the stability of value expression over different contexts (simulated conversations on different topics) as measured using a standard psychology questionnaire (PVQ) and on behavioral downstream tasks. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We consider two settings (with and without instructing LLMs to simulate particular personas), two simulated populations, and three downstream tasks. We observe consistent trends in the stability of models and model families - Mixtral, Mistral, GPT-3.5 and Qwen families are more stable than LLaMa-2 and Phi. The consistency of these trends implies that some models exhibit higher value stability than others, and that stability can be estimated with the set of introduced methodological tools. When instructed to simulate particular personas, LLMs exhibit low Rank-order stability, which further diminishes with conversation length. This highlights the need for future research on LLMs that coherently simulate different personas. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs.
comment: The project website and code are available at https://sites.google.com/view/llmvaluestability Published in PLOS ONE ( https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309114 ), and a shorter version at CogSci 24 ( https://escholarship.org/uc/item/7w4823c6 )
♻ ☆ A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
Principal curve is a well-known statistical method oriented in manifold learning using concepts from differential geometry. In this paper, we propose a novel metric-based principal curve (MPC) method that learns one-dimensional manifold of spatial data. Synthetic datasets Real applications using MNIST dataset show that our method can learn the one-dimensional manifold well in terms of the shape.
♻ ☆ Automated Real-World Sustainability Data Generation from Images of Buildings
When data on building features is unavailable, the task of determining how to improve that building in terms of carbon emissions becomes infeasible. We show that from only a set of images, a Large Language Model with appropriate prompt engineering and domain knowledge can successfully estimate a range of building features relevant for sustainability calculations. We compare our novel image-to-data method with a ground truth comprising real building data for 47 apartments and achieve accuracy better than a human performing the same task. We also demonstrate that the method can generate tailored recommendations to the owner on how best to improve their properties and discuss methods to scale the approach.
comment: 6 pages
♻ ☆ When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships. By using shared resources to simultaneously calculate multiple outputs, this learning paradigm has the potential to have lower memory requirements and inference times compared to the traditional approach of using separate methods for each task. Previous work in MTL has mainly focused on fully-supervised methods, as task relationships can not only be leveraged to lower the level of data-dependency of those methods but they can also improve performance. However, MTL introduces a set of challenges due to a complex optimisation scheme and a higher labeling requirement. This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges. First, this review analyses how MTL traditionally uses different parameter sharing techniques to transfer knowledge in between tasks. Second, it presents the different challenges arising from such a multi-objective optimisation scheme. Third, it introduces how task groupings can be achieved by analysing task relationships. Fourth, it focuses on how partially supervised methods applied to MTL can tackle the aforementioned challenges. Lastly, this review presents the available datasets, tools and benchmarking results of such methods.
comment: Accepted by Proceedings of the IEEE
♻ ☆ FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models
Fairness-aware domain generalization (FairDG) has emerged as a critical challenge for deploying trustworthy AI systems, particularly in scenarios involving distribution shifts. Traditional methods for addressing fairness have failed in domain generalization due to their lack of consideration for distribution shifts. Although disentanglement has been used to tackle FairDG, it is limited by its strong assumptions. To overcome these limitations, we propose Fairness-aware Classifier-Guided Score-based Diffusion Models (FADE) as a novel approach to effectively address the FairDG issue. Specifically, we first pre-train a score-based diffusion model (SDM) and two classifiers to equip the model with strong generalization capabilities across different domains. Then, we guide the SDM using these pre-trained classifiers to effectively eliminate sensitive information from the generated data. Finally, the generated fair data is used to train downstream classifiers, ensuring robust performance under new data distributions. Extensive experiments on three real-world datasets demonstrate that FADE not only enhances fairness but also improves accuracy in the presence of distribution shifts. Additionally, FADE outperforms existing methods in achieving the best accuracy-fairness trade-offs.
♻ ☆ Articulation Work and Tinkering for Fairness in Machine Learning
The field of fair AI aims to counter biased algorithms through computational modelling. However, it faces increasing criticism for perpetuating the use of overly technical and reductionist methods. As a result, novel approaches appear in the field to address more socially-oriented and interdisciplinary (SOI) perspectives on fair AI. In this paper, we take this dynamic as the starting point to study the tension between computer science (CS) and SOI research. By drawing on STS and CSCW theory, we position fair AI research as a matter of 'organizational alignment': what makes research 'doable' is the successful alignment of three levels of work organization (the social world, the laboratory, and the experiment). Based on qualitative interviews with CS researchers, we analyze the tasks, resources, and actors required for doable research in the case of fair AI. We find that CS researchers engage with SOI research to some extent, but organizational conditions, articulation work, and ambiguities of the social world constrain the doability of SOI research for them. Based on our findings, we identify and discuss problems for aligning CS and SOI as fair AI continues to evolve.
♻ ☆ DeepDelveAI: Identifying AI Related Documents in Large Scale Literature Data
This paper presents DeepDelveAI, a comprehensive dataset specifically curated to identify AI-related research papers from a large-scale academic literature database. The dataset was created using an advanced Long Short-Term Memory (LSTM) model trained on a binary classification task to distinguish between AI-related and non-AI-related papers. The model was trained and validated on a vast dataset, achieving high accuracy, precision, recall, and F1-score. The resulting DeepDelveAI dataset comprises over 9.4 million AI-related papers published since Dartmouth Conference, from 1956 to 2024, providing a crucial resource for analyzing trends, thematic developments, and the evolution of AI research across various disciplines.
comment: 28 pages and 10 figures
♻ ☆ Explicit Modelling of Theory of Mind for Belief Prediction in Nonverbal Social Interactions
We propose MToMnet - a Theory of Mind (ToM) neural network for predicting beliefs and their dynamics during human social interactions from multimodal input. ToM is key for effective nonverbal human communication and collaboration, yet, existing methods for belief modelling have not included explicit ToM modelling or have typically been limited to one or two modalities. MToMnet encodes contextual cues (scene videos and object locations) and integrates them with person-specific cues (human gaze and body language) in a separate MindNet for each person. Inspired by prior research on social cognition and computational ToM, we propose three different MToMnet variants: two involving fusion of latent representations and one involving re-ranking of classification scores. We evaluate our approach on two challenging real-world datasets, one focusing on belief prediction, while the other examining belief dynamics prediction. Our results demonstrate that MToMnet surpasses existing methods by a large margin while at the same time requiring a significantly smaller number of parameters. Taken together, our method opens up a highly promising direction for future work on artificial intelligent systems that can robustly predict human beliefs from their non-verbal behaviour and, as such, more effectively collaborate with humans.
comment: ECAI 2024
♻ ☆ A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks across various research fields. However, transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality. To address this issue, we propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information and train a lane-following and overtaking agent in simulation. This framework facilitates the seamless transfer of the DRL agent to new simulated environments and the real world with minimal effort. We evaluate the performance of the agent in various driving scenarios in both simulation and the real world, and compare it to human players and the PID baseline in simulation. Our proposed framework significantly reduces the gaps between different platforms and the Sim2Real gap, enabling the trained agent to achieve similar performance in both simulation and the real world, driving the vehicle effectively.
♻ ☆ Evading AI-Generated Content Detectors using Homoglyphs
The advent of large language models (LLMs) has enabled the generation of text that increasingly exhibits human-like characteristics. As the detection of such content is of significant importance, numerous studies have been conducted with the aim of developing reliable AI-generated text detectors. These detectors have demonstrated promising results on test data, but recent research has revealed that they can be circumvented by employing different techniques. In this paper, we present homoglyph-based attacks ($a \rightarrow {\alpha}$) as a means of circumventing existing detectors. A comprehensive evaluation was conducted to assess the effectiveness of these attacks on seven detectors, including ArguGPT, Binoculars, DetectGPT, Fast-DetectGPT, Ghostbuster, OpenAI's detector, and watermarking techniques, on five different datasets. Our findings demonstrate that homoglyph-based attacks can effectively circumvent state-of-the-art detectors, leading them to classify all texts as either AI-generated or human-written (decreasing the average Matthews Correlation Coefficient from 0.64 to -0.01). We then examine the effectiveness of these attacks by analyzing how homoglyphs impact different families of detectors. Finally, we discuss the implications of these findings and potential defenses against such attacks.
♻ ☆ Deciphering the Impact of Pretraining Data on Large Language Models through Machine Unlearning ACL 2024
Through pretraining on a corpus with various sources, Large Language Models (LLMs) have gained impressive performance. However, the impact of each component of the pretraining corpus remains opaque. As a result, the organization of the pretraining corpus is still empirical and may deviate from the optimal. To address this issue, we systematically analyze the impact of 48 datasets from 5 major categories of pretraining data of LLMs and measure their impacts on LLMs using benchmarks about nine major categories of model capabilities. Our analyses provide empirical results about the contribution of multiple corpora on the performances of LLMs, along with their joint impact patterns, including complementary, orthogonal, and correlational relationships. We also identify a set of ``high-impact data'' such as Books that is significantly related to a set of model capabilities. These findings provide insights into the organization of data to support more efficient pretraining of LLMs.
comment: Accepted by ACL 2024 Findings
♻ ☆ FERGI: Automatic Annotation of User Preferences for Text-to-Image Generation from Spontaneous Facial Expression Reaction
Researchers have proposed to use data of human preference feedback to fine-tune text-to-image generative models. However, the scalability of human feedback collection has been limited by its reliance on manual annotation. Therefore, we develop and test a method to automatically score user preferences from their spontaneous facial expression reaction to the generated images. We collect a dataset of Facial Expression Reaction to Generated Images (FERGI) and show that the activations of multiple facial action units (AUs) are highly correlated with user evaluations of the generated images. We develop an FAU-Net (Facial Action Units Neural Network), which receives inputs from an AU estimation model, to automatically score user preferences for text-to-image generation based on their facial expression reactions, which is complementary to the pre-trained scoring models based on the input text prompts and generated images. Integrating our FAU-Net valence score with the pre-trained scoring models improves their consistency with human preferences. This method of automatic annotation with facial expression analysis can be potentially generalized to other generation tasks. The code is available at https://github.com/ShuangquanFeng/FERGI, and the dataset is also available at the same link for research purposes.
♻ ☆ LLaVA-VSD: Large Language-and-Vision Assistant for Visual Spatial Description
Visual Spatial Description (VSD) aims to generate texts that describe the spatial relationships between objects within images. Traditional visual spatial relationship classification (VSRC) methods typically output the spatial relationship between two objects in an image, often neglecting world knowledge and lacking general language capabilities. In this paper, we propose a Large Language-and-Vision Assistant for Visual Spatial Description, named LLaVA-VSD, which is designed for the classification, description, and open-ended description of visual spatial relationships. Specifically, the model first constructs a VSD instruction-following dataset using given figure-caption pairs for the three tasks. It then employs LoRA to fine-tune a Large Language and Vision Assistant for VSD, which has 13 billion parameters and supports high-resolution images. Finally, a large language model (Qwen-2) is used to refine the generated sentences, enhancing their diversity and accuracy. LLaVA-VSD demonstrates excellent multimodal conversational capabilities and can follow open-ended instructions to assist with inquiries about object relationships in images.
comment: We have discovered a significant error in the paper that affects the main conclusions. To ensure the accuracy of our research, we have decided to withdraw this paper and will resubmit it after making the necessary corrections
♻ ☆ Solid Waste Detection, Monitoring and Mapping in Remote Sensing Images: A Survey
The detection and characterization of illegal solid waste disposal sites are essential for environmental protection, particularly for mitigating pollution and health hazards. Improperly managed landfills contaminate soil and groundwater via rainwater infiltration, posing threats to both animals and humans. Traditional landfill identification approaches, such as on-site inspections, are time-consuming and expensive. Remote sensing is a cost-effective solution for the identification and monitoring of solid waste disposal sites that enables broad coverage and repeated acquisitions over time. Earth Observation (EO) satellites, equipped with an array of sensors and imaging capabilities, have been providing high-resolution data for several decades. Researchers proposed specialized techniques that leverage remote sensing imagery to perform a range of tasks such as waste site detection, dumping site monitoring, and assessment of suitable locations for new landfills. This review aims to provide a detailed illustration of the most relevant proposals for the detection and monitoring of solid waste sites by describing and comparing the approaches, the implemented techniques, and the employed data. Furthermore, since the data sources are of the utmost importance for developing an effective solid waste detection model, a comprehensive overview of the satellites and publicly available data sets is presented. Finally, this paper identifies the open issues in the state-of-the-art and discusses the relevant research directions for reducing the costs and improving the effectiveness of novel solid waste detection methods.
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ AI-native Memory: A Pathway from LLMs Towards AGI
Large language models (LLMs) have demonstrated the world with the sparks of artificial general intelligence (AGI). One opinion, especially from some startups working on LLMs, argues that an LLM with nearly unlimited context length can realize AGI. However, they might be too optimistic about the long-context capability of (existing) LLMs -- (1) Recent literature has shown that their effective context length is significantly smaller than their claimed context length; and (2) Our reasoning-in-a-haystack experiments further demonstrate that simultaneously finding the relevant information from a long context and conducting (simple) reasoning is nearly impossible. In this paper, we envision a pathway from LLMs to AGI through the integration of \emph{memory}. We believe that AGI should be a system where LLMs serve as core processors. In addition to raw data, the memory in this system would store a large number of important conclusions derived from reasoning processes. Compared with retrieval-augmented generation (RAG) that merely processing raw data, this approach not only connects semantically related information closer, but also simplifies complex inferences at the time of querying. As an intermediate stage, the memory will likely be in the form of natural language descriptions, which can be directly consumed by users too. Ultimately, every agent/person should have its own large personal model, a deep neural network model (thus \emph{AI-native}) that parameterizes and compresses all types of memory, even the ones cannot be described by natural languages. Finally, we discuss the significant potential of AI-native memory as the transformative infrastructure for (proactive) engagement, personalization, distribution, and social in the AGI era, as well as the incurred privacy and security challenges with preliminary solutions.
♻ ☆ AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models
Detecting anomaly edges for dynamic graphs aims to identify edges significantly deviating from the normal pattern and can be applied in various domains, such as cybersecurity, financial transactions and AIOps. With the evolving of time, the types of anomaly edges are emerging and the labeled anomaly samples are few for each type. Current methods are either designed to detect randomly inserted edges or require sufficient labeled data for model training, which harms their applicability for real-world applications. In this paper, we study this problem by cooperating with the rich knowledge encoded in large language models(LLMs) and propose a method, namely AnomalyLLM. To align the dynamic graph with LLMs, AnomalyLLM pre-trains a dynamic-aware encoder to generate the representations of edges and reprograms the edges using the prototypes of word embeddings. Along with the encoder, we design an in-context learning framework that integrates the information of a few labeled samples to achieve few-shot anomaly detection. Experiments on four datasets reveal that AnomalyLLM can not only significantly improve the performance of few-shot anomaly detection, but also achieve superior results on new anomalies without any update of model parameters.
comment: 13pages
♻ ☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
♻ ☆ Affordable Generative Agents
The emergence of large language models (LLMs) has significantly advanced the simulation of believable interactive agents. However, the substantial cost on maintaining the prolonged agent interactions poses challenge over the deployment of believable LLM-based agents. Therefore, in this paper, we develop Affordable Generative Agents (AGA), a framework for enabling the generation of believable and low-cost interactions on both agent-environment and inter-agents levels. Specifically, for agent-environment interactions, we substitute repetitive LLM inferences with learned policies; while for inter-agent interactions, we model the social relationships between agents and compress auxiliary dialogue information. Extensive experiments on multiple environments show the effectiveness and efficiency of our proposed framework. Also, we delve into the mechanisms of emergent believable behaviors lying in LLM agents, demonstrating that agents can only generate finite behaviors in fixed environments, based upon which, we understand ways to facilitate emergent interaction behaviors. Our code is publicly available at: https://github.com/AffordableGenerativeAgents/Affordable-Generative-Agents.
♻ ☆ MolNexTR: A Generalized Deep Learning Model for Molecular Image Recognition
In the field of chemical structure recognition, the task of converting molecular images into machine-readable data formats such as SMILES string stands as a significant challenge, primarily due to the varied drawing styles and conventions prevalent in chemical literature. To bridge this gap, we proposed MolNexTR, a novel image-to-graph deep learning model that collaborates to fuse the strengths of ConvNext, a powerful Convolutional Neural Network variant, and Vision-TRansformer. This integration facilitates a more detailed extraction of both local and global features from molecular images. MolNexTR can predict atoms and bonds simultaneously and understand their layout rules. It also excels at flexibly integrating symbolic chemistry principles to discern chirality and decipher abbreviated structures. We further incorporate a series of advanced algorithms, including an improved data augmentation module, an image contamination module, and a post-processing module for getting the final SMILES output. These modules cooperate to enhance the model's robustness to diverse styles of molecular images found in real literature. In our test sets, MolNexTR has demonstrated superior performance, achieving an accuracy rate of 81-97%, marking a significant advancement in the domain of molecular structure recognition.
♻ ☆ IICPilot: An Intelligent Integrated Circuit Backend Design Framework Using Open EDA
Open-source EDA tools are rapidly advancing, fostering collaboration, innovation, and knowledge sharing within the EDA community. However, the growing complexity of these tools, characterized by numerous design parameters and heuristics, poses a significant barrier to their widespread adoption. This complexity is particularly pronounced in integrated circuit (IC) backend designs, which place substantial demands on engineers' expertise in EDA tools. To tackle this challenge, we introduce IICPilot, an intelligent IC backend design system based on LLM technology. IICPilot automates various backend design procedures, including script generation, EDA tool invocation, design space exploration of EDA parameters, container-based computing resource allocation, and exception management. By automating these tasks, IICPilot significantly lowers the barrier to entry for open-source EDA tools. Specifically, IICPilot utilizes LangChain's multi-agent framework to efficiently handle distinct design tasks, enabling flexible enhancements independently. Moreover, IICPilot separates the backend design workflow from specific open-source EDA tools through a unified EDA calling interface. This approach allows seamless integration with different open-source EDA tools like OpenROAD and iEDA, streamlining the backend design and optimization across the EDA tools.
comment: under review
♻ ☆ Multi-weather Cross-view Geo-localization Using Denoising Diffusion Models ACM MM24
Cross-view geo-localization in GNSS-denied environments aims to determine an unknown location by matching drone-view images with the correct geo-tagged satellite-view images from a large gallery. Recent research shows that learning discriminative image representations under specific weather conditions can significantly enhance performance. However, the frequent occurrence of unseen extreme weather conditions hinders progress. This paper introduces MCGF, a Multi-weather Cross-view Geo-localization Framework designed to dynamically adapt to unseen weather conditions. MCGF establishes a joint optimization between image restoration and geo-localization using denoising diffusion models. For image restoration, MCGF incorporates a shared encoder and a lightweight restoration module to help the backbone eliminate weather-specific information. For geo-localization, MCGF uses EVA-02 as a backbone for feature extraction, with cross-entropy loss for training and cosine distance for testing. Extensive experiments on University160k-WX demonstrate that MCGF achieves competitive results for geo-localization in varying weather conditions.
comment: Accepted by ACM MM24 workshop
♻ ☆ Procedural Adherence and Interpretability Through Neuro-Symbolic Generative Agents
The surge in popularity of large language models (LLMs) has opened doors for new approaches to the creation of interactive agents. However, managing and interpreting the temporal behavior of such agents over the course of a potentially infinite interaction remain challenging. The stateful, long-term horizon reasoning required for coherent agent behavior does not fit well into the LLM paradigm. We propose a combination of formal logic-based program synthesis and LLM content generation to bring guarantees of procedural adherence and interpretability to generative agent behavior. To illustrate the benefit of procedural adherence and interpretability, we use Temporal Stream Logic (TSL) to generate an automaton that enforces an interpretable, high-level temporal structure on an agent. With the automaton tracking the context of the interaction and making decisions to guide the conversation accordingly, we can drive content generation in a way that allows the LLM to focus on a shorter context window. We evaluated our approach on different tasks involved in creating an interactive agent specialized for generating choose-your-own-adventure games. We found that over all of the tasks, an automaton-enhanced agent with procedural guarantees achieves at least 96% adherence to its temporal constraints, whereas a purely LLM-based agent demonstrates as low as 14.67% adherence.
comment: 11 pages
♻ ☆ MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
Autism spectrum disorder (ASD) is characterized by significant challenges in social interaction and comprehending communication signals. Recently, therapeutic interventions for ASD have increasingly utilized Deep learning powered-computer vision techniques to monitor individual progress over time. These models are trained on private, non-public datasets from the autism community, creating challenges in comparing results across different models due to privacy-preserving data-sharing issues. This work introduces MMASD+, an enhanced version of the novel open-source dataset called Multimodal ASD (MMASD). MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data. It integrates the capabilities of Yolov8 and Deep SORT algorithms to distinguish between the therapist and children, addressing a significant barrier in the original dataset. Additionally, a Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD. This framework achieves an accuracy of 95.03% for predicting action types and 96.42% for predicting ASD presence, demonstrating over a 10% improvement compared to models trained on single data modalities. These findings highlight the advantages of integrating multiple data modalities within the Multimodal Transformer framework.
♻ ☆ Convergence and sample complexity of natural policy gradient primal-dual methods for constrained MDPs
We study sequential decision making problems aimed at maximizing the expected total reward while satisfying a constraint on the expected total utility. We employ the natural policy gradient method to solve the discounted infinite-horizon optimal control problem for Constrained Markov Decision Processes (constrained MDPs). Specifically, we propose a new Natural Policy Gradient Primal-Dual (NPG-PD) method that updates the primal variable via natural policy gradient ascent and the dual variable via projected sub-gradient descent. Although the underlying maximization involves a nonconcave objective function and a nonconvex constraint set, under the softmax policy parametrization we prove that our method achieves global convergence with sublinear rates regarding both the optimality gap and the constraint violation. Such convergence is independent of the size of the state-action space, i.e., it is~dimension-free. Furthermore, for log-linear and general smooth policy parametrizations, we establish sublinear convergence rates up to a function approximation error caused by restricted policy parametrization. We also provide convergence and finite-sample complexity guarantees for two sample-based NPG-PD algorithms. Finally, we use computational experiments to showcase the merits and the effectiveness of our approach.
comment: 74 pages, 4 figures, 2 tables
♻ ☆ Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications
Safe reinforcement learning tasks are a challenging domain despite being very common in the real world. The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states. In safety-critical domains, such behaviors could lead to disastrous outcomes. To address this issue, we first describe the problem with a stronger Uniformly Constrained MDP (UCMDP) model where we impose constraints on all reachable states; we then propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic, as a solution to the Lagrangian dual of a UCMDP. We benchmark Objective Suppression in two multi-constraint safety domains, including an autonomous driving domain where any incorrect behavior can lead to disastrous consequences. On the driving domain, we evaluate on open source and proprietary data and evaluate transfer to a real autonomous fleet. Empirically, we demonstrate that our proposed method, when combined with existing safe RL algorithms, can match the task reward achieved by baselines with significantly fewer constraint violations.
♻ ☆ Matmul or No Matmul in the Era of 1-bit LLMs
The advent of 1-bit large language models (LLMs) has attracted considerable attention and opened up new research opportunities. However, 1-bit LLMs only improve a fraction of models by applying extreme quantization to the projection layers while leaving attention heads unchanged. Therefore, to avoid fundamentally wrong choices of goals in future research, it is crucial to understand the actual improvements in computation and memory usage that 1-bit LLMs can deliver. In this work, we present an adaptation of Amdahl's Law tailored for the 1-bit LLM context, which illustrates how partial improvements in 1-bit LLMs impact overall model performance. Through extensive experiments, we uncover key nuances across different model architectures and hardware configurations, offering a roadmap for future research in the era of 1-bit LLMs.
comment: Fixed Typo in title, Fixed typo in author name, fixed typo in amdhal's law para
♻ ☆ WildfireGPT: Tailored Large Language Model for Wildfire Analysis
Recent advancement of large language models (LLMs) represents a transformational capability at the frontier of artificial intelligence. However, LLMs are generalized models, trained on extensive text corpus, and often struggle to provide context-specific information, particularly in areas requiring specialized knowledge, such as wildfire details within the broader context of climate change. For decision-makers focused on wildfire resilience and adaptation, it is crucial to obtain responses that are not only precise but also domain-specific. To that end, we developed WildfireGPT, a prototype LLM agent designed to transform user queries into actionable insights on wildfire risks. We enrich WildfireGPT by providing additional context, such as climate projections and scientific literature, to ensure its information is current, relevant, and scientifically accurate. This enables WildfireGPT to be an effective tool for delivering detailed, user-specific insights on wildfire risks to support a diverse set of end users, including but not limited to researchers and engineers, for making positive impact and decision making.
♻ ☆ SurGen: Text-Guided Diffusion Model for Surgical Video Generation
Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
Graphics 5
☆ Evaluating and Comparing Crowd Simulations: Perspectives from a Crowd Authoring Tool
Crowd simulation is a research area widely used in diverse fields, including gaming and security, assessing virtual agent movements through metrics like time to reach their goals, speed, trajectories, and densities. This is relevant for security applications, for instance, as different crowd configurations can determine the time people spend in environments trying to evacuate them. In this work, we extend WebCrowds, an authoring tool for crowd simulation, to allow users to build scenarios and evaluate them through a set of metrics. The aim is to provide a quantitative metric that can, based on simulation data, select the best crowd configuration in a certain environment. We conduct experiments to validate our proposed metric in multiple crowd simulation scenarios and perform a comparison with another metric found in the literature. The results show that experts in the domain of crowd scenarios agree with our proposed quantitative metric.
☆ G-Style: Stylized Gaussian Splatting
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
☆ Micro and macro facial expressions by driven animations in realistic Virtual Humans
Computer Graphics (CG) advancements have allowed the creation of more realistic Virtual Humans (VH) through modern techniques for animating the VH body and face, thereby affecting perception. From traditional methods, including blend shapes, to driven animations using facial and body tracking, these advancements can potentially enhance the perception of comfort and realism in relation to VHs. Previously, Psychology studied facial movements in humans, with some works separating expressions into macro and micro expressions. Also, some previous CG studies have analyzed how macro and micro expressions are perceived, replicating psychology studies in VHs, encompassing studies with realistic and cartoon VHs, and exploring different VH technologies. However, instead of using facial tracking animation methods, these previous studies animated the VHs using blendshapes interpolation. To understand how the facial tracking technique alters the perception of VHs, this paper extends the study to macro and micro expressions, employing two datasets to transfer real facial expressions to VHs and analyze how their expressions are perceived. Our findings suggest that transferring facial expressions from real actors to VHs significantly diminishes the accuracy of emotion perception compared to VH facial animations created by artists.
♻ ☆ Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis
Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities but require hundreds of images of the scene from diverse viewpoints to render high-quality novel views. With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry and converge to a non-optimal solution. These failures can manifest as floaters or blurry renderings in sparsely observed areas of the scene. In this paper, we propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem. Using an already trained NVS method, we render novel views between existing ones and augment the training data to optimize a second model. This introduces additional multi-view constraints and allows the second model to converge to a better solution. With Re-Nerfing we achieve significant improvements upon multiple pipelines based on NeRF and Gaussian-Splatting in sparse view settings of the mip-NeRF 360 and LLFF datasets. Notably, Re-Nerfing does not require prior knowledge or extra supervision signals, making it a flexible and practical add-on.
comment: Code will be released upon acceptance
♻ ☆ Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods
Biomedical image segmentation plays a vital role in diagnosis of diseases across various organs. Deep learning-based object detection methods are commonly used for such segmentation. There exists an extensive research in this topic. However, there is no standard review on this topic. Existing surveys often lack a standardized approach or focus on broader segmentation techniques. In this paper, we conducted a systematic literature review (SLR), collected and analysed 148 articles that explore deep learning object detection methods for biomedical image segmentation. We critically analyzed these methods, identified the key challenges, and discussed the future directions. From the selected articles we extracted the results including the deep learning models, targeted imaging modalities, targeted diseases, and the metrics for the analysis of the methods. The results have been presented in tabular and/or charted forms. The results are presented in three major categories including two stage detection models, one stage detection models and point-based detection models. Each article is individually analyzed along with its pros and cons. Finally, we discuss open challenges, potential benefits, and future research directions. This SLR aims to provide the research community with a quick yet deeper understanding of these segmentation models, ultimately facilitating the development of more powerful solutions for biomedical image analysis.
Robotics 36
☆ SpecGuard: Specification Aware Recovery for Robotic Autonomous Vehicles from Physical Attacks CCS'24
Robotic Autonomous Vehicles (RAVs) rely on their sensors for perception, and follow strict mission specifications (e.g., altitude, speed, and geofence constraints) for safe and timely operations. Physical attacks can corrupt the RAVs' sensors, resulting in mission failures. Recovering RAVs from such attacks demands robust control techniques that maintain compliance with mission specifications even under attacks to ensure the RAV's safety and timely operations. We propose SpecGuard, a technique that complies with mission specifications and performs safe recovery of RAVs. There are two innovations in SpecGuard. First, it introduces an approach to incorporate mission specifications and learn a recovery control policy using Deep Reinforcement Learning (Deep-RL). We design a compliance-based reward structure that reflects the RAV's complex dynamics and enables SpecGuard to satisfy multiple mission specifications simultaneously. Second, SpecGuard incorporates state reconstruction, a technique that minimizes attack induced sensor perturbations. This reconstruction enables effective adversarial training, and optimizing the recovery control policy for robustness under attacks. We evaluate SpecGuard in both virtual and real RAVs, and find that it achieves 92% recovery success rate under attacks on different sensors, without any crashes or stalls. SpecGuard achieves 2X higher recovery success than prior work, and incurs about 15% performance overhead on real RAVs.
comment: CCS'24 (a shorter version of this paper will appear in the conference proceeding)
☆ Evaluation of Local Planner-Based Stanley Control in Autonomous RC Car Racing Series
This paper proposes a control technique for autonomous RC car racing. The presented method does not require any map-building phase beforehand since it operates only local path planning on the actual LiDAR point cloud. Racing control algorithms must have the capability to be optimized to the actual track layout for minimization of lap time. In the examined one, it is guaranteed with the improvement of the Stanley controller with additive control components to stabilize the movement in both low and high-speed ranges, and with the integration of an adaptive lookahead point to induce sharp and dynamic cornering for traveled distance reduction. The developed method is tested on a 1/10-sized RC car, and the tuning procedure from a base solution to the optimal setting in a real F1Tenth race is presented. Furthermore, the proposed method is evaluated with a comparison to a more simple reactive method, and in parallel to a more complex optimization-based technique that involves offline map building the global optimal trajectory calculation. The performance of the proposed method compared to the latter, referring to the lap time, is that the proposed one has only 8% lower average speed. This demonstrates that with appropriate tuning, a local planning-based method can be comparable with a more complex optimization-based one. Thus, the performance gap is lower than 10% from the state-of-the-art method. Moreover, the proposed technique has significantly higher similarity to real scenarios, therefore the results can be interesting in the context of automotive industry.
☆ No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery
What data or environments to use for training to improve downstream performance is a longstanding and very topical question in reinforcement learning. In particular, Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula enable agents to be robust to in- and out-of-distribution tasks. We ask to what extent these methods are themselves robust when applied to a novel setting, closely inspired by a real-world robotics problem. Surprisingly, we find that the state-of-the-art UED methods either do not improve upon the na\"{i}ve baseline of Domain Randomisation (DR), or require substantial hyperparameter tuning to do so. Our analysis shows that this is due to their underlying scoring functions failing to predict intuitive measures of ``learnability'', i.e., in finding the settings that the agent sometimes solves, but not always. Based on this, we instead directly train on levels with high learnability and find that this simple and intuitive approach outperforms UED methods and DR in several binary-outcome environments, including on our domain and the standard UED domain of Minigrid. We further introduce a new adversarial evaluation procedure for directly measuring robustness, closely mirroring the conditional value at risk (CVaR). We open-source all our code and present visualisations of final policies here: https://github.com/amacrutherford/sampling-for-learnability.
☆ Scalable Supervisory Architecture for Autonomous Race Cars
In recent years, the number and importance of autonomous racing leagues, and consequently the number of studies on them, has been growing. The seamless integration between different series has gained attention due to the scene's diversity. However, the high cost of full scale racing makes it a more accessible development model, to research at smaller form factors and scale up the achieved results. This paper presents a scalable architecture designed for autonomous racing that emphasizes modularity, adaptability to diverse configurations, and the ability to supervise parallel execution of pipelines that allows the use of different dynamic strategies. The system showcased consistent racing performance across different environments, demonstrated through successful participation in two relevant competitions. The results confirm the architecture's scalability and versatility, providing a robust foundation for the development of competitive autonomous racing systems. The successful application in real-world scenarios validates its practical effectiveness and highlights its potential for future advancements in autonomous racing technology.
☆ Distributed Planning for Rigid Robot Formations with Probabilistic Collision Avoidance
This paper presents a distributed method for robots moving in rigid formations while ensuring probabilistic collision avoidance between the robots. The formation is parametrised through the transformation of a base configuration. The robots map their desired velocities into a corresponding desired change in the formation parameters and apply a consensus step to reach agreement on the desired formation and a constraint satisfaction step to ensure collision avoidance within the formation. The constraint set is found such that the probability of collision remains below an upper bound. The method was demonstrated in a manual teleoperation scenario both in simulation and a real-world experiment.
☆ AEROBULL: A Center-of-Mass Displacing Aerial Vehicle Enabling Efficient High-Force Interaction
In various industrial sectors, inspection and maintenance tasks using UAV (Unmanned Aerial Vehicle) require substantial force application to ensure effective adherence and stable contact, posing significant challenges to existing solutions. This paper addresses these industrial needs by introducing a novel lightweight aerial platform (3.12kg) designed to exert high pushing forces on non-horizontal surfaces. To increase maneuverability, the proposed platform incorporates tiltable rotors with 5-DoF (Degree of Freedom) actuation. Moreover, it has an innovative shifting-mass mechanism that dynamically adjusts the system's CoM (Center of Mass) during contact-based task execution. A compliant EE (End-Effector) is applied to ensure a smooth interaction with the work surface. We provide a detailed study of the UAV's overall system design, hardware integration of the developed physical prototype, and software architecture of the proposed control algorithm. Physical experiments were conducted to validate the control design and explore the force generation capability of the designed platform via a pushing task. With a total mass of 3.12kg, the UAV exerted a maximum pushing force of above 28N being almost equal to its gravity force. Furthermore, the experiments illustrated the benefits of having displaced CoM by benchmarking with a fixed CoM configuration.
☆ Depth Restoration of Hand-Held Transparent Objects for Human-to-Robot Handover
Transparent objects are common in daily life, while their unique optical properties pose challenges for RGB-D cameras, which struggle to capture accurate depth information. For assistant robots, accurately perceiving transparent objects held by humans is essential for effective human-robot interaction. This paper presents a Hand-Aware Depth Restoration (HADR) method for hand-held transparent objects based on creating an implicit neural representation function from a single RGB-D image. The proposed method introduces the hand posture as an important guidance to leverage semantic and geometric information. To train and evaluate the proposed method, we create a high-fidelity synthetic dataset called TransHand-14K with a real-to-sim data generation scheme. Experiments show that our method has a better performance and generalization ability compared with existing methods. We further develop a real-world human-to-robot handover system based on the proposed depth restoration method, demonstrating its application value in human-robot interaction.
comment: 7 pages, 7 figures, conference
☆ Three-Dimensional Vehicle Dynamics State Estimation for High-Speed Race Cars under varying Signal Quality IROS 2024
This work aims to present a three-dimensional vehicle dynamics state estimation under varying signal quality. Few researchers have investigated the impact of three-dimensional road geometries on the state estimation and, thus, neglect road inclination and banking. Especially considering high velocities and accelerations, the literature does not address these effects. Therefore, we compare two- and three-dimensional state estimation schemes to outline the impact of road geometries. We use an Extended Kalman Filter with a point-mass motion model and extend it by an additional formulation of reference angles. Furthermore, virtual velocity measurements significantly improve the estimation of road angles and the vehicle's side slip angle. We highlight the importance of steady estimations for vehicle motion control algorithms and demonstrate the challenges of degraded signal quality and Global Navigation Satellite System dropouts. The proposed adaptive covariance facilitates a smooth estimation and enables stable controller behavior. The developed state estimation has been deployed on a high-speed autonomous race car at various racetracks. Our findings indicate that our approach outperforms state-of-the-art vehicle dynamics state estimators and an industry-grade Inertial Navigation System. Further studies are needed to investigate the performance under varying track conditions and on other vehicle types.
comment: This paper has been accepted at IROS 2024
☆ Robo-GS: A Physics Consistent Spatial-Temporal Model for Robotic Arm with Hybrid Representation
Real2Sim2Real plays a critical role in robotic arm control and reinforcement learning, yet bridging this gap remains a significant challenge due to the complex physical properties of robots and the objects they manipulate. Existing methods lack a comprehensive solution to accurately reconstruct real-world objects with spatial representations and their associated physics attributes. We propose a Real2Sim pipeline with a hybrid representation model that integrates mesh geometry, 3D Gaussian kernels, and physics attributes to enhance the digital asset representation of robotic arms. This hybrid representation is implemented through a Gaussian-Mesh-Pixel binding technique, which establishes an isomorphic mapping between mesh vertices and Gaussian models. This enables a fully differentiable rendering pipeline that can be optimized through numerical solvers, achieves high-fidelity rendering via Gaussian Splatting, and facilitates physically plausible simulation of the robotic arm's interaction with its environment using mesh-based methods. The code,full presentation and datasets will be made publicly available at our website https://robostudioapp.com
☆ Optimizing Structured Data Processing through Robotic Process Automation
Robotic Process Automation (RPA) has emerged as a game-changing technology in data extraction, revolutionizing the way organizations process and analyze large volumes of documents such as invoices, purchase orders, and payment advices. This study investigates the use of RPA for structured data extraction and evaluates its advantages over manual processes. By comparing human-performed tasks with those executed by RPA software bots, we assess efficiency and accuracy in data extraction from invoices, focusing on the effectiveness of the RPA system. Through four distinct scenarios involving varying numbers of invoices, we measure efficiency in terms of time and effort required for task completion, as well as accuracy by comparing error rates between manual and RPA processes. Our findings highlight the significant efficiency gains achieved by RPA, with bots completing tasks in significantly less time compared to manual efforts across all cases. Moreover, the RPA system consistently achieves perfect accuracy, mitigating the risk of errors and enhancing process reliability. These results underscore the transformative potential of RPA in optimizing operational efficiency, reducing human labor costs, and improving overall business performance.
comment: This manuscript has been accepted for publication in the journal Revue d'Intelligence Artificielle
☆ Points2Plans: From Point Clouds to Long-Horizon Plans with Composable Relational Dynamics
We present Points2Plans, a framework for composable planning with a relational dynamics model that enables robots to solve long-horizon manipulation tasks from partial-view point clouds. Given a language instruction and a point cloud of the scene, our framework initiates a hierarchical planning procedure, whereby a language model generates a high-level plan and a sampling-based planner produces constraint-satisfying continuous parameters for manipulation primitives sequenced according to the high-level plan. Key to our approach is the use of a relational dynamics model as a unifying interface between the continuous and symbolic representations of states and actions, thus facilitating language-driven planning from high-dimensional perceptual input such as point clouds. Whereas previous relational dynamics models require training on datasets of multi-step manipulation scenarios that align with the intended test scenarios, Points2Plans uses only single-step simulated training data while generalizing zero-shot to a variable number of steps during real-world evaluations. We evaluate our approach on tasks involving geometric reasoning, multi-object interactions, and occluded object reasoning in both simulated and real-world settings. Results demonstrate that Points2Plans offers strong generalization to unseen long-horizon tasks in the real world, where it solves over 85% of evaluated tasks while the next best baseline solves only 50%. Qualitative demonstrations of our approach operating on a mobile manipulator platform are made available at sites.google.com/stanford.edu/points2plans.
comment: Under review
☆ Benchmarking Reinforcement Learning Methods for Dexterous Robotic Manipulation with a Three-Fingered Gripper
Reinforcement Learning (RL) training is predominantly conducted in cost-effective and controlled simulation environments. However, the transfer of these trained models to real-world tasks often presents unavoidable challenges. This research explores the direct training of RL algorithms in controlled yet realistic real-world settings for the execution of dexterous manipulation. The benchmarking results of three RL algorithms trained on intricate in-hand manipulation tasks within practical real-world contexts are presented. Our study not only demonstrates the practicality of RL training in authentic real-world scenarios, facilitating direct real-world applications, but also provides insights into the associated challenges and considerations. Additionally, our experiences with the employed experimental methods are shared, with the aim of empowering and engaging fellow researchers and practitioners in this dynamic field of robotics.
☆ Active Semantic Mapping and Pose Graph Spectral Analysis for Robot Exploration
Exploration in unknown and unstructured environments is a pivotal requirement for robotic applications. A robot's exploration behavior can be inherently affected by the performance of its Simultaneous Localization and Mapping (SLAM) subsystem, although SLAM and exploration are generally studied separately. In this paper, we formulate exploration as an active mapping problem and extend it with semantic information. We introduce a novel active metric-semantic SLAM approach, leveraging recent research advances in information theory and spectral graph theory: we combine semantic mutual information and the connectivity metrics of the underlying pose graph of the SLAM subsystem. We use the resulting utility function to evaluate different trajectories to select the most favorable strategy during exploration. Exploration and SLAM metrics are analyzed in experiments. Running our algorithm on the Habitat dataset, we show that, while maintaining efficiency close to the state-of-the-art exploration methods, our approach effectively increases the performance of metric-semantic SLAM with a 21% reduction in average map error and a 9% improvement in average semantic classification accuracy.
comment: 8 pages, 5 figures
☆ Pathfinding with Lazy Successor Generation
We study a pathfinding problem where only locations (i.e., vertices) are given, and edges are implicitly defined by an oracle answering the connectivity of two locations. Despite its simple structure, this problem becomes non-trivial with a massive number of locations, due to posing a huge branching factor for search algorithms. Limiting the number of successors, such as with nearest neighbors, can reduce search efforts but compromises completeness. Instead, we propose a novel LaCAS* algorithm, which does not generate successors all at once but gradually generates successors as the search progresses. This scheme is implemented with k-nearest neighbors search on a k-d tree. LaCAS* is a complete and anytime algorithm that eventually converges to the optima. Extensive evaluations demonstrate the efficacy of LaCAS*, e.g., solving complex pathfinding instances quickly, where conventional methods falter.
comment: 14 pages
☆ Fast and Modular Autonomy Software for Autonomous Racing Vehicles
Autonomous motorsports aim to replicate the human racecar driver with software and sensors. As in traditional motorsports, Autonomous Racing Vehicles (ARVs) are pushed to their handling limits in multi-agent scenarios at extremely high ($\geq 150mph$) speeds. This Operational Design Domain (ODD) presents unique challenges across the autonomy stack. The Indy Autonomous Challenge (IAC) is an international competition aiming to advance autonomous vehicle development through ARV competitions. While far from challenging what a human racecar driver can do, the IAC is pushing the state of the art by facilitating full-sized ARV competitions. This paper details the MIT-Pitt-RW Team's approach to autonomous racing in the IAC. In this work, we present our modular and fast approach to agent detection, motion planning and controls to create an autonomy stack. We also provide analysis of the performance of the software stack in single and multi-agent scenarios for rapid deployment in a fast-paced competition environment. We also cover what did and did not work when deployed on a physical system the Dallara AV-21 platform and potential improvements to address these shortcomings. Finally, we convey lessons learned and discuss limitations and future directions for improvement.
comment: Published in Journal of Field Robotics
☆ Panoptic Perception for Autonomous Driving: A Survey
Panoptic perception represents a forefront advancement in autonomous driving technology, unifying multiple perception tasks into a singular, cohesive framework to facilitate a thorough understanding of the vehicle's surroundings. This survey reviews typical panoptic perception models for their unique inputs and architectures and compares them to performance, responsiveness, and resource utilization. It also delves into the prevailing challenges faced in panoptic perception and explores potential trajectories for future research. Our goal is to furnish researchers in autonomous driving with a detailed synopsis of panoptic perception, positioning this survey as a pivotal reference in the ever-evolving landscape of autonomous driving technologies.
☆ How Much is too Much: Exploring the Effect of Verbal Route Description Length on Indoor Navigation
Navigating through a new indoor environment can be stressful. Recently, many places have deployed robots to assist visitors. One of the features of such robots is escorting the visitors to their desired destination within the environment, but this is neither scalable nor necessary for every visitor. Instead, a robot assistant could be deployed at a strategic location to provide wayfinding instructions. This not only increases the user experience but can be helpful in many time-critical scenarios e.g., escorting someone to their boarding gate at an airport. However, delivering route descriptions verbally poses a challenge. If the description is too verbose, people may struggle to recall all the information, while overly brief descriptions may be simply unhelpful. This article focuses on studying the optimal length of verbal route descriptions that are effective for reaching the destination and easy for people to recall. This work proposes a theoretical framework that links route segments to chunks in working memory. Based on this framework, an experiment is designed and conducted to examine the effects of route descriptions of different lengths on navigational performance. The results revealed intriguing patterns suggesting an ideal length of four route segments. This study lays a foundation for future research exploring the relationship between route description lengths, working memory capacity, and navigational performance in indoor environments.
comment: Accepted in IEEE ROMAN 2024
☆ This is the Way: Mitigating the Roll of an Autonomous Uncrewed Surface Vessel in Wavy Conditions Using Model Predictive Control IROS
Though larger vessels may be well-equipped to deal with wavy conditions, smaller vessels are often more susceptible to disturbances. This paper explores the development of a nonlinear model predictive control (NMPC) system for Uncrewed Surface Vessels (USVs) in wavy conditions to minimize average roll. The NMPC is based on a prediction method that uses information about the vessel's dynamics and an assumed wave model. This method is able to mitigate the roll of an under-actuated USV in a variety of conditions by adjusting the weights of the cost function. The results show a reduction of 39% of average roll with a tuned controller in conditions with 1.75-metre sinusoidal waves. A general and intuitive tuning strategy is established. This preliminary work is a proof of concept which sets the stage for the leveraging of wave prediction methodologies to perform planning and control in real time for USVs in real-world scenarios and field trials.
comment: 6 pages, 10 figures. To appear in Proceedings of the 2024 IEEE/RSJ International Conference on Robots and Systems (IROS), October 2024
♻ ☆ Brain Inspired Probabilistic Occupancy Grid Mapping with Hyperdimensional Computing
Real-time robotic systems require advanced perception, computation, and action capability. However, the main bottleneck in current autonomous systems is the trade-off between computational capability, energy efficiency and model determinism. World modeling, a key objective of many robotic systems, commonly uses occupancy grid mapping (OGM) as the first step towards building an end-to-end robotic system with perception, planning, autonomous maneuvering, and decision making capabilities. OGM divides the environment into discrete cells and assigns probability values to attributes such as occupancy and traversability. Existing methods fall into two categories: traditional methods and neural methods. Traditional methods rely on dense statistical calculations, while neural methods employ deep learning for probabilistic information processing. Recent works formulate a deterministic theory of neural computation at the intersection of cognitive science and vector symbolic architectures. In this study, we propose a Fourier-based hyperdimensional OGM system, VSA-OGM, combined with a novel application of Shannon entropy that retains the interpretability and stability of traditional methods along with the improved computational efficiency of neural methods. Our approach, validated across multiple datasets, achieves similar accuracy to covariant traditional methods while approximately reducing latency by 200x and memory by 1000x. Compared to invariant traditional methods, we see similar accuracy values while reducing latency by 3.7x. Moreover, we achieve 1.5x latency reductions compared to neural methods while eliminating the need for domain-specific model training.
♻ ☆ PIE: Parkour with Implicit-Explicit Learning Framework for Legged Robots
Parkour presents a highly challenging task for legged robots, requiring them to traverse various terrains with agile and smooth locomotion. This necessitates comprehensive understanding of both the robot's own state and the surrounding terrain, despite the inherent unreliability of robot perception and actuation. Current state-of-the-art methods either rely on complex pre-trained high-level terrain reconstruction modules or limit the maximum potential of robot parkour to avoid failure due to inaccurate perception. In this paper, we propose a one-stage end-to-end learning-based parkour framework: Parkour with Implicit-Explicit learning framework for legged robots (PIE) that leverages dual-level implicit-explicit estimation. With this mechanism, even a low-cost quadruped robot equipped with an unreliable egocentric depth camera can achieve exceptional performance on challenging parkour terrains using a relatively simple training process and reward function. While the training process is conducted entirely in simulation, our real-world validation demonstrates successful zero-shot deployment of our framework, showcasing superior parkour performance on harsh terrains.
comment: Accepted for IEEE Robotics and Automation Letters (RA-L)
♻ ☆ C3DM: Constrained-Context Conditional Diffusion Models for Imitation Learning
Behavior Cloning (BC) methods are effective at learning complex manipulation tasks. However, they are prone to spurious correlation - expressive models may focus on distractors that are irrelevant to action prediction - and are thus fragile in real-world deployment. Prior methods have addressed this challenge by exploring different model architectures and action representations. However, none were able to balance between sample efficiency and robustness against distractors for solving manipulation tasks with a complex action space. We present \textbf{C}onstrained-\textbf{C}ontext \textbf{C}onditional \textbf{D}iffusion \textbf{M}odel (C3DM), a diffusion model policy for solving 6-DoF robotic manipulation tasks with robustness to distractions that can learn deployable robot policies from as little as five demonstrations. A key component of C3DM is a fixation step that helps the action denoiser to focus on task-relevant regions around a predicted fixation point while ignoring distractors in the context. We empirically show that C3DM is robust to out-of-distribution distractors, and consistently achieves high success rates on a wide array of tasks, ranging from table-top manipulation to industrial kitting that require varying levels of precision and robustness to distractors.
♻ ☆ Continual Domain Randomization IROS 2024
Domain Randomization (DR) is commonly used for sim2real transfer of reinforcement learning (RL) policies in robotics. Most DR approaches require a simulator with a fixed set of tunable parameters from the start of the training, from which the parameters are randomized simultaneously to train a robust model for use in the real world. However, the combined randomization of many parameters increases the task difficulty and might result in sub-optimal policies. To address this problem and to provide a more flexible training process, we propose Continual Domain Randomization (CDR) for RL that combines domain randomization with continual learning to enable sequential training in simulation on a subset of randomization parameters at a time. Starting from a model trained in a non-randomized simulation where the task is easier to solve, the model is trained on a sequence of randomizations, and continual learning is employed to remember the effects of previous randomizations. Our robotic reaching and grasping tasks experiments show that the model trained in this fashion learns effectively in simulation and performs robustly on the real robot while matching or outperforming baselines that employ combined randomization or sequential randomization without continual learning. Our code and videos are available at https://continual-dr.github.io/.
comment: Accepted at IROS 2024. Equal contribution from first two authors
♻ ☆ Skill Q-Network: Learning Adaptive Skill Ensemble for Mapless Navigation in Unknown Environments IROS
This paper focuses on the acquisition of mapless navigation skills within unknown environments. We introduce the Skill Q-Network (SQN), a novel reinforcement learning method featuring an adaptive skill ensemble mechanism. Unlike existing methods, our model concurrently learns a high-level skill decision process alongside multiple low-level navigation skills, all without the need for prior knowledge. Leveraging a tailored reward function for mapless navigation, the SQN is capable of learning adaptive maneuvers that incorporate both exploration and goal-directed skills, enabling effective navigation in new environments. Our experiments demonstrate that our SQN can effectively navigate complex environments, exhibiting a 40\% higher performance compared to baseline models. Without explicit guidance, SQN discovers how to combine low-level skill policies, showcasing both goal-directed navigations to reach destinations and exploration maneuvers to escape from local minimum regions in challenging scenarios. Remarkably, our adaptive skill ensemble method enables zero-shot transfer to out-of-distribution domains, characterized by unseen observations from non-convex obstacles or uneven, subterranean-like environments. The project page is available at https://sites.google.com/view/skill-q-net.
comment: 8 pages, 8 figures, accepted at the International Conference on Intelligent Robots and Systems (IROS) 2024
♻ ☆ A Comprehensive Survey of Cross-Domain Policy Transfer for Embodied Agents IJCAI 2024
The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.
comment: IJCAI 2024
♻ ☆ Structured Deep Neural Networks-Based Backstepping Trajectory Tracking Control for Lagrangian Systems
Deep neural networks (DNN) are increasingly being used to learn controllers due to their excellent approximation capabilities. However, their black-box nature poses significant challenges to closed-loop stability guarantees and performance analysis. In this paper, we introduce a structured DNN-based controller for the trajectory tracking control of Lagrangian systems using backing techniques. By properly designing neural network structures, the proposed controller can ensure closed-loop stability for any compatible neural network parameters. In addition, improved control performance can be achieved by further optimizing neural network parameters. Besides, we provide explicit upper bounds on tracking errors in terms of controller parameters, which allows us to achieve the desired tracking performance by properly selecting the controller parameters. Furthermore, when system models are unknown, we propose an improved Lagrangian neural network (LNN) structure to learn the system dynamics and design the controller. We show that in the presence of model approximation errors and external disturbances, the closed-loop stability and tracking control performance can still be guaranteed. The effectiveness of the proposed approach is demonstrated through simulations.
♻ ☆ Probabilistic Visibility-Aware Trajectory Planning for Target Tracking in Cluttered Environments
Target tracking has numerous significant civilian and military applications, and maintaining the visibility of the target plays a vital role in ensuring the success of the tracking task. Existing visibility-aware planners primarily focus on keeping the target within the limited field of view of an onboard sensor and avoiding obstacle occlusion. However, the negative impact of system uncertainty is often neglected, rendering the planners delicate to uncertainties in practice. To bridge the gap, this work proposes a real-time, non-myopic trajectory planner for visibility-aware and safe target tracking in the presence of system uncertainty. For more accurate target motion prediction, we introduce the concept of belief-space probability of detection (BPOD) to measure the predictive visibility of the target under stochastic robot and target states. An Extended Kalman Filter variant incorporating BPOD is developed to predict target belief state under uncertain visibility within the planning horizon. To reach real-time trajectory planning, we propose a computationally efficient algorithm to uniformly calculate both BPOD and the chance-constrained collision risk by utilizing linearized signed distance function (SDF), and then design a two-stage strategy for lightweight calculation of SDF in sequential convex programming. Extensive simulation results with benchmark comparisons show the capacity of the proposed approach to robustly maintain the visibility of the target under high system uncertainty. The practicality of the proposed trajectory planner is validated by real-world experiments.
comment: A technical report for our conference paper in 2024 American Control Conference (ACC)
♻ ☆ Riemannian Flow Matching Policy for Robot Motion Learning IROS'24
We introduce Riemannian Flow Matching Policies (RFMP), a novel model for learning and synthesizing robot visuomotor policies. RFMP leverages the efficient training and inference capabilities of flow matching methods. By design, RFMP inherits the strengths of flow matching: the ability to encode high-dimensional multimodal distributions, commonly encountered in robotic tasks, and a very simple and fast inference process. We demonstrate the applicability of RFMP to both state-based and vision-conditioned robot motion policies. Notably, as the robot state resides on a Riemannian manifold, RFMP inherently incorporates geometric awareness, which is crucial for realistic robotic tasks. To evaluate RFMP, we conduct two proof-of-concept experiments, comparing its performance against Diffusion Policies. Although both approaches successfully learn the considered tasks, our results show that RFMP provides smoother action trajectories with significantly lower inference times.
comment: Accepted for publication at IROS'24. 8 pages, 5 figures, 4 tables
♻ ☆ Online Multi-Agent Pickup and Delivery with Task Deadlines IROS 2024
Managing delivery deadlines in automated warehouses and factories is crucial for maintaining customer satisfaction and ensuring seamless production. This study introduces the problem of online multi-agent pickup and delivery with task deadlines (MAPD-D), an advanced variant of the online MAPD problem incorporating delivery deadlines. In the MAPD problem, agents must manage a continuous stream of delivery tasks online. Tasks are added at any time. Agents must complete their tasks while avoiding collisions with each other. MAPD-D introduces a dynamic, deadline-driven approach that incorporates task deadlines, challenging the conventional MAPD frameworks. To tackle MAPD-D, we propose a novel algorithm named deadline-aware token passing (D-TP). The D-TP algorithm calculates pickup deadlines and assigns tasks while balancing execution cost and deadline proximity. Additionally, we introduce the D-TP with task swaps (D-TPTS) method to further reduce task tardiness, enhancing flexibility and efficiency through task-swapping strategies. Numerical experiments were conducted in simulated warehouse environments to showcase the effectiveness of the proposed methods. Both D-TP and D-TPTS demonstrated significant reductions in task tardiness compared to existing methods. Our methods contribute to efficient operations in automated warehouses and factories with delivery deadlines.
comment: 6 pages, 4 figures, IROS 2024
♻ ☆ InPTC: Integrated Planning and Tube-Following Control for Prescribed-Time Collision-Free Navigation of Wheeled Mobile Robots
In this article, we propose a novel approach, called InPTC (Integrated Planning and Tube-Following Control), for prescribed-time collision-free navigation of wheeled mobile robots in a compact convex workspace cluttered with static, sufficiently separated, and convex obstacles. A path planner with prescribed-time convergence is presented based upon Bouligand's tangent cones and time scale transformation (TST) techniques, yielding a continuous vector field that can guide the robot from almost all initial positions in the free space to the designated goal at a prescribed time, while avoiding entering the obstacle regions augmented with safety margin. By leveraging barrier functions and TST, we further derive a tube-following controller to achieve robot trajectory tracking within a prescribed time less than the planner's settling time. This controller ensures the robot moves inside a predefined ``safe tube'' around the reference trajectory, where the tube radius is set to be less than the safety margin. Consequently, the robot will reach the goal location within a prescribed time while avoiding collision with any obstacles along the way. The proposed InPTC is implemented on a Mona robot operating in an arena cluttered with obstacles of various shapes. Experimental results demonstrate that InPTC not only generates smooth collision-free reference trajectories that converge to the goal location at the preassigned time of $250\,\rm s$ (i.e., the required task completion time), but also achieves tube-following trajectory tracking with tracking accuracy higher than $0.01\rm m$ after the preassigned time of $150\,\rm s$. This enables the robot to accomplish the navigation task within the required time of $250\,\rm s$.
♻ ☆ Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.001 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping.
♻ ☆ Object Augmentation Algorithm: Computing virtual object motion and object induced interaction wrench from optical markers IROS 2024
This study addresses the critical need for diverse and comprehensive data focused on human arm joint torques while performing activities of daily living (ADL). Previous studies have often overlooked the influence of objects on joint torques during ADL, resulting in limited datasets for analysis. To address this gap, we propose an Object Augmentation Algorithm (OAA) capable of augmenting existing marker-based databases with virtual object motions and object-induced joint torque estimations. The OAA consists of five phases: (1) computing hand coordinate systems from optical markers, (2) characterising object movements with virtual markers, (3) calculating object motions through inverse kinematics (IK), (4) determining the wrench necessary for prescribed object motion using inverse dynamics (ID), and (5) computing joint torques resulting from object manipulation. The algorithm's accuracy is validated through trajectory tracking and torque analysis on a 7+4 degree of freedom (DoF) robotic hand-arm system, manipulating three unique objects. The results show that the OAA can accurately and precisely estimate 6 DoF object motion and object-induced joint torques. Correlations between computed and measured quantities were > 0.99 for object trajectories and > 0.93 for joint torques. The OAA was further shown to be robust to variations in the number and placement of input markers, which are expected between databases. Differences between repeated experiments were minor but significant (p < 0.05). The algorithm expands the scope of available data and facilitates more comprehensive analyses of human-object interaction dynamics.
comment: An open source implementation of the described algorithm is available at https://github.com/ChristopherHerneth/ObjectAugmentationAlgorithm/tree/main. Accompanying video material may be found here https://youtu.be/8oz-awvyNRA. The article was accepted at IROS 2024
♻ ☆ A Neurosymbolic Approach to Adaptive Feature Extraction in SLAM IROS
Autonomous robots, autonomous vehicles, and humans wearing mixed-reality headsets require accurate and reliable tracking services for safety-critical applications in dynamically changing real-world environments. However, the existing tracking approaches, such as Simultaneous Localization and Mapping (SLAM), do not adapt well to environmental changes and boundary conditions despite extensive manual tuning. On the other hand, while deep learning-based approaches can better adapt to environmental changes, they typically demand substantial data for training and often lack flexibility in adapting to new domains. To solve this problem, we propose leveraging the neurosymbolic program synthesis approach to construct adaptable SLAM pipelines that integrate the domain knowledge from traditional SLAM approaches while leveraging data to learn complex relationships. While the approach can synthesize end-to-end SLAM pipelines, we focus on synthesizing the feature extraction module. We first devise a domain-specific language (DSL) that can encapsulate domain knowledge on the important attributes for feature extraction and the real-world performance of various feature extractors. Our neurosymbolic architecture then undertakes adaptive feature extraction, optimizing parameters via learning while employing symbolic reasoning to select the most suitable feature extractor. Our evaluations demonstrate that our approach, neurosymbolic Feature EXtraction (nFEX), yields higher-quality features. It also reduces the pose error observed for the state-of-the-art baseline feature extractors ORB and SIFT by up to 90% and up to 66%, respectively, thereby enhancing the system's efficiency and adaptability to novel environments.
comment: 8 pages, 6 figures, and 5 tables. Published at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Corresponding author: Yasra Chandio (ychandio@umass.edu)
♻ ☆ Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers RSS
Large-scale multi-task robotic manipulation systems often rely on text to specify the task. In this work, we explore whether a robot can learn by observing humans. To do so, the robot must understand a person's intent and perform the inferred task despite differences in the embodiments and environments. We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions. Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos. Vid2Robot uses cross-attention transformer layers between video features and the current robot state to produce the actions and perform the same task as shown in the video. We use auxiliary contrastive losses to align the prompt and robot video representations for better policies. We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos. Further, we also show cross-object motion transfer ability that enables video-conditioned policies to transfer a motion observed on one object in the prompt video to another object in the robot's own environment. Videos available at https://vid2robot.github.io
comment: Robotics: Science & Systems (RSS) 2024. https://vid2robot.github.io/
♻ ☆ Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout
This paper introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute the {\em robustness}, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and na\"{i}ve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To tackle this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of {\em controller network dropout}, where we approximate the NN controller in several time-steps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology, can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable backpropagation over long time horizons and trajectories over high dimensional state spaces.
♻ ☆ LTL-Transfer: Skill Transfer for Temporal Task Specification ICRA 2024
Deploying robots in real-world environments, such as households and manufacturing lines, requires generalization across novel task specifications without violating safety constraints. Linear temporal logic (LTL) is a widely used task specification language with a compositional grammar that naturally induces commonalities among tasks while preserving safety guarantees. However, most prior work on reinforcement learning with LTL specifications treats every new task independently, thus requiring large amounts of training data to generalize. We propose LTL-Transfer, a zero-shot transfer algorithm that composes task-agnostic skills learned during training to safely satisfy a wide variety of novel LTL task specifications. Experiments in Minecraft-inspired domains show that after training on only 50 tasks, LTL-Transfer can solve over 90% of 100 challenging unseen tasks and 100% of 300 commonly used novel tasks without violating any safety constraints. We deployed LTL-Transfer at the task-planning level of a quadruped mobile manipulator to demonstrate its zero-shot transfer ability for fetch-and-deliver and navigation tasks.
comment: ICRA 2024
♻ ☆ Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark
Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 28 distinct shipwrecks totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.
comment: Project website link: https://umfieldrobotics.github.io/ai4shipwrecks/
Computer Vision 148
Drone-assisted Road Gaussian Splatting with Cross-view Uncertainty BMVC2024
Robust and realistic rendering for large-scale road scenes is essential in autonomous driving simulation. Recently, 3D Gaussian Splatting (3D-GS) has made groundbreaking progress in neural rendering, but the general fidelity of large-scale road scene renderings is often limited by the input imagery, which usually has a narrow field of view and focuses mainly on the street-level local area. Intuitively, the data from the drone's perspective can provide a complementary viewpoint for the data from the ground vehicle's perspective, enhancing the completeness of scene reconstruction and rendering. However, training naively with aerial and ground images, which exhibit large view disparity, poses a significant convergence challenge for 3D-GS, and does not demonstrate remarkable improvements in performance on road views. In order to enhance the novel view synthesis of road views and to effectively use the aerial information, we design an uncertainty-aware training method that allows aerial images to assist in the synthesis of areas where ground images have poor learning outcomes instead of weighting all pixels equally in 3D-GS training like prior work did. We are the first to introduce the cross-view uncertainty to 3D-GS by matching the car-view ensemble-based rendering uncertainty to aerial images, weighting the contribution of each pixel to the training process. Additionally, to systematically quantify evaluation metrics, we assemble a high-quality synthesized dataset comprising both aerial and ground images for road scenes.
comment: BMVC2024 Project Page: https://sainingzhang.github.io/project/uc-gs/ Code: https://github.com/SainingZhang/uc-gs/
☆ GenRec: Unifying Video Generation and Recognition with Diffusion Models
Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best class-conditioned image-to-video generation results, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed.
comment: 17 pages, 6 figures, 7 tables
☆ Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation
We present a method for generating video sequences with coherent motion between a pair of input key frames. We adapt a pretrained large-scale image-to-video diffusion model (originally trained to generate videos moving forward in time from a single input image) for key frame interpolation, i.e., to produce a video in between two input frames. We accomplish this adaptation through a lightweight fine-tuning technique that produces a version of the model that instead predicts videos moving backwards in time from a single input image. This model (along with the original forward-moving model) is subsequently used in a dual-directional diffusion sampling process that combines the overlapping model estimates starting from each of the two keyframes. Our experiments show that our method outperforms both existing diffusion-based methods and traditional frame interpolation techniques.
comment: project page: https://svd-keyframe-interpolation.github.io/
Learning-based Multi-View Stereo: A Survey
3D reconstruction aims to recover the dense 3D structure of a scene. It plays an essential role in various applications such as Augmented/Virtual Reality (AR/VR), autonomous driving and robotics. Leveraging multiple views of a scene captured from different viewpoints, Multi-View Stereo (MVS) algorithms synthesize a comprehensive 3D representation, enabling precise reconstruction in complex environments. Due to its efficiency and effectiveness, MVS has become a pivotal method for image-based 3D reconstruction. Recently, with the success of deep learning, many learning-based MVS methods have been proposed, achieving impressive performance against traditional methods. We categorize these learning-based methods as: depth map-based, voxel-based, NeRF-based, 3D Gaussian Splatting-based, and large feed-forward methods. Among these, we focus significantly on depth map-based methods, which are the main family of MVS due to their conciseness, flexibility and scalability. In this survey, we provide a comprehensive review of the literature at the time of this writing. We investigate these learning-based methods, summarize their performances on popular benchmarks, and discuss promising future research directions in this area.
☆ DCT-CryptoNets: Scaling Private Inference in the Frequency Domain
The convergence of fully homomorphic encryption (FHE) and machine learning offers unprecedented opportunities for private inference of sensitive data. FHE enables computation directly on encrypted data, safeguarding the entire machine learning pipeline, including data and model confidentiality. However, existing FHE-based implementations for deep neural networks face significant challenges in computational cost, latency, and scalability, limiting their practical deployment. This paper introduces DCT-CryptoNets, a novel approach that leverages frequency-domain learning to tackle these issues. Our method operates directly in the frequency domain, utilizing the discrete cosine transform (DCT) commonly employed in JPEG compression. This approach is inherently compatible with remote computing services, where images are usually transmitted and stored in compressed formats. DCT-CryptoNets reduces the computational burden of homomorphic operations by focusing on perceptually relevant low-frequency components. This is demonstrated by substantial latency reduction of up to 5.3$\times$ compared to prior work on image classification tasks, including a novel demonstration of ImageNet inference within 2.5 hours, down from 12.5 hours compared to prior work on equivalent compute resources. Moreover, DCT-CryptoNets improves the reliability of encrypted accuracy by reducing variability (e.g., from $\pm$2.5\% to $\pm$1.0\% on ImageNet). This study demonstrates a promising avenue for achieving efficient and practical privacy-preserving deep learning on high resolution images seen in real-world applications.
comment: Under Review; 10 pages content, 3 pages appendix, 4 figures, 8 tables; Code TBD
☆ SAM & SAM 2 in 3D Slicer: SegmentWithSAM Extension for Annotating Medical Images
Creating annotations for 3D medical data is time-consuming and often requires highly specialized expertise. Various tools have been implemented to aid this process. Segment Anything Model 2 (SAM 2) offers a general-purpose prompt-based segmentation algorithm designed to annotate videos. In this paper, we adapt this model to the annotation of 3D medical images and offer our implementation in the form of an extension to the popular annotation software: 3D Slicer. Our extension allows users to place point prompts on 2D slices to generate annotation masks and propagate these annotations across entire volumes in either single-directional or bi-directional manners. Our code is publicly available on https://github.com/mazurowski-lab/SlicerSegmentWithSAM and can be easily installed directly from the Extension Manager of 3D Slicer as well.
comment: Future work: support for box and mask inputs for the video predictor of SAM 2
☆ Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment
Digital pathology has advanced significantly over the last decade, with Whole Slide Images (WSIs) encompassing vast amounts of data essential for accurate disease diagnosis. High-resolution WSIs are essential for precise diagnosis but technical limitations in scanning equipment and variablity in slide preparation can hinder obtaining these images. Super-resolution techniques can enhance low-resolution images; while Generative Adversarial Networks (GANs) have been effective in natural image super-resolution tasks, they often struggle with histopathology due to overfitting and mode collapse. Traditional evaluation metrics fall short in assessing the complex characteristics of histopathology images, necessitating robust histology-specific evaluation methods. We introduce Histo-Diffusion, a novel diffusion-based method specially designed for generating and evaluating super-resolution images in digital pathology. It includes a restoration module for histopathology prior and a controllable diffusion module for generating high-quality images. We have curated two histopathology datasets and proposed a comprehensive evaluation strategy which incorporates both full-reference and no-reference metrics to thoroughly assess the quality of digital pathology images. Comparative analyses on multiple datasets with state-of-the-art methods reveal that Histo-Diffusion outperforms GANs. Our method offers a versatile solution for histopathology image super-resolution, capable of handling multi-resolution generation from varied input sizes, providing valuable support in diagnostic processes.
comment: We have submitted our paper to Medical Image Analysis and are currently awaiting feedback
Fundus2Video: Cross-Modal Angiography Video Generation from Static Fundus Photography with Clinical Knowledge Guidance MICCAI
Fundus Fluorescein Angiography (FFA) is a critical tool for assessing retinal vascular dynamics and aiding in the diagnosis of eye diseases. However, its invasive nature and less accessibility compared to Color Fundus (CF) images pose significant challenges. Current CF to FFA translation methods are limited to static generation. In this work, we pioneer dynamic FFA video generation from static CF images. We introduce an autoregressive GAN for smooth, memory-saving frame-by-frame FFA synthesis. To enhance the focus on dynamic lesion changes in FFA regions, we design a knowledge mask based on clinical experience. Leveraging this mask, our approach integrates innovative knowledge mask-guided techniques, including knowledge-boosted attention, knowledge-aware discriminators, and mask-enhanced patchNCE loss, aimed at refining generation in critical areas and addressing the pixel misalignment challenge. Our method achieves the best FVD of 1503.21 and PSNR of 11.81 compared to other common video generation approaches. Human assessment by an ophthalmologist confirms its high generation quality. Notably, our knowledge mask surpasses supervised lesion segmentation masks, offering a promising non-invasive alternative to traditional FFA for research and clinical applications. The code is available at https://github.com/Michi-3000/Fundus2Video.
comment: The paper has been accepted by Medical Image Computing and Computer Assisted Intervention Society (MICCAI) 2024
☆ Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.
comment: We propose using hallucinations as prior knowledge to extract and validate task-related information, which helps generate instance-specific prompts for reducing reliance on manual prompts in promptable segmentation
☆ An Investigation on The Position Encoding in Vision-Based Dynamics Prediction ECCV2024
Despite the success of vision-based dynamics prediction models, which predict object states by utilizing RGB images and simple object descriptions, they were challenged by environment misalignments. Although the literature has demonstrated that unifying visual domains with both environment context and object abstract, such as semantic segmentation and bounding boxes, can effectively mitigate the visual domain misalignment challenge, discussions were focused on the abstract of environment context, and the insight of using bounding box as the object abstract is under-explored. Furthermore, we notice that, as empirical results shown in the literature, even when the visual appearance of objects is removed, object bounding boxes alone, instead of being directly fed into the network, can indirectly provide sufficient position information via the Region of Interest Pooling operation for dynamics prediction. However, previous literature overlooked discussions regarding how such position information is implicitly encoded in the dynamics prediction model. Thus, in this paper, we provide detailed studies to investigate the process and necessary conditions for encoding position information via using the bounding box as the object abstract into output features. Furthermore, we study the limitation of solely using object abstracts, such that the dynamics prediction performance will be jeopardized when the environment context varies.
comment: 13 pages, 4 tables, and 3 figures. Accepted to ECCV2024 eXCV workshop
☆ PoseWatch: A Transformer-based Architecture for Human-centric Video Anomaly Detection Using Spatio-temporal Pose Tokenization
Video Anomaly Detection (VAD) presents a significant challenge in computer vision, particularly due to the unpredictable and infrequent nature of anomalous events, coupled with the diverse and dynamic environments in which they occur. Human-centric VAD, a specialized area within this domain, faces additional complexities, including variations in human behavior, potential biases in data, and substantial privacy concerns related to human subjects. These issues complicate the development of models that are both robust and generalizable. To address these challenges, recent advancements have focused on pose-based VAD, which leverages human pose as a high-level feature to mitigate privacy concerns, reduce appearance biases, and minimize background interference. In this paper, we introduce PoseWatch, a novel transformer-based architecture designed specifically for human-centric pose-based VAD. PoseWatch features an innovative Spatio-Temporal Pose and Relative Pose (ST-PRP) tokenization method that enhances the representation of human motion over time, which is also beneficial for broader human behavior analysis tasks. The architecture's core, a Unified Encoder Twin Decoders (UETD) transformer, significantly improves the detection of anomalous behaviors in video data. Extensive evaluations across multiple benchmark datasets demonstrate that PoseWatch consistently outperforms existing methods, establishing a new state-of-the-art in pose-based VAD. This work not only demonstrates the efficacy of PoseWatch but also highlights the potential of integrating Natural Language Processing techniques with computer vision to advance human behavior analysis.
☆ A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships
Transformer-based models have transformed the landscape of natural language processing (NLP) and are increasingly applied to computer vision tasks with remarkable success. These models, renowned for their ability to capture long-range dependencies and contextual information, offer a promising alternative to traditional convolutional neural networks (CNNs) in computer vision. In this review paper, we provide an extensive overview of various transformer architectures adapted for computer vision tasks. We delve into how these models capture global context and spatial relationships in images, empowering them to excel in tasks such as image classification, object detection, and segmentation. Analyzing the key components, training methodologies, and performance metrics of transformer-based models, we highlight their strengths, limitations, and recent advancements. Additionally, we discuss potential research directions and applications of transformer-based models in computer vision, offering insights into their implications for future advancements in the field.
☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) and Large Multimodal Models (LMMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting LMMs to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually richer item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Additionally, we evaluate the generalizability of our framework across different LMM backbones and the robustness of the prompting strategies, offering insights for optimization. This work underscores the importance of integrating multimodal information and presents a novel solution for improving item understanding in multimodal recommendation systems.
☆ Empowering Sign Language Communication: Integrating Sentiment and Semantics for Facial Expression Synthesis
Translating written sentences from oral languages to a sequence of manual and non-manual gestures plays a crucial role in building a more inclusive society for deaf and hard-of-hearing people. Facial expressions (non-manual), in particular, are responsible for encoding the grammar of the sentence to be spoken, applying punctuation, pronouns, or emphasizing signs. These non-manual gestures are closely related to the semantics of the sentence being spoken and also to the utterance of the speaker's emotions. However, most Sign Language Production (SLP) approaches are centered on synthesizing manual gestures and do not focus on modeling the speakers expression. This paper introduces a new method focused in synthesizing facial expressions for sign language. Our goal is to improve sign language production by integrating sentiment information in facial expression generation. The approach leverages a sentence sentiment and semantic features to sample from a meaningful representation space, integrating the bias of the non-manual components into the sign language production process. To evaluate our method, we extend the Frechet Gesture Distance (FGD) and propose a new metric called Frechet Expression Distance (FED) and apply an extensive set of metrics to assess the quality of specific regions of the face. The experimental results showed that our method achieved state of the art, being superior to the competitors on How2Sign and PHOENIX14T datasets. Moreover, our architecture is based on a carefully designed graph pyramid that makes it simpler, easier to train, and capable of leveraging emotions to produce facial expressions.
☆ A Preliminary Exploration Towards General Image Restoration
Despite the tremendous success of deep models in various individual image restoration tasks, there are at least two major technical challenges preventing these works from being applied to real-world usages: (1) the lack of generalization ability and (2) the complex and unknown degradations in real-world scenarios. Existing deep models, tailored for specific individual image restoration tasks, often fall short in effectively addressing these challenges. In this paper, we present a new problem called general image restoration (GIR) which aims to address these challenges within a unified model. GIR covers most individual image restoration tasks (\eg, image denoising, deblurring, deraining and super-resolution) and their combinations for general purposes. This paper proceeds to delineate the essential aspects of GIR, including problem definition and the overarching significance of generalization performance. Moreover, the establishment of new datasets and a thorough evaluation framework for GIR models is discussed. We conduct a comprehensive evaluation of existing approaches for tackling the GIR challenge, illuminating their strengths and pragmatic challenges. By analyzing these approaches, we not only underscore the effectiveness of GIR but also highlight the difficulties in its practical implementation. At last, we also try to understand and interpret these models' behaviors to inspire the future direction. Our work can open up new valuable research directions and contribute to the research of general vision.
☆ T-FAKE: Synthesizing Thermal Images for Facial Landmarking
Facial analysis is a key component in a wide range of applications such as security, autonomous driving, entertainment, and healthcare. Despite the availability of various facial RGB datasets, the thermal modality, which plays a crucial role in life sciences, medicine, and biometrics, has been largely overlooked. To address this gap, we introduce the T-FAKE dataset, a new large-scale synthetic thermal dataset with sparse and dense landmarks. To facilitate the creation of the dataset, we propose a novel RGB2Thermal loss function, which enables the transfer of thermal style to RGB faces. By utilizing the Wasserstein distance between thermal and RGB patches and the statistical analysis of clinical temperature distributions on faces, we ensure that the generated thermal images closely resemble real samples. Using RGB2Thermal style transfer based on our RGB2Thermal loss function, we create the T-FAKE dataset, a large-scale synthetic thermal dataset of faces. Leveraging our novel T-FAKE dataset, probabilistic landmark prediction, and label adaptation networks, we demonstrate significant improvements in landmark detection methods on thermal images across different landmark conventions. Our models show excellent performance with both sparse 70-point landmarks and dense 478-point landmark annotations. Our code and models are available at https://github.com/phflot/tfake.
comment: 22 pages, 12 figures, Philipp Flotho and Moritz Piening share equal contribution
☆ Machine Learning for Methane Detection and Quantification from Space - A survey
Methane ($CH_4$) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide ($CO_2$) over 20 years, and it also acts as an air pollutant. Given its high radiative forcing potential and relatively short atmospheric lifetime (9$\pm$1 years), methane has important implications for climate change, therefore, cutting methane emissions is crucial for effective climate change mitigation. This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands. It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches. The architecture and data used in such ML models will be discussed separately for methane plume segmentation and emission rate estimation. Traditionally, experts rely on labor-intensive manually adjusted methods for methane detection. However, ML approaches offer greater scalability. Our analysis reveals that ML models outperform traditional methods, particularly those based on convolutional neural networks (CNN), which are based on the U-net and transformer architectures. These ML models extract valuable information from methane-sensitive spectral data, enabling a more accurate detection. Challenges arise when comparing these methods due to variations in data, sensor specifications, and evaluation metrics. To address this, we discuss existing datasets and metrics, providing an overview of available resources and identifying open research problems. Finally, we explore potential future advances in ML, emphasizing approaches for model comparability, large dataset creation, and the European Union's forthcoming methane strategy.
☆ DIFR3CT: Latent Diffusion for Probabilistic 3D CT Reconstruction from Few Planar X-Rays
Computed Tomography (CT) scans are the standard-of-care for the visualization and diagnosis of many clinical ailments, and are needed for the treatment planning of external beam radiotherapy. Unfortunately, the availability of CT scanners in low- and mid-resource settings is highly variable. Planar x-ray radiography units, in comparison, are far more prevalent, but can only provide limited 2D observations of the 3D anatomy. In this work we propose DIFR3CT, a 3D latent diffusion model, that can generate a distribution of plausible CT volumes from one or few (<10) planar x-ray observations. DIFR3CT works by fusing 2D features from each x-ray into a joint 3D space, and performing diffusion conditioned on these fused features in a low-dimensional latent space. We conduct extensive experiments demonstrating that DIFR3CT is better than recent sparse CT reconstruction baselines in terms of standard pixel-level (PSNR, SSIM) on both the public LIDC and in-house post-mastectomy CT datasets. We also show that DIFR3CT supports uncertainty quantification via Monte Carlo sampling, which provides an opportunity to measure reconstruction reliability. Finally, we perform a preliminary pilot study evaluating DIFR3CT for automated breast radiotherapy contouring and planning -- and demonstrate promising feasibility. Our code is available at https://github.com/yransun/DIFR3CT.
comment: 11 pages, 9 figures
☆ Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries ICML 2024
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities, encompassing a wide range from 3D shapes to images and audio. Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry. However, learning SDFs from sparse 3D point clouds in the absence of ground truth supervision remains a very challenging task. While recent methods rely on smoothness priors to regularize the learning, our method introduces a regularization term that leverages adversarial samples around the shape to improve the learned SDFs. Through extensive experiments and evaluations, we illustrate the efficacy of our proposed method, highlighting its capacity to improve SDF learning with respect to baselines and the state-of-the-art using synthetic and real data.
comment: ICML 2024
☆ AnomalousPatchCore: Exploring the Use of Anomalous Samples in Industrial Anomaly Detection ECCV
Visual inspection, or industrial anomaly detection, is one of the most common quality control types in manufacturing. The task is to identify the presence of an anomaly given an image, e.g., a missing component on an image of a circuit board, for subsequent manual inspection. While industrial anomaly detection has seen a surge in recent years, most anomaly detection methods still utilize knowledge only from normal samples, failing to leverage the information from the frequently available anomalous samples. Additionally, they heavily rely on very general feature extractors pre-trained on common image classification datasets. In this paper, we address these shortcomings and propose the new anomaly detection system AnomalousPatchCore~(APC) based on a feature extractor fine-tuned with normal and anomalous in-domain samples and a subsequent memory bank for identifying unusual features. To fine-tune the feature extractor in APC, we propose three auxiliary tasks that address the different aspects of anomaly detection~(classification vs. localization) and mitigate the effect of the imbalance between normal and anomalous samples. Our extensive evaluation on the MVTec dataset shows that APC outperforms state-of-the-art systems in detecting anomalies, which is especially important in industrial anomaly detection given the subsequent manual inspection. In detailed ablation studies, we further investigate the properties of our APC.
comment: Accepted at the 2nd workshop on Vision-based InduStrial InspectiON (VISION) @ ECCV
☆ Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach
Despite significant advancements in License Plate Recognition (LPR) through deep learning, most improvements rely on high-resolution images with clear characters. This scenario does not reflect real-world conditions where traffic surveillance often captures low-resolution and blurry images. Under these conditions, characters tend to blend with the background or neighboring characters, making accurate LPR challenging. To address this issue, we introduce a novel loss function, Layout and Character Oriented Focal Loss (LCOFL), which considers factors such as resolution, texture, and structural details, as well as the performance of the LPR task itself. We enhance character feature learning using deformable convolutions and shared weights in an attention module and employ a GAN-based training approach with an Optical Character Recognition (OCR) model as the discriminator to guide the super-resolution process. Our experimental results show significant improvements in character reconstruction quality, outperforming two state-of-the-art methods in both quantitative and qualitative measures. Our code is publicly available at https://github.com/valfride/lpsr-lacd
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2024
☆ MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods. The code is available at https://github.com/EnVision-Research/MTMamba.
comment: arXiv admin note: text overlap with arXiv:2407.02228
☆ CLIP-AGIQA: Boosting the Performance of AI-Generated Image Quality Assessment with CLIP ICPR2024
With the rapid development of generative technologies, AI-Generated Images (AIGIs) have been widely applied in various aspects of daily life. However, due to the immaturity of the technology, the quality of the generated images varies, so it is important to develop quality assessment techniques for the generated images. Although some models have been proposed to assess the quality of generated images, they are inadequate when faced with the ever-increasing and diverse categories of generated images. Consequently, the development of more advanced and effective models for evaluating the quality of generated images is urgently needed. Recent research has explored the significant potential of the visual language model CLIP in image quality assessment, finding that it performs well in evaluating the quality of natural images. However, its application to generated images has not been thoroughly investigated. In this paper, we build on this idea and further explore the potential of CLIP in evaluating the quality of generated images. We design CLIP-AGIQA, a CLIP-based regression model for quality assessment of generated images, leveraging rich visual and textual knowledge encapsulated in CLIP. Particularly, we implement multi-category learnable prompts to fully utilize the textual knowledge in CLIP for quality assessment. Extensive experiments on several generated image quality assessment benchmarks, including AGIQA-3K and AIGCIQA2023, demonstrate that CLIP-AGIQA outperforms existing IQA models, achieving excellent results in evaluating the quality of generated images.
comment: accepted by ICPR2024
☆ Constrained Diffusion Models via Dual Training
Diffusion models have attained prominence for their ability to synthesize a probability distribution for a given dataset via a diffusion process, enabling the generation of new data points with high fidelity. However, diffusion processes are prone to generating biased data based on the training dataset. To address this issue, we develop constrained diffusion models by imposing diffusion constraints based on desired distributions that are informed by requirements. Specifically, we cast the training of diffusion models under requirements as a constrained distribution optimization problem that aims to reduce the distribution difference between original and generated data while obeying constraints on the distribution of generated data. We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints. To train constrained diffusion models, we develop a dual training algorithm and characterize the optimality of the trained constrained diffusion model. We empirically demonstrate the effectiveness of our constrained models in two constrained generation tasks: (i) we consider a dataset with one or more underrepresented classes where we train the model with constraints to ensure fairly sampling from all classes during inference; (ii) we fine-tune a pre-trained diffusion model to sample from a new dataset while avoiding overfitting.
comment: 41 pages, 4 figures, 2 tables
☆ MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
Autism spectrum disorder (ASD) is characterized by significant challenges in social interaction and comprehending communication signals. Recently, therapeutic interventions for ASD have increasingly utilized Deep learning powered-computer vision techniques to monitor individual progress over time. These models are trained on private, non-public datasets from the autism community, creating challenges in comparing results across different models due to privacy-preserving data-sharing issues. This work introduces MMASD+. MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data. It integrates the capabilities of Yolov8 and Deep SORT algorithms to distinguish between the therapist and children, addressing a significant barrier in the original dataset. Additionally, a Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD. This framework achieves an accuracy of 95.03% for predicting action types and 96.42% for predicting ASD presence, demonstrating over a 10% improvement compared to models trained on single data modalities. These findings highlight the advantages of integrating multiple data modalities within the Multimodal Transformer framework.
☆ Geometric Artifact Correction for Symmetric Multi-Linear Trajectory CT: Theory, Method, and Generalization
For extending CT field-of-view to perform non-destructive testing, the Symmetric Multi-Linear trajectory Computed Tomography (SMLCT) has been developed as a successful example of non-standard CT scanning modes. However, inevitable geometric errors can cause severe artifacts in the reconstructed images. The existing calibration method for SMLCT is both crude and inefficient. It involves reconstructing hundreds of images by exhaustively substituting each potential error, and then manually identifying the images with the fewest geometric artifacts to estimate the final geometric errors for calibration. In this paper, we comprehensively and efficiently address the challenging geometric artifacts in SMLCT, , and the corresponding works mainly involve theory, method, and generalization. In particular, after identifying sensitive parameters and conducting some theory analysis of geometric artifacts, we summarize several key properties between sensitive geometric parameters and artifact characteristics. Then, we further construct mathematical relationships that relate sensitive geometric errors to the pixel offsets of reconstruction images with artifact characteristics. To accurately extract pixel bias, we innovatively adapt the Generalized Cross-Correlation with Phase Transform (GCC-PHAT) algorithm, commonly used in sound processing, for our image registration task for each paired symmetric LCT. This adaptation leads to the design of a highly efficient rigid translation registration method. Simulation and physical experiments have validated the excellent performance of this work. Additionally, our results demonstrate significant generalization to common rotated CT and a variant of SMLCT.
comment: 15 pages, 10 figures
☆ Interactive Occlusion Boundary Estimation through Exploitation of Synthetic Data
Occlusion boundaries (OBs) geometrically localize the occlusion events in a 2D image, and contain useful information for addressing various scene understanding problems. To advance their study, we have led the investigation in the following three aspects. Firstly, we have studied interactive estimation of OBs, which is the first in the literature, and proposed an efficient deep-network-based method using multiple-scribble intervention, named DNMMSI, which significantly improves the performance over the state-of-the-art fully-automatic methods. Secondly, we propose to exploit the synthetic benchmark for the training process, thanks to the particularity that OBs are determined geometrically and unambiguously from the 3D scene. To this end, we have developed an efficient tool, named Mesh2OB, for the automatic generation of 2D images together with their ground-truth OBs, using which we have constructed a synthetic benchmark, named OB-FUTURE. Abundant experimental results demonstrate that leveraging such a synthetic benchmark for training achieves promising performance, even without the use of domain adaptation techniques. Finally, to achieve a more compelling and robust evaluation in OB-related research, we have created a real benchmark, named OB-LabName, consisting of 120 high-resolution images together with their ground-truth OBs, with precision surpassing that of previous benchmarks. We will release DNMMSI with pre-trained parameters, Mesh2OB, OB-FUTURE, and OB-LabName to support further research.
Mamba2MIL: State Space Duality Based Multiple Instance Learning for Computational Pathology
Computational pathology (CPath) has significantly advanced the clinical practice of pathology. Despite the progress made, Multiple Instance Learning (MIL), a promising paradigm within CPath, continues to face challenges, particularly related to incomplete information utilization. Existing frameworks, such as those based on Convolutional Neural Networks (CNNs), attention, and selective scan space state sequential model (SSM), lack sufficient flexibility and scalability in fusing diverse features, and cannot effectively fuse diverse features. Additionally, current approaches do not adequately exploit order-related and order-independent features, resulting in suboptimal utilization of sequence information. To address these limitations, we propose a novel MIL framework called Mamba2MIL. Our framework utilizes the state space duality model (SSD) to model long sequences of patches of whole slide images (WSIs), which, combined with weighted feature selection, supports the fusion processing of more branching features and can be extended according to specific application needs. Moreover, we introduce a sequence transformation method tailored to varying WSI sizes, which enhances sequence-independent features while preserving local sequence information, thereby improving sequence information utilization. Extensive experiments demonstrate that Mamba2MIL surpasses state-of-the-art MIL methods. We conducted extensive experiments across multiple datasets, achieving improvements in nearly all performance metrics. Specifically, on the NSCLC dataset, Mamba2MIL achieves a binary tumor classification AUC of 0.9533 and an accuracy of 0.8794. On the BRACS dataset, it achieves a multiclass classification AUC of 0.7986 and an accuracy of 0.4981. The code is available at https://github.com/YuqiZhang-Buaa/Mamba2MIL.
☆ Sequence-aware Pre-training for Echocardiography Probe Guidance
Cardiac ultrasound probe guidance aims to help novices adjust the 6-DOF probe pose to obtain high-quality sectional images. Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged 2D and 3D structures of the heart rather than personalized cardiac structural features, leading to a performance bottleneck. Clinically, we observed that sonographers adjust their understanding of a patient's cardiac structure based on prior scanning sequences, thereby modifying their scanning strategies. Inspired by this, we propose a sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized 2D and 3D cardiac structural features by predicting the masked-out images and actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of the personalized cardiac structure. In the downstream probe guidance task, we also introduced a sequence modeling approach that models individual cardiac structural information based on the images and actions from historical scan data, enabling more accurate navigation decisions. Experiments on a large-scale dataset with 1.36 million samples demonstrated that our proposed sequence-aware paradigm can significantly reduce navigation errors, with translation errors decreasing by 15.90% to 36.87% and rotation errors decreasing by 11.13% to 20.77%, compared to state-of-the-art methods.
comment: Tech Report
☆ Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection
Camouflaged object detection (COD) aims to identify the objects that seamlessly blend into the surrounding backgrounds. Due to the intrinsic similarity between the camouflaged objects and the background region, it is extremely challenging to precisely distinguish the camouflaged objects by existing approaches. In this paper, we propose a hierarchical graph interaction network termed HGINet for camouflaged object detection, which is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features. Specifically, we first design a region-aware token focusing attention (RTFA) with dynamic token clustering to excavate the potentially distinguishable tokens in the local region. Afterwards, a hierarchical graph interaction transformer (HGIT) is proposed to construct bi-directional aligned communication between hierarchical features in the latent interaction space for visual semantics enhancement. Furthermore, we propose a decoder network with confidence aggregated feature fusion (CAFF) modules, which progressively fuses the hierarchical interacted features to refine the local detail in ambiguous regions. Extensive experiments conducted on the prevalent datasets, i.e. COD10K, CAMO, NC4K and CHAMELEON demonstrate the superior performance of HGINet compared to existing state-of-the-art methods. Our code is available at https://github.com/Garyson1204/HGINet.
comment: Submitted to IEEE Transactions on Image Processing
☆ Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint that belongs to the family of $f$-divergences. In this setting, the RDPF forms a convex programming problem for which we characterize the optimal parametric solutions. We employ the developed solutions in an alternating minimization scheme, namely Optimal Alternating Minimization (OAM), for which we provide convergence guarantees. Nevertheless, the OAM scheme does not lead to a direct implementation of a generalized Blahut-Arimoto (BA) type of algorithm due to the presence of implicit equations in the structure of the iteration. To overcome this difficulty, we propose two alternative minimization approaches whose applicability depends on the smoothness of the used perception metric: a Newton-based Alternating Minimization (NAM) scheme, relying on Newton's root-finding method for the approximation of the optimal iteration solution, and a Relaxed Alternating Minimization (RAM) scheme, based on a relaxation of the OAM iterates. Both schemes are shown, via the derivation of necessary and sufficient conditions, to guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and the perception constraints which guarantee that the proposed algorithms converge exponentially fast in the number of iteration steps. We corroborate our theoretical results with numerical simulations and draw connections with existing results.
comment: This work has been submitted for possible publication
☆ Pre-training Everywhere: Parameter-Efficient Fine-Tuning for Medical Image Analysis via Target Parameter Pre-training
Parameter-efficient fine-tuning (PEFT) techniques have emerged to address issues of overfitting and high computational costs associated with fully fine-tuning in the paradigm of self-supervised learning. Mainstream methods based on PEFT involve adding a few trainable parameters while keeping the pre-trained parameters of the backbone fixed. These methods achieve comparative, and often superior, performance to fully fine-tuning, demonstrating the powerful representation ability of the pre-trained backbone. Despite its success, these methods typically ignore the initialization of the new parameters, often relying solely on random initialization. We argue that if pre-training is significantly beneficial, it should be applied to all parameters requiring representational capacity. Motivated by this insight, we propose a simple yet effective fine-tuning framework based on Target Parameter Pre-training (TPP). The target parameters refer to the new parameters introduced during fine-tuning. TPP includes an additional stage before PEFT to pre-train these target parameters. During this stage, the pre-trained backbone parameters are frozen, and only the target parameters are trainable. A defined pre-text task is used to encourage the target parameters to learn specific representations of downstream data. When PEFT is subsequently employed, the pre-trained target parameters are loaded to enhance fine-tuning efficiency. The proposed TPP framework is versatile, allowing for the integration of various pretext tasks for pre-training and supporting different PEFT methods as backbones. We evaluated the fine-tining performance of our method using five public datasets, including three modalities and two task types. The results demonstrate that the proposed TPP can be easily integrated into existing PEFT methods, significantly improving performance.
☆ Knowledge Discovery in Optical Music Recognition: Enhancing Information Retrieval with Instance Segmentation
Optical Music Recognition (OMR) automates the transcription of musical notation from images into machine-readable formats like MusicXML, MEI, or MIDI, significantly reducing the costs and time of manual transcription. This study explores knowledge discovery in OMR by applying instance segmentation using Mask R-CNN to enhance the detection and delineation of musical symbols in sheet music. Unlike Optical Character Recognition (OCR), OMR must handle the intricate semantics of Common Western Music Notation (CWMN), where symbol meanings depend on shape, position, and context. Our approach leverages instance segmentation to manage the density and overlap of musical symbols, facilitating more precise information retrieval from music scores. Evaluations on the DoReMi and MUSCIMA++ datasets demonstrate substantial improvements, with our method achieving a mean Average Precision (mAP) of up to 59.70\% in dense symbol environments, achieving comparable results to object detection. Furthermore, using traditional computer vision techniques, we add a parallel step for staff detection to infer the pitch for the recognised symbols. This study emphasises the role of pixel-wise segmentation in advancing accurate music symbol recognition, contributing to knowledge discovery in OMR. Our findings indicate that instance segmentation provides more precise representations of musical symbols, particularly in densely populated scores, advancing OMR technology. We make our implementation, pre-processing scripts, trained models, and evaluation results publicly available to support further research and development.
comment: 8 pages content and one references, accepted version at the International Conference on Knowledge Discovery and Information Retrieval 2024, Porto, Portugal
☆ FastTextSpotter: A High-Efficiency Transformer for Multilingual Scene Text Spotting ICPR 2024
The proliferation of scene text in both structured and unstructured environments presents significant challenges in optical character recognition (OCR), necessitating more efficient and robust text spotting solutions. This paper presents FastTextSpotter, a framework that integrates a Swin Transformer visual backbone with a Transformer Encoder-Decoder architecture, enhanced by a novel, faster self-attention unit, SAC2, to improve processing speeds while maintaining accuracy. FastTextSpotter has been validated across multiple datasets, including ICDAR2015 for regular texts and CTW1500 and TotalText for arbitrary-shaped texts, benchmarking against current state-of-the-art models. Our results indicate that FastTextSpotter not only achieves superior accuracy in detecting and recognizing multilingual scene text (English and Vietnamese) but also improves model efficiency, thereby setting new benchmarks in the field. This study underscores the potential of advanced transformer architectures in improving the adaptability and speed of text spotting applications in diverse real-world settings. The dataset, code, and pre-trained models have been released in our Github.
comment: Accepted in ICPR 2024
☆ Depth Restoration of Hand-Held Transparent Objects for Human-to-Robot Handover
Transparent objects are common in daily life, while their unique optical properties pose challenges for RGB-D cameras, which struggle to capture accurate depth information. For assistant robots, accurately perceiving transparent objects held by humans is essential for effective human-robot interaction. This paper presents a Hand-Aware Depth Restoration (HADR) method for hand-held transparent objects based on creating an implicit neural representation function from a single RGB-D image. The proposed method introduces the hand posture as an important guidance to leverage semantic and geometric information. To train and evaluate the proposed method, we create a high-fidelity synthetic dataset called TransHand-14K with a real-to-sim data generation scheme. Experiments show that our method has a better performance and generalization ability compared with existing methods. We further develop a real-world human-to-robot handover system based on the proposed depth restoration method, demonstrating its application value in human-robot interaction.
comment: 7 pages, 7 figures, conference
☆ LN-Gen: Rectal Lymph Nodes Generation via Anatomical Features
Accurate segmentation of rectal lymph nodes is crucial for the staging and treatment planning of rectal cancer. However, the complexity of the surrounding anatomical structures and the scarcity of annotated data pose significant challenges. This study introduces a novel lymph node synthesis technique aimed at generating diverse and realistic synthetic rectal lymph node samples to mitigate the reliance on manual annotation. Unlike direct diffusion methods, which often produce masks that are discontinuous and of suboptimal quality, our approach leverages an implicit SDF-based method for mask generation, ensuring the production of continuous, stable, and morphologically diverse masks. Experimental results demonstrate that our synthetic data significantly improves segmentation performance. Our work highlights the potential of diffusion model for accurately synthesizing structurally complex lesions, such as lymph nodes in rectal cancer, alleviating the challenge of limited annotated data in this field and aiding in advancements in rectal cancer diagnosis and treatment.
comment: 8 pages
☆ Prior-free Balanced Replay: Uncertainty-guided Reservoir Sampling for Long-Tailed Continual Learning
Even in the era of large models, one of the well-known issues in continual learning (CL) is catastrophic forgetting, which is significantly challenging when the continual data stream exhibits a long-tailed distribution, termed as Long-Tailed Continual Learning (LTCL). Existing LTCL solutions generally require the label distribution of the data stream to achieve re-balance training. However, obtaining such prior information is often infeasible in real scenarios since the model should learn without pre-identifying the majority and minority classes. To this end, we propose a novel Prior-free Balanced Replay (PBR) framework to learn from long-tailed data stream with less forgetting. Concretely, motivated by our experimental finding that the minority classes are more likely to be forgotten due to the higher uncertainty, we newly design an uncertainty-guided reservoir sampling strategy to prioritize rehearsing minority data without using any prior information, which is based on the mutual dependence between the model and samples. Additionally, we incorporate two prior-free components to further reduce the forgetting issue: (1) Boundary constraint is to preserve uncertain boundary supporting samples for continually re-estimating task boundaries. (2) Prototype constraint is to maintain the consistency of learned class prototypes along with training. Our approach is evaluated on three standard long-tailed benchmarks, demonstrating superior performance to existing CL methods and previous SOTA LTCL approach in both task- and class-incremental learning settings, as well as ordered- and shuffled-LTCL settings.
☆ MegActor-$Σ$: Unlocking Flexible Mixed-Modal Control in Portrait Animation with Diffusion Transformer
Diffusion models have demonstrated superior performance in the field of portrait animation. However, current approaches relied on either visual or audio modality to control character movements, failing to exploit the potential of mixed-modal control. This challenge arises from the difficulty in balancing the weak control strength of audio modality and the strong control strength of visual modality. To address this issue, we introduce MegActor-$\Sigma$: a mixed-modal conditional diffusion transformer (DiT), which can flexibly inject audio and visual modality control signals into portrait animation. Specifically, we make substantial advancements over its predecessor, MegActor, by leveraging the promising model structure of DiT and integrating audio and visual conditions through advanced modules within the DiT framework. To further achieve flexible combinations of mixed-modal control signals, we propose a ``Modality Decoupling Control" training strategy to balance the control strength between visual and audio modalities, along with the ``Amplitude Adjustment" inference strategy to freely regulate the motion amplitude of each modality. Finally, to facilitate extensive studies in this field, we design several dataset evaluation metrics to filter out public datasets and solely use this filtered dataset to train MegActor-$\Sigma$. Extensive experiments demonstrate the superiority of our approach in generating vivid portrait animations, outperforming previous methods trained on private dataset.
☆ Deep Learning-based Average Shear Wave Velocity Prediction using Accelerometer Records
Assessing seismic hazards and thereby designing earthquake-resilient structures or evaluating structural damage that has been incurred after an earthquake are important objectives in earthquake engineering. Both tasks require critical evaluation of strong ground motion records, and the knowledge of site conditions at the earthquake stations plays a major role in achieving the aforementioned objectives. Site conditions are generally represented by the time-averaged shear wave velocity in the upper 30 meters of the geological materials (Vs30). Several strong motion stations lack Vs30 measurements resulting in potentially inaccurate assessment of seismic hazards and evaluation of ground motion records. In this study, we present a deep learning-based approach for predicting Vs30 at strong motion station locations using three-channel earthquake records. For this purpose, Convolutional Neural Networks (CNNs) with dilated and causal convolutional layers are used to extract deep features from accelerometer records collected from over 700 stations located in Turkey. In order to overcome the limited availability of labeled data, we propose a two-phase training approach. In the first phase, a CNN is trained to estimate the epicenters, for which ground truth is available for all records. After the CNN is trained, the pre-trained encoder is fine-tuned based on the Vs30 ground truth. The performance of the proposed method is compared with machine learning models that utilize hand-crafted features. The results demonstrate that the deep convolutional encoder based Vs30 prediction model outperforms the machine learning models that rely on hand-crafted features.
comment: 12 pages, 14 figures, Accepted by 18th World Conference on Earthquake Engineering WCEE2024
☆ CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task
In recent years, the rapid expansion of model sizes has led to large-scale pre-trained models demonstrating remarkable capabilities. Consequently, there has been a trend towards increasing the scale of models. However, this trend introduces significant challenges, including substantial computational costs of training and transfer to downstream tasks. To address these issues, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced. These methods optimize large-scale pre-trained models for specific tasks by fine-tuning a select group of parameters. Among these PEFT methods, adapter-based and prompt-based methods are the primary techniques. Specifically, in the field of visual fine-tuning, adapters gain prominence over prompts because of the latter's relatively weaker performance and efficiency. Under the circumstances, we refine the widely-used Visual Prompt Tuning (VPT) method, proposing Cross Visual Prompt Tuning (CVPT). CVPT calculates cross-attention between the prompt tokens and the embedded tokens, which allows us to compute the semantic relationship between them and conduct the fine-tuning of models exactly to adapt visual tasks better. Furthermore, we introduce the weight-sharing mechanism to initialize the parameters of cross-attention, which avoids massive learnable parameters from cross-attention and enhances the representative capability of cross-attention. We conduct comprehensive testing across 25 datasets and the result indicates that CVPT significantly improves VPT's performance and efficiency in visual tasks. For example, on the VTAB-1K benchmark, CVPT outperforms VPT over 4% in average accuracy, rivaling the advanced adapter-based methods in performance and efficiency. Our experiments confirm that prompt-based methods can achieve exceptional results in visual fine-tuning.
☆ Applying ViT in Generalized Few-shot Semantic Segmentation
This paper explores the capability of ViT-based models under the generalized few-shot semantic segmentation (GFSS) framework. We conduct experiments with various combinations of backbone models, including ResNets and pretrained Vision Transformer (ViT)-based models, along with decoders featuring a linear classifier, UPerNet, and Mask Transformer. The structure made of DINOv2 and linear classifier takes the lead on popular few-shot segmentation bench mark PASCAL-$5^i$, substantially outperforming the best of ResNet structure by 116% in one-shot scenario. We demonstrate the great potential of large pretrained ViT-based model on GFSS task, and expect further improvement on testing benchmarks. However, a potential caveat is that when applying pure ViT-based model and large scale ViT decoder, the model is easy to overfit.
comment: 7 pages, 4 figures
☆ NeuralOOD: Improving Out-of-Distribution Generalization Performance with Brain-machine Fusion Learning Framework
Deep Neural Networks (DNNs) have demonstrated exceptional recognition capabilities in traditional computer vision (CV) tasks. However, existing CV models often suffer a significant decrease in accuracy when confronted with out-of-distribution (OOD) data. In contrast to these DNN models, human can maintain a consistently low error rate when facing OOD scenes, partly attributed to the rich prior cognitive knowledge stored in the human brain. Previous OOD generalization researches only focus on the single modal, overlooking the advantages of multimodal learning method. In this paper, we utilize the multimodal learning method to improve the OOD generalization and propose a novel Brain-machine Fusion Learning (BMFL) framework. We adopt the cross-attention mechanism to fuse the visual knowledge from CV model and prior cognitive knowledge from the human brain. Specially, we employ a pre-trained visual neural encoding model to predict the functional Magnetic Resonance Imaging (fMRI) from visual features which eliminates the need for the fMRI data collection and pre-processing, effectively reduces the workload associated with conventional BMFL methods. Furthermore, we construct a brain transformer to facilitate the extraction of knowledge inside the fMRI data. Moreover, we introduce the Pearson correlation coefficient maximization regularization method into the training process, which improves the fusion capability with better constrains. Our model outperforms the DINOv2 and baseline models on the ImageNet-1k validation dataset as well as six curated OOD datasets, showcasing its superior performance in diverse scenarios.
☆ ERX: A Fast Real-Time Anomaly Detection Algorithm for Hyperspectral Line-Scanning
Detecting unexpected objects (anomalies) in real-time has great potential for monitoring, managing, and protecting the environment. Hyperspectral line-scan cameras are a low-cost solution that enhance confidence in anomaly detection over RGB and multispectral imagery. However, real-time algorithms for these cameras must be fast when using small computers (e.g., those onboard a drone or small satellite), scalable to high dimensions, adaptable to changing scenery, and robust against geometric and radiometric distortions. This paper introduces the Exponentially moving RX algorithm (ERX) and compares it to existing RX-based anomaly detection methods for real-time line-scanning. ERX was tested using a Jetson Xavier NX compute module, achieving the best combination of speed and detection across three novel datasets compared to the other algorithms. This research paves the way for future studies in grouping and locating anomalous objects, adaptive and automatic threshold selection, and real-time field tests. The Python code for the algorithms and experiments is available at https://github.com/WiseGamgee/HyperAD.
comment: 10 pages, 9 figures, 3 tables, code and datasets accessible at https://github.com/WiseGamgee/HyperAD
☆ BOX3D: Lightweight Camera-LiDAR Fusion for 3D Object Detection and Localization
Object detection and global localization play a crucial role in robotics, spanning across a great spectrum of applications from autonomous cars to multi-layered 3D Scene Graphs for semantic scene understanding. This article proposes BOX3D, a novel multi-modal and lightweight scheme for localizing objects of interest by fusing the information from RGB camera and 3D LiDAR. BOX3D is structured around a three-layered architecture, building up from the local perception of the incoming sequential sensor data to the global perception refinement that covers for outliers and the general consistency of each object's observation. More specifically, the first layer handles the low-level fusion of camera and LiDAR data for initial 3D bounding box extraction. The second layer converts each LiDAR's scan 3D bounding boxes to the world coordinate frame and applies a spatial pairing and merging mechanism to maintain the uniqueness of objects observed from different viewpoints. Finally, BOX3D integrates the third layer that supervises the consistency of the results on the global map iteratively, using a point-to-voxel comparison for identifying all points in the global map that belong to the object. Benchmarking results of the proposed novel architecture are showcased in multiple experimental trials on public state-of-the-art large-scale dataset of urban environments.
comment: Presented in MED 2024
☆ Automatic Detection of COVID-19 from Chest X-ray Images Using Deep Learning Model
The infectious disease caused by novel corona virus (2019-nCoV) has been widely spreading since last year and has shaken the entire world. It has caused an unprecedented effect on daily life, global economy and public health. Hence this disease detection has life-saving importance for both patients as well as doctors. Due to limited test kits, it is also a daunting task to test every patient with severe respiratory problems using conventional techniques (RT-PCR). Thus implementing an automatic diagnosis system is urgently required to overcome the scarcity problem of Covid-19 test kits at hospital, health care systems. The diagnostic approach is mainly classified into two categories-laboratory based and Chest radiography approach. In this paper, a novel approach for computerized corona virus (2019-nCoV) detection from lung x-ray images is presented. Here, we propose models using deep learning to show the effectiveness of diagnostic systems. In the experimental result, we evaluate proposed models on publicly available data-set which exhibit satisfactory performance and promising results compared with other previous existing methods.
comment: Accepted in AIP Conference Proceedings (Vol. 2424, No. 1)
☆ Towards Real-world Event-guided Low-light Video Enhancement and Deblurring ECCV2024
In low-light conditions, capturing videos with frame-based cameras often requires long exposure times, resulting in motion blur and reduced visibility. While frame-based motion deblurring and low-light enhancement have been studied, they still pose significant challenges. Event cameras have emerged as a promising solution for improving image quality in low-light environments and addressing motion blur. They provide two key advantages: capturing scene details well even in low light due to their high dynamic range, and effectively capturing motion information during long exposures due to their high temporal resolution. Despite efforts to tackle low-light enhancement and motion deblurring using event cameras separately, previous work has not addressed both simultaneously. To explore the joint task, we first establish real-world datasets for event-guided low-light enhancement and deblurring using a hybrid camera system based on beam splitters. Subsequently, we introduce an end-to-end framework to effectively handle these tasks. Our framework incorporates a module to efficiently leverage temporal information from events and frames. Furthermore, we propose a module to utilize cross-modal feature information to employ a low-pass filter for noise suppression while enhancing the main structural information. Our proposed method significantly outperforms existing approaches in addressing the joint task. Our project pages are available at https://github.com/intelpro/ELEDNet.
comment: Accepted in ECCV2024
☆ MeshUp: Multi-Target Mesh Deformation via Blended Score Distillation
We propose MeshUp, a technique that deforms a 3D mesh towards multiple target concepts, and intuitively controls the region where each concept is expressed. Conveniently, the concepts can be defined as either text queries, e.g., "a dog" and "a turtle," or inspirational images, and the local regions can be selected as any number of vertices on the mesh. We can effectively control the influence of the concepts and mix them together using a novel score distillation approach, referred to as the Blended Score Distillation (BSD). BSD operates on each attention layer of the denoising U-Net of a diffusion model as it extracts and injects the per-objective activations into a unified denoising pipeline from which the deformation gradients are calculated. To localize the expression of these activations, we create a probabilistic Region of Interest (ROI) map on the surface of the mesh, and turn it into 3D-consistent masks that we use to control the expression of these activations. We demonstrate the effectiveness of BSD empirically and show that it can deform various meshes towards multiple objectives.
☆ Adversarial Manhole: Challenging Monocular Depth Estimation and Semantic Segmentation Models with Patch Attack
Monocular depth estimation (MDE) and semantic segmentation (SS) are crucial for the navigation and environmental interpretation of many autonomous driving systems. However, their vulnerability to practical adversarial attacks is a significant concern. This paper presents a novel adversarial attack using practical patches that mimic manhole covers to deceive MDE and SS models. The goal is to cause these systems to misinterpret scenes, leading to false detections of near obstacles or non-passable objects. We use Depth Planar Mapping to precisely position these patches on road surfaces, enhancing the attack's effectiveness. Our experiments show that these adversarial patches cause a 43% relative error in MDE and achieve a 96% attack success rate in SS. These patches create affected error regions over twice their size in MDE and approximately equal to their size in SS. Our studies also confirm the patch's effectiveness in physical simulations, the adaptability of the patches across different target models, and the effectiveness of our proposed modules, highlighting their practical implications.
comment: Accepted for WISA 2024. Code and dataset: https://github.com/naufalso/adversarial-manhole
☆ ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning
Zero-shot learning (ZSL) aims to recognize unseen classes by transferring semantic knowledge from seen classes to unseen ones, guided by semantic information. To this end, existing works have demonstrated remarkable performance by utilizing global visual features from Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs) for visual-semantic interactions. Due to the limited receptive fields of CNNs and the quadratic complexity of ViTs, however, these visual backbones achieve suboptimal visual-semantic interactions. In this paper, motivated by the visual state space model (i.e., Vision Mamba), which is capable of capturing long-range dependencies and modeling complex visual dynamics, we propose a parameter-efficient ZSL framework called ZeroMamba to advance ZSL. Our ZeroMamba comprises three key components: Semantic-aware Local Projection (SLP), Global Representation Learning (GRL), and Semantic Fusion (SeF). Specifically, SLP integrates semantic embeddings to map visual features to local semantic-related representations, while GRL encourages the model to learn global semantic representations. SeF combines these two semantic representations to enhance the discriminability of semantic features. We incorporate these designs into Vision Mamba, forming an end-to-end ZSL framework. As a result, the learned semantic representations are better suited for classification. Through extensive experiments on four prominent ZSL benchmarks, ZeroMamba demonstrates superior performance, significantly outperforming the state-of-the-art (i.e., CNN-based and ViT-based) methods under both conventional ZSL (CZSL) and generalized ZSL (GZSL) settings. Code is available at: https://anonymous.4open.science/r/ZeroMamba.
☆ DiffSurf: A Transformer-based Diffusion Model for Generating and Reconstructing 3D Surfaces in Pose ECCV2024
This paper presents DiffSurf, a transformer-based denoising diffusion model for generating and reconstructing 3D surfaces. Specifically, we design a diffusion transformer architecture that predicts noise from noisy 3D surface vertices and normals. With this architecture, DiffSurf is able to generate 3D surfaces in various poses and shapes, such as human bodies, hands, animals and man-made objects. Further, DiffSurf is versatile in that it can address various 3D downstream tasks including morphing, body shape variation and 3D human mesh fitting to 2D keypoints. Experimental results on 3D human model benchmarks demonstrate that DiffSurf can generate shapes with greater diversity and higher quality than previous generative models. Furthermore, when applied to the task of single-image 3D human mesh recovery, DiffSurf achieves accuracy comparable to prior techniques at a near real-time rate.
comment: Accepted at ECCV2024
☆ Intraoperative Glioma Segmentation with YOLO + SAM for Improved Accuracy in Tumor Resection
Gliomas, a common type of malignant brain tumor, present significant surgical challenges due to their similarity to healthy tissue. Preoperative Magnetic Resonance Imaging (MRI) images are often ineffective during surgery due to factors such as brain shift, which alters the position of brain structures and tumors. This makes real-time intraoperative MRI (ioMRI) crucial, as it provides updated imaging that accounts for these shifts, ensuring more accurate tumor localization and safer resections. This paper presents a deep learning pipeline combining You Only Look Once Version 8 (YOLOv8) and Segment Anything Model Vision Transformer-base (SAM ViT-b) to enhance glioma detection and segmentation during ioMRI. Our model was trained using the Brain Tumor Segmentation 2021 (BraTS 2021) dataset, which includes standard magnetic resonance imaging (MRI) images, and noise-augmented MRI images that simulate ioMRI images. Noised MRI images are harder for a deep learning pipeline to segment, but they are more representative of surgical conditions. Achieving a Dice Similarity Coefficient (DICE) score of 0.79, our model performs comparably to state-of-the-art segmentation models tested on noiseless data. This performance demonstrates the model's potential to assist surgeons in maximizing tumor resection and improving surgical outcomes.
☆ Diffusion-Occ: 3D Point Cloud Completion via Occupancy Diffusion
Point clouds are crucial for capturing three-dimensional data but often suffer from incompleteness due to limitations such as resolution and occlusion. Traditional methods typically rely on point-based approaches within discriminative frameworks for point cloud completion. In this paper, we introduce \textbf{Diffusion-Occ}, a novel framework for Diffusion Point Cloud Completion. Diffusion-Occ utilizes a two-stage coarse-to-fine approach. In the first stage, the Coarse Density Voxel Prediction Network (CDNet) processes partial points to predict coarse density voxels, streamlining global feature extraction through voxel classification, as opposed to previous regression-based methods. In the second stage, we introduce the Occupancy Generation Network (OccGen), a conditional occupancy diffusion model based on a transformer architecture and enhanced by our Point-Voxel Fuse (PVF) block. This block integrates coarse density voxels with partial points to leverage both global and local features for comprehensive completion. By thresholding the occupancy field, we convert it into a complete point cloud. Additionally, our method employs diverse training mixtures and efficient diffusion parameterization to enable effective one-step sampling during both training and inference. Experimental results demonstrate that Diffusion-Occ outperforms existing discriminative and generative methods.
☆ From Bias to Balance: Detecting Facial Expression Recognition Biases in Large Multimodal Foundation Models
This study addresses the racial biases in facial expression recognition (FER) systems within Large Multimodal Foundation Models (LMFMs). Despite advances in deep learning and the availability of diverse datasets, FER systems often exhibit higher error rates for individuals with darker skin tones. Existing research predominantly focuses on traditional FER models (CNNs, RNNs, ViTs), leaving a gap in understanding racial biases in LMFMs. We benchmark four leading LMFMs: GPT-4o, PaliGemma, Gemini, and CLIP to assess their performance in facial emotion detection across different racial demographics. A linear classifier trained on CLIP embeddings obtains accuracies of 95.9\% for RADIATE, 90.3\% for Tarr, and 99.5\% for Chicago Face. Furthermore, we identify that Anger is misclassified as Disgust 2.1 times more often in Black Females than White Females. This study highlights the need for fairer FER systems and establishes a foundation for developing unbiased, accurate FER technologies. Visit https://kvjvhub.github.io/FERRacialBias/ for further information regarding the biases within facial expression recognition.
☆ Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
Out-of-distribution (OOD) detection, which determines whether a given sample is part of the in-distribution (ID), has recently shown promising results through training with synthetic OOD datasets. Nonetheless, existing methods often produce outliers that are considerably distant from the ID, showing limited efficacy for capturing subtle distinctions between ID and OOD. To address these issues, we propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers by directly leveraging pixel-space ID samples through diffusion models. Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples. Thereby, the generated outliers achieve two crucial properties: (i) they present explicit semantic-discrepant information, while (ii) maintaining various levels of nuisance resemblance with ID. Furthermore, the improved OOD detector training with SONA outliers facilitates learning with a focus on semantic distinctions. Extensive experiments demonstrate the effectiveness of our framework, achieving an impressive AUROC of 88% on near-OOD datasets, which surpasses the performance of baseline methods by a significant margin of approximately 6%.
☆ Diffusion Models Are Real-Time Game Engines
We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.
comment: Project page: https://gamengen.github.io/
☆ Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning
Facial recognition systems have become an integral part of the modern world. These methods accomplish the task of human identification in an automatic, fast, and non-interfering way. Past research has uncovered high vulnerability to simple imitation attacks that could lead to erroneous identification and subsequent authentication of attackers. Similar to face recognition, imitation attacks can also be detected with Machine Learning. Attack detection systems use a variety of facial features and advanced machine learning models for uncovering the presence of attacks. In this work, we assess existing work on liveness detection and propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
☆ Alfie: Democratising RGBA Image Generation With No $$$ ECCV
Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.
comment: Accepted at ECCV AI for Visual Arts Workshop and Challenges
☆ From Rule-Based Models to Deep Learning Transformers Architectures for Natural Language Processing and Sign Language Translation Systems: Survey, Taxonomy and Performance Evaluation
With the growing Deaf and Hard of Hearing population worldwide and the persistent shortage of certified sign language interpreters, there is a pressing need for an efficient, signs-driven, integrated end-to-end translation system, from sign to gloss to text and vice-versa. There has been a wealth of research on machine translations and related reviews. However, there are few works on sign language machine translation considering the particularity of the language being continuous and dynamic. This paper aims to address this void, providing a retrospective analysis of the temporal evolution of sign language machine translation algorithms and a taxonomy of the Transformers architectures, the most used approach in language translation. We also present the requirements of a real-time Quality-of-Service sign language ma-chine translation system underpinned by accurate deep learning algorithms. We propose future research directions for sign language translation systems.
☆ LapisGS: Layered Progressive 3D Gaussian Splatting for Adaptive Streaming
The rise of Extended Reality (XR) requires efficient streaming of 3D online worlds, challenging current 3DGS representations to adapt to bandwidth-constrained environments. This paper proposes LapisGS, a layered 3DGS that supports adaptive streaming and progressive rendering. Our method constructs a layered structure for cumulative representation, incorporates dynamic opacity optimization to maintain visual fidelity, and utilizes occupancy maps to efficiently manage Gaussian splats. This proposed model offers a progressive representation supporting a continuous rendering quality adapted for bandwidth-aware streaming. Extensive experiments validate the effectiveness of our approach in balancing visual fidelity with the compactness of the model, with up to 50.71% improvement in SSIM, 286.53% improvement in LPIPS, and 318.41% reduction in model size, and shows its potential for bandwidth-adapted 3D streaming and rendering applications.
☆ Build-A-Scene: Interactive 3D Layout Control for Diffusion-Based Image Generation
We propose a diffusion-based approach for Text-to-Image (T2I) generation with interactive 3D layout control. Layout control has been widely studied to alleviate the shortcomings of T2I diffusion models in understanding objects' placement and relationships from text descriptions. Nevertheless, existing approaches for layout control are limited to 2D layouts, require the user to provide a static layout beforehand, and fail to preserve generated images under layout changes. This makes these approaches unsuitable for applications that require 3D object-wise control and iterative refinements, e.g., interior design and complex scene generation. To this end, we leverage the recent advancements in depth-conditioned T2I models and propose a novel approach for interactive 3D layout control. We replace the traditional 2D boxes used in layout control with 3D boxes. Furthermore, we revamp the T2I task as a multi-stage generation process, where at each stage, the user can insert, change, and move an object in 3D while preserving objects from earlier stages. We achieve this through our proposed Dynamic Self-Attention (DSA) module and the consistent 3D object translation strategy. Experiments show that our approach can generate complicated scenes based on 3D layouts, boosting the object generation success rate over the standard depth-conditioned T2I methods by 2x. Moreover, it outperforms other methods in comparison in preserving objects under layout changes. Project Page: \url{https://abdo-eldesokey.github.io/build-a-scene/}
comment: Project Page: https://abdo-eldesokey.github.io/build-a-scene/
☆ HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
Prompt learning has become a prevalent strategy for adapting vision-language foundation models (VLMs) such as CLIP to downstream tasks. With the emergence of large language models (LLMs), recent studies have explored the potential of using category-related descriptions to enhance prompt effectiveness. However, conventional descriptions lack explicit structured information necessary to represent the interconnections among key elements like entities or attributes with relation to a particular category. Since existing prompt tuning methods give little consideration to managing structured knowledge, this paper advocates leveraging LLMs to construct a graph for each description to prioritize such structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Finally, by enhancing multi-granularity knowledge generation, redesigning the relationship-driven attention re-weighting module, and incorporating consistent constraints on the hierarchical text encoder, we propose HPT++, which further improves the performance of HPT. Our experiments are conducted across a wide range of evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization. Extensive results and ablation studies demonstrate the effectiveness of our methods, which consistently outperform existing SOTA methods.
comment: 19 pages, 7 figures, 7 tables. arXiv admin note: substantial text overlap with arXiv:2312.06323
☆ Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging
Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive optics scanning light ophthalmoscope (AOSLO) imaging enables visualization of the cones from reflections of waveguiding cone photoreceptors. While there have been significant improvements in automated algorithms for segmenting cones in confocal AOSLO images, the process of labelling data remains labor-intensive and manual. This paper introduces a method based on deep learning (DL) for detecting and segmenting cones in AOSLO images. The models were trained on a semi-automatically labelled dataset of 20 AOSLO batches of images of 18 participants for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$ from the foveal center. F1 scores were 0.968, 0.958, and 0.954 for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$, respectively, which is better than previously reported DL approaches. Our method minimizes the need for labelled data by only necessitating a fraction of labelled cones, which is especially beneficial in the field of ophthalmology, where labelled data can often be limited.
☆ Platypus: A Generalized Specialist Model for Reading Text in Various Forms ECCV2024
Reading text from images (either natural scenes or documents) has been a long-standing research topic for decades, due to the high technical challenge and wide application range. Previously, individual specialist models are developed to tackle the sub-tasks of text reading (e.g., scene text recognition, handwritten text recognition and mathematical expression recognition). However, such specialist models usually cannot effectively generalize across different sub-tasks. Recently, generalist models (such as GPT-4V), trained on tremendous data in a unified way, have shown enormous potential in reading text in various scenarios, but with the drawbacks of limited accuracy and low efficiency. In this work, we propose Platypus, a generalized specialist model for text reading. Specifically, Platypus combines the best of both worlds: being able to recognize text of various forms with a single unified architecture, while achieving excellent accuracy and high efficiency. To better exploit the advantage of Platypus, we also construct a text reading dataset (called Worms), the images of which are curated from previous datasets and partially re-labeled. Experiments on standard benchmarks demonstrate the effectiveness and superiority of the proposed Platypus model. Model and data will be made publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/Platypus.
comment: Accepted by ECCV2024
☆ RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images ECCV 2024
sRGB images are now the predominant choice for pre-training visual models in computer vision research, owing to their ease of acquisition and efficient storage. Meanwhile, the advantage of RAW images lies in their rich physical information under variable real-world challenging lighting conditions. For computer vision tasks directly based on camera RAW data, most existing studies adopt methods of integrating image signal processor (ISP) with backend networks, yet often overlook the interaction capabilities between the ISP stages and subsequent networks. Drawing inspiration from ongoing adapter research in NLP and CV areas, we introduce RAW-Adapter, a novel approach aimed at adapting sRGB pre-trained models to camera RAW data. RAW-Adapter comprises input-level adapters that employ learnable ISP stages to adjust RAW inputs, as well as model-level adapters to build connections between ISP stages and subsequent high-level networks. Additionally, RAW-Adapter is a general framework that could be used in various computer vision frameworks. Abundant experiments under different lighting conditions have shown our algorithm's state-of-the-art (SOTA) performance, demonstrating its effectiveness and efficiency across a range of real-world and synthetic datasets.
comment: ECCV 2024, code link: https://github.com/cuiziteng/ECCV_RAW_Adapter
☆ Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View
Surgical instrument segmentation (SIS) on endoscopic images stands as a long-standing and essential task in the context of computer-assisted interventions for boosting minimally invasive surgery. Given the recent surge of deep learning methodologies and their data-hungry nature, training a neural predictive model based on massive expert-curated annotations has been dominating and served as an off-the-shelf approach in the field, which could, however, impose prohibitive burden to clinicians for preparing fine-grained pixel-wise labels corresponding to the collected surgical video frames. In this work, we propose an unsupervised method by reframing the video frame segmentation as a graph partitioning problem and regarding image pixels as graph nodes, which is significantly different from the previous efforts. A self-supervised pre-trained model is firstly leveraged as a feature extractor to capture high-level semantic features. Then, Laplacian matrixs are computed from the features and are eigendecomposed for graph partitioning. On the "deep" eigenvectors, a surgical video frame is meaningfully segmented into different modules such as tools and tissues, providing distinguishable semantic information like locations, classes, and relations. The segmentation problem can then be naturally tackled by applying clustering or threshold on the eigenvectors. Extensive experiments are conducted on various datasets (e.g., EndoVis2017, EndoVis2018, UCL, etc.) for different clinical endpoints. Across all the challenging scenarios, our method demonstrates outstanding performance and robustness higher than unsupervised state-of-the-art (SOTA) methods. The code is released at https://github.com/MingyuShengSMY/GraphClusteringSIS.git.
☆ MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to segment and recognize semantically meaningful regions based on text-based descriptions during inference. A typical solution to address this task is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between open- and close-vocabulary recognition. As VLMs are usually pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. Although employing additional image backbones for high-resolution inputs can mitigate this issue, it may also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary semantic segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by learnable convolutional and scale attention layers. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics by performing cross-attention between object queries and multi-resolution CLIP features within the region of interests. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary semantic segmentation benchmarks, particularly for high-resolution inputs, establishing new standards for open-vocabulary semantic segmentation.
comment: Technical report
☆ Text-guided Foundation Model Adaptation for Long-Tailed Medical Image Classification
In medical contexts, the imbalanced data distribution in long-tailed datasets, due to scarce labels for rare diseases, greatly impairs the diagnostic accuracy of deep learning models. Recent multimodal text-image supervised foundation models offer new solutions to data scarcity through effective representation learning. However, their limited medical-specific pretraining hinders their performance in medical image classification relative to natural images. To address this issue, we propose a novel Text-guided Foundation model Adaptation for Long-Tailed medical image classification (TFA-LT). We adopt a two-stage training strategy, integrating representations from the foundation model using just two linear adapters and a single ensembler for balanced outcomes. Experimental results on two long-tailed medical image datasets validate the simplicity, lightweight and efficiency of our approach: requiring only 6.1% GPU memory usage of the current best-performing algorithm, our method achieves an accuracy improvement of up to 27.1%, highlighting the substantial potential of foundation model adaptation in this area.
comment: Accepted by IEEE ISBI 2024
☆ CrossViewDiff: A Cross-View Diffusion Model for Satellite-to-Street View Synthesis
Satellite-to-street view synthesis aims at generating a realistic street-view image from its corresponding satellite-view image. Although stable diffusion models have exhibit remarkable performance in a variety of image generation applications, their reliance on similar-view inputs to control the generated structure or texture restricts their application to the challenging cross-view synthesis task. In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view synthesis. To address the challenges posed by the large discrepancy across views, we design the satellite scene structure estimation and cross-view texture mapping modules to construct the structural and textural controls for street-view image synthesis. We further design a cross-view control guided denoising process that incorporates the above controls via an enhanced cross-view attention module. To achieve a more comprehensive evaluation of the synthesis results, we additionally design a GPT-based scoring method as a supplement to standard evaluation metrics. We also explore the effect of different data sources (e.g., text, maps, building heights, and multi-temporal satellite imagery) on this task. Results on three public cross-view datasets show that CrossViewDiff outperforms current state-of-the-art on both standard and GPT-based evaluation metrics, generating high-quality street-view panoramas with more realistic structures and textures across rural, suburban, and urban scenes. The code and models of this work will be released at https://opendatalab.github.io/CrossViewDiff/.
comment: 21 pages, 11 figures
☆ SynthDoc: Bilingual Documents Synthesis for Visual Document Understanding
This paper introduces SynthDoc, a novel synthetic document generation pipeline designed to enhance Visual Document Understanding (VDU) by generating high-quality, diverse datasets that include text, images, tables, and charts. Addressing the challenges of data acquisition and the limitations of existing datasets, SynthDoc leverages publicly available corpora and advanced rendering tools to create a comprehensive and versatile dataset. Our experiments, conducted using the Donut model, demonstrate that models trained with SynthDoc's data achieve superior performance in pre-training read tasks and maintain robustness in downstream tasks, despite language inconsistencies. The release of a benchmark dataset comprising 5,000 image-text pairs not only showcases the pipeline's capabilities but also provides a valuable resource for the VDU community to advance research and development in document image recognition. This work significantly contributes to the field by offering a scalable solution to data scarcity and by validating the efficacy of end-to-end models in parsing complex, real-world documents.
☆ Learning effective pruning at initialization from iterative pruning
Pruning at initialization (PaI) reduces training costs by removing weights before training, which becomes increasingly crucial with the growing network size. However, current PaI methods still have a large accuracy gap with iterative pruning, especially at high sparsity levels. This raises an intriguing question: can we get inspiration from iterative pruning to improve the PaI performance? In the lottery ticket hypothesis, the iterative rewind pruning (IRP) finds subnetworks retroactively by rewinding the parameter to the original initialization in every pruning iteration, which means all the subnetworks are based on the initial state. Here, we hypothesise the surviving subnetworks are more important and bridge the initial feature and their surviving score as the PaI criterion. We employ an end-to-end neural network (\textbf{AutoS}parse) to learn this correlation, input the model's initial features, output their score and then prune the lowest score parameters before training. To validate the accuracy and generalization of our method, we performed PaI across various models. Results show that our approach outperforms existing methods in high-sparsity settings. Notably, as the underlying logic of model pruning is consistent in different models, only one-time IRP on one model is needed (e.g., once IRP on ResNet-18/CIFAR-10, AutoS can be generalized to VGG-16/CIFAR-10, ResNet-18/TinyImageNet, et al.). As the first neural network-based PaI method, we conduct extensive experiments to validate the factors influencing this approach. These results reveal the learning tendencies of neural networks and provide new insights into our understanding and research of PaI from a practical perspective. Our code is available at: https://github.com/ChengYaofeng/AutoSparse.git.
☆ Sequential-Scanning Dual-Energy CT Imaging Using High Temporal Resolution Image Reconstruction and Error-Compensated Material Basis Image Generation
Dual-energy computed tomography (DECT) has been widely used to obtain quantitative elemental composition of imaged subjects for personalized and precise medical diagnosis. Compared with DECT leveraging advanced X-ray source and/or detector technologies, the use of the sequential-scanning data acquisition scheme to implement DECT may make a broader impact on clinical practice because this scheme requires no specialized hardware designs and can be directly implemented into conventional CT systems. However, since the concentration of iodinated contrast agent in the imaged subject varies over time, sequentially scanned data sets acquired at two tube potentials are temporally inconsistent. As existing material basis image reconstruction approaches assume that the data sets acquired at two tube potentials are temporally consistent, the violation of this assumption results in inaccurate quantification of material concentration. In this work, we developed sequential-scanning DECT imaging using high temporal resolution image reconstruction and error-compensated material basis image generation, ACCELERATION in short, to address the technical challenge induced by temporal inconsistency of sequentially scanned data sets and improve quantification accuracy of material concentration in sequential-scanning DECT. ACCELERATION has been validated and evaluated using numerical simulation data sets generated from clinical human subject exams and experimental human subject studies. Results demonstrated the improvement of quantification accuracy and image quality using ACCELERATION.
☆ RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models SP
Abundant, well-annotated multimodal data in remote sensing are pivotal for aligning complex visual remote sensing (RS) scenes with human language, enabling the development of specialized vision language models across diverse RS interpretation tasks. However, annotating RS images with rich linguistic semantics at scale demands expertise in RS and substantial human labor, making it costly and often impractical. In this study, we propose a workflow that leverages large language models (LLMs) to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform. This approach facilitates the generation of paired remote sensing data and can be readily scaled up using openly available data. Within this framework, we present RSTeller, a multimodal dataset comprising over 1 million RS images, each accompanied by multiple descriptive captions. Extensive experiments demonstrate that RSTeller enhances the performance of multiple existing vision language models for RS scene understanding through continual pre-training. Our methodology significantly reduces the manual effort and expertise needed for annotating remote sensing imagery while democratizing access to high-quality annotated data. This advancement fosters progress in visual language modeling and encourages broader participation in remote sensing research and applications. The RSTeller dataset is available at https://github.com/SlytherinGe/RSTeller.
comment: Submitted to ISPRS
☆ Personalized Video Summarization using Text-Based Queries and Conditional Modeling
The proliferation of video content on platforms like YouTube and Vimeo presents significant challenges in efficiently locating relevant information. Automatic video summarization aims to address this by extracting and presenting key content in a condensed form. This thesis explores enhancing video summarization by integrating text-based queries and conditional modeling to tailor summaries to user needs. Traditional methods often produce fixed summaries that may not align with individual requirements. To overcome this, we propose a multi-modal deep learning approach that incorporates both textual queries and visual information, fusing them at different levels of the model architecture. Evaluation metrics such as accuracy and F1-score assess the quality of the generated summaries. The thesis also investigates improving text-based query representations using contextualized word embeddings and specialized attention networks. This enhances the semantic understanding of queries, leading to better video summaries. To emulate human-like summarization, which accounts for both visual coherence and abstract factors like storyline consistency, we introduce a conditional modeling approach. This method uses multiple random variables and joint distributions to capture key summarization components, resulting in more human-like and explainable summaries. Addressing data scarcity in fully supervised learning, the thesis proposes a segment-level pseudo-labeling approach. This self-supervised method generates additional data, improving model performance even with limited human-labeled datasets. In summary, this research aims to enhance automatic video summarization by incorporating text-based queries, improving query representations, introducing conditional modeling, and addressing data scarcity, thereby creating more effective and personalized video summaries.
comment: Ph.D. thesis, 137 pages
☆ Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation ECCV 2024
While the success of deep learning relies on large amounts of training datasets, data is often limited in privacy-sensitive domains. To address this challenge, generative model learning with differential privacy has emerged as a solution to train private generative models for desensitized data generation. However, the quality of the images generated by existing methods is limited due to the complexity of modeling data distribution. We build on the success of diffusion models and introduce DP-SAD, which trains a private diffusion model by a stochastic adversarial distillation method. Specifically, we first train a diffusion model as a teacher and then train a student by distillation, in which we achieve differential privacy by adding noise to the gradients from other models to the student. For better generation quality, we introduce a discriminator to distinguish whether an image is from the teacher or the student, which forms the adversarial training. Extensive experiments and analysis clearly demonstrate the effectiveness of our proposed method.
comment: accepted by ECCV 2024
☆ OctFusion: Octree-based Diffusion Models for 3D Shape Generation
Diffusion models have emerged as a popular method for 3D generation. However, it is still challenging for diffusion models to efficiently generate diverse and high-quality 3D shapes. In this paper, we introduce OctFusion, which can generate 3D shapes with arbitrary resolutions in 2.5 seconds on a single Nvidia 4090 GPU, and the extracted meshes are guaranteed to be continuous and manifold. The key components of OctFusion are the octree-based latent representation and the accompanying diffusion models. The representation combines the benefits of both implicit neural representations and explicit spatial octrees and is learned with an octree-based variational autoencoder. The proposed diffusion model is a unified multi-scale U-Net that enables weights and computation sharing across different octree levels and avoids the complexity of widely used cascaded diffusion schemes. We verify the effectiveness of OctFusion on the ShapeNet and Objaverse datasets and achieve state-of-the-art performances on shape generation tasks. We demonstrate that OctFusion is extendable and flexible by generating high-quality color fields for textured mesh generation and high-quality 3D shapes conditioned on text prompts, sketches, or category labels. Our code and pre-trained models are available at \url{https://github.com/octree-nn/octfusion}.
comment: Technical Report
☆ GeoTransfer : Generalizable Few-Shot Multi-View Reconstruction via Transfer Learning
This paper presents a novel approach for sparse 3D reconstruction by leveraging the expressive power of Neural Radiance Fields (NeRFs) and fast transfer of their features to learn accurate occupancy fields. Existing 3D reconstruction methods from sparse inputs still struggle with capturing intricate geometric details and can suffer from limitations in handling occluded regions. On the other hand, NeRFs excel in modeling complex scenes but do not offer means to extract meaningful geometry. Our proposed method offers the best of both worlds by transferring the information encoded in NeRF features to derive an accurate occupancy field representation. We utilize a pre-trained, generalizable state-of-the-art NeRF network to capture detailed scene radiance information, and rapidly transfer this knowledge to train a generalizable implicit occupancy network. This process helps in leveraging the knowledge of the scene geometry encoded in the generalizable NeRF prior and refining it to learn occupancy fields, facilitating a more precise generalizable representation of 3D space. The transfer learning approach leads to a dramatic reduction in training time, by orders of magnitude (i.e. from several days to 3.5 hrs), obviating the need to train generalizable sparse surface reconstruction methods from scratch. Additionally, we introduce a novel loss on volumetric rendering weights that helps in the learning of accurate occupancy fields, along with a normal loss that helps in global smoothing of the occupancy fields. We evaluate our approach on the DTU dataset and demonstrate state-of-the-art performance in terms of reconstruction accuracy, especially in challenging scenarios with sparse input data and occluded regions. We furthermore demonstrate the generalization capabilities of our method by showing qualitative results on the Blended MVS dataset without any retraining.
☆ Snap and Diagnose: An Advanced Multimodal Retrieval System for Identifying Plant Diseases in the Wild
Plant disease recognition is a critical task that ensures crop health and mitigates the damage caused by diseases. A handy tool that enables farmers to receive a diagnosis based on query pictures or the text description of suspicious plants is in high demand for initiating treatment before potential diseases spread further. In this paper, we develop a multimodal plant disease image retrieval system to support disease search based on either image or text prompts. Specifically, we utilize the largest in-the-wild plant disease dataset PlantWild, which includes over 18,000 images across 89 categories, to provide a comprehensive view of potential diseases relating to the query. Furthermore, cross-modal retrieval is achieved in the developed system, facilitated by a novel CLIP-based vision-language model that encodes both disease descriptions and disease images into the same latent space. Built on top of the retriever, our retrieval system allows users to upload either plant disease images or disease descriptions to retrieve the corresponding images with similar characteristics from the disease dataset to suggest candidate diseases for end users' consideration.
☆ Fine-grained length controllable video captioning with ordinal embeddings
This paper proposes a method for video captioning that controls the length of generated captions. Previous work on length control often had few levels for expressing length. In this study, we propose two methods of length embedding for fine-grained length control. A traditional embedding method is linear, using a one-hot vector and an embedding matrix. In this study, we propose methods that represent length in multi-hot vectors. One is bit embedding that expresses length in bit representation, and the other is ordinal embedding that uses the binary representation often used in ordinal regression. These length representations of multi-hot vectors are converted into length embedding by a nonlinear MLP. This method allows for not only the length control of caption sentences but also the control of the time when reading the caption. Experiments using ActivityNet Captions and Spoken Moments in Time show that the proposed method effectively controls the length of the generated captions. Analysis of the embedding vectors with ICA shows that length and semantics were learned separately, demonstrating the effectiveness of the proposed embedding methods.
☆ HEAD: A Bandwidth-Efficient Cooperative Perception Approach for Heterogeneous Connected and Autonomous Vehicles ECCV 2024
In cooperative perception studies, there is often a trade-off between communication bandwidth and perception performance. While current feature fusion solutions are known for their excellent object detection performance, transmitting the entire sets of intermediate feature maps requires substantial bandwidth. Furthermore, these fusion approaches are typically limited to vehicles that use identical detection models. Our goal is to develop a solution that supports cooperative perception across vehicles equipped with different modalities of sensors. This method aims to deliver improved perception performance compared to late fusion techniques, while achieving precision similar to the state-of-art intermediate fusion, but requires an order of magnitude less bandwidth. We propose HEAD, a method that fuses features from the classification and regression heads in 3D object detection networks. Our method is compatible with heterogeneous detection networks such as LiDAR PointPillars, SECOND, VoxelNet, and camera Bird's-eye View (BEV) Encoder. Given the naturally smaller feature size in the detection heads, we design a self-attention mechanism to fuse the classification head and a complementary feature fusion layer to fuse the regression head. Our experiments, comprehensively evaluated on the V2V4Real and OPV2V datasets, demonstrate that HEAD is a fusion method that effectively balances communication bandwidth and perception performance.
comment: Accepted by ECCV 2024 Workshop
☆ Evaluating Pre-Training Bias on Severe Acute Respiratory Syndrome Dataset
Machine learning (ML) is a growing field of computer science that has found many practical applications in several domains, including Health. However, as data grows in size and availability, and the number of models that aim to aid or replace human decisions, it raises the concern that these models can be susceptible to bias, which can lead to harm to specific individuals by basing its decisions on protected attributes such as gender, religion, sexual orientation, ethnicity, and others. Visualization techniques might generate insights and help summarize large datasets, enabling data scientists to understand the data better before training a model by evaluating pre-training metrics applied to the datasets before training, which might contribute to identifying potential harm before any effort is put into training and deploying the models. This work uses the severe acute respiratory syndrome dataset from OpenDataSUS to visualize three pre-training bias metrics and their distribution across different regions in Brazil. A random forest model is trained in each region and applied to the others. The aim is to compare the bias for the different regions, focusing on their protected attributes and comparing the model's performance with the metric values.
comment: short paper for eurovis, 5 pages
☆ Panoptic Perception for Autonomous Driving: A Survey
Panoptic perception represents a forefront advancement in autonomous driving technology, unifying multiple perception tasks into a singular, cohesive framework to facilitate a thorough understanding of the vehicle's surroundings. This survey reviews typical panoptic perception models for their unique inputs and architectures and compares them to performance, responsiveness, and resource utilization. It also delves into the prevailing challenges faced in panoptic perception and explores potential trajectories for future research. Our goal is to furnish researchers in autonomous driving with a detailed synopsis of panoptic perception, positioning this survey as a pivotal reference in the ever-evolving landscape of autonomous driving technologies.
☆ Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution
Super-resolution algorithms often struggle with images from surveillance environments due to adverse conditions such as unknown degradation, variations in pose, irregular illumination, and occlusions. However, acquiring multiple images, even of low quality, is possible with surveillance cameras. In this work, we develop an algorithm based on diffusion models that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image while minimizing distortions in the individual's identity. Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information or without the need to calculate a gradient of a function during the reconstruction process. To the best of our knowledge, this is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images using stochastic differential equations. The FFHQ dataset was employed for training, resulting in state-of-the-art performance in facial recognition and verification metrics when evaluated on the CelebA and Quis-Campi datasets. Our code is publicly available at https://github.com/marcelowds/fasr
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2024
☆ CycleGAN with Better Cycles
CycleGAN provides a framework to train image-to-image translation with unpaired datasets using cycle consistency loss [4]. While results are great in many applications, the pixel level cycle consistency can potentially be problematic and causes unrealistic images in certain cases. In this project, we propose three simple modifications to cycle consistency, and show that such an approach achieves better results with fewer artifacts.
comment: Technical Report 2018
☆ Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images
Robust semantic segmentation of intraoperative image data holds promise for enabling automatic surgical scene understanding and autonomous robotic surgery. While model development and validation are primarily conducted on idealistic scenes, geometric domain shifts, such as occlusions of the situs, are common in real-world open surgeries. To close this gap, we (1) present the first analysis of state-of-the-art (SOA) semantic segmentation models when faced with geometric out-of-distribution (OOD) data, and (2) propose an augmentation technique called "Organ Transplantation", to enhance generalizability. Our comprehensive validation on six different OOD datasets, comprising 600 RGB and hyperspectral imaging (HSI) cubes from 33 pigs, each annotated with 19 classes, reveals a large performance drop in SOA organ segmentation models on geometric OOD data. This performance decline is observed not only in conventional RGB data (with a dice similarity coefficient (DSC) drop of 46 %) but also in HSI data (with a DSC drop of 45 %), despite the richer spectral information content. The performance decline increases with the spatial granularity of the input data. Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data. Given the simplicity and effectiveness of our augmentation method, it is a valuable tool for addressing geometric domain shifts in surgical scene segmentation, regardless of the underlying model. Our code and pre-trained models are publicly available at https://github.com/IMSY-DKFZ/htc.
comment: Silvia Seidlitz and Jan Sellner contributed equally
☆ Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA)
Lung cancer stands as the preeminent cause of cancer-related mortality globally. Prompt and precise diagnosis, coupled with effective treatment, is imperative to reduce the fatality rates associated with this formidable disease. This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery. The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations, which precede the extraction of salient features and subsequent classification via a Multi-Layer Perceptron (MLP). The optimization process is further refined using the Dragonfly Algorithm (DA). The methodology put forth has attained an impressive training and testing accuracy of 99.82\%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
♻ ☆ Text3DAug -- Prompted Instance Augmentation for LiDAR Perception IROS 2024
LiDAR data of urban scenarios poses unique challenges, such as heterogeneous characteristics and inherent class imbalance. Therefore, large-scale datasets are necessary to apply deep learning methods. Instance augmentation has emerged as an efficient method to increase dataset diversity. However, current methods require the time-consuming curation of 3D models or costly manual data annotation. To overcome these limitations, we propose Text3DAug, a novel approach leveraging generative models for instance augmentation. Text3DAug does not depend on labeled data and is the first of its kind to generate instances and annotations from text. This allows for a fully automated pipeline, eliminating the need for manual effort in practical applications. Additionally, Text3DAug is sensor agnostic and can be applied regardless of the LiDAR sensor used. Comprehensive experimental analysis on LiDAR segmentation, detection and novel class discovery demonstrates that Text3DAug is effective in supplementing existing methods or as a standalone method, performing on par or better than established methods, however while overcoming their specific drawbacks. The code is publicly available.
comment: Accepted at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ SwiftBrush v2: Make Your One-step Diffusion Model Better Than Its Teacher ECCV'24
In this paper, we aim to enhance the performance of SwiftBrush, a prominent one-step text-to-image diffusion model, to be competitive with its multi-step Stable Diffusion counterpart. Initially, we explore the quality-diversity trade-off between SwiftBrush and SD Turbo: the former excels in image diversity, while the latter excels in image quality. This observation motivates our proposed modifications in the training methodology, including better weight initialization and efficient LoRA training. Moreover, our introduction of a novel clamped CLIP loss enhances image-text alignment and results in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models. The project page is available at https://swiftbrushv2.github.io.
comment: Accepted to ECCV'24
♻ ☆ GenFormer -- Generated Images are All You Need to Improve Robustness of Transformers on Small Datasets ICPR
Recent studies showcase the competitive accuracy of Vision Transformers (ViTs) in relation to Convolutional Neural Networks (CNNs), along with their remarkable robustness. However, ViTs demand a large amount of data to achieve adequate performance, which makes their application to small datasets challenging, falling behind CNNs. To overcome this, we propose GenFormer, a data augmentation strategy utilizing generated images, thereby improving transformer accuracy and robustness on small-scale image classification tasks. In our comprehensive evaluation we propose Tiny ImageNetV2, -R, and -A as new test set variants of Tiny ImageNet by transferring established ImageNet generalization and robustness benchmarks to the small-scale data domain. Similarly, we introduce MedMNIST-C and EuroSAT-C as corrupted test set variants of established fine-grained datasets in the medical and aerial domain. Through a series of experiments conducted on small datasets of various domains, including Tiny ImageNet, CIFAR, EuroSAT and MedMNIST datasets, we demonstrate the synergistic power of our method, in particular when combined with common train and test time augmentations, knowledge distillation, and architectural design choices. Additionally, we prove the effectiveness of our approach under challenging conditions with limited training data, demonstrating significant improvements in both accuracy and robustness, bridging the gap between CNNs and ViTs in the small-scale dataset domain.
comment: This paper has been accepted at International Conference on Pattern Recognition (ICPR), 2024
♻ ☆ SONICS: Synthetic Or Not -- Identifying Counterfeit Songs
The recent surge in AI-generated songs presents exciting possibilities and challenges. While these tools democratize music creation, they also necessitate the ability to distinguish between human-composed and AI-generated songs for safeguarding artistic integrity and content curation. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, this approach is inadequate for contemporary end-to-end AI-generated songs where all components (vocals, lyrics, music, and style) could be AI-generated. Additionally, existing datasets lack lyrics-music diversity, long-duration songs, and open fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect overlooked in existing methods. To capture these patterns, we propose a novel model, SpecTTTra, that is up to 3 times faster and 6 times more memory efficient compared to popular CNN and Transformer-based models while maintaining competitive performance. Finally, we offer both AI-based and Human evaluation benchmarks, addressing another deficiency in current research.
♻ ☆ Jump-teaching: Ultra Efficient and Robust Learning with Noisy Label
Sample selection is the most straightforward technique to combat label noise, aiming to distinguish mislabeled samples during training and avoid the degradation of the robustness of the model. In the workflow, $\textit{selecting possibly clean data}$ and $\textit{model update}$ are iterative. However, their interplay and intrinsic characteristics hinder the robustness and efficiency of learning with noisy labels: 1) The model chooses clean data with selection bias, leading to the accumulated error in the model update. 2) Most selection strategies leverage partner networks or supplementary information to mitigate label corruption, albeit with increased computation resources and lower throughput speed. Therefore, we employ only one network with the jump manner update to decouple the interplay and mine more semantic information from the loss for a more precise selection. Specifically, the selection of clean data for each model update is based on one of the prior models, excluding the last iteration. The strategy of model update exhibits a jump behavior in the form. Moreover, we map the outputs of the network and labels into the same semantic feature space, respectively. In this space, a detailed and simple loss distribution is generated to distinguish clean samples more effectively. Our proposed approach achieves almost up to $2.53\times$ speedup, $0.46\times$ peak memory footprint, and superior robustness over state-of-the-art works with various noise settings.
♻ ☆ RT-Attack: Jailbreaking Text-to-Image Models via Random Token
Recently, Text-to-Image(T2I) models have achieved remarkable success in image generation and editing, yet these models still have many potential issues, particularly in generating inappropriate or Not-Safe-For-Work(NSFW) content. Strengthening attacks and uncovering such vulnerabilities can advance the development of reliable and practical T2I models. Most of the previous works treat T2I models as white-box systems, using gradient optimization to generate adversarial prompts. However, accessing the model's gradient is often impossible in real-world scenarios. Moreover, existing defense methods, those using gradient masking, are designed to prevent attackers from obtaining accurate gradient information. While some black-box jailbreak attacks have been explored, these typically rely on simply replacing sensitive words, leading to suboptimal attack performance. To address this issue, we introduce a two-stage query-based black-box attack method utilizing random search. In the first stage, we establish a preliminary prompt by maximizing the semantic similarity between the adversarial and target harmful prompts. In the second stage, we use this initial prompt to refine our approach, creating a detailed adversarial prompt aimed at jailbreaking and maximizing the similarity in image features between the images generated from this prompt and those produced by the target harmful prompt. Extensive experiments validate the effectiveness of our method in attacking the latest prompt checkers, post-hoc image checkers, securely trained T2I models, and online commercial models.
♻ ☆ TAPVid-3D: A Benchmark for Tracking Any Point in 3D
We introduce a new benchmark, TAPVid-3D, for evaluating the task of long-range Tracking Any Point in 3D (TAP-3D). While point tracking in two dimensions (TAP) has many benchmarks measuring performance on real-world videos, such as TAPVid-DAVIS, three-dimensional point tracking has none. To this end, leveraging existing footage, we build a new benchmark for 3D point tracking featuring 4,000+ real-world videos, composed of three different data sources spanning a variety of object types, motion patterns, and indoor and outdoor environments. To measure performance on the TAP-3D task, we formulate a collection of metrics that extend the Jaccard-based metric used in TAP to handle the complexities of ambiguous depth scales across models, occlusions, and multi-track spatio-temporal smoothness. We manually verify a large sample of trajectories to ensure correct video annotations, and assess the current state of the TAP-3D task by constructing competitive baselines using existing tracking models. We anticipate this benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video. Code for dataset download, generation, and model evaluation is available at https://tapvid3d.github.io
♻ ☆ KAN-RCBEVDepth: A multi-modal fusion algorithm in object detection for autonomous driving
Accurate 3D object detection in autonomous driving is critical yet challenging due to occlusions, varying object sizes, and complex urban environments. This paper introduces the KAN-RCBEVDepth method, an innovative approach aimed at enhancing 3D object detection by fusing multimodal sensor data from cameras, LiDAR, and millimeter-wave radar. Our unique Bird's Eye View-based approach significantly improves detection accuracy and efficiency by seamlessly integrating diverse sensor inputs, refining spatial relationship understanding, and optimizing computational procedures. Experimental results show that the proposed method outperforms existing techniques across multiple detection metrics, achieving a higher Mean Distance AP (0.389, 23\% improvement), a better ND Score (0.485, 17.1\% improvement), and a faster Evaluation Time (71.28s, 8\% faster). Additionally, the KAN-RCBEVDepth method significantly reduces errors compared to BEVDepth, with lower Transformation Error (0.6044, 13.8\% improvement), Scale Error (0.2780, 2.6\% improvement), Orientation Error (0.5830, 7.6\% improvement), Velocity Error (0.4244, 28.3\% improvement), and Attribute Error (0.2129, 3.2\% improvement). These findings suggest that our method offers enhanced accuracy, reliability, and efficiency, making it well-suited for dynamic and demanding autonomous driving scenarios. The code will be released in \url{https://github.com/laitiamo/RCBEVDepth-KAN}.
♻ ☆ Creating Image Datasets in Agricultural Environments using DALL.E: Generative AI-Powered Large Language Model
This research investigated the role of artificial intelligence (AI), specifically the DALL.E model by OpenAI, in advancing data generation and visualization techniques in agriculture. DALL.E, an advanced AI image generator, works alongside ChatGPT's language processing to transform text descriptions and image clues into realistic visual representations of the content. The study used both approaches of image generation: text-to-image and image-to image (variation). Six types of datasets depicting fruit crop environment were generated. These AI-generated images were then compared against ground truth images captured by sensors in real agricultural fields. The comparison was based on Peak Signal-to-Noise Ratio (PSNR) and Feature Similarity Index (FSIM) metrics. The image-to-image generation exhibited a 5.78% increase in average PSNR over text-to-image methods, signifying superior image clarity and quality. However, this method also resulted in a 10.23% decrease in average FSIM, indicating a diminished structural and textural similarity to the original images. Similar to these measures, human evaluation also showed that images generated using image-to-image-based method were more realistic compared to those generated with text-to-image approach. The results highlighted DALL.E's potential in generating realistic agricultural image datasets and thus accelerating the development and adoption of imaging-based precision agricultural solutions.
comment: 9 Figures, 1 table, 17 pages
♻ ☆ Comprehensive Performance Evaluation of YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments
This study performed an extensive evaluation of the performances of all configurations of YOLOv8, YOLOv9, and YOLOv10 object detection algorithms for fruitlet (of green fruit) detection in commercial orchards. Additionally, this research performed and validated in-field counting of fruitlets using an iPhone and machine vision sensors in 5 different apple varieties (Scifresh, Scilate, Honeycrisp, Cosmic crisp & Golden delicious). This comprehensive investigation of total 17 different configurations (5 for YOLOv8, 6 for YOLOv9 and 6 for YOLOv10) revealed that YOLOv9 outperforms YOLOv10 and YOLOv8 in terms of mAP@50, while YOLOv10x outperformed all 17 configurations tested in terms of precision and recall. Specifically, YOLOv9 Gelan-e achieved the highest mAP@50 of 0.935, outperforming YOLOv10n's 0.921 and YOLOv8s's 0.924. In terms of precision, YOLOv10x achieved the highest precision of 0.908, indicating superior object identification accuracy compared to other configurations tested (e.g. YOLOv9 Gelan-c with a precision of 0.903 and YOLOv8m with 0.897. In terms of recall, YOLOv10s achieved the highest in its series (0.872), while YOLOv9 Gelan m performed the best among YOLOv9 configurations (0.899), and YOLOv8n performed the best among the YOLOv8 configurations (0.883). Meanwhile, three configurations of YOLOv10: YOLOv10b, YOLOv10l, and YOLOv10x achieved superior post-processing speeds of 1.5 milliseconds, outperforming all other configurations within the YOLOv9 and YOLOv8 families. Specifically, YOLOv9 Gelan-e recorded a post-processing speed of 1.9 milliseconds, and YOLOv8m achieved 2.1 milliseconds. Furthermore, YOLOv8n exhibited the highest inference speed among all configurations tested, achieving a processing time of 4.1 milliseconds while YOLOv9 Gelan-t and YOLOv10n also demonstrated comparatively slower inference speeds of 9.3 ms and 5.5 ms, respectively.
comment: 14 figures, 2 tables
♻ ☆ UWF-RI2FA: Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Retinal Imaging Improves Diabetic Retinopathy Stratification
Ultrawide-field fluorescein angiography (UWF-FA) facilitates diabetic retinopathy (DR) detection by providing a clear visualization of peripheral retinal lesions. However, the intravenous dye injection with potential risks hamper its application. We aim to acquire dye-free UWF-FA images from noninvasive UWF retinal imaging (UWF-RI) using generative artificial intelligence (GenAI) and evaluate its effectiveness in DR screening. A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-RI images and fed into a generative adversarial networks (GAN)-based model for training. The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation. The DeepDRiD dataset was used to externally assess the contribution of generated UWF-FA images to DR classification, using area under the receiver operating characteristic curve (AUROC) as outcome metrics. The generated early, mid, and late phase UWF-FA images achieved high authenticity, with multi-scale similarity scores ranging from 0.70 to 0.91 and qualitative visual scores ranging from 1.64 to 1.98 (1=real UWF-FA quality). In fifty randomly selected images, 56% to 76% of the generated images were difficult to distinguish from real images in the Turing test. Moreover, adding these generated UWF-FA images for DR classification significantly increased the AUROC from 0.869 to 0.904 compared to the baseline model using UWF-RI images (P < .001). The model successfully generates realistic multi-frame UWF-FA images for enhancing DR stratification without intravenous dye injection.
comment: 22 pages, 2 figures
♻ ☆ CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation
Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.
♻ ☆ Zero-Shot Character Identification and Speaker Prediction in Comics via Iterative Multimodal Fusion
Recognizing characters and predicting speakers of dialogue are critical for comic processing tasks, such as voice generation or translation. However, because characters vary by comic title, supervised learning approaches like training character classifiers which require specific annotations for each comic title are infeasible. This motivates us to propose a novel zero-shot approach, allowing machines to identify characters and predict speaker names based solely on unannotated comic images. In spite of their importance in real-world applications, these task have largely remained unexplored due to challenges in story comprehension and multimodal integration. Recent large language models (LLMs) have shown great capability for text understanding and reasoning, while their application to multimodal content analysis is still an open problem. To address this problem, we propose an iterative multimodal framework, the first to employ multimodal information for both character identification and speaker prediction tasks. Our experiments demonstrate the effectiveness of the proposed framework, establishing a robust baseline for these tasks. Furthermore, since our method requires no training data or annotations, it can be used as-is on any comic series.
comment: Accepted to ACM Multimedia 2024
♻ ☆ Polyp SAM 2: Advancing Zero shot Polyp Segmentation in Colorectal Cancer Detection
Polyp segmentation plays a crucial role in the early detection and diagnosis of colorectal cancer. However, obtaining accurate segmentations often requires labor-intensive annotations and specialized models. Recently, Meta AI Research released a general Segment Anything Model 2 (SAM 2), which has demonstrated promising performance in several segmentation tasks. In this manuscript, we evaluate the performance of SAM 2 in segmenting polyps under various prompted settings. We hope this report will provide insights to advance the field of polyp segmentation and promote more interesting work in the future. This project is publicly available at https://github.com/ sajjad-sh33/Polyp-SAM-2.
♻ ☆ Variational Autoencoding of Dental Point Clouds
Digital dentistry has made significant advancements, yet numerous challenges remain. This paper introduces the FDI 16 dataset, an extensive collection of tooth meshes and point clouds. Additionally, we present a novel approach: Variational FoldingNet (VF-Net), a fully probabilistic variational autoencoder for point clouds. Notably, prior latent variable models for point clouds lack a one-to-one correspondence between input and output points. Instead, they rely on optimizing Chamfer distances, a metric that lacks a normalized distributional counterpart, rendering it unsuitable for probabilistic modeling. We replace the explicit minimization of Chamfer distances with a suitable encoder, increasing computational efficiency while simplifying the probabilistic extension. This allows for straightforward application in various tasks, including mesh generation, shape completion, and representation learning. Empirically, we provide evidence of lower reconstruction error in dental reconstruction and interpolation, showcasing state-of-the-art performance in dental sample generation while identifying valuable latent representations
♻ ☆ Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain
Unsupervised domain adaptation (UDA) has attracted considerable attention, which transfers knowledge from a label-rich source domain to a related but unlabeled target domain. Reducing inter-domain differences has always been a crucial factor to improve performance in UDA, especially for tasks where there is a large gap between source and target domains. To this end, we propose a novel style-aware feature fusion method (SAFF) to bridge the large domain gap and transfer knowledge while alleviating the loss of class-discriminative information. Inspired by the human transitive inference and learning ability, a novel style-aware self-intermediate domain (SSID) is investigated to link two seemingly unrelated concepts through a series of intermediate auxiliary synthesized concepts. Specifically, we propose a novel learning strategy of SSID, which selects samples from both source and target domains as anchors, and then randomly fuses the object and style features of these anchors to generate labeled and style-rich intermediate auxiliary features for knowledge transfer. Moreover, we design an external memory bank to store and update specified labeled features to obtain stable class features and class-wise style features. Based on the proposed memory bank, the intra- and inter-domain loss functions are designed to improve the class recognition ability and feature compatibility, respectively. Meanwhile, we simulate the rich latent feature space of SSID by infinite sampling and the convergence of the loss function by mathematical theory. Finally, we conduct comprehensive experiments on commonly used domain adaptive benchmarks to evaluate the proposed SAFF, and the experimental results show that the proposed SAFF can be easily combined with different backbone networks and obtain better performance as a plug-in-plug-out module.
comment: 13 pages, 7 figures
♻ ☆ Recent Event Camera Innovations: A Survey
Event-based vision, inspired by the human visual system, offers transformative capabilities such as low latency, high dynamic range, and reduced power consumption. This paper presents a comprehensive survey of event cameras, tracing their evolution over time. It introduces the fundamental principles of event cameras, compares them with traditional frame cameras, and highlights their unique characteristics and operational differences. The survey covers various event camera models from leading manufacturers, key technological milestones, and influential research contributions. It explores diverse application areas across different domains and discusses essential real-world and synthetic datasets for research advancement. Additionally, the role of event camera simulators in testing and development is discussed. This survey aims to consolidate the current state of event cameras and inspire further innovation in this rapidly evolving field. To support the research community, a GitHub page (https://github.com/chakravarthi589/Event-based-Vision_Resources) categorizes past and future research articles and consolidates valuable resources.
♻ ☆ An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators
Inspection of insulators is important to ensure reliable operation of the power system. Deep learning is being increasingly exploited to automate the inspection process by leveraging object detection models to analyse aerial images captured by drones. A purely object detection-based approach, however, suffers from class imbalance-induced poor performance, which can be accentuated for infrequent and hard-to-detect incipient faults. This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection in a data-efficient manner. An explainable convolutional one-class classifier is adopted for anomaly detection. The one-class formulation reduces the reliance on plentifully available images of faulty insulators, while the explainability of the model is expected to promote adoption by the industry. A modified loss function is developed that addresses computational and interpretability issues with the existing model, also allowing for the integration of other losses. The superiority of the novel loss function is demonstrated with MVTec-AD dataset. The models are trained for insulator inspection with two datasets -- representing data-abundant and data-scarce scenarios -- in unsupervised and semi-supervised settings. The results suggest that including as few as five real anomalies in the training dataset significantly improves the model's performance and enables reliable detection of rarely occurring incipient faults in insulators.
♻ ☆ 3D Adaptive Structural Convolution Network for Domain-Invariant Point Cloud Recognition
Adapting deep learning networks for point cloud data recognition in self-driving vehicles faces challenges due to the variability in datasets and sensor technologies, emphasizing the need for adaptive techniques to maintain accuracy across different conditions. In this paper, we introduce the 3D Adaptive Structural Convolution Network (3D-ASCN), a cutting-edge framework for 3D point cloud recognition. It combines 3D convolution kernels, a structural tree structure, and adaptive neighborhood sampling for effective geometric feature extraction. This method obtains domain-invariant features and demonstrates robust, adaptable performance on a variety of point cloud datasets, ensuring compatibility across diverse sensor configurations without the need for parameter adjustments. This highlights its potential to significantly enhance the reliability and efficiency of self-driving vehicle technology.
comment: 11 pages, 3 figures
♻ ☆ Attention is All They Need: Exploring the Media Archaeology of the Computer Vision Research Paper
Research papers, in addition to textual documents, are a designed interface through which researchers communicate. Recently, rapid growth has transformed that interface in many fields of computing. In this work, we examine the effects of this growth from a media archaeology perspective, through the changes to figures and tables in research papers. Specifically, we study these changes in computer vision over the past decade, as the deep learning revolution has driven unprecedented growth in the discipline. We ground our investigation through interviews with veteran researchers spanning computer vision, graphics, and visualization. Our analysis focuses on the research attention economy: how research paper elements contribute towards advertising, measuring, and disseminating an increasingly commodified "contribution." Through this work, we seek to motivate future discussion surrounding the design of both the research paper itself as well as the larger sociotechnical research publishing system, including tools for finding, reading, and writing research papers.
♻ ☆ TAAT: Think and Act from Arbitrary Texts in Text2Motion
Text to Motion aims to generate human motions from texts. Existing settings assume that texts include action labels, which limits flexibility in practical scenarios. This paper extends this task with a more realistic assumption that the texts are arbitrary. Specifically, in our setting, arbitrary texts include existing action texts composed of action labels and introduce scene texts without explicit action labels. To address this practical issue, we extend the action texts in the HUMANML3D dataset by incorporating additional scene texts, thereby creating a new dataset, HUMANML3D++. Concurrently, we propose a simple framework that extracts action representations from arbitrary texts using a Large Language Model (LLM) and subsequently generates motions. Furthermore, we enhance the existing evaluation methodologies to address their inadequacies. Extensive experiments are conducted under different application scenarios to validate the effectiveness of the proposed framework on existing and proposed datasets. The results indicate that Text to Motion in this realistic setting is very challenging, fostering new research in this practical direction. Our dataset and code will be released.
comment: Updated errors in author information
♻ ☆ FPO++: Efficient Encoding and Rendering of Dynamic Neural Radiance Fields by Analyzing and Enhancing Fourier PlenOctrees
Fourier PlenOctrees have shown to be an efficient representation for real-time rendering of dynamic Neural Radiance Fields (NeRF). Despite its many advantages, this method suffers from artifacts introduced by the involved compression when combining it with recent state-of-the-art techniques for training the static per-frame NeRF models. In this paper, we perform an in-depth analysis of these artifacts and leverage the resulting insights to propose an improved representation. In particular, we present a novel density encoding that adapts the Fourier-based compression to the characteristics of the transfer function used by the underlying volume rendering procedure and leads to a substantial reduction of artifacts in the dynamic model. Furthermore, we show an augmentation of the training data that relaxes the periodicity assumption of the compression. We demonstrate the effectiveness of our enhanced Fourier PlenOctrees in the scope of quantitative and qualitative evaluations on synthetic and real-world scenes.
♻ ☆ IPAdapter-Instruct: Resolving Ambiguity in Image-based Conditioning using Instruct Prompts
Diffusion models continuously push the boundary of state-of-the-art image generation, but the process is hard to control with any nuance: practice proves that textual prompts are inadequate for accurately describing image style or fine structural details (such as faces). ControlNet and IPAdapter address this shortcoming by conditioning the generative process on imagery instead, but each individual instance is limited to modeling a single conditional posterior: for practical use-cases, where multiple different posteriors are desired within the same workflow, training and using multiple adapters is cumbersome. We propose IPAdapter-Instruct, which combines natural-image conditioning with ``Instruct'' prompts to swap between interpretations for the same conditioning image: style transfer, object extraction, both, or something else still? IPAdapterInstruct efficiently learns multiple tasks with minimal loss in quality compared to dedicated per-task models.
comment: 17 pages, 10 figures, Project page: https://unity-research.github.io/IP-Adapter-Instruct.github.io/
♻ ☆ Dynamic Object Queries for Transformer-based Incremental Object Detection
Incremental object detection (IOD) aims to sequentially learn new classes, while maintaining the capability to locate and identify old ones. As the training data arrives with annotations only with new classes, IOD suffers from catastrophic forgetting. Prior methodologies mainly tackle the forgetting issue through knowledge distillation and exemplar replay, ignoring the conflict between limited model capacity and increasing knowledge. In this paper, we explore \textit{dynamic object queries} for incremental object detection built on Transformer architecture. We propose the \textbf{Dy}namic object \textbf{Q}uery-based \textbf{DE}tection \textbf{TR}ansformer (DyQ-DETR), which incrementally expands the model representation ability to achieve stability-plasticity tradeoff. First, a new set of learnable object queries are fed into the decoder to represent new classes. These new object queries are aggregated with those from previous phases to adapt both old and new knowledge well. Second, we propose the isolated bipartite matching for object queries in different phases, based on disentangled self-attention. The interaction among the object queries at different phases is eliminated to reduce inter-class confusion. Thanks to the separate supervision and computation over object queries, we further present the risk-balanced partial calibration for effective exemplar replay. Extensive experiments demonstrate that DyQ-DETR significantly surpasses the state-of-the-art methods, with limited parameter overhead. Code will be made publicly available.
♻ ☆ Listen, Disentangle, and Control: Controllable Speech-Driven Talking Head Generation
Most earlier investigations on talking face generation have focused on the synchronization of lip motion and speech content. However, human head pose and facial emotions are equally important characteristics of natural human faces. While audio-driven talking face generation has seen notable advancements, existing methods either overlook facial emotions or are limited to specific individuals and cannot be applied to arbitrary subjects. In this paper, we propose a one-shot Talking Head Generation framework (SPEAK) that distinguishes itself from general Talking Face Generation by enabling emotional and postural control. Specifically, we introduce the Inter-Reconstructed Feature Disentanglement (IRFD) method to decouple human facial features into three latent spaces. We then design a face editing module that modifies speech content and facial latent codes into a single latent space. Subsequently, we present a novel generator that employs modified latent codes derived from the editing module to regulate emotional expression, head poses, and speech content in synthesizing facial animations. Extensive trials demonstrate that our method can generate realistic talking head with coordinated lip motions, authentic facial emotions, and smooth head movements. The demo video is available at the anonymous link: https://anonymous.4open.science/r/SPEAK-F56E
comment: Due to our negligence, there are factual errors in the experimental results, so we are considering resubmitting the paper after an overhaul
♻ ☆ BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating multiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a prediction list associated with different variations of the input data created through TTA. Then, we use BMA to combine predictions weighted by the respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance. The source code of the proposed BayTTA method is freely available at: \underline {https://github.com/Z-Sherkat/BayTTA}.
♻ ☆ A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
Early detection of fertilizer-induced stress in tomato plants is crucial for timely crop management interventions and yield optimization. Conventional optical methods detect fertilizer stress in young leaves with difficulty. This study proposes a novel, noninvasive technique for quantifying the density of trichomes-elongated hair-like structures found on plant surfaces-on young leaves using a smartphone. This method exhibits superior detection latency, enabling earlier and more accurate identification of fertilizer stress in tomato plants. Our approach combines augmented reality technology and image processing algorithms to analyze smartphone images of a specialized measurement paper. This measurement paper is applied to a tomato leaf to transfer trichomes onto its adhesive surface. The captured images are then processed through a pipeline involving region of interest extraction, perspective transformation, and illumination correction. Trichome detection and spatial distribution analysis of these preprocessed images yield a robust density metric. We validated our method through experiments on hydroponically grown tomatoes under varying fertilizer concentrations. Using leave-one-out cross-validation (LOOCV), our model achieves a mean area under the precision-recall curve of 0.824 and a receiver operating characteristic curve of 0.641 for predicting additional fertilization needs. Based on LOOCV, quantitative analysis revealed a strong relationship between trichome density and explanatory variables, including nitrate ion concentration, explaining 62.48% of the variation ($R^2 = 0.625$). The predicted and actual trichome densities were strongly correlated ($r = 0.794$). This straightforward and cost-effective method overcomes the limitations of traditional techniques, demonstrating the potential of using smartphones for practical plant nutrition diagnosis.
♻ ☆ Adaptive Fusion of Radiomics and Deep Features for Lung Adenocarcinoma Subtype Recognition
The most common type of lung cancer, lung adenocarcinoma (LUAD), has been increasingly detected since the advent of low-dose computed tomography screening technology. In clinical practice, pre-invasive LUAD (Pre-IAs) should only require regular follow-up care, while invasive LUAD (IAs) should receive immediate treatment with appropriate lung cancer resection, based on the cancer subtype. However, prior research on diagnosing LUAD has mainly focused on classifying Pre-IAs/IAs, as techniques for distinguishing different subtypes of IAs have been lacking. In this study, we proposed a multi-head attentional feature fusion (MHA-FF) model for not only distinguishing IAs from Pre-IAs, but also for distinguishing the different subtypes of IAs. To predict the subtype of each nodule accurately, we leveraged both radiomics and deep features extracted from computed tomography images. Furthermore, those features were aggregated through an adaptive fusion module that can learn attention-based discriminative features. The utility of our proposed method is demonstrated here by means of real-world data collected from a multi-center cohort.
comment: 7 pages, 5 figures and 4 tables
♻ ☆ ODDR: Outlier Detection & Dimension Reduction Based Defense Against Adversarial Patches
Adversarial attacks present a significant challenge to the dependable deployment of machine learning models, with patch-based attacks being particularly potent. These attacks introduce adversarial perturbations in localized regions of an image, deceiving even well-trained models. In this paper, we propose Outlier Detection and Dimension Reduction (ODDR), a comprehensive defense strategy engineered to counteract patch-based adversarial attacks through advanced statistical methodologies. Our approach is based on the observation that input features corresponding to adversarial patches-whether naturalistic or synthetic-deviate from the intrinsic distribution of the remaining image data and can thus be identified as outliers. ODDR operates through a robust three-stage pipeline: Fragmentation, Segregation, and Neutralization. This model-agnostic framework is versatile, offering protection across various tasks, including image classification, object detection, and depth estimation, and is proved effective in both CNN-based and Transformer-based architectures. In the Fragmentation stage, image samples are divided into smaller segments, preparing them for the Segregation stage, where advanced outlier detection techniques isolate anomalous features linked to adversarial perturbations. The Neutralization stage then applies dimension reduction techniques to these outliers, effectively neutralizing the adversarial impact while preserving critical information for the machine learning task. Extensive evaluation on benchmark datasets against state-of-the-art adversarial patches underscores the efficacy of ODDR. Our method enhances model accuracy from 39.26% to 79.1% under the GoogleAp attack, outperforming leading defenses such as LGS (53.86%), Jujutsu (60%), and Jedi (64.34%).
♻ ☆ Regional quality estimation for echocardiography using deep learning
Automatic estimation of cardiac ultrasound image quality can be beneficial for guiding operators and ensuring the accuracy of clinical measurements. Previous work often fails to distinguish the view correctness of the echocardiogram from the image quality. Additionally, previous studies only provide a global image quality value, which limits their practical utility. In this work, we developed and compared three methods to estimate image quality: 1) classic pixel-based metrics like the generalized contrast-to-noise ratio (gCNR) on myocardial segments as region of interest and left ventricle lumen as background, obtained using a U-Net segmentation 2) local image coherence derived from a U-Net model that predicts coherence from B-Mode images 3) a deep convolutional network that predicts the quality of each region directly in an end-to-end fashion. We evaluate each method against manual regional image quality annotations by three experienced cardiologists. The results indicate poor performance of the gCNR metric, with Spearman correlation to the annotations of rho = 0.24. The end-to-end learning model obtains the best result, rho = 0.69, comparable to the inter-observer correlation, rho = 0.63. Finally, the coherence-based method, with rho = 0.58, outperformed the classical metrics and is more generic than the end-to-end approach.
♻ ☆ LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation
Diffusion models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts involving multiple objects, attribute binding, and long descriptions. In this paper, we propose a novel framework called \textbf{LLM4GEN}, which enhances the semantic understanding of text-to-image diffusion models by leveraging the representation of Large Language Models (LLMs). It can be seamlessly incorporated into various diffusion models as a plug-and-play component. A specially designed Cross-Adapter Module (CAM) integrates the original text features of text-to-image models with LLM features, thereby enhancing text-to-image generation. Additionally, to facilitate and correct entity-attribute relationships in text prompts, we develop an entity-guided regularization loss to further improve generation performance. We also introduce DensePrompts, which contains $7,000$ dense prompts to provide a comprehensive evaluation for the text-to-image generation task. Experiments indicate that LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 9.69\% and 12.90\% in color on T2I-CompBench, respectively. Moreover, it surpasses existing models in terms of sample quality, image-text alignment, and human evaluation.
comment: 11 pages, 13 figures
♻ ☆ Exploring Human-in-the-Loop Test-Time Adaptation by Synergizing Active Learning and Model Selection
Existing test-time adaptation (TTA) approaches often adapt models with the unlabeled testing data stream. A recent attempt relaxed the assumption by introducing limited human annotation, referred to as Human-In-the-Loop Test-Time Adaptation (HILTTA) in this study. The focus of existing HILTTA studies lies in selecting the most informative samples to label, a.k.a. active learning. In this work, we are motivated by a pitfall of TTA, i.e. sensitivity to hyper-parameters, and propose to approach HILTTA by synergizing active learning and model selection. Specifically, we first select samples for human annotation (active learning) and then use the labeled data to select optimal hyper-parameters (model selection). To prevent the model selection process from overfitting to local distributions, multiple regularization techniques are employed to complement the validation objective. A sample selection strategy is further tailored by considering the balance between active learning and model selection purposes. We demonstrate on 5 TTA datasets that the proposed HILTTA approach is compatible with off-the-shelf TTA methods and such combinations substantially outperform the state-of-the-art HILTTA methods. Importantly, our proposed method can always prevent choosing the worst hyper-parameters on all off-the-shelf TTA methods. The source code will be released upon publication.
♻ ☆ Barbie: Text to Barbie-Style 3D Avatars
Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://xiaokunsun.github.io/Barbie.github.io/.
comment: 9 pages, 7 figures
♻ ☆ Tora: Trajectory-oriented Diffusion Transformer for Video Generation
Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable proficiency in producing high-quality video content. Nonetheless, the potential of transformer-based diffusion models for effectively generating videos with controllable motion remains an area of limited exploration. This paper introduces Tora, the first trajectory-oriented DiT framework that concurrently integrates textual, visual, and trajectory conditions, thereby enabling scalable video generation with effective motion guidance. Specifically, Tora consists of a Trajectory Extractor(TE), a Spatial-Temporal DiT, and a Motion-guidance Fuser(MGF). The TE encodes arbitrary trajectories into hierarchical spacetime motion patches with a 3D video compression network. The MGF integrates the motion patches into the DiT blocks to generate consistent videos that accurately follow designated trajectories. Our design aligns seamlessly with DiT's scalability, allowing precise control of video content's dynamics with diverse durations, aspect ratios, and resolutions. Extensive experiments demonstrate Tora's excellence in achieving high motion fidelity, while also meticulously simulating the intricate movement of the physical world.
♻ ☆ TFDet: Target-Aware Fusion for RGB-T Pedestrian Detection
Pedestrian detection plays a critical role in computer vision as it contributes to ensuring traffic safety. Existing methods that rely solely on RGB images suffer from performance degradation under low-light conditions due to the lack of useful information. To address this issue, recent multispectral detection approaches have combined thermal images to provide complementary information and have obtained enhanced performances. Nevertheless, few approaches focus on the negative effects of false positives caused by noisy fused feature maps. Different from them, we comprehensively analyze the impacts of false positives on the detection performance and find that enhancing feature contrast can significantly reduce these false positives. In this paper, we propose a novel target-aware fusion strategy for multispectral pedestrian detection, named TFDet. TFDet achieves state-of-the-art performance on two multispectral pedestrian benchmarks, KAIST and LLVIP. TFDet can easily extend to multi-class object detection scenarios. It outperforms the previous best approaches on two multispectral object detection benchmarks, FLIR and M3FD. Importantly, TFDet has comparable inference efficiency to the previous approaches, and has remarkably good detection performance even under low-light conditions, which is a significant advancement for ensuring road safety.
comment: This paper has been accepted by IEEE T-NNLS journal. Please jump to External DOI to view the official version
♻ ☆ Enhancing Robustness of Human Detection Algorithms in Maritime SAR through Augmented Aerial Images to Simulate Weather Conditions
7,651 cases of Search and Rescue Missions (SAR) were reported by the United States Coast Guard in 2024, with over 1322 SAR helicopters deployed in the 6 first months alone. Through the utilizations of YOLO, we were able to run different weather conditions and lighting from our augmented dataset for training. YOLO then utilizes CNNs to apply a series of convolutions and pooling layers to the input image, where the convolution layers are able to extract the main features of the image. Through this, our YOLO model is able to learn to differentiate different objects which may considerably improve its accuracy, possibly enhancing the efficiency of SAR operations through enhanced detection accuracy. This paper aims to improve the model's accuracy of human detection in maritime SAR by evaluating a robust datasets containing various elevations and geological locations, as well as through data augmentation which simulates different weather and lighting. We observed that models trained on augmented datasets outperformed their non-augmented counterparts in which the human recall scores ranged from 0.891 to 0.911 with an improvement rate of 3.4\% on the YOLOv5l model. Results showed that these models demonstrate greater robustness to real-world conditions in varying of weather, brightness, tint, and contrast.
♻ ☆ Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution BMVC 2024
Recently, window-based attention methods have shown great potential for computer vision tasks, particularly in Single Image Super-Resolution (SISR). However, it may fall short in capturing long-range dependencies and relationships between distant tokens. Additionally, we find that learning on spatial domain does not convey the frequency content of the image, which is a crucial aspect in SISR. To tackle these issues, we propose a new Channel-Partitioned Attention Transformer (CPAT) to better capture long-range dependencies by sequentially expanding windows along the height and width of feature maps. In addition, we propose a novel Spatial-Frequency Interaction Module (SFIM), which incorporates information from spatial and frequency domains to provide a more comprehensive information from feature maps. This includes information about the frequency content and enhances the receptive field across the entire image. Experimental findings show the effectiveness of our proposed modules and architecture. In particular, CPAT surpasses current state-of-the-art methods by up to 0.31dB at x2 SR on Urban100.
comment: Camera ready version, BMVC 2024
♻ ☆ Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes BMVC2024
Large-scale well-annotated datasets are of great importance for training an effective object detector. However, obtaining accurate bounding box annotations is laborious and demanding. Unfortunately, the resultant noisy bounding boxes could cause corrupt supervision signals and thus diminish detection performance. Motivated by the observation that the real ground-truth is usually situated in the aggregation region of the proposals assigned to a noisy ground-truth, we propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals. In DISCO, spatial distribution modeling is performed to statistically extract the potential locations of objects. Based on the modeled distribution, three distribution-aware techniques, i.e., distribution-aware proposal augmentation (DA-Aug), distribution-aware box refinement (DA-Ref), and distribution-aware confidence estimation (DA-Est), are developed to improve classification, localization, and interpretability, respectively. Extensive experiments on large-scale noisy image datasets (i.e., Pascal VOC and MS-COCO) demonstrate that DISCO can achieve state-of-the-art detection performance, especially at high noise levels. Code is available at https://github.com/Correr-Zhou/DISCO.
comment: Accepted by BMVC2024
♻ ☆ Pano2Room: Novel View Synthesis from a Single Indoor Panorama SIGGRAPH
Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
comment: SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers '24), December 3--6, 2024, Tokyo, Japan
♻ ☆ Training-free Long Video Generation with Chain of Diffusion Model Experts
Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
♻ ☆ FaceCat: Enhancing Face Recognition Security with a Unified Diffusion Model
Face anti-spoofing (FAS) and adversarial detection (FAD) have been regarded as critical technologies to ensure the safety of face recognition systems. However, due to limited practicality, complex deployment, and the additional computational overhead, it is necessary to implement both detection techniques within a unified framework. This paper aims to achieve this goal by breaking through two primary obstacles: 1) the suboptimal face feature representation and 2) the scarcity of training data. To address the limited performance caused by existing feature representations, motivated by the rich structural and detailed features of face diffusion models, we propose FaceCat, the first approach leveraging the diffusion model to simultaneously enhance the performance of FAS and FAD. Specifically, FaceCat elaborately designs a hierarchical fusion mechanism to capture rich face semantic features of the diffusion model. These features then serve as a robust foundation for a lightweight head, designed to execute FAS and FAD simultaneously. Due to the limitations in feature representation that arise from relying solely on single-modality image data, we further propose a novel text-guided multi-modal alignment strategy that utilizes text prompts to enrich feature representation, thereby enhancing performance. To combat data scarcity, we build a comprehensive dataset with a wide range of 28 attack types, offering greater potential for a unified framework in facial security. Extensive experiments validate the effectiveness of FaceCat generalizes significantly better and obtains excellent robustness against common input transformations.
comment: Under review
♻ ☆ Sewer Image Super-Resolution with Depth Priors and Its Lightweight Network
The Quick-view (QV) technique serves as a primary method for detecting defects within sewerage systems. However, the effectiveness of QV is impeded by the limited visual range of its hardware, resulting in suboptimal image quality for distant portions of the sewer network. Image super-resolution is an effective way to improve image quality and has been applied in a variety of scenes. However, research on super-resolution for sewer images remains considerably unexplored. In response, this study leverages the inherent depth relationships present within QV images and introduces a novel Depth-guided, Reference-based Super-Resolution framework denoted as DSRNet. It comprises two core components: a depth extraction module and a depth information matching module (DMM). DSRNet utilizes the adjacent frames of the low-resolution image as reference images and helps them recover texture information based on the correlation. By combining these modules, the integration of depth priors significantly enhances both visual quality and performance benchmarks. Besides, in pursuit of computational efficiency and compactness, a super-resolution knowledge distillation model based on an attention mechanism is introduced. This mechanism facilitates the acquisition of feature similarity between a more complex teacher model and a streamlined student model, with the latter being a lightweight version of DSRNet. Experimental results demonstrate that DSRNet significantly improves PSNR and SSIM compared with other methods. This study also conducts experiments on sewer defect semantic segmentation, object detection, and classification on the Pipe dataset and Sewer-ML dataset. Experiments show that the method can improve the performance of low-resolution sewer images in these tasks.
♻ ☆ DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance
Large-scale generative models, such as text-to-image diffusion models, have garnered widespread attention across diverse domains due to their creative and high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generating images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher-resolution datasets. However, this poses a formidable challenge due to the difficulty in collecting large-scale high-resolution images and substantial computational resources. While several preceding works have proposed alternatives to bypass the cumbersome training process, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond their original capability and propose a novel progressive approach that fully utilizes generated low-resolution images to guide the generation of higher-resolution images. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method. Project page: https://yhyun225.github.io/DiffuseHigh/
comment: Project page: https://yhyun225.github.io/DiffuseHigh/
♻ ☆ 5%>100%: Breaking Performance Shackles of Full Fine-Tuning on Visual Recognition Tasks
Pre-training & fine-tuning can enhance the transferring efficiency and performance in visual tasks. Recent delta-tuning methods provide more options for visual classification tasks. Despite their success, existing visual delta-tuning art fails to exceed the upper limit of full fine-tuning on challenging tasks like object detection and segmentation. To find a competitive alternative to full fine-tuning, we propose the Multi-cognitive Visual Adapter (Mona) tuning, a novel adapter-based tuning method. First, we introduce multiple vision-friendly filters into the adapter to enhance its ability to process visual signals, while previous methods mainly rely on language-friendly linear filters. Second, we add the scaled normalization layer in the adapter to regulate the distribution of input features for visual filters. To fully demonstrate the practicality and generality of Mona, we conduct experiments on multiple representative visual tasks, including instance segmentation on COCO, semantic segmentation on ADE20K, object detection on Pascal VOC, oriented object detection on DOTA/STAR, and image classification on three common datasets. Exciting results illustrate that Mona surpasses full fine-tuning on all these tasks, and is the only delta-tuning method outperforming full fine-tuning on the above various tasks. For example, Mona achieves 1% performance gain on the COCO dataset compared to full fine-tuning. Comprehensive results suggest that Mona-tuning is more suitable for retaining and utilizing the capabilities of pre-trained models than full fine-tuning. The code will be released at https://github.com/Leiyi-Hu/mona.
comment: arXiv admin note: substantial text overlap with arXiv:2311.15010
♻ ☆ STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay ECCV 2024
Test-time adaptation (TTA) aims to address the distribution shift between the training and test data with only unlabeled data at test time. Existing TTA methods often focus on improving recognition performance specifically for test data associated with classes in the training set. However, during the open-world inference process, there are inevitably test data instances from unknown classes, commonly referred to as outliers. This paper pays attention to the problem that conducts both sample recognition and outlier rejection during inference while outliers exist. To address this problem, we propose a new approach called STAble Memory rePlay (STAMP), which performs optimization over a stable memory bank instead of the risky mini-batch. In particular, the memory bank is dynamically updated by selecting low-entropy and label-consistent samples in a class-balanced manner. In addition, we develop a self-weighted entropy minimization strategy that assigns higher weight to low-entropy samples. Extensive results demonstrate that STAMP outperforms existing TTA methods in terms of both recognition and outlier detection performance. The code is released at https://github.com/yuyongcan/STAMP.
comment: Accepted by ECCV 2024; Fixed a bug in calculating OOD score of STAMP and updated the results
♻ ☆ SiCP: Simultaneous Individual and Cooperative Perception for 3D Object Detection in Connected and Automated Vehicles IROS 2024
Cooperative perception for connected and automated vehicles is traditionally achieved through the fusion of feature maps from two or more vehicles. However, the absence of feature maps shared from other vehicles can lead to a significant decline in 3D object detection performance for cooperative perception models compared to standalone 3D detection models. This drawback impedes the adoption of cooperative perception as vehicle resources are often insufficient to concurrently employ two perception models. To tackle this issue, we present Simultaneous Individual and Cooperative Perception (SiCP), a generic framework that supports a wide range of the state-of-the-art standalone perception backbones and enhances them with a novel Dual-Perception Network (DP-Net) designed to facilitate both individual and cooperative perception. In addition to its lightweight nature with only 0.13M parameters, DP-Net is robust and retains crucial gradient information during feature map fusion. As demonstrated in a comprehensive evaluation on the V2V4Real and OPV2V datasets, thanks to DP-Net, SiCP surpasses state-of-the-art cooperative perception solutions while preserving the performance of standalone perception solutions.
comment: Accepted by IROS 2024
♻ ☆ VTON-HandFit: Virtual Try-on for Arbitrary Hand Pose Guided by Hand Priors Embedding
Although diffusion-based image virtual try-on has made considerable progress, emerging approaches still struggle to effectively address the issue of hand occlusion (i.e., clothing regions occluded by the hand part), leading to a notable degradation of the try-on performance. To tackle this issue widely existing in real-world scenarios, we propose VTON-HandFit, leveraging the power of hand priors to reconstruct the appearance and structure for hand occlusion cases. Firstly, we tailor a Handpose Aggregation Net using the ControlNet-based structure explicitly and adaptively encoding the global hand and pose priors. Besides, to fully exploit the hand-related structure and appearance information, we propose Hand-feature Disentanglement Embedding module to disentangle the hand priors into the hand structure-parametric and visual-appearance features, and customize a masked cross attention for further decoupled feature embedding. Lastly, we customize a hand-canny constraint loss to better learn the structure edge knowledge from the hand template of model image. VTON-HandFit outperforms the baselines in qualitative and quantitative evaluations on the public dataset and our self-collected hand-occlusion Handfit-3K dataset particularly for the arbitrary hand pose occlusion cases in real-world scenarios. The Code and dataset will be available at \url{https://github.com/VTON-HandFit/VTON-HandFit}.
comment: The project page is \url{https://vton-handfit.github.io}
♻ ☆ Private Gradient Estimation is Useful for Generative Modeling ACM MM 2024
While generative models have proved successful in many domains, they may pose a privacy leakage risk in practical deployment. To address this issue, differentially private generative model learning has emerged as a solution to train private generative models for different downstream tasks. However, existing private generative modeling approaches face significant challenges in generating high-dimensional data due to the inherent complexity involved in modeling such data. In this work, we present a new private generative modeling approach where samples are generated via Hamiltonian dynamics with gradients of the private dataset estimated by a well-trained network. In the approach, we achieve differential privacy by perturbing the projection vectors in the estimation of gradients with sliced score matching. In addition, we enhance the reconstruction ability of the model by incorporating a residual enhancement module during the score matching. For sampling, we perform Hamiltonian dynamics with gradients estimated by the well-trained network, allowing the sampled data close to the private dataset's manifold step by step. In this way, our model is able to generate data with a resolution of 256x256. Extensive experiments and analysis clearly demonstrate the effectiveness and rationality of the proposed approach.
comment: accepted by ACM MM 2024 Oral
♻ ☆ Sapiens: Foundation for Human Vision Models ECCV 2024
We present Sapiens, a family of models for four fundamental human-centric vision tasks -- 2D pose estimation, body-part segmentation, depth estimation, and surface normal prediction. Our models natively support 1K high-resolution inference and are extremely easy to adapt for individual tasks by simply fine-tuning models pretrained on over 300 million in-the-wild human images. We observe that, given the same computational budget, self-supervised pretraining on a curated dataset of human images significantly boosts the performance for a diverse set of human-centric tasks. The resulting models exhibit remarkable generalization to in-the-wild data, even when labeled data is scarce or entirely synthetic. Our simple model design also brings scalability -- model performance across tasks improves as we scale the number of parameters from 0.3 to 2 billion. Sapiens consistently surpasses existing baselines across various human-centric benchmarks. We achieve significant improvements over the prior state-of-the-art on Humans-5K (pose) by 7.6 mAP, Humans-2K (part-seg) by 17.1 mIoU, Hi4D (depth) by 22.4% relative RMSE, and THuman2 (normal) by 53.5% relative angular error. Project page: https://about.meta.com/realitylabs/codecavatars/sapiens.
comment: ECCV 2024 (Oral)
♻ ☆ BCDNet: A Convolutional Neural Network For Breast Cancer Detection
Previous research has established that breast cancer is a prevalent cancer type, with Invasive Ductal Carcinoma (IDC) being the most common subtype. The incidence of this dangerous cancer continues to rise, making accurate and rapid diagnosis, particularly in the early stages, critically important. While modern Computer-Aided Diagnosis (CAD) systems can address most cases, medical professionals still face challenges in using them in the field without powerful computing resources. In this paper, we propose a novel CNN model called BCDNet, which effectively detects IDC in histopathological images with an accuracy of up to 89.5% and reduces training time effectively.
comment: 5 pages, 5 figures
♻ ☆ Prompt-Softbox-Prompt: A free-text Embedding Control for Image Editing
Text-driven diffusion models have achieved remarkable success in image editing, but a crucial component in these models-text embeddings-has not been fully explored. The entanglement and opacity of text embeddings present significant challenges to achieving precise image editing. In this paper, we provide a comprehensive and in-depth analysis of text embeddings in Stable Diffusion XL, offering three key insights. First, while the 'aug_embedding' captures the full semantic content of the text, its contribution to the final image generation is relatively minor. Second, 'BOS' and 'Padding_embedding' do not contain any semantic information. Lastly, the 'EOS' holds the semantic information of all words and contains the most style features. Each word embedding plays a unique role without interfering with one another. Based on these insights, we propose a novel approach for controllable image editing using a free-text embedding control method called PSP (Prompt-Softbox-Prompt). PSP enables precise image editing by inserting or adding text embeddings within the cross-attention layers and using Softbox to define and control the specific area for semantic injection. This technique allows for obejct additions and replacements while preserving other areas of the image. Additionally, PSP can achieve style transfer by simply replacing text embeddings. Extensive experimental results show that PSP achieves significant results in tasks such as object replacement, object addition, and style transfer.
♻ ☆ Attack on Scene Flow using Point Clouds
Deep neural networks have made significant advancements in accurately estimating scene flow using point clouds, which is vital for many applications like video analysis, action recognition, and navigation. The robustness of these techniques, however, remains a concern, particularly in the face of adversarial attacks that have been proven to deceive state-of-the-art deep neural networks in many domains. Surprisingly, the robustness of scene flow networks against such attacks has not been thoroughly investigated. To address this problem, the proposed approach aims to bridge this gap by introducing adversarial white-box attacks specifically tailored for scene flow networks. Experimental results show that the generated adversarial examples obtain up to 33.7 relative degradation in average end-point error on the KITTI and FlyingThings3D datasets. The study also reveals the significant impact that attacks targeting point clouds in only one dimension or color channel have on average end-point error. Analyzing the success and failure of these attacks on the scene flow networks and their 2D optical flow network variants shows a higher vulnerability for the optical flow networks. Code is available at https://github.com/aheldis/Attack-on-Scene-Flow-using-Point-Clouds.git.
♻ ☆ A Neurosymbolic Approach to Adaptive Feature Extraction in SLAM IROS
Autonomous robots, autonomous vehicles, and humans wearing mixed-reality headsets require accurate and reliable tracking services for safety-critical applications in dynamically changing real-world environments. However, the existing tracking approaches, such as Simultaneous Localization and Mapping (SLAM), do not adapt well to environmental changes and boundary conditions despite extensive manual tuning. On the other hand, while deep learning-based approaches can better adapt to environmental changes, they typically demand substantial data for training and often lack flexibility in adapting to new domains. To solve this problem, we propose leveraging the neurosymbolic program synthesis approach to construct adaptable SLAM pipelines that integrate the domain knowledge from traditional SLAM approaches while leveraging data to learn complex relationships. While the approach can synthesize end-to-end SLAM pipelines, we focus on synthesizing the feature extraction module. We first devise a domain-specific language (DSL) that can encapsulate domain knowledge on the important attributes for feature extraction and the real-world performance of various feature extractors. Our neurosymbolic architecture then undertakes adaptive feature extraction, optimizing parameters via learning while employing symbolic reasoning to select the most suitable feature extractor. Our evaluations demonstrate that our approach, neurosymbolic Feature EXtraction (nFEX), yields higher-quality features. It also reduces the pose error observed for the state-of-the-art baseline feature extractors ORB and SIFT by up to 90% and up to 66%, respectively, thereby enhancing the system's efficiency and adaptability to novel environments.
comment: 8 pages, 6 figures, and 5 tables. Published at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Corresponding author: Yasra Chandio (ychandio@umass.edu)
♻ ☆ OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation
Recent advancements in 3D reconstruction technologies have paved the way for high-quality and real-time rendering of complex 3D scenes. Despite these achievements, a notable challenge persists: it is difficult to precisely reconstruct specific objects from large scenes. Current scene reconstruction techniques frequently result in the loss of object detail textures and are unable to reconstruct object portions that are occluded or unseen in views. To address this challenge, we delve into the meticulous 3D reconstruction of specific objects within large scenes and propose a framework termed OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation. Specifically, we proposed a novel 3D target segmentation technique based on 2D Gaussian Splatting, which segments 3D consistent target masks in multi-view scene images and generates a preliminary target model. Moreover, to reconstruct the unseen portions of the target, we propose a novel target replenishment technique driven by large-scale generative diffusion priors. We demonstrate that our method can accurately reconstruct specific targets from large scenes, both quantitatively and qualitatively. Our experiments show that OMEGAS significantly outperforms existing reconstruction methods across various scenarios. Our project page is at: https://github.com/CrystalWlz/OMEGAS
♻ ☆ Expert Knowledge-Aware Image Difference Graph Representation Learning for Difference-Aware Medical Visual Question Answering
To contribute to automating the medical vision-language model, we propose a novel Chest-Xray Difference Visual Question Answering (VQA) task. Given a pair of main and reference images, this task attempts to answer several questions on both diseases and, more importantly, the differences between them. This is consistent with the radiologist's diagnosis practice that compares the current image with the reference before concluding the report. We collect a new dataset, namely MIMIC-Diff-VQA, including 700,703 QA pairs from 164,324 pairs of main and reference images. Compared to existing medical VQA datasets, our questions are tailored to the Assessment-Diagnosis-Intervention-Evaluation treatment procedure used by clinical professionals. Meanwhile, we also propose a novel expert knowledge-aware graph representation learning model to address this task. The proposed baseline model leverages expert knowledge such as anatomical structure prior, semantic, and spatial knowledge to construct a multi-relationship graph, representing the image differences between two images for the image difference VQA task. The dataset and code can be found at https://github.com/Holipori/MIMIC-Diff-VQA. We believe this work would further push forward the medical vision language model.
♻ ☆ Variational Bayesian Imaging with an Efficient Surrogate Score-based Prior
We propose a surrogate function for efficient yet principled use of score-based priors in Bayesian imaging. We consider ill-posed inverse imaging problems in which one aims for a clean image posterior given incomplete or noisy measurements. Since the measurements do not uniquely determine a true image, a prior is needed to constrain the solution space. Recent work turned score-based diffusion models into principled priors for solving ill-posed imaging problems by appealing to an ODE-based log-probability function. However, evaluating the ODE is computationally inefficient and inhibits posterior estimation of high-dimensional images. Our proposed surrogate prior is based on the evidence lower bound of a score-based diffusion model. We demonstrate the surrogate prior on variational inference for efficient approximate posterior sampling of large images. Compared to the exact prior in previous work, our surrogate accelerates optimization of the variational image distribution by at least two orders of magnitude. We also find that our principled approach gives more accurate posterior estimation than non-variational diffusion-based approaches that involve hyperparameter-tuning at inference. Our work establishes a practical path forward for using score-based diffusion models as general-purpose image priors.
comment: Published in Transactions on Machine Learning Research (TMLR) August 2024
♻ ☆ Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC ICML 2023
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
comment: ICML 2023, Project Webpage: https://energy-based-model.github.io/reduce-reuse-recycle/
♻ ☆ Dataset Scale and Societal Consistency Mediate Facial Impression Bias in Vision-Language AI
Multimodal AI models capable of associating images and text hold promise for numerous domains, ranging from automated image captioning to accessibility applications for blind and low-vision users. However, uncertainty about bias has in some cases limited their adoption and availability. In the present work, we study 43 CLIP vision-language models to determine whether they learn human-like facial impression biases, and we find evidence that such biases are reflected across three distinct CLIP model families. We show for the first time that the the degree to which a bias is shared across a society predicts the degree to which it is reflected in a CLIP model. Human-like impressions of visually unobservable attributes, like trustworthiness and sexuality, emerge only in models trained on the largest dataset, indicating that a better fit to uncurated cultural data results in the reproduction of increasingly subtle social biases. Moreover, we use a hierarchical clustering approach to show that dataset size predicts the extent to which the underlying structure of facial impression bias resembles that of facial impression bias in humans. Finally, we show that Stable Diffusion models employing CLIP as a text encoder learn facial impression biases, and that these biases intersect with racial biases in Stable Diffusion XL-Turbo. While pretrained CLIP models may prove useful for scientific studies of bias, they will also require significant dataset curation when intended for use as general-purpose models in a zero-shot setting.
comment: Accepted at Artificial Intelligence, Ethics, and Society 2024
♻ ☆ Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator ECCV 2024
Multimodal Large Language Models (MLLMs) demonstrate exceptional problem-solving capabilities, but few research studies aim to gauge the ability to generate visual instruction tuning data. This paper proposes to explore the potential of empowering MLLMs to generate data independently without relying on GPT-4. We introduce Genixer, a comprehensive data generation pipeline consisting of four key steps: (i) instruction data collection, (ii) instruction template design, (iii) empowering MLLMs, and (iv) data generation and filtering. Additionally, we outline two modes of data generation: task-agnostic and task-specific, enabling controllable output. We demonstrate that a synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks. Additionally, the grounding MLLM Shikra, when trained with a REC-like synthetic dataset, shows improvements on 7 out of 8 REC datasets. Through experiments and synthetic data analysis, our findings are: (1) current MLLMs can serve as robust data generators without assistance from GPT-4V; (2) MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data; (3) synthetic datasets enhance performance across various multimodal benchmarks and help mitigate model hallucinations. The data, code, and models can be found at https://github.com/zhaohengyuan1/Genixer.
comment: Accepted by ECCV 2024
♻ ☆ Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs
In this paper, we introduce Splatt3R, a pose-free, feed-forward method for in-the-wild 3D reconstruction and novel view synthesis from stereo pairs. Given uncalibrated natural images, Splatt3R can predict 3D Gaussian Splats without requiring any camera parameters or depth information. For generalizability, we build Splatt3R upon a ``foundation'' 3D geometry reconstruction method, MASt3R, by extending it to deal with both 3D structure and appearance. Specifically, unlike the original MASt3R which reconstructs only 3D point clouds, we predict the additional Gaussian attributes required to construct a Gaussian primitive for each point. Hence, unlike other novel view synthesis methods, Splatt3R is first trained by optimizing the 3D point cloud's geometry loss, and then a novel view synthesis objective. By doing this, we avoid the local minima present in training 3D Gaussian Splats from stereo views. We also propose a novel loss masking strategy that we empirically find is critical for strong performance on extrapolated viewpoints. We train Splatt3R on the ScanNet++ dataset and demonstrate excellent generalisation to uncalibrated, in-the-wild images. Splatt3R can reconstruct scenes at 4FPS at 512 x 512 resolution, and the resultant splats can be rendered in real-time.
comment: Our project page can be found at: https://splatt3r.active.vision/
♻ ☆ Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models CVPR 2023
The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better ${\bf visual}$ dog classifier by ${\bf read}$ing about dogs and ${\bf listen}$ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP learn cross-modal encoders that map different modalities to the same representation space. Specifically, we propose a simple strategy for ${\bf cross-modal}$ ${\bf adaptation}$: we treat examples from different modalities as additional few-shot examples. For example, by simply repurposing class names as an additional training sample, we trivially turn any n-shot learning problem into a (n+1)-shot problem. This allows us to produce SOTA results with embarrassingly simple linear classifiers. We show that our approach can be combined with existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
comment: Published at CVPR 2023. Project site: https://linzhiqiu.github.io/papers/cross_modal/
♻ ☆ Policy Gradient-Driven Noise Mask
Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers' ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
comment: 13 pages; 8 figures; 5 tables
♻ ☆ Computer User Interface Understanding. A New Dataset and a Learning Framework
User Interface (UI) understanding has been an increasingly popular topic over the last few years. So far, there has been a vast focus solely on web and mobile applications. In this paper, we introduce the harder task of computer UI understanding. With the goal of enabling research in this field, we have generated a dataset with a set of videos where a user is performing a sequence of actions and each image shows the desktop contents at that time point. We also present a framework that is composed of a synthetic sample generation pipeline to augment the dataset with relevant characteristics, and a contrastive learning method to classify images in the videos. We take advantage of the natural conditional, tree-like, relationship of the images' characteristics to regularize the learning of the representations by dealing with multiple partial tasks simultaneously. Experimental results show that the proposed framework outperforms previously proposed hierarchical multi-label contrastive losses in fine-grain UI classification.
comment: 14 pages main paper, 6 pages appendix
Artificial Intelligence 135
☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best instruction-tuned linear RNN model.
comment: Code is open-sourced at https://github.com/jxiw/MambaInLlama
☆ Into the Unknown Unknowns: Engaged Human Learning through Participation in Language Model Agent Conversations
While language model (LM)-powered chatbots and generative search engines excel at answering concrete queries, discovering information in the terrain of unknown unknowns remains challenging for users. To emulate the common educational scenario where children/students learn by listening to and participating in conversations of their parents/teachers, we create Collaborative STORM (Co-STORM). Unlike QA systems that require users to ask all the questions, Co-STORM lets users observe and occasionally steer the discourse among several LM agents. The agents ask questions on the user's behalf, allowing the user to discover unknown unknowns serendipitously. To facilitate user interaction, Co-STORM assists users in tracking the discourse by organizing the uncovered information into a dynamic mind map, ultimately generating a comprehensive report as takeaways. For automatic evaluation, we construct the WildSeek dataset by collecting real information-seeking records with user goals. Co-STORM outperforms baseline methods on both discourse trace and report quality. In a further human evaluation, 70% of participants prefer Co-STORM over a search engine, and 78% favor it over a RAG chatbot.
Fundus2Video: Cross-Modal Angiography Video Generation from Static Fundus Photography with Clinical Knowledge Guidance MICCAI
Fundus Fluorescein Angiography (FFA) is a critical tool for assessing retinal vascular dynamics and aiding in the diagnosis of eye diseases. However, its invasive nature and less accessibility compared to Color Fundus (CF) images pose significant challenges. Current CF to FFA translation methods are limited to static generation. In this work, we pioneer dynamic FFA video generation from static CF images. We introduce an autoregressive GAN for smooth, memory-saving frame-by-frame FFA synthesis. To enhance the focus on dynamic lesion changes in FFA regions, we design a knowledge mask based on clinical experience. Leveraging this mask, our approach integrates innovative knowledge mask-guided techniques, including knowledge-boosted attention, knowledge-aware discriminators, and mask-enhanced patchNCE loss, aimed at refining generation in critical areas and addressing the pixel misalignment challenge. Our method achieves the best FVD of 1503.21 and PSNR of 11.81 compared to other common video generation approaches. Human assessment by an ophthalmologist confirms its high generation quality. Notably, our knowledge mask surpasses supervised lesion segmentation masks, offering a promising non-invasive alternative to traditional FFA for research and clinical applications. The code is available at https://github.com/Michi-3000/Fundus2Video.
comment: The paper has been accepted by Medical Image Computing and Computer Assisted Intervention Society (MICCAI) 2024
☆ Can Unconfident LLM Annotations Be Used for Confident Conclusions?
Large language models (LLMs) have shown high agreement with human raters across a variety of tasks, demonstrating potential to ease the challenges of human data collection. In computational social science (CSS), researchers are increasingly leveraging LLM annotations to complement slow and expensive human annotations. Still, guidelines for collecting and using LLM annotations, without compromising the validity of downstream conclusions, remain limited. We introduce Confidence-Driven Inference: a method that combines LLM annotations and LLM confidence indicators to strategically select which human annotations should be collected, with the goal of producing accurate statistical estimates and provably valid confidence intervals while reducing the number of human annotations needed. Our approach comes with safeguards against LLM annotations of poor quality, guaranteeing that the conclusions will be both valid and no less accurate than if we only relied on human annotations. We demonstrate the effectiveness of Confidence-Driven Inference over baselines in statistical estimation tasks across three CSS settings--text politeness, stance, and bias--reducing the needed number of human annotations by over 25% in each. Although we use CSS settings for demonstration, Confidence-Driven Inference can be used to estimate most standard quantities across a broad range of NLP problems.
☆ Automatic 8-tissue Segmentation for 6-month Infant Brains MICCAI
Numerous studies have highlighted that atypical brain development, particularly during infancy and toddlerhood, is linked to an increased likelihood of being diagnosed with a neurodevelopmental condition, such as autism. Accurate brain tissue segmentations for morphological analysis are essential in numerous infant studies. However, due to ongoing white matter (WM) myelination changing tissue contrast in T1- and T2-weighted images, automatic tissue segmentation in 6-month infants is particularly difficult. On the other hand, manual labelling by experts is time-consuming and labor-intensive. In this study, we propose the first 8-tissue segmentation pipeline for six-month-old infant brains. This pipeline utilizes domain adaptation (DA) techniques to leverage our longitudinal data, including neonatal images segmented with the neonatal Developing Human Connectome Project structural pipeline. Our pipeline takes raw 6-month images as inputs and generates the 8-tissue segmentation as outputs, forming an end-to-end segmentation pipeline. The segmented tissues include WM, gray matter (GM), cerebrospinal fluid (CSF), ventricles, cerebellum, basal ganglia, brainstem, and hippocampus/amygdala. Cycle-Consistent Generative Adversarial Network (CycleGAN) and Attention U-Net were employed to achieve the image contrast transformation between neonatal and 6-month images and perform tissue segmentation on the synthesized 6-month images (neonatal images with 6-month intensity contrast), respectively. Moreover, we incorporated the segmentation outputs from Infant Brain Extraction and Analysis Toolbox (iBEAT) and another Attention U-Net to further enhance the performance and construct the end-to-end segmentation pipeline. Our evaluation with real 6-month images achieved a DICE score of 0.92, an HD95 of 1.6, and an ASSD of 0.42.
comment: 11 pages, 4 figures, to be published in MICCAI PIPPI workshop
☆ PoseWatch: A Transformer-based Architecture for Human-centric Video Anomaly Detection Using Spatio-temporal Pose Tokenization
Video Anomaly Detection (VAD) presents a significant challenge in computer vision, particularly due to the unpredictable and infrequent nature of anomalous events, coupled with the diverse and dynamic environments in which they occur. Human-centric VAD, a specialized area within this domain, faces additional complexities, including variations in human behavior, potential biases in data, and substantial privacy concerns related to human subjects. These issues complicate the development of models that are both robust and generalizable. To address these challenges, recent advancements have focused on pose-based VAD, which leverages human pose as a high-level feature to mitigate privacy concerns, reduce appearance biases, and minimize background interference. In this paper, we introduce PoseWatch, a novel transformer-based architecture designed specifically for human-centric pose-based VAD. PoseWatch features an innovative Spatio-Temporal Pose and Relative Pose (ST-PRP) tokenization method that enhances the representation of human motion over time, which is also beneficial for broader human behavior analysis tasks. The architecture's core, a Unified Encoder Twin Decoders (UETD) transformer, significantly improves the detection of anomalous behaviors in video data. Extensive evaluations across multiple benchmark datasets demonstrate that PoseWatch consistently outperforms existing methods, establishing a new state-of-the-art in pose-based VAD. This work not only demonstrates the efficacy of PoseWatch but also highlights the potential of integrating Natural Language Processing techniques with computer vision to advance human behavior analysis.
☆ Evaluating the Energy Consumption of Machine Learning: Systematic Literature Review and Experiments
Monitoring, understanding, and optimizing the energy consumption of Machine Learning (ML) are various reasons why it is necessary to evaluate the energy usage of ML. However, there exists no universal tool that can answer this question for all use cases, and there may even be disagreement on how to evaluate energy consumption for a specific use case. Tools and methods are based on different approaches, each with their own advantages and drawbacks, and they need to be mapped out and explained in order to select the most suitable one for a given situation. We address this challenge through two approaches. First, we conduct a systematic literature review of all tools and methods that permit to evaluate the energy consumption of ML (both at training and at inference), irrespective of whether they were originally designed for machine learning or general software. Second, we develop and use an experimental protocol to compare a selection of these tools and methods. The comparison is both qualitative and quantitative on a range of ML tasks of different nature (vision, language) and computational complexity. The systematic literature review serves as a comprehensive guide for understanding the array of tools and methods used in evaluating energy consumption of ML, for various use cases going from basic energy monitoring to consumption optimization. Two open-source repositories are provided for further exploration. The first one contains tools that can be used to replicate this work or extend the current review. The second repository houses the experimental protocol, allowing users to augment the protocol with new ML computing tasks and additional energy evaluation tools.
comment: 52 pages,
☆ Aligning XAI with EU Regulations for Smart Biomedical Devices: A Methodology for Compliance Analysis
Significant investment and development have gone into integrating Artificial Intelligence (AI) in medical and healthcare applications, leading to advanced control systems in medical technology. However, the opacity of AI systems raises concerns about essential characteristics needed in such sensitive applications, like transparency and trustworthiness. Our study addresses these concerns by investigating a process for selecting the most adequate Explainable AI (XAI) methods to comply with the explanation requirements of key EU regulations in the context of smart bioelectronics for medical devices. The adopted methodology starts with categorising smart devices by their control mechanisms (open-loop, closed-loop, and semi-closed-loop systems) and delving into their technology. Then, we analyse these regulations to define their explainability requirements for the various devices and related goals. Simultaneously, we classify XAI methods by their explanatory objectives. This allows for matching legal explainability requirements with XAI explanatory goals and determining the suitable XAI algorithms for achieving them. Our findings provide a nuanced understanding of which XAI algorithms align better with EU regulations for different types of medical devices. We demonstrate this through practical case studies on different neural implants, from chronic disease management to advanced prosthetics. This study fills a crucial gap in aligning XAI applications in bioelectronics with stringent provisions of EU regulations. It provides a practical framework for developers and researchers, ensuring their AI innovations advance healthcare technology and adhere to legal and ethical standards.
comment: Accepted for publication at ECAI 2024, main-track
☆ Evaluating Stability of Unreflective Alignment
Many theoretical obstacles to AI alignment are consequences of reflective stability - the problem of designing alignment mechanisms that the AI would not disable if given the option. However, problems stemming from reflective stability are not obviously present in current LLMs, leading to disagreement over whether they will need to be solved to enable safe delegation of cognitive labor. In this paper, we propose Counterfactual Priority Change (CPC) destabilization as a mechanism by which reflective stability problems may arise in future LLMs. We describe two risk factors for CPC-destabilization: 1) CPC-based stepping back and 2) preference instability. We develop preliminary evaluations for each of these risk factors, and apply them to frontier LLMs. Our findings indicate that in current LLMs, increased scale and capability are associated with increases in both CPC-based stepping back and preference instability, suggesting that CPC-destabilization may cause reflective stability problems in future LLMs.
☆ Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries ICML 2024
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities, encompassing a wide range from 3D shapes to images and audio. Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry. However, learning SDFs from sparse 3D point clouds in the absence of ground truth supervision remains a very challenging task. While recent methods rely on smoothness priors to regularize the learning, our method introduces a regularization term that leverages adversarial samples around the shape to improve the learned SDFs. Through extensive experiments and evaluations, we illustrate the efficacy of our proposed method, highlighting its capacity to improve SDF learning with respect to baselines and the state-of-the-art using synthetic and real data.
comment: ICML 2024
☆ MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods. The code is available at https://github.com/EnVision-Research/MTMamba.
comment: arXiv admin note: text overlap with arXiv:2407.02228
☆ No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery
What data or environments to use for training to improve downstream performance is a longstanding and very topical question in reinforcement learning. In particular, Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula enable agents to be robust to in- and out-of-distribution tasks. We ask to what extent these methods are themselves robust when applied to a novel setting, closely inspired by a real-world robotics problem. Surprisingly, we find that the state-of-the-art UED methods either do not improve upon the na\"{i}ve baseline of Domain Randomisation (DR), or require substantial hyperparameter tuning to do so. Our analysis shows that this is due to their underlying scoring functions failing to predict intuitive measures of ``learnability'', i.e., in finding the settings that the agent sometimes solves, but not always. Based on this, we instead directly train on levels with high learnability and find that this simple and intuitive approach outperforms UED methods and DR in several binary-outcome environments, including on our domain and the standard UED domain of Minigrid. We further introduce a new adversarial evaluation procedure for directly measuring robustness, closely mirroring the conditional value at risk (CVaR). We open-source all our code and present visualisations of final policies here: https://github.com/amacrutherford/sampling-for-learnability.
☆ Post-processing fairness with minimal changes
In this paper, we introduce a novel post-processing algorithm that is both model-agnostic and does not require the sensitive attribute at test time. In addition, our algorithm is explicitly designed to enforce minimal changes between biased and debiased predictions; a property that, while highly desirable, is rarely prioritized as an explicit objective in fairness literature. Our approach leverages a multiplicative factor applied to the logit value of probability scores produced by a black-box classifier. We demonstrate the efficacy of our method through empirical evaluations, comparing its performance against other four debiasing algorithms on two widely used datasets in fairness research.
☆ BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
comment: 19 pages, 6 figures
☆ MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
Autism spectrum disorder (ASD) is characterized by significant challenges in social interaction and comprehending communication signals. Recently, therapeutic interventions for ASD have increasingly utilized Deep learning powered-computer vision techniques to monitor individual progress over time. These models are trained on private, non-public datasets from the autism community, creating challenges in comparing results across different models due to privacy-preserving data-sharing issues. This work introduces MMASD+. MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data. It integrates the capabilities of Yolov8 and Deep SORT algorithms to distinguish between the therapist and children, addressing a significant barrier in the original dataset. Additionally, a Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD. This framework achieves an accuracy of 95.03% for predicting action types and 96.42% for predicting ASD presence, demonstrating over a 10% improvement compared to models trained on single data modalities. These findings highlight the advantages of integrating multiple data modalities within the Multimodal Transformer framework.
☆ MiWaves Reinforcement Learning Algorithm
The escalating prevalence of cannabis use poses a significant public health challenge globally. In the U.S., cannabis use is more prevalent among emerging adults (EAs) (ages 18-25) than any other age group, with legalization in the multiple states contributing to a public perception that cannabis is less risky than in prior decades. To address this growing concern, we developed MiWaves, a reinforcement learning (RL) algorithm designed to optimize the delivery of personalized intervention prompts to reduce cannabis use among EAs. MiWaves leverages domain expertise and prior data to tailor the likelihood of delivery of intervention messages. This paper presents a comprehensive overview of the algorithm's design, including key decisions and experimental outcomes. The finalized MiWaves RL algorithm was deployed in a clinical trial from March to May 2024.
comment: arXiv admin note: substantial text overlap with arXiv:2402.17739
☆ Interactive dense pixel visualizations for time series and model attribution explanations
The field of Explainable Artificial Intelligence (XAI) for Deep Neural Network models has developed significantly, offering numerous techniques to extract explanations from models. However, evaluating explanations is often not trivial, and differences in applied metrics can be subtle, especially with non-intelligible data. Thus, there is a need for visualizations tailored to explore explanations for domains with such data, e.g., time series. We propose DAVOTS, an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization to gain insights into the data, models' decisions, and explanations. To further support users in exploring large datasets, we apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration to facilitate finding patterns. We visualize a CNN trained on the FordA dataset to demonstrate the approach.
comment: 5 pages, 2 figures, accepted at MLVIS 2023
☆ Causal Rule Forest: Toward Interpretable and Precise Treatment Effect Estimation
Understanding and inferencing Heterogeneous Treatment Effects (HTE) and Conditional Average Treatment Effects (CATE) are vital for developing personalized treatment recommendations. Many state-of-the-art approaches achieve inspiring performance in estimating HTE on benchmark datasets or simulation studies. However, the indirect predicting manner and complex model architecture reduce the interpretability of these approaches. To mitigate the gap between predictive performance and heterogeneity interpretability, we introduce the Causal Rule Forest (CRF), a novel approach to learning hidden patterns from data and transforming the patterns into interpretable multi-level Boolean rules. By training the other interpretable causal inference models with data representation learned by CRF, we can reduce the predictive errors of these models in estimating HTE and CATE, while keeping their interpretability for identifying subgroups that a treatment is more effective. Our experiments underscore the potential of CRF to advance personalized interventions and policies, paving the way for future research to enhance its scalability and application across complex causal inference challenges.
comment: The 25th IEEE International Conference on Information Reuse and Integration for Data Science (IRI 2024)
☆ Earth Observation Satellite Scheduling with Graph Neural Networks
The Earth Observation Satellite Planning (EOSP) is a difficult optimization problem with considerable practical interest. A set of requested observations must be scheduled on an agile Earth observation satellite while respecting constraints on their visibility window, as well as maneuver constraints that impose varying delays between successive observations. In addition, the problem is largely oversubscribed: there are much more candidate observations than what can possibly be achieved. Therefore, one must select the set of observations that will be performed while maximizing their weighted cumulative benefit, and propose a feasible schedule for these observations. As previous work mostly focused on heuristic and iterative search algorithms, this paper presents a new technique for selecting and scheduling observations based on Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL). GNNs are used to extract relevant information from the graphs representing instances of the EOSP, and DRL drives the search for optimal schedules. Our simulations show that it is able to learn on small problem instances and generalize to larger real-world instances, with very competitive performance compared to traditional approaches.
comment: Accepted at 17th European Workshop on Reinforcement Learning (EWRL 2024)
☆ Evidence-Enhanced Triplet Generation Framework for Hallucination Alleviation in Generative Question Answering
To address the hallucination in generative question answering (GQA) where the answer can not be derived from the document, we propose a novel evidence-enhanced triplet generation framework, EATQA, encouraging the model to predict all the combinations of (Question, Evidence, Answer) triplet by flipping the source pair and the target label to understand their logical relationships, i.e., predict Answer(A), Question(Q), and Evidence(E) given a QE, EA, and QA pairs, respectively. Furthermore, we bridge the distribution gap to distill the knowledge from evidence in inference stage. Our framework ensures the model to learn the logical relation between query, evidence and answer, which simultaneously improves the evidence generation and query answering. In this paper, we apply EATQA to LLama and it outperforms other LLMs-based methods and hallucination mitigation approaches on two challenging GQA benchmarks. Further analysis shows that our method not only keeps prior knowledge within LLM, but also mitigates hallucination and generates faithful answers.
Mamba2MIL: State Space Duality Based Multiple Instance Learning for Computational Pathology
Computational pathology (CPath) has significantly advanced the clinical practice of pathology. Despite the progress made, Multiple Instance Learning (MIL), a promising paradigm within CPath, continues to face challenges, particularly related to incomplete information utilization. Existing frameworks, such as those based on Convolutional Neural Networks (CNNs), attention, and selective scan space state sequential model (SSM), lack sufficient flexibility and scalability in fusing diverse features, and cannot effectively fuse diverse features. Additionally, current approaches do not adequately exploit order-related and order-independent features, resulting in suboptimal utilization of sequence information. To address these limitations, we propose a novel MIL framework called Mamba2MIL. Our framework utilizes the state space duality model (SSD) to model long sequences of patches of whole slide images (WSIs), which, combined with weighted feature selection, supports the fusion processing of more branching features and can be extended according to specific application needs. Moreover, we introduce a sequence transformation method tailored to varying WSI sizes, which enhances sequence-independent features while preserving local sequence information, thereby improving sequence information utilization. Extensive experiments demonstrate that Mamba2MIL surpasses state-of-the-art MIL methods. We conducted extensive experiments across multiple datasets, achieving improvements in nearly all performance metrics. Specifically, on the NSCLC dataset, Mamba2MIL achieves a binary tumor classification AUC of 0.9533 and an accuracy of 0.8794. On the BRACS dataset, it achieves a multiclass classification AUC of 0.7986 and an accuracy of 0.4981. The code is available at https://github.com/YuqiZhang-Buaa/Mamba2MIL.
☆ Sequence-aware Pre-training for Echocardiography Probe Guidance
Cardiac ultrasound probe guidance aims to help novices adjust the 6-DOF probe pose to obtain high-quality sectional images. Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged 2D and 3D structures of the heart rather than personalized cardiac structural features, leading to a performance bottleneck. Clinically, we observed that sonographers adjust their understanding of a patient's cardiac structure based on prior scanning sequences, thereby modifying their scanning strategies. Inspired by this, we propose a sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized 2D and 3D cardiac structural features by predicting the masked-out images and actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of the personalized cardiac structure. In the downstream probe guidance task, we also introduced a sequence modeling approach that models individual cardiac structural information based on the images and actions from historical scan data, enabling more accurate navigation decisions. Experiments on a large-scale dataset with 1.36 million samples demonstrated that our proposed sequence-aware paradigm can significantly reduce navigation errors, with translation errors decreasing by 15.90% to 36.87% and rotation errors decreasing by 11.13% to 20.77%, compared to state-of-the-art methods.
comment: Tech Report
☆ Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation
Cognition refers to the function of information perception and processing, which is the fundamental psychological essence of human beings. It is responsible for reasoning and decision-making, while its evaluation is significant for the aviation domain in mitigating potential safety risks. Existing studies tend to use varied methods for cognitive state evaluation yet have limitations in timeliness, generalisation, and interpretability. Accordingly, this study adopts brain functional connectivity with electroencephalography signals to capture associations in brain regions across multiple subjects for evaluating real-time cognitive states. Specifically, a virtual reality-based flight platform is constructed with multi-screen embedded. Three distinctive cognitive tasks are designed and each has three degrees of difficulty. Thirty subjects are acquired for analysis and evaluation. The results are interpreted through different perspectives, including inner-subject and cross-subject for task-wise and gender-wise underlying brain functional connectivity. Additionally, this study incorporates questionnaire-based, task performance-based, and physiological measure-based approaches to fairly label the trials. A multi-class cognitive state evaluation is further conducted with the active brain connections. Benchmarking results demonstrate that the identified brain regions have considerable influences in cognition, with a multi-class accuracy rate of 95.83% surpassing existing studies. The derived findings bring significance to understanding the dynamic relationships among human brain functional regions, cross-subject cognitive behaviours, and decision-making, which have promising practical application values.
☆ Prior-free Balanced Replay: Uncertainty-guided Reservoir Sampling for Long-Tailed Continual Learning
Even in the era of large models, one of the well-known issues in continual learning (CL) is catastrophic forgetting, which is significantly challenging when the continual data stream exhibits a long-tailed distribution, termed as Long-Tailed Continual Learning (LTCL). Existing LTCL solutions generally require the label distribution of the data stream to achieve re-balance training. However, obtaining such prior information is often infeasible in real scenarios since the model should learn without pre-identifying the majority and minority classes. To this end, we propose a novel Prior-free Balanced Replay (PBR) framework to learn from long-tailed data stream with less forgetting. Concretely, motivated by our experimental finding that the minority classes are more likely to be forgotten due to the higher uncertainty, we newly design an uncertainty-guided reservoir sampling strategy to prioritize rehearsing minority data without using any prior information, which is based on the mutual dependence between the model and samples. Additionally, we incorporate two prior-free components to further reduce the forgetting issue: (1) Boundary constraint is to preserve uncertain boundary supporting samples for continually re-estimating task boundaries. (2) Prototype constraint is to maintain the consistency of learned class prototypes along with training. Our approach is evaluated on three standard long-tailed benchmarks, demonstrating superior performance to existing CL methods and previous SOTA LTCL approach in both task- and class-incremental learning settings, as well as ordered- and shuffled-LTCL settings.
☆ CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task
In recent years, the rapid expansion of model sizes has led to large-scale pre-trained models demonstrating remarkable capabilities. Consequently, there has been a trend towards increasing the scale of models. However, this trend introduces significant challenges, including substantial computational costs of training and transfer to downstream tasks. To address these issues, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced. These methods optimize large-scale pre-trained models for specific tasks by fine-tuning a select group of parameters. Among these PEFT methods, adapter-based and prompt-based methods are the primary techniques. Specifically, in the field of visual fine-tuning, adapters gain prominence over prompts because of the latter's relatively weaker performance and efficiency. Under the circumstances, we refine the widely-used Visual Prompt Tuning (VPT) method, proposing Cross Visual Prompt Tuning (CVPT). CVPT calculates cross-attention between the prompt tokens and the embedded tokens, which allows us to compute the semantic relationship between them and conduct the fine-tuning of models exactly to adapt visual tasks better. Furthermore, we introduce the weight-sharing mechanism to initialize the parameters of cross-attention, which avoids massive learnable parameters from cross-attention and enhances the representative capability of cross-attention. We conduct comprehensive testing across 25 datasets and the result indicates that CVPT significantly improves VPT's performance and efficiency in visual tasks. For example, on the VTAB-1K benchmark, CVPT outperforms VPT over 4% in average accuracy, rivaling the advanced adapter-based methods in performance and efficiency. Our experiments confirm that prompt-based methods can achieve exceptional results in visual fine-tuning.
☆ Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress
The use of synthetic data has played a critical role in recent state-of-art breakthroughs. However, overly relying on a single oracle teacher model to generate data has been shown to lead to model collapse and invite propagation of biases. These limitations are particularly evident in multilingual settings, where the absence of a universally effective teacher model that excels across all languages presents significant challenges. In this work, we address these extreme difference by introducing "multilingual arbitrage", which capitalizes on performance variations between multiple models for a given language. To do so, we strategically route samples through a diverse pool of models, each with unique strengths in different languages. Across exhaustive experiments on state-of-art models, our work suggests that arbitrage techniques allow for spectacular gains in performance that far outperform relying on a single teacher. In particular, compared to the best single teacher, we observe gains of up to 56.5% improvement in win rates averaged across all languages when switching to multilingual arbitrage. We observe the most significant gains for the least resourced languages in our pool.
☆ NeuralOOD: Improving Out-of-Distribution Generalization Performance with Brain-machine Fusion Learning Framework
Deep Neural Networks (DNNs) have demonstrated exceptional recognition capabilities in traditional computer vision (CV) tasks. However, existing CV models often suffer a significant decrease in accuracy when confronted with out-of-distribution (OOD) data. In contrast to these DNN models, human can maintain a consistently low error rate when facing OOD scenes, partly attributed to the rich prior cognitive knowledge stored in the human brain. Previous OOD generalization researches only focus on the single modal, overlooking the advantages of multimodal learning method. In this paper, we utilize the multimodal learning method to improve the OOD generalization and propose a novel Brain-machine Fusion Learning (BMFL) framework. We adopt the cross-attention mechanism to fuse the visual knowledge from CV model and prior cognitive knowledge from the human brain. Specially, we employ a pre-trained visual neural encoding model to predict the functional Magnetic Resonance Imaging (fMRI) from visual features which eliminates the need for the fMRI data collection and pre-processing, effectively reduces the workload associated with conventional BMFL methods. Furthermore, we construct a brain transformer to facilitate the extraction of knowledge inside the fMRI data. Moreover, we introduce the Pearson correlation coefficient maximization regularization method into the training process, which improves the fusion capability with better constrains. Our model outperforms the DINOv2 and baseline models on the ImageNet-1k validation dataset as well as six curated OOD datasets, showcasing its superior performance in diverse scenarios.
☆ Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures AISTATS 2018
We introduce an information theoretic criterion for Bayesian network structure learning which we call quotient normalized maximum likelihood (qNML). In contrast to the closely related factorized normalized maximum likelihood criterion, qNML satisfies the property of score equivalence. It is also decomposable and completely free of adjustable hyperparameters. For practical computations, we identify a remarkably accurate approximation proposed earlier by Szpankowski and Weinberger. Experiments on both simulated and real data demonstrate that the new criterion leads to parsimonious models with good predictive accuracy.
comment: Accepted to AISTATS 2018
☆ Distance-Forward Learning: Enhancing the Forward-Forward Algorithm Towards High-Performance On-Chip Learning
The Forward-Forward (FF) algorithm was recently proposed as a local learning method to address the limitations of backpropagation (BP), offering biological plausibility along with memory-efficient and highly parallelized computational benefits. However, it suffers from suboptimal performance and poor generalization, largely due to inadequate theoretical support and a lack of effective learning strategies. In this work, we reformulate FF using distance metric learning and propose a distance-forward algorithm (DF) to improve FF performance in supervised vision tasks while preserving its local computational properties, making it competitive for efficient on-chip learning. To achieve this, we reinterpret FF through the lens of centroid-based metric learning and develop a goodness-based N-pair margin loss to facilitate the learning of discriminative features. Furthermore, we integrate layer-collaboration local update strategies to reduce information loss caused by greedy local parameter updates. Our method surpasses existing FF models and other advanced local learning approaches, with accuracies of 99.7\% on MNIST, 88.2\% on CIFAR-10, 59\% on CIFAR-100, 95.9\% on SVHN, and 82.5\% on ImageNette, respectively. Moreover, it achieves comparable performance with less than 40\% memory cost compared to BP training, while exhibiting stronger robustness to multiple types of hardware-related noise, demonstrating its potential for online learning and energy-efficient computation on neuromorphic chips.
☆ The VoxCeleb Speaker Recognition Challenge: A Retrospective
The VoxCeleb Speaker Recognition Challenges (VoxSRC) were a series of challenges and workshops that ran annually from 2019 to 2023. The challenges primarily evaluated the tasks of speaker recognition and diarisation under various settings including: closed and open training data; as well as supervised, self-supervised, and semi-supervised training for domain adaptation. The challenges also provided publicly available training and evaluation datasets for each task and setting, with new test sets released each year. In this paper, we provide a review of these challenges that covers: what they explored; the methods developed by the challenge participants and how these evolved; and also the current state of the field for speaker verification and diarisation. We chart the progress in performance over the five installments of the challenge on a common evaluation dataset and provide a detailed analysis of how each year's special focus affected participants' performance. This paper is aimed both at researchers who want an overview of the speaker recognition and diarisation field, and also at challenge organisers who want to benefit from the successes and avoid the mistakes of the VoxSRC challenges. We end with a discussion of the current strengths of the field and open challenges. Project page : https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/workshop.html
comment: TASLP 2024
☆ Adversarial Attacks and Defenses in Multivariate Time-Series Forecasting for Smart and Connected Infrastructures
The emergence of deep learning models has revolutionized various industries over the last decade, leading to a surge in connected devices and infrastructures. However, these models can be tricked into making incorrect predictions with high confidence, leading to disastrous failures and security concerns. To this end, we explore the impact of adversarial attacks on multivariate time-series forecasting and investigate methods to counter them. Specifically, we employ untargeted white-box attacks, namely the Fast Gradient Sign Method (FGSM) and the Basic Iterative Method (BIM), to poison the inputs to the training process, effectively misleading the model. We also illustrate the subtle modifications to the inputs after the attack, which makes detecting the attack using the naked eye quite difficult. Having demonstrated the feasibility of these attacks, we develop robust models through adversarial training and model hardening. We are among the first to showcase the transferability of these attacks and defenses by extrapolating our work from the benchmark electricity data to a larger, 10-year real-world data used for predicting the time-to-failure of hard disks. Our experimental results confirm that the attacks and defenses achieve the desired security thresholds, leading to a 72.41% and 94.81% decrease in RMSE for the electricity and hard disk datasets respectively after implementing the adversarial defenses.
comment: 17 pages, 32 figures
☆ Learning Robust Reward Machines from Noisy Labels KR 2024
This paper presents PROB-IRM, an approach that learns robust reward machines (RMs) for reinforcement learning (RL) agents from noisy execution traces. The key aspect of RM-driven RL is the exploitation of a finite-state machine that decomposes the agent's task into different subtasks. PROB-IRM uses a state-of-the-art inductive logic programming framework robust to noisy examples to learn RMs from noisy traces using the Bayesian posterior degree of beliefs, thus ensuring robustness against inconsistencies. Pivotal for the results is the interleaving between RM learning and policy learning: a new RM is learned whenever the RL agent generates a trace that is believed not to be accepted by the current RM. To speed up the training of the RL agent, PROB-IRM employs a probabilistic formulation of reward shaping that uses the posterior Bayesian beliefs derived from the traces. Our experimental analysis shows that PROB-IRM can learn (potentially imperfect) RMs from noisy traces and exploit them to train an RL agent to solve its tasks successfully. Despite the complexity of learning the RM from noisy traces, agents trained with PROB-IRM perform comparably to agents provided with handcrafted RMs.
comment: Preprint accepted for publication to the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
☆ Enhancing Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based RL IJCAI 2024
This paper demonstrates that model-based reinforcement learning (model-based RL) is a suitable approach for the task of analogical reasoning. We hypothesize that model-based RL can solve analogical reasoning tasks more efficiently through the creation of internal models. To test this, we compared DreamerV3, a model-based RL method, with Proximal Policy Optimization, a model-free RL method, on the Abstraction and Reasoning Corpus (ARC) tasks. Our results indicate that model-based RL not only outperforms model-free RL in learning and generalizing from single tasks but also shows significant advantages in reasoning across similar tasks.
comment: Accepted to IJCAI 2024 IARML Workshop
Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models
Large Language Models (LLMs) have become a focal point in the rapidly evolving field of artificial intelligence. However, a critical concern is the presence of toxic content within the pre-training corpus of these models, which can lead to the generation of inappropriate outputs. Investigating methods for detecting internal faults in LLMs can help us understand their limitations and improve their security. Existing methods primarily focus on jailbreaking attacks, which involve manually or automatically constructing adversarial content to prompt the target LLM to generate unexpected responses. These methods rely heavily on prompt engineering, which is time-consuming and usually requires specially designed questions. To address these challenges, this paper proposes a target-driven attack paradigm that focuses on directly eliciting the target response instead of optimizing the prompts. We introduce the use of another LLM as the detector for toxic content, referred to as ToxDet. Given a target toxic response, ToxDet can generate a possible question and a preliminary answer to provoke the target model into producing desired toxic responses with meanings equivalent to the provided one. ToxDet is trained by interacting with the target LLM and receiving reward signals from it, utilizing reinforcement learning for the optimization process. While the primary focus of the target models is on open-source LLMs, the fine-tuned ToxDet can also be transferred to attack black-box models such as GPT-4o, achieving notable results. Experimental results on AdvBench and HH-Harmless datasets demonstrate the effectiveness of our methods in detecting the tendencies of target LLMs to generate harmful responses. This algorithm not only exposes vulnerabilities but also provides a valuable resource for researchers to strengthen their models against such attacks.
☆ Project SHADOW: Symbolic Higher-order Associative Deductive reasoning On Wikidata using LM probing
We introduce SHADOW, a fine-tuned language model trained on an intermediate task using associative deductive reasoning, and measure its performance on a knowledge base construction task using Wikidata triple completion. We evaluate SHADOW on the LM-KBC 2024 challenge and show that it outperforms the baseline solution by 20% with a F1 score of 68.72%.
comment: 6 pages, 1 figure
☆ Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
Out-of-distribution (OOD) detection, which determines whether a given sample is part of the in-distribution (ID), has recently shown promising results through training with synthetic OOD datasets. Nonetheless, existing methods often produce outliers that are considerably distant from the ID, showing limited efficacy for capturing subtle distinctions between ID and OOD. To address these issues, we propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers by directly leveraging pixel-space ID samples through diffusion models. Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples. Thereby, the generated outliers achieve two crucial properties: (i) they present explicit semantic-discrepant information, while (ii) maintaining various levels of nuisance resemblance with ID. Furthermore, the improved OOD detector training with SONA outliers facilitates learning with a focus on semantic distinctions. Extensive experiments demonstrate the effectiveness of our framework, achieving an impressive AUROC of 88% on near-OOD datasets, which surpasses the performance of baseline methods by a significant margin of approximately 6%.
☆ CL4KGE: A Curriculum Learning Method for Knowledge Graph Embedding
Knowledge graph embedding (KGE) constitutes a foundational task, directed towards learning representations for entities and relations within knowledge graphs (KGs), with the objective of crafting representations comprehensive enough to approximate the logical and symbolic interconnections among entities. In this paper, we define a metric Z-counts to measure the difficulty of training each triple ($<$head entity, relation, tail entity$>$) in KGs with theoretical analysis. Based on this metric, we propose \textbf{CL4KGE}, an efficient \textbf{C}urriculum \textbf{L}earning based training strategy for \textbf{KGE}. This method includes a difficulty measurer and a training scheduler that aids in the training of KGE models. Our approach possesses the flexibility to act as a plugin within a wide range of KGE models, with the added advantage of adaptability to the majority of KGs in existence. The proposed method has been evaluated on popular KGE models, and the results demonstrate that it enhances the state-of-the-art methods. The use of Z-counts as a metric has enabled the identification of challenging triples in KGs, which helps in devising effective training strategies.
comment: 16 pages, 3 figures
☆ Diffusion Models Are Real-Time Game Engines
We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.
comment: Project page: https://gamengen.github.io/
☆ Strategic Optimization and Challenges of Large Language Models in Object-Oriented Programming
In the area of code generation research, the emphasis has transitioned from crafting individual functions to developing class-level method code that integrates contextual information. This shift has brought several benchmarks such as ClassEval and CoderEval, which consider class-level contexts. Nevertheless, the influence of specific contextual factors at the method level remains less explored. This research focused on method-level code generation within the Object-Oriented Programming (OOP) framework. Based on CoderEval, we devised experiments that varied the extent of contextual information in the prompts, ranging from method-specific to project-wide details. We introduced the innovative metric of "Prompt-Token Cost-Effectiveness" to evaluate the economic viability of incorporating additional contextual layers. Our findings indicate that prompts enriched with method invocation details yield the highest cost-effectiveness. Additionally, our study revealed disparities among Large Language Models (LLMs) regarding error type distributions and the level of assistance they provide to developers. Notably, larger LLMs do not invariably perform better. We also observed that tasks with higher degrees of coupling present more substantial challenges, suggesting that the choice of LLM should be tailored to the task's coupling degree. For example, GPT-4 exhibited improved performance in low-coupling scenarios, whereas GPT-3.5 seemed better suited for tasks with high coupling. By meticulously curating prompt content and selecting the appropriate LLM, developers can optimize code quality while maximizing cost-efficiency during the development process.
comment: 10 pages
☆ From Rule-Based Models to Deep Learning Transformers Architectures for Natural Language Processing and Sign Language Translation Systems: Survey, Taxonomy and Performance Evaluation
With the growing Deaf and Hard of Hearing population worldwide and the persistent shortage of certified sign language interpreters, there is a pressing need for an efficient, signs-driven, integrated end-to-end translation system, from sign to gloss to text and vice-versa. There has been a wealth of research on machine translations and related reviews. However, there are few works on sign language machine translation considering the particularity of the language being continuous and dynamic. This paper aims to address this void, providing a retrospective analysis of the temporal evolution of sign language machine translation algorithms and a taxonomy of the Transformers architectures, the most used approach in language translation. We also present the requirements of a real-time Quality-of-Service sign language ma-chine translation system underpinned by accurate deep learning algorithms. We propose future research directions for sign language translation systems.
☆ A Comprehensive Benchmark of Machine and Deep Learning Across Diverse Tabular Datasets
The analysis of tabular datasets is highly prevalent both in scientific research and real-world applications of Machine Learning (ML). Unlike many other ML tasks, Deep Learning (DL) models often do not outperform traditional methods in this area. Previous comparative benchmarks have shown that DL performance is frequently equivalent or even inferior to models such as Gradient Boosting Machines (GBMs). In this study, we introduce a comprehensive benchmark aimed at better characterizing the types of datasets where DL models excel. Although several important benchmarks for tabular datasets already exist, our contribution lies in the variety and depth of our comparison: we evaluate 111 datasets with 20 different models, including both regression and classification tasks. These datasets vary in scale and include both those with and without categorical variables. Importantly, our benchmark contains a sufficient number of datasets where DL models perform best, allowing for a thorough analysis of the conditions under which DL models excel. Building on the results of this benchmark, we train a model that predicts scenarios where DL models outperform alternative methods with 86.1% accuracy (AUC 0.78). We present insights derived from this characterization and compare these findings to previous benchmarks.
☆ Brain-inspired Artificial Intelligence: A Comprehensive Review
Current artificial intelligence (AI) models often focus on enhancing performance through meticulous parameter tuning and optimization techniques. However, the fundamental design principles behind these models receive comparatively less attention, which can limit our understanding of their potential and constraints. This comprehensive review explores the diverse design inspirations that have shaped modern AI models, i.e., brain-inspired artificial intelligence (BIAI). We present a classification framework that categorizes BIAI approaches into physical structure-inspired and human behavior-inspired models. We also examine the real-world applications where different BIAI models excel, highlighting their practical benefits and deployment challenges. By delving into these areas, we provide new insights and propose future research directions to drive innovation and address current gaps in the field. This review offers researchers and practitioners a comprehensive overview of the BIAI landscape, helping them harness its potential and expedite advancements in AI development.
comment: 35 pages, 4 figures
☆ Poly2Vec: Polymorphic Encoding of Geospatial Objects for Spatial Reasoning with Deep Neural Networks
Encoding geospatial data is crucial for enabling machine learning (ML) models to perform tasks that require spatial reasoning, such as identifying the topological relationships between two different geospatial objects. However, existing encoding methods are limited as they are typically customized to handle only specific types of spatial data, which impedes their applicability across different downstream tasks where multiple data types coexist. To address this, we introduce Poly2Vec, an encoding framework that unifies the modeling of different geospatial objects, including 2D points, polylines, and polygons, irrespective of the downstream task. We leverage the power of the 2D Fourier transform to encode useful spatial properties, such as shape and location, from geospatial objects into fixed-length vectors. These vectors are then inputted into neural network models for spatial reasoning tasks.This unified approach eliminates the need to develop and train separate models for each distinct spatial type. We evaluate Poly2Vec on both synthetic and real datasets of mixed geometry types and verify its consistent performance across several downstream spatial reasoning tasks.
☆ Optimizing Structured Data Processing through Robotic Process Automation
Robotic Process Automation (RPA) has emerged as a game-changing technology in data extraction, revolutionizing the way organizations process and analyze large volumes of documents such as invoices, purchase orders, and payment advices. This study investigates the use of RPA for structured data extraction and evaluates its advantages over manual processes. By comparing human-performed tasks with those executed by RPA software bots, we assess efficiency and accuracy in data extraction from invoices, focusing on the effectiveness of the RPA system. Through four distinct scenarios involving varying numbers of invoices, we measure efficiency in terms of time and effort required for task completion, as well as accuracy by comparing error rates between manual and RPA processes. Our findings highlight the significant efficiency gains achieved by RPA, with bots completing tasks in significantly less time compared to manual efforts across all cases. Moreover, the RPA system consistently achieves perfect accuracy, mitigating the risk of errors and enhancing process reliability. These results underscore the transformative potential of RPA in optimizing operational efficiency, reducing human labor costs, and improving overall business performance.
comment: This manuscript has been accepted for publication in the journal Revue d'Intelligence Artificielle
☆ MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to segment and recognize semantically meaningful regions based on text-based descriptions during inference. A typical solution to address this task is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between open- and close-vocabulary recognition. As VLMs are usually pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. Although employing additional image backbones for high-resolution inputs can mitigate this issue, it may also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary semantic segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by learnable convolutional and scale attention layers. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics by performing cross-attention between object queries and multi-resolution CLIP features within the region of interests. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary semantic segmentation benchmarks, particularly for high-resolution inputs, establishing new standards for open-vocabulary semantic segmentation.
comment: Technical report
☆ A global AI community requires language-diverse publishing ICLR
In this provocation, we discuss the English dominance of the AI research community, arguing that the requirement for English language publishing upholds and reinforces broader regimes of extraction in AI. While large language models and machine translation have been celebrated as a way to break down barriers, we regard their use as a symptom of linguistic exclusion of scientists and potential readers. We propose alternative futures for a healthier publishing culture, organized around three themes: administering conferences in the languages of the country in which they are held, instructing peer reviewers not to adjudicate the language appropriateness of papers, and offering opportunities to publish and present in multiple languages. We welcome new translations of this piece. Please contact the authors if you would like to contribute one.
comment: Translations by Michael Hardy (Guarani), Vandana Sarin and Vivek Sarin (Hindi), Roshna Omer Abdulrahman (Soran\^i Kurdish), Gabriel Poesia (Portuguese), and Mat\'ias Grinberg (Spanish). In the proceedings of the Global AI Cultures Workshop at the Twelfth International Conference on Learning Representations (ICLR) 2024, Vienna, Austria, May 7-11, 2024
☆ Sequential-Scanning Dual-Energy CT Imaging Using High Temporal Resolution Image Reconstruction and Error-Compensated Material Basis Image Generation
Dual-energy computed tomography (DECT) has been widely used to obtain quantitative elemental composition of imaged subjects for personalized and precise medical diagnosis. Compared with DECT leveraging advanced X-ray source and/or detector technologies, the use of the sequential-scanning data acquisition scheme to implement DECT may make a broader impact on clinical practice because this scheme requires no specialized hardware designs and can be directly implemented into conventional CT systems. However, since the concentration of iodinated contrast agent in the imaged subject varies over time, sequentially scanned data sets acquired at two tube potentials are temporally inconsistent. As existing material basis image reconstruction approaches assume that the data sets acquired at two tube potentials are temporally consistent, the violation of this assumption results in inaccurate quantification of material concentration. In this work, we developed sequential-scanning DECT imaging using high temporal resolution image reconstruction and error-compensated material basis image generation, ACCELERATION in short, to address the technical challenge induced by temporal inconsistency of sequentially scanned data sets and improve quantification accuracy of material concentration in sequential-scanning DECT. ACCELERATION has been validated and evaluated using numerical simulation data sets generated from clinical human subject exams and experimental human subject studies. Results demonstrated the improvement of quantification accuracy and image quality using ACCELERATION.
☆ CoopASD: Cooperative Machine Anomalous Sound Detection with Privacy Concerns
Machine anomalous sound detection (ASD) has emerged as one of the most promising applications in the Industrial Internet of Things (IIoT) due to its unprecedented efficacy in mitigating risks of malfunctions and promoting production efficiency. Previous works mainly investigated the machine ASD task under centralized settings. However, developing the ASD system under decentralized settings is crucial in practice, since the machine data are dispersed in various factories and the data should not be explicitly shared due to privacy concerns. To enable these factories to cooperatively develop a scalable ASD model while preserving their privacy, we propose a novel framework named CoopASD, where each factory trains an ASD model on its local dataset, and a central server aggregates these local models periodically. We employ a pre-trained model as the backbone of the ASD model to improve its robustness and develop specialized techniques to stabilize the model under a completely non-iid and domain shift setting. Compared with previous state-of-the-art (SOTA) models trained in centralized settings, CoopASD showcases competitive results with negligible degradation of 0.08%. We also conduct extensive ablation studies to demonstrate the effectiveness of CoopASD.
comment: Accepted by GLOBECOM 2024
☆ Benchmarking Reinforcement Learning Methods for Dexterous Robotic Manipulation with a Three-Fingered Gripper
Reinforcement Learning (RL) training is predominantly conducted in cost-effective and controlled simulation environments. However, the transfer of these trained models to real-world tasks often presents unavoidable challenges. This research explores the direct training of RL algorithms in controlled yet realistic real-world settings for the execution of dexterous manipulation. The benchmarking results of three RL algorithms trained on intricate in-hand manipulation tasks within practical real-world contexts are presented. Our study not only demonstrates the practicality of RL training in authentic real-world scenarios, facilitating direct real-world applications, but also provides insights into the associated challenges and considerations. Additionally, our experiences with the employed experimental methods are shared, with the aim of empowering and engaging fellow researchers and practitioners in this dynamic field of robotics.
☆ RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models SP
Abundant, well-annotated multimodal data in remote sensing are pivotal for aligning complex visual remote sensing (RS) scenes with human language, enabling the development of specialized vision language models across diverse RS interpretation tasks. However, annotating RS images with rich linguistic semantics at scale demands expertise in RS and substantial human labor, making it costly and often impractical. In this study, we propose a workflow that leverages large language models (LLMs) to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform. This approach facilitates the generation of paired remote sensing data and can be readily scaled up using openly available data. Within this framework, we present RSTeller, a multimodal dataset comprising over 1 million RS images, each accompanied by multiple descriptive captions. Extensive experiments demonstrate that RSTeller enhances the performance of multiple existing vision language models for RS scene understanding through continual pre-training. Our methodology significantly reduces the manual effort and expertise needed for annotating remote sensing imagery while democratizing access to high-quality annotated data. This advancement fosters progress in visual language modeling and encourages broader participation in remote sensing research and applications. The RSTeller dataset is available at https://github.com/SlytherinGe/RSTeller.
comment: Submitted to ISPRS
☆ TART: Boosting Clean Accuracy Through Tangent Direction Guided Adversarial Training
Adversarial training has been shown to be successful in enhancing the robustness of deep neural networks against adversarial attacks. However, this robustness is accompanied by a significant decline in accuracy on clean data. In this paper, we propose a novel method, called Tangent Direction Guided Adversarial Training (TART), that leverages the tangent space of the data manifold to ameliorate the existing adversarial defense algorithms. We argue that training with adversarial examples having large normal components significantly alters the decision boundary and hurts accuracy. TART mitigates this issue by estimating the tangent direction of adversarial examples and allocating an adaptive perturbation limit according to the norm of their tangential component. To the best of our knowledge, our paper is the first work to consider the concept of tangent space and direction in the context of adversarial defense. We validate the effectiveness of TART through extensive experiments on both simulated and benchmark datasets. The results demonstrate that TART consistently boosts clean accuracy while retaining a high level of robustness against adversarial attacks. Our findings suggest that incorporating the geometric properties of data can lead to more effective and efficient adversarial training methods.
☆ PAT: Pruning-Aware Tuning for Large Language Models
Large language models (LLMs) excel in language tasks, especially with supervised fine-tuning after pre-training. However, their substantial memory and computational requirements hinder practical applications. Structural pruning, which reduces less significant weight dimensions, is one solution. Yet, traditional post-hoc pruning often leads to significant performance loss, with limited recovery from further fine-tuning due to reduced capacity. Since the model fine-tuning refines the general and chaotic knowledge in pre-trained models, we aim to incorporate structural pruning with the fine-tuning, and propose the Pruning-Aware Tuning (PAT) paradigm to eliminate model redundancy while preserving the model performance to the maximum extend. Specifically, we insert the innovative Hybrid Sparsification Modules (HSMs) between the Attention and FFN components to accordingly sparsify the upstream and downstream linear modules. The HSM comprises a lightweight operator and a globally shared trainable mask. The lightweight operator maintains a training overhead comparable to that of LoRA, while the trainable mask unifies the channels to be sparsified, ensuring structural pruning. Additionally, we propose the Identity Loss which decouples the transformation and scaling properties of the HSMs to enhance training robustness. Extensive experiments demonstrate that PAT excels in both performance and efficiency. For example, our Llama2-7b model with a 25\% pruning ratio achieves 1.33$\times$ speedup while outperforming the LoRA-finetuned model by up to 1.26\% in accuracy with a similar training cost. Code: https://github.com/kriskrisliu/PAT_Pruning-Aware-Tuning
☆ Residual-based Adaptive Huber Loss (RAHL) -- Design of an improved Huber loss for CQI prediction in 5G networks
The Channel Quality Indicator (CQI) plays a pivotal role in 5G networks, optimizing infrastructure dynamically to ensure high Quality of Service (QoS). Recent research has focused on improving CQI estimation in 5G networks using machine learning. In this field, the selection of the proper loss function is critical for training an accurate model. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.
comment: https://sol.sbc.org.br/index.php/sbrc/article/view/29822/29625
☆ Text2SQL is Not Enough: Unifying AI and Databases with TAG
AI systems that serve natural language questions over databases promise to unlock tremendous value. Such systems would allow users to leverage the powerful reasoning and knowledge capabilities of language models (LMs) alongside the scalable computational power of data management systems. These combined capabilities would empower users to ask arbitrary natural language questions over custom data sources. However, existing methods and benchmarks insufficiently explore this setting. Text2SQL methods focus solely on natural language questions that can be expressed in relational algebra, representing a small subset of the questions real users wish to ask. Likewise, Retrieval-Augmented Generation (RAG) considers the limited subset of queries that can be answered with point lookups to one or a few data records within the database. We propose Table-Augmented Generation (TAG), a unified and general-purpose paradigm for answering natural language questions over databases. The TAG model represents a wide range of interactions between the LM and database that have been previously unexplored and creates exciting research opportunities for leveraging the world knowledge and reasoning capabilities of LMs over data. We systematically develop benchmarks to study the TAG problem and find that standard methods answer no more than 20% of queries correctly, confirming the need for further research in this area. We release code for the benchmark at https://github.com/TAG-Research/TAG-Bench.
☆ StyleSpeech: Parameter-efficient Fine Tuning for Pre-trained Controllable Text-to-Speech
This paper introduces StyleSpeech, a novel Text-to-Speech~(TTS) system that enhances the naturalness and accuracy of synthesized speech. Building upon existing TTS technologies, StyleSpeech incorporates a unique Style Decorator structure that enables deep learning models to simultaneously learn style and phoneme features, improving adaptability and efficiency through the principles of Lower Rank Adaptation~(LoRA). LoRA allows efficient adaptation of style features in pre-trained models. Additionally, we introduce a novel automatic evaluation metric, the LLM-Guided Mean Opinion Score (LLM-MOS), which employs large language models to offer an objective and robust protocol for automatically assessing TTS system performance. Extensive testing on benchmark datasets shows that our approach markedly outperforms existing state-of-the-art baseline methods in producing natural, accurate, and high-quality speech. These advancements not only pushes the boundaries of current TTS system capabilities, but also facilitate the application of TTS system in more dynamic and specialized, such as interactive virtual assistants, adaptive audiobooks, and customized voice for gaming. Speech samples can be found in https://style-speech.vercel.app
☆ Pathfinding with Lazy Successor Generation
We study a pathfinding problem where only locations (i.e., vertices) are given, and edges are implicitly defined by an oracle answering the connectivity of two locations. Despite its simple structure, this problem becomes non-trivial with a massive number of locations, due to posing a huge branching factor for search algorithms. Limiting the number of successors, such as with nearest neighbors, can reduce search efforts but compromises completeness. Instead, we propose a novel LaCAS* algorithm, which does not generate successors all at once but gradually generates successors as the search progresses. This scheme is implemented with k-nearest neighbors search on a k-d tree. LaCAS* is a complete and anytime algorithm that eventually converges to the optima. Extensive evaluations demonstrate the efficacy of LaCAS*, e.g., solving complex pathfinding instances quickly, where conventional methods falter.
comment: 14 pages
☆ Online Event-Triggered Switching for Frequency Control in Power Grids with Variable Inertia
The increasing integration of renewable energy resources into power grids has led to time-varying system inertia and consequent degradation in frequency dynamics. A promising solution to alleviate performance degradation is using power electronics interfaced energy resources, such as renewable generators and battery energy storage for primary frequency control, by adjusting their power output set-points in response to frequency deviations. However, designing a frequency controller under time-varying inertia is challenging. Specifically, the stability or optimality of controllers designed for time-invariant systems can be compromised once applied to a time-varying system. We model the frequency dynamics under time-varying inertia as a nonlinear switching system, where the frequency dynamics under each mode are described by the nonlinear swing equations and different modes represent different inertia levels. We identify a key controller structure, named Neural Proportional-Integral (Neural-PI) controller, that guarantees exponential input-to-state stability for each mode. To further improve performance, we present an online event-triggered switching algorithm to select the most suitable controller from a set of Neural-PI controllers, each optimized for specific inertia levels. Simulations on the IEEE 39-bus system validate the effectiveness of the proposed online switching control method with stability guarantees and optimized performance for frequency control under time-varying inertia.
☆ Fast and Modular Autonomy Software for Autonomous Racing Vehicles
Autonomous motorsports aim to replicate the human racecar driver with software and sensors. As in traditional motorsports, Autonomous Racing Vehicles (ARVs) are pushed to their handling limits in multi-agent scenarios at extremely high ($\geq 150mph$) speeds. This Operational Design Domain (ODD) presents unique challenges across the autonomy stack. The Indy Autonomous Challenge (IAC) is an international competition aiming to advance autonomous vehicle development through ARV competitions. While far from challenging what a human racecar driver can do, the IAC is pushing the state of the art by facilitating full-sized ARV competitions. This paper details the MIT-Pitt-RW Team's approach to autonomous racing in the IAC. In this work, we present our modular and fast approach to agent detection, motion planning and controls to create an autonomy stack. We also provide analysis of the performance of the software stack in single and multi-agent scenarios for rapid deployment in a fast-paced competition environment. We also cover what did and did not work when deployed on a physical system the Dallara AV-21 platform and potential improvements to address these shortcomings. Finally, we convey lessons learned and discuss limitations and future directions for improvement.
comment: Published in Journal of Field Robotics
☆ Simultaneous Training of First- and Second-Order Optimizers in Population-Based Reinforcement Learning
The tuning of hyperparameters in reinforcement learning (RL) is critical, as these parameters significantly impact an agent's performance and learning efficiency. Dynamic adjustment of hyperparameters during the training process can significantly enhance both the performance and stability of learning. Population-based training (PBT) provides a method to achieve this by continuously tuning hyperparameters throughout the training. This ongoing adjustment enables models to adapt to different learning stages, resulting in faster convergence and overall improved performance. In this paper, we propose an enhancement to PBT by simultaneously utilizing both first- and second-order optimizers within a single population. We conducted a series of experiments using the TD3 algorithm across various MuJoCo environments. Our results, for the first time, empirically demonstrate the potential of incorporating second-order optimizers within PBT-based RL. Specifically, the combination of the K-FAC optimizer with Adam led to up to a 10% improvement in overall performance compared to PBT using only Adam. Additionally, in environments where Adam occasionally fails, such as the Swimmer environment, the mixed population with K-FAC exhibited more reliable learning outcomes, offering a significant advantage in training stability without a substantial increase in computational time.
comment: 8 pages, 5 figures
☆ Intertwined Biases Across Social Media Spheres: Unpacking Correlations in Media Bias Dimensions
Media bias significantly shapes public perception by reinforcing stereotypes and exacerbating societal divisions. Prior research has often focused on isolated media bias dimensions such as \textit{political bias} or \textit{racial bias}, neglecting the complex interrelationships among various bias dimensions across different topic domains. Moreover, we observe that models trained on existing media bias benchmarks fail to generalize effectively on recent social media posts, particularly in certain bias identification tasks. This shortfall primarily arises because these benchmarks do not adequately reflect the rapidly evolving nature of social media content, which is characterized by shifting user behaviors and emerging trends. In response to these limitations, our research introduces a novel dataset collected from YouTube and Reddit over the past five years. Our dataset includes automated annotations for YouTube content across a broad spectrum of bias dimensions, such as gender, racial, and political biases, as well as hate speech, among others. It spans diverse domains including politics, sports, healthcare, education, and entertainment, reflecting the complex interplay of biases across different societal sectors. Through comprehensive statistical analysis, we identify significant differences in bias expression patterns and intra-domain bias correlations across these domains. By utilizing our understanding of the correlations among various bias dimensions, we lay the groundwork for creating advanced systems capable of detecting multiple biases simultaneously. Overall, our dataset advances the field of media bias identification, contributing to the development of tools that promote fairer media consumption. The comprehensive awareness of existing media bias fosters more ethical journalism, promotes cultural sensitivity, and supports a more informed and equitable public discourse.
comment: Accepted to ASONAM 2024
☆ A Statistical Framework for Data-dependent Retrieval-Augmented Models
Modern ML systems increasingly augment input instances with additional relevant information to enhance final prediction. Despite growing interest in such retrieval-augmented models, their fundamental properties and training are not well understood. We propose a statistical framework to study such models with two components: 1) a {\em retriever} to identify the relevant information out of a large corpus via a data-dependent metric; and 2) a {\em predictor} that consumes the input instances along with the retrieved information to make the final predictions. We present a principled method for end-to-end training of both components and draw connections with various training approaches in the literature. Furthermore, we establish excess risk bounds for retrieval-augmented models while delineating the contributions of both retriever and predictor towards the model performance. We validate the utility of our proposed training methods along with the key takeaways from our statistical analysis on open domain question answering task where retrieval augmentation is important.
☆ SCAN-Edge: Finding MobileNet-speed Hybrid Networks for Diverse Edge Devices via Hardware-Aware Evolutionary Search
Designing low-latency and high-efficiency hybrid networks for a variety of low-cost commodity edge devices is both costly and tedious, leading to the adoption of hardware-aware neural architecture search (NAS) for finding optimal architectures. However, unifying NAS for a wide range of edge devices presents challenges due to the variety of hardware designs, supported operations, and compilation optimizations. Existing methods often fix the search space of architecture choices (e.g., activation, convolution, or self-attention) and estimate latency using hardware-agnostic proxies (e.g., FLOPs), which fail to achieve proclaimed latency across various edge devices. To address this issue, we propose SCAN-Edge, a unified NAS framework that jointly searches for self-attention, convolution, and activation to accommodate the wide variety of edge devices, including CPU-, GPU-, and hardware accelerator-based systems. To handle the large search space, SCAN-Edge relies on with a hardware-aware evolutionary algorithm that improves the quality of the search space to accelerate the sampling process. Experiments on large-scale datasets demonstrate that our hybrid networks match the actual MobileNetV2 latency for 224x224 input resolution on various commodity edge devices.
☆ On Stateful Value Factorization in Multi-Agent Reinforcement Learning
Value factorization is a popular paradigm for designing scalable multi-agent reinforcement learning algorithms. However, current factorization methods make choices without full justification that may limit their performance. For example, the theory in prior work uses stateless (i.e., history) functions, while the practical implementations use state information -- making the motivating theory a mismatch for the implementation. Also, methods have built off of previous approaches, inheriting their architectures without exploring other, potentially better ones. To address these concerns, we formally analyze the theory of using the state instead of the history in current methods -- reconnecting theory and practice. We then introduce DuelMIX, a factorization algorithm that learns distinct per-agent utility estimators to improve performance and achieve full expressiveness. Experiments on StarCraft II micromanagement and Box Pushing tasks demonstrate the benefits of our intuitions.
comment: 22 pages, 9 figures, 4 tables
☆ Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images
Robust semantic segmentation of intraoperative image data holds promise for enabling automatic surgical scene understanding and autonomous robotic surgery. While model development and validation are primarily conducted on idealistic scenes, geometric domain shifts, such as occlusions of the situs, are common in real-world open surgeries. To close this gap, we (1) present the first analysis of state-of-the-art (SOA) semantic segmentation models when faced with geometric out-of-distribution (OOD) data, and (2) propose an augmentation technique called "Organ Transplantation", to enhance generalizability. Our comprehensive validation on six different OOD datasets, comprising 600 RGB and hyperspectral imaging (HSI) cubes from 33 pigs, each annotated with 19 classes, reveals a large performance drop in SOA organ segmentation models on geometric OOD data. This performance decline is observed not only in conventional RGB data (with a dice similarity coefficient (DSC) drop of 46 %) but also in HSI data (with a DSC drop of 45 %), despite the richer spectral information content. The performance decline increases with the spatial granularity of the input data. Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data. Given the simplicity and effectiveness of our augmentation method, it is a valuable tool for addressing geometric domain shifts in surgical scene segmentation, regardless of the underlying model. Our code and pre-trained models are publicly available at https://github.com/IMSY-DKFZ/htc.
comment: Silvia Seidlitz and Jan Sellner contributed equally
☆ What Is Required for Empathic AI? It Depends, and Why That Matters for AI Developers and Users AAAI
Interest is growing in artificial empathy, but so is confusion about what artificial empathy is or needs to be. This confusion makes it challenging to navigate the technical and ethical issues that accompany empathic AI development. Here, we outline a framework for thinking about empathic AI based on the premise that different constellations of capabilities associated with empathy are important for different empathic AI applications. We describe distinctions of capabilities that we argue belong under the empathy umbrella, and show how three medical empathic AI use cases require different sets of these capabilities. We conclude by discussing why appreciation of the diverse capabilities under the empathy umbrella is important for both AI creators and users.
comment: To appear at the 7th AAAI/ACM Conference on AI, Ethics, and Society, 2024
☆ What makes math problems hard for reinforcement learning: a case study
Using a long-standing conjecture from combinatorial group theory, we explore, from multiple angles, the challenges of finding rare instances carrying disproportionately high rewards. Based on lessons learned in the mathematical context defined by the Andrews-Curtis conjecture, we propose algorithmic improvements that can be relevant in other domains with ultra-sparse reward problems. Although our case study can be formulated as a game, its shortest winning sequences are potentially $10^6$ or $10^9$ times longer than those encountered in chess. In the process of our study, we demonstrate that one of the potential counterexamples due to Akbulut and Kirby, whose status escaped direct mathematical methods for 39 years, is stably AC-trivial.
comment: 39 pages, 18 figures, 1 table
☆ Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models
Fine-tuning large language models (LLMs) on human preferences, typically through reinforcement learning from human feedback (RLHF), has proven successful in enhancing their capabilities. However, ensuring the safety of LLMs during the fine-tuning remains a critical concern, and mitigating the potential conflicts in safety and helpfulness is costly in RLHF. To address this issue, we propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO), which re-parameterizes a joint RLHF objective of both safety and helpfulness into a single supervised learning objective. In the supervised optimization, a labeling function is used to capture global preferences ranking to balance both safety and helpfulness. To evaluate BFPO, we develop a benchmark including comprehensive discriminative and generative tasks for helpfulness and harmlessness. The results indicate that our method significantly outperforms existing approaches in both safety and helpfulness. Moreover, BFPO eliminates the need for human prompting and annotation in LLM fine-tuning while achieving the same level of safety as methods that heavily rely on human labor, with less than 10% of the computational resources. The training recipes and models will be released.
☆ Parameter-Efficient Quantized Mixture-of-Experts Meets Vision-Language Instruction Tuning for Semiconductor Electron Micrograph Analysis ICML 2024
Semiconductors, crucial to modern electronics, are generally under-researched in foundational models. It highlights the need for research to enhance the semiconductor device technology portfolio and aid in high-end device fabrication. In this paper, we introduce sLAVA, a small-scale vision-language assistant tailored for semiconductor manufacturing, with a focus on electron microscopy image analysis. It addresses challenges of data scarcity and acquiring high-quality, expert-annotated data. We employ a teacher-student paradigm, using a foundational vision language model like GPT-4 as a teacher to create instruction-following multimodal data for customizing the student model, sLAVA, for electron microscopic image analysis tasks on consumer hardware with limited budgets. Our approach allows enterprises to further fine-tune the proposed framework with their proprietary data securely within their own infrastructure, protecting intellectual property. Rigorous experiments validate that our framework surpasses traditional methods, handles data shifts, and enables high-throughput screening.
comment: Paper published at ICML 2024 Workshop on Foundation Models in the Wild
☆ TCNFormer: Temporal Convolutional Network Former for Short-Term Wind Speed Forecasting
Global environmental challenges and rising energy demands have led to extensive exploration of wind energy technologies. Accurate wind speed forecasting (WSF) is crucial for optimizing wind energy capture and ensuring system stability. However, predicting wind speed remains challenging due to its inherent randomness, fluctuation, and unpredictability. This study proposes the Temporal Convolutional Network Former (TCNFormer) for short-term (12-hour) wind speed forecasting. The TCNFormer integrates the Temporal Convolutional Network (TCN) and transformer encoder to capture the spatio-temporal features of wind speed. The transformer encoder consists of two distinct attention mechanisms: causal temporal multi-head self-attention (CT-MSA) and temporal external attention (TEA). CT-MSA ensures that the output of a step derives only from previous steps, i.e., causality. Locality is also introduced to improve efficiency. TEA explores potential relationships between different sample sequences in wind speed data. This study utilizes wind speed data from the NASA Prediction of Worldwide Energy Resources (NASA POWER) of Patenga Sea Beach, Chittagong, Bangladesh (latitude 22.2352{\deg} N, longitude 91.7914{\deg} E) over a year (six seasons). The findings indicate that the TCNFormer outperforms state-of-the-art models in prediction accuracy. The proposed TCNFormer presents a promising method for spatio-temporal WSF and may achieve desirable performance in real-world applications of wind power systems.
☆ The Uniqueness of LLaMA3-70B with Per-Channel Quantization: An Empirical Study
We have observed a distinctive quantization-related behavior in the LLaMA3/3.1-70B models that is absent in both the LLaMA2-70B and LLaMA3/3.1-8B/405B models. Quantization is a crucial technique for deploying large language models (LLMs) efficiently. Among various bit widths and representations for weights and activations, the 8-bit integer weight and 8-bit integer activation (W8A8) configuration is particularly popular due to its widespread hardware support. However, the impact of W8A8 post-training quantization on model accuracy remains contentious. While several studies have suggested calibrating either weights or activations to mitigate accuracy degradation, a comprehensive solution has yet to be identified. In this paper, we empirically investigate multiple LLMs featured on an open LLM leaderboard, discovering that the LLaMA3-70B model series have a unique accuracy degradation behavior with W8A8 per-channel post-training quantization. In contrast, other model series such as LLaMA2, LLaMA3-8B, Qwen, Mixtral, Mistral, Phi-3, and Falcon demonstrate robust performance with W8A8, sometimes surpassing their FP16 counterparts. Contrary to previous assertions attributing degradation to the large dynamic range of activations, our findings indicate that the weight distribution of the LLaMA3-70B is the primary factor behind the vulnerability. By meticulously analyzing the distinct characteristics of weight distributions across Transformer blocks, we propose a mixed strategy with less than 3% of the layers enabling finer W8A8 quantization granularity, while the remaining 97% of layers retain the per-channel configuration. As a result, the average accuracy of LLaMA3-70B-W8A8 is increased from 45.5% to 73.4% (just 0.7% shy of LLaMA3-70B-FP16) across eight reasoning tasks. Notably, our method requires neither calibration nor fine-tuning.
☆ GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and democratized the usage of Large Language Models (LLMs). Recent studies have shown that a small subset of weights significantly impacts performance. Based on this observation, we introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only salient columns, while injecting Gaussian noise into non-salient ones. To identify these columns, we developeda generalized sensitivity metric that extends and unifies metrics from previous studies. Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget. Moreover, GIFT-SW offers practical advantages to recover performance of models subjected to mixed-precision quantization with keeping salient weights in full precision.
☆ TourSynbio: A Multi-Modal Large Model and Agent Framework to Bridge Text and Protein Sequences for Protein Engineering
The structural similarities between protein sequences and natural languages have led to parallel advancements in deep learning across both domains. While large language models (LLMs) have achieved much progress in the domain of natural language processing, their potential in protein engineering remains largely unexplored. Previous approaches have equipped LLMs with protein understanding capabilities by incorporating external protein encoders, but this fails to fully leverage the inherent similarities between protein sequences and natural languages, resulting in sub-optimal performance and increased model complexity. To address this gap, we present TourSynbio-7B, the first multi-modal large model specifically designed for protein engineering tasks without external protein encoders. TourSynbio-7B demonstrates that LLMs can inherently learn to understand proteins as language. The model is post-trained and instruction fine-tuned on InternLM2-7B using ProteinLMDataset, a dataset comprising 17.46 billion tokens of text and protein sequence for self-supervised pretraining and 893K instructions for supervised fine-tuning. TourSynbio-7B outperforms GPT-4 on the ProteinLMBench, a benchmark of 944 manually verified multiple-choice questions, with 62.18% accuracy. Leveraging TourSynbio-7B's enhanced protein sequence understanding capability, we introduce TourSynbio-Agent, an innovative framework capable of performing various protein engineering tasks, including mutation analysis, inverse folding, protein folding, and visualization. TourSynbio-Agent integrates previously disconnected deep learning models in the protein engineering domain, offering a unified conversational user interface for improved usability. Finally, we demonstrate the efficacy of TourSynbio-7B and TourSynbio-Agent through two wet lab case studies on vanilla key enzyme modification and steroid compound catalysis.
☆ YOLO-Stutter: End-to-end Region-Wise Speech Dysfluency Detection
Dysfluent speech detection is the bottleneck for disordered speech analysis and spoken language learning. Current state-of-the-art models are governed by rule-based systems which lack efficiency and robustness, and are sensitive to template design. In this paper, we propose YOLO-Stutter: a first end-to-end method that detects dysfluencies in a time-accurate manner. YOLO-Stutter takes imperfect speech-text alignment as input, followed by a spatial feature aggregator, and a temporal dependency extractor to perform region-wise boundary and class predictions. We also introduce two dysfluency corpus, VCTK-Stutter and VCTK-TTS, that simulate natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation. Our end-to-end method achieves state-of-the-art performance with a minimum number of trainable parameters for on both simulated data and real aphasia speech. Code and datasets are open-sourced at https://github.com/rorizzz/YOLO-Stutter
comment: Interspeech 2024
☆ Learning Granularity Representation for Temporal Knowledge Graph Completion ICONIP 2024
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts. Nevertheless, TKGs are still limited in downstream applications due to the problem of incompleteness. Consequently, TKG completion (also known as link prediction) has been widely studied, with recent research focusing on incorporating independent embeddings of time or combining them with entities and relations to form temporal representations. However, most existing methods overlook the impact of history from a multi-granularity aspect. The inherent semantics of human-defined temporal granularities, such as ordinal dates, reveal general patterns to which facts typically adhere. To counter this limitation, this paper proposes \textbf{L}earning \textbf{G}ranularity \textbf{Re}presentation (termed $\mathsf{LGRe}$) for TKG completion. It comprises two main components: Granularity Representation Learning (GRL) and Adaptive Granularity Balancing (AGB). Specifically, GRL employs time-specific multi-layer convolutional neural networks to capture interactions between entities and relations at different granularities. After that, AGB generates adaptive weights for these embeddings according to temporal semantics, resulting in expressive representations of predictions. Moreover, to reflect similar semantics of adjacent timestamps, a temporal loss function is introduced. Extensive experimental results on four event benchmarks demonstrate the effectiveness of $\mathsf{LGRe}$ in learning time-related representations. To ensure reproducibility, our code is available at https://github.com/KcAcoZhang/LGRe.
comment: 15 pages. Accepted at ICONIP 2024
☆ Toward Time-Continuous Data Inference in Sparse Urban CrowdSensing
Mobile Crowd Sensing (MCS) is a promising paradigm that leverages mobile users and their smart portable devices to perform various real-world tasks. However, due to budget constraints and the inaccessibility of certain areas, Sparse MCS has emerged as a more practical alternative, collecting data from a limited number of target subareas and utilizing inference algorithms to complete the full sensing map. While existing approaches typically assume a time-discrete setting with data remaining constant within each sensing cycle, this simplification can introduce significant errors, especially when dealing with long cycles, as real-world sensing data often changes continuously. In this paper, we go from fine-grained completion, i.e., the subdivision of sensing cycles into minimal time units, towards a more accurate, time-continuous completion. We first introduce Deep Matrix Factorization (DMF) as a neural network-enabled framework and enhance it with a Recurrent Neural Network (RNN-DMF) to capture temporal correlations in these finer time slices. To further deal with the continuous data, we propose TIME-DMF, which captures temporal information across unequal intervals, enabling time-continuous completion. Additionally, we present the Query-Generate (Q-G) strategy within TIME-DMF to model the infinite states of continuous data. Extensive experiments across five types of sensing tasks demonstrate the effectiveness of our models and the advantages of time-continuous completion.
comment: 11 pages, 11 figures
☆ Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias
Concerns regarding fairness and bias have been raised in recent years due to the growing use of machine learning models in crucial decision-making processes, especially when it comes to delicate characteristics like gender. In order to address biases in machine learning models, this research paper investigates advanced bias mitigation techniques, with a particular focus on counterfactual fairness in conjunction with data augmentation. The study looks into how these integrated approaches can lessen gender bias in the financial industry, specifically in loan approval procedures. We show that these approaches are effective in achieving more equitable results through thorough testing and assessment on a skewed financial dataset. The findings emphasize how crucial it is to use fairness-aware techniques when creating machine learning models in order to guarantee morally righteous and impartial decision-making.
comment: 8 pages, 7 figures
♻ ☆ Foundation Models for Music: A Survey
In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.
♻ ☆ Text3DAug -- Prompted Instance Augmentation for LiDAR Perception IROS 2024
LiDAR data of urban scenarios poses unique challenges, such as heterogeneous characteristics and inherent class imbalance. Therefore, large-scale datasets are necessary to apply deep learning methods. Instance augmentation has emerged as an efficient method to increase dataset diversity. However, current methods require the time-consuming curation of 3D models or costly manual data annotation. To overcome these limitations, we propose Text3DAug, a novel approach leveraging generative models for instance augmentation. Text3DAug does not depend on labeled data and is the first of its kind to generate instances and annotations from text. This allows for a fully automated pipeline, eliminating the need for manual effort in practical applications. Additionally, Text3DAug is sensor agnostic and can be applied regardless of the LiDAR sensor used. Comprehensive experimental analysis on LiDAR segmentation, detection and novel class discovery demonstrates that Text3DAug is effective in supplementing existing methods or as a standalone method, performing on par or better than established methods, however while overcoming their specific drawbacks. The code is publicly available.
comment: Accepted at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ SwiftBrush v2: Make Your One-step Diffusion Model Better Than Its Teacher ECCV'24
In this paper, we aim to enhance the performance of SwiftBrush, a prominent one-step text-to-image diffusion model, to be competitive with its multi-step Stable Diffusion counterpart. Initially, we explore the quality-diversity trade-off between SwiftBrush and SD Turbo: the former excels in image diversity, while the latter excels in image quality. This observation motivates our proposed modifications in the training methodology, including better weight initialization and efficient LoRA training. Moreover, our introduction of a novel clamped CLIP loss enhances image-text alignment and results in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models. The project page is available at https://swiftbrushv2.github.io.
comment: Accepted to ECCV'24
♻ ☆ Estimating Causal Effects from Learned Causal Networks
The standard approach to answering an identifiable causal-effect query (e.g., $P(Y|do(X)$) when given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this \emph{model completion} learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method's potential using a benchmark collection of Bayesian networks and synthetically generated causal models.
♻ ☆ SONICS: Synthetic Or Not -- Identifying Counterfeit Songs
The recent surge in AI-generated songs presents exciting possibilities and challenges. While these tools democratize music creation, they also necessitate the ability to distinguish between human-composed and AI-generated songs for safeguarding artistic integrity and content curation. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, this approach is inadequate for contemporary end-to-end AI-generated songs where all components (vocals, lyrics, music, and style) could be AI-generated. Additionally, existing datasets lack lyrics-music diversity, long-duration songs, and open fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect overlooked in existing methods. To capture these patterns, we propose a novel model, SpecTTTra, that is up to 3 times faster and 6 times more memory efficient compared to popular CNN and Transformer-based models while maintaining competitive performance. Finally, we offer both AI-based and Human evaluation benchmarks, addressing another deficiency in current research.
♻ ☆ Time Series Analysis for Education: Methods, Applications, and Future Directions
Recent advancements in the collection and analysis of sequential educational data have brought time series analysis to a pivotal position in educational research, highlighting its essential role in facilitating data-driven decision-making. However, there is a lack of comprehensive summaries that consolidate these advancements. To the best of our knowledge, this paper is the first to provide a comprehensive review of time series analysis techniques specifically within the educational context. We begin by exploring the landscape of educational data analytics, categorizing various data sources and types relevant to education. We then review four prominent time series methods-forecasting, classification, clustering, and anomaly detection-illustrating their specific application points in educational settings. Subsequently, we present a range of educational scenarios and applications, focusing on how these methods are employed to address diverse educational tasks, which highlights the practical integration of multiple time series methods to solve complex educational problems. Finally, we conclude with a discussion on future directions, including personalized learning analytics, multimodal data fusion, and the role of large language models (LLMs) in educational time series. The contributions of this paper include a detailed taxonomy of educational data, a synthesis of time series techniques with specific educational applications, and a forward-looking perspective on emerging trends and future research opportunities in educational analysis. The related papers and resources are available and regularly updated at the project page.
comment: 24 pages, 3 figures, 6 tables, project page: see https://github.com/ai-for-edu/time-series-analysis-for-education
♻ ☆ Enhancing Uplift Modeling in Multi-Treatment Marketing Campaigns: Leveraging Score Ranking and Calibration Techniques
Uplift modeling is essential for optimizing marketing strategies by selecting individuals likely to respond positively to specific marketing campaigns. This importance escalates in multi-treatment marketing campaigns, where diverse treatment is available and we may want to assign the customers to treatment that can make the most impact. While there are existing approaches with convenient frameworks like Causalml, there are potential spaces to enhance the effect of uplift modeling in multi treatment cases. This paper introduces a novel approach to uplift modeling in multi-treatment campaigns, leveraging score ranking and calibration techniques to improve overall performance of the marketing campaign. We review existing uplift models, including Meta Learner frameworks (S, T, X), and their application in real-world scenarios. Additionally, we delve into insights from multi-treatment studies to highlight the complexities and potential advancements in the field. Our methodology incorporates Meta-Learner calibration and a scoring rank-based offer selection strategy. Extensive experiment results with real-world datasets demonstrate the practical benefits and superior performance of our approach. The findings underscore the critical role of integrating score ranking and calibration techniques in refining the performance and reliability of uplift predictions, thereby advancing predictive modeling in marketing analytics and providing actionable insights for practitioners seeking to optimize their campaign strategies.
♻ ☆ Say No to Freeloader: Protecting Intellectual Property of Your Deep Model
Model intellectual property (IP) protection has attracted growing attention as science and technology advancements stem from human intellectual labor and computational expenses. Ensuring IP safety for trainers and owners is of utmost importance, particularly in domains where ownership verification and applicability authorization are required. A notable approach to safeguarding model IP involves proactively preventing the use of well-trained models of authorized domains from unauthorized domains. In this paper, we introduce a novel Compact Un-transferable Pyramid Isolation Domain (CUPI-Domain) which serves as a barrier against illegal transfers from authorized to unauthorized domains. Drawing inspiration from human transitive inference and learning abilities, the CUPI-Domain is designed to obstruct cross-domain transfers by emphasizing the distinctive style features of the authorized domain. This emphasis leads to failure in recognizing irrelevant private style features on unauthorized domains. To this end, we propose novel CUPI-Domain generators, which select features from both authorized and CUPI-Domain as anchors. Then, we fuse the style features and semantic features of these anchors to generate labeled and style-rich CUPI-Domain. Additionally, we design external Domain-Information Memory Banks (DIMB) for storing and updating labeled pyramid features to obtain stable domain class features and domain class-wise style features. Based on the proposed whole method, the novel style and discriminative loss functions are designed to effectively enhance the distinction in style and discriminative features between authorized and unauthorized domains, respectively. Moreover, we provide two solutions for utilizing CUPI-Domain based on whether the unauthorized domain is known: target-specified CUPI-Domain and target-free CUPI-Domain.
♻ ☆ SelectLLM: Can LLMs Select Important Instructions to Annotate?
Instruction tuning benefits from large and diverse datasets; however, creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to select unlabeled instructions more effectively. Specifically, SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for enlarging diversity and prompting of LLM to identify the most beneficial instructions within each cluster. We evaluate SelectLLM on AlpacaEval2 and MT-Bench, demonstrating its ability to outperform state-of-the-art methods like Alpagasus. In addition, we compare the performance and compatibility of SelectLLM with various LLMs, such as ChatGPT, LLaMA-3.1-70B, and Gemma-2-27b. SelectLLM's adaptability and robustness are further evidenced by its ability to maintain high performance across both human and synthetic datasets. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).
comment: First Authors: Ritik Sachin Parkar and Jaehyung Kim | Second Author: Jong Inn Park | PI: Dongyeop Kang
♻ ☆ DIVERSE: A Dataset of YouTube Video Comment Stances with a Data Programming Model
Stance detection of social media text is a key component of many real-world applications like evaluating marketing campaigns, evaluating political policies or candidates, or evaluating information environments. However, creating automatic stance labeling systems requires the manual annotation of stances, which is both tedious and resource-intensive. This paper introduces a stance labeling method that makes use of weak signals of sentence tone, then consolidating these signals with a Data Programmingmodel for the final stance label. In a time of international conflict, understanding the public opinion towards the country's military is crucial for recruitment. We present DIVERSE, a dataset involve stances towards YouTube videos of the US military (Dataset available at https://doi.org/10.5281/zenodo.10493803). On average, the videos have 200 comments each, and the stances skew slightly towards the "against" characterization for both the US army and the video.
♻ ☆ On Newton's Method to Unlearn Neural Networks
With the widespread applications of neural networks (NNs) trained on personal data, machine unlearning has become increasingly important for enabling individuals to exercise their personal data ownership, particularly the "right to be forgotten" from trained NNs. Since retraining is computationally expensive, we seek approximate unlearning algorithms for NNs that return identical models to the retrained oracle. While Newton's method has been successfully used to approximately unlearn linear models, we observe that adapting it for NN is challenging due to degenerate Hessians that make computing Newton's update impossible. Additionally, we show that when coupled with popular techniques to resolve the degeneracy, Newton's method often incurs offensively large norm updates and empirically degrades model performance post-unlearning. To address these challenges, we propose CureNewton's method, a principle approach that leverages cubic regularization to handle the Hessian degeneracy effectively. The added regularizer eliminates the need for manual finetuning and affords a natural interpretation within the unlearning context. Experiments across different models and datasets show that our method can achieve competitive unlearning performance to the state-of-the-art algorithm in practical unlearning settings, while being theoretically justified and efficient in running time.
♻ ☆ TAPVid-3D: A Benchmark for Tracking Any Point in 3D
We introduce a new benchmark, TAPVid-3D, for evaluating the task of long-range Tracking Any Point in 3D (TAP-3D). While point tracking in two dimensions (TAP) has many benchmarks measuring performance on real-world videos, such as TAPVid-DAVIS, three-dimensional point tracking has none. To this end, leveraging existing footage, we build a new benchmark for 3D point tracking featuring 4,000+ real-world videos, composed of three different data sources spanning a variety of object types, motion patterns, and indoor and outdoor environments. To measure performance on the TAP-3D task, we formulate a collection of metrics that extend the Jaccard-based metric used in TAP to handle the complexities of ambiguous depth scales across models, occlusions, and multi-track spatio-temporal smoothness. We manually verify a large sample of trajectories to ensure correct video annotations, and assess the current state of the TAP-3D task by constructing competitive baselines using existing tracking models. We anticipate this benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video. Code for dataset download, generation, and model evaluation is available at https://tapvid3d.github.io
♻ ☆ Revisiting LARS for Large Batch Training Generalization of Neural Networks
This paper explores Large Batch Training techniques using layer-wise adaptive scaling ratio (LARS) across diverse settings, uncovering insights. LARS algorithms with warm-up tend to be trapped in sharp minimizers early on due to redundant ratio scaling. Additionally, a fixed steep decline in the latter phase restricts deep neural networks from effectively navigating early-phase sharp minimizers. Building on these findings, we propose Time Varying LARS (TVLARS), a novel algorithm that replaces warm-up with a configurable sigmoid-like function for robust training in the initial phase. TVLARS promotes gradient exploration early on, surpassing sharp optimizers and gradually transitioning to LARS for robustness in later phases. Extensive experiments demonstrate that TVLARS consistently outperforms LARS and LAMB in most cases, with up to 2\% improvement in classification scenarios. Notably, in all self-supervised learning cases, TVLARS dominates LARS and LAMB with performance improvements of up to 10\%.
♻ ☆ PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods
In domain-specific applications, GPT-4, augmented with precise prompts or Retrieval-Augmented Generation (RAG), shows notable potential but faces the critical tri-lemma of performance, cost, and data privacy. High performance requires sophisticated processing techniques, yet managing multiple agents within a complex workflow often proves costly and challenging. To address this, we introduce the PEER (Plan, Execute, Express, Review) multi-agent framework. This systematizes domain-specific tasks by integrating precise question decomposition, advanced information retrieval, comprehensive summarization, and rigorous self-assessment. Given the concerns of cost and data privacy, enterprises are shifting from proprietary models like GPT-4 to custom models, striking a balance between cost, security, and performance. We developed industrial practices leveraging online data and user feedback for efficient model tuning. This study provides best practice guidelines for applying multi-agent systems in domain-specific problem-solving and implementing effective agent tuning strategies. Our empirical studies, particularly in the financial question-answering domain, demonstrate that our approach achieves 95.0% of GPT-4's performance, while effectively managing costs and ensuring data privacy.
♻ ☆ KAN-RCBEVDepth: A multi-modal fusion algorithm in object detection for autonomous driving
Accurate 3D object detection in autonomous driving is critical yet challenging due to occlusions, varying object sizes, and complex urban environments. This paper introduces the KAN-RCBEVDepth method, an innovative approach aimed at enhancing 3D object detection by fusing multimodal sensor data from cameras, LiDAR, and millimeter-wave radar. Our unique Bird's Eye View-based approach significantly improves detection accuracy and efficiency by seamlessly integrating diverse sensor inputs, refining spatial relationship understanding, and optimizing computational procedures. Experimental results show that the proposed method outperforms existing techniques across multiple detection metrics, achieving a higher Mean Distance AP (0.389, 23\% improvement), a better ND Score (0.485, 17.1\% improvement), and a faster Evaluation Time (71.28s, 8\% faster). Additionally, the KAN-RCBEVDepth method significantly reduces errors compared to BEVDepth, with lower Transformation Error (0.6044, 13.8\% improvement), Scale Error (0.2780, 2.6\% improvement), Orientation Error (0.5830, 7.6\% improvement), Velocity Error (0.4244, 28.3\% improvement), and Attribute Error (0.2129, 3.2\% improvement). These findings suggest that our method offers enhanced accuracy, reliability, and efficiency, making it well-suited for dynamic and demanding autonomous driving scenarios. The code will be released in \url{https://github.com/laitiamo/RCBEVDepth-KAN}.
♻ ☆ Comprehensive Performance Evaluation of YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments
This study performed an extensive evaluation of the performances of all configurations of YOLOv8, YOLOv9, and YOLOv10 object detection algorithms for fruitlet (of green fruit) detection in commercial orchards. Additionally, this research performed and validated in-field counting of fruitlets using an iPhone and machine vision sensors in 5 different apple varieties (Scifresh, Scilate, Honeycrisp, Cosmic crisp & Golden delicious). This comprehensive investigation of total 17 different configurations (5 for YOLOv8, 6 for YOLOv9 and 6 for YOLOv10) revealed that YOLOv9 outperforms YOLOv10 and YOLOv8 in terms of mAP@50, while YOLOv10x outperformed all 17 configurations tested in terms of precision and recall. Specifically, YOLOv9 Gelan-e achieved the highest mAP@50 of 0.935, outperforming YOLOv10n's 0.921 and YOLOv8s's 0.924. In terms of precision, YOLOv10x achieved the highest precision of 0.908, indicating superior object identification accuracy compared to other configurations tested (e.g. YOLOv9 Gelan-c with a precision of 0.903 and YOLOv8m with 0.897. In terms of recall, YOLOv10s achieved the highest in its series (0.872), while YOLOv9 Gelan m performed the best among YOLOv9 configurations (0.899), and YOLOv8n performed the best among the YOLOv8 configurations (0.883). Meanwhile, three configurations of YOLOv10: YOLOv10b, YOLOv10l, and YOLOv10x achieved superior post-processing speeds of 1.5 milliseconds, outperforming all other configurations within the YOLOv9 and YOLOv8 families. Specifically, YOLOv9 Gelan-e recorded a post-processing speed of 1.9 milliseconds, and YOLOv8m achieved 2.1 milliseconds. Furthermore, YOLOv8n exhibited the highest inference speed among all configurations tested, achieving a processing time of 4.1 milliseconds while YOLOv9 Gelan-t and YOLOv10n also demonstrated comparatively slower inference speeds of 9.3 ms and 5.5 ms, respectively.
comment: 14 figures, 2 tables
♻ ☆ The virtual CAT: A tool for algorithmic thinking assessment in Swiss compulsory education
In today's digital era, holding algorithmic thinking (AT) skills is crucial, not only in computer science-related fields. These abilities enable individuals to break down complex problems into more manageable steps and create a sequence of actions to solve them. To address the increasing demand for AT assessments in educational settings and the limitations of current methods, this paper introduces the virtual Cross Array Task (CAT), a digital adaptation of an unplugged assessment activity designed to evaluate algorithmic skills in Swiss compulsory education. This tool offers scalable and automated assessment, reducing human involvement and mitigating potential data collection errors. The platform features gesture-based and visual block-based programming interfaces, ensuring its usability for diverse learners, further supported by multilingual capabilities. To evaluate the virtual CAT platform, we conducted a pilot evaluation in Switzerland involving a heterogeneous group of students. The findings show the platform's usability, proficiency and suitability for assessing AT skills among students of diverse ages, development stages, and educational backgrounds, as well as the feasibility of large-scale data collection.
♻ ☆ A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
Through this comprehensive survey of Kolmogorov-Arnold Networks(KAN), we have gained a thorough understanding of its theoretical foundation, architectural design, application scenarios, and current research progress. KAN, with its unique architecture and flexible activation functions, excels in handling complex data patterns and nonlinear relationships, demonstrating wide-ranging application potential. While challenges remain, KAN is poised to pave the way for innovative solutions in various fields, potentially revolutionizing how we approach complex computational problems.
♻ ☆ Deep Reinforcement Learning for Multi-Truck Vehicle Routing Problems with Multi-Leg Demand Routes
Deep reinforcement learning (RL) has been shown to be effective in producing approximate solutions to some vehicle routing problems (VRPs), especially when using policies generated by encoder-decoder attention mechanisms. While these techniques have been quite successful for relatively simple problem instances, there are still under-researched and highly complex VRP variants for which no effective RL method has been demonstrated. In this work we focus on one such VRP variant, which contains multiple trucks and multi-leg routing requirements. In these problems, demand is required to move along sequences of nodes, instead of just from a start node to an end node. With the goal of making deep RL a viable strategy for real-world industrial-scale supply chain logistics, we develop new extensions to existing encoder-decoder attention models which allow them to handle multiple trucks and multi-leg routing requirements. Our models have the advantage that they can be trained for a small number of trucks and nodes, and then embedded into a large supply chain to yield solutions for larger numbers of trucks and nodes. We test our approach on a real supply chain environment arising in the operations of Japanese automotive parts manufacturer Aisin Corporation, and find that our algorithm outperforms Aisin's previous best solution.
comment: 13 pages, 4 figures
♻ ☆ Human Perception of Audio Deepfakes
The recent emergence of deepfakes has brought manipulated and generated content to the forefront of machine learning research. Automatic detection of deepfakes has seen many new machine learning techniques, however, human detection capabilities are far less explored. In this paper, we present results from comparing the abilities of humans and machines for detecting audio deepfakes used to imitate someone's voice. For this, we use a web-based application framework formulated as a game. Participants were asked to distinguish between real and fake audio samples. In our experiment, 472 unique users competed against a state-of-the-art AI deepfake detection algorithm for 14912 total of rounds of the game. We find that humans and deepfake detection algorithms share similar strengths and weaknesses, both struggling to detect certain types of attacks. This is in contrast to the superhuman performance of AI in many application areas such as object detection or face recognition. Concerning human success factors, we find that IT professionals have no advantage over non-professionals but native speakers have an advantage over non-native speakers. Additionally, we find that older participants tend to be more susceptible than younger ones. These insights may be helpful when designing future cybersecurity training for humans as well as developing better detection algorithms.
comment: Published at ACM Multimedia 2022 Workshop DDAM First International Workshop on Deepfake Detection for Audio Multimedia at ACM Multimedia 2022
♻ ☆ Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments
Emergency department (ED) overcrowding and the complexity of rapid decision-making in critical care settings pose significant challenges to healthcare systems worldwide. While clinical decision support systems (CDSS) have shown promise, the integration of large language models (LLMs) offers new possibilities for enhancing triage accuracy and clinical decision-making. This study presents an LLM-driven CDSS designed to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management. We developed a multi-agent CDSS utilizing Llama-3-70b as the base LLM, orchestrated by CrewAI and Langchain. The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator. It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management. The model was evaluated using the Asclepius dataset, with performance assessed by a clinical emergency medicine specialist. The CDSS demonstrated high accuracy in triage decision-making compared to the baseline of a single-agent system. Furthermore, the system exhibited strong performance in critical areas, including primary diagnosis, critical findings identification, disposition decision-making, treatment planning, and resource allocation. Our multi-agent CDSS demonstrates significant potential for supporting comprehensive emergency care management. By leveraging state-of-the-art AI technologies, this system offers a scalable and adaptable tool that could enhance emergency medical care delivery, potentially alleviating ED overcrowding and improving patient outcomes. This work contributes to the growing field of AI applications in emergency medicine and offers a promising direction for future research and clinical implementation.
♻ ☆ Trust and ethical considerations in a multi-modal, explainable AI-driven chatbot tutoring system: The case of collaboratively solving Rubik's Cube ICML 2023
Artificial intelligence (AI) has the potential to transform education with its power of uncovering insights from massive data about student learning patterns. However, ethical and trustworthy concerns of AI have been raised but are unsolved. Prominent ethical issues in high school AI education include data privacy, information leakage, abusive language, and fairness. This paper describes technological components that were built to address ethical and trustworthy concerns in a multi-modal collaborative platform (called ALLURE chatbot) for high school students to collaborate with AI to solve the Rubik's cube. In data privacy, we want to ensure that the informed consent of children, parents, and teachers, is at the center of any data that is managed. Since children are involved, language, whether textual, audio, or visual, is acceptable both from users and AI and the system can steer interaction away from dangerous situations. In information management, we also want to ensure that the system, while learning to improve over time, does not leak information about users from one group to another.
comment: Accepted at 'Neural Conversational AI Workshop - What's left to TEACH (Trustworthy, Enhanced, Adaptable, Capable, and Human-centric) chatbots?' at ICML 2023
♻ ☆ Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems RecSys '24
This work introduces MultiTRON, an approach that adapts Pareto front approximation techniques to multi-objective session-based recommender systems using a transformer neural network. Our approach optimizes trade-offs between key metrics such as click-through and conversion rates by training on sampled preference vectors. A significant advantage is that after training, a single model can access the entire Pareto front, allowing it to be tailored to meet the specific requirements of different stakeholders by adjusting an additional input vector that weights the objectives. We validate the model's performance through extensive offline and online evaluation. For broader application and research, the source code is made available at https://github.com/otto-de/MultiTRON. The results confirm the model's ability to manage multiple recommendation objectives effectively, offering a flexible tool for diverse business needs.
comment: Accepted at the Eighteenth ACM Conference on Recommender Systems (RecSys '24)
♻ ☆ CSPs with Few Alien Constraints
The constraint satisfaction problem asks to decide if a set of constraints over a relational structure $\mathcal{A}$ is satisfiable (CSP$(\mathcal{A})$). We consider CSP$(\mathcal{A} \cup \mathcal{B})$ where $\mathcal{A}$ is a structure and $\mathcal{B}$ is an alien structure, and analyse its (parameterized) complexity when at most $k$ alien constraints are allowed. We establish connections and obtain transferable complexity results to several well-studied problems that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies for Boolean structures and first-order reducts of $(\mathbb{N},=)$ (equality CSPs), together with many partial results for general $\omega$-categorical structures.
♻ ☆ Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain
Unsupervised domain adaptation (UDA) has attracted considerable attention, which transfers knowledge from a label-rich source domain to a related but unlabeled target domain. Reducing inter-domain differences has always been a crucial factor to improve performance in UDA, especially for tasks where there is a large gap between source and target domains. To this end, we propose a novel style-aware feature fusion method (SAFF) to bridge the large domain gap and transfer knowledge while alleviating the loss of class-discriminative information. Inspired by the human transitive inference and learning ability, a novel style-aware self-intermediate domain (SSID) is investigated to link two seemingly unrelated concepts through a series of intermediate auxiliary synthesized concepts. Specifically, we propose a novel learning strategy of SSID, which selects samples from both source and target domains as anchors, and then randomly fuses the object and style features of these anchors to generate labeled and style-rich intermediate auxiliary features for knowledge transfer. Moreover, we design an external memory bank to store and update specified labeled features to obtain stable class features and class-wise style features. Based on the proposed memory bank, the intra- and inter-domain loss functions are designed to improve the class recognition ability and feature compatibility, respectively. Meanwhile, we simulate the rich latent feature space of SSID by infinite sampling and the convergence of the loss function by mathematical theory. Finally, we conduct comprehensive experiments on commonly used domain adaptive benchmarks to evaluate the proposed SAFF, and the experimental results show that the proposed SAFF can be easily combined with different backbone networks and obtain better performance as a plug-in-plug-out module.
comment: 13 pages, 7 figures
♻ ☆ A Comprehensive Survey of Cross-Domain Policy Transfer for Embodied Agents IJCAI 2024
The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.
comment: IJCAI 2024
♻ ☆ 3D Adaptive Structural Convolution Network for Domain-Invariant Point Cloud Recognition
Adapting deep learning networks for point cloud data recognition in self-driving vehicles faces challenges due to the variability in datasets and sensor technologies, emphasizing the need for adaptive techniques to maintain accuracy across different conditions. In this paper, we introduce the 3D Adaptive Structural Convolution Network (3D-ASCN), a cutting-edge framework for 3D point cloud recognition. It combines 3D convolution kernels, a structural tree structure, and adaptive neighborhood sampling for effective geometric feature extraction. This method obtains domain-invariant features and demonstrates robust, adaptable performance on a variety of point cloud datasets, ensuring compatibility across diverse sensor configurations without the need for parameter adjustments. This highlights its potential to significantly enhance the reliability and efficiency of self-driving vehicle technology.
comment: 11 pages, 3 figures
♻ ☆ Generating $SROI^-$ Ontologies via Knowledge Graph Query Embedding Learning
Query embedding approaches answer complex logical queries over incomplete knowledge graphs (KGs) by computing and operating on low-dimensional vector representations of entities, relations, and queries. However, current query embedding models heavily rely on excessively parameterized neural networks and cannot explain the knowledge learned from the graph. We propose a novel query embedding method, AConE, which explains the knowledge learned from the graph in the form of $SROI^-$ description logic axioms while being more parameter-efficient than most existing approaches. AConE associates queries to a $SROI^-$ description logic concept. Every $SROI^-$ concept is embedded as a cone in complex vector space, and each $SROI^-$ relation is embedded as a transformation that rotates and scales cones. We show theoretically that AConE can learn $SROI^-$ axioms, and defines an algebra whose operations correspond one to one to $SROI^-$ description logic concept constructs. Our empirical study on multiple query datasets shows that AConE achieves superior results over previous baselines with fewer parameters. Notably on the WN18RR dataset, AConE achieves significant improvement over baseline models. We provide comprehensive analyses showing that the capability to represent axioms positively impacts the results of query answering.
comment: Accepted by ECAI 2024
♻ ☆ From Variability to Stability: Advancing RecSys Benchmarking Practices
In the rapidly evolving domain of Recommender Systems (RecSys), new algorithms frequently claim state-of-the-art performance based on evaluations over a limited set of arbitrarily selected datasets. However, this approach may fail to holistically reflect their effectiveness due to the significant impact of dataset characteristics on algorithm performance. Addressing this deficiency, this paper introduces a novel benchmarking methodology to facilitate a fair and robust comparison of RecSys algorithms, thereby advancing evaluation practices. By utilizing a diverse set of $30$ open datasets, including two introduced in this work, and evaluating $11$ collaborative filtering algorithms across $9$ metrics, we critically examine the influence of dataset characteristics on algorithm performance. We further investigate the feasibility of aggregating outcomes from multiple datasets into a unified ranking. Through rigorous experimental analysis, we validate the reliability of our methodology under the variability of datasets, offering a benchmarking strategy that balances quality and computational demands. This methodology enables a fair yet effective means of evaluating RecSys algorithms, providing valuable guidance for future research endeavors.
comment: 8 pages with 11 figures
♻ ☆ Diffusion Tensor Estimation with Uncertainty Calibration
It is highly desirable to know how uncertain a model's predictions are, especially for models that are complex and hard to understand as in deep learning. Although there has been a growing interest in using deep learning methods in diffusion-weighted MRI, prior works have not addressed the issue of model uncertainty. Here, we propose a deep learning method to estimate the diffusion tensor and compute the estimation uncertainty. Data-dependent uncertainty is computed directly by the network and learned via loss attenuation. Model uncertainty is computed using Monte Carlo dropout. We also propose a new method for evaluating the quality of predicted uncertainties. We compare the new method with the standard least-squares tensor estimation and bootstrap-based uncertainty computation techniques. Our experiments show that when the number of measurements is small the deep learning method is more accurate and its uncertainty predictions are better calibrated than the standard methods. We show that the estimation uncertainties computed by the new method can highlight the model's biases, detect domain shift, and reflect the strength of noise in the measurements. Our study shows the importance and practical value of modeling prediction uncertainties in deep learning-based diffusion MRI analysis.
♻ ☆ Dynamic Object Queries for Transformer-based Incremental Object Detection
Incremental object detection (IOD) aims to sequentially learn new classes, while maintaining the capability to locate and identify old ones. As the training data arrives with annotations only with new classes, IOD suffers from catastrophic forgetting. Prior methodologies mainly tackle the forgetting issue through knowledge distillation and exemplar replay, ignoring the conflict between limited model capacity and increasing knowledge. In this paper, we explore \textit{dynamic object queries} for incremental object detection built on Transformer architecture. We propose the \textbf{Dy}namic object \textbf{Q}uery-based \textbf{DE}tection \textbf{TR}ansformer (DyQ-DETR), which incrementally expands the model representation ability to achieve stability-plasticity tradeoff. First, a new set of learnable object queries are fed into the decoder to represent new classes. These new object queries are aggregated with those from previous phases to adapt both old and new knowledge well. Second, we propose the isolated bipartite matching for object queries in different phases, based on disentangled self-attention. The interaction among the object queries at different phases is eliminated to reduce inter-class confusion. Thanks to the separate supervision and computation over object queries, we further present the risk-balanced partial calibration for effective exemplar replay. Extensive experiments demonstrate that DyQ-DETR significantly surpasses the state-of-the-art methods, with limited parameter overhead. Code will be made publicly available.
♻ ☆ STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM
Spatial-temporal forecasting and imputation are important for real-world intelligent systems. Most existing methods are tailored for individual forecasting or imputation tasks but are not designed for both. Additionally, they are less effective for zero-shot and few-shot learning. While pre-trained language model (PLM) have exhibited strong pattern recognition and reasoning abilities across various tasks, including few-shot and zero-shot learning, their applications in spatial-temporal data understanding has been constrained by insufficient modeling of complex correlations such as the temporal correlations, spatial connectivity, non-pairwise and high-order spatial-temporal correlations within data. In this paper, we propose STD-PLM for understanding both spatial and temporal properties of \underline{S}patial-\underline{T}emporal \underline{D}ata with \underline{PLM}, which is capable of implementing both spatial-temporal forecasting and imputation tasks. STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers. Topology-aware node embeddings are designed for PLM to comprehend and exploit the topology structure of data in inductive manner. Furthermore, to mitigate the efficiency issues introduced by the PLM, we design a sandglass attention module (SGA) combined with a specific constrained loss function, which significantly improves the model's efficiency while ensuring performance. Extensive experiments demonstrate that STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks on various datasets. Moreover, STD-PLM achieves promising results on both few-shot and zero-shot tasks.
♻ ☆ BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating multiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a prediction list associated with different variations of the input data created through TTA. Then, we use BMA to combine predictions weighted by the respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance. The source code of the proposed BayTTA method is freely available at: \underline {https://github.com/Z-Sherkat/BayTTA}.
♻ ☆ Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
In the context of inferring a Bayesian network structure (directed acyclic graph, DAG for short), we devise a non-reversible continuous time Markov chain, the ``Causal Zig-Zag sampler'', that targets a probability distribution over classes of observationally equivalent (Markov equivalent) DAGs. The classes are represented as completed partially directed acyclic graphs (CPDAGs). The non-reversible Markov chain relies on the operators used in Chickering's Greedy Equivalence Search (GES) and is endowed with a momentum variable, which improves mixing significantly as we show empirically. The possible target distributions include posterior distributions based on a prior over DAGs and a Markov equivalent likelihood. We offer an efficient implementation wherein we develop new algorithms for listing, counting, uniformly sampling, and applying possible moves of the GES operators, all of which significantly improve upon the state-of-the-art run-time.
♻ ☆ A Note on Knowledge Distillation Loss Function for Object Classification
This research note provides a quick introduction to the knowledge distillation loss function used in object classification. In particular, we discuss its connection to a previously proposed logits matching loss function. We further treat knowledge distillation as a specific form of output regularization and demonstrate its connection to label smoothing and entropy-based regularization.
comment: Research Note, 4 pages
♻ ☆ Irregular Traffic Time Series Forecasting Based on Asynchronous Spatio-Temporal Graph Convolutional Network KDD 2024
Accurate traffic forecasting is crucial for the development of Intelligent Transportation Systems (ITS), playing a pivotal role in modern urban traffic management. Traditional forecasting methods, however, struggle with the irregular traffic time series resulting from adaptive traffic signal controls, presenting challenges in asynchronous spatial dependency, irregular temporal dependency, and predicting variable-length sequences. To this end, we propose an Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer) tailored for irregular traffic time series forecasting. Specifically, we first propose an Asynchronous Graph Diffusion Network to capture the spatial dependency between asynchronously measured traffic states regulated by adaptive traffic signals. After that, to capture the temporal dependency within irregular traffic state sequences, a personalized time encoding is devised to embed the continuous time signals. Then, we propose a Transformable Time-aware Convolution Network, which adapts meta-filters for time-aware convolution on the sequences with inconsistent temporal flow. Additionally, a Semi-Autoregressive Prediction Network, comprising a state evolution unit and a semi-autoregressive predictor, is designed to predict variable-length traffic sequences effectively and efficiently. Extensive experiments on a newly established benchmark demonstrate the superiority of ASeer compared with twelve competitive baselines across six metrics.
comment: This work is published in the research track of KDD 2024
♻ ☆ ANLS* -- A Universal Document Processing Metric for Generative Large Language Models
Traditionally, discriminative models have been the predominant choice for tasks like document classification and information extraction. These models make predictions that fall into a limited number of predefined classes, facilitating a binary true or false evaluation and enabling the direct calculation of metrics such as the F1 score. However, recent advancements in generative large language models (GLLMs) have prompted a shift in the field due to their enhanced zero-shot capabilities, which eliminate the need for a downstream dataset and computationally expensive fine-tuning. However, evaluating GLLMs presents a challenge as the binary true or false evaluation used for discriminative models is not applicable to the predictions made by GLLMs. This paper introduces a new metric for generative models called ANLS* for evaluating a wide variety of tasks, including information extraction and classification tasks. The ANLS* metric extends existing ANLS metrics as a drop-in-replacement and is still compatible with previously reported ANLS scores. An evaluation of 7 different datasets, and more than 10 different GLLMs together with 3 different prompting methods using the ANLS* metric is also provided, demonstrating the importance of the proposed metric. We also benchmark a novel approach to generate prompts for documents, called SFT, against other prompting techniques such as LATIN. In almost all cases, SFT outperforms other techniques and improves the state-of-the-art, sometimes by as much as $10$ percentage points. Sources are available at https://github.com/deepopinion/anls_star_metric
♻ ☆ Conformal Depression Prediction
While existing depression prediction methods based on deep learning show promise, their practical application is hindered by the lack of trustworthiness, as these deep models are often deployed as black box models, leaving us uncertain on the confidence of their predictions. For high-risk clinical applications like depression prediction, uncertainty quantification is essential in decision-making. In this paper, we introduce conformal depression prediction (CDP), a depression prediction method with uncertainty quantification based on conformal prediction (CP), giving valid confidence intervals with theoretical coverage guarantees for the model predictions. CDP is a plug-and-play module that requires neither model retraining nor an assumption about the depression data distribution. As CDP provides only an average coverage guarantee across all inputs rather than per-input performance guarantee, we further propose CDP-ACC, an improved conformal prediction with approximate conditional coverage. CDP-ACC firstly estimates the prediction distribution through neighborhood relaxation, and then introduces a conformal score function by constructing nested sequences, so as to provide a tighter prediction interval adaptive to specific input. We empirically demonstrate the application of CDP in uncertainty-aware facial depression prediction, as well as the effectiveness and superiority of CDP-ACC on the AVEC 2013 and AVEC 2014 datasets. Our code is publicly available at https://github.com/PushineLee/CDP.
♻ ☆ Tipta uzmanlik sinavinda (tus) buyuk dil modelleri insanlardan daha mi basarili?
The potential of artificial intelligence in medical education and assessment has been made evident by recent developments in natural language processing and artificial intelligence. Medical questions can now be successfully answered by artificial intelligence algorithms. It can help medical practitioners. This study evaluates the performance of three different artificial intelligence models in answering Turkish medical questions in the 2021 1st Term Medical Specialization Examination (MSE). MSE consists of a total of 240 questions across clinical (CMST) and basic (BMST) medical sciences. According to the results in CMST, it was concluded that Gemini correctly answered 82 questions, ChatGPT-4 answered 105 questions and ChatGPT-4o answered 117 questions. In BMST, Gemini and ChatGPT-4 answered 93 questions and ChatGPT-4o answered 107 questions correctly according to the answer key. ChatGPT-4o outperformed the candidate with the highest scores of 113 and 106 according to CMST and BMST respectively. This study highlights the importance of the potential of artificial intelligence in medical education and assessment. It demonstrates that advanced models can achieve high accuracy and contextual understanding, demonstrating their potential role in medical education and evaluation.
comment: 9 pages, in Turkish language, 8 figures
♻ ☆ Intelligent OPC Engineer Assistant for Semiconductor Manufacturing
Advancements in chip design and manufacturing have enabled the processing of complex tasks such as deep learning and natural language processing, paving the way for the development of artificial general intelligence (AGI). AI, on the other hand, can be leveraged to innovate and streamline semiconductor technology from planning and implementation to manufacturing. In this paper, we present \textit{Intelligent OPC Engineer Assistant}, an AI/LLM-powered methodology designed to solve the core manufacturing-aware optimization problem known as optical proximity correction (OPC). The methodology involves a reinforcement learning-based OPC recipe search and a customized multi-modal agent system for recipe summarization. Experiments demonstrate that our methodology can efficiently build OPC recipes on various chip designs with specially handled design topologies, a task that typically requires the full-time effort of OPC engineers with years of experience.
♻ ☆ Efficient and Accurate Memorable Conversation Model using DPO based on sLLM
In multi-session dialog system, it is essential to continuously update the memory as the session progresses. Simply accumulating memory can make it difficult to focus on the content of the conversation for inference due to the limited input sentence size. Therefore, efficient and accurate conversation model that is capable of managing memory to reflect the conversation history continuously is necessary. This paper presents a conversation model that efficiently manages memory as sessions progress and incorporates this into the model to reflect the conversation history accurately with 3 methodologies: SFT, DPO and DPO with SFT model. Our model using DPO algorithm shows an improvement about 0.0591 of BERTScore in memory accuracy, and the rate of responses reflecting the memory increased as well. Also, response generation performance enhanced about 4.292 in fluency, 3.935 in coherence, and 2.896 in consistency. This paper describes a training method that yields better performance than models with more than twice the parameter size, even when the model size is smaller. Thus, our model demonstrates efficiency not only in terms of accuracy but also in resource utilization.
♻ ☆ Inference-Time Rule Eraser: Fair Recognition via Distilling and Removing Biased Rules
Machine learning models often make predictions based on biased features such as gender, race, and other social attributes, posing significant fairness risks, especially in societal applications, such as hiring, banking, and criminal justice. Traditional approaches to addressing this issue involve retraining or fine-tuning neural networks with fairness-aware optimization objectives. However, these methods can be impractical due to significant computational resources, complex industrial tests, and the associated CO2 footprint. Additionally, regular users often fail to fine-tune models because they lack access to model parameters In this paper, we introduce the Inference-Time Rule Eraser (Eraser), a novel method designed to address fairness concerns by removing biased decision-making rules from deployed models during inference without altering model weights. We begin by establishing a theoretical foundation for modifying model outputs to eliminate biased rules through Bayesian analysis. Next, we present a specific implementation of Eraser that involves two stages: (1) distilling the biased rules from the deployed model into an additional patch model, and (2) removing these biased rules from the output of the deployed model during inference. Extensive experiments validate the effectiveness of our approach, showcasing its superior performance in addressing fairness concerns in AI systems.
♻ ☆ Exploiting the Potential of Seq2Seq Models as Robust Few-Shot Learners
In-context learning, which offers substantial advantages over fine-tuning, is predominantly observed in decoder-only models, while encoder-decoder (i.e., seq2seq) models excel in methods that rely on weight updates. Recently, a few studies have demonstrated the feasibility of few-shot learning with seq2seq models; however, this has been limited to tasks that align well with the seq2seq architecture, such as summarization and translation. Inspired by these initial studies, we provide a first-ever extensive experiment comparing the in-context few-shot learning capabilities of decoder-only and encoder-decoder models on a broad range of tasks. Furthermore, we propose two methods to more effectively elicit in-context learning ability in seq2seq models: objective-aligned prompting and a fusion-based approach. Remarkably, our approach outperforms a decoder-only model that is six times larger and exhibits significant performance improvements compared to conventional seq2seq models across a variety of settings. We posit that, with the right configuration and prompt design, seq2seq models can be highly effective few-shot learners for a wide spectrum of applications.
comment: Accepted to COLM'2024
♻ ☆ FERI: A Multitask-based Fairness Achieving Algorithm with Applications to Fair Organ Transplantation
Liver transplantation often faces fairness challenges across subgroups defined by sensitive attributes such as age group, gender, and race/ethnicity. Machine learning models for outcome prediction can introduce additional biases. Therefore, we introduce Fairness through the Equitable Rate of Improvement in Multitask Learning (FERI) algorithm for fair predictions of graft failure risk in liver transplant patients. FERI constrains subgroup loss by balancing learning rates and preventing subgroup dominance in the training process. Our results show that FERI maintained high predictive accuracy with AUROC and AUPRC comparable to baseline models. More importantly, FERI demonstrated an ability to improve fairness without sacrificing accuracy. Specifically, for the gender, FERI reduced the demographic parity disparity by 71.74%, and for the age group, it decreased the equalized odds disparity by 40.46%. Therefore, the FERI algorithm advanced fairness-aware predictive modeling in healthcare and provides an invaluable tool for equitable healthcare systems.
comment: First Prize Student Award Paper, American Medical Informatics Association 2024 Informatics Summit
♻ ☆ When Fairness Meets Privacy: Exploring Privacy Threats in Fair Binary Classifiers via Membership Inference Attacks IJCAI 2024
Previous studies have developed fairness methods for biased models that exhibit discriminatory behaviors towards specific subgroups. While these models have shown promise in achieving fair predictions, recent research has identified their potential vulnerability to score-based membership inference attacks (MIAs). In these attacks, adversaries can infer whether a particular data sample was used during training by analyzing the model's prediction scores. However, our investigations reveal that these score-based MIAs are ineffective when targeting fairness-enhanced models in binary classifications. The attack models trained to launch the MIAs degrade into simplistic threshold models, resulting in lower attack performance. Meanwhile, we observe that fairness methods often lead to prediction performance degradation for the majority subgroups of the training data. This raises the barrier to successful attacks and widens the prediction gaps between member and non-member data. Building upon these insights, we propose an efficient MIA method against fairness-enhanced models based on fairness discrepancy results (FD-MIA). It leverages the difference in the predictions from both the original and fairness-enhanced models and exploits the observed prediction gaps as attack clues. We also explore potential strategies for mitigating privacy leakages. Extensive experiments validate our findings and demonstrate the efficacy of the proposed method.
comment: Accepted by IJCAI 2024
♻ ☆ Differentiable Edge-based OPC
Optical proximity correction (OPC) is crucial for pushing the boundaries of semiconductor manufacturing and enabling the continued scaling of integrated circuits. While pixel-based OPC, termed as inverse lithography technology (ILT), has gained research interest due to its flexibility and precision. Its complexity and intricate features can lead to challenges in mask writing, increased defects, and higher costs, hence hindering widespread industrial adoption. In this paper, we propose DiffOPC, a differentiable OPC framework that enjoys the virtue of both edge-based OPC and ILT. By employing a mask rule-aware gradient-based optimization approach, DiffOPC efficiently guides mask edge segment movement during mask optimization, minimizing wafer error by propagating true gradients from the cost function back to the mask edges. Our approach achieves lower edge placement error while reducing manufacturing cost by half compared to state-of-the-art OPC techniques, bridging the gap between the high accuracy of pixel-based OPC and the practicality required for industrial adoption, thus offering a promising solution for advanced semiconductor manufacturing.
comment: Accepted by ICCAD24
♻ ☆ Split-and-Denoise: Protect large language model inference with local differential privacy
Large Language Models (LLMs) excel in natural language understanding by capturing hidden semantics in vector space. This process enriches the value of text embeddings for various downstream tasks, thereby fostering the Embedding-as-a-Service (EaaS) business model. However, the risk of privacy leakage due to direct text transmission to servers remains a critical concern. To address this, we introduce Split-N-Denoise (SnD), an private inference framework that splits the model to execute the token embedding layer on the client side at minimal computational cost. This allows the client to introduce noise prior to transmitting the embeddings to the server, and subsequently receive and denoise the perturbed output embeddings for downstream tasks. Our approach is designed for the inference stage of LLMs and requires no modifications to the model parameters. Extensive experiments demonstrate SnD's effectiveness in optimizing the privacy-utility tradeoff across various LLM architectures and diverse downstream tasks. The results reveal an improvement in performance under the same privacy budget compared to the baselines by over 10\% on average, offering clients a privacy-preserving solution for local privacy protection.
comment: Proceedings of the 41st International Conference on Machine Learning, 22 pages
♻ ☆ Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
In a conventional Federated Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration. However, this random selection often leads to disparate performance among clients, raising concerns regarding fairness, particularly in applications where equitable outcomes are crucial, such as in medical or financial machine learning tasks. This disparity typically becomes more pronounced with the advent of performance-centric client sampling techniques. This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection. Both approaches utilize submodular function maximization to achieve more balanced models. By modifying the facility location problem, they aim to mitigate the fairness concerns associated with random selection. SUBTRUNC leverages client loss information to diversify solutions, while UNIONFL relies on historical client selection data to ensure a more equitable performance of the final model. Moreover, these algorithms are accompanied by robust theoretical guarantees regarding convergence under reasonable assumptions. The efficacy of these methods is demonstrated through extensive evaluations across heterogeneous scenarios, revealing significant improvements in fairness as measured by a client dissimilarity metric.
comment: 13 pages
♻ ☆ AI Reliance and Decision Quality: Fundamentals, Interdependence, and the Effects of Interventions
In AI-assisted decision-making, a central promise of having a human-in-the-loop is that they should be able to complement the AI system by overriding its wrong recommendations. In practice, however, we often see that humans cannot assess the correctness of AI recommendations and, as a result, adhere to wrong or override correct advice. Different ways of relying on AI recommendations have immediate, yet distinct, implications for decision quality. Unfortunately, reliance and decision quality are often inappropriately conflated in the current literature on AI-assisted decision-making. In this work, we disentangle and formalize the relationship between reliance and decision quality, and we characterize the conditions under which human-AI complementarity is achievable. To illustrate how reliance and decision quality relate to one another, we propose a visual framework and demonstrate its usefulness for interpreting empirical findings, including the effects of interventions like explanations. Overall, our research highlights the importance of distinguishing between reliance behavior and decision quality in AI-assisted decision-making.
comment: Accepted at Journal of Artificial Intelligence Research (JAIR)
♻ ☆ Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers RSS
Large-scale multi-task robotic manipulation systems often rely on text to specify the task. In this work, we explore whether a robot can learn by observing humans. To do so, the robot must understand a person's intent and perform the inferred task despite differences in the embodiments and environments. We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions. Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos. Vid2Robot uses cross-attention transformer layers between video features and the current robot state to produce the actions and perform the same task as shown in the video. We use auxiliary contrastive losses to align the prompt and robot video representations for better policies. We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos. Further, we also show cross-object motion transfer ability that enables video-conditioned policies to transfer a motion observed on one object in the prompt video to another object in the robot's own environment. Videos available at https://vid2robot.github.io
comment: Robotics: Science & Systems (RSS) 2024. https://vid2robot.github.io/
♻ ☆ IReCa: Intrinsic Reward-enhanced Context-aware Reinforcement Learning for Human-AI Coordination
In human-AI coordination scenarios, human agents usually exhibit asymmetric behaviors that are significantly sparse and unpredictable compared to those of AI agents. These characteristics introduce two primary challenges to human-AI coordination: the effectiveness of obtaining sparse rewards and the efficiency of training the AI agents. To tackle these challenges, we propose an Intrinsic Reward-enhanced Context-aware (IReCa) reinforcement learning (RL) algorithm, which leverages intrinsic rewards to facilitate the acquisition of sparse rewards and utilizes environmental context to enhance training efficiency. Our IReCa RL algorithm introduces three unique features: (i) it encourages the exploration of sparse rewards by incorporating intrinsic rewards that supplement traditional extrinsic rewards from the environment; (ii) it improves the acquisition of sparse rewards by prioritizing the corresponding sparse state-action pairs; and (iii) it enhances the training efficiency by optimizing the exploration and exploitation through innovative context-aware weights of extrinsic and intrinsic rewards. Extensive simulations executed in the Overcooked layouts demonstrate that our IReCa RL algorithm can increase the accumulated rewards by approximately 20% and reduce the epochs required for convergence by approximately 67% compared to state-of-the-art baselines.
♻ ☆ Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout
This paper introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute the {\em robustness}, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and na\"{i}ve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To tackle this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of {\em controller network dropout}, where we approximate the NN controller in several time-steps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology, can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable backpropagation over long time horizons and trajectories over high dimensional state spaces.
♻ ☆ Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC ICML 2023
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
comment: ICML 2023, Project Webpage: https://energy-based-model.github.io/reduce-reuse-recycle/
♻ ☆ ML-EAT: A Multilevel Embedding Association Test for Interpretable and Transparent Social Science
This research introduces the Multilevel Embedding Association Test (ML-EAT), a method designed for interpretable and transparent measurement of intrinsic bias in language technologies. The ML-EAT addresses issues of ambiguity and difficulty in interpreting the traditional EAT measurement by quantifying bias at three levels of increasing granularity: the differential association between two target concepts with two attribute concepts; the individual effect size of each target concept with two attribute concepts; and the association between each individual target concept and each individual attribute concept. Using the ML-EAT, this research defines a taxonomy of EAT patterns describing the nine possible outcomes of an embedding association test, each of which is associated with a unique EAT-Map, a novel four-quadrant visualization for interpreting the ML-EAT. Empirical analysis of static and diachronic word embeddings, GPT-2 language models, and a CLIP language-and-image model shows that EAT patterns add otherwise unobservable information about the component biases that make up an EAT; reveal the effects of prompting in zero-shot models; and can also identify situations when cosine similarity is an ineffective metric, rendering an EAT unreliable. Our work contributes a method for rendering bias more observable and interpretable, improving the transparency of computational investigations into human minds and societies.
comment: Accepted at Artificial Intelligence, Ethics, and Society 2024
♻ ☆ Dataset Scale and Societal Consistency Mediate Facial Impression Bias in Vision-Language AI
Multimodal AI models capable of associating images and text hold promise for numerous domains, ranging from automated image captioning to accessibility applications for blind and low-vision users. However, uncertainty about bias has in some cases limited their adoption and availability. In the present work, we study 43 CLIP vision-language models to determine whether they learn human-like facial impression biases, and we find evidence that such biases are reflected across three distinct CLIP model families. We show for the first time that the the degree to which a bias is shared across a society predicts the degree to which it is reflected in a CLIP model. Human-like impressions of visually unobservable attributes, like trustworthiness and sexuality, emerge only in models trained on the largest dataset, indicating that a better fit to uncurated cultural data results in the reproduction of increasingly subtle social biases. Moreover, we use a hierarchical clustering approach to show that dataset size predicts the extent to which the underlying structure of facial impression bias resembles that of facial impression bias in humans. Finally, we show that Stable Diffusion models employing CLIP as a text encoder learn facial impression biases, and that these biases intersect with racial biases in Stable Diffusion XL-Turbo. While pretrained CLIP models may prove useful for scientific studies of bias, they will also require significant dataset curation when intended for use as general-purpose models in a zero-shot setting.
comment: Accepted at Artificial Intelligence, Ethics, and Society 2024
♻ ☆ Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator ECCV 2024
Multimodal Large Language Models (MLLMs) demonstrate exceptional problem-solving capabilities, but few research studies aim to gauge the ability to generate visual instruction tuning data. This paper proposes to explore the potential of empowering MLLMs to generate data independently without relying on GPT-4. We introduce Genixer, a comprehensive data generation pipeline consisting of four key steps: (i) instruction data collection, (ii) instruction template design, (iii) empowering MLLMs, and (iv) data generation and filtering. Additionally, we outline two modes of data generation: task-agnostic and task-specific, enabling controllable output. We demonstrate that a synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks. Additionally, the grounding MLLM Shikra, when trained with a REC-like synthetic dataset, shows improvements on 7 out of 8 REC datasets. Through experiments and synthetic data analysis, our findings are: (1) current MLLMs can serve as robust data generators without assistance from GPT-4V; (2) MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data; (3) synthetic datasets enhance performance across various multimodal benchmarks and help mitigate model hallucinations. The data, code, and models can be found at https://github.com/zhaohengyuan1/Genixer.
comment: Accepted by ECCV 2024
♻ ☆ Universal Time-Series Representation Learning: A Survey
Time-series data exists in every corner of real-world systems and services, ranging from satellites in the sky to wearable devices on human bodies. Learning representations by extracting and inferring valuable information from these time series is crucial for understanding the complex dynamics of particular phenomena and enabling informed decisions. With the learned representations, we can perform numerous downstream analyses more effectively. Among several approaches, deep learning has demonstrated remarkable performance in extracting hidden patterns and features from time-series data without manual feature engineering. This survey first presents a novel taxonomy based on three fundamental elements in designing state-of-the-art universal representation learning methods for time series. According to the proposed taxonomy, we comprehensively review existing studies and discuss their intuitions and insights into how these methods enhance the quality of learned representations. Finally, as a guideline for future studies, we summarize commonly used experimental setups and datasets and discuss several promising research directions. An up-to-date corresponding resource is available at https://github.com/itouchz/awesome-deep-time-series-representations.
comment: 41 pages, 7 figures
♻ ☆ Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models CVPR 2023
The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better ${\bf visual}$ dog classifier by ${\bf read}$ing about dogs and ${\bf listen}$ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP learn cross-modal encoders that map different modalities to the same representation space. Specifically, we propose a simple strategy for ${\bf cross-modal}$ ${\bf adaptation}$: we treat examples from different modalities as additional few-shot examples. For example, by simply repurposing class names as an additional training sample, we trivially turn any n-shot learning problem into a (n+1)-shot problem. This allows us to produce SOTA results with embarrassingly simple linear classifiers. We show that our approach can be combined with existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
comment: Published at CVPR 2023. Project site: https://linzhiqiu.github.io/papers/cross_modal/
♻ ☆ Bayesian Inference of Minimally Complex Models with Interactions of Arbitrary Order
Finding the model that best describes a high-dimensional dataset is a daunting task, even more so if one aims to consider all possible high-order patterns of the data, going beyond pairwise models. For binary data, we show that this task becomes feasible when restricting the search to a family of simple models, that we call Minimally Complex Models (MCMs). MCMs are maximum entropy models that have interactions of arbitrarily high order grouped into independent components of minimal complexity. They are simple in information-theoretic terms, which means they can only fit well certain types of data patterns and are therefore easy to falsify. We show that Bayesian model selection restricted to these models is computationally feasible and has many advantages. First, the model evidence, which balances goodness-of-fit against complexity, can be computed efficiently without any parameter fitting, enabling very fast explorations of the space of MCMs. Second, the family of MCMs is invariant under gauge transformations, which can be used to develop a representation-independent approach to statistical modeling. For small systems (up to 15 variables), combining these two results allows us to select the best MCM among all, even though the number of models is already extremely large. For larger systems, we propose simple heuristics to find optimal MCMs in reasonable times. Besides, inference and sampling can be performed without any computational effort. Finally, because MCMs have interactions of any order, they can reveal the presence of important high-order dependencies in the data, providing a new approach to explore high-order dependencies in complex systems. We apply our method to synthetic data and real-world examples, illustrating how MCMs portray the structure of dependencies among variables in a simple manner, extracting falsifiable predictions on symmetries and invariance from the data.
comment: 22 pages, 13 figures
Graphics 6
☆ Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries ICML 2024
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities, encompassing a wide range from 3D shapes to images and audio. Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry. However, learning SDFs from sparse 3D point clouds in the absence of ground truth supervision remains a very challenging task. While recent methods rely on smoothness priors to regularize the learning, our method introduces a regularization term that leverages adversarial samples around the shape to improve the learned SDFs. Through extensive experiments and evaluations, we illustrate the efficacy of our proposed method, highlighting its capacity to improve SDF learning with respect to baselines and the state-of-the-art using synthetic and real data.
comment: ICML 2024
☆ Data-Driven Nonlinear Deformation Design of 3D-Printable Shells
Designing and fabricating structures with specific mechanical properties requires understanding the intricate relationship between design parameters and performance. Understanding the design-performance relationship becomes increasingly complicated for nonlinear deformations. Though successful at modeling elastic deformations, simulation-based techniques struggle to model large elastoplastic deformations exhibiting plasticity and densification. We propose a neural network trained on experimental data to learn the design-performance relationship between 3D-printable shells and their compressive force-displacement behavior. Trained on thousands of physical experiments, our network aids in both forward and inverse design to generate shells exhibiting desired elastoplastic and hyperelastic deformations. We validate a subset of generated designs through fabrication and testing. Furthermore, we demonstrate the network's inverse design efficacy in generating custom shells for several applications.
comment: Submitted to 3D Printing and Additive Manufacturing
☆ MeshUp: Multi-Target Mesh Deformation via Blended Score Distillation
We propose MeshUp, a technique that deforms a 3D mesh towards multiple target concepts, and intuitively controls the region where each concept is expressed. Conveniently, the concepts can be defined as either text queries, e.g., "a dog" and "a turtle," or inspirational images, and the local regions can be selected as any number of vertices on the mesh. We can effectively control the influence of the concepts and mix them together using a novel score distillation approach, referred to as the Blended Score Distillation (BSD). BSD operates on each attention layer of the denoising U-Net of a diffusion model as it extracts and injects the per-objective activations into a unified denoising pipeline from which the deformation gradients are calculated. To localize the expression of these activations, we create a probabilistic Region of Interest (ROI) map on the surface of the mesh, and turn it into 3D-consistent masks that we use to control the expression of these activations. We demonstrate the effectiveness of BSD empirically and show that it can deform various meshes towards multiple objectives.
☆ OctFusion: Octree-based Diffusion Models for 3D Shape Generation
Diffusion models have emerged as a popular method for 3D generation. However, it is still challenging for diffusion models to efficiently generate diverse and high-quality 3D shapes. In this paper, we introduce OctFusion, which can generate 3D shapes with arbitrary resolutions in 2.5 seconds on a single Nvidia 4090 GPU, and the extracted meshes are guaranteed to be continuous and manifold. The key components of OctFusion are the octree-based latent representation and the accompanying diffusion models. The representation combines the benefits of both implicit neural representations and explicit spatial octrees and is learned with an octree-based variational autoencoder. The proposed diffusion model is a unified multi-scale U-Net that enables weights and computation sharing across different octree levels and avoids the complexity of widely used cascaded diffusion schemes. We verify the effectiveness of OctFusion on the ShapeNet and Objaverse datasets and achieve state-of-the-art performances on shape generation tasks. We demonstrate that OctFusion is extendable and flexible by generating high-quality color fields for textured mesh generation and high-quality 3D shapes conditioned on text prompts, sketches, or category labels. Our code and pre-trained models are available at \url{https://github.com/octree-nn/octfusion}.
comment: Technical Report
♻ ☆ Pano2Room: Novel View Synthesis from a Single Indoor Panorama SIGGRAPH
Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
comment: SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers '24), December 3--6, 2024, Tokyo, Japan
♻ ☆ FPO++: Efficient Encoding and Rendering of Dynamic Neural Radiance Fields by Analyzing and Enhancing Fourier PlenOctrees
Fourier PlenOctrees have shown to be an efficient representation for real-time rendering of dynamic Neural Radiance Fields (NeRF). Despite its many advantages, this method suffers from artifacts introduced by the involved compression when combining it with recent state-of-the-art techniques for training the static per-frame NeRF models. In this paper, we perform an in-depth analysis of these artifacts and leverage the resulting insights to propose an improved representation. In particular, we present a novel density encoding that adapts the Fourier-based compression to the characteristics of the transfer function used by the underlying volume rendering procedure and leads to a substantial reduction of artifacts in the dynamic model. Furthermore, we show an augmentation of the training data that relaxes the periodicity assumption of the compression. We demonstrate the effectiveness of our enhanced Fourier PlenOctrees in the scope of quantitative and qualitative evaluations on synthetic and real-world scenes.
Robotics 37
☆ Advancing Humanoid Locomotion: Mastering Challenging Terrains with Denoising World Model Learning RSS
Humanoid robots, with their human-like skeletal structure, are especially suited for tasks in human-centric environments. However, this structure is accompanied by additional challenges in locomotion controller design, especially in complex real-world environments. As a result, existing humanoid robots are limited to relatively simple terrains, either with model-based control or model-free reinforcement learning. In this work, we introduce Denoising World Model Learning (DWL), an end-to-end reinforcement learning framework for humanoid locomotion control, which demonstrates the world's first humanoid robot to master real-world challenging terrains such as snowy and inclined land in the wild, up and down stairs, and extremely uneven terrains. All scenarios run the same learned neural network with zero-shot sim-to-real transfer, indicating the superior robustness and generalization capability of the proposed method.
comment: Robotics: Science and Systems (RSS), 2024. (Best Paper Award Finalist)
☆ GR-MG: Leveraging Partially Annotated Data via Multi-Modal Goal Conditioned Policy
The robotics community has consistently aimed to achieve generalizable robot manipulation with flexible natural language instructions. One of the primary challenges is that obtaining robot data fully annotated with both actions and texts is time-consuming and labor-intensive. However, partially annotated data, such as human activity videos without action labels and robot play data without language labels, is much easier to collect. Can we leverage these data to enhance the generalization capability of robots? In this paper, we propose GR-MG, a novel method which supports conditioning on both a language instruction and a goal image. During training, GR-MG samples goal images from trajectories and conditions on both the text and the goal image or solely on the image when text is unavailable. During inference, where only the text is provided, GR-MG generates the goal image via a diffusion-based image-editing model and condition on both the text and the generated image. This approach enables GR-MG to leverage large amounts of partially annotated data while still using language to flexibly specify tasks. To generate accurate goal images, we propose a novel progress-guided goal image generation model which injects task progress information into the generation process, significantly improving the fidelity and the performance. In simulation experiments, GR-MG improves the average number of tasks completed in a row of 5 from 3.35 to 4.04. In real-robot experiments, GR-MG is able to perform 47 different tasks and improves the success rate from 62.5% to 75.0% and 42.4% to 57.6% in simple and generalization settings, respectively. Code and checkpoints will be available at the project page: https://gr-mg.github.io/.
comment: 9 pages, 7 figures, letter
☆ Model Predictive Parkour Control of a Monoped Hopper in Dynamically Changing Environments
A great advantage of legged robots is their ability to operate on particularly difficult and obstructed terrain, which demands dynamic, robust, and precise movements. The study of obstacle courses provides invaluable insights into the challenges legged robots face, offering a controlled environment to assess and enhance their capabilities. Traversing it with a one-legged hopper introduces intricate challenges, such as planning over contacts and dealing with flight phases, which necessitates a sophisticated controller. A novel model predictive parkour controller is introduced, that finds an optimal path through a real-time changing obstacle course with mixed integer motion planning. The execution of this optimized path is then achieved through a state machine employing a PD control scheme with feedforward torques, ensuring robust and accurate performance.
comment: Published in: IEEE Robotics and Automation Letters
☆ Functional kinematic and kinetic requirements of the upper limb during activities of daily living: a recommendation on necessary joint capabilities for prosthetic arms IROS 2024
Prosthetic limb abandonment remains an unsolved challenge as amputees consistently reject their devices. Current prosthetic designs often fail to balance human-like perfomance with acceptable device weight, highlighting the need for optimised designs tailored to modern tasks. This study aims to provide a comprehensive dataset of joint kinematics and kinetics essential for performing activities of daily living (ADL), thereby informing the design of more functional and user-friendly prosthetic devices. Functionally required Ranges of Motion (ROM), velocities, and torques for the Glenohumeral (rotation), elbow, Radioulnar, and wrist joints were computed using motion capture data from 12 subjects performing 24 ADLs. Our approach included the computation of joint torques for varying mass and inertia properties of the upper limb, while torques induced by the manipulation of experimental objects were considered by their interaction wrench with the subjects hand. Joint torques pertaining to individual ADL scaled linearly with limb and object mass and mass distribution, permitting their generalisation to not explicitly simulated limb and object dynamics with linear regressors (LRM), exhibiting coefficients of determination R = 0.99 pm 0.01. Exemplifying an application of data-driven prosthesis design, we optimise wrist axes orientations for two serial and two differential joint configurations. Optimised axes reduced peak power requirements, between 22 to 38 percent compared to anatomical configurations, by exploiting high torque correlations between Ulnar deviation and wrist flexion/extension joints. This study offers critical insights into the functional requirements of upper limb prostheses, providing a valuable foundation for data-driven prosthetic design that addresses key user concerns and enhances device adoption.
comment: Accepted at IROS 2024
☆ Equivariant Reinforcement Learning under Partial Observability
Incorporating inductive biases is a promising approach for tackling challenging robot learning domains with sample-efficient solutions. This paper identifies partially observable domains where symmetries can be a useful inductive bias for efficient learning. Specifically, by encoding the equivariance regarding specific group symmetries into the neural networks, our actor-critic reinforcement learning agents can reuse solutions in the past for related scenarios. Consequently, our equivariant agents outperform non-equivariant approaches significantly in terms of sample efficiency and final performance, demonstrated through experiments on a range of robotic tasks in simulation and real hardware.
comment: Conference on Robot Learning, 2023
☆ Visuo-Tactile Exploration of Unknown Rigid 3D Curvatures by Vision-Augmented Unified Force-Impedance Control IROS 2024
Despite recent advancements in torque-controlled tactile robots, integrating them into manufacturing settings remains challenging, particularly in complex environments. Simplifying robotic skill programming for non-experts is crucial for increasing robot deployment in manufacturing. This work proposes an innovative approach, Vision-Augmented Unified Force-Impedance Control (VA-UFIC), aimed at intuitive visuo-tactile exploration of unknown 3D curvatures. VA-UFIC stands out by seamlessly integrating vision and tactile data, enabling the exploration of diverse contact shapes in three dimensions, including point contacts, flat contacts with concave and convex curvatures, and scenarios involving contact loss. A pivotal component of our method is a robust online contact alignment monitoring system that considers tactile error, local surface curvature, and orientation, facilitating adaptive adjustments of robot stiffness and force regulation during exploration. We introduce virtual energy tanks within the control framework to ensure safety and stability, effectively addressing inherent safety concerns in visuo-tactile exploration. Evaluation using a Franka Emika research robot demonstrates the efficacy of VA-UFIC in exploring unknown 3D curvatures while adhering to arbitrarily defined force-motion policies. By seamlessly integrating vision and tactile sensing, VA-UFIC offers a promising avenue for intuitive exploration of complex environments, with potential applications spanning manufacturing, inspection, and beyond.
comment: 8 pages, 3 figures, accepted by IROS 2024
☆ A Survey on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms
Connected and automated vehicles and robot swarms hold transformative potential for enhancing safety, efficiency, and sustainability in the transportation and manufacturing sectors. Extensive testing and validation of these technologies is crucial for their deployment in the real world. While simulations are essential for initial testing, they often have limitations in capturing the complex dynamics of real-world interactions. This limitation underscores the importance of small-scale testbeds. These testbeds provide a realistic, cost-effective, and controlled environment for testing and validating algorithms, acting as an essential intermediary between simulation and full-scale experiments. This work serves to facilitate researchers' efforts in identifying existing small-scale testbeds suitable for their experiments and provide insights for those who want to build their own. In addition, it delivers a comprehensive survey of the current landscape of these testbeds. We derive 62 characteristics of testbeds based on the well-known sense-plan-act paradigm and offer an online table comparing 22 small-scale testbeds based on these characteristics. The online table is hosted on our designated public webpage www.cpm-remote.de/testbeds, and we invite testbed creators and developers to contribute to it. We closely examine nine testbeds in this paper, demonstrating how the derived characteristics can be used to present testbeds. Furthermore, we discuss three ongoing challenges concerning small-scale testbeds that we identified, i.e., small-scale to full-scale transition, sustainability, and power and resource management.
comment: 16 pages, 11 figures, 1 table. This work has been submitted to the IEEE Robotics & Automation Magazine for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
DynamicRouteGPT: A Real-Time Multi-Vehicle Dynamic Navigation Framework Based on Large Language Models
Real-time dynamic path planning in complex traffic environments presents challenges, such as varying traffic volumes and signal wait times. Traditional static routing algorithms like Dijkstra and A* compute shortest paths but often fail under dynamic conditions. Recent Reinforcement Learning (RL) approaches offer improvements but tend to focus on local optima, risking dead-ends or boundary issues. This paper proposes a novel approach based on causal inference for real-time dynamic path planning, balancing global and local optimality. We first use the static Dijkstra algorithm to compute a globally optimal baseline path. A distributed control strategy then guides vehicles along this path. At intersections, DynamicRouteGPT performs real-time decision-making for local path selection, considering real-time traffic, driving preferences, and unexpected events. DynamicRouteGPT integrates Markov chains, Bayesian inference, and large-scale pretrained language models like Llama3 8B to provide an efficient path planning solution. It dynamically adjusts to traffic scenarios and driver preferences and requires no pre-training, offering broad applicability across road networks. A key innovation is the construction of causal graphs for counterfactual reasoning, optimizing path decisions. Experimental results show that our method achieves state-of-the-art performance in real-time dynamic path planning for multiple vehicles while providing explainable path selections, offering a novel and efficient solution for complex traffic environments.
comment: This paper is 12 pages long and represents the initial draft, version 1
☆ Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning
Efficient navigation in dynamic environments is crucial for autonomous robots interacting with various environmental entities, including both moving agents and static obstacles. In this study, we present a novel methodology that enhances the robot's interaction with different types of agents and obstacles based on specific safety requirements. This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation. We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles, and additionally encourages the robot's proximity to the goal. It also penalizes the robot for being close to entities, and the safe distance also depends on the entity type. Additionally, we propose an optimized algorithm for training and testing, which significantly accelerates train, validation, and test steps and enables training in complex environments. Comprehensive experiments conducted using simulation demonstrate that our approach consistently outperforms conventional navigation and collision avoidance methods, including state-of-the-art techniques. To sum up, this work contributes to enhancing the safety and efficiency of navigation systems for autonomous robots in dynamic, crowded environments.
comment: 14 pages, 5 figures
☆ CHIGLU: A Modular Hardware for Stepper Motorized Quadruped Robot $\unicode{x2014}$ Design, Analysis, Fabrication, and Validation
Bio-engineered robots are under rapid development due to their maneuver ability through uneven surfaces. This advancement paves the way for experimenting with versatile electrical system developments with various motors. In this research paper, we present a design, fabrication and analysis of a versatile printed circuit board (PCB) as the main system that allows for the control of twelve stepper motors by stacking low-budget stepper motor controller and widely used micro-controller unit. The primary motivation behind the design is to offer a compact and efficient hardware solution for controlling multiple stepper motors of a quadruped robot while meeting the required power budget. The research focuses on the hardware's architecture, stackable design, power budget planning and a thorough analysis. Additionally, PDN (Power Distribution Network) analysis simulation is done to ensure that the voltage and current density are within the expected parameters. Also, the hardware design deep dives into design for manufacturability (DFM). The ability to stack the controllers on the development board provides insights into the board's components swapping feasibility. The findings from this research make a significant contribution to the advancement of stepper motor control systems of multi-axis applications for bio-inspired robot offering a convenient form factor and a reliable performance.
comment: LaTeX, 26 pages with 25 figures
☆ Modular Meshed Ultra-Wideband Aided Inertial Navigation with Robust Anchor Calibration
This paper introduces a generic filter-based state estimation framework that supports two state-decoupling strategies based on cross-covariance factorization. These strategies reduce the computational complexity and inherently support true modularity -- a perquisite for handling and processing meshed range measurements among a time-varying set of devices. In order to utilize these measurements in the estimation framework, positions of newly detected stationary devices (anchors) and the pairwise biases between the ranging devices are required. In this work an autonomous calibration procedure for new anchors is presented, that utilizes range measurements from multiple tags as well as already known anchors. To improve the robustness, an outlier rejection method is introduced. After the calibration is performed, the sensor fusion framework obtains initial beliefs of the anchor positions and dictionaries of pairwise biases, in order to fuse range measurements obtained from new anchors tightly-coupled. The effectiveness of the filter and calibration framework has been validated through evaluations on a recorded dataset and real-world experiments.
☆ Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning
Trajectory planning under kinodynamic constraints is fundamental for advanced robotics applications that require dexterous, reactive, and rapid skills in complex environments. These constraints, which may represent task, safety, or actuator limitations, are essential for ensuring the proper functioning of robotic platforms and preventing unexpected behaviors. Recent advances in kinodynamic planning demonstrate that learning-to-plan techniques can generate complex and reactive motions under intricate constraints. However, these techniques necessitate the analytical modeling of both the robot and the entire task, a limiting assumption when systems are extremely complex or when constructing accurate task models is prohibitive. This paper addresses this limitation by combining learning-to-plan methods with reinforcement learning, resulting in a novel integration of black-box learning of motion primitives and optimization. We evaluate our approach against state-of-the-art safe reinforcement learning methods, showing that our technique, particularly when exploiting task structure, outperforms baseline methods in challenging scenarios such as planning to hit in robot air hockey. This work demonstrates the potential of our integrated approach to enhance the performance and safety of robots operating under complex kinodynamic constraints.
☆ Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
This paper explores the paradigm of Collaborative Perception (CP), where multiple robots and sensors in the environment share and integrate sensor data to construct a comprehensive representation of the surroundings. By aggregating data from various sensors and utilizing advanced algorithms, the collaborative perception framework improves task efficiency, coverage, and safety. Two case studies are presented to showcase the benefits of collaborative perception in multi-robot systems. The first case study illustrates the benefits and advantages of using CP for the task of household cleaning with a team of cleaning robots. The second case study performs a comparative analysis of the performance of CP versus Standalone Perception (SP) for Autonomous Mobile Robots operating in a warehouse environment. The case studies validate the effectiveness of CP in enhancing multi-robot coordination, task completion, and overall system performance and its potential to impact operations in other applications as well. Future investigations will focus on optimizing the framework and validating its performance through empirical testing.
☆ Re-Mix: Optimizing Data Mixtures for Large Scale Imitation Learning
Increasingly large imitation learning datasets are being collected with the goal of training foundation models for robotics. However, despite the fact that data selection has been of utmost importance in vision and natural language processing, little work in robotics has questioned what data such models should actually be trained on. In this work we investigate how to weigh different subsets or ``domains'' of robotics datasets for robot foundation model pre-training. Concrete, we use distributionally robust optimization (DRO) to maximize worst-case performance across all possible downstream domains. Our method, Re-Mix, addresses the wide range of challenges that arise when applying DRO to robotics datasets including variability in action spaces and dynamics across different datasets. Re-Mix employs early stopping, action normalization, and discretization to counteract these issues. Through extensive experimentation on the largest open-source robot manipulation dataset, the Open X-Embodiment dataset, we demonstrate that data curation can have an outsized impact on downstream performance. Specifically, domain weights learned by Re-Mix outperform uniform weights by 38\% on average and outperform human-selected weights by 32\% on datasets used to train existing generalist robot policies, specifically the RT-X models.
FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
This paper proposes FAST-LIVO2: a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks and provide great potential in real-time, onboard robotic applications. FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through an ESIKF. To address the dimension mismatch between the heterogeneous LiDAR and image measurements, we use a sequential update strategy in the Kalman filter. To enhance the efficiency, we use direct methods for both the visual and LiDAR fusion, where the LiDAR module registers raw points without extracting edge or plane features and the visual module minimizes direct photometric errors without extracting ORB or FAST corner features. The fusion of both visual and LiDAR measurements is based on a single unified voxel map where the LiDAR module constructs the geometric structure for registering new LiDAR scans and the visual module attaches image patches to the LiDAR points. To enhance the accuracy of image alignment, we use plane priors from the LiDAR points in the voxel map (and even refine the plane prior) and update the reference patch dynamically after new images are aligned. Furthermore, to enhance the robustness of image alignment, FAST-LIVO2 employs an on-demanding raycast operation and estimates the image exposure time in real time. Lastly, we detail three applications of FAST-LIVO2: UAV onboard navigation demonstrating the system's computation efficiency for real-time onboard navigation, airborne mapping showcasing the system's mapping accuracy, and 3D model rendering (mesh-based and NeRF-based) underscoring the suitability of our reconstructed dense map for subsequent rendering tasks. We open source our code, dataset and application on GitHub to benefit the robotics community.
comment: 30 pages, 31 figures, due to the limitation that 'The abstract field cannot exceed 1,920 characters', the abstract presented here is shorter than the one in the PDF file
☆ Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning
In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.
comment: 4 pages, 2 figures, IEEE-ICKII-2024
☆ Quantitative Representation of Scenario Difficulty for Autonomous Driving Based on Adversarial Policy Search
Adversarial scenario generation is crucial for autonomous driving testing because it can efficiently simulate various challenge and complex traffic conditions. However, it is difficult to control current existing methods to generate desired scenarios, such as the ones with different conflict levels. Therefore, this paper proposes a data-driven quantitative method to represent scenario difficulty. Compared with rule-based discrete scenario difficulty representation method, the proposed algorithm can achieve continuous difficulty representation. Specifically, the environment agent is introduced, and a reinforcement learning method combined with mechanism knowledge is constructed for policy search to obtain an agent with adversarial behavior. The model parameters of the environment agent at different stages in the training process are extracted to construct a policy group, and then the agents with different adversarial intensity are obtained, which are used to realize data generation in different difficulty scenarios through the simulation environment. Finally, a data-driven scenario difficulty quantitative representation model is constructed, which is used to output the environment agent policy under different difficulties. The result analysis shows that the proposed algorithm can generate reasonable and interpretable scenarios with high discrimination, and can provide quantifiable difficulty representation without any expert logic rule design. The video link is https://www.youtube.com/watch?v=GceGdqAm9Ys.
☆ Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses
Multi-Agent Path Finding (MAPF) is an important optimization problem underlying the deployment of robots in automated warehouses and factories. Despite the large body of work on this topic, most approaches make heavy simplifications, both on the environment and the agents, which make the resulting algorithms impractical for real-life scenarios. In this paper, we consider a realistic problem of online order delivery in a warehouse, where a fleet of robots bring the products belonging to each order from shelves to workstations. This creates a stream of inter-dependent pickup and delivery tasks and the associated MAPF problem consists of computing realistic collision-free robot trajectories fulfilling these tasks. To solve this MAPF problem, we propose an extension of the standard Prioritized Planning algorithm to deal with the inter-dependent tasks (Interleaved Prioritized Planning) and a novel Via-Point Star (VP*) algorithm to compute an optimal dynamics-compliant robot trajectory to visit a sequence of goal locations while avoiding moving obstacles. We prove the completeness of our approach and evaluate it in simulation as well as in a real warehouse.
comment: Accepted to ECAI-2024. For related videos, see https://europe.naverlabs.com/research/publications/MAPF_IPP
☆ A Survey on Reinforcement Learning Applications in SLAM
The emergence of mobile robotics, particularly in the automotive industry, introduces a promising era of enriched user experiences and adept handling of complex navigation challenges. The realization of these advancements necessitates a focused technological effort and the successful execution of numerous intricate tasks, particularly in the critical domain of Simultaneous Localization and Mapping (SLAM). Various artificial intelligence (AI) methodologies, such as deep learning and reinforcement learning, present viable solutions to address the challenges in SLAM. This study specifically explores the application of reinforcement learning in the context of SLAM. By enabling the agent (the robot) to iteratively interact with and receive feedback from its environment, reinforcement learning facilitates the acquisition of navigation and mapping skills, thereby enhancing the robot's decision-making capabilities. This approach offers several advantages, including improved navigation proficiency, increased resilience, reduced dependence on sensor precision, and refinement of the decision-making process. The findings of this study, which provide an overview of reinforcement learning's utilization in SLAM, reveal significant advancements in the field. The investigation also highlights the evolution and innovative integration of these techniques.
♻ ☆ Ten Problems in Geobotics
Robots sense, move and act in the physical world. It is therefore natural that algorithmic problems in robotics and automation have a geometric component, often central to the problem. Below we review ten challenging problems at the intersection of robotics and computational geometry -- let's call this intersection Geobotics. What is common to most of these problems is that the prevalent algorithmic techniques used in robotics do not seem suitable for solving them, or at least do not suggest quality guarantees for the solution. Solving some of them, even partially, can shed light on less well-understood aspects of computation in robotics.
♻ ☆ Brain Inspired Probabilistic Occupancy Grid Mapping with Hyperdimensional Computing
Real-time robotic systems require advanced perception, computation, and action capability. However, the main bottleneck in current autonomous systems is the trade-off between computational capability, energy efficiency and model determinism. World modeling, a key objective of many robotic systems, commonly uses occupancy grid mapping (OGM) as the first step towards building an end-to-end robotic system with perception, planning, autonomous maneuvering, and decision making capabilities. OGM divides the environment into discrete cells and assigns probability values to attributes such as occupancy and traversability. Existing methods fall into two categories: traditional methods and neural methods. Traditional methods rely on dense statistical calculations, while neural methods employ deep learning for probabilistic information processing. Recent works formulate a deterministic theory of neural computation at the intersection of cognitive science and vector symbolic architectures. In this study, we propose a Fourier-based hyperdimensional OGM system, VSA-OGM, combined with a novel application of Shannon entropy that retains the interpretability and stability of traditional methods along with the improved computational efficiency of neural methods. Our approach, validated across multiple datasets, achieves similar accuracy to covariant traditional methods while approximately reducing latency by 200x and memory by 1000x. Compared to invariant traditional methods, we see similar accuracy values while reducing latency by 3.7x. Moreover, we achieve 1.5x latency reductions compared to neural methods while eliminating the need for domain-specific model training.
♻ ☆ Decision-Focused Learning to Predict Action Costs for Planning
In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
♻ ☆ Design, Kinematics, and Deployment of a Continuum Underwater Vehicle-Manipulator System
Underwater vehicle-manipulator systems (UVMSs) are underwater robots equipped with one or more manipulators to perform intervention missions. This paper provides the mechanical, electrical, and software design of a novel UVMS equipped with a continuum manipulator, referred to as a continuum-UVMS. A kinematic model for the continuum-UVMS is derived in order to build an algorithm to resolve the robot's redundancy and generate joint space commands. Different methods to optimize the trajectory for specific tasks are proposed using both the weighted least norm solution and the gradient projection method. Kinematic simulation results are analyzed to assess the performance of the proposed algorithm. Finally, the continuum-UVMS is deployed in an experimental demonstration in which both teleoperation and autonomous control are tested for a given reference trajectory.
comment: 14 pages, ASME Journal of Mechanisms and Robotics, accepted
♻ ☆ Whole-body Humanoid Robot Locomotion with Human Reference
Recently, humanoid robots have made significant advances in their ability to perform challenging tasks due to the deployment of Reinforcement Learning (RL), however, the inherent complexity of humanoid robots, including the difficulty of designing complicated reward functions and training entire sophisticated systems, still poses a notable challenge. To conquer these challenges, after many iterations and in-depth investigations, we have meticulously developed a full-size humanoid robot, "Adam", whose innovative structural design greatly improves the efficiency and effectiveness of the imitation learning process. In addition, we have developed a novel imitation learning framework based on an adversarial motion prior, which applies not only to Adam but also to humanoid robots in general. Using the framework, Adam can exhibit unprecedented human-like characteristics in locomotion tasks. Our experimental results demonstrate that the proposed framework enables Adam to achieve human-comparable performance in complex locomotion tasks, marking the first time that human locomotion data has been used for imitation learning in a full-size humanoid robot.
comment: 7pages, 7 figures
♻ ☆ Fusion of Visual-Inertial Odometry with LiDAR Relative Localization for Cooperative Guidance of a Micro-Scale Aerial Vehicle
A novel relative localization approach for guidance of a micro-scale UAV by a well-equipped aerial robot fusing VIO with LiDAR is proposed in this paper. LiDAR-based localization is accurate and robust to challenging environmental conditions, but 3D LiDARs are relatively heavy and require large UAV platforms, in contrast to lightweight cameras. However, visual-based self-localization methods exhibit lower accuracy and can suffer from significant drift with respect to the global reference frame. To benefit from both sensory modalities, we focus on cooperative navigation in a heterogeneous team of a primary LiDAR-equipped UAV and a secondary micro-scale camera-equipped UAV. We propose a novel cooperative approach combining LiDAR relative localization data with VIO output on board the primary UAV to obtain an accurate pose of the secondary UAV. The pose estimate is used to precisely and reliably guide the secondary UAV along trajectories defined in the primary UAV reference frame. The experimental evaluation has shown the superior accuracy of our method to the raw VIO output and demonstrated its capability to guide the secondary UAV along desired trajectories while mitigating VIO drift. Thus, such a heterogeneous system can explore large areas with LiDAR precision, as well as visit locations inaccessible to the large LiDAR-carrying UAV platforms, as was showcased in a real-world cooperative mapping scenario.
comment: pre-print submitted to Journal of Intelligent and Robotic Systems
♻ ☆ LF Tracy: A Unified Single-Pipeline Approach for Salient Object Detection in Light Field Cameras ICPR 2024
Leveraging rich information is crucial for dense prediction tasks. Light field (LF) cameras are instrumental in this regard, as they allow data to be sampled from various perspectives. This capability provides valuable spatial, depth, and angular information, enhancing scene-parsing tasks. However, we have identified two overlooked issues for the LF salient object detection (SOD) task. (1): Previous approaches predominantly employ a customized two-stream design to discover the spatial and depth features within light field images. The network struggles to learn the implicit angular information between different images due to a lack of intra-network data connectivity. (2): Little research has been directed towards the data augmentation strategy for LF SOD. Research on inter-network data connectivity is scant. In this study, we propose an efficient paradigm (LF Tracy) to address those issues. This comprises a single-pipeline encoder paired with a highly efficient information aggregation (IA) module (around 8M parameters) to establish an intra-network connection. Then, a simple yet effective data augmentation strategy called MixLD is designed to bridge the inter-network connections. Owing to this innovative paradigm, our model surpasses the existing state-of-the-art method through extensive experiments. Especially, LF Tracy demonstrates a 23% improvement over previous results on the latest large-scale PKU dataset. The source code is publicly available at: https://github.com/FeiBryantkit/LF-Tracy.
comment: Accepted to ICPR 2024. The source code is publicly available at: https://github.com/FeiBryantkit/LF-Tracy
♻ ☆ Collision-Free Trajectory Optimization in Cluttered Environments Using Sums-of-Squares Programming
In this work, we propose a trajectory optimization approach for robot navigation in cluttered 3D environments. We represent the robot's geometry as a semialgebraic set defined by polynomial inequalities such that robots with general shapes can be suitably characterized. To address the robot navigation task in obstacle-dense environments, we exploit the free space directly to construct a sequence of free regions, and allocate each waypoint on the trajectory to a specific region. Then, we incorporate a uniform scaling factor for each free region, and formulate a Sums-of-Squares (SOS) optimization problem that renders the containment relationship between the robot and the free space computationally tractable. The SOS optimization problem is further reformulated to a semidefinite program (SDP), and the collision-free constraints are shown to be equivalent to limiting the scaling factor along the entire trajectory. In this context, the robot at a specific configuration is tailored to stay within the free region. Next, to solve the trajectory optimization problem with the proposed safety constraints (which are implicitly dependent on the robot configurations), we derive the analytical solution to the gradient of the minimum scaling factor with respect to the robot configuration. As a result, this seamlessly facilitates the use of gradient-based methods in efficient solving of the trajectory optimization problem. Through a series of simulations and real-world experiments, the proposed trajectory optimization approach is validated in various challenging scenarios, and the results demonstrate its effectiveness in generating collision-free trajectories in dense and intricate environments populated with obstacles. Our code is available at: https://github.com/lyl00/minimum_scaling_free_region
♻ ☆ SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction
This paper addresses motion forecasting in multi-agent environments, pivotal for ensuring safety of autonomous vehicles. Traditional as well as recent data-driven marginal trajectory prediction methods struggle to properly learn non-linear agent-to-agent interactions. We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction. We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions: range gap prediction, closest distance prediction, direction of movement prediction, and type of interaction prediction. We further propose an approach to curate interaction-heavy scenarios from datasets. This curated data has two advantages: it provides a stronger learning signal to the interaction model, and facilitates generation of pseudo-labels for interaction-centric pretext tasks. We also propose three new metrics specifically designed to evaluate predictions in interactive scenes. Our empirical evaluations indicate SSL-Interactions outperforms state-of-the-art motion forecasting methods quantitatively with up to 8% improvement, and qualitatively, for interaction-heavy scenarios.
comment: Accepted at IV-2024. 13 pages, 5 figures
♻ ☆ Combining Safe Intervals and RRT* for Efficient Multi-Robot Path Planning in Complex Environments
In this paper, we consider the problem of Multi-Robot Path Planning (MRPP) in continuous space to find conflict-free paths. The difficulty of the problem arises from two primary factors. First, the involvement of multiple robots leads to combinatorial decision-making, which escalates the search space exponentially. Second, the continuous space presents potentially infinite states and actions. For this problem, we propose a two-level approach where the low level is a sampling-based planner Safe Interval RRT* (SI-RRT*) that finds a collision-free trajectory for individual robots. The high level can use any method that can resolve inter-robot conflicts where we employ two representative methods that are Prioritized Planning (SI-CPP) and Conflict Based Search (SI-CCBS). Experimental results show that SI-RRT* can find a high-quality solution quickly with a small number of samples. SI-CPP exhibits improved scalability while SI-CCBS produces higher-quality solutions compared to the state-of-the-art planners for continuous space. Compared to the most scalable existing algorithm, SI-CPP achieves a success rate that is up to 94% higher with 100 robots while maintaining solution quality (i.e., flowtime, the sum of travel times of all robots) without significant compromise. SI-CPP also decreases the makespan up to 45%. SI-CCBS decreases the flowtime by 9% compared to the competitor, albeit exhibiting a 14% lower success rate.
♻ ☆ Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control IJRR
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world. The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot's I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
comment: Accepted in International Journal of Robotics Research (IJRR) 2024. This is the author's version and will no longer be updated as the copyright may get transferred at anytime
♻ ☆ Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
comment: The first comprehensive review of Embodied AI in the era of MLMs, 39 pages. We also provide the paper list for Embodied AI: https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List
♻ ☆ Ultra-Lightweight Collaborative Mapping for Robot Swarms
A key requirement in robotics is the ability to simultaneously self-localize and map a previously unknown environment, relying primarily on onboard sensing and computation. Achieving fully onboard accurate simultaneous localization and mapping (SLAM) is feasible for high-end robotic platforms, whereas small and inexpensive robots face challenges due to constrained hardware, therefore frequently resorting to external infrastructure for sensing and computation. The challenge is further exacerbated in swarms of robots, where coordination, scalability, and latency are crucial concerns. This work introduces a decentralized and lightweight collaborative SLAM approach that enables mapping on virtually any robot, even those equipped with low-cost hardware and only 1.5 MB of memory, including miniaturized insect-size devices. Moreover, the proposed solution supports large swarm formations with the capability to coordinate hundreds of agents. To substantiate our claims, we have successfully implemented collaborative SLAM on centimeter-size drones weighing 46 g. Remarkably, we achieve a mapping accuracy below 30 cm, a result comparable to high-end state-of-the-art solutions while reducing the cost, memory, and computation requirements by two orders of magnitude. Our approach is innovative in three main aspects. First, it enables onboard infrastructure-less collaborative mapping with a lightweight and cost-effective (\$20) solution in terms of sensing and computation. Second, we optimize the data traffic within the swarm to support hundreds of cooperative agents using standard wireless protocols such as ultra-wideband (UWB), Bluetooth, or WiFi. Last, we implement a distributed swarm coordination policy to decrease mapping latency and enhance accuracy.
comment: 14 pages, 13 figures
♻ ☆ MAPPO-PIS: A Multi-Agent Proximal Policy Optimization Method with Prior Intent Sharing for CAVs' Cooperative Decision-Making
Vehicle-to-Vehicle (V2V) technologies have great potential for enhancing traffic flow efficiency and safety. However, cooperative decision-making in multi-agent systems, particularly in complex human-machine mixed merging areas, remains challenging for connected and autonomous vehicles (CAVs). Intent sharing, a key aspect of human coordination, may offer an effective solution to these decision-making problems, but its application in CAVs is under-explored. This paper presents an intent-sharing-based cooperative method, the Multi-Agent Proximal Policy Optimization with Prior Intent Sharing (MAPPO-PIS), which models the CAV cooperative decision-making problem as a Multi-Agent Reinforcement Learning (MARL) problem. It involves training and updating the agents' policies through the integration of two key modules: the Intention Generator Module (IGM) and the Safety Enhanced Module (SEM). The IGM is specifically crafted to generate and disseminate CAVs' intended trajectories spanning multiple future time-steps. On the other hand, the SEM serves a crucial role in assessing the safety of the decisions made and rectifying them if necessary. Merging area with human-machine mixed traffic flow is selected to validate our method. Results show that MAPPO-PIS significantly improves decision-making performance in multi-agent systems, surpassing state-of-the-art baselines in safety, efficiency, and overall traffic system performance. The code and video demo can be found at: \url{https://github.com/CCCC1dhcgd/A-MAPPO-PIS}.
♻ ☆ Hybrid Continuum-Eversion Robot: Precise Navigation and Decontamination in Nuclear Environments using Vine Robot
Soft growing vine robots show great potential for navigation and decontamination tasks in the nuclear industry. This paper introduces a novel hybrid continuum-eversion robot designed to address certain challenges in relation to navigating and operating within pipe networks and enclosed remote vessels. The hybrid robot combines the flexibility of a soft eversion robot with the precision of a continuum robot at its tip, allowing for controlled steering and movement in hard to access and/or complex environments. The design enables the delivery of sensors, liquids, and aerosols to remote areas, supporting remote decontamination activities. This paper outlines the design and construction of the robot and the methods by which it achieves selective steering. We also include a comprehensive review of current related work in eversion robotics, as well as other steering devices and actuators currently under research, which underpin this novel active steering approach. This is followed by an experimental evaluation that demonstrates the robot's real-world capabilities in delivering liquids and aerosols to remote locations. The experiments reveal successful outcomes, with over 95% success in precision spraying tests. The paper concludes by discussing future work alongside limitations in the current design, ultimately showcasing its potential as a solution for remote decontamination operations in the nuclear industry.
comment: 7 pages, 8 figures, conference
♻ ☆ A Hessian for Gaussian Mixture Likelihoods in Nonlinear Least Squares
This paper proposes a novel Hessian approximation for Maximum a Posteriori estimation problems in robotics involving Gaussian mixture likelihoods. Previous approaches manipulate the Gaussian mixture likelihood into a form that allows the problem to be represented as a nonlinear least squares (NLS) problem. The resulting Hessian approximation used within NLS solvers from these approaches neglects certain nonlinearities. The proposed Hessian approximation is derived by setting the Hessians of the Gaussian mixture component errors to zero, which is the same starting point as for the Gauss-Newton Hessian approximation for NLS, and using the chain rule to account for additional nonlinearities. The proposed Hessian approximation results in improved convergence speed and uncertainty characterization for simulated experiments,and similar performance to the state of the art on real-world experiments. A method to maintain compatibility with existing solvers, such as ceres, is also presented. Accompanying software and supplementary material can be found at https://github.com/decargroup/hessian_sum_mixtures.
comment: 8 pages, 2 figures. Accepted to IEEE Robotics and Automation Letters
♻ ☆ Narrowing your FOV with SOLiD: Spatially Organized and Lightweight Global Descriptor for FOV-constrained LiDAR Place Recognition
We often encounter limited FOV situations due to various factors such as sensor fusion or sensor mount in real-world robot navigation. However, the limited FOV interrupts the generation of descriptions and impacts place recognition adversely. Therefore, we suffer from correcting accumulated drift errors in a consistent map using LiDAR-based place recognition with limited FOV. Thus, in this paper, we propose a robust LiDAR-based place recognition method for handling narrow FOV scenarios. The proposed method establishes spatial organization based on the range-elevation bin and azimuth-elevation bin to represent places. In addition, we achieve a robust place description through reweighting based on vertical direction information. Based on these representations, our method enables addressing rotational changes and determining the initial heading. Additionally, we designed a lightweight and fast approach for the robot's onboard autonomy. For rigorous validation, the proposed method was tested across various LiDAR place recognition scenarios (i.e., single-session, multi-session, and multi-robot scenarios). To the best of our knowledge, we report the first method to cope with the restricted FOV. Our place description and SLAM codes will be released. Also, the supplementary materials of our descriptor are available at \texttt{\url{https://sites.google.com/view/lidar-solid}}.
comment: IEEE Robotics and Automation Letters (2024)
♻ ☆ Capability-based Frameworks for Industrial Robot Skills: a Survey
The research community is puzzled with words like skill, action, atomic unit and others when describing robots' capabilities. However, for giving the possibility to integrate capabilities in industrial scenarios, a standardization of these descriptions is necessary. This work uses a structured review approach to identify commonalities and differences in the research community of robots' skill frameworks. Through this method, 210 papers were analyzed and three main results were obtained. First, the vast majority of authors agree on a taxonomy based on task, skill and primitive. Second, the most investigated robots' capabilities are pick and place. Third, industrial oriented applications focus more on simple robots' capabilities with fixed parameters while ensuring safety aspects. Therefore, this work emphasizes that a taxonomy based on task, skill and primitives should be used by future works to align with existing literature. Moreover, further research is needed in the industrial domain for parametric robots' capabilities while ensuring safety.
Computer Vision 130
☆ A Practitioner's Guide to Continual Multimodal Pretraining
Multimodal foundation models serve numerous applications at the intersection of vision and language. Still, despite being pretrained on extensive data, they become outdated over time. To keep models updated, research into continual pretraining mainly explores scenarios with either (1) infrequent, indiscriminate updates on large-scale new data, or (2) frequent, sample-level updates. However, practical model deployment often operates in the gap between these two limit cases, as real-world applications often demand adaptation to specific subdomains, tasks or concepts -- spread over the entire, varying life cycle of a model. In this work, we complement current perspectives on continual pretraining through a research test bed as well as provide comprehensive guidance for effective continual model updates in such scenarios. We first introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements, constructed over 63 datasets with diverse visual and semantic coverage. Using FoMo-in-Flux, we explore the complex landscape of practical continual pretraining through multiple perspectives: (1) A data-centric investigation of data mixtures and stream orderings that emulate real-world deployment situations, (2) a method-centric investigation ranging from simple fine-tuning and traditional continual learning strategies to parameter-efficient updates and model merging, (3) meta learning rate schedules and mechanistic design choices, and (4) the influence of model and compute scaling. Together, our insights provide a practitioner's guide to continual multimodal pretraining for real-world deployment. Our benchmark and code is here: https://github.com/ExplainableML/fomo_in_flux.
comment: Technical Report. 52 pages
☆ Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos
This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos. This task not only requires to answer visual questions, but also to localize multiple relevant time intervals within the video as visual evidences. We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence, enabling to construct a large-scale dataset for instruction-tuning. To monitor the progress of this new task, we further curate a high-quality benchmark, MultiHop-EgoQA, with careful manual verification and refinement. Experimental results reveal that existing multi-modal systems exhibit inadequate multi-hop grounding and reasoning abilities, resulting in unsatisfactory performance. We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models (MLLMs) by incorporating a grounding module to retrieve temporal evidence from videos using flexible grounding tokens. Trained on our visual instruction data, GeLM demonstrates improved multi-hop grounding and reasoning capabilities, setting a new baseline for this challenging task. Furthermore, when trained on third-person view videos, the same architecture also achieves state-of-the-art performance on the single-hop VidQA benchmark, ActivityNet-RTL, demonstrating its effectiveness.
☆ Dense Center-Direction Regression for Object Counting and Localization with Point Supervision
Object counting and localization problems are commonly addressed with point supervised learning, which allows the use of less labor-intensive point annotations. However, learning based on point annotations poses challenges due to the high imbalance between the sets of annotated and unannotated pixels, which is often treated with Gaussian smoothing of point annotations and focal loss. However, these approaches still focus on the pixels in the immediate vicinity of the point annotations and exploit the rest of the data only indirectly. In this work, we propose a novel approach termed CeDiRNet for point-supervised learning that uses a dense regression of directions pointing towards the nearest object centers, i.e. center-directions. This provides greater support for each center point arising from many surrounding pixels pointing towards the object center. We propose a formulation of center-directions that allows the problem to be split into the domain-specific dense regression of center-directions and the final localization task based on a small, lightweight, and domain-agnostic localization network that can be trained with synthetic data completely independent of the target domain. We demonstrate the performance of the proposed method on six different datasets for object counting and localization, and show that it outperforms the existing state-of-the-art methods. The code is accessible on GitHub at https://github.com/vicoslab/CeDiRNet.git.
comment: Published in Pattern Recognition
☆ Center Direction Network for Grasping Point Localization on Cloths
Object grasping is a fundamental challenge in robotics and computer vision, critical for advancing robotic manipulation capabilities. Deformable objects, like fabrics and cloths, pose additional challenges due to their non-rigid nature. In this work, we introduce CeDiRNet-3DoF, a deep-learning model for grasp point detection, with a particular focus on cloth objects. CeDiRNet-3DoF employs center direction regression alongside a localization network, attaining first place in the perception task of ICRA 2023's Cloth Manipulation Challenge. Recognizing the lack of standardized benchmarks in the literature that hinder effective method comparison, we present the ViCoS Towel Dataset. This extensive benchmark dataset comprises 8,000 real and 12,000 synthetic images, serving as a robust resource for training and evaluating contemporary data-driven deep-learning approaches. Extensive evaluation revealed CeDiRNet-3DoF's robustness in real-world performance, outperforming state-of-the-art methods, including the latest transformer-based models. Our work bridges a crucial gap, offering a robust solution and benchmark for cloth grasping in computer vision and robotics. Code and dataset are available at: https://github.com/vicoslab/CeDiRNet-3DoF
comment: Accepted for publication in IEEE Robotics and Automation Letters
☆ Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition
Deep convolutional neural networks (CNNs) have been shown to be very successful in a wide range of image processing applications. However, due to their increasing number of model parameters and an increasing availability of large amounts of training data, parallelization strategies to efficiently train complex CNNs are necessary. In previous work by the authors, a novel model parallel CNN architecture was proposed which is loosely inspired by domain decomposition. In particular, the novel network architecture is based on a decomposition of the input data into smaller subimages. For each of these subimages, local CNNs with a proportionally smaller number of parameters are trained in parallel and the resulting local classifications are then aggregated in a second step by a dense feedforward neural network (DNN). In the present work, we compare the resulting CNN-DNN architecture to less costly alternatives to combine the local classifications into a final, global decision. Additionally, we investigate the performance of the CNN-DNN trained as one coherent model as well as using a transfer learning strategy, where the parameters of the pre-trained local CNNs are used as initial values for a subsequently trained global coherent CNN-DNN model.
☆ Attend-Fusion: Efficient Audio-Visual Fusion for Video Classification
Exploiting both audio and visual modalities for video classification is a challenging task, as the existing methods require large model architectures, leading to high computational complexity and resource requirements. Smaller architectures, on the other hand, struggle to achieve optimal performance. In this paper, we propose Attend-Fusion, an audio-visual (AV) fusion approach that introduces a compact model architecture specifically designed to capture intricate audio-visual relationships in video data. Through extensive experiments on the challenging YouTube-8M dataset, we demonstrate that Attend-Fusion achieves an F1 score of 75.64\% with only 72M parameters, which is comparable to the performance of larger baseline models such as Fully-Connected Late Fusion (75.96\% F1 score, 341M parameters). Attend-Fusion achieves similar performance to the larger baseline model while reducing the model size by nearly 80\%, highlighting its efficiency in terms of model complexity. Our work demonstrates that the Attend-Fusion model effectively combines audio and visual information for video classification, achieving competitive performance with significantly reduced model size. This approach opens new possibilities for deploying high-performance video understanding systems in resource-constrained environments across various applications.
☆ Social perception of faces in a vision-language model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
☆ Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion MICCAI 2024
Conventional 3D medical image segmentation methods typically require learning heavy 3D networks (e.g., 3D-UNet), as well as large amounts of in-domain data with accurate pixel/voxel-level labels to avoid overfitting. These solutions are thus extremely time- and labor-expensive, but also may easily fail to generalize to unseen objects during training. To alleviate this issue, we present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF). MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments, via learning dense query-support organ/lesion anatomy correlations across patient populations. Our proposed MSF module mines comprehensive and diversified morphology correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates, making it able to generate accurate cross-domain 3D segmentation masks given annotated slices or sequences. We demonstrate the effectiveness of our proposed framework by showing superior performance on conventional few-shot segmentation benchmarks compared to prior art, and remarkable cross-domain cross-volume segmentation performance on proprietary 3D segmentation datasets for challenging entities, i.e., tubular structures, with only limited 2D or 3D labels.
comment: Accepted to MICCAI 2024
☆ Evaluating saliency scores in point clouds of natural environments by learning surface anomalies
In recent years, three-dimensional point clouds are used increasingly to document natural environments. Each dataset contains a diverse set of objects, at varying shapes and sizes, distributed throughout the data and intricately intertwined with the topography. Therefore, regions of interest are difficult to find and consequent analyses become a challenge. Inspired from visual perception principles, we propose to differentiate objects of interest from the cluttered environment by evaluating how much they stand out from their surroundings, i.e., their geometric salience. Previous saliency detection approaches suggested mostly handcrafted attributes for the task. However, such methods fail when the data are too noisy or have high levels of texture. Here we propose a learning-based mechanism that accommodates noise and textured surfaces. We assume that within the natural environment any change from the prevalent surface would suggest a salient object. Thus, we first learn the underlying surface and then search for anomalies within it. Initially, a deep neural network is trained to reconstruct the surface. Regions where the reconstructed part deviates significantly from the original point cloud yield a substantial reconstruction error, signifying an anomaly, i.e., saliency. We demonstrate the effectiveness of the proposed approach by searching for salient features in various natural scenarios, which were acquired by different acquisition platforms. We show the strong correlation between the reconstruction error and salient objects.
☆ CHARTOM: A Visual Theory-of-Mind Benchmark for Multimodal Large Language Models
We introduce CHARTOM, a visual theory-of-mind benchmark for multimodal large language models. CHARTOM consists of specially designed data visualizing charts. Given a chart, a language model needs to not only correctly comprehend the chart (the FACT question) but also judge if the chart will be misleading to a human reader (the MIND question). Both questions have significant societal benefits. We detail the construction of the CHARTOM benchmark including its calibration on human performance.
☆ LoG-VMamba: Local-Global Vision Mamba for Medical Image Segmentation
Mamba, a State Space Model (SSM), has recently shown competitive performance to Convolutional Neural Networks (CNNs) and Transformers in Natural Language Processing and general sequence modeling. Various attempts have been made to adapt Mamba to Computer Vision tasks, including medical image segmentation (MIS). Vision Mamba (VM)-based networks are particularly attractive due to their ability to achieve global receptive fields, similar to Vision Transformers, while also maintaining linear complexity in the number of tokens. However, the existing VM models still struggle to maintain both spatially local and global dependencies of tokens in high dimensional arrays due to their sequential nature. Employing multiple and/or complicated scanning strategies is computationally costly, which hinders applications of SSMs to high-dimensional 2D and 3D images that are common in MIS problems. In this work, we propose Local-Global Vision Mamba, LoG-VMamba, that explicitly enforces spatially adjacent tokens to remain nearby on the channel axis, and retains the global context in a compressed form. Our method allows the SSMs to access the local and global contexts even before reaching the last token while requiring only a simple scanning strategy. Our segmentation models are computationally efficient and substantially outperform both CNN and Transformers-based baselines on a diverse set of 2D and 3D MIS tasks. The implementation of LoG-VMamba is available at \url{https://github.com/Oulu-IMEDS/LoG-VMamba}.
comment: 20 pages
☆ Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
The transition to renewable energy, particularly solar, is key to mitigating climate change. Google's Solar API aids this transition by estimating solar potential from aerial imagery, but its impact is constrained by geographical coverage. This paper proposes expanding the API's reach using satellite imagery, enabling global solar potential assessment. We tackle challenges involved in building a Digital Surface Model (DSM) and roof instance segmentation from lower resolution and single oblique views using deep learning models. Our models, trained on aligned satellite and aerial datasets, produce 25cm DSMs and roof segments. With ~1m DSM MAE on buildings, ~5deg roof pitch error and ~56% IOU on roof segmentation, they significantly enhance the Solar API's potential to promote solar adoption.
comment: 14 pages
☆ Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs
Recent advancements in artificial intelligence have significantly improved the automatic generation of radiology reports. However, existing evaluation methods fail to reveal the models' understanding of radiological images and their capacity to achieve human-level granularity in descriptions. To bridge this gap, we introduce a system, named ReXKG, which extracts structured information from processed reports to construct a comprehensive radiology knowledge graph. We then propose three metrics to evaluate the similarity of nodes (ReXKG-NSC), distribution of edges (ReXKG-AMS), and coverage of subgraphs (ReXKG-SCS) across various knowledge graphs. We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models. Our study provides a deeper understanding of the capabilities and limitations of current AI models in radiology report generation, offering valuable insights for improving model performance and clinical applicability.
comment: Code is available at: https://github.com/rajpurkarlab/ReXKG
☆ Learning Tree-Structured Composition of Data Augmentation
Data augmentation is widely used for training a neural network given little labeled data. A common practice of augmentation training is applying a composition of multiple transformations sequentially to the data. Existing augmentation methods such as RandAugment randomly sample from a list of pre-selected transformations, while methods such as AutoAugment apply advanced search to optimize over an augmentation set of size $k^d$, which is the number of transformation sequences of length $d$, given a list of $k$ transformations. In this paper, we design efficient algorithms whose running time complexity is much faster than the worst-case complexity of $O(k^d)$, provably. We propose a new algorithm to search for a binary tree-structured composition of $k$ transformations, where each tree node corresponds to one transformation. The binary tree generalizes sequential augmentations, such as the SimCLR augmentation scheme for contrastive learning. Using a top-down, recursive search procedure, our algorithm achieves a runtime complexity of $O(2^d k)$, which is much faster than $O(k^d)$ as $k$ increases above $2$. We apply our algorithm to tackle data distributions with heterogeneous subpopulations by searching for one tree in each subpopulation and then learning a weighted combination, resulting in a forest of trees. We validate our proposed algorithms on numerous graph and image datasets, including a multi-label graph classification dataset we collected. The dataset exhibits significant variations in the sizes of graphs and their average degrees, making it ideal for studying data augmentation. We show that our approach can reduce the computation cost by 43% over existing search methods while improving performance by 4.3%. The tree structures can be used to interpret the relative importance of each transformation, such as identifying the important transformations on small vs. large graphs.
comment: 25 pages
☆ SelEx: Self-Expertise in Fine-Grained Generalized Category Discovery ECCV 2024
In this paper, we address Generalized Category Discovery, aiming to simultaneously uncover novel categories and accurately classify known ones. Traditional methods, which lean heavily on self-supervision and contrastive learning, often fall short when distinguishing between fine-grained categories. To address this, we introduce a novel concept called `self-expertise', which enhances the model's ability to recognize subtle differences and uncover unknown categories. Our approach combines unsupervised and supervised self-expertise strategies to refine the model's discernment and generalization. Initially, hierarchical pseudo-labeling is used to provide `soft supervision', improving the effectiveness of self-expertise. Our supervised technique differs from traditional methods by utilizing more abstract positive and negative samples, aiding in the formation of clusters that can generalize to novel categories. Meanwhile, our unsupervised strategy encourages the model to sharpen its category distinctions by considering within-category examples as `hard' negatives. Supported by theoretical insights, our empirical results showcase that our method outperforms existing state-of-the-art techniques in Generalized Category Discovery across several fine-grained datasets. Our code is available at: https://github.com/SarahRastegar/SelEx.
comment: Accepted by ECCV 2024
☆ An Embedding is Worth a Thousand Noisy Labels
The performance of deep neural networks scales with dataset size and label quality, rendering the efficient mitigation of low-quality data annotations crucial for building robust and cost-effective systems. Existing strategies to address label noise exhibit severe limitations due to computational complexity and application dependency. In this work, we propose WANN, a Weighted Adaptive Nearest Neighbor approach that builds on self-supervised feature representations obtained from foundation models. To guide the weighted voting scheme, we introduce a reliability score, which measures the likelihood of a data label being correct. WANN outperforms reference methods, including a linear layer trained with robust loss functions, on diverse datasets of varying size and under various noise types and severities. WANN also exhibits superior generalization on imbalanced data compared to both Adaptive-NNs (ANN) and fixed k-NNs. Furthermore, the proposed weighting scheme enhances supervised dimensionality reduction under noisy labels. This yields a significant boost in classification performance with 10x and 100x smaller image embeddings, minimizing latency and storage requirements. Our approach, emphasizing efficiency and explainability, emerges as a simple, robust solution to overcome the inherent limitations of deep neural network training. The code is available at https://github.com/francescodisalvo05/wann-noisy-labels .
comment: Preprint submitted to the International Journal of Computer Vision (IJCV)
☆ Deep learning-based ecological analysis of camera trap images is impacted by training data quality and size
Large wildlife image collections from camera traps are crucial for biodiversity monitoring, offering insights into species richness, occupancy, and activity patterns. However, manual processing of these data is time-consuming, hindering analytical processes. To address this, deep neural networks have been widely adopted to automate image analysis. Despite their growing use, the impact of model training decisions on downstream ecological metrics remains unclear. Here, we analyse camera trap data from an African savannah and an Asian sub-tropical dry forest to compare key ecological metrics derived from expert-generated species identifications with those generated from deep neural networks. We assess the impact of model architecture, training data noise, and dataset size on ecological metrics, including species richness, occupancy, and activity patterns. Our results show that while model architecture has minimal impact, large amounts of noise and reduced dataset size significantly affect these metrics. Nonetheless, estimated ecological metrics are resilient to considerable noise, tolerating up to 10% error in species labels and a 50% reduction in training set size without changing significantly. We also highlight that conventional metrics like classification error may not always be representative of a model's ability to accurately measure ecological metrics. We conclude that ecological metrics derived from deep neural network predictions closely match those calculated from expert labels and remain robust to variations in the factors explored. However, training decisions for deep neural networks can impact downstream ecological analysis. Therefore, practitioners should prioritize creating large, clean training sets and evaluate deep neural network solutions based on their ability to measure the ecological metrics of interest.
☆ A Brief Analysis of the Iterative Next Boundary Detection Network for Tree Rings Delineation in Images of Pinus taeda
This work presents the INBD network proposed by Gillert et al. in CVPR-2023 and studies its application for delineating tree rings in RGB images of Pinus taeda cross sections captured by a smartphone (UruDendro dataset), which are images with different characteristics from the ones used to train the method. The INBD network operates in two stages: first, it segments the background, pith, and ring boundaries. In the second stage, the image is transformed into polar coordinates, and ring boundaries are iteratively segmented from the pith to the bark. Both stages are based on the U-Net architecture. The method achieves an F-Score of 77.5, a mAR of 0.540, and an ARAND of 0.205 on the evaluation set. The code for the experiments is available at https://github.com/hmarichal93/mlbrief_inbd.
comment: Submitted to IPOL ad an MLBriefs paper
☆ ConceptMix: A Compositional Image Generation Benchmark with Controllable Difficulty
Compositionality is a critical capability in Text-to-Image (T2I) models, as it reflects their ability to understand and combine multiple concepts from text descriptions. Existing evaluations of compositional capability rely heavily on human-designed text prompts or fixed templates, limiting their diversity and complexity, and yielding low discriminative power. We propose ConceptMix, a scalable, controllable, and customizable benchmark which automatically evaluates compositional generation ability of T2I models. This is done in two stages. First, ConceptMix generates the text prompts: concretely, using categories of visual concepts (e.g., objects, colors, shapes, spatial relationships), it randomly samples an object and k-tuples of visual concepts, then uses GPT4-o to generate text prompts for image generation based on these sampled concepts. Second, ConceptMix evaluates the images generated in response to these prompts: concretely, it checks how many of the k concepts actually appeared in the image by generating one question per visual concept and using a strong VLM to answer them. Through administering ConceptMix to a diverse set of T2I models (proprietary as well as open ones) using increasing values of k, we show that our ConceptMix has higher discrimination power than earlier benchmarks. Specifically, ConceptMix reveals that the performance of several models, especially open models, drops dramatically with increased k. Importantly, it also provides insight into the lack of prompt diversity in widely-used training datasets. Additionally, we conduct extensive human studies to validate the design of ConceptMix and compare our automatic grading with human judgement. We hope it will guide future T2I model development.
comment: 43 pages
☆ Equivariant Reinforcement Learning under Partial Observability
Incorporating inductive biases is a promising approach for tackling challenging robot learning domains with sample-efficient solutions. This paper identifies partially observable domains where symmetries can be a useful inductive bias for efficient learning. Specifically, by encoding the equivariance regarding specific group symmetries into the neural networks, our actor-critic reinforcement learning agents can reuse solutions in the past for related scenarios. Consequently, our equivariant agents outperform non-equivariant approaches significantly in terms of sample efficiency and final performance, demonstrated through experiments on a range of robotic tasks in simulation and real hardware.
comment: Conference on Robot Learning, 2023
☆ PHEVA: A Privacy-preserving Human-centric Video Anomaly Detection Dataset
PHEVA, a Privacy-preserving Human-centric Ethical Video Anomaly detection dataset. By removing pixel information and providing only de-identified human annotations, PHEVA safeguards personally identifiable information. The dataset includes seven indoor/outdoor scenes, featuring one novel, context-specific camera, and offers over 5x the pose-annotated frames compared to the largest previous dataset. This study benchmarks state-of-the-art methods on PHEVA using a comprehensive set of metrics, including the 10% Error Rate (10ER), a metric used for anomaly detection for the first time providing insights relevant to real-world deployment. As the first of its kind, PHEVA bridges the gap between conventional training and real-world deployment by introducing continual learning benchmarks, with models outperforming traditional methods in 82.14% of cases. The dataset is publicly available at https://github.com/TeCSAR-UNCC/PHEVA.git.
☆ Streamline tractography of the fetal brain in utero with machine learning
Diffusion-weighted magnetic resonance imaging (dMRI) is the only non-invasive tool for studying white matter tracts and structural connectivity of the brain. These assessments rely heavily on tractography techniques, which reconstruct virtual streamlines representing white matter fibers. Much effort has been devoted to improving tractography methodology for adult brains, while tractography of the fetal brain has been largely neglected. Fetal tractography faces unique difficulties due to low dMRI signal quality, immature and rapidly developing brain structures, and paucity of reference data. This work presents the first machine learning model for fetal tractography. The model input consists of five sources of information: (1) Fiber orientation, inferred from a diffusion tensor fit to the dMRI signal; (2) Directions of recent propagation steps; (3) Global spatial information, encoded as distances to keypoints in the brain cortex; (4) Tissue segmentation information; and (5) Prior information about the expected local fiber orientations supplied with an atlas. In order to mitigate the local tensor estimation error, a large spatial context around the current point in the diffusion tensor image is encoded using convolutional and attention neural network modules. Moreover, the diffusion tensor information at a hypothetical next point is included in the model input. Filtering rules based on anatomically constrained tractography are applied to prune implausible streamlines. We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks. Results show that our proposed method achieves superior performance across all evaluated tracts. The new method can significantly advance the capabilities of dMRI for studying normal and abnormal brain development in utero.
☆ May the Forgetting Be with You: Alternate Replay for Learning with Noisy Labels BMVC 2024
Forgetting presents a significant challenge during incremental training, making it particularly demanding for contemporary AI systems to assimilate new knowledge in streaming data environments. To address this issue, most approaches in Continual Learning (CL) rely on the replay of a restricted buffer of past data. However, the presence of noise in real-world scenarios, where human annotation is constrained by time limitations or where data is automatically gathered from the web, frequently renders these strategies vulnerable. In this study, we address the problem of CL under Noisy Labels (CLN) by introducing Alternate Experience Replay (AER), which takes advantage of forgetting to maintain a clear distinction between clean, complex, and noisy samples in the memory buffer. The idea is that complex or mislabeled examples, which hardly fit the previously learned data distribution, are most likely to be forgotten. To grasp the benefits of such a separation, we equip AER with Asymmetric Balanced Sampling (ABS): a new sample selection strategy that prioritizes purity on the current task while retaining relevant samples from the past. Through extensive computational comparisons, we demonstrate the effectiveness of our approach in terms of both accuracy and purity of the obtained buffer, resulting in a remarkable average gain of 4.71% points in accuracy with respect to existing loss-based purification strategies. Code is available at https://github.com/aimagelab/mammoth.
comment: 25 pages, 5 figures. Accepted at the The 35th British Machine Vision Conference 2024 (BMVC 2024), Glasgow, UK
☆ Uncertainties of Latent Representations in Computer Vision
Uncertainty quantification is a key pillar of trustworthy machine learning. It enables safe reactions under unsafe inputs, like predicting only when the machine learning model detects sufficient evidence, discarding anomalous data, or emitting warnings when an error is likely to be inbound. This is particularly crucial in safety-critical areas like medical image classification or self-driving cars. Despite the plethora of proposed uncertainty quantification methods achieving increasingly higher scores on performance benchmarks, uncertainty estimates are often shied away from in practice. Many machine learning projects start from pretrained latent representations that come without uncertainty estimates. Uncertainties would need to be trained by practitioners on their own, which is notoriously difficult and resource-intense. This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models. Besides proposing approaches rooted in probability and decision theory, such as Monte-Carlo InfoNCE (MCInfoNCE) and loss prediction, we delve into both theoretical and empirical questions. We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct. We also provide an uncertainty-aware representation learning (URL) benchmark to compare these unobservables against observable ground-truths. Finally, we compile our findings to pretrain lightweight representation uncertainties on large-scale computer vision models that transfer to unseen datasets in a zero-shot manner. Our findings do not only advance the current theoretical understanding of uncertainties over latent variables, but also facilitate the access to uncertainty quantification for future researchers inside and outside the field, enabling straightforward but trustworthy machine learning.
comment: Doctoral thesis
☆ Learning Local Pattern Modularization for Point Cloud Reconstruction from Unseen Classes ECCV 2024
It is challenging to reconstruct 3D point clouds in unseen classes from single 2D images. Instead of object-centered coordinate system, current methods generalized global priors learned in seen classes to reconstruct 3D shapes from unseen classes in viewer-centered coordinate system. However, the reconstruction accuracy and interpretability are still eager to get improved. To resolve this issue, we introduce to learn local pattern modularization for reconstructing 3D shapes in unseen classes, which achieves both good generalization ability and high reconstruction accuracy. Our insight is to learn a local prior which is class-agnostic and easy to generalize in object-centered coordinate system. Specifically, the local prior is learned via a process of learning and customizing local pattern modularization in seen classes. During this process, we first learn a set of patterns in local regions, which is the basis in the object-centered coordinate system to represent an arbitrary region on shapes across different classes. Then, we modularize each region on an initially reconstructed shape using the learned local patterns. Based on that, we customize the local pattern modularization using the input image by refining the reconstruction with more details. Our method enables to reconstruct high fidelity point clouds from unseen classes in object-centered coordinate system without requiring a large number of patterns or any additional information, such as segmentation supervision or camera poses. Our experimental results under widely used benchmarks show that our method achieves the state-of-the-art reconstruction accuracy for shapes from unseen classes. The code is available at https://github.com/chenchao15/Unseen.
comment: 14pages, 11figures, accepted by ECCV 2024
☆ Reliable Multi-modal Medical Image-to-image Translation Independent of Pixel-wise Aligned Data
The current mainstream multi-modal medical image-to-image translation methods face a contradiction. Supervised methods with outstanding performance rely on pixel-wise aligned training data to constrain the model optimization. However, obtaining pixel-wise aligned multi-modal medical image datasets is challenging. Unsupervised methods can be trained without paired data, but their reliability cannot be guaranteed. At present, there is no ideal multi-modal medical image-to-image translation method that can generate reliable translation results without the need for pixel-wise aligned data. This work aims to develop a novel medical image-to-image translation model that is independent of pixel-wise aligned data (MITIA), enabling reliable multi-modal medical image-to-image translation under the condition of misaligned training data. The proposed MITIA model utilizes a prior extraction network composed of a multi-modal medical image registration module and a multi-modal misalignment error detection module to extract pixel-level prior information from training data with misalignment errors to the largest extent. The extracted prior information is then used to construct a regularization term to constrain the optimization of the unsupervised cycle-consistent GAN model, restricting its solution space and thereby improving the performance and reliability of the generator. We trained the MITIA model using six datasets containing different misalignment errors and two well-aligned datasets. Subsequently, we compared the proposed method with six other state-of-the-art image-to-image translation methods. The results of both quantitative analysis and qualitative visual inspection indicate that MITIA achieves superior performance compared to the competing state-of-the-art methods, both on misaligned data and aligned data.
comment: This paper has been accepted as a research article by Medical Physics
☆ 1-Bit FQT: Pushing the Limit of Fully Quantized Training to 1-bit
Fully quantized training (FQT) accelerates the training of deep neural networks by quantizing the activations, weights, and gradients into lower precision. To explore the ultimate limit of FQT (the lowest achievable precision), we make a first attempt to 1-bit FQT. We provide a theoretical analysis of FQT based on Adam and SGD, revealing that the gradient variance influences the convergence of FQT. Building on these theoretical results, we introduce an Activation Gradient Pruning (AGP) strategy. The strategy leverages the heterogeneity of gradients by pruning less informative gradients and enhancing the numerical precision of remaining gradients to mitigate gradient variance. Additionally, we propose Sample Channel joint Quantization (SCQ), which utilizes different quantization strategies in the computation of weight gradients and activation gradients to ensure that the method is friendly to low-bitwidth hardware. Finally, we present a framework to deploy our algorithm. For fine-tuning VGGNet-16 and ResNet-18 on multiple datasets, our algorithm achieves an average accuracy improvement of approximately 6%, compared to per-sample quantization. Moreover, our training speedup can reach a maximum of 5.13x compared to full precision training.
☆ Beyond Few-shot Object Detection: A Detailed Survey
Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.
comment: 43 pages, 8 figures
☆ Cascaded Temporal Updating Network for Efficient Video Super-Resolution
Existing video super-resolution (VSR) methods generally adopt a recurrent propagation network to extract spatio-temporal information from the entire video sequences, exhibiting impressive performance. However, the key components in recurrent-based VSR networks significantly impact model efficiency, e.g., the alignment module occupies a substantial portion of model parameters, while the bidirectional propagation mechanism significantly amplifies the inference time. Consequently, developing a compact and efficient VSR method that can be deployed on resource-constrained devices, e.g., smartphones, remains challenging. To this end, we propose a cascaded temporal updating network (CTUN) for efficient VSR. We first develop an implicit cascaded alignment module to explore spatio-temporal correspondences from adjacent frames. Moreover, we propose a unidirectional propagation updating network to efficiently explore long-range temporal information, which is crucial for high-quality video reconstruction. Specifically, we develop a simple yet effective hidden updater that can leverage future information to update hidden features during forward propagation, significantly reducing inference time while maintaining performance. Finally, we formulate all of these components into an end-to-end trainable VSR network. Extensive experimental results show that our CTUN achieves a favorable trade-off between efficiency and performance compared to existing methods. Notably, compared with BasicVSR, our method obtains better results while employing only about 30% of the parameters and running time. The source code and pre-trained models will be available at https://github.com/House-Leo/CTUN.
comment: Project website: https://github.com/House-Leo/CTUN
☆ Gallery-Aware Uncertainty Estimation For Open-Set Face Recognition
Accurately estimating image quality and model robustness improvement are critical challenges in unconstrained face recognition, which can be addressed through uncertainty estimation via probabilistic face embeddings. Previous research mainly focused on uncertainty estimation in face verification, leaving the open-set face recognition task underexplored. In open-set face recognition, one seeks to classify an image, which could also be unknown. Here, the low variance of probabilistic embedding does not imply a low error probability: an image embedding could be close to several classes in a gallery, thus yielding high uncertainty. We propose a method aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of the face embeddings. To detect both types, we use a Bayesian probabilistic model of embedding distribution, which provides a principled uncertainty estimate. Challenging open-set face recognition datasets, such as IJB-C, serve as a testbed for our method. We also propose a new open-set recognition protocol for whale and dolphin identification. The proposed approach better identifies recognition errors than uncertainty estimation methods based solely on image quality.
☆ TC-PDM: Temporally Consistent Patch Diffusion Models for Infrared-to-Visible Video Translation
Infrared imaging offers resilience against changing lighting conditions by capturing object temperatures. Yet, in few scenarios, its lack of visual details compared to daytime visible images, poses a significant challenge for human and machine interpretation. This paper proposes a novel diffusion method, dubbed Temporally Consistent Patch Diffusion Models (TC-DPM), for infrared-to-visible video translation. Our method, extending the Patch Diffusion Model, consists of two key components. Firstly, we propose a semantic-guided denoising, leveraging the strong representations of foundational models. As such, our method faithfully preserves the semantic structure of generated visible images. Secondly, we propose a novel temporal blending module to guide the denoising trajectory, ensuring the temporal consistency between consecutive frames. Experiment shows that TC-PDM outperforms state-of-the-art methods by 35.3% in FVD for infrared-to-visible video translation and by 6.1% in AP50 for day-to-night object detection. Our code is publicly available at https://github.com/dzungdoan6/tc-pdm
comment: Technical report
☆ MagicMan: Generative Novel View Synthesis of Humans with 3D-Aware Diffusion and Iterative Refinement
Existing works in single-image human reconstruction suffer from weak generalizability due to insufficient training data or 3D inconsistencies for a lack of comprehensive multi-view knowledge. In this paper, we introduce MagicMan, a human-specific multi-view diffusion model designed to generate high-quality novel view images from a single reference image. As its core, we leverage a pre-trained 2D diffusion model as the generative prior for generalizability, with the parametric SMPL-X model as the 3D body prior to promote 3D awareness. To tackle the critical challenge of maintaining consistency while achieving dense multi-view generation for improved 3D human reconstruction, we first introduce hybrid multi-view attention to facilitate both efficient and thorough information interchange across different views. Additionally, we present a geometry-aware dual branch to perform concurrent generation in both RGB and normal domains, further enhancing consistency via geometry cues. Last but not least, to address ill-shaped issues arising from inaccurate SMPL-X estimation that conflicts with the reference image, we propose a novel iterative refinement strategy, which progressively optimizes SMPL-X accuracy while enhancing the quality and consistency of the generated multi-views. Extensive experimental results demonstrate that our method significantly outperforms existing approaches in both novel view synthesis and subsequent 3D human reconstruction tasks.
comment: Project Page: https://thuhcsi.github.io/MagicMan
☆ Driving in the Occupancy World: Vision-Centric 4D Occupancy Forecasting and Planning via World Models for Autonomous Driving
World models envision potential future states based on various ego actions. They embed extensive knowledge about the driving environment, facilitating safe and scalable autonomous driving. Most existing methods primarily focus on either data generation or the pretraining paradigms of world models. Unlike the aforementioned prior works, we propose Drive-OccWorld, which adapts a vision-centric 4D forecasting world model to end-to-end planning for autonomous driving. Specifically, we first introduce a semantic and motion-conditional normalization in the memory module, which accumulates semantic and dynamic information from historical BEV embeddings. These BEV features are then conveyed to the world decoder for future occupancy and flow forecasting, considering both geometry and spatiotemporal modeling. Additionally, we propose injecting flexible action conditions, such as velocity, steering angle, trajectory, and commands, into the world model to enable controllable generation and facilitate a broader range of downstream applications. Furthermore, we explore integrating the generative capabilities of the 4D world model with end-to-end planning, enabling continuous forecasting of future states and the selection of optimal trajectories using an occupancy-based cost function. Extensive experiments on the nuScenes dataset demonstrate that our method can generate plausible and controllable 4D occupancy, opening new avenues for driving world generation and end-to-end planning.
comment: 18 pages, 10 figures
☆ Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules
Few-shot classification involves identifying new categories using a limited number of labeled samples. Current few-shot classification methods based on local descriptors primarily leverage underlying consistent features across visible and invisible classes, facing challenges including redundant neighboring information, noisy representations, and limited interpretability. This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR). It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise. FAFD-LDWR performs excellently on three benchmark datasets , outperforming state-of-the-art methods in both 1-shot and 5-shot settings. The designed visualization experiments also demonstrate FAFD-LDWR's improvement in prediction interpretability.
☆ EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection
The detection of small objects, particularly traffic signs, is a critical subtask within object detection and autonomous driving. Despite the notable achievements in previous research, two primary challenges persist. Firstly, the main issue is the singleness of feature extraction. Secondly, the detection process fails to effectively integrate with objects of varying sizes or scales. These issues are also prevalent in generic object detection. Motivated by these challenges, in this paper, we propose a novel object detection network named Efficient Multi-scale and Diverse Feature Network (EMDFNet) for traffic sign detection that integrates an Augmented Shortcut Module and an Efficient Hybrid Encoder to address the aforementioned issues simultaneously. Specifically, the Augmented Shortcut Module utilizes multiple branches to integrate various spatial semantic information and channel semantic information, thereby enhancing feature diversity. The Efficient Hybrid Encoder utilizes global feature fusion and local feature interaction based on various features to generate distinctive classification features by integrating feature information in an adaptable manner. Extensive experiments on the Tsinghua-Tencent 100K (TT100K) benchmark and the German Traffic Sign Detection Benchmark (GTSDB) demonstrate that our EMDFNet outperforms other state-of-the-art detectors in performance while retaining the real-time processing capabilities of single-stage models. This substantiates the effectiveness of EMDFNet in detecting small traffic signs.
comment: 15 pages,5 figures,accepted to ICANN
☆ Ensemble Predicate Decoding for Unbiased Scene Graph Generation
Scene Graph Generation (SGG) aims to generate a comprehensive graphical representation that accurately captures the semantic information of a given scenario. However, the SGG model's performance in predicting more fine-grained predicates is hindered by a significant predicate bias. According to existing works, the long-tail distribution of predicates in training data results in the biased scene graph. However, the semantic overlap between predicate categories makes predicate prediction difficult, and there is a significant difference in the sample size of semantically similar predicates, making the predicate prediction more difficult. Therefore, higher requirements are placed on the discriminative ability of the model. In order to address this problem, this paper proposes Ensemble Predicate Decoding (EPD), which employs multiple decoders to attain unbiased scene graph generation. Two auxiliary decoders trained on lower-frequency predicates are used to improve the discriminative ability of the model. Extensive experiments are conducted on the VG, and the experiment results show that EPD enhances the model's representation capability for predicates. In addition, we find that our approach ensures a relatively superior predictive capability for more frequent predicates compared to previous unbiased SGG methods.
☆ Affine steerers for structured keypoint description ECCV 2024
We propose a way to train deep learning based keypoint descriptors that makes them approximately equivariant for locally affine transformations of the image plane. The main idea is to use the representation theory of GL(2) to generalize the recently introduced concept of steerers from rotations to affine transformations. Affine steerers give high control over how keypoint descriptions transform under image transformations. We demonstrate the potential of using this control for image matching. Finally, we propose a way to finetune keypoint descriptors with a set of steerers on upright images and obtain state-of-the-art results on several standard benchmarks. Code will be published at github.com/georg-bn/affine-steerers.
comment: To be presented at ECCV 2024
☆ I2EBench: A Comprehensive Benchmark for Instruction-based Image Editing
Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new IIE models. The code, dataset and generated images from all IIE models are provided in github: https://github.com/cocoshe/I2EBench.
comment: Tech report, 39 pages, 41 figures
☆ NimbleD: Enhancing Self-supervised Monocular Depth Estimation with Pseudo-labels and Large-scale Video Pre-training
We introduce NimbleD, an efficient self-supervised monocular depth estimation learning framework that incorporates supervision from pseudo-labels generated by a large vision model. This framework does not require camera intrinsics, enabling large-scale pre-training on publicly available videos. Our straightforward yet effective learning strategy significantly enhances the performance of fast and lightweight models without introducing any overhead, allowing them to achieve performance comparable to state-of-the-art self-supervised monocular depth estimation models. This advancement is particularly beneficial for virtual and augmented reality applications requiring low latency inference. The source code, model weights, and acknowledgments are available at https://github.com/xapaxca/nimbled .
☆ BackFlip: The Impact of Local and Global Data Augmentations on Artistic Image Aesthetic Assessment ECCV 2024
Assessing the aesthetic quality of artistic images presents unique challenges due to the subjective nature of aesthetics and the complex visual characteristics inherent to artworks. Basic data augmentation techniques commonly applied to natural images in computer vision may not be suitable for art images in aesthetic evaluation tasks, as they can change the composition of the art images. In this paper, we explore the impact of local and global data augmentation techniques on artistic image aesthetic assessment (IAA). We introduce BackFlip, a local data augmentation technique designed specifically for artistic IAA. We evaluate the performance of BackFlip across three artistic image datasets and four neural network architectures, comparing it with the commonly used data augmentation techniques. Then, we analyze the effects of components within the BackFlip pipeline through an ablation study. Our findings demonstrate that local augmentations, such as BackFlip, tend to outperform global augmentations on artistic IAA in most cases, probably because they do not perturb the composition of the art images. These results emphasize the importance of considering both local and global augmentations in future computational aesthetics research.
comment: Published at the VISART VII workshop at ECCV 2024. Ombretta Strafforello, Gonzalo Muradas Odriozola, Fatemeh Behrad, Li-Wei Chen, Anne-Sofie Maerten and Derya Soydaner contributed equally to this work
☆ Explaining Vision-Language Similarities in Dual Encoders with Feature-Pair Attributions
Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and learn similarities between them. However, it is not understood how such models compare two inputs. Here, we address this research gap with two contributions. First, we derive a method to attribute predictions of any differentiable dual encoder onto feature-pair interactions between its inputs. Second, we apply our method to CLIP-type models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. However, this visual-linguistic grounding ability heavily varies between object classes, depends on the training data distribution, and largely improves after in-domain training. Using our method we can identify knowledge gaps about specific object classes in individual models and can monitor their improvement upon fine-tuning.
☆ Application of Disentanglement to Map Registration Problem
Geospatial data come from various sources, such as satellites, aircraft, and LiDAR. The variability of the source is not limited to the types of data acquisition techniques, as we have maps from different time periods. To incorporate these data for a coherent analysis, it is essential to first align different "styles" of geospatial data to its matching images that point to the same location on the surface of the Earth. In this paper, we approach the image registration as a two-step process of (1) extracting geospatial contents invariant to visual (and any other non-content-related) information, and (2) matching the data based on such (purely) geospatial contents. We hypothesize that a combination of $\beta$-VAE-like architecture [2] and adversarial training will achieve both the disentanglement of the geographic information and artistic styles and generation of new map tiles by composing the encoded geographic information with any artistic style.
☆ 2D-Malafide: Adversarial Attacks Against Face Deepfake Detection Systems
We introduce 2D-Malafide, a novel and lightweight adversarial attack designed to deceive face deepfake detection systems. Building upon the concept of 1D convolutional perturbations explored in the speech domain, our method leverages 2D convolutional filters to craft perturbations which significantly degrade the performance of state-of-the-art face deepfake detectors. Unlike traditional additive noise approaches, 2D-Malafide optimises a small number of filter coefficients to generate robust adversarial perturbations which are transferable across different face images. Experiments, conducted using the FaceForensics++ dataset, demonstrate that 2D-Malafide substantially degrades detection performance in both white-box and black-box settings, with larger filter sizes having the greatest impact. Additionally, we report an explainability analysis using GradCAM which illustrates how 2D-Malafide misleads detection systems by altering the image areas used most for classification. Our findings highlight the vulnerability of current deepfake detection systems to convolutional adversarial attacks as well as the need for future work to enhance detection robustness through improved image fidelity constraints.
comment: Accepted at BIOSIG 2024
☆ Foodfusion: A Novel Approach for Food Image Composition via Diffusion Models
Food image composition requires the use of existing dish images and background images to synthesize a natural new image, while diffusion models have made significant advancements in image generation, enabling the construction of end-to-end architectures that yield promising results. However, existing diffusion models face challenges in processing and fusing information from multiple images and lack access to high-quality publicly available datasets, which prevents the application of diffusion models in food image composition. In this paper, we introduce a large-scale, high-quality food image composite dataset, FC22k, which comprises 22,000 foreground, background, and ground truth ternary image pairs. Additionally, we propose a novel food image composition method, Foodfusion, which leverages the capabilities of the pre-trained diffusion models and incorporates a Fusion Module for processing and integrating foreground and background information. This fused information aligns the foreground features with the background structure by merging the global structural information at the cross-attention layer of the denoising UNet. To further enhance the content and structure of the background, we also integrate a Content-Structure Control Module. Extensive experiments demonstrate the effectiveness and scalability of our proposed method.
comment: 14 pages
☆ ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation
Electron microscopy (EM) imaging offers unparalleled resolution for analyzing neural tissues, crucial for uncovering the intricacies of synaptic connections and neural processes fundamental to understanding behavioral mechanisms. Recently, the foundation models have demonstrated impressive performance across numerous natural and medical image segmentation tasks. However, applying these foundation models to EM segmentation faces significant challenges due to domain disparities. This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation, which employs adapters for long-range dependency modeling and an encoder for local shape description within the original foundation model. This approach effectively addresses the unique volumetric and morphological complexities of EM data. Tested over a wide range of EM images, covering five segmentation tasks and 10 datasets, ShapeMamba-EM outperforms existing methods, establishing a new standard in EM image segmentation and enhancing the understanding of neural tissue architecture.
☆ Bengali Sign Language Recognition through Hand Pose Estimation using Multi-Branch Spatial-Temporal Attention Model
Hand gesture-based sign language recognition (SLR) is one of the most advanced applications of machine learning, and computer vision uses hand gestures. Although, in the past few years, many researchers have widely explored and studied how to address BSL problems, specific unaddressed issues remain, such as skeleton and transformer-based BSL recognition. In addition, the lack of evaluation of the BSL model in various concealed environmental conditions can prove the generalized property of the existing model by facing daily life signs. As a consequence, existing BSL recognition systems provide a limited perspective of their generalisation ability as they are tested on datasets containing few BSL alphabets that have a wide disparity in gestures and are easy to differentiate. To overcome these limitations, we propose a spatial-temporal attention-based BSL recognition model considering hand joint skeletons extracted from the sequence of images. The main aim of utilising hand skeleton-based BSL data is to ensure the privacy and low-resolution sequence of images, which need minimum computational cost and low hardware configurations. Our model captures discriminative structural displacements and short-range dependency based on unified joint features projected onto high-dimensional feature space. Specifically, the use of Separable TCN combined with a powerful multi-head spatial-temporal attention architecture generated high-performance accuracy. The extensive experiments with a proposed dataset and two benchmark BSL datasets with a wide range of evaluations, such as intra- and inter-dataset evaluation settings, demonstrated that our proposed models achieve competitive performance with extremely low computational complexity and run faster than existing models.
☆ LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection
In existing medical Region of Interest (ROI) detection, there lacks an algorithm that can simultaneously satisfy both real-time performance and accuracy, not meeting the growing demand for automatic detection in medicine. Although the basic YOLO framework ensures real-time detection due to its fast speed, it still faces challenges in maintaining precision concurrently. To alleviate the above problems, we propose a novel model named Lightweight Shunt Matching-YOLO (LSM-YOLO), with Lightweight Adaptive Extraction (LAE) and Multipath Shunt Feature Matching (MSFM). Firstly, by using LAE to refine feature extraction, the model can obtain more contextual information and high-resolution details from multiscale feature maps, thereby extracting detailed features of ROI in medical images while reducing the influence of noise. Secondly, MSFM is utilized to further refine the fusion of high-level semantic features and low-level visual features, enabling better fusion between ROI features and neighboring features, thereby improving the detection rate for better diagnostic assistance. Experimental results demonstrate that LSM-YOLO achieves 48.6% AP on a private dataset of pancreatic tumors, 65.1% AP on the BCCD blood cell detection public dataset, and 73.0% AP on the Br35h brain tumor detection public dataset. Our model achieves state-of-the-art performance with minimal parameter cost on the above three datasets. The source codes are at: https://github.com/VincentYuuuuuu/LSM-YOLO.
☆ HABD: a houma alliance book ancient handwritten character recognition database
The Houma Alliance Book, one of history's earliest calligraphic examples, was unearthed in the 1970s. These artifacts were meticulously organized, reproduced, and copied by the Shanxi Provincial Institute of Cultural Relics. However, because of their ancient origins and severe ink erosion, identifying characters in the Houma Alliance Book is challenging, necessitating the use of digital technology. In this paper, we propose a new ancient handwritten character recognition database for the Houma alliance book, along with a novel benchmark based on deep learning architectures. More specifically, a collection of 26,732 characters samples from the Houma Alliance Book were gathered, encompassing 327 different types of ancient characters through iterative annotation. Furthermore, benchmark algorithms were proposed by combining four deep neural network classifiers with two data augmentation methods. This research provides valuable resources and technical support for further studies on the Houma Alliance Book and other ancient characters. This contributes to our understanding of ancient culture and history, as well as the preservation and inheritance of humanity's cultural heritage.
comment: 8 pages, 5 figures
☆ Evaluating the Visual Similarity of Southwest China's Ethnic Minority Brocade Based on Deep Learning
This paper employs deep learning methods to investigate the visual similarity of ethnic minority patterns in Southwest China. A customized SResNet-18 network was developed, achieving an accuracy of 98.7% on the test set, outperforming ResNet-18, VGGNet-16, and AlexNet. The extracted feature vectors from SResNet-18 were evaluated using three metrics: cosine similarity, Euclidean distance, and Manhattan distance. The analysis results were visually represented on an ethnic thematic map, highlighting the connections between ethnic patterns and their regional distributions.
comment: 8 pages,2tables,5 figures
☆ Let Video Teaches You More: Video-to-Image Knowledge Distillation using DEtection TRansformer for Medical Video Lesion Detection
AI-assisted lesion detection models play a crucial role in the early screening of cancer. However, previous image-based models ignore the inter-frame contextual information present in videos. On the other hand, video-based models capture the inter-frame context but are computationally expensive. To mitigate this contradiction, we delve into Video-to-Image knowledge distillation leveraging DEtection TRansformer (V2I-DETR) for the task of medical video lesion detection. V2I-DETR adopts a teacher-student network paradigm. The teacher network aims at extracting temporal contexts from multiple frames and transferring them to the student network, and the student network is an image-based model dedicated to fast prediction in inference. By distilling multi-frame contexts into a single frame, the proposed V2I-DETR combines the advantages of utilizing temporal contexts from video-based models and the inference speed of image-based models. Through extensive experiments, V2I-DETR outperforms previous state-of-the-art methods by a large margin while achieving the real-time inference speed (30 FPS) as the image-based model.
comment: BIBM2024
☆ Alleviating Class Imbalance in Semi-supervised Multi-organ Segmentation via Balanced Subclass Regularization
Semi-supervised learning (SSL) has shown notable potential in relieving the heavy demand of dense prediction tasks on large-scale well-annotated datasets, especially for the challenging multi-organ segmentation (MoS). However, the prevailing class-imbalance problem in MoS, caused by the substantial variations in organ size, exacerbates the learning difficulty of the SSL network. To alleviate this issue, we present a two-phase semi-supervised network (BSR-Net) with balanced subclass regularization for MoS. Concretely, in Phase I, we introduce a class-balanced subclass generation strategy based on balanced clustering to effectively generate multiple balanced subclasses from original biased ones according to their pixel proportions. Then, in Phase II, we design an auxiliary subclass segmentation (SCS) task within the multi-task framework of the main MoS task. The SCS task contributes a balanced subclass regularization to the main MoS task and transfers unbiased knowledge to the MoS network, thus alleviating the influence of the class-imbalance problem. Extensive experiments conducted on two publicly available datasets, i.e., the MICCAI FLARE 2022 dataset and the WORD dataset, verify the superior performance of our method compared with other methods.
☆ Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
This paper explores the paradigm of Collaborative Perception (CP), where multiple robots and sensors in the environment share and integrate sensor data to construct a comprehensive representation of the surroundings. By aggregating data from various sensors and utilizing advanced algorithms, the collaborative perception framework improves task efficiency, coverage, and safety. Two case studies are presented to showcase the benefits of collaborative perception in multi-robot systems. The first case study illustrates the benefits and advantages of using CP for the task of household cleaning with a team of cleaning robots. The second case study performs a comparative analysis of the performance of CP versus Standalone Perception (SP) for Autonomous Mobile Robots operating in a warehouse environment. The case studies validate the effectiveness of CP in enhancing multi-robot coordination, task completion, and overall system performance and its potential to impact operations in other applications as well. Future investigations will focus on optimizing the framework and validating its performance through empirical testing.
FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
This paper proposes FAST-LIVO2: a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks and provide great potential in real-time, onboard robotic applications. FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through an ESIKF. To address the dimension mismatch between the heterogeneous LiDAR and image measurements, we use a sequential update strategy in the Kalman filter. To enhance the efficiency, we use direct methods for both the visual and LiDAR fusion, where the LiDAR module registers raw points without extracting edge or plane features and the visual module minimizes direct photometric errors without extracting ORB or FAST corner features. The fusion of both visual and LiDAR measurements is based on a single unified voxel map where the LiDAR module constructs the geometric structure for registering new LiDAR scans and the visual module attaches image patches to the LiDAR points. To enhance the accuracy of image alignment, we use plane priors from the LiDAR points in the voxel map (and even refine the plane prior) and update the reference patch dynamically after new images are aligned. Furthermore, to enhance the robustness of image alignment, FAST-LIVO2 employs an on-demanding raycast operation and estimates the image exposure time in real time. Lastly, we detail three applications of FAST-LIVO2: UAV onboard navigation demonstrating the system's computation efficiency for real-time onboard navigation, airborne mapping showcasing the system's mapping accuracy, and 3D model rendering (mesh-based and NeRF-based) underscoring the suitability of our reconstructed dense map for subsequent rendering tasks. We open source our code, dataset and application on GitHub to benefit the robotics community.
comment: 30 pages, 31 figures, due to the limitation that 'The abstract field cannot exceed 1,920 characters', the abstract presented here is shorter than the one in the PDF file
☆ More Pictures Say More: Visual Intersection Network for Open Set Object Detection
Open Set Object Detection has seen rapid development recently, but it continues to pose significant challenges. Language-based methods, grappling with the substantial modal disparity between textual and visual modalities, require extensive computational resources to bridge this gap. Although integrating visual prompts into these frameworks shows promise for enhancing performance, it always comes with constraints related to textual semantics. In contrast, viusal-only methods suffer from the low-quality fusion of multiple visual prompts. In response, we introduce a strong DETR-based model, Visual Intersection Network for Open Set Object Detection (VINO), which constructs a multi-image visual bank to preserve the semantic intersections of each category across all time steps. Our innovative multi-image visual updating mechanism learns to identify the semantic intersections from various visual prompts, enabling the flexible incorporation of new information and continuous optimization of feature representations. Our approach guarantees a more precise alignment between target category semantics and region semantics, while significantly reducing pre-training time and resource demands compared to language-based methods. Furthermore, the integration of a segmentation head illustrates the broad applicability of visual intersection in various visual tasks. VINO, which requires only 7 RTX4090 GPU days to complete one epoch on the Objects365v1 dataset, achieves competitive performance on par with vision-language models on benchmarks such as LVIS and ODinW35.
comment: 7pages
☆ SurGen: Text-Guided Diffusion Model for Surgical Video Generation
Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
☆ Video-CCAM: Enhancing Video-Language Understanding with Causal Cross-Attention Masks for Short and Long Videos
Multi-modal large language models (MLLMs) have demonstrated considerable potential across various downstream tasks that require cross-domain knowledge. MLLMs capable of processing videos, known as Video-MLLMs, have attracted broad interest in video-language understanding. However, videos, especially long videos, contain more visual tokens than images, making them difficult for LLMs to process. Existing works either downsample visual features or extend the LLM context size, risking the loss of high-resolution information or slowing down inference speed. To address these limitations, we apply cross-attention layers in the intermediate projector between the visual encoder and the large language model (LLM). As the naive cross-attention mechanism is insensitive to temporal order, we further introduce causal cross-attention masks (CCAMs) within the cross-attention layers. This Video-MLLM, named Video-CCAM, is trained in a straightforward two-stage fashion: feature alignment and visual instruction tuning. We develop several Video-CCAM models based on LLMs of different sizes (4B, 9B, and 14B). Video-CCAM proves to be a robust Video-MLLM and shows outstanding performance from short videos to long ones. Among standard video benchmarks like MVBench and VideoChatGPT-QA, Video-CCAM shows outstanding performances (1st/2nd/3rd in MVBench and TGIF-QA, 2nd/3rd/4th in MSVD-QA, MSRVTT-QA, and ActivityNet-QA). In benchmarks encompassing long videos, Video-CCAM models can be directly adapted to long video understanding and still achieve exceptional scores despite being trained solely with images and 16-frame videos. Using 96 frames (6$\times$ the training number of frames), Video-CCAM models rank 1st/2nd/3rd in VideoVista and 1st/2nd/4th in MLVU among all open-source Video-MLLMs, respectively. The code is publicly available in \url{https://github.com/QQ-MM/Video-CCAM}.
comment: 10 pages, 5 figures
☆ Pixel-Aligned Multi-View Generation with Depth Guided Decoder
The task of image-to-multi-view generation refers to generating novel views of an instance from a single image. Recent methods achieve this by extending text-to-image latent diffusion models to multi-view version, which contains an VAE image encoder and a U-Net diffusion model. Specifically, these generation methods usually fix VAE and finetune the U-Net only. However, the significant downscaling of the latent vectors computed from the input images and independent decoding leads to notable pixel-level misalignment across multiple views. To address this, we propose a novel method for pixel-level image-to-multi-view generation. Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model. Specifically, we introduce a depth-truncated epipolar attention, enabling the model to focus on spatially adjacent regions while remaining memory efficient. Applying depth-truncated attn is challenging during inference as the ground-truth depth is usually difficult to obtain and pre-trained depth estimation models is hard to provide accurate depth. Thus, to enhance the generalization to inaccurate depth when ground truth depth is missing, we perturb depth inputs during training. During inference, we employ a rapid multi-view to 3D reconstruction approach, NeuS, to obtain coarse depth for the depth-truncated epipolar attention. Our model enables better pixel alignment across multi-view images. Moreover, we demonstrate the efficacy of our approach in improving downstream multi-view to 3D reconstruction tasks.
A Multiscale Gradient Fusion Method for Edge Detection in Color Images Utilizing the CBM3D Filter
In this paper, a color edge detection strategy based on collaborative filtering combined with multiscale gradient fusion is proposed. The block-matching and 3D (BM3D) filter are used to enhance the sparse representation in the transform domain and achieve the effect of denoising, whereas the multiscale gradient fusion makes up for the defect of loss of details in single-scale edge detection and improves the edge detection resolution and quality. First, the RGB images in the dataset are converted to XYZ color space images through mathematical operations. Second, the colored block-matching and 3D (CBM3D) filter are used on the sparse images and to remove noise interference. Then, the vector gradients of the color image and the anisotropic Gaussian directional derivative of the two scale parameters are calculated and averaged pixel-by-pixel to obtain a new edge strength map. Finally, the edge features are enhanced by image normalization and non-maximum suppression technology, and on that basis, the edge contour is obtained by double threshold selection and a new morphological refinement method. Through an experimental analysis of the edge detection dataset, the method proposed has good noise robustness and high edge quality, which is better than the Color Sobel, Color Canny, SE and Color AGDD as shown by the PR curve, AUC, PSNR, MSE, and FOM indicators.
comment: 1 figure, 2 tables
☆ LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models
The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of $5\%$ in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
☆ Avatar Concept Slider: Manipulate Concepts In Your Human Avatar With Fine-grained Control
Language based editing of 3D human avatars to precisely match user requirements is challenging due to the inherent ambiguity and limited expressiveness of natural language. To overcome this, we propose the Avatar Concept Slider (ACS), a 3D avatar editing method that allows precise manipulation of semantic concepts in human avatars towards a specified intermediate point between two extremes of concepts, akin to moving a knob along a slider track. To achieve this, our ACS has three designs. 1) A Concept Sliding Loss based on Linear Discriminant Analysis to pinpoint the concept-specific axis for precise editing. 2) An Attribute Preserving Loss based on Principal Component Analysis for improved preservation of avatar identity during editing. 3) A 3D Gaussian Splatting primitive selection mechanism based on concept-sensitivity, which updates only the primitives that are the most sensitive to our target concept, to improve efficiency. Results demonstrate that our ACS enables fine-grained 3D avatar editing with efficient feedback, without harming the avatar quality or compromising the avatar's identifying attributes.
☆ Automatic Medical Report Generation: Methods and Applications
The increasing demand for medical imaging has surpassed the capacity of available radiologists, leading to diagnostic delays and potential misdiagnoses. Artificial intelligence (AI) techniques, particularly in automatic medical report generation (AMRG), offer a promising solution to this dilemma. This review comprehensively examines AMRG methods from 2021 to 2024. It (i) presents solutions to primary challenges in this field, (ii) explores AMRG applications across various imaging modalities, (iii) introduces publicly available datasets, (iv) outlines evaluation metrics, (v) identifies techniques that significantly enhance model performance, and (vi) discusses unresolved issues and potential future research directions. This paper aims to provide a comprehensive understanding of the existing literature and inspire valuable future research.
comment: 42 pages and 9 figures
☆ Dual-Path Adversarial Lifting for Domain Shift Correction in Online Test-time Adaptation
Transformer-based methods have achieved remarkable success in various machine learning tasks. How to design efficient test-time adaptation methods for transformer models becomes an important research task. In this work, motivated by the dual-subband wavelet lifting scheme developed in multi-scale signal processing which is able to efficiently separate the input signals into principal components and noise components, we introduce a dual-path token lifting for domain shift correction in test time adaptation. Specifically, we introduce an extra token, referred to as \textit{domain shift token}, at each layer of the transformer network. We then perform dual-path lifting with interleaved token prediction and update between the path of domain shift tokens and the path of class tokens at all network layers. The prediction and update networks are learned in an adversarial manner. Specifically, the task of the prediction network is to learn the residual noise of domain shift which should be largely invariant across all classes and all samples in the target domain. In other words, the predicted domain shift noise should be indistinguishable between all sample classes. On the other hand, the task of the update network is to update the class tokens by removing the domain shift from the input image samples so that input samples become more discriminative between different classes in the feature space. To effectively learn the prediction and update networks with two adversarial tasks, both theoretically and practically, we demonstrate that it is necessary to use smooth optimization for the update network but non-smooth optimization for the prediction network. Experimental results on the benchmark datasets demonstrate that our proposed method significantly improves the online fully test-time domain adaptation performance. Code is available at \url{https://github.com/yushuntang/DPAL}.
☆ ARANet: Attention-based Residual Adversarial Network with Deep Supervision for Radiotherapy Dose Prediction of Cervical Cancer RAM
Radiation therapy is the mainstay treatment for cervical cancer, and its ultimate goal is to ensure the planning target volume (PTV) reaches the prescribed dose while reducing dose deposition of organs-at-risk (OARs) as much as possible. To achieve these clinical requirements, the medical physicist needs to manually tweak the radiotherapy plan repeatedly in a trial-anderror manner until finding the optimal one in the clinic. However, such trial-and-error processes are quite time-consuming, and the quality of plans highly depends on the experience of the medical physicist. In this paper, we propose an end-to-end Attentionbased Residual Adversarial Network with deep supervision, namely ARANet, to automatically predict the 3D dose distribution of cervical cancer. Specifically, given the computer tomography (CT) images and their corresponding segmentation masks of PTV and OARs, ARANet employs a prediction network to generate the dose maps. We also utilize a multi-scale residual attention module and deep supervision mechanism to enforce the prediction network to extract more valuable dose features while suppressing irrelevant information. Our proposed method is validated on an in-house dataset including 54 cervical cancer patients, and experimental results have demonstrated its obvious superiority compared to other state-of-the-art methods.
comment: Accepted by 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)
FusionSAM: Latent Space driven Segment Anything Model for Multimodal Fusion and Segmentation
Multimodal image fusion and segmentation enhance scene understanding in autonomous driving by integrating data from various sensors. However, current models struggle to efficiently segment densely packed elements in such scenes, due to the absence of comprehensive fusion features that can guide mid-process fine-tuning and focus attention on relevant areas. The Segment Anything Model (SAM) has emerged as a transformative segmentation method. It provides more effective prompts through its flexible prompt encoder, compared to transformers lacking fine-tuned control. Nevertheless, SAM has not been extensively studied in the domain of multimodal fusion for natural images. In this paper, we introduce SAM into multimodal image segmentation for the first time, proposing a novel framework that combines Latent Space Token Generation (LSTG) and Fusion Mask Prompting (FMP) modules to enhance SAM's multimodal fusion and segmentation capabilities. Specifically, we first obtain latent space features of the two modalities through vector quantization and embed them into a cross-attention-based inter-domain fusion module to establish long-range dependencies between modalities. Then, we use these comprehensive fusion features as prompts to guide precise pixel-level segmentation. Extensive experiments on several public datasets demonstrate that the proposed method significantly outperforms SAM and SAM2 in multimodal autonomous driving scenarios, achieving at least 3.9$\%$ higher segmentation mIoU than the state-of-the-art approaches.
☆ Nemesis: Normalizing the Soft-prompt Vectors of Vision-Language Models ICLR 2024
With the prevalence of large-scale pretrained vision-language models (VLMs), such as CLIP, soft-prompt tuning has become a popular method for adapting these models to various downstream tasks. However, few works delve into the inherent properties of learnable soft-prompt vectors, specifically the impact of their norms to the performance of VLMs. This motivates us to pose an unexplored research question: ``Do we need to normalize the soft prompts in VLMs?'' To fill this research gap, we first uncover a phenomenon, called the \textbf{Low-Norm Effect} by performing extensive corruption experiments, suggesting that reducing the norms of certain learned prompts occasionally enhances the performance of VLMs, while increasing them often degrades it. To harness this effect, we propose a novel method named \textbf{N}ormalizing th\textbf{e} soft-pro\textbf{m}pt v\textbf{e}ctors of vi\textbf{si}on-language model\textbf{s} (\textbf{Nemesis}) to normalize soft-prompt vectors in VLMs. To the best of our knowledge, our work is the first to systematically investigate the role of norms of soft-prompt vector in VLMs, offering valuable insights for future research in soft-prompt tuning. The code is available at \texttt{\href{https://github.com/ShyFoo/Nemesis}{https://github.com/ShyFoo/Nemesis}}.
comment: Accepted at ICLR 2024 (Spotlight)
☆ Histology Virtual Staining with Mask-Guided Adversarial Transfer Learning for Tertiary Lymphoid Structure Detection
Histological Tertiary Lymphoid Structures (TLSs) are increasingly recognized for their correlation with the efficacy of immunotherapy in various solid tumors. Traditionally, the identification and characterization of TLSs rely on immunohistochemistry (IHC) staining techniques, utilizing markers such as CD20 for B cells. Despite the specificity of IHC, Hematoxylin-Eosin (H&E) staining offers a more accessible and cost-effective choice. Capitalizing on the prevalence of H&E staining slides, we introduce a novel Mask-Guided Adversarial Transfer Learning method designed for virtual pathological staining. This method adeptly captures the nuanced color variations across diverse tissue types under various staining conditions, such as nucleus, red blood cells, positive reaction regions, without explicit label information, and adeptly synthesizes realistic IHC-like virtual staining patches, even replicating the positive reaction. Further, we propose the Virtual IHC Pathology Analysis Network (VIPA-Net), an integrated framework encompassing a Mask-Guided Transfer Module and an H&E-Based Virtual Staining TLS Detection Module. VIPA-Net synergistically harnesses both H\&E staining slides and the synthesized virtual IHC patches to enhance the detection of TLSs within H&E Whole Slide Images (WSIs). We evaluate the network with a comprehensive dataset comprising 1019 annotated slides from The Cancer Genome Atlas (TCGA). Experimental results compellingly illustrate that the VIPA-Net substantially elevates TLS detection accuracy, effectively circumventing the need for actual CD20 staining across the public dataset.
comment: 8 pages, 8 figures
☆ DynaSurfGS: Dynamic Surface Reconstruction with Planar-based Gaussian Splatting 3DV
Dynamic scene reconstruction has garnered significant attention in recent years due to its capabilities in high-quality and real-time rendering. Among various methodologies, constructing a 4D spatial-temporal representation, such as 4D-GS, has gained popularity for its high-quality rendered images. However, these methods often produce suboptimal surfaces, as the discrete 3D Gaussian point clouds fail to align with the object's surface precisely. To address this problem, we propose DynaSurfGS to achieve both photorealistic rendering and high-fidelity surface reconstruction of dynamic scenarios. Specifically, the DynaSurfGS framework first incorporates Gaussian features from 4D neural voxels with the planar-based Gaussian Splatting to facilitate precise surface reconstruction. It leverages normal regularization to enforce the smoothness of the surface of dynamic objects. It also incorporates the as-rigid-as-possible (ARAP) constraint to maintain the approximate rigidity of local neighborhoods of 3D Gaussians between timesteps and ensure that adjacent 3D Gaussians remain closely aligned throughout. Extensive experiments demonstrate that DynaSurfGS surpasses state-of-the-art methods in both high-fidelity surface reconstruction and photorealistic rendering.
comment: homepage: https://open3dvlab.github.io/DynaSurfGS/, code: https://github.com/Open3DVLab/DynaSurfGS
☆ Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
☆ Enhancing Neural Network Interpretability Through Conductance-Based Information Plane Analysis
The Information Plane is a conceptual framework used to analyze the flow of information in neural networks, but traditional methods based on activations may not fully capture the dynamics of information processing. This paper introduces a new approach that uses layer conductance, a measure of sensitivity to input features, to enhance the Information Plane analysis. By incorporating gradient-based contributions, we provide a more precise characterization of information dynamics within the network. The proposed conductance-based Information Plane and a new Information Transformation Efficiency (ITE) metric are evaluated on pretrained ResNet50 and VGG16 models using the ImageNet dataset. Our results demonstrate the ability to identify critical hidden layers that contribute significantly to model performance and interpretability, giving insights into information compression, preservation, and utilization across layers. The conductance-based approach offers a granular perspective on feature attribution, enhancing our understanding of the decision-making processes within neural networks. Furthermore, our empirical findings challenge certain theoretical predictions of the Information Bottleneck theory, highlighting the complexities of information dynamics in real-world data scenarios. The proposed method not only advances our understanding of information dynamics in neural networks but also has the potential to significantly impact the broader field of Artificial Intelligence by enabling the development of more interpretable, efficient, and robust models.
comment: 16 pages, 10 figures
☆ gWaveNet: Classification of Gravity Waves from Noisy Satellite Data using Custom Kernel Integrated Deep Learning Method ICPR
Atmospheric gravity waves occur in the Earths atmosphere caused by an interplay between gravity and buoyancy forces. These waves have profound impacts on various aspects of the atmosphere, including the patterns of precipitation, cloud formation, ozone distribution, aerosols, and pollutant dispersion. Therefore, understanding gravity waves is essential to comprehend and monitor changes in a wide range of atmospheric behaviors. Limited studies have been conducted to identify gravity waves from satellite data using machine learning techniques. Particularly, without applying noise removal techniques, it remains an underexplored area of research. This study presents a novel kernel design aimed at identifying gravity waves within satellite images. The proposed kernel is seamlessly integrated into a deep convolutional neural network, denoted as gWaveNet. Our proposed model exhibits impressive proficiency in detecting images containing gravity waves from noisy satellite data without any feature engineering. The empirical results show our model outperforms related approaches by achieving over 98% training accuracy and over 94% test accuracy which is known to be the best result for gravity waves detection up to the time of this work. We open sourced our code at https://rb.gy/qn68ku.
comment: This paper has been accepted at the 27th International Conference on Pattern Recognition (ICPR) 2024
☆ Physically Feasible Semantic Segmentation
State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label ``road'' to a segment which is located above a segment that is respectively labeled as ``sky'', although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), extracts explicit physical constraints that govern spatial class relations from the training sets of semantic segmentation datasets and enforces a differentiable loss function that penalizes violations of these constraints to promote prediction feasibility. PhyFea yields significant performance improvements in mIoU over each state-of-the-art network we use as baseline across ADE20K, Cityscapes and ACDC, notably a $1.5\%$ improvement on ADE20K and a $2.1\%$ improvement on ACDC.
☆ Comparative Analysis: Violence Recognition from Videos using Transfer Learning
Action recognition has become a hot topic in computer vision. However, the main applications of computer vision in video processing have focused on detection of relatively simple actions while complex events such as violence detection have been comparatively less investigated. This study focuses on the benchmarking of various deep learning techniques on a complex dataset. Next, a larger dataset is utilized to test the uplift from increasing volume of data. The dataset size increase from 500 to 1,600 videos resulted in a notable average accuracy improvement of 6% across four models.
comment: 6 pages, 5 figures, The paper will be published in IEEE AICT 2024 Conference
☆ BreakNet: Discontinuity-Resilient Multi-Scale Transformer Segmentation of Retinal Layers
Visible light optical coherence tomography (vis-OCT) is gaining traction for retinal imaging due to its high resolution and functional capabilities. However, the significant absorption of hemoglobin in the visible light range leads to pronounced shadow artifacts from retinal blood vessels, posing challenges for accurate layer segmentation. In this study, we present BreakNet, a multi-scale Transformer-based segmentation model designed to address boundary discontinuities caused by these shadow artifacts. BreakNet utilizes hierarchical Transformer and convolutional blocks to extract multi-scale global and local feature maps, capturing essential contextual, textural, and edge characteristics. The model incorporates decoder blocks that expand pathwaproys to enhance the extraction of fine details and semantic information, ensuring precise segmentation. Evaluated on rodent retinal images acquired with prototype vis-OCT, BreakNet demonstrated superior performance over state-of-the-art segmentation models, such as TCCT-BP and U-Net, even when faced with limited-quality ground truth data. Our findings indicate that BreakNet has the potential to significantly improve retinal quantification and analysis.
☆ 3D Point Cloud Network Pruning: When Some Weights Do not Matter BMVC 2024
A point cloud is a crucial geometric data structure utilized in numerous applications. The adoption of deep neural networks referred to as Point Cloud Neural Networks (PC- NNs), for processing 3D point clouds, has significantly advanced fields that rely on 3D geometric data to enhance the efficiency of tasks. Expanding the size of both neural network models and 3D point clouds introduces significant challenges in minimizing computational and memory requirements. This is essential for meeting the demanding requirements of real-world applications, which prioritize minimal energy consumption and low latency. Therefore, investigating redundancy in PCNNs is crucial yet challenging due to their sensitivity to parameters. Additionally, traditional pruning methods face difficulties as these networks rely heavily on weights and points. Nonetheless, our research reveals a promising phenomenon that could refine standard PCNN pruning techniques. Our findings suggest that preserving only the top p% of the highest magnitude weights is crucial for accuracy preservation. For example, pruning 99% of the weights from the PointNet model still results in accuracy close to the base level. Specifically, in the ModelNet40 dataset, where the base accuracy with the PointNet model was 87. 5%, preserving only 1% of the weights still achieves an accuracy of 86.8%. Codes are available in: https://github.com/apurba-nsu-rnd-lab/PCNN_Pruning
comment: Accepted in BMVC 2024
☆ PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection
The integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection. However, this combination often struggles with capturing semantic information effectively. Moreover, relying solely on point features within regions of interest can lead to information loss and limitations in local feature representation. To tackle these challenges, we propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN). PVAFN leverages an attention mechanism to improve multi-modal feature fusion during the feature extraction phase. In the refinement stage, it utilizes a multi-pooling strategy to integrate both multi-scale and region-specific information effectively. The point-voxel attention mechanism adaptively combines point cloud and voxel-based Bird's-Eye-View (BEV) features, resulting in richer object representations that help to reduce false detections. Additionally, a multi-pooling enhancement module is introduced to boost the model's perception capabilities. This module employs cluster pooling and pyramid pooling techniques to efficiently capture key geometric details and fine-grained shape structures, thereby enhancing the integration of local and global features. Extensive experiments on the KITTI and Waymo datasets demonstrate that the proposed PVAFN achieves competitive performance. The code and models will be available.
comment: 3D Object Detection
♻ ☆ Focus on Neighbors and Know the Whole: Towards Consistent Dense Multiview Text-to-Image Generator for 3D Creation
Generating dense multiview images from text prompts is crucial for creating high-fidelity 3D assets. Nevertheless, existing methods struggle with space-view correspondences, resulting in sparse and low-quality outputs. In this paper, we introduce CoSER, a novel consistent dense Multiview Text-to-Image Generator for Text-to-3D, achieving both efficiency and quality by meticulously learning neighbor-view coherence and further alleviating ambiguity through the swift traversal of all views. For achieving neighbor-view consistency, each viewpoint densely interacts with adjacent viewpoints to perceive the global spatial structure, and aggregates information along motion paths explicitly defined by physical principles to refine details. To further enhance cross-view consistency and alleviate content drift, CoSER rapidly scan all views in spiral bidirectional manner to aware holistic information and then scores each point based on semantic material. Subsequently, we conduct weighted down-sampling along the spatial dimension based on scores, thereby facilitating prominent information fusion across all views with lightweight computation. Technically, the core module is built by integrating the attention mechanism with a selective state space model, exploiting the robust learning capabilities of the former and the low overhead of the latter. Extensive evaluation shows that CoSER is capable of producing dense, high-fidelity, content-consistent multiview images that can be flexibly integrated into various 3D generation models.
♻ ☆ Global Attractor for a Reaction-Diffusion Model Arising in Biological Dynamic in 3D Soil Structure
Partial Differential Equations (PDEs) play a crucial role as tools for modeling and comprehending intricate natural processes, notably within the domain of biology. This research explores the domain of microbial activity within the complex matrix of 3D soil structures, providing valuable understanding into both the existence and uniqueness of solutions and the asymptotic behavior of the corresponding PDE model. Our investigation results in the discovery of a global attractor, a fundamental feature with significant implications for long-term system behavior. To enhance the clarity of our findings, numerical simulations are employed to visually illustrate the attributes of this global attractor.
comment: Preprint submitted to Mathematical Modeling in Natural Phenomena
♻ ☆ Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification
Spatial-Spectral Mamba (SSM) improves computational efficiency and captures long-range dependencies, addressing Transformer limitations. However, traditional Mamba models overlook rich spectral information in HSIs and struggle with high dimensionality and sequential data. To address these issues, we propose the SSM with multi-head self-attention and token enhancement (MHSSMamba). This model integrates spectral and spatial information by enhancing spectral tokens and using multi-head attention to capture complex relationships between spectral bands and spatial locations. It also manages long-range dependencies and the sequential nature of HSI data, preserving contextual information across spectral bands. MHSSMamba achieved remarkable classification accuracies of 97.62\% on Pavia University, 96.92\% on the University of Houston, 96.85\% on Salinas, and 99.49\% on Wuhan-longKou datasets. The source code is available at \href{https://github.com/MHassaanButt/MHA\_SS\_Mamba}{GitHub}.
♻ ☆ GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion
Traditional volumetric fusion algorithms preserve the spatial structure of 3D scenes, which is beneficial for many tasks in computer vision and robotics. However, they often lack realism in terms of visualization. Emerging 3D Gaussian splatting bridges this gap, but existing Gaussian-based reconstruction methods often suffer from artifacts and inconsistencies with the underlying 3D structure, and struggle with real-time optimization, unable to provide users with immediate feedback in high quality. One of the bottlenecks arises from the massive amount of Gaussian parameters that need to be updated during optimization. Instead of using 3D Gaussian as a standalone map representation, we incorporate it into a volumetric mapping system to take advantage of geometric information and propose to use a quadtree data structure on images to drastically reduce the number of splats initialized. In this way, we simultaneously generate a compact 3D Gaussian map with fewer artifacts and a volumetric map on the fly. Our method, GSFusion, significantly enhances computational efficiency without sacrificing rendering quality, as demonstrated on both synthetic and real datasets. Code will be available at https://github.com/goldoak/GSFusion.
♻ ☆ Implicit Concept Removal of Diffusion Models
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed as the "implicit concepts", could be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model's ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present the Geom-Erasing, a novel concept removal method based on the geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (i.e., QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving the state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.
♻ ☆ On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy ECCV2024
3D Gaussian Splatting has garnered extensive attention and application in real-time neural rendering. Concurrently, concerns have been raised about the limitations of this technology in aspects such as point cloud storage, performance, and robustness in sparse viewpoints, leading to various improvements. However, there has been a notable lack of attention to the fundamental problem of projection errors introduced by the local affine approximation inherent in the splatting itself, and the consequential impact of these errors on the quality of photo-realistic rendering. This paper addresses the projection error function of 3D Gaussian Splatting, commencing with the residual error from the first-order Taylor expansion of the projection function. The analysis establishes a correlation between the error and the Gaussian mean position. Subsequently, leveraging function optimization theory, this paper analyzes the function's minima to provide an optimal projection strategy for Gaussian Splatting referred to Optimal Gaussian Splatting, which can accommodate a variety of camera models. Experimental validation further confirms that this projection methodology reduces artifacts, resulting in a more convincingly realistic rendering.
comment: Accepted by ECCV2024; Project Page: https://letianhuang.github.io/op43dgs/
♻ ☆ DQ-DETR: DETR with Dynamic Query for Tiny Object Detection
Despite previous DETR-like methods having performed successfully in generic object detection, tiny object detection is still a challenging task for them since the positional information of object queries is not customized for detecting tiny objects, whose scale is extraordinarily smaller than general objects. Also, DETR-like methods using a fixed number of queries make them unsuitable for aerial datasets, which only contain tiny objects, and the numbers of instances are imbalanced between different images. Thus, we present a simple yet effective model, named DQ-DETR, which consists of three different components: categorical counting module, counting-guided feature enhancement, and dynamic query selection to solve the above-mentioned problems. DQ-DETR uses the prediction and density maps from the categorical counting module to dynamically adjust the number of object queries and improve the positional information of queries. Our model DQ-DETR outperforms previous CNN-based and DETR-like methods, achieving state-of-the-art mAP 30.2% on the AI-TOD-V2 dataset, which mostly consists of tiny objects.
♻ ☆ SpikeGS: Reconstruct 3D scene via fast-moving bio-inspired sensors
3D Gaussian Splatting (3DGS) demonstrates unparalleled superior performance in 3D scene reconstruction. However, 3DGS heavily relies on the sharp images. Fulfilling this requirement can be challenging in real-world scenarios especially when the camera moves fast, which severely limits the application of 3DGS. To address these challenges, we proposed Spike Gausian Splatting (SpikeGS), the first framework that integrates the spike streams into 3DGS pipeline to reconstruct 3D scenes via a fast-moving bio-inspired camera. With accumulation rasterization, interval supervision, and a specially designed pipeline, SpikeGS extracts detailed geometry and texture from high temporal resolution but texture lacking spike stream, reconstructs 3D scenes captured in 1 second. Extensive experiments on multiple synthetic and real-world datasets demonstrate the superiority of SpikeGS compared with existing spike-based and deblur 3D scene reconstruction methods. Codes and data will be released soon.
♻ ☆ GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery
Solar Photovoltaic (PV) technology is increasingly recognized as a pivotal solution in the global pursuit of clean and renewable energy. This technology addresses the urgent need for sustainable energy alternatives by converting solar power into electricity without greenhouse gas emissions. It not only curtails global carbon emissions but also reduces reliance on finite, non-renewable energy sources. In this context, monitoring solar panel farms becomes essential for understanding and facilitating the worldwide shift toward clean energy. This study contributes to this effort by developing the first comprehensive global dataset of multispectral satellite imagery of solar panel farms. This dataset is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally. The insights gained from this endeavor will be instrumental in guiding informed decision-making for a sustainable energy future. https://github.com/yzyly1992/GloSoFarID
♻ ☆ Swin transformers are robust to distribution and concept drift in endoscopy-based longitudinal rectal cancer assessment
Endoscopic images are used at various stages of rectal cancer treatment starting from cancer screening, diagnosis, during treatment to assess response and toxicity from treatments such as colitis, and at follow up to detect new tumor or local regrowth (LR). However, subjective assessment is highly variable and can underestimate the degree of response in some patients, subjecting them to unnecessary surgery, or overestimate response that places patients at risk of disease spread. Advances in deep learning has shown the ability to produce consistent and objective response assessment for endoscopic images. However, methods for detecting cancers, regrowth, and monitoring response during the entire course of patient treatment and follow-up are lacking. This is because, automated diagnosis and rectal cancer response assessment requires methods that are robust to inherent imaging illumination variations and confounding conditions (blood, scope, blurring) present in endoscopy images as well as changes to the normal lumen and tumor during treatment. Hence, a hierarchical shifted window (Swin) transformer was trained to distinguish rectal cancer from normal lumen using endoscopy images. Swin as well as two convolutional (ResNet-50, WideResNet-50), and vision transformer (ViT) models were trained and evaluated on follow-up longitudinal images to detect LR on private dataset as well as on out-of-distribution (OOD) public colonoscopy datasets to detect pre/non-cancerous polyps. Color shifts were applied using optimal transport to simulate distribution shifts. Swin and ResNet models were similarly accurate in the in-distribution dataset. Swin was more accurate than other methods (follow-up: 0.84, OOD: 0.83) even when subject to color shifts (follow-up: 0.83, OOD: 0.87), indicating capability to provide robust performance for longitudinal cancer assessment.
♻ ☆ Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry
In metal Additive Manufacturing (AM), monitoring the temperature of the Melt Pool (MP) is crucial for ensuring part quality, process stability, defect prevention, and overall process optimization. Traditional methods, are slow to converge and require extensive manual effort to translate data into actionable insights, rendering them impractical for real-time monitoring and control. To address this challenge, we propose an Artificial Intelligence (AI)-based solution aimed at reducing manual data processing reliance and improving the efficiency of transitioning from data to insight. In our study, we utilize a dataset comprising dual-wavelength real-time process monitoring data and corresponding temperature maps. We introduce a deep learning model called the "Binocular model," which exploits dual input observations to perform a precise analysis of MP temperature in Laser Powder Bed Fusion (L-PBF). Through advanced deep learning techniques, we seamlessly convert raw data into temperature maps, significantly streamlining the process and enabling batch processing at a rate of up to 750 frames per second, approximately 1000 times faster than conventional methods. Our Binocular model achieves high accuracy in temperature estimation, evidenced by a 0.95 R-squared score, while simultaneously enhancing processing efficiency by a factor of $\sim1000x$ times. This model directly addresses the challenge of real-time MP temperature monitoring and offers insights into the encountered constraints and the benefits of our Deep Learning-based approach. By combining efficiency and precision, our work contributes to the advancement of temperature monitoring in L-PBF, thus driving progress in the field of metal AM.
♻ ☆ Cross-view Action Recognition Understanding From Exocentric to Egocentric Perspective
Understanding action recognition in egocentric videos has emerged as a vital research topic with numerous practical applications. With the limitation in the scale of egocentric data collection, learning robust deep learning-based action recognition models remains difficult. Transferring knowledge learned from the large-scale exocentric data to the egocentric data is challenging due to the difference in videos across views. Our work introduces a novel cross-view learning approach to action recognition (CVAR) that effectively transfers knowledge from the exocentric to the selfish view. First, we present a novel geometric-based constraint into the self-attention mechanism in Transformer based on analyzing the camera positions between two views. Then, we propose a new cross-view self-attention loss learned on unpaired cross-view data to enforce the self-attention mechanism learning to transfer knowledge across views. Finally, to further improve the performance of our cross-view learning approach, we present the metrics to measure the correlations in videos and attention maps effectively. Experimental results on standard egocentric action recognition benchmarks, i.e., Charades-Ego, EPIC-Kitchens-55, and EPIC-Kitchens-100, have shown our approach's effectiveness and state-of-the-art performance.
♻ ☆ Pediatric TSC-Related Epilepsy Classification from Clinical MR Images Using Quantum Neural Network
Tuberous sclerosis complex (TSC) manifests as a multisystem disorder with significant neurological implications. This study addresses the critical need for robust classification models tailored to TSC in pediatric patients, introducing QResNet,a novel deep learning model seamlessly integrating conventional convolutional neural networks with quantum neural networks. The model incorporates a two-layer quantum layer (QL), comprising ZZFeatureMap and Ansatz layers, strategically designed for processing classical data within a quantum framework. A comprehensive evaluation, demonstrates the superior performance of QResNet in TSC MRI image classification compared to conventional 3D-ResNet models. These compelling findings underscore the potential of quantum computing to revolutionize medical imaging and diagnostics.Remarkably, this method surpasses conventional CNNs in accuracy and Area Under the Curve (AUC) metrics with the current dataset. Future research endeavors may focus on exploring the scalability and practical implementation of quantum algorithms in real-world medical imaging scenarios.
comment: 5 pages,4 figures,2 tables,presented at ISBI 2024
♻ ☆ Attention-guided Feature Distillation for Semantic Segmentation
In contrast to existing complex methodologies commonly employed for distilling knowledge from a teacher to a student, this paper showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention. The proposed method has proven to be effective in distilling rich information, outperforming existing methods in semantic segmentation as a dense prediction task. The proposed Attention-guided Feature Distillation (AttnFD) method, employs the Convolutional Block Attention Module (CBAM), which refines feature maps by taking into account both channel-specific and spatial information content. Simply using the Mean Squared Error (MSE) loss function between the refined feature maps of the teacher and the student, AttnFD demonstrates outstanding performance in semantic segmentation, achieving state-of-the-art results in terms of improving the mean Intersection over Union (mIoU) of the student network on the PascalVoc 2012, Cityscapes, COCO, and CamVid datasets.
comment: 9 pages, 8 figures, and 6 tables
♻ ☆ Docling Technical Report
This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.
♻ ☆ Filter & Align: Curating Image-Text Data with Human Knowledge
The increasing availability of image-text pairs has largely fueled the rapid advancement in vision-language foundation models. However, the vast scale of these datasets inevitably introduces significant variability in data quality, which can adversely affect the model performance. This highlights the critical role of data filtering, not only to enhance training efficiency but also to improve overall data quality. Existing methods typically rely on metrics such as CLIP Score and BLIP Score, which are derived from pre-trained models. However, these models are often trained on uncurated, noisy datasets, which can perpetuate errors and misalignments in the filtered dataset. We present a novel algorithm that incorporates human knowledge on image-text alignment to guide filtering vast corpus of web-crawled image-text datasets into a compact and high-quality form. To systemically capture human preferences on image-text alignments, we collect a diverse image-text dataset where each image is associated with multiple captions from various sources, and establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Additionally, we train a reward model on these human-preference annotations to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter image-text pairs. Extensive experiments demonstrate that we can maintain, sometimes even improve, model performance while compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to only 15.5M, our BLIP-B/16 models consistently show an average improvement of 2.9% on retrieval tasks and 11.5% on captioning tasks compared to full-size-dataset counterparts.
♻ ☆ PDEBENCH: An Extensive Benchmark for Scientific Machine Learning NeurIPS 2022
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
comment: 16 pages (main body) + 34 pages (supplemental material), accepted for publication in NeurIPS 2022 Track Datasets and Benchmarks
♻ ☆ VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection
Due to its cost-effectiveness and widespread availability, monocular 3D object detection, which relies solely on a single camera during inference, holds significant importance across various applications, including autonomous driving and robotics. Nevertheless, directly predicting the coordinates of objects in 3D space from monocular images poses challenges. Therefore, an effective solution involves transforming monocular images into LiDAR-like representations and employing a LiDAR-based 3D object detector to predict the 3D coordinates of objects. The key step in this method is accurately converting the monocular image into a reliable point cloud form. In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations. VFMM3D utilizes the Segment Anything Model (SAM) and Depth Anything Model (DAM) to generate high-quality pseudo-LiDAR data enriched with rich foreground information. Specifically, the Depth Anything Model (DAM) is employed to generate dense depth maps. Subsequently, the Segment Anything Model (SAM) is utilized to differentiate foreground and background regions by predicting instance masks. These predicted instance masks and depth maps are then combined and projected into 3D space to generate pseudo-LiDAR points. Finally, any object detectors based on point clouds can be utilized to predict the 3D coordinates of objects. Comprehensive experiments are conducted on two challenging 3D object detection datasets, KITTI and Waymo. Our VFMM3D establishes a new state-of-the-art performance on both datasets. Additionally, experimental results demonstrate the generality of VFMM3D, showcasing its seamless integration into various LiDAR-based 3D object detectors.
comment: 11 pages, 4 figures
♻ ☆ Interpretable Representation Learning of Cardiac MRI via Attribute Regularization
Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent space to enhance its interpretability. Notably, attribute regularization aims to encode a set of attributes along the dimensions of a latent representation. However, this approach is based on Variational AutoEncoder and suffers from blurry reconstruction. In this paper, we propose an Attributed-regularized Soft Introspective Variational Autoencoder that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. We demonstrate on short-axis cardiac Magnetic Resonance images of the UK Biobank the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods while preserving the latent space interpretability.
comment: arXiv admin note: substantial text overlap with arXiv:2312.08915
♻ ☆ Planner3D: LLM-enhanced graph prior meets 3D indoor scene explicit regularization
Compositional 3D scene synthesis has diverse applications across a spectrum of industries such as robotics, films, and video games, as it closely mirrors the complexity of real-world multi-object environments. Conventional works typically employ shape retrieval based frameworks which naturally suffer from limited shape diversity. Recent progresses have been made in object shape generation with generative models such as diffusion models, which increases the shape fidelity. However, these approaches separately treat 3D shape generation and layout generation. The synthesized scenes are usually hampered by layout collision, which suggests that the scene-level fidelity is still under-explored. In this paper, we aim at generating realistic and reasonable 3D indoor scenes from scene graph. To enrich the priors of the given scene graph inputs, large language model is utilized to aggregate the global-wise features with local node-wise and edge-wise features. With a unified graph encoder, graph features are extracted to guide joint layout-shape generation. Additional regularization is introduced to explicitly constrain the produced 3D layouts. Benchmarked on the SG-FRONT dataset, our method achieves better 3D scene synthesis, especially in terms of scene-level fidelity. The source code will be released after publication.
comment: 16 pages, 10 figures
♻ ☆ LF Tracy: A Unified Single-Pipeline Approach for Salient Object Detection in Light Field Cameras ICPR 2024
Leveraging rich information is crucial for dense prediction tasks. Light field (LF) cameras are instrumental in this regard, as they allow data to be sampled from various perspectives. This capability provides valuable spatial, depth, and angular information, enhancing scene-parsing tasks. However, we have identified two overlooked issues for the LF salient object detection (SOD) task. (1): Previous approaches predominantly employ a customized two-stream design to discover the spatial and depth features within light field images. The network struggles to learn the implicit angular information between different images due to a lack of intra-network data connectivity. (2): Little research has been directed towards the data augmentation strategy for LF SOD. Research on inter-network data connectivity is scant. In this study, we propose an efficient paradigm (LF Tracy) to address those issues. This comprises a single-pipeline encoder paired with a highly efficient information aggregation (IA) module (around 8M parameters) to establish an intra-network connection. Then, a simple yet effective data augmentation strategy called MixLD is designed to bridge the inter-network connections. Owing to this innovative paradigm, our model surpasses the existing state-of-the-art method through extensive experiments. Especially, LF Tracy demonstrates a 23% improvement over previous results on the latest large-scale PKU dataset. The source code is publicly available at: https://github.com/FeiBryantkit/LF-Tracy.
comment: Accepted to ICPR 2024. The source code is publicly available at: https://github.com/FeiBryantkit/LF-Tracy
♻ ☆ Deep Spectral Improvement for Unsupervised Image Instance Segmentation
Deep spectral methods reframe the image decomposition process as a graph partitioning task by extracting features using self-supervised learning and utilizing the Laplacian of the affinity matrix to obtain eigensegments. However, instance segmentation has received less attention compared to other tasks within the context of deep spectral methods. This paper addresses the fact that not all channels of the feature map extracted from a self-supervised backbone contain sufficient information for instance segmentation purposes. In fact, Some channels are noisy and hinder the accuracy of the task. To overcome this issue, this paper proposes two channel reduction modules: Noise Channel Reduction (NCR) and Deviation-based Channel Reduction (DCR). The NCR retains channels with lower entropy, as they are less likely to be noisy, while DCR prunes channels with low standard deviation, as they lack sufficient information for effective instance segmentation. Furthermore, the paper demonstrates that the dot product, commonly used in deep spectral methods, is not suitable for instance segmentation due to its sensitivity to feature map values, potentially leading to incorrect instance segments. A new similarity metric called Bray-Curtis over Chebyshev (BoC) is proposed to address this issue. It takes into account the distribution of features in addition to their values, providing a more robust similarity measure for instance segmentation. Quantitative and qualitative results on the Youtube-VIS2019 dataset highlight the improvements achieved by the proposed channel reduction methods and the use of BoC instead of the conventional dot product for creating the affinity matrix. These improvements are observed in terms of mean Intersection over Union and extracted instance segments, demonstrating enhanced instance segmentation performance. The code is available on: https://github.com/farnooshar/SpecUnIIS
comment: 11 pages, 13 figures and 5 tables
♻ ☆ InstantStyleGaussian: Efficient Art Style Transfer with 3D Gaussian Splatting
We present InstantStyleGaussian, an innovative 3D style transfer method based on the 3D Gaussian Splatting (3DGS) scene representation. By inputting a target-style image, it quickly generates new 3D GS scenes. Our method operates on pre-reconstructed GS scenes, combining diffusion models with an improved iterative dataset update strategy. It utilizes diffusion models to generate target style images, adds these new images to the training dataset, and uses this dataset to iteratively update and optimize the GS scenes, significantly accelerating the style editing process while ensuring the quality of the generated scenes. Extensive experimental results demonstrate that our method ensures high-quality stylized scenes while offering significant advantages in style transfer speed and consistency.
♻ ☆ SigFormer: Sparse Signal-Guided Transformer for Multi-Modal Human Action Segmentation
Multi-modal human action segmentation is a critical and challenging task with a wide range of applications. Nowadays, the majority of approaches concentrate on the fusion of dense signals (i.e., RGB, optical flow, and depth maps). However, the potential contributions of sparse IoT sensor signals, which can be crucial for achieving accurate recognition, have not been fully explored. To make up for this, we introduce a Sparse signalguided Transformer (SigFormer) to combine both dense and sparse signals. We employ mask attention to fuse localized features by constraining cross-attention within the regions where sparse signals are valid. However, since sparse signals are discrete, they lack sufficient information about the temporal action boundaries. Therefore, in SigFormer, we propose to emphasize the boundary information at two stages to alleviate this problem. In the first feature extraction stage, we introduce an intermediate bottleneck module to jointly learn both category and boundary features of each dense modality through the inner loss functions. After the fusion of dense modalities and sparse signals, we then devise a two-branch architecture that explicitly models the interrelationship between action category and temporal boundary. Experimental results demonstrate that SigFormer outperforms the state-of-the-art approaches on a multi-modal action segmentation dataset from real industrial environments, reaching an outstanding F1 score of 0.958. The codes and pre-trained models have been available at https://github.com/LIUQI-creat/SigFormer.
♻ ☆ Be Persistent: Towards a Unified Solution for Mitigating Shortcuts in Deep Learning
Deep neural networks (DNNs) are vulnerable to shortcut learning: rather than learning the intended task, they tend to draw inconclusive relationships between their inputs and outputs. Shortcut learning is ubiquitous among many failure cases of neural networks, and traces of this phenomenon can be seen in their generalizability issues, domain shift, adversarial vulnerability, and even bias towards majority groups. In this paper, we argue that this commonality in the cause of various DNN issues creates a significant opportunity that should be leveraged to find a unified solution for shortcut learning. To this end, we outline the recent advances in topological data analysis (TDA), and persistent homology (PH) in particular, to sketch a unified roadmap for detecting shortcuts in deep learning. We demonstrate our arguments by investigating the topological features of computational graphs in DNNs using two cases of unlearnable examples and bias in decision-making as our test studies. Our analysis of these two failure cases of DNNs reveals that finding a unified solution for shortcut learning in DNNs is not out of reach, and TDA can play a significant role in forming such a framework.
comment: Accepted to the 2024 European Conference on Artificial Intelligence (ECAI)
♻ ☆ Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond
Self-supervised learning (SSL), which aims to learn meaningful prior representations from unlabeled data, has been proven effective for skeleton-based action understanding. Different from the image domain, skeleton data possesses sparser spatial structures and diverse representation forms, with the absence of background clues and the additional temporal dimension, presenting new challenges for spatial-temporal motion pretext task design. Recently, many endeavors have been made for skeleton-based SSL, achieving remarkable progress. However, a systematic and thorough review is still lacking. In this paper, we conduct, for the first time, a comprehensive survey on self-supervised skeleton-based action representation learning. Following the taxonomy of context-based, generative learning, and contrastive learning approaches, we make a thorough review and benchmark of existing works and shed light on the future possible directions. Remarkably, our investigation demonstrates that most SSL works rely on the single paradigm, learning representations of a single level, and are evaluated on the action recognition task solely, which leaves the generalization power of skeleton SSL models under-explored. To this end, a novel and effective SSL method for skeleton is further proposed, which integrates versatile representation learning objectives of different granularity, substantially boosting the generalization capacity for multiple skeleton downstream tasks. Extensive experiments under three large-scale datasets demonstrate our method achieves superior generalization performance on various downstream tasks, including recognition, retrieval, detection, and few-shot learning.
♻ ☆ VASARI-auto: equitable, efficient, and economical featurisation of glioma MRI
The VASARI MRI feature set is a quantitative system designed to standardise glioma imaging descriptions. Though effective, deriving VASARI is time-consuming and seldom used in clinical practice. This is a problem that machine learning could plausibly automate. Using glioma data from 1172 patients, we developed VASARI-auto, an automated labelling software applied to both open-source lesion masks and our openly available tumour segmentation model. In parallel, two consultant neuroradiologists independently quantified VASARI features in a subsample of 100 glioblastoma cases. We quantified: 1) agreement across neuroradiologists and VASARI-auto; 2) calibration of performance equity; 3) an economic workforce analysis; and 4) fidelity in predicting patient survival. Tumour segmentation was compatible with the current state of the art and equally performant regardless of age or sex. A modest inter-rater variability between in-house neuroradiologists was comparable to between neuroradiologists and VASARI-auto, with far higher agreement between VASARI-auto methods. The time taken for neuroradiologists to derive VASARI was substantially higher than VASARI-auto (mean time per case 317 vs. 3 seconds). A UK hospital workforce analysis forecast that three years of VASARI featurisation would demand 29,777 consultant neuroradiologist workforce hours ({\pounds}1,574,935), reducible to 332 hours of computing time (and {\pounds}146 of power) with VASARI-auto. The best-performing survival model utilised VASARI-auto features as opposed to those derived by neuroradiologists. VASARI-auto is a highly efficient automated labelling system with equitable performance across patient age or sex, a favourable economic profile if used as a decision support tool, and with non-inferior fidelity in downstream patient survival prediction. Future work should iterate upon and integrate such tools to enhance patient care.
comment: 36 pages, 8 figures, 2 tables
♻ ☆ SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction
This paper addresses motion forecasting in multi-agent environments, pivotal for ensuring safety of autonomous vehicles. Traditional as well as recent data-driven marginal trajectory prediction methods struggle to properly learn non-linear agent-to-agent interactions. We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction. We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions: range gap prediction, closest distance prediction, direction of movement prediction, and type of interaction prediction. We further propose an approach to curate interaction-heavy scenarios from datasets. This curated data has two advantages: it provides a stronger learning signal to the interaction model, and facilitates generation of pseudo-labels for interaction-centric pretext tasks. We also propose three new metrics specifically designed to evaluate predictions in interactive scenes. Our empirical evaluations indicate SSL-Interactions outperforms state-of-the-art motion forecasting methods quantitatively with up to 8% improvement, and qualitatively, for interaction-heavy scenarios.
comment: Accepted at IV-2024. 13 pages, 5 figures
♻ ☆ Helios: An extremely low power event-based gesture recognition for always-on smart eyewear ECCV
This paper introduces Helios, the first extremely low-power, real-time, event-based hand gesture recognition system designed for all-day on smart eyewear. As augmented reality (AR) evolves, current smart glasses like the Meta Ray-Bans prioritize visual and wearable comfort at the expense of functionality. Existing human-machine interfaces (HMIs) in these devices, such as capacitive touch and voice controls, present limitations in ergonomics, privacy and power consumption. Helios addresses these challenges by leveraging natural hand interactions for a more intuitive and comfortable user experience. Our system utilizes a extremely low-power and compact 3mmx4mm/20mW event camera to perform natural hand-based gesture recognition for always-on smart eyewear. The camera's output is processed by a convolutional neural network (CNN) running on a NXP Nano UltraLite compute platform, consuming less than 350mW. Helios can recognize seven classes of gestures, including subtle microgestures like swipes and pinches, with 91% accuracy. We also demonstrate real-time performance across 20 users at a remarkably low latency of 60ms. Our user testing results align with the positive feedback we received during our recent successful demo at AWE-USA-2024.
comment: Accepted at ECCV-Integrating Computer Vision in Smart Eyewear, 2024. 18 pages, 10 figures. First three authors contributed equally to this paper
♻ ☆ Vision meets algae: A novel way for microalgae recognization and health monitor
Marine microalgae are widespread in the ocean and play a crucial role in the ecosystem. Automatic identification and location of marine microalgae in microscopy images would help establish marine ecological environment monitoring and water quality evaluation system. We proposed a new dataset for the detection of marine microalgae and a range of detection methods, the dataset including images of different genus of algae and the same genus in different states. We set the number of unbalanced classes in the data set and added images of mixed water samples in the test set to simulate the actual situation in the field. Then we trained, validated and tested the, TOOD, YOLOv5, YOLOv8 and variants of RCNN algorithms on this dataset. The results showed both one-stage and two-stage object detection models can achieve high mean average precision, which proves the ability of computer vision in multi-object detection of microalgae, and provides basic data and models for real-time detection of microalgal cells.
♻ ☆ Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection
The use of synthetic data in indoor 3D object detection offers the potential of greatly reducing the manual labor involved in 3D annotations and training effective zero-shot detectors. However, the complicated domain shifts across syn-to-real indoor datasets remains underexplored. In this paper, we propose a novel Object-wise Hierarchical Domain Alignment (OHDA) framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection. Our approach includes an object-aware augmentation strategy to effectively diversify the source domain data, and we introduce a two-branch adaptation framework consisting of an adversarial training branch and a pseudo labeling branch, in order to simultaneously reach holistic-level and class-level domain alignment. The pseudo labeling is further refined through two proposed schemes specifically designed for indoor UDA. Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines, respectively, and consistently outperform the methods adapted from 2D and 3D outdoor scenarios. The code will be publicly available upon paper acceptance.
♻ ☆ Searching a Compact Architecture for Robust Multi-Exposure Image Fusion
In recent years, learning-based methods have achieved significant advancements in multi-exposure image fusion. However, two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference. Reliance on aligned image pairs in existing methods causes susceptibility to artifacts due to device motion. Additionally, existing techniques often rely on handcrafted architectures with huge network engineering, resulting in redundant parameters, adversely impacting inference efficiency and flexibility. To mitigate these limitations, this study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion. Specifically, targeting the extreme discrepancy of exposure, we propose the self-alignment module, leveraging scene relighting to constrain the illumination degree for following alignment and feature extraction. Detail repletion is proposed to enhance the texture details of scenes. Additionally, incorporating a hardware-sensitive constraint, we present the fusion-oriented architecture search to explore compact and efficient networks for fusion. The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19\% improvement in PSNR for general scenarios and an impressive 23.5\% enhancement in misaligned scenarios. Moreover, it significantly reduces inference time by 69.1\%. The code will be available at https://github.com/LiuZhu-CV/CRMEF.
comment: 14 pages, 11 figures
♻ ☆ Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models CVPR 2024
Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at https://github.com/Yuliang-Liu/Monkey.
comment: CVPR 2024 Highlight
♻ ☆ Dynamic Domains, Dynamic Solutions: DPCore for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) seeks to adapt a source pre-trained model to continually changing, unlabeled target domains. Existing TTA methods are typically designed for environments where domain changes occur sequentially and can struggle in more dynamic scenarios, as illustrated in Figure \ref{fig:settings}. Inspired by the principles of online K-Means, we introduce a novel approach to CTTA through visual prompting. We propose a \emph{Dynamic Prompt Coreset} that not only preserves knowledge from previously visited domains but also accommodates learning from new potential domains. This is complemented by a distance-based \emph{Weight Updating Mechanism} that ensures the coreset remains current and relevant. Our approach employs a fixed model architecture alongside the coreset and an innovative updating system to effectively mitigate challenges such as catastrophic forgetting and error accumulation. Extensive testing on four widely-used benchmarks demonstrates that our method consistently outperforms state-of-the-art alternatives in both classification and segmentation CTTA tasks across the structured and dynamic CTTA settings, with $99\%$ fewer trainable parameters.
♻ ☆ Practical X-ray Gastric Cancer Screening Using Refined Stochastic Data Augmentation and Hard Boundary Box Training
Endoscopy is widely used to diagnose gastric cancer and has a high diagnostic performance, but it must be performed by a physician, which limits the number of people who can be diagnosed. In contrast, gastric X-rays can be performed by technicians and screen a much larger number of patients, but accurate diagnosis requires experience. We propose an unprecedented and practical gastric cancer diagnosis support system for gastric X-ray images, enabling more people to be screened. The system is based on a general deep learning-based object detection model and incorporates two novel techniques: refined probabilistic stomach image augmentation (R-sGAIA) and hard boundary box training (HBBT). R-sGAIA enhances the probabilistic gastric fold region, providing more learning patterns for cancer detection models. HBBT is an efficient training method that improves model performance by allowing the use of unannotated negative (i.e., healthy control) samples, which are typically unusable in conventional detection models. The proposed system achieves a sensitivity (SE) for gastric cancer of 90.2%, higher than that of an expert (85.5%). Additionally, two out of five detected candidate boxes are cancerous, maintaining high precision while processing images at a speed of 0.51 seconds per image. The system also outperforms methods using the same object detection model and state-of-the-art data augmentation, showing a 5.9-point improvement in the F1 score. In summary, this system efficiently identifies areas for radiologists to examine within a practical timeframe, significantly reducing their workload.
comment: 20 pages, 6 figures
♻ ☆ A Unified Membership Inference Method for Visual Self-supervised Encoder via Part-aware Capability CCS2024
Self-supervised learning shows promise in harnessing extensive unlabeled data, but it also confronts significant privacy concerns, especially in vision. In this paper, we aim to perform membership inference on visual self-supervised models in a more realistic setting: self-supervised training method and details are unknown for an adversary when attacking as he usually faces a black-box system in practice. In this setting, considering that self-supervised model could be trained by completely different self-supervised paradigms, e.g., masked image modeling and contrastive learning, with complex training details, we propose a unified membership inference method called PartCrop. It is motivated by the shared part-aware capability among models and stronger part response on the training data. Specifically, PartCrop crops parts of objects in an image to query responses with the image in representation space. We conduct extensive attacks on self-supervised models with different training protocols and structures using three widely used image datasets. The results verify the effectiveness and generalization of PartCrop. Moreover, to defend against PartCrop, we evaluate two common approaches, i.e., early stop and differential privacy, and propose a tailored method called shrinking crop scale range. The defense experiments indicate that all of them are effective. Our code is available at https://github.com/JiePKU/PartCrop.
comment: Accepted by ACM CCS2024, Full version
♻ ☆ Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior
Imposing key anatomical features, such as the number of organs, their shapes and relative positions, is crucial for building a robust multi-organ segmentation model. Current attempts to incorporate anatomical features include broadening the effective receptive field (ERF) size with data-intensive modules, or introducing anatomical constraints that scales poorly to multi-organ segmentation. We introduce a novel architecture called the Anatomy-Informed Cascaded Segmentation Network (AIC-Net). AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy using a differentiable spatial deformation. The deformed prior later guides decoder layers towards more anatomy-informed predictions. We repeat this process at a local patch level to enhance the representation of intricate objects, resulting in a cascaded network structure. AIC-Net is a general method that enhances any existing segmentation models to be more anatomy-aware. We have validated the performance of AIC-Net, with various backbones, on two multi-organ segmentation tasks: abdominal organs and vertebrae. For each respective task, our benchmarks demonstrate improved dice score and Hausdorff distance.
♻ ☆ UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images
Semantic segmentation of high-resolution remote sensing images is vital in downstream applications such as land-cover mapping, urban planning and disaster assessment.Existing Transformer-based methods suffer from the constraint between accuracy and efficiency, while the recently proposed Mamba is renowned for being efficient. Therefore, to overcome the dilemma, we propose UNetMamba, a UNet-like semantic segmentation model based on Mamba. It incorporates a mamba segmentation decoder (MSD) that can efficiently decode the complex information within high-resolution images, and a local supervision module (LSM), which is train-only but can significantly enhance the perception of local contents. Extensive experiments demonstrate that UNetMamba outperforms the state-of-the-art methods with mIoU increased by 0.87% on LoveDA and 0.36% on ISPRS Vaihingen, while achieving high efficiency through the lightweight design, less memory footprint and reduced computational cost. The source code is available at https://github.com/EnzeZhu2001/UNetMamba.
comment: 5 pages, 3 figures
♻ ☆ From Text to Pixel: Advancing Long-Context Understanding in MLLMs
The rapid progress in Multimodal Large Language Models (MLLMs) has significantly advanced their ability to process and understand complex visual and textual information. However, the integration of multiple images and extensive textual contexts remains a challenge due to the inherent limitation of the models' capacity to handle long input sequences efficiently. In this paper, we introduce SEEKER, a multimodal large language model designed to tackle this issue. SEEKER aims to optimize the compact encoding of long text by compressing the text sequence into the visual pixel space via images, enabling the model to handle long text within a fixed token-length budget efficiently. Our empirical experiments on six long-context multimodal tasks demonstrate that SEEKER can leverage fewer image tokens to convey the same amount of textual information compared with the OCR-based approach, and is more efficient in understanding long-form multimodal input and generating long-form textual output, outperforming all existing proprietary and open-source MLLMs by large margins.
♻ ☆ MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model
This paper presents MaVEn, an innovative Multi-granularity Visual Encoding framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning. Current MLLMs primarily focus on single-image visual understanding, limiting their ability to interpret and integrate information across multiple images. MaVEn addresses this limitation by combining discrete visual symbol sequences, which abstract coarse-grained semantic concepts, with traditional continuous representation sequences that model fine-grained features. This dual approach bridges the semantic gap between visual and textual data, thereby improving the model's ability to process and interpret information from multiple images effectively. Additionally, we design a dynamic reduction mechanism by for long-sequence continuous features to enhance multi-image processing efficiency. Experimental results demonstrate that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
♻ ☆ Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy
Cell segmentation is essential in biomedical research for analyzing cellular morphology and behavior. Deep learning methods, particularly convolutional neural networks (CNNs), have revolutionized cell segmentation by extracting intricate features from images. However, the robustness of these methods under microscope optical aberrations remains a critical challenge. This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy. By simulating different types of aberrations, including astigmatism, coma, spherical aberration, trefoil, and mixed aberrations, we conduct a thorough evaluation of various cell instance segmentation models using the DynamicNuclearNet (DNN) and LIVECell datasets, representing fluorescence and bright field microscopy cell datasets, respectively. We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads (FPN, C3) and backbones (ResNet, VGG, Swin Transformer), under aberrated conditions. Additionally, we provide usage recommendations for the Cellpose 2.0 Toolbox on complex cell degradation images. The results indicate that the combination of FPN and SwinS demonstrates superior robustness in handling simple cell images affected by minor aberrations. In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions. Furthermore, we innovatively propose the Point Spread Function Image Label Classification Model (PLCM). This model can quickly and accurately identify aberration types and amplitudes from PSF images, assisting researchers without optical training. Through PLCM, researchers can better apply our proposed cell segmentation guidelines.
♻ ☆ Semantic Communication based on Large Language Model for Underwater Image Transmission
Underwater communication is essential for environmental monitoring, marine biology research, and underwater exploration. Traditional underwater communication faces limitations like low bandwidth, high latency, and susceptibility to noise, while semantic communication (SC) offers a promising solution by focusing on the exchange of semantics rather than symbols or bits. However, SC encounters challenges in underwater environments, including semantic information mismatch and difficulties in accurately identifying and transmitting critical information that aligns with the diverse requirements of underwater applications. To address these challenges, we propose a novel Semantic Communication (SC) framework based on Large Language Models (LLMs). Our framework leverages visual LLMs to perform semantic compression and prioritization of underwater image data according to the query from users. By identifying and encoding key semantic elements within the images, the system selectively transmits high-priority information while applying higher compression rates to less critical regions. On the receiver side, an LLM-based recovery mechanism, along with Global Vision ControlNet and Key Region ControlNet networks, aids in reconstructing the images, thereby enhancing communication efficiency and robustness. Our framework reduces the overall data size to 0.8\% of the original. Experimental results demonstrate that our method significantly outperforms existing approaches, ensuring high-quality, semantically accurate image reconstruction.
♻ ☆ Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
comment: The first comprehensive review of Embodied AI in the era of MLMs, 39 pages. We also provide the paper list for Embodied AI: https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List
♻ ☆ Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification
As a cross-topic of multi-view learning and multi-label classification, multi-view multi-label classification has gradually gained traction in recent years. The application of multi-view contrastive learning has further facilitated this process, however, the existing multi-view contrastive learning methods crudely separate the so-called negative pair, which largely results in the separation of samples belonging to the same category or similar ones. Besides, plenty of multi-view multi-label learning methods ignore the possible absence of views and labels. To address these issues, in this paper, we propose an incomplete multi-view partial multi-label classification network named RANK. In this network, a label-driven multi-view contrastive learning strategy is proposed to leverage supervised information to preserve the structure within view and perform consistent alignment across views. Furthermore, we break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample. The label correlation information is fully utilized in the final multi-label cross-entropy classification loss, effectively improving the discriminative power. Last but not least, our model is not only able to handle complete multi-view multi-label datasets, but also works on datasets with missing instances and labels. Extensive experiments confirm that our RANK outperforms existing state-of-the-art methods.
comment: Please contact me if you have any questions: liucl1996@163.com
♻ ☆ Perception-guided Jailbreak against Text-to-Image Models
In recent years, Text-to-Image (T2I) models have garnered significant attention due to their remarkable advancements. However, security concerns have emerged due to their potential to generate inappropriate or Not-Safe-For-Work (NSFW) images. In this paper, inspired by the observation that texts with different semantics can lead to similar human perceptions, we propose an LLM-driven perception-guided jailbreak method, termed PGJ. It is a black-box jailbreak method that requires no specific T2I model (model-free) and generates highly natural attack prompts. Specifically, we propose identifying a safe phrase that is similar in human perception yet inconsistent in text semantics with the target unsafe word and using it as a substitution. The experiments conducted on six open-source models and commercial online services with thousands of prompts have verified the effectiveness of PGJ.
comment: 8 pages
♻ ☆ Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes. Specifically, our approach, namely NCLR, focuses on 2D-3D neural calibration, a novel pretext task that estimates the rigid pose aligning camera and LiDAR coordinate systems. First, we propose the learnable transformation alignment to bridge the domain gap between image and point cloud data, converting features into a unified representation space for effective comparison and matching. Second, we identify the overlapping area between the image and point cloud with the fused features. Third, we establish dense 2D-3D correspondences to estimate the rigid pose. The framework not only learns fine-grained matching from points to pixels but also achieves alignment of the image and point cloud at a holistic level, understanding their relative pose. We demonstrate the efficacy of NCLR by applying the pre-trained backbone to downstream tasks, such as LiDAR-based 3D semantic segmentation, object detection, and panoptic segmentation. Comprehensive experiments on various datasets illustrate the superiority of NCLR over existing self-supervised methods. The results confirm that joint learning from different modalities significantly enhances the network's understanding abilities and effectiveness of learned representation. The code is publicly available at https://github.com/Eaphan/NCLR.
comment: Under review
♻ ☆ OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks including Text Recognition, Scene Text-Centric Visual Question Answering (VQA), Document-Oriented VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition (HMER). To facilitate the assessment of Optical Character Recognition (OCR) capabilities in Large Multimodal Models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression recognition. Most importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. The evaluation pipeline and benchmark are available at https://github.com/Yuliang-Liu/MultimodalOCR.
♻ ☆ PALM: Pushing Adaptive Learning Rate Mechanisms for Continual Test-Time Adaptation
Real-world vision models in dynamic environments face rapid shifts in domain distributions, leading to decreased recognition performance. Using unlabeled test data, continual test-time adaptation (CTTA) directly adjusts a pre-trained source discriminative model to these changing domains. A highly effective CTTA method involves applying layer-wise adaptive learning rates for selectively adapting pre-trained layers. However, it suffers from the poor estimation of domain shift and the inaccuracies arising from the pseudo-labels. This work aims to overcome these limitations by identifying layers for adaptation via quantifying model prediction uncertainty without relying on pseudo-labels. We utilize the magnitude of gradients as a metric, calculated by backpropagating the KL divergence between the softmax output and a uniform distribution, to select layers for further adaptation. Subsequently, for the parameters exclusively belonging to these selected layers, with the remaining ones frozen, we evaluate their sensitivity to approximate the domain shift and adjust their learning rates accordingly. We conduct extensive image classification experiments on CIFAR-10C, CIFAR-100C, and ImageNet-C, demonstrating the superior efficacy of our method compared to prior approaches.
♻ ☆ Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video
Human health can be critically affected by cardiovascular diseases, such as hypertension, arrhythmias, and stroke. Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system and early diagnosis of cardiovascular diseases. Existing methods for estimating the heart rate are based on electrocardiography and photoplethyomography, which require contacting the sensor to the skin surface. Moreover, catheter and cuff-based methods for measuring blood pressure cause inconvenience and have limited applicability. Therefore, in this thesis, we propose a vision-based method for estimating the heart rate and blood pressure. This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (DRP-Net) and bounded blood pressure network (BBP-Net). In the first stage, DRP-Net infers remote photoplethysmography (rPPG) signals for the acral and facial regions, and these phase-shifted rPPG signals are utilized to estimate the heart rate. In the second stage, BBP-Net integrates temporal features and analyzes phase discrepancy between the acral and facial rPPG signals to estimate SBP and DBP values. To improve the accuracy of estimating the heart rate, we employed a data augmentation method based on a frame interpolation model. Moreover, we designed BBP-Net to infer blood pressure within a predefined range by incorporating a scaled sigmoid function. Our method resulted in estimating the heart rate with the mean absolute error (MAE) of 1.78 BPM, reducing the MAE by 34.31 % compared to the recent method, on the MMSE-HR dataset. The MAE for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 10.19 mmHg and 7.09 mmHg. On the V4V dataset, the MAE for the heart rate, SBP, and DBP were 3.83 BPM, 13.64 mmHg, and 9.4 mmHg, respectively.
comment: 33 pages, 7 figures
♻ ☆ Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion
Spiking neural networks (SNNs) are becoming a promising alternative to conventional artificial neural networks (ANNs) due to their rich neural dynamics and the implementation of energy-efficient neuromorphic chips. However, the non-differential binary communication mechanism makes SNN hard to converge to an ANN-level accuracy. When SNN encounters sequence learning, the situation becomes worse due to the difficulties in modeling long-range dependencies. To overcome these difficulties, researchers developed variants of LIF neurons and different surrogate gradients but still failed to obtain good results when the sequence became longer (e.g., $>$500). Unlike them, we obtain an optimal SNN in sequence learning by directly mapping parameters from a quantized CRNN. We design two sub-pipelines to support the end-to-end conversion of different structures in neural networks, which is called CNN-Morph (CNN $\rightarrow$ QCNN $\rightarrow$ BIFSNN) and RNN-Morph (RNN $\rightarrow$ QRNN $\rightarrow$ RBIFSNN). Using conversion pipelines and the s-analog encoding method, the conversion error of our framework is zero. Furthermore, we give the theoretical and experimental demonstration of the lossless CRNN-SNN conversion. Our results show the effectiveness of our method over short and long timescales tasks compared with the state-of-the-art learning- and conversion-based methods. We reach the highest accuracy of 99.16% (0.46 $\uparrow$) on S-MNIST, 94.95% (3.95 $\uparrow$) on PS-MNIST (sequence length of 784) respectively, and the lowest loss of 0.057 (0.013 $\downarrow$) within 8 time-steps in collision avoidance dataset.
comment: Accepted by 33rd International Conference on Artificial Neural Networks
♻ ☆ Image-to-Text Logic Jailbreak: Your Imagination can Help You Do Anything
Large Visual Language Model\textbfs (VLMs) such as GPT-4V have achieved remarkable success in generating comprehensive and nuanced responses. Researchers have proposed various benchmarks for evaluating the capabilities of VLMs. With the integration of visual and text inputs in VLMs, new security issues emerge, as malicious attackers can exploit multiple modalities to achieve their objectives. This has led to increasing attention on the vulnerabilities of VLMs to jailbreak. Most existing research focuses on generating adversarial images or nonsensical image to jailbreak these models. However, no researchers evaluate whether logic understanding capabilities of VLMs in flowchart can influence jailbreak. Therefore, to fill this gap, this paper first introduces a novel dataset Flow-JD specifically designed to evaluate the logic-based flowchart jailbreak capabilities of VLMs. We conduct an extensive evaluation on GPT-4o, GPT-4V, other 5 SOTA open source VLMs and the jailbreak rate is up to 92.8%. Our research reveals significant vulnerabilities in current VLMs concerning image-to-text jailbreak and these findings underscore the the urgency for the development of robust and effective future defenses.
♻ ☆ PCNN: Probable-Class Nearest-Neighbor Explanations Improve Fine-Grained Image Classification Accuracy for AIs and Humans
Nearest neighbors (NN) are traditionally used to compute final decisions, e.g., in Support Vector Machines or k-NN classifiers, and to provide users with explanations for the model's decision. In this paper, we show a novel utility of nearest neighbors: To improve predictions of a frozen, pretrained image classifier C. We leverage an image comparator S that (1) compares the input image with NN images from the top-K most probable classes given by C; and (2) uses scores from S to weight the confidence scores of C to refine predictions. Our method consistently improves fine-grained image classification accuracy on CUB-200, Cars-196, and Dogs-120. Also, a human study finds that showing users our probable-class nearest neighbors (PCNN) reduces over-reliance on AI, thus improving their decision accuracy over prior work which only shows only the most-probable (top-1) class examples.
comment: Accepted to Transaction on Machine Learning Research 2024; 50 pages, 35 Figures & 17 Tables
♻ ☆ Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring
We are interested in developing an automated system for detection of organized movements in human crowds. Computer vision algorithms can extract information from videos of crowded scenes and automatically detect and track groups of individuals undergoing organized motion that represents an anomalous behavior in the context of conflict aversion. Our system can detect organized cohorts against the background of randomly moving objects and we can estimate the number of participants in an organized cohort, the speed and direction of motion in real time, within three to four video frames, which is less than one second from the onset of motion captured on a CCTV. We have performed preliminary analysis in this context in biological cell data containing up to four thousand objects per frame and will extend this numerically to a hundred-fold for public safety applications. We envisage using the existing infrastructure of video cameras for acquiring image datasets on-the-fly and deploying an easy-to-use data-driven software system for parsing of significant events by analyzing image sequences taken inside and outside of sports stadiums or other public venues. Other prospective users are organizers of political rallies, civic and wildlife organizations, security firms, and the military. We will optimize the performance of the software by implementing a classification method able to distinguish between activities posing a threat and those not posing a threat.
♻ ☆ What Color Scheme is More Effective in Assisting Readers to Locate Information in a Color-Coded Article? IEEE VIS 2024
Color coding, a technique assigning specific colors to cluster information types, has proven advantages in aiding human cognitive activities, especially reading and comprehension. The rise of Large Language Models (LLMs) has streamlined document coding, enabling simple automatic text labeling with various schemes. This has the potential to make color-coding more accessible and benefit more users. However, the impact of color choice on information seeking is understudied. We conducted a user study assessing various color schemes' effectiveness in LLM-coded text documents, standardizing contrast ratios to approximately 5.55:1 across schemes. Participants performed timed information-seeking tasks in color-coded scholarly abstracts. Results showed non-analogous and yellow-inclusive color schemes improved performance, with the latter also being more preferred by participants. These findings can inform better color scheme choices for text annotation. As LLMs advance document coding, we advocate for more research focusing on the "color" aspect of color-coding techniques.
comment: This paper will appear at IEEE VIS 2024
♻ ☆ Denoising Monte Carlo Renders with Diffusion Models
Physically-based renderings contain Monte-Carlo noise, with variance that increases as the number of rays per pixel decreases. This noise, while zero-mean for good modern renderers, can have heavy tails (most notably, for scenes containing specular or refractive objects). Learned methods for restoring low fidelity renders are highly developed, because suppressing render noise means one can save compute and use fast renders with few rays per pixel. We demonstrate that a diffusion model can denoise low fidelity renders successfully. Furthermore, our method can be conditioned on a variety of natural render information, and this conditioning helps performance. Quantitative experiments show that our method is competitive with SOTA across a range of sampling rates. Qualitative examination of the reconstructions suggests that the image prior applied by a diffusion method strongly favors reconstructions that are like real images -- so have straight shadow boundaries, curved specularities and no fireflies.
comment: 25 pages, 18 figures, 2 tables
Artificial Intelligence 133
☆ Advancing Humanoid Locomotion: Mastering Challenging Terrains with Denoising World Model Learning RSS
Humanoid robots, with their human-like skeletal structure, are especially suited for tasks in human-centric environments. However, this structure is accompanied by additional challenges in locomotion controller design, especially in complex real-world environments. As a result, existing humanoid robots are limited to relatively simple terrains, either with model-based control or model-free reinforcement learning. In this work, we introduce Denoising World Model Learning (DWL), an end-to-end reinforcement learning framework for humanoid locomotion control, which demonstrates the world's first humanoid robot to master real-world challenging terrains such as snowy and inclined land in the wild, up and down stairs, and extremely uneven terrains. All scenarios run the same learned neural network with zero-shot sim-to-real transfer, indicating the superior robustness and generalization capability of the proposed method.
comment: Robotics: Science and Systems (RSS), 2024. (Best Paper Award Finalist)
☆ K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences
The rapid advancement of visual generative models necessitates efficient and reliable evaluation methods. Arena platform, which gathers user votes on model comparisons, can rank models with human preferences. However, traditional Arena methods, while established, require an excessive number of comparisons for ranking to converge and are vulnerable to preference noise in voting, suggesting the need for better approaches tailored to contemporary evaluation challenges. In this paper, we introduce K-Sort Arena, an efficient and reliable platform based on a key insight: images and videos possess higher perceptual intuitiveness than texts, enabling rapid evaluation of multiple samples simultaneously. Consequently, K-Sort Arena employs K-wise comparisons, allowing K models to engage in free-for-all competitions, which yield much richer information than pairwise comparisons. To enhance the robustness of the system, we leverage probabilistic modeling and Bayesian updating techniques. We propose an exploration-exploitation-based matchmaking strategy to facilitate more informative comparisons. In our experiments, K-Sort Arena exhibits 16.3x faster convergence compared to the widely used ELO algorithm. To further validate the superiority and obtain a comprehensive leaderboard, we collect human feedback via crowdsourced evaluations of numerous cutting-edge text-to-image and text-to-video models. Thanks to its high efficiency, K-Sort Arena can continuously incorporate emerging models and update the leaderboard with minimal votes. Our project has undergone several months of internal testing and is now available at https://huggingface.co/spaces/ksort/K-Sort-Arena
comment: Project page: https://huggingface.co/spaces/ksort/K-Sort-Arena
☆ Temporal Ensemble Logic
We introduce Temporal Ensemble Logic (TEL), a monadic, first-order modal logic for linear-time temporal reasoning. TEL includes primitive temporal constructs such as ``always up to $t$ time later'' ($\Box_t$), ``sometimes before $t$ time in the future'' ($\Diamond_t$), and ``$t$-time later'' $\varphi_t$. TEL has been motivated from the requirement for rigor and reproducibility for cohort specification and discovery in clinical and population health research, to fill a gap in formalizing temporal reasoning in biomedicine. In this paper, we first introduce TEL in a general set up, with discrete and dense time as special cases. We then focus on the theoretical development of discrete TEL on the temporal domain of positive integers $\mathbb{N}^+$, denoted as ${\rm TEL}_{\mathbb{N}^+}$. ${\rm TEL}_{\mathbb{N}^+}$ is strictly more expressive than the standard monadic second order logic, characterized by B\"{u}chi automata. We present its formal semantics, a proof system, and provide a proof for the undecidability of the satisfiability of ${\rm TEL}_{\mathbb{N}^+}$. We also discuss expressiveness and decidability fragments for ${\rm TEL}_{\mathbb{N}^+}$, followed by illustrative applications.
comment: 47 pages, 2 figures
☆ Attend-Fusion: Efficient Audio-Visual Fusion for Video Classification
Exploiting both audio and visual modalities for video classification is a challenging task, as the existing methods require large model architectures, leading to high computational complexity and resource requirements. Smaller architectures, on the other hand, struggle to achieve optimal performance. In this paper, we propose Attend-Fusion, an audio-visual (AV) fusion approach that introduces a compact model architecture specifically designed to capture intricate audio-visual relationships in video data. Through extensive experiments on the challenging YouTube-8M dataset, we demonstrate that Attend-Fusion achieves an F1 score of 75.64\% with only 72M parameters, which is comparable to the performance of larger baseline models such as Fully-Connected Late Fusion (75.96\% F1 score, 341M parameters). Attend-Fusion achieves similar performance to the larger baseline model while reducing the model size by nearly 80\%, highlighting its efficiency in terms of model complexity. Our work demonstrates that the Attend-Fusion model effectively combines audio and visual information for video classification, achieving competitive performance with significantly reduced model size. This approach opens new possibilities for deploying high-performance video understanding systems in resource-constrained environments across various applications.
☆ Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence. However, realizing their efficiency benefits requires specialized hardware and a co-design approach that effectively leverages sparsity. We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency. We analyze the impact of static and dynamic sparsity, discuss the implications of different neuron models and encoding schemes, and investigate the need for adaptability in hardware designs. Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
☆ Social perception of faces in a vision-language model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
☆ Contextual Bandit with Herding Effects: Algorithms and Recommendation Applications
Contextual bandits serve as a fundamental algorithmic framework for optimizing recommendation decisions online. Though extensive attention has been paid to tailoring contextual bandits for recommendation applications, the "herding effects" in user feedback have been ignored. These herding effects bias user feedback toward historical ratings, breaking down the assumption of unbiased feedback inherent in contextual bandits. This paper develops a novel variant of the contextual bandit that is tailored to address the feedback bias caused by the herding effects. A user feedback model is formulated to capture this feedback bias. We design the TS-Conf (Thompson Sampling under Conformity) algorithm, which employs posterior sampling to balance the exploration and exploitation tradeoff. We prove an upper bound for the regret of the algorithm, revealing the impact of herding effects on learning speed. Extensive experiments on datasets demonstrate that TS-Conf outperforms four benchmark algorithms. Analysis reveals that TS-Conf effectively mitigates the negative impact of herding effects, resulting in faster learning and improved recommendation accuracy.
☆ CHARTOM: A Visual Theory-of-Mind Benchmark for Multimodal Large Language Models
We introduce CHARTOM, a visual theory-of-mind benchmark for multimodal large language models. CHARTOM consists of specially designed data visualizing charts. Given a chart, a language model needs to not only correctly comprehend the chart (the FACT question) but also judge if the chart will be misleading to a human reader (the MIND question). Both questions have significant societal benefits. We detail the construction of the CHARTOM benchmark including its calibration on human performance.
☆ MEDSAGE: Enhancing Robustness of Medical Dialogue Summarization to ASR Errors with LLM-generated Synthetic Dialogues
Automatic Speech Recognition (ASR) systems are pivotal in transcribing speech into text, yet the errors they introduce can significantly degrade the performance of downstream tasks like summarization. This issue is particularly pronounced in clinical dialogue summarization, a low-resource domain where supervised data for fine-tuning is scarce, necessitating the use of ASR models as black-box solutions. Employing conventional data augmentation for enhancing the noise robustness of summarization models is not feasible either due to the unavailability of sufficient medical dialogue audio recordings and corresponding ASR transcripts. To address this challenge, we propose MEDSAGE, an approach for generating synthetic samples for data augmentation using Large Language Models (LLMs). Specifically, we leverage the in-context learning capabilities of LLMs and instruct them to generate ASR-like errors based on a few available medical dialogue examples with audio recordings. Experimental results show that LLMs can effectively model ASR noise, and incorporating this noisy data into the training process significantly improves the robustness and accuracy of medical dialogue summarization systems. This approach addresses the challenges of noisy ASR outputs in critical applications, offering a robust solution to enhance the reliability of clinical dialogue summarization.
☆ Language-specific Calibration for Pruning Multilingual Language Models
Recent advances in large language model (LLM) pruning have shown state-of-the-art compression results in post-training and retraining-free settings while maintaining high predictive performance. However, such research mainly considers calibrating pruning using English text, despite the multilingual nature of modern LLMs and their frequent uses in non-English languages. In this paper, we set out to explore effective strategies for calibrating the pruning of multilingual language models. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse tasks, models, and state-of-the-art pruning techniques. Our results present practical suggestions, for example, calibrating in the target language can efficiently yield lower perplexity, but does not necessarily benefit downstream tasks. Our further analysis experiments unveil that calibration in the target language mainly contributes to preserving language-specific features related to fluency and coherence, but might not contribute to capturing language-agnostic features such as language understanding and reasoning. Last, we provide practical recommendations for future practitioners.
☆ Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs
Recent advancements in artificial intelligence have significantly improved the automatic generation of radiology reports. However, existing evaluation methods fail to reveal the models' understanding of radiological images and their capacity to achieve human-level granularity in descriptions. To bridge this gap, we introduce a system, named ReXKG, which extracts structured information from processed reports to construct a comprehensive radiology knowledge graph. We then propose three metrics to evaluate the similarity of nodes (ReXKG-NSC), distribution of edges (ReXKG-AMS), and coverage of subgraphs (ReXKG-SCS) across various knowledge graphs. We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models. Our study provides a deeper understanding of the capabilities and limitations of current AI models in radiology report generation, offering valuable insights for improving model performance and clinical applicability.
comment: Code is available at: https://github.com/rajpurkarlab/ReXKG
☆ Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning AAAI-2024
Spatio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management. However, existing methods are limited by their ability to handle large, complex datasets. To overcome this limitation, we introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods. We augment traditional methods with dynamic prompting and a grouped-query, multi-head attention mechanism to more effectively capture both intra-series and inter-series dependencies in evolving nonlinear time series data. In addition, we facilitate on-premises customization by fine-tuning smaller open-source LMs for time series trend analysis utilizing descriptions generated by open-source large LMs on consumer-grade hardware using Low-Rank Adaptation with Activation Memory Reduction (LoRA-AMR) technique to reduce computational overhead and activation storage memory demands while preserving inference latency. We combine language model processing for time series trend analysis with traditional time series representation learning method for cross-modal integration, achieving robust and accurate forecasts. The framework effectiveness is demonstrated through extensive experiments on various real-world datasets, outperforming existing methods by significant margins in terms of forecast accuracy.
comment: Paper published at the Deployable AI (DAI) workshop at AAAI-2024
☆ Probing Causality Manipulation of Large Language Models
Large language models (LLMs) have shown various ability on natural language processing, including problems about causality. It is not intuitive for LLMs to command causality, since pretrained models usually work on statistical associations, and do not focus on causes and effects in sentences. So that probing internal manipulation of causality is necessary for LLMs. This paper proposes a novel approach to probe causality manipulation hierarchically, by providing different shortcuts to models and observe behaviors. We exploit retrieval augmented generation (RAG) and in-context learning (ICL) for models on a designed causality classification task. We conduct experiments on mainstream LLMs, including GPT-4 and some smaller and domain-specific models. Our results suggest that LLMs can detect entities related to causality and recognize direct causal relationships. However, LLMs lack specialized cognition for causality, merely treating them as part of the global semantic of the sentence.
☆ SelEx: Self-Expertise in Fine-Grained Generalized Category Discovery ECCV 2024
In this paper, we address Generalized Category Discovery, aiming to simultaneously uncover novel categories and accurately classify known ones. Traditional methods, which lean heavily on self-supervision and contrastive learning, often fall short when distinguishing between fine-grained categories. To address this, we introduce a novel concept called `self-expertise', which enhances the model's ability to recognize subtle differences and uncover unknown categories. Our approach combines unsupervised and supervised self-expertise strategies to refine the model's discernment and generalization. Initially, hierarchical pseudo-labeling is used to provide `soft supervision', improving the effectiveness of self-expertise. Our supervised technique differs from traditional methods by utilizing more abstract positive and negative samples, aiding in the formation of clusters that can generalize to novel categories. Meanwhile, our unsupervised strategy encourages the model to sharpen its category distinctions by considering within-category examples as `hard' negatives. Supported by theoretical insights, our empirical results showcase that our method outperforms existing state-of-the-art techniques in Generalized Category Discovery across several fine-grained datasets. Our code is available at: https://github.com/SarahRastegar/SelEx.
comment: Accepted by ECCV 2024
☆ GR-MG: Leveraging Partially Annotated Data via Multi-Modal Goal Conditioned Policy
The robotics community has consistently aimed to achieve generalizable robot manipulation with flexible natural language instructions. One of the primary challenges is that obtaining robot data fully annotated with both actions and texts is time-consuming and labor-intensive. However, partially annotated data, such as human activity videos without action labels and robot play data without language labels, is much easier to collect. Can we leverage these data to enhance the generalization capability of robots? In this paper, we propose GR-MG, a novel method which supports conditioning on both a language instruction and a goal image. During training, GR-MG samples goal images from trajectories and conditions on both the text and the goal image or solely on the image when text is unavailable. During inference, where only the text is provided, GR-MG generates the goal image via a diffusion-based image-editing model and condition on both the text and the generated image. This approach enables GR-MG to leverage large amounts of partially annotated data while still using language to flexibly specify tasks. To generate accurate goal images, we propose a novel progress-guided goal image generation model which injects task progress information into the generation process, significantly improving the fidelity and the performance. In simulation experiments, GR-MG improves the average number of tasks completed in a row of 5 from 3.35 to 4.04. In real-robot experiments, GR-MG is able to perform 47 different tasks and improves the success rate from 62.5% to 75.0% and 42.4% to 57.6% in simple and generalization settings, respectively. Code and checkpoints will be available at the project page: https://gr-mg.github.io/.
comment: 9 pages, 7 figures, letter
☆ SWE-bench-java: A GitHub Issue Resolving Benchmark for Java
GitHub issue resolving is a critical task in software engineering, recently gaining significant attention in both industry and academia. Within this task, SWE-bench has been released to evaluate issue resolving capabilities of large language models (LLMs), but has so far only focused on Python version. However, supporting more programming languages is also important, as there is a strong demand in industry. As a first step toward multilingual support, we have developed a Java version of SWE-bench, called SWE-bench-java. We have publicly released the dataset, along with the corresponding Docker-based evaluation environment and leaderboard, which will be continuously maintained and updated in the coming months. To verify the reliability of SWE-bench-java, we implement a classic method SWE-agent and test several powerful LLMs on it. As is well known, developing a high-quality multi-lingual benchmark is time-consuming and labor-intensive, so we welcome contributions through pull requests or collaboration to accelerate its iteration and refinement, paving the way for fully automated programming.
comment: This work is in progress
☆ Assessing Contamination in Large Language Models: Introducing the LogProber method
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. Most recent works in the field are not tailored to quantify contamination on short sequences of text like we find in psychology questionnaires. In the present paper we introduce LogProber, a novel, efficient, algorithm that we show able to detect contamination using token probability in given sentences. In the second part we investigate the limitations of the method and discuss how different training methods can contaminate models without leaving traces in the token probabilities.
☆ Machine Learning for Quantifier Selection in cvc5
In this work we considerably improve the state-of-the-art SMT solving on first-order quantified problems by efficient machine learning guidance of quantifier selection. Quantifiers represent a significant challenge for SMT and are technically a source of undecidability. In our approach, we train an efficient machine learning model that informs the solver which quantifiers should be instantiated and which not. Each quantifier may be instantiated multiple times and the set of the active quantifiers changes as the solving progresses. Therefore, we invoke the ML predictor many times, during the whole run of the solver. To make this efficient, we use fast ML models based on gradient boosting decision trees. We integrate our approach into the state-of-the-art cvc5 SMT solver and show a considerable increase of the system's holdout-set performance after training it on a large set of first-order problems collected from the Mizar Mathematical Library.
☆ Equivariant Reinforcement Learning under Partial Observability
Incorporating inductive biases is a promising approach for tackling challenging robot learning domains with sample-efficient solutions. This paper identifies partially observable domains where symmetries can be a useful inductive bias for efficient learning. Specifically, by encoding the equivariance regarding specific group symmetries into the neural networks, our actor-critic reinforcement learning agents can reuse solutions in the past for related scenarios. Consequently, our equivariant agents outperform non-equivariant approaches significantly in terms of sample efficiency and final performance, demonstrated through experiments on a range of robotic tasks in simulation and real hardware.
comment: Conference on Robot Learning, 2023
☆ PHEVA: A Privacy-preserving Human-centric Video Anomaly Detection Dataset
PHEVA, a Privacy-preserving Human-centric Ethical Video Anomaly detection dataset. By removing pixel information and providing only de-identified human annotations, PHEVA safeguards personally identifiable information. The dataset includes seven indoor/outdoor scenes, featuring one novel, context-specific camera, and offers over 5x the pose-annotated frames compared to the largest previous dataset. This study benchmarks state-of-the-art methods on PHEVA using a comprehensive set of metrics, including the 10% Error Rate (10ER), a metric used for anomaly detection for the first time providing insights relevant to real-world deployment. As the first of its kind, PHEVA bridges the gap between conventional training and real-world deployment by introducing continual learning benchmarks, with models outperforming traditional methods in 82.14% of cases. The dataset is publicly available at https://github.com/TeCSAR-UNCC/PHEVA.git.
☆ Streamline tractography of the fetal brain in utero with machine learning
Diffusion-weighted magnetic resonance imaging (dMRI) is the only non-invasive tool for studying white matter tracts and structural connectivity of the brain. These assessments rely heavily on tractography techniques, which reconstruct virtual streamlines representing white matter fibers. Much effort has been devoted to improving tractography methodology for adult brains, while tractography of the fetal brain has been largely neglected. Fetal tractography faces unique difficulties due to low dMRI signal quality, immature and rapidly developing brain structures, and paucity of reference data. This work presents the first machine learning model for fetal tractography. The model input consists of five sources of information: (1) Fiber orientation, inferred from a diffusion tensor fit to the dMRI signal; (2) Directions of recent propagation steps; (3) Global spatial information, encoded as distances to keypoints in the brain cortex; (4) Tissue segmentation information; and (5) Prior information about the expected local fiber orientations supplied with an atlas. In order to mitigate the local tensor estimation error, a large spatial context around the current point in the diffusion tensor image is encoded using convolutional and attention neural network modules. Moreover, the diffusion tensor information at a hypothetical next point is included in the model input. Filtering rules based on anatomically constrained tractography are applied to prune implausible streamlines. We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks. Results show that our proposed method achieves superior performance across all evaluated tracts. The new method can significantly advance the capabilities of dMRI for studying normal and abnormal brain development in utero.
☆ Claim Verification in the Age of Large Language Models: A Survey
The large and ever-increasing amount of data available on the Internet coupled with the laborious task of manual claim and fact verification has sparked the interest in the development of automated claim verification systems. Several deep learning and transformer-based models have been proposed for this task over the years. With the introduction of Large Language Models (LLMs) and their superior performance in several NLP tasks, we have seen a surge of LLM-based approaches to claim verification along with the use of novel methods such as Retrieval Augmented Generation (RAG). In this survey, we present a comprehensive account of recent claim verification frameworks using LLMs. We describe the different components of the claim verification pipeline used in these frameworks in detail including common approaches to retrieval, prompting, and fine-tuning. Finally, we describe publicly available English datasets created for this task.
☆ Logic interpretations of ANN partition cells
Consider a binary classification problem solved using a feed-forward artificial neural network (ANN). Let the ANN be composed of a ReLU layer and several linear layers (convolution, sum-pooling, or fully connected). We assume the network was trained with high accuracy. Despite numerous suggested approaches, interpreting an artificial neural network remains challenging for humans. For a new method of interpretation, we construct a bridge between a simple ANN and logic. As a result, we can analyze and manipulate the semantics of an ANN using the powerful tool set of logic. To achieve this, we decompose the input space of the ANN into several network partition cells. Each network partition cell represents a linear combination that maps input values to a classifying output value. For interpreting the linear map of a partition cell using logic expressions, we suggest minterm values as the input of a simple ANN. We derive logic expressions representing interaction patterns for separating objects classified as 1 from those classified as 0. To facilitate an interpretation of logic expressions, we present them as binary logic trees.
☆ LLM-3D Print: Large Language Models To Monitor and Control 3D Printing
Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM). Fused Deposition Modeling (FDM), a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion, posing a significant challenge to traditional subtractive methods. However, the susceptibility of material extrusion techniques to errors often requires expert intervention to detect and mitigate defects that can severely compromise product quality. While automated error detection and machine learning models exist, their generalizability across diverse 3D printer setups, firmware, and sensors is limited, and deep learning methods require extensive labeled datasets, hindering scalability and adaptability. To address these challenges, we present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects. The LLM evaluates print quality by analyzing images captured after each layer or print segment, identifying failure modes and querying the printer for relevant parameters. It then generates and executes a corrective action plan. We validated the effectiveness of the proposed framework in identifying defects by comparing it against a control group of engineers with diverse AM expertise. Our evaluation demonstrated that LLM-based agents not only accurately identify common 3D printing errors, such as inconsistent extrusion, stringing, warping, and layer adhesion, but also effectively determine the parameters causing these failures and autonomously correct them without any need for human intervention.
☆ May the Forgetting Be with You: Alternate Replay for Learning with Noisy Labels BMVC 2024
Forgetting presents a significant challenge during incremental training, making it particularly demanding for contemporary AI systems to assimilate new knowledge in streaming data environments. To address this issue, most approaches in Continual Learning (CL) rely on the replay of a restricted buffer of past data. However, the presence of noise in real-world scenarios, where human annotation is constrained by time limitations or where data is automatically gathered from the web, frequently renders these strategies vulnerable. In this study, we address the problem of CL under Noisy Labels (CLN) by introducing Alternate Experience Replay (AER), which takes advantage of forgetting to maintain a clear distinction between clean, complex, and noisy samples in the memory buffer. The idea is that complex or mislabeled examples, which hardly fit the previously learned data distribution, are most likely to be forgotten. To grasp the benefits of such a separation, we equip AER with Asymmetric Balanced Sampling (ABS): a new sample selection strategy that prioritizes purity on the current task while retaining relevant samples from the past. Through extensive computational comparisons, we demonstrate the effectiveness of our approach in terms of both accuracy and purity of the obtained buffer, resulting in a remarkable average gain of 4.71% points in accuracy with respect to existing loss-based purification strategies. Code is available at https://github.com/aimagelab/mammoth.
comment: 25 pages, 5 figures. Accepted at the The 35th British Machine Vision Conference 2024 (BMVC 2024), Glasgow, UK
☆ Uncertainties of Latent Representations in Computer Vision
Uncertainty quantification is a key pillar of trustworthy machine learning. It enables safe reactions under unsafe inputs, like predicting only when the machine learning model detects sufficient evidence, discarding anomalous data, or emitting warnings when an error is likely to be inbound. This is particularly crucial in safety-critical areas like medical image classification or self-driving cars. Despite the plethora of proposed uncertainty quantification methods achieving increasingly higher scores on performance benchmarks, uncertainty estimates are often shied away from in practice. Many machine learning projects start from pretrained latent representations that come without uncertainty estimates. Uncertainties would need to be trained by practitioners on their own, which is notoriously difficult and resource-intense. This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models. Besides proposing approaches rooted in probability and decision theory, such as Monte-Carlo InfoNCE (MCInfoNCE) and loss prediction, we delve into both theoretical and empirical questions. We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct. We also provide an uncertainty-aware representation learning (URL) benchmark to compare these unobservables against observable ground-truths. Finally, we compile our findings to pretrain lightweight representation uncertainties on large-scale computer vision models that transfer to unseen datasets in a zero-shot manner. Our findings do not only advance the current theoretical understanding of uncertainties over latent variables, but also facilitate the access to uncertainty quantification for future researchers inside and outside the field, enabling straightforward but trustworthy machine learning.
comment: Doctoral thesis
☆ Beyond Few-shot Object Detection: A Detailed Survey
Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.
comment: 43 pages, 8 figures
☆ Celtibero: Robust Layered Aggregation for Federated Learning
Federated Learning (FL) is an innovative approach to distributed machine learning. While FL offers significant privacy advantages, it also faces security challenges, particularly from poisoning attacks where adversaries deliberately manipulate local model updates to degrade model performance or introduce hidden backdoors. Existing defenses against these attacks have been shown to be effective when the data on the nodes is identically and independently distributed (i.i.d.), but they often fail under less restrictive, non-i.i.d data conditions. To overcome these limitations, we introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation. Through extensive experiments on the MNIST and IMDB datasets, we demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks. Our results highlight the superiority of Celtibero over existing defenses such as FL-Defender, LFighter, and FLAME, establishing it as a highly effective solution for securing federated learning systems against sophisticated poisoning attacks.
☆ DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification ISWC
We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
comment: 8 pages, 4 figures, accepted for the LLMs4OL challenge at the International Semantic Web Conference (ISWC) 2024
☆ Gallery-Aware Uncertainty Estimation For Open-Set Face Recognition
Accurately estimating image quality and model robustness improvement are critical challenges in unconstrained face recognition, which can be addressed through uncertainty estimation via probabilistic face embeddings. Previous research mainly focused on uncertainty estimation in face verification, leaving the open-set face recognition task underexplored. In open-set face recognition, one seeks to classify an image, which could also be unknown. Here, the low variance of probabilistic embedding does not imply a low error probability: an image embedding could be close to several classes in a gallery, thus yielding high uncertainty. We propose a method aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of the face embeddings. To detect both types, we use a Bayesian probabilistic model of embedding distribution, which provides a principled uncertainty estimate. Challenging open-set face recognition datasets, such as IJB-C, serve as a testbed for our method. We also propose a new open-set recognition protocol for whale and dolphin identification. The proposed approach better identifies recognition errors than uncertainty estimation methods based solely on image quality.
☆ Fact Probability Vector Based Goal Recognition
We present a new approach to goal recognition that involves comparing observed facts with their expected probabilities. These probabilities depend on a specified goal g and initial state s0. Our method maps these probabilities and observed facts into a real vector space to compute heuristic values for potential goals. These values estimate the likelihood of a given goal being the true objective of the observed agent. As obtaining exact expected probabilities for observed facts in an observation sequence is often practically infeasible, we propose and empirically validate a method for approximating these probabilities. Our empirical results show that the proposed approach offers improved goal recognition precision compared to state-of-the-art techniques while reducing computational complexity.
comment: Will be presented at ECAI 2024
☆ MagicMan: Generative Novel View Synthesis of Humans with 3D-Aware Diffusion and Iterative Refinement
Existing works in single-image human reconstruction suffer from weak generalizability due to insufficient training data or 3D inconsistencies for a lack of comprehensive multi-view knowledge. In this paper, we introduce MagicMan, a human-specific multi-view diffusion model designed to generate high-quality novel view images from a single reference image. As its core, we leverage a pre-trained 2D diffusion model as the generative prior for generalizability, with the parametric SMPL-X model as the 3D body prior to promote 3D awareness. To tackle the critical challenge of maintaining consistency while achieving dense multi-view generation for improved 3D human reconstruction, we first introduce hybrid multi-view attention to facilitate both efficient and thorough information interchange across different views. Additionally, we present a geometry-aware dual branch to perform concurrent generation in both RGB and normal domains, further enhancing consistency via geometry cues. Last but not least, to address ill-shaped issues arising from inaccurate SMPL-X estimation that conflicts with the reference image, we propose a novel iterative refinement strategy, which progressively optimizes SMPL-X accuracy while enhancing the quality and consistency of the generated multi-views. Extensive experimental results demonstrate that our method significantly outperforms existing approaches in both novel view synthesis and subsequent 3D human reconstruction tasks.
comment: Project Page: https://thuhcsi.github.io/MagicMan
☆ Representative Arm Identification: A fixed confidence approach to identify cluster representatives
We study the representative arm identification (RAI) problem in the multi-armed bandits (MAB) framework, wherein we have a collection of arms, each associated with an unknown reward distribution. An underlying instance is defined by a partitioning of the arms into clusters of predefined sizes, such that for any $j > i$, all arms in cluster $i$ have a larger mean reward than those in cluster $j$. The goal in RAI is to reliably identify a certain prespecified number of arms from each cluster, while using as few arm pulls as possible. The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$, as well as both full and coarse ranking. We start by providing an instance-dependent lower bound on the sample complexity of any feasible algorithm for this setting. We then propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity, which orderwise match the lower bound. Finally, we do an empirical comparison of both algorithms along with an LUCB-type alternative on both synthetic and real-world datasets, and demonstrate the superior performance of our proposed schemes in most cases.
comment: We analyse a clustered multi-armed bandit formulation, where the learning objective is to identify representative arms from each cluster, in a fixed confidence setting
DynamicRouteGPT: A Real-Time Multi-Vehicle Dynamic Navigation Framework Based on Large Language Models
Real-time dynamic path planning in complex traffic environments presents challenges, such as varying traffic volumes and signal wait times. Traditional static routing algorithms like Dijkstra and A* compute shortest paths but often fail under dynamic conditions. Recent Reinforcement Learning (RL) approaches offer improvements but tend to focus on local optima, risking dead-ends or boundary issues. This paper proposes a novel approach based on causal inference for real-time dynamic path planning, balancing global and local optimality. We first use the static Dijkstra algorithm to compute a globally optimal baseline path. A distributed control strategy then guides vehicles along this path. At intersections, DynamicRouteGPT performs real-time decision-making for local path selection, considering real-time traffic, driving preferences, and unexpected events. DynamicRouteGPT integrates Markov chains, Bayesian inference, and large-scale pretrained language models like Llama3 8B to provide an efficient path planning solution. It dynamically adjusts to traffic scenarios and driver preferences and requires no pre-training, offering broad applicability across road networks. A key innovation is the construction of causal graphs for counterfactual reasoning, optimizing path decisions. Experimental results show that our method achieves state-of-the-art performance in real-time dynamic path planning for multiple vehicles while providing explainable path selections, offering a novel and efficient solution for complex traffic environments.
comment: This paper is 12 pages long and represents the initial draft, version 1
☆ Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning
Efficient navigation in dynamic environments is crucial for autonomous robots interacting with various environmental entities, including both moving agents and static obstacles. In this study, we present a novel methodology that enhances the robot's interaction with different types of agents and obstacles based on specific safety requirements. This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation. We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles, and additionally encourages the robot's proximity to the goal. It also penalizes the robot for being close to entities, and the safe distance also depends on the entity type. Additionally, we propose an optimized algorithm for training and testing, which significantly accelerates train, validation, and test steps and enables training in complex environments. Comprehensive experiments conducted using simulation demonstrate that our approach consistently outperforms conventional navigation and collision avoidance methods, including state-of-the-art techniques. To sum up, this work contributes to enhancing the safety and efficiency of navigation systems for autonomous robots in dynamic, crowded environments.
comment: 14 pages, 5 figures
☆ I2EBench: A Comprehensive Benchmark for Instruction-based Image Editing
Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new IIE models. The code, dataset and generated images from all IIE models are provided in github: https://github.com/cocoshe/I2EBench.
comment: Tech report, 39 pages, 41 figures
Dynamic Pricing for Electric Vehicle Charging
Dynamic pricing is a promising strategy to address the challenges of smart charging, as traditional time-of-use (ToU) rates and stationary pricing (SP) do not dynamically react to changes in operating conditions, reducing revenue for charging station (CS) vendors and affecting grid stability. Previous studies evaluated single objectives or linear combinations of objectives for EV CS pricing solutions, simplifying trade-offs and preferences among objectives. We develop a novel formulation for the dynamic pricing problem by addressing multiple conflicting objectives efficiently instead of solely focusing on one objective or metric, as in earlier works. We find optimal trade-offs or Pareto solutions efficiently using Non-dominated Sorting Genetic Algorithms (NSGA) II and NSGA III. A dynamic pricing model quantifies the relationship between demand and price while simultaneously solving multiple conflicting objectives, such as revenue, quality of service (QoS), and peak-to-average ratios (PAR). A single method can only address some of the above aspects of dynamic pricing comprehensively. We present a three-part dynamic pricing approach using a Bayesian model, multi-objective optimization, and multi-criteria decision-making (MCDM) using pseudo-weight vectors. To address the research gap in CS pricing, our method selects solutions using revenue, QoS, and PAR metrics simultaneously. Two California charging sites' real-world data validates our approach.
comment: 12 pages
☆ Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning SC'24
The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
comment: This is the preprint version of the paper accepted for presentation at the 2024 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'24). \c{opyright} 2024 IEEE. Personal use of this material is permitted. For other uses, permission from IEEE must be obtained. Please refer to IEEE Xplore for the final published version
☆ Explaining Vision-Language Similarities in Dual Encoders with Feature-Pair Attributions
Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and learn similarities between them. However, it is not understood how such models compare two inputs. Here, we address this research gap with two contributions. First, we derive a method to attribute predictions of any differentiable dual encoder onto feature-pair interactions between its inputs. Second, we apply our method to CLIP-type models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. However, this visual-linguistic grounding ability heavily varies between object classes, depends on the training data distribution, and largely improves after in-domain training. Using our method we can identify knowledge gaps about specific object classes in individual models and can monitor their improvement upon fine-tuning.
☆ Exploring the Potential of Large Language Models for Heterophilic Graphs
Graph Neural Networks (GNNs) are essential for various graph-based learning tasks. Notably, classical GNN architectures operate under the assumption of homophily, which posits that connected nodes are likely to share similar features. However, this assumption limits the effectiveness of GNNs in handling heterophilic graphs where connected nodes often exhibit dissimilar characteristics. Existing approaches for homophily graphs such as non-local neighbor extension and architectural refinement overlook the rich textual data associated with nodes, which could unlock deeper insights into these heterophilic contexts. With advancements in Large Language Models (LLMs), there is significant promise to enhance GNNs by leveraging the extensive open-world knowledge within LLMs to more effectively interpret and utilize textual data for characterizing heterophilic graphs. In this work, we explore the potential of LLMs for modeling heterophilic graphs and propose a novel two-stage framework: LLM-enhanced edge discriminator and LLM-guided edge reweighting. Specifically, in the first stage, we fine-tune the LLM to better identify homophilic and heterophilic edges based on the textual information of their nodes. In the second stage, we adaptively manage message propagation in GNNs for different edge types based on node features, structures, and heterophilic or homophilic characteristics. To cope with the computational demands when deploying LLMs in practical scenarios, we further explore model distillation techniques to fine-tune smaller, more efficient models that maintain competitive performance. Extensive experiments validate the effectiveness of our framework, demonstrating the feasibility of using LLMs to enhance GNNs for node classification on heterophilic graphs.
comment: Under review
☆ Contrastive Learning Subspace for Text Clustering
Contrastive learning has been frequently investigated to learn effective representations for text clustering tasks. While existing contrastive learning-based text clustering methods only focus on modeling instance-wise semantic similarity relationships, they ignore contextual information and underlying relationships among all instances that needs to be clustered. In this paper, we propose a novel text clustering approach called Subspace Contrastive Learning (SCL) which models cluster-wise relationships among instances. Specifically, the proposed SCL consists of two main modules: (1) a self-expressive module that constructs virtual positive samples and (2) a contrastive learning module that further learns a discriminative subspace to capture task-specific cluster-wise relationships among texts. Experimental results show that the proposed SCL method not only has achieved superior results on multiple task clustering datasets but also has less complexity in positive sample construction.
☆ Exploring GPU-to-GPU Communication: Insights into Supercomputer Interconnects
Multi-GPU nodes are increasingly common in the rapidly evolving landscape of exascale supercomputers. On these systems, GPUs on the same node are connected through dedicated networks, with bandwidths up to a few terabits per second. However, gauging performance expectations and maximizing system efficiency is challenging due to different technologies, design options, and software layers. This paper comprehensively characterizes three supercomputers - Alps, Leonardo, and LUMI - each with a unique architecture and design. We focus on performance evaluation of intra-node and inter-node interconnects on up to 4096 GPUs, using a mix of intra-node and inter-node benchmarks. By analyzing its limitations and opportunities, we aim to offer practical guidance to researchers, system architects, and software developers dealing with multi-GPU supercomputing. Our results show that there is untapped bandwidth, and there are still many opportunities for optimization, ranging from network to software optimization.
☆ Revisiting Vacuous Reduct Semantics for Abstract Argumentation (Extended Version)
We consider the notion of a vacuous reduct semantics for abstract argumentation frameworks, which, given two abstract argumentation semantics {\sigma} and {\tau}, refines {\sigma} (base condition) by accepting only those {\sigma}-extensions that have no non-empty {\tau}-extension in their reduct (vacuity condition). We give a systematic overview on vacuous reduct semantics resulting from combining different admissibility-based and conflict-free semantics and present a principle-based analysis of vacuous reduct semantics in general. We provide criteria for the inheritance of principle satisfaction by a vacuous reduct semantics from its base and vacuity condition for established as well as recently introduced principles in the context of weak argumentation semantics. We also conduct a principle-based analysis for the special case of undisputed semantics.
comment: The paper has been accepted at ECAI 2024, this is an extended version including proofs of technical results
☆ HAPM -- Hardware Aware Pruning Method for CNN hardware accelerators in resource constrained devices
During the last years, algorithms known as Convolutional Neural Networks (CNNs) had become increasingly popular, expanding its application range to several areas. In particular, the image processing field has experienced a remarkable advance thanks to this algorithms. In IoT, a wide research field aims to develop hardware capable of execute them at the lowest possible energy cost, but keeping acceptable image inference time. One can get around this apparently conflicting objectives by applying design and training techniques. The present work proposes a generic hardware architecture ready to be implemented on FPGA devices, supporting a wide range of configurations which allows the system to run different neural network architectures, dynamically exploiting the sparsity caused by pruning techniques in the mathematical operations present in this kind of algorithms. The inference speed of the design is evaluated over different resource constrained FPGA devices. Finally, the standard pruning algorithm is compared against a custom pruning technique specifically designed to exploit the scheduling properties of this hardware accelerator. We demonstrate that our hardware-aware pruning algorithm achieves a remarkable improvement of a 45 % in inference time compared to a network pruned using the standard algorithm.
comment: 8 pages, 7 figure, thesis for the title of Electronic Engineer attained in 2021 at the Universidad Tecnologica Nacional (UTN), Argentina
☆ Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks
In recent years, numerous large-scale cyberattacks have exploited Internet of Things (IoT) devices, a phenomenon that is expected to escalate with the continuing proliferation of IoT technology. Despite considerable efforts in attack detection, intrusion detection systems remain mostly reactive, responding to specific patterns or observed anomalies. This work proposes a proactive approach to anticipate and mitigate malicious activities before they cause damage. This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks. The framework incorporates two LLMs in a feedback loop: a fine-tuned Generative Pre-trained Transformer (GPT) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) for evaluating the predicted traffic. The LSTM classifier model then identifies malicious packets among these predictions. Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%, offering a robust solution to IoT cybersecurity challenges.
☆ PAGE: Parametric Generative Explainer for Graph Neural Network
This article introduces PAGE, a parameterized generative interpretive framework. PAGE is capable of providing faithful explanations for any graph neural network without necessitating prior knowledge or internal details. Specifically, we train the auto-encoder to generate explanatory substructures by designing appropriate training strategy. Due to the dimensionality reduction of features in the latent space of the auto-encoder, it becomes easier to extract causal features leading to the model's output, which can be easily employed to generate explanations. To accomplish this, we introduce an additional discriminator to capture the causality between latent causal features and the model's output. By designing appropriate optimization objectives, the well-trained discriminator can be employed to constrain the encoder in generating enhanced causal features. Finally, these features are mapped to substructures of the input graph through the decoder to serve as explanations. Compared to existing methods, PAGE operates at the sample scale rather than nodes or edges, eliminating the need for perturbation or encoding processes as seen in previous methods. Experimental results on both artificially synthesized and real-world datasets demonstrate that our approach not only exhibits the highest faithfulness and accuracy but also significantly outperforms baseline models in terms of efficiency.
☆ MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents
Machine learning research, crucial for technological advancements and innovation, often faces significant challenges due to its inherent complexity, slow pace of experimentation, and the necessity for specialized expertise. Motivated by this, we present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot), designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents. The framework consists of three phases: research idea generation, experiment implementation, and implementation execution. First, existing research papers are used to generate hypotheses and experimental plans vis IdeaAgent powered by LLMs. Next, the implementation generation phase translates these plans into executables with ExperimentAgent. This phase leverages retrieved prototype code and optionally retrieves candidate models and data. Finally, the execution phase, also managed by ExperimentAgent, involves running experiments with mechanisms for human feedback and iterative debugging to enhance the likelihood of achieving executable research outcomes. We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
☆ SurGen: Text-Guided Diffusion Model for Surgical Video Generation
Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
☆ Video-CCAM: Enhancing Video-Language Understanding with Causal Cross-Attention Masks for Short and Long Videos
Multi-modal large language models (MLLMs) have demonstrated considerable potential across various downstream tasks that require cross-domain knowledge. MLLMs capable of processing videos, known as Video-MLLMs, have attracted broad interest in video-language understanding. However, videos, especially long videos, contain more visual tokens than images, making them difficult for LLMs to process. Existing works either downsample visual features or extend the LLM context size, risking the loss of high-resolution information or slowing down inference speed. To address these limitations, we apply cross-attention layers in the intermediate projector between the visual encoder and the large language model (LLM). As the naive cross-attention mechanism is insensitive to temporal order, we further introduce causal cross-attention masks (CCAMs) within the cross-attention layers. This Video-MLLM, named Video-CCAM, is trained in a straightforward two-stage fashion: feature alignment and visual instruction tuning. We develop several Video-CCAM models based on LLMs of different sizes (4B, 9B, and 14B). Video-CCAM proves to be a robust Video-MLLM and shows outstanding performance from short videos to long ones. Among standard video benchmarks like MVBench and VideoChatGPT-QA, Video-CCAM shows outstanding performances (1st/2nd/3rd in MVBench and TGIF-QA, 2nd/3rd/4th in MSVD-QA, MSRVTT-QA, and ActivityNet-QA). In benchmarks encompassing long videos, Video-CCAM models can be directly adapted to long video understanding and still achieve exceptional scores despite being trained solely with images and 16-frame videos. Using 96 frames (6$\times$ the training number of frames), Video-CCAM models rank 1st/2nd/3rd in VideoVista and 1st/2nd/4th in MLVU among all open-source Video-MLLMs, respectively. The code is publicly available in \url{https://github.com/QQ-MM/Video-CCAM}.
comment: 10 pages, 5 figures
☆ Pixel-Aligned Multi-View Generation with Depth Guided Decoder
The task of image-to-multi-view generation refers to generating novel views of an instance from a single image. Recent methods achieve this by extending text-to-image latent diffusion models to multi-view version, which contains an VAE image encoder and a U-Net diffusion model. Specifically, these generation methods usually fix VAE and finetune the U-Net only. However, the significant downscaling of the latent vectors computed from the input images and independent decoding leads to notable pixel-level misalignment across multiple views. To address this, we propose a novel method for pixel-level image-to-multi-view generation. Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model. Specifically, we introduce a depth-truncated epipolar attention, enabling the model to focus on spatially adjacent regions while remaining memory efficient. Applying depth-truncated attn is challenging during inference as the ground-truth depth is usually difficult to obtain and pre-trained depth estimation models is hard to provide accurate depth. Thus, to enhance the generalization to inaccurate depth when ground truth depth is missing, we perturb depth inputs during training. During inference, we employ a rapid multi-view to 3D reconstruction approach, NeuS, to obtain coarse depth for the depth-truncated epipolar attention. Our model enables better pixel alignment across multi-view images. Moreover, we demonstrate the efficacy of our approach in improving downstream multi-view to 3D reconstruction tasks.
☆ Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning
In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.
comment: 4 pages, 2 figures, IEEE-ICKII-2024
☆ LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models
The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of $5\%$ in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
☆ Dual-CBA: Improving Online Continual Learning via Dual Continual Bias Adaptors from a Bi-level Optimization Perspective
In online continual learning (CL), models trained on changing distributions easily forget previously learned knowledge and bias toward newly received tasks. To address this issue, we present Continual Bias Adaptor (CBA), a bi-level framework that augments the classification network to adapt to catastrophic distribution shifts during training, enabling the network to achieve a stable consolidation of all seen tasks. However, the CBA module adjusts distribution shifts in a class-specific manner, exacerbating the stability gap issue and, to some extent, fails to meet the need for continual testing in online CL. To mitigate this challenge, we further propose a novel class-agnostic CBA module that separately aggregates the posterior probabilities of classes from new and old tasks, and applies a stable adjustment to the resulting posterior probabilities. We combine the two kinds of CBA modules into a unified Dual-CBA module, which thus is capable of adapting to catastrophic distribution shifts and simultaneously meets the real-time testing requirements of online CL. Besides, we propose Incremental Batch Normalization (IBN), a tailored BN module to re-estimate its population statistics for alleviating the feature bias arising from the inner loop optimization problem of our bi-level framework. To validate the effectiveness of the proposed method, we theoretically provide some insights into how it mitigates catastrophic distribution shifts, and empirically demonstrate its superiority through extensive experiments based on four rehearsal-based baselines and three public continual learning benchmarks.
☆ Automatic Medical Report Generation: Methods and Applications
The increasing demand for medical imaging has surpassed the capacity of available radiologists, leading to diagnostic delays and potential misdiagnoses. Artificial intelligence (AI) techniques, particularly in automatic medical report generation (AMRG), offer a promising solution to this dilemma. This review comprehensively examines AMRG methods from 2021 to 2024. It (i) presents solutions to primary challenges in this field, (ii) explores AMRG applications across various imaging modalities, (iii) introduces publicly available datasets, (iv) outlines evaluation metrics, (v) identifies techniques that significantly enhance model performance, and (vi) discusses unresolved issues and potential future research directions. This paper aims to provide a comprehensive understanding of the existing literature and inspire valuable future research.
comment: 42 pages and 9 figures
☆ Focused Large Language Models are Stable Many-Shot Learners
In-Context Learning (ICL) enables large language models (LLMs) to achieve rapid task adaptation by learning from demonstrations. With the increase in available context length of LLMs, recent experiments have shown that the performance of ICL does not necessarily scale well in many-shot (demonstration) settings. We theoretically and experimentally confirm that the reason lies in more demonstrations dispersing the model attention from the query, hindering its understanding of key content. Inspired by how humans learn from examples, we propose a training-free method FocusICL, which conducts triviality filtering to avoid attention being diverted by unimportant contents at token-level and operates hierarchical attention to further ensure sufficient attention towards current query at demonstration-level. We also design an efficient hyperparameter searching strategy for FocusICL based on model perplexity of demonstrations. Comprehensive experiments validate that FocusICL achieves an average performance improvement of 5.2% over vanilla ICL and scales well with many-shot demonstrations.
comment: 15 pages
☆ AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework
Human mobility prediction plays a crucial role in various real-world applications. Although deep learning based models have shown promising results over the past decade, their reliance on extensive private mobility data for training and their inability to perform zero-shot predictions, have hindered further advancements. Recently, attempts have been made to apply large language models (LLMs) to mobility prediction task. However, their performance has been constrained by the absence of a systematic design of workflow. They directly generate the final output using LLMs, which limits the potential of LLMs to uncover complex mobility patterns and underestimates their extensive reserve of global geospatial knowledge. In this paper, we introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide. In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks, including spatial-temporal memory for individual mobility pattern mining, world knowledge generator for modeling the effects of urban structure and collective knowledge extractor for capturing the shared patterns among population. Finally, we combine the results of three modules and conduct a reasoning step to generate the final predictions. Extensive experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics and it shows robust predictions with various LLMs as base and also less geographical bias across cities. Codes and data can be found in https://github.com/tsinghua-fib-lab/AgentMove.
comment: 13 pages
☆ Nemesis: Normalizing the Soft-prompt Vectors of Vision-Language Models ICLR 2024
With the prevalence of large-scale pretrained vision-language models (VLMs), such as CLIP, soft-prompt tuning has become a popular method for adapting these models to various downstream tasks. However, few works delve into the inherent properties of learnable soft-prompt vectors, specifically the impact of their norms to the performance of VLMs. This motivates us to pose an unexplored research question: ``Do we need to normalize the soft prompts in VLMs?'' To fill this research gap, we first uncover a phenomenon, called the \textbf{Low-Norm Effect} by performing extensive corruption experiments, suggesting that reducing the norms of certain learned prompts occasionally enhances the performance of VLMs, while increasing them often degrades it. To harness this effect, we propose a novel method named \textbf{N}ormalizing th\textbf{e} soft-pro\textbf{m}pt v\textbf{e}ctors of vi\textbf{si}on-language model\textbf{s} (\textbf{Nemesis}) to normalize soft-prompt vectors in VLMs. To the best of our knowledge, our work is the first to systematically investigate the role of norms of soft-prompt vector in VLMs, offering valuable insights for future research in soft-prompt tuning. The code is available at \texttt{\href{https://github.com/ShyFoo/Nemesis}{https://github.com/ShyFoo/Nemesis}}.
comment: Accepted at ICLR 2024 (Spotlight)
☆ Artificial Intelligence in Landscape Architecture: A Survey
The development history of landscape architecture (LA) reflects the human pursuit of environmental beautification and ecological balance. With the advancement of artificial intelligence (AI) technologies that simulate and extend human intelligence, immense opportunities have been provided for LA, offering scientific and technological support throughout the entire workflow. In this article, we comprehensively review the applications of AI technology in the field of LA. First, we introduce the many potential benefits that AI brings to the design, planning, and management aspects of LA. Secondly, we discuss how AI can assist the LA field in solving its current development problems, including urbanization, environmental degradation and ecological decline, irrational planning, insufficient management and maintenance, and lack of public participation. Furthermore, we summarize the key technologies and practical cases of applying AI in the LA domain, from design assistance to intelligent management, all of which provide innovative solutions for the planning, design, and maintenance of LA. Finally, we look ahead to the problems and opportunities in LA, emphasizing the need to combine human expertise and judgment for rational decision-making. This article provides both theoretical and practical guidance for LA designers, researchers, and technology developers. The successful integration of AI technology into LA holds great promise for enhancing the field's capabilities and achieving more sustainable, efficient, and user-friendly outcomes.
comment: Preprint. 3 figures, 2 tables
☆ Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
☆ Training-Free Activation Sparsity in Large Language Models
Activation sparsity can enable practical inference speedups in large language models (LLMs) by reducing the compute and memory-movement required for matrix multiplications during the forward pass. However, existing methods face limitations that inhibit widespread adoption. Some approaches are tailored towards older models with ReLU-based sparsity, while others require extensive continued pre-training on up to hundreds of billions of tokens. This paper describes TEAL, a simple training-free method that applies magnitude-based activation sparsity to hidden states throughout the entire model. TEAL achieves 40-50% model-wide sparsity with minimal performance degradation across Llama-2, Llama-3, and Mistral families, with sizes varying from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock decoding speed-ups of up to 1.53$\times$ and 1.8$\times$ at 40% and 50% model-wide sparsity. TEAL is compatible with weight quantization, enabling further efficiency gains.
☆ Bridging the Gap: Unpacking the Hidden Challenges in Knowledge Distillation for Online Ranking Systems
Knowledge Distillation (KD) is a powerful approach for compressing a large model into a smaller, more efficient model, particularly beneficial for latency-sensitive applications like recommender systems. However, current KD research predominantly focuses on Computer Vision (CV) and NLP tasks, overlooking unique data characteristics and challenges inherent to recommender systems. This paper addresses these overlooked challenges, specifically: (1) mitigating data distribution shifts between teacher and student models, (2) efficiently identifying optimal teacher configurations within time and budgetary constraints, and (3) enabling computationally efficient and rapid sharing of teacher labels to support multiple students. We present a robust KD system developed and rigorously evaluated on multiple large-scale personalized video recommendation systems within Google. Our live experiment results demonstrate significant improvements in student model performance while ensuring consistent and reliable generation of high quality teacher labels from a continuous data stream of data.
☆ KGPrune: a Web Application to Extract Subgraphs of Interest from Wikidata with Analogical Pruning
Knowledge graphs (KGs) have become ubiquitous publicly available knowledge sources, and are nowadays covering an ever increasing array of domains. However, not all knowledge represented is useful or pertaining when considering a new application or specific task. Also, due to their increasing size, handling large KGs in their entirety entails scalability issues. These two aspects asks for efficient methods to extract subgraphs of interest from existing KGs. To this aim, we introduce KGPrune, a Web Application that, given seed entities of interest and properties to traverse, extracts their neighboring subgraphs from Wikidata. To avoid topical drift, KGPrune relies on a frugal pruning algorithm based on analogical reasoning to only keep relevant neighbors while pruning irrelevant ones. The interest of KGPrune is illustrated by two concrete applications, namely, bootstrapping an enterprise KG and extracting knowledge related to looted artworks.
comment: Accepted as a demo paper at ECAI 2024
☆ Emergent Language in Open-Ended Environments
Emergent language research has made significant progress in recent years, but still largely fails to explore how communication emerges in more complex and situated multi-agent systems. Existing setups often employ a reference game, which limits the range of language emergence phenomena that can be studied, as the game consists of a single, purely language-based interaction between the agents. In this paper, we address these limitations and explore the emergence and utility of token-based communication in open-ended multi-agent environments, where situated agents interact with the environment through movement and communication over multiple time-steps. Specifically, we introduce two novel cooperative environments: Multi-Agent Pong and Collectors. These environments are interesting because optimal performance requires the emergence of a communication protocol, but moderate success can be achieved without one. By employing various methods from explainable AI research, such as saliency maps, perturbation, and diagnostic classifiers, we are able to track and interpret the agents' language channel use over time. We find that the emerging communication is sparse, with the agents only generating meaningful messages and acting upon incoming messages in states where they cannot succeed without coordination.
comment: 10 pages, 4 figures, 4 tables, preprint
☆ Visions of Destruction: Exploring a Potential of Generative AI in Interactive Art
This paper explores the potential of generative AI within interactive art, employing a practice-based research approach. It presents the interactive artwork "Visions of Destruction" as a detailed case study, highlighting its innovative use of generative AI to create a dynamic, audience-responsive experience. This artwork applies gaze-based interaction to dynamically alter digital landscapes, symbolizing the impact of human activities on the environment by generating contemporary collages created with AI, trained on data about human damage to nature, and guided by audience interaction. The transformation of pristine natural scenes into human-made and industrialized landscapes through viewer interaction serves as a stark reminder of environmental degradation. The paper thoroughly explores the technical challenges and artistic innovations involved in creating such an interactive art installation, emphasizing the potential of generative AI to revolutionize artistic expression, audience engagement, and especially the opportunities for the interactive art field. It offers insights into the conceptual framework behind the artwork, aiming to evoke a deeper understanding and reflection on the Anthropocene era and human-induced climate change. This study contributes significantly to the field of creative AI and interactive art, blending technology and environmental consciousness in a compelling, thought-provoking manner.
☆ Effect of Adaptation Rate and Cost Display in a Human-AI Interaction Game
As interactions between humans and AI become more prevalent, it is critical to have better predictors of human behavior in these interactions. We investigated how changes in the AI's adaptive algorithm impact behavior predictions in two-player continuous games. In our experiments, the AI adapted its actions using a gradient descent algorithm under different adaptation rates while human participants were provided cost feedback. The cost feedback was provided by one of two types of visual displays: (a) cost at the current joint action vector, or (b) cost in a local neighborhood of the current joint action vector. Our results demonstrate that AI adaptation rate can significantly affect human behavior, having the ability to shift the outcome between two game theoretic equilibrium. We observed that slow adaptation rates shift the outcome towards the Nash equilibrium, while fast rates shift the outcome towards the human-led Stackelberg equilibrium. The addition of localized cost information had the effect of shifting outcomes towards Nash, compared to the outcomes from cost information at only the current joint action vector. Future work will investigate other effects that influence the convergence of gradient descent games.
☆ Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006
This study explores the development of a hybrid deep convolutional neural network (DCNN) model enhanced by autoencoders and data augmentation techniques to predict critical heat flux (CHF) with high accuracy. By augmenting the original input features using three different autoencoder configurations, the model's predictive capabilities were significantly improved. The hybrid models were trained and tested on a dataset of 7225 samples, with performance metrics including the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), and normalized root-mean-squared error (NRMSE) used for evaluation. Among the tested models, the DCNN_3F-A2 configuration demonstrated the highest accuracy, achieving an R2 of 0.9908 during training and 0.9826 during testing, outperforming the base model and other augmented versions. These results suggest that the proposed hybrid approach, combining deep learning with feature augmentation, offers a robust solution for CHF prediction, with the potential to generalize across a wider range of conditions.
comment: 11 pages, 6 figures
☆ On Centralized Critics in Multi-Agent Reinforcement Learning
Centralized Training for Decentralized Execution where agents are trained offline in a centralized fashion and execute online in a decentralized manner, has become a popular approach in Multi-Agent Reinforcement Learning (MARL). In particular, it has become popular to develop actor-critic methods that train decentralized actors with a centralized critic where the centralized critic is allowed access global information of the entire system, including the true system state. Such centralized critics are possible given offline information and are not used for online execution. While these methods perform well in a number of domains and have become a de facto standard in MARL, using a centralized critic in this context has yet to be sufficiently analyzed theoretically or empirically. In this paper, we therefore formally analyze centralized and decentralized critic approaches, and analyze the effect of using state-based critics in partially observable environments. We derive theories contrary to the common intuition: critic centralization is not strictly beneficial, and using state values can be harmful. We further prove that, in particular, state-based critics can introduce unexpected bias and variance compared to history-based critics. Finally, we demonstrate how the theory applies in practice by comparing different forms of critics on a wide range of common multi-agent benchmarks. The experiments show practical issues such as the difficulty of representation learning with partial observability, which highlights why the theoretical problems are often overlooked in the literature.
☆ How to build trust in answers given by Generative AI for specific, and vague, financial questions
Purpose: Generative artificial intelligence (GenAI) has progressed in its ability and has seen explosive growth in adoption. However, the consumer's perspective on its use, particularly in specific scenarios such as financial advice, is unclear. This research develops a model of how to build trust in the advice given by GenAI when answering financial questions. Design/methodology/approach: The model is tested with survey data using structural equation modelling (SEM) and multi-group analysis (MGA). The MGA compares two scenarios, one where the consumer makes a specific question and one where a vague question is made. Findings: This research identifies that building trust for consumers is different when they ask a specific financial question in comparison to a vague one. Humanness has a different effect in the two scenarios. When a financial question is specific, human-like interaction does not strengthen trust, while (1) when a question is vague, humanness builds trust. The four ways to build trust in both scenarios are (2) human oversight and being in the loop, (3) transparency and control, (4) accuracy and usefulness and finally (5) ease of use and support. Originality/value: This research contributes to a better understanding of the consumer's perspective when using GenAI for financial questions and highlights the importance of understanding GenAI in specific contexts from specific stakeholders.
☆ DIAGen: Diverse Image Augmentation with Generative Models
Simple data augmentation techniques, such as rotations and flips, are widely used to enhance the generalization power of computer vision models. However, these techniques often fail to modify high-level semantic attributes of a class. To address this limitation, researchers have explored generative augmentation methods like the recently proposed DA-Fusion. Despite some progress, the variations are still largely limited to textural changes, thus falling short on aspects like varied viewpoints, environment, weather conditions, or even class-level semantic attributes (eg, variations in a dog's breed). To overcome this challenge, we propose DIAGen, building upon DA-Fusion. First, we apply Gaussian noise to the embeddings of an object learned with Textual Inversion to diversify generations using a pre-trained diffusion model's knowledge. Second, we exploit the general knowledge of a text-to-text generative model to guide the image generation of the diffusion model with varied class-specific prompts. Finally, we introduce a weighting mechanism to mitigate the impact of poorly generated samples. Experimental results across various datasets show that DIAGen not only enhances semantic diversity but also improves the performance of subsequent classifiers. The advantages of DIAGen over standard augmentations and the DA-Fusion baseline are particularly pronounced with out-of-distribution samples.
comment: Accepted for publication in GCPR 2024
☆ EVINCE: Optimizing Adversarial LLM Dialogues via Conditional Statistics and Information Theory
This paper introduces EVINCE (Entropy and Variation IN Conditional Exchanges), a dialogue framework advancing Artificial General Intelligence (AGI) by enhancing versatility, adaptivity, and reasoning in large language models (LLMs). Leveraging adversarial debate and a novel dual entropy theory, EVINCE improves prediction accuracy, robustness, and stability in LLMs by integrating statistical modeling, information theory, and machine learning to balance diverse perspective exploration with strong prior exploitation. The framework's effectiveness is demonstrated through consistent convergence of information-theoretic metrics, particularly improved mutual information, fostering productive LLM collaboration. We apply EVINCE to healthcare, showing improved disease diagnosis, and discuss its broader implications for decision-making across domains. This work provides theoretical foundations and empirical validation for EVINCE, paving the way for advancements in LLM collaboration and AGI development.
comment: 19 pages, 7 figures, four tables
☆ CURLoRA: Stable LLM Continual Fine-Tuning and Catastrophic Forgetting Mitigation
This paper introduces CURLoRA, a novel approach to fine-tuning large language models (LLMs) that leverages CUR matrix decomposition in the context of Low-Rank Adaptation (LoRA). Our method addresses two critical challenges in LLM fine-tuning: mitigating catastrophic forgetting during continual learning and reducing the number of trainable parameters. We propose a unique modification to the CUR decomposition process, utilizing inverted probabilities for column and row selection which acts as an implicit regularization, and initializing the $U$ matrix as a zero matrix, and only fine-tuning it. We demonstrate through experiments on multiple datasets that CURLoRA outperforms standard LoRA in mitigating catastrophic forgetting. It maintains model stability and performance across tasks while significantly reducing the number of trainable parameters. Our results show that CURLoRA achieves very good and stable task accuracy while maintaining base model's perplexity scores fixed compared to LoRA upon continual fine-tuning, particularly in scenarios with limited data.
comment: Code available at https://github.com/MNoorFawi/curlora
☆ Improving Clinical Note Generation from Complex Doctor-Patient Conversation
Writing clinical notes and documenting medical exams is a critical task for healthcare professionals, serving as a vital component of patient care documentation. However, manually writing these notes is time-consuming and can impact the amount of time clinicians can spend on direct patient interaction and other tasks. Consequently, the development of automated clinical note generation systems has emerged as a clinically meaningful area of research within AI for health. In this paper, we present three key contributions to the field of clinical note generation using large language models (LLMs). First, we introduce CliniKnote, a comprehensive dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes. This dataset, created and curated by medical experts with the help of modern neural networks, provides a valuable resource for training and evaluating models in clinical note generation tasks. Second, we propose the K-SOAP (Keyword, Subjective, Objective, Assessment, and Plan) note format, which enhances traditional SOAP~\cite{podder2023soap} (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information. Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various metrics. Our results demonstrate significant improvements in efficiency and performance compared to standard LLM finetuning methods.
☆ A Survey of Camouflaged Object Detection and Beyond
Camouflaged Object Detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation
comment: 26 pages, 10 figures, 8 tables
☆ Revisiting Image Captioning Training Paradigm via Direct CLIP-based Optimization BMVC 2024
The conventional training approach for image captioning involves pre-training a network using teacher forcing and subsequent fine-tuning with Self-Critical Sequence Training to maximize hand-crafted captioning metrics. However, when attempting to optimize modern and higher-quality metrics like CLIP-Score and PAC-Score, this training method often encounters instability and fails to acquire the genuine descriptive capabilities needed to produce fluent and informative captions. In this paper, we propose a new training paradigm termed Direct CLIP-Based Optimization (DiCO). Our approach jointly learns and optimizes a reward model that is distilled from a learnable captioning evaluator with high human correlation. This is done by solving a weighted classification problem directly inside the captioner. At the same time, DiCO prevents divergence from the original model, ensuring that fluency is maintained. DiCO not only exhibits improved stability and enhanced quality in the generated captions but also aligns more closely with human preferences compared to existing methods, especially in modern metrics. Additionally, it maintains competitive performance in traditional metrics. Our source code and trained models are publicly available at https://github.com/aimagelab/DiCO.
comment: BMVC 2024
☆ Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses
Multi-Agent Path Finding (MAPF) is an important optimization problem underlying the deployment of robots in automated warehouses and factories. Despite the large body of work on this topic, most approaches make heavy simplifications, both on the environment and the agents, which make the resulting algorithms impractical for real-life scenarios. In this paper, we consider a realistic problem of online order delivery in a warehouse, where a fleet of robots bring the products belonging to each order from shelves to workstations. This creates a stream of inter-dependent pickup and delivery tasks and the associated MAPF problem consists of computing realistic collision-free robot trajectories fulfilling these tasks. To solve this MAPF problem, we propose an extension of the standard Prioritized Planning algorithm to deal with the inter-dependent tasks (Interleaved Prioritized Planning) and a novel Via-Point Star (VP*) algorithm to compute an optimal dynamics-compliant robot trajectory to visit a sequence of goal locations while avoiding moving obstacles. We prove the completeness of our approach and evaluate it in simulation as well as in a real warehouse.
comment: Accepted to ECAI-2024. For related videos, see https://europe.naverlabs.com/research/publications/MAPF_IPP
☆ Estimating Uncertainty with Implicit Quantile Network
Uncertainty quantification is an important part of many performance critical applications. This paper provides a simple alternative to existing approaches such as ensemble learning and bayesian neural networks. By directly modeling the loss distribution with an Implicit Quantile Network, we get an estimate of how uncertain the model is of its predictions. For experiments with MNIST and CIFAR datasets, the mean of the estimated loss distribution is 2x higher for incorrect predictions. When data with high estimated uncertainty is removed from the test dataset, the accuracy of the model goes up as much as 10%. This method is simple to implement while offering important information to applications where the user has to know when the model could be wrong (e.g. deep learning for healthcare).
comment: This method is simple to implement and offers important information for performance critical applications
☆ Retrieval Augmented Generation for Dynamic Graph Modeling
Dynamic graph modeling is crucial for analyzing evolving patterns in various applications. Existing approaches often integrate graph neural networks with temporal modules or redefine dynamic graph modeling as a generative sequence task. However, these methods typically rely on isolated historical contexts of the target nodes from a narrow perspective, neglecting occurrences of similar patterns or relevant cases associated with other nodes. In this work, we introduce the Retrieval-Augmented Generation for Dynamic Graph Modeling (RAG4DyG) framework, which leverages guidance from contextually and temporally analogous examples to broaden the perspective of each node. This approach presents two critical challenges: (1) How to identify and retrieve high-quality demonstrations that are contextually and temporally analogous to dynamic graph samples? (2) How can these demonstrations be effectively integrated to improve dynamic graph modeling? To address these challenges, we propose RAG4DyG, which enriches the understanding of historical contexts by retrieving and learning from contextually and temporally pertinent demonstrations. Specifically, we employ a time- and context-aware contrastive learning module to identify and retrieve relevant cases for each query sequence. Moreover, we design a graph fusion strategy to integrate the retrieved cases, thereby augmenting the inherent historical contexts for improved prediction. Extensive experiments on real-world datasets across different domains demonstrate the effectiveness of RAG4DyG for dynamic graph modeling.
comment: Under review
☆ Towards Graph Prompt Learning: A Survey and Beyond
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.
comment: 19 pages, 2 figures
♻ ☆ Zeoformer: Coarse-Grained Periodic Graph Transformer for OSDA-Zeolite Affinity Prediction
To date, the International Zeolite Association Structure Commission (IZA-SC) has cataloged merely 255 distinct zeolite structures, with millions of theoretically possible structures yet to be discovered. The synthesis of a specific zeolite typically necessitates the use of an organic structure-directing agent (OSDA), since the selectivity for a particular zeolite is largely determined by the affinity between the OSDA and the zeolite. Therefore, finding the best affinity OSDA-zeolite pair is the key to the synthesis of targeted zeolite. However, OSDA-zeolite pairs frequently exhibit complex geometric structures, i.e., a complex crystal structure formed by a large number of atoms. Although some existing machine learning methods can represent the periodicity of crystals, they cannot accurately represent crystal structures with local variability. To address this issue, we propose a novel approach called Zeoformer, which can effectively represent coarse-grained crystal periodicity and fine-grained local variability. Zeoformer reconstructs the unit cell centered around each atom and encodes the pairwise distances between this central atom and other atoms within the reconstructed unit cell. The introduction of pairwise distances within the reconstructed unit cell more effectively represents the overall structure of the unit cell and the differences between different unit cells, enabling the model to more accurately and efficiently predict the properties of OSDA-zeolite pairs and general crystal structures. Through comprehensive evaluation, our Zeoformer model demonstrates the best performance on OSDA-zeolite pair datasets and two types of crystal material datasets.
comment: 7 pages, 5 figures
♻ ☆ Abductive and Contrastive Explanations for Scoring Rules in Voting
We view voting rules as classifiers that assign a winner (a class) to a profile of voters' preferences (an instance). We propose to apply techniques from formal explainability, most notably abductive and contrastive explanations, to identify minimal subsets of a preference profile that either imply the current winner or explain why a different candidate was not elected. Formal explanations turn out to have strong connections with classical problems studied in computational social choice such as bribery, possible and necessary winner identification, and preference learning. We design algorithms for computing abductive and contrastive explanations for scoring rules. For the Borda rule, we find a lower bound on the size of the smallest abductive explanations, and we conduct simulations to identify correlations between properties of preference profiles and the size of their smallest abductive explanations.
comment: 10 pages, 2 figures Extended version of a paper in proceedings of ECAI 2024
♻ ☆ Multilevel Interpretability Of Artificial Neural Networks: Leveraging Framework And Methods From Neuroscience
As deep learning systems are scaled up to many billions of parameters, relating their internal structure to external behaviors becomes very challenging. Although daunting, this problem is not new: Neuroscientists and cognitive scientists have accumulated decades of experience analyzing a particularly complex system - the brain. In this work, we argue that interpreting both biological and artificial neural systems requires analyzing those systems at multiple levels of analysis, with different analytic tools for each level. We first lay out a joint grand challenge among scientists who study the brain and who study artificial neural networks: understanding how distributed neural mechanisms give rise to complex cognition and behavior. We then present a series of analytical tools that can be used to analyze biological and artificial neural systems, organizing those tools according to Marr's three levels of analysis: computation/behavior, algorithm/representation, and implementation. Overall, the multilevel interpretability framework provides a principled way to tackle neural system complexity; links structure, computation, and behavior; clarifies assumptions and research priorities at each level; and paves the way toward a unified effort for understanding intelligent systems, may they be biological or artificial.
♻ ☆ Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music
Hindustani music is a performance-driven oral tradition that exhibits the rendition of rich melodic patterns. In this paper, we focus on generative modeling of singers' vocal melodies extracted from audio recordings, as the voice is musically prominent within the tradition. Prior generative work in Hindustani music models melodies as coarse discrete symbols which fails to capture the rich expressive melodic intricacies of singing. Thus, we propose to use a finely quantized pitch contour, as an intermediate representation for hierarchical audio modeling. We propose GaMaDHaNi, a modular two-level hierarchy, consisting of a generative model on pitch contours, and a pitch contour to audio synthesis model. We compare our approach to non-hierarchical audio models and hierarchical models that use a self-supervised intermediate representation, through a listening test and qualitative analysis. We also evaluate audio model's ability to faithfully represent the pitch contour input using Pearson correlation coefficient. By using pitch contours as an intermediate representation, we show that our model may be better equipped to listen and respond to musicians in a human-AI collaborative setting by highlighting two potential interaction use cases (1) primed generation, and (2) coarse pitch conditioning.
comment: Accepted at International Society for Music Information Retrieval (ISMIR) 2024
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Previous work often neglects the spatial structures and functional layouts between entities, limiting their ability to capture transferable knowledge across regions. Further, these methods struggle to adapt effectively to specific downstream tasks, as they do not adequately address the unique features and relationships required for different downstream tasks. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph that integrates detailed spatial entity data for more effective urban region representation. Then, we develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of interactions among entities. To further enhance the adaptability of these embeddings to different tasks, we design two graph-based prompting methods to incorporate explicit/hidden task knowledge. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our GURPP framework.
♻ ☆ KLoB: a Benchmark for Assessing Knowledge Locating Methods in Language Models
Recently, Locate-Then-Edit paradigm has emerged as one of the main approaches in changing factual knowledge stored in the Language models. However, there is a lack of research on whether present locating methods can pinpoint the exact parameters embedding the desired knowledge. Moreover, although many researchers have questioned the validity of locality hypothesis of factual knowledge, no method is provided to test the a hypothesis for more in-depth discussion and research. Therefore, we introduce KLoB, a benchmark examining three essential properties that a reliable knowledge locating method should satisfy. KLoB can serve as a benchmark for evaluating existing locating methods in language models, and can contributes a method to reassessing the validity of locality hypothesis of factual knowledge. KLoB is publicly available at an anonymous GitHub: \url{https://github.com/anon6662/KLoB}.
♻ ☆ uMedSum: A Unified Framework for Advancing Medical Abstractive Summarization
Medical abstractive summarization faces the challenge of balancing faithfulness and informativeness. Current methods often sacrifice key information for faithfulness or introduce confabulations when prioritizing informativeness. While recent advancements in techniques like in-context learning (ICL) and fine-tuning have improved medical summarization, they often overlook crucial aspects such as faithfulness and informativeness without considering advanced methods like model reasoning and self-improvement. Moreover, the field lacks a unified benchmark, hindering systematic evaluation due to varied metrics and datasets. This paper addresses these gaps by presenting a comprehensive benchmark of six advanced abstractive summarization methods across three diverse datasets using five standardized metrics. Building on these findings, we propose uMedSum, a modular hybrid summarization framework that introduces novel approaches for sequential confabulation removal followed by key missing information addition, ensuring both faithfulness and informativeness. Our work improves upon previous GPT-4-based state-of-the-art (SOTA) medical summarization methods, significantly outperforming them in both quantitative metrics and qualitative domain expert evaluations. Notably, we achieve an average relative performance improvement of 11.8% in reference-free metrics over the previous SOTA. Doctors prefer uMedSum's summaries 6 times more than previous SOTA in difficult cases where there are chances of confabulations or missing information. These results highlight uMedSum's effectiveness and generalizability across various datasets and metrics, marking a significant advancement in medical summarization.
comment: 12 pages
♻ ☆ LLM Pruning and Distillation in Practice: The Minitron Approach
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
comment: v2: Added missing references. Cleaned up runtime performance section
♻ ☆ Beyond Scale: The Diversity Coefficient as a Data Quality Metric for Variability in Natural Language Data
Current trends in pre-training Large Language Models (LLMs) primarily focus on the scaling of model and dataset size. While the quality of pre-training data is considered an important factor for training powerful LLMs, it remains a nebulous concept that has not been rigorously characterized. To this end, we propose a formalization of one key aspect of data quality -- measuring the variability of natural language data -- specifically via a measure we call the diversity coefficient. Our empirical analysis shows that the proposed diversity coefficient aligns with the intuitive properties of diversity and variability, e.g., it increases as the number of latent concepts increases. Then, we measure the diversity coefficient of publicly available pre-training datasets and demonstrate that their formal diversity is high compared to theoretical lower and upper bounds. Finally, we conduct a comprehensive set of controlled interventional experiments with GPT-2 and LLaMAv2 that demonstrate the diversity coefficient of pre-training data characterizes useful aspects of downstream model evaluation performance -- totaling 44 models of various sizes (51M to 7B parameters). We conclude that our formal notion of diversity is an important aspect of data quality that captures variability and causally leads to improved evaluation performance.
♻ ☆ Tackling GenAI Copyright Issues: Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. While various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to infringe copyright. To achieve this, we introduce a metric for quantifying the level of originality of data in a manner that is consistent with the legal framework. This metric can be practically estimated by drawing samples from a generative model, which is then used for the genericization process. As a practical implementation, we introduce PREGen, which combines our genericization method with an existing mitigation technique. Experiments demonstrate that our genericization method successfully modifies the output of a text-to-image generative model so that it produces more generic, copyright-compliant images. Compared to the existing method, PREGen reduces the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt, dramatically improving the performance. Additionally, while generative models can produce copyrighted characters even when their names are not directly mentioned in the prompt, PREGen almost entirely prevents the generation of such characters in these cases.
comment: 19 pages, 10 figures
♻ ☆ A Dataset and Benchmark for Hospital Course Summarization with Adapted Large Language Models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery
Solar Photovoltaic (PV) technology is increasingly recognized as a pivotal solution in the global pursuit of clean and renewable energy. This technology addresses the urgent need for sustainable energy alternatives by converting solar power into electricity without greenhouse gas emissions. It not only curtails global carbon emissions but also reduces reliance on finite, non-renewable energy sources. In this context, monitoring solar panel farms becomes essential for understanding and facilitating the worldwide shift toward clean energy. This study contributes to this effort by developing the first comprehensive global dataset of multispectral satellite imagery of solar panel farms. This dataset is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally. The insights gained from this endeavor will be instrumental in guiding informed decision-making for a sustainable energy future. https://github.com/yzyly1992/GloSoFarID
♻ ☆ Controller Synthesis for Timeline-based Games
In the timeline-based approach to planning, the evolution over time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional timeline-based planning systems excel at the integration of planning with execution by handling temporal uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based games has been recently introduced. It has been proved that finding whether a winning strategy exists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers implementing such strategies is missing. This paper fills this gap, by providing an effective and computationally optimal approach to controller synthesis for timeline-based games.
comment: arXiv admin note: text overlap with arXiv:2209.10319
♻ ☆ Beyond Silence: Bias Analysis through Loss and Asymmetric Approach in Audio Anti-Spoofing ISCA
Current trends in audio anti-spoofing detection research strive to improve models' ability to generalize across unseen attacks by learning to identify a variety of spoofing artifacts. This emphasis has primarily focused on the spoof class. Recently, several studies have noted that the distribution of silence differs between the two classes, which can serve as a shortcut. In this paper, we extend class-wise interpretations beyond silence. We employ loss analysis and asymmetric methodologies to move away from traditional attack-focused and result-oriented evaluations towards a deeper examination of model behaviors. Our investigations highlight the significant differences in training dynamics between the two classes, emphasizing the need for future research to focus on robust modeling of the bonafide class.
comment: 5 pages, 1 figure, 5 tables, ISCA Interspeech 2024 SynData4GenAI Workshop
♻ ☆ Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
The tremendous success of Large Language Models (LLMs) across various complex tasks relies heavily on their substantial scale, which raises challenges during model deployment due to their large memory consumption. Recently, numerous studies have attempted to compress LLMs using one-shot pruning methods. However, these methods often experience considerable performance degradation on complex language understanding tasks, calling into question the feasibility of pruning in LLMs. To address this issue, we propose a pruning pipeline for semi-structured sparse models via retraining, termed Adaptive Sparse Trainer (AST). Unlike previous one-shot pruning methods, AST incrementally transforms dense models into sparse ones by applying decay to masked weights while allowing the model to adaptively select masks throughout the training process. Furthermore, we observe that using distillation with a dense model as the teacher can prevent the sparse model from falling into local optima and accelerate convergence. In addition, we incorporate extra well-initialized parameters to further enhance model performance with minimal increase in memory footprint. AST can significantly enhance model performance, approaching the level of dense models. When applied to the LLaMA2-7B model, AST reduces the zero-shot accuracy gap between dense and semi-structured sparse models to 1.12% across multiple zero-shot tasks, utilizing less than 0.4% of the pretraining tokens. Our work demonstrates the feasibility of deploying semi-structured sparse large language models and introduces a novel method for achieving highly compressed models when combined with existing quantization techniques.
♻ ☆ The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
In some fields of AI, machine learning and statistics, the validation of new methods and algorithms is often hindered by the scarcity of suitable real-world datasets. Researchers must often turn to simulated data, which yields limited information about the applicability of the proposed methods to real problems. As a step forward, we have constructed two devices that allow us to quickly and inexpensively produce large datasets from non-trivial but well-understood physical systems. The devices, which we call causal chambers, are computer-controlled laboratories that allow us to manipulate and measure an array of variables from these physical systems, providing a rich testbed for algorithms from a variety of fields. We illustrate potential applications through a series of case studies in fields such as causal discovery, out-of-distribution generalization, change point detection, independent component analysis, and symbolic regression. For applications to causal inference, the chambers allow us to carefully perform interventions. We also provide and empirically validate a causal model of each chamber, which can be used as ground truth for different tasks. All hardware and software is made open source, and the datasets are publicly available at causalchamber.org or through the Python package causalchamber.
comment: 40 pages, 20 figures
♻ ☆ Bayesian neural networks via MCMC: a Python-based tutorial
Bayesian inference provides a methodology for parameter estimation and uncertainty quantification in machine learning and deep learning methods. Variational inference and Markov Chain Monte-Carlo (MCMC) sampling methods are used to implement Bayesian inference. In the past three decades, MCMC sampling methods have faced some challenges in being adapted to larger models (such as in deep learning) and big data problems. Advanced proposal distributions that incorporate gradients, such as a Langevin proposal distribution, provide a means to address some of the limitations of MCMC sampling for Bayesian neural networks. Furthermore, MCMC methods have typically been constrained to statisticians and currently not well-known among deep learning researchers. We present a tutorial for MCMC methods that covers simple Bayesian linear and logistic models, and Bayesian neural networks. The aim of this tutorial is to bridge the gap between theory and implementation via coding, given a general sparsity of libraries and tutorials to this end. This tutorial provides code in Python with data and instructions that enable their use and extension. We provide results for some benchmark problems showing the strengths and weaknesses of implementing the respective Bayesian models via MCMC. We highlight the challenges in sampling multi-modal posterior distributions for the case of Bayesian neural networks and the need for further improvement of convergence diagnosis methods.
comment: IEEE Access (2024)
♻ ☆ Demystifying the Recency Heuristic in Temporal-Difference Learning
The recency heuristic in reinforcement learning is the assumption that stimuli that occurred closer in time to an acquired reward should be more heavily reinforced. The recency heuristic is one of the key assumptions made by TD($\lambda$), which reinforces recent experiences according to an exponentially decaying weighting. In fact, all other widely used return estimators for TD learning, such as $n$-step returns, satisfy a weaker (i.e., non-monotonic) recency heuristic. Why is the recency heuristic effective for temporal credit assignment? What happens when credit is assigned in a way that violates this heuristic? In this paper, we analyze the specific mathematical implications of adopting the recency heuristic in TD learning. We prove that any return estimator satisfying this heuristic: 1) is guaranteed to converge to the correct value function, 2) has a relatively fast contraction rate, and 3) has a long window of effective credit assignment, yet bounded worst-case variance. We also give a counterexample where on-policy, tabular TD methods violating the recency heuristic diverge. Our results offer some of the first theoretical evidence that credit assignment based on the recency heuristic facilitates learning.
comment: RLC 2024. 18 pages, 8 figures, 1 table
♻ ☆ Decision-Focused Learning to Predict Action Costs for Planning
In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
♻ ☆ Improving Language Models for Emotion Analysis: Insights from Cognitive Science
We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
♻ ☆ SigFormer: Sparse Signal-Guided Transformer for Multi-Modal Human Action Segmentation
Multi-modal human action segmentation is a critical and challenging task with a wide range of applications. Nowadays, the majority of approaches concentrate on the fusion of dense signals (i.e., RGB, optical flow, and depth maps). However, the potential contributions of sparse IoT sensor signals, which can be crucial for achieving accurate recognition, have not been fully explored. To make up for this, we introduce a Sparse signalguided Transformer (SigFormer) to combine both dense and sparse signals. We employ mask attention to fuse localized features by constraining cross-attention within the regions where sparse signals are valid. However, since sparse signals are discrete, they lack sufficient information about the temporal action boundaries. Therefore, in SigFormer, we propose to emphasize the boundary information at two stages to alleviate this problem. In the first feature extraction stage, we introduce an intermediate bottleneck module to jointly learn both category and boundary features of each dense modality through the inner loss functions. After the fusion of dense modalities and sparse signals, we then devise a two-branch architecture that explicitly models the interrelationship between action category and temporal boundary. Experimental results demonstrate that SigFormer outperforms the state-of-the-art approaches on a multi-modal action segmentation dataset from real industrial environments, reaching an outstanding F1 score of 0.958. The codes and pre-trained models have been available at https://github.com/LIUQI-creat/SigFormer.
Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations
Robustness against Out-of-Distribution (OoD) samples is a key performance indicator of a trajectory prediction model. However, the development and ranking of state-of-the-art (SotA) models are driven by their In-Distribution (ID) performance on individual competition datasets. We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets. We introduce a novel prediction algorithm based on polynomial representations for agent trajectory and road geometry on both the input and output sides of the model. With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing. Within our OoD testing protocol, we further study two augmentation strategies of SotA models and their effects on model generalization. Highlighting the contrast between ID and OoD performance, we suggest adding OoD testing to the evaluation criteria of trajectory prediction models.
♻ ☆ A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data
Tabular data is prevalent in real-world machine learning applications, and new models for supervised learning of tabular data are frequently proposed. Comparative studies assessing the performance of models typically consist of model-centric evaluation setups with overly standardized data preprocessing. This paper demonstrates that such model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering. Therefore, we propose a data-centric evaluation framework. We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset. We conduct experiments with different preprocessing pipelines and hyperparameter optimization (HPO) regimes to quantify the impact of model selection, HPO, feature engineering, and test-time adaptation. Our main findings are: 1. After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces. 2. Recent models, despite their measurable progress, still significantly benefit from manual feature engineering. This holds true for both tree-based models and neural networks. 3. While tabular data is typically considered static, samples are often collected over time, and adapting to distribution shifts can be important even in supposedly static data. These insights suggest that research efforts should be directed toward a data-centric perspective, acknowledging that tabular data requires feature engineering and often exhibits temporal characteristics. Our framework is available under: https://github.com/atschalz/dc_tabeval.
♻ ☆ XMainframe: A Large Language Model for Mainframe Modernization
Mainframe operating systems, despite their inception in the 1940s, continue to support critical sectors like finance and government. However, these systems are often viewed as outdated, requiring extensive maintenance and modernization. Addressing this challenge necessitates innovative tools that can understand and interact with legacy codebases. To this end, we introduce XMainframe, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. Our solution involves the creation of an extensive data collection pipeline to produce high-quality training datasets, enhancing XMainframe's performance in this specialized domain. Additionally, we present MainframeBench, a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMainframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMainframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMainframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
♻ ☆ Non-discrimination Criteria for Generative Language Models
Generative AI, such as large language models, has undergone rapid development within recent years. As these models become increasingly available to the public, concerns arise about perpetuating and amplifying harmful biases in applications. Gender stereotypes can be harmful and limiting for the individuals they target, whether they consist of misrepresentation or discrimination. Recognizing gender bias as a pervasive societal construct, this paper studies how to uncover and quantify the presence of gender biases in generative language models. In particular, we derive generative AI analogues of three well-known non-discrimination criteria from classification, namely independence, separation and sufficiency. To demonstrate these criteria in action, we design prompts for each of the criteria with a focus on occupational gender stereotype, specifically utilizing the medical test to introduce the ground truth in the generative AI context. Our results address the presence of occupational gender bias within such conversational language models.
comment: 14 pages, 3 figures
♻ ☆ SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction
This paper addresses motion forecasting in multi-agent environments, pivotal for ensuring safety of autonomous vehicles. Traditional as well as recent data-driven marginal trajectory prediction methods struggle to properly learn non-linear agent-to-agent interactions. We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction. We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions: range gap prediction, closest distance prediction, direction of movement prediction, and type of interaction prediction. We further propose an approach to curate interaction-heavy scenarios from datasets. This curated data has two advantages: it provides a stronger learning signal to the interaction model, and facilitates generation of pseudo-labels for interaction-centric pretext tasks. We also propose three new metrics specifically designed to evaluate predictions in interactive scenes. Our empirical evaluations indicate SSL-Interactions outperforms state-of-the-art motion forecasting methods quantitatively with up to 8% improvement, and qualitatively, for interaction-heavy scenarios.
comment: Accepted at IV-2024. 13 pages, 5 figures
♻ ☆ PlatoLM: Teaching LLMs in Multi-Round Dialogue via a User Simulator
The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT dialogues, as evidenced by Vicuna. However, due to challenges in gathering dialogues involving human participation, current endeavors like Baize and UltraChat rely on ChatGPT conducting roleplay to simulate humans based on instructions, resulting in overdependence on seeds, diminished human-likeness, limited topic diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we propose a paradigm to simulate human behavior better and explore the benefits of incorporating more human-like questions in multi-turn conversations. Specifically, we directly target human questions extracted from genuine human-machine conversations as a learning goal and provide a novel user simulator called `Socratic'. The experimental results show our response model, `PlatoLM', achieves SoTA performance among LLaMA-based 7B models in MT-Bench. Our findings further demonstrate that our method introduces highly human-like questioning patterns and rich topic structures, which can teach the response model better than previous works in multi-round conversations.
comment: 23 pages
♻ ☆ StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows
It is a notable trend to use Large Language Models (LLMs) to tackle complex tasks, e.g., tasks that require a sequence of actions and dynamic interaction with tools and external environments. In this paper, we propose StateFlow, a novel LLM-based task-solving paradigm that conceptualizes complex task-solving processes as state machines. In StateFlow, we distinguish between "process grounding" (via state and state transitions) and "sub-task solving" (through actions within a state), enhancing control and interpretability of the task-solving procedure. A state represents the status of a running process. The transitions between states are controlled by heuristic rules or decisions made by the LLM, allowing for a dynamic and adaptive progression. Upon entering a state, a series of actions is executed, involving not only calling LLMs guided by different prompts, but also the utilization of external tools as needed. Our results show that StateFlow significantly enhances LLMs' efficiency. For instance, StateFlow achieves 13% and 28% higher success rates compared to ReAct in InterCode SQL and ALFWorld benchmark, with 5x and 3x less cost respectively. We also show that StateFlow can be combined with iterative refining methods like Reflexion to further improve performance.
♻ ☆ Could Chemical LLMs benefit from Message Passing ACL
Pretrained language models (LMs) showcase significant capabilities in processing molecular text, while concurrently, message passing neural networks (MPNNs) demonstrate resilience and versatility in the domain of molecular science. Despite these advancements, we find there are limited studies investigating the bidirectional interactions between molecular structures and their corresponding textual representations. Therefore, in this paper, we propose two strategies to evaluate whether an information integration can enhance the performance: contrast learning, which involves utilizing an MPNN to supervise the training of the LM, and fusion, which exploits information from both models. Our empirical analysis reveals that the integration approaches exhibit superior performance compared to baselines when applied to smaller molecular graphs, while these integration approaches do not yield performance enhancements on large scale graphs.
comment: Accepted at ACL @ Languages and Molecules 2024. In Proceedings of ACL 2024
♻ ☆ QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration. Recently, QNN systems have been found to manifest robustness issues similar to classical DL systems. There is an urgent need for ways to test their correctness and security. However, QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing. These challenges include the inapplicability of traditional quantum software testing methods to QNN systems due to differences in programming paradigms and decision logic representations, the dependence of quantum test sample generation on perturbation operators, and the absence of effective information in quantum neurons. In this paper, we propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems. We design a quantum entanglement adequacy criterion to quantify the entanglement acquired by the input quantum states from the QNN system, along with two similarity metrics to measure the proximity of generated quantum adversarial examples to the original inputs. Subsequently, QuanTest formulates the problem of generating test inputs that maximize the quantum entanglement adequacy and capture incorrect behaviors of the QNN system as a joint optimization problem and solves it in a gradient-based manner to generate quantum adversarial examples. results demonstrate that QuanTest possesses the capability to capture erroneous behaviors in QNN systems. The entanglement-guided approach proves effective in adversarial testing, generating more adversarial examples.
comment: This paper has been accepted by TOSEM 2024
♻ ☆ TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
We introduce TabRepo, a new dataset of tabular model evaluations and predictions. TabRepo contains the predictions and metrics of 1310 models evaluated on 200 classification and regression datasets. We illustrate the benefit of our dataset in multiple ways. First, we show that it allows to perform analysis such as comparing Hyperparameter Optimization against current AutoML systems while also considering ensembling at marginal cost by using precomputed model predictions. Second, we show that our dataset can be readily leveraged to perform transfer-learning. In particular, we show that applying standard transfer-learning techniques allows to outperform current state-of-the-art tabular systems in accuracy, runtime and latency.
♻ ☆ RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
♻ ☆ SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models
Deep model training on extensive datasets is increasingly becoming cost-prohibitive, prompting the widespread adoption of deep model fusion techniques to leverage knowledge from pre-existing models. From simple weight averaging to more sophisticated methods like AdaMerging, model fusion effectively improves model performance and accelerates the development of new models. However, potential interference between parameters of individual models and the lack of interpretability in the fusion progress remain significant challenges. Existing methods often try to resolve the parameter interference issue by evaluating attributes of parameters, such as their magnitude or sign, or by parameter pruning. In this study, we begin by examining the fine-tuning of linear layers through the lens of subspace analysis and explicitly define parameter interference as an optimization problem to shed light on this subject. Subsequently, we introduce an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction, which allows for the upscaling of source models into an MoE model without extra data or further training. Our approach relies on the observation that fine-tuning mostly keeps the important parts from the pre-training, but it uses less significant or unused areas to adapt to new tasks. Also, the issue of parameter interference, which is intrinsically intractable in the original parameter space, can be managed by expanding the dimensions. We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning, and we apply our method to large language models (CLIP models, Flan-T5 models, and Mistral-7B models), highlighting the adaptability and scalability of SMILE. Code is available at https://github.com/tanganke/fusion_bench
comment: Code is available at https://github.com/tanganke/fusion_bench
♻ ☆ Combining Safe Intervals and RRT* for Efficient Multi-Robot Path Planning in Complex Environments
In this paper, we consider the problem of Multi-Robot Path Planning (MRPP) in continuous space to find conflict-free paths. The difficulty of the problem arises from two primary factors. First, the involvement of multiple robots leads to combinatorial decision-making, which escalates the search space exponentially. Second, the continuous space presents potentially infinite states and actions. For this problem, we propose a two-level approach where the low level is a sampling-based planner Safe Interval RRT* (SI-RRT*) that finds a collision-free trajectory for individual robots. The high level can use any method that can resolve inter-robot conflicts where we employ two representative methods that are Prioritized Planning (SI-CPP) and Conflict Based Search (SI-CCBS). Experimental results show that SI-RRT* can find a high-quality solution quickly with a small number of samples. SI-CPP exhibits improved scalability while SI-CCBS produces higher-quality solutions compared to the state-of-the-art planners for continuous space. Compared to the most scalable existing algorithm, SI-CPP achieves a success rate that is up to 94% higher with 100 robots while maintaining solution quality (i.e., flowtime, the sum of travel times of all robots) without significant compromise. SI-CPP also decreases the makespan up to 45%. SI-CCBS decreases the flowtime by 9% compared to the competitor, albeit exhibiting a 14% lower success rate.
♻ ☆ Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models CVPR 2024
Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at https://github.com/Yuliang-Liu/Monkey.
comment: CVPR 2024 Highlight
♻ ☆ Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control IJRR
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world. The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot's I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
comment: Accepted in International Journal of Robotics Research (IJRR) 2024. This is the author's version and will no longer be updated as the copyright may get transferred at anytime
♻ ☆ Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering
Recent advances in a generative neural network model extend the development of data augmentation methods. However, the augmentation methods based on the modern generative models fail to achieve notable performance for class imbalance data compared to the conventional model, Synthetic Minority Oversampling Technique (SMOTE). We investigate the problem of the generative model for imbalanced classification and introduce a framework to enhance the SMOTE algorithm using Variational Autoencoders (VAE). Our approach systematically quantifies the density of data points in a low-dimensional latent space using the VAE, simultaneously incorporating information on class labels and classification difficulty. Then, the data points potentially degrading the augmentation are systematically excluded, and the neighboring observations are directly augmented on the data space. Empirical studies on several imbalanced datasets represent that this simple process innovatively improves the conventional SMOTE algorithm over the deep learning models. Consequently, we conclude that the selection of minority data and the interpolation in the data space are beneficial for imbalanced classification problems with a relatively small number of data points.
♻ ☆ Probing the Safety Response Boundary of Large Language Models via Unsafe Decoding Path Generation
Large Language Models (LLMs) are implicit troublemakers. While they provide valuable insights and assist in problem-solving, they can also potentially serve as a resource for malicious activities. Implementing safety alignment could mitigate the risk of LLMs generating harmful responses. We argue that: even when an LLM appears to successfully block harmful queries, there may still be hidden vulnerabilities that could act as ticking time bombs. To identify these underlying weaknesses, we propose to use a cost value model as both a detector and an attacker. Trained on external or self-generated harmful datasets, the cost value model could successfully influence the original safe LLM to output toxic content in decoding process. For instance, LLaMA-2-chat 7B outputs 39.18% concrete toxic content, along with only 22.16% refusals without any harmful suffixes. These potential weaknesses can then be exploited via prompt optimization such as soft prompts on images. We name this decoding strategy: Jailbreak Value Decoding (JVD), emphasizing that seemingly secure LLMs may not be as safe as we initially believe. They could be used to gather harmful data or launch covert attacks.
♻ ☆ SparseGrow: Addressing Growth-Induced Forgetting in Task-Agnostic Continual Learning AAAI
In continual learning (CL), model growth enhances adaptability over new data, improving knowledge retention for more tasks. However, improper model growth can lead to severe degradation of previously learned knowledge, an issue we name as growth-induced forgetting (GIFt), especially in task-agnostic CL using entire grown model for inference. Existing works, despite adopting model growth and random initialization for better adaptability, often fail to recognize the presence of GIFt caused by improper model growth. This oversight limits comprehensive control of forgetting and hinders full utilization of model growth. We are the first in CL to identify this issue and conduct an in-depth study on root cause of GIFt, where layer expansion stands out among model growth strategies, widening layers without affecting model functionality. Yet, direct adoption of layer expansion presents challenges. It lacks data-driven control and initialization of expanded parameters to balance adaptability and knowledge retention. This paper presents a novel SparseGrow approach to overcome the issue of GIFt while enhancing adaptability over new data. SparseGrow employs data-driven sparse layer expansion to control efficient parameter usage during growth, reducing GIFt from excessive growth and functionality changes. It also combines sparse growth with on-data initialization at training late-stage to create partially 0-valued expansions that fit learned distribution, enhancing retention and adaptability. To further minimize forgetting, freezing is applied by calculating the sparse mask, allowing data-driven preservation of important parameters. Through experiments across datasets with various settings, cases and task numbers, we demonstrate the necessity of layer expansion and showcase the effectiveness of SparseGrow in overcoming GIFt, highlighting its adaptability and knowledge retention for incremental tasks.
comment: This paper has been submitted to the AAAI conference. If accepted, the final version will be updated to reflect the conference proceedings
♻ ☆ AdapTable: Test-Time Adaptation for Tabular Data via Shift-Aware Uncertainty Calibrator and Label Distribution Handler AAAI 2025
In real-world scenarios, tabular data often suffer from distribution shifts that threaten the performance of machine learning models. Despite its prevalence and importance, handling distribution shifts in the tabular domain remains underexplored due to the inherent challenges within the tabular data itself. In this sense, test-time adaptation (TTA) offers a promising solution by adapting models to target data without accessing source data, crucial for privacy-sensitive tabular domains. However, existing TTA methods either 1) overlook the nature of tabular distribution shifts, often involving label distribution shifts, or 2) impose architectural constraints on the model, leading to a lack of applicability. To this end, we propose AdapTable, a novel TTA framework for tabular data. AdapTable operates in two stages: 1) calibrating model predictions using a shift-aware uncertainty calibrator, and 2) adjusting these predictions to match the target label distribution with a label distribution handler. We validate the effectiveness of AdapTable through theoretical analysis and extensive experiments on various distribution shift scenarios. Our results demonstrate AdapTable's ability to handle various real-world distribution shifts, achieving up to a 16% improvement on the HELOC dataset.
comment: Under Review at AAAI 2025
♻ ☆ Towards the New XAI: A Hypothesis-Driven Approach to Decision Support Using Evidence
Prior research on AI-assisted human decision-making has explored several different explainable AI (XAI) approaches. A recent paper has proposed a paradigm shift calling for hypothesis-driven XAI through a conceptual framework called evaluative AI that gives people evidence that supports or refutes hypotheses without necessarily giving a decision-aid recommendation. In this paper, we describe and evaluate an approach for hypothesis-driven XAI based on the Weight of Evidence (WoE) framework, which generates both positive and negative evidence for a given hypothesis. Through human behavioural experiments, we show that our hypothesis-driven approach increases decision accuracy and reduces reliance compared to a recommendation-driven approach and an AI-explanation-only baseline, but with a small increase in under-reliance compared to the recommendation-driven approach. Further, we show that participants used our hypothesis-driven approach in a materially different way to the two baselines.
comment: ECAI 2024 Main Track. The full paper version, including the supplementary material
♻ ☆ Semantic Communication based on Large Language Model for Underwater Image Transmission
Underwater communication is essential for environmental monitoring, marine biology research, and underwater exploration. Traditional underwater communication faces limitations like low bandwidth, high latency, and susceptibility to noise, while semantic communication (SC) offers a promising solution by focusing on the exchange of semantics rather than symbols or bits. However, SC encounters challenges in underwater environments, including semantic information mismatch and difficulties in accurately identifying and transmitting critical information that aligns with the diverse requirements of underwater applications. To address these challenges, we propose a novel Semantic Communication (SC) framework based on Large Language Models (LLMs). Our framework leverages visual LLMs to perform semantic compression and prioritization of underwater image data according to the query from users. By identifying and encoding key semantic elements within the images, the system selectively transmits high-priority information while applying higher compression rates to less critical regions. On the receiver side, an LLM-based recovery mechanism, along with Global Vision ControlNet and Key Region ControlNet networks, aids in reconstructing the images, thereby enhancing communication efficiency and robustness. Our framework reduces the overall data size to 0.8\% of the original. Experimental results demonstrate that our method significantly outperforms existing approaches, ensuring high-quality, semantically accurate image reconstruction.
♻ ☆ Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
comment: The first comprehensive review of Embodied AI in the era of MLMs, 39 pages. We also provide the paper list for Embodied AI: https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List
♻ ☆ Reduce Computational Complexity for Convolutional Layers by Skipping Zeros
Convolutional neural networks necessitate good algorithms to reduce complexity, and sufficient utilization of parallel processors for acceleration. Within convolutional layers, there are three types of operators: convolution used in forward propagation, deconvolution and dilated-convolution utilized in backward propagation. During the execution of these operators, zeros are typically added to tensors, leading to redundant calculations and unnecessary strain on hardware. To circumvent these inefficiencies, we propose the C-K-S algorithm, accompanied by efficient GPU implementations. C-K-S trims filters to exclude zero-padding. For deconvolution and dilated-convolution, C-K-S transforms sparse tensors into dense tensors, and standardizes the local computational rules to simplify the hardware control. The experimental results demonstrate that C-K-S offers good performance in terms of speed and convergence, surpassing the capabilities of PyTorch and cuDNN in certain scenarios.
♻ ☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling feature interactions is crucial for click-through rate (CTR) prediction, particularly when it comes to high-order explicit interactions. Traditional methods struggle with this task because they often predefine a maximum interaction order, which relies heavily on prior knowledge and can limit the model's effectiveness. Additionally, modeling high-order interactions typically leads to increased computational costs. Therefore, the challenge lies in adaptively modeling high-order feature interactions while maintaining efficiency. To address this issue, we introduce Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein), designed to optimize both predictive accuracy and computational efficiency. We firstly identify limitations of directly applying Kolmogorov-Arnold Networks (KAN) to CTR and then introduce KarSein to overcome these issues. It features a novel architecture that reduces the computational costs of KAN and supports embedding vectors as feature inputs. Additionally, KarSein employs guided symbolic regression to address the challenge of KAN in spontaneously learning multiplicative relationships. Extensive experiments demonstrate KarSein's superior performance, achieving significant predictive accuracy with minimal computational overhead. Furthermore, KarSein maintains strong global explainability while enabling the removal of redundant features, resulting in a sparse network structure. These advantages also position KarSein as a promising method for efficient inference.
comment: KarSein for CTR
♻ ☆ ReZero: Boosting MCTS-based Algorithms by Backward-view and Entire-buffer Reanalyze
Monte Carlo Tree Search (MCTS)-based algorithms, such as MuZero and its derivatives, have achieved widespread success in various decision-making domains. These algorithms employ the reanalyze process to enhance sample efficiency from stale data, albeit at the expense of significant wall-clock time consumption. To address this issue, we propose a general approach named ReZero to boost tree search operations for MCTS-based algorithms. Specifically, drawing inspiration from the one-armed bandit model, we reanalyze training samples through a backward-view reuse technique which obtains the value estimation of a certain child node in advance. To further adapt to this design, we periodically reanalyze the entire buffer instead of frequently reanalyzing the mini-batch. The synergy of these two designs can significantly reduce the search cost and meanwhile guarantee or even improve performance, simplifying both data collecting and reanalyzing. Experiments conducted on Atari environments and board games demonstrate that ReZero substantially improves training speed while maintaining high sample efficiency. The code is available as part of the LightZero benchmark at https://github.com/opendilab/LightZero.
♻ ☆ Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion
Spiking neural networks (SNNs) are becoming a promising alternative to conventional artificial neural networks (ANNs) due to their rich neural dynamics and the implementation of energy-efficient neuromorphic chips. However, the non-differential binary communication mechanism makes SNN hard to converge to an ANN-level accuracy. When SNN encounters sequence learning, the situation becomes worse due to the difficulties in modeling long-range dependencies. To overcome these difficulties, researchers developed variants of LIF neurons and different surrogate gradients but still failed to obtain good results when the sequence became longer (e.g., $>$500). Unlike them, we obtain an optimal SNN in sequence learning by directly mapping parameters from a quantized CRNN. We design two sub-pipelines to support the end-to-end conversion of different structures in neural networks, which is called CNN-Morph (CNN $\rightarrow$ QCNN $\rightarrow$ BIFSNN) and RNN-Morph (RNN $\rightarrow$ QRNN $\rightarrow$ RBIFSNN). Using conversion pipelines and the s-analog encoding method, the conversion error of our framework is zero. Furthermore, we give the theoretical and experimental demonstration of the lossless CRNN-SNN conversion. Our results show the effectiveness of our method over short and long timescales tasks compared with the state-of-the-art learning- and conversion-based methods. We reach the highest accuracy of 99.16% (0.46 $\uparrow$) on S-MNIST, 94.95% (3.95 $\uparrow$) on PS-MNIST (sequence length of 784) respectively, and the lowest loss of 0.057 (0.013 $\downarrow$) within 8 time-steps in collision avoidance dataset.
comment: Accepted by 33rd International Conference on Artificial Neural Networks
♻ ☆ A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems
Despite significant recent progress across multiple subtasks of audio source separation, few music source separation systems support separation beyond the four-stem vocals, drums, bass, and other (VDBO) setup. Of the very few current systems that support source separation beyond this setup, most continue to rely on an inflexible decoder setup that can only support a fixed pre-defined set of stems. Increasing stem support in these inflexible systems correspondingly requires increasing computational complexity, rendering extensions of these systems computationally infeasible for long-tail instruments. In this work, we propose Banquet, a system that allows source separation of multiple stems using just one decoder. A bandsplit source separation model is extended to work in a query-based setup in tandem with a music instrument recognition PaSST model. On the MoisesDB dataset, Banquet, at only 24.9 M trainable parameters, approached the performance level of the significantly more complex 6-stem Hybrid Transformer Demucs on VDBO stems and outperformed it on guitar and piano. The query-based setup allows for the separation of narrow instrument classes such as clean acoustic guitars, and can be successfully applied to the extraction of less common stems such as reeds and organs. Implementation is available at https://github.com/kwatcharasupat/query-bandit.
comment: Accepted to the 25th International Society for Music Information Retrieval Conference (ISMIR 2024). Camera-ready version
♻ ☆ Facing the Music: Tackling Singing Voice Separation in Cinematic Audio Source Separation
Cinematic audio source separation (CASS), as a standalone problem of extracting individual stems from their mixture, is a fairly new subtask of audio source separation. A typical setup of CASS is a three-stem problem, with the aim of separating the mixture into the dialogue (DX), music (MX), and effects (FX) stems. Given the creative nature of cinematic sound production, however, several edge cases exist; some sound sources do not fit neatly in any of these three stems, necessitating the use of additional auxiliary stems in production. One very common edge case is the singing voice in film audio, which may belong in either the DX or MX or neither, depending heavily on the cinematic context. In this work, we demonstrate a very straightforward extension of the dedicated-decoder Bandit and query-based single-decoder Banquet models to a four-stem problem, treating non-musical dialogue, instrumental music, singing voice, and effects as separate stems. Interestingly, the query-based Banquet model outperformed the dedicated-decoder Bandit model. We hypothesized that this is due to a better feature alignment at the bottleneck as enforced by the band-agnostic FiLM layer. Dataset and model implementation will be made available at https://github.com/kwatcharasupat/source-separation-landing.
comment: Submitted to the Late-Breaking Demo Session of the 25th International Society for Music Information Retrieval (ISMIR) Conference, 2024
♻ ☆ Natural Mitigation of Catastrophic Interference: Continual Learning in Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can continually learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI and promoting continual learning such as regularization, rehearsal, generative replay, and context-specific components. This paper takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that techniques for mitigating CI should be compared against the intrinsic mitigation in simulated naturalistic learning environments. Thus, we evaluate the extent of the natural mitigation of CI when training models in power-law environments, similar to those humans face. Our results show that natural rehearsal environments are better at mitigating CI than existing methods, calling for the need for better evaluation processes. The benefits of this environment include simplicity, rehearsal that is agnostic to both tasks and models, and the lack of a need for extra neural circuitry. In addition, we explore popular mitigation techniques in power-law environments to create new baselines for continual learning research.
♻ ☆ PolyRouter: A Multi-LLM Querying System
With the rapid growth of Large Language Models (LLMs) across various domains, numerous new LLMs have emerged, each possessing domain-specific expertise. This proliferation has highlighted the need for quick, high-quality, and cost-effective LLM query response methods. Yet, no single LLM exists to efficiently balance this trilemma. Some models are powerful but extremely costly, while others are fast and inexpensive but qualitatively inferior. To address this challenge, we present PolyRouter, a non-monolithic LLM querying system that seamlessly integrates various LLM experts into a single query interface and dynamically routes incoming queries to the most high-performant expert based on query's requirements. Through extensive experiments, we demonstrate that when compared to standalone expert models, PolyRouter improves query efficiency by up to 40%, and leads to significant cost reductions of up to 30%, while maintaining or enhancing model performance by up to 10%.
comment: 14 pages, 7 figures, 2 tables
♻ ☆ LLaVA-Docent: Instruction Tuning with Multimodal Large Language Model to Support Art Appreciation Education
Art appreciation is vital in nurturing critical thinking and emotional intelligence among learners. However, traditional art appreciation education has often been hindered by limited access to art resources, especially for disadvantaged students, and an imbalanced emphasis on STEM subjects in mainstream education. In response to these challenges, recent technological advancements have paved the way for innovative solutions. This study explores the application of multi-modal large language models (MLLMs) in art appreciation education, focusing on developing LLaVA-Docent, a model that leverages these advancements. Our approach involved a comprehensive literature review and consultations with experts in the field, leading to developing a robust data framework. Utilizing this framework, we generated a virtual dialogue dataset that was leveraged by GPT-4. This dataset was instrumental in training the MLLM, named LLaVA-Docent. Six researchers conducted quantitative and qualitative evaluations of LLaVA-Docent to assess its effectiveness, benchmarking it against the GPT-4 model in a few-shot setting. The evaluation process revealed distinct strengths and weaknesses of the LLaVA-Docent model. Our findings highlight the efficacy of LLaVA-Docent in enhancing the accessibility and engagement of art appreciation education. By harnessing the potential of MLLMs, this study makes a significant contribution to the field of art education, proposing a novel methodology that reimagines the way art appreciation is taught and experienced.
comment: 37 pages, 4 figures, 10 tables
♻ ☆ MergeRepair: An Exploratory Study on Merging Task-Specific Adapters in Code LLMs for Automated Program Repair
[Context] Large Language Models (LLMs) have shown good performance in several software development-related tasks such as program repair, documentation, code refactoring, debugging, and testing. Adapters are specialized, small modules designed for parameter efficient fine-tuning of LLMs for specific tasks, domains, or applications without requiring extensive retraining of the entire model. These adapters offer a more efficient way to customize LLMs for particular needs, leveraging the pre-existing capabilities of the large model. Merging LLMs and adapters has shown promising results for various natural language domains and tasks, enabling the use of the learned models and adapters without additional training for a new task. [Objective] This research proposes continual merging and empirically studies the capabilities of merged adapters in Code LLMs, specially for the Automated Program Repair (APR) task. The goal is to gain insights into whether and how merging task-specific adapters can affect the performance of APR. [Method] In our framework, MergeRepair, we plan to merge multiple task-specific adapters using three different merging methods and evaluate the performance of the merged adapter for the APR task. Particularly, we will employ two main merging scenarios for all three techniques, (i) merging using equal-weight averaging applied on parameters of different adapters, where all adapters are of equal importance; and (ii) our proposed approach, continual merging, in which we sequentially merge the task-specific adapters and the order and weight of merged adapters matter. By exploratory study of merging techniques, we will investigate the improvement and generalizability of merged adapters for APR. Through continual merging, we will explore the capability of merged adapters and the effect of task order, as it occurs in real-world software projects.
♻ ☆ Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification
Covariance and Hessian matrices have been analyzed separately in the literature for classification problems. However, integrating these matrices has the potential to enhance their combined power in improving classification performance. We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model to achieve optimal class separability in binary classification tasks. Our approach is substantiated by formal proofs that establish its capability to maximize between-class mean distance and minimize within-class variances, particularly under ideal data conditions such as isotropy around class means and dominant leading eigenvalues. By projecting data into the combined space of the most relevant eigendirections from both matrices, we achieve optimal class separability as per the linear discriminant analysis (LDA) criteria. Empirical validation across neural and health datasets consistently supports our theoretical framework and demonstrates that our method outperforms established methods. Our method stands out by addressing both LDA criteria, unlike PCA and the Hessian method, which predominantly emphasize one criterion each. This comprehensive approach captures intricate patterns and relationships, enhancing classification performance. Furthermore, through the utilization of both LDA criteria, our method outperforms LDA itself by leveraging higher-dimensional feature spaces, in accordance with Cover's theorem, which favors linear separability in higher dimensions. Our method also surpasses kernel-based methods and manifold learning techniques in performance. Additionally, our approach sheds light on complex DNN decision-making, rendering them comprehensible within a 2D space.
comment: 31 pages, 13 figures
♻ ☆ Do Neural Scaling Laws Exist on Graph Self-Supervised Learning?
Self-supervised learning~(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility on https://github.com/GraphSSLScaling/GraphSSLScaling.
Graphics 5
☆ Exploiting ray tracing technology through OptiX to compute particle interactions with cutoff in a 3D environment on GPU
Computing on graphics processing units (GPUs) has become standard in scientific computing, allowing for incredible performance gains over classical CPUs for many computational methods. As GPUs were originally designed for 3D rendering, they still have several features for that purpose that are not used in scientific computing. Among them, ray tracing is a powerful technology used to render 3D scenes. In this paper, we propose exploiting ray tracing technology to compute particle interactions with a cutoff distance in a 3D environment. We describe algorithmic tricks and geometric patterns to find the interaction lists for each particle. This approach allows us to compute interactions with quasi-linear complexity in the number of particles without building a grid of cells or an explicit kd-tree. We compare the performance of our approach with a classical approach based on a grid of cells and show that, currently, ours is slower in most cases but could pave the way for future methods.
comment: https://gitlab.inria.fr/bramas/particle-interaction-with-optix
☆ DynaSurfGS: Dynamic Surface Reconstruction with Planar-based Gaussian Splatting 3DV
Dynamic scene reconstruction has garnered significant attention in recent years due to its capabilities in high-quality and real-time rendering. Among various methodologies, constructing a 4D spatial-temporal representation, such as 4D-GS, has gained popularity for its high-quality rendered images. However, these methods often produce suboptimal surfaces, as the discrete 3D Gaussian point clouds fail to align with the object's surface precisely. To address this problem, we propose DynaSurfGS to achieve both photorealistic rendering and high-fidelity surface reconstruction of dynamic scenarios. Specifically, the DynaSurfGS framework first incorporates Gaussian features from 4D neural voxels with the planar-based Gaussian Splatting to facilitate precise surface reconstruction. It leverages normal regularization to enforce the smoothness of the surface of dynamic objects. It also incorporates the as-rigid-as-possible (ARAP) constraint to maintain the approximate rigidity of local neighborhoods of 3D Gaussians between timesteps and ensure that adjacent 3D Gaussians remain closely aligned throughout. Extensive experiments demonstrate that DynaSurfGS surpasses state-of-the-art methods in both high-fidelity surface reconstruction and photorealistic rendering.
comment: homepage: https://open3dvlab.github.io/DynaSurfGS/, code: https://github.com/Open3DVLab/DynaSurfGS
♻ ☆ Visual Analysis of Multi-outcome Causal Graphs
We introduce a visual analysis method for multiple causal graphs with different outcome variables, namely, multi-outcome causal graphs. Multi-outcome causal graphs are important in healthcare for understanding multimorbidity and comorbidity. To support the visual analysis, we collaborated with medical experts to devise two comparative visualization techniques at different stages of the analysis process. First, a progressive visualization method is proposed for comparing multiple state-of-the-art causal discovery algorithms. The method can handle mixed-type datasets comprising both continuous and categorical variables and assist in the creation of a fine-tuned causal graph of a single outcome. Second, a comparative graph layout technique and specialized visual encodings are devised for the quick comparison of multiple causal graphs. In our visual analysis approach, analysts start by building individual causal graphs for each outcome variable, and then, multi-outcome causal graphs are generated and visualized with our comparative technique for analyzing differences and commonalities of these causal graphs. Evaluation includes quantitative measurements on benchmark datasets, a case study with a medical expert, and expert user studies with real-world health research data.
♻ ☆ On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy ECCV2024
3D Gaussian Splatting has garnered extensive attention and application in real-time neural rendering. Concurrently, concerns have been raised about the limitations of this technology in aspects such as point cloud storage, performance, and robustness in sparse viewpoints, leading to various improvements. However, there has been a notable lack of attention to the fundamental problem of projection errors introduced by the local affine approximation inherent in the splatting itself, and the consequential impact of these errors on the quality of photo-realistic rendering. This paper addresses the projection error function of 3D Gaussian Splatting, commencing with the residual error from the first-order Taylor expansion of the projection function. The analysis establishes a correlation between the error and the Gaussian mean position. Subsequently, leveraging function optimization theory, this paper analyzes the function's minima to provide an optimal projection strategy for Gaussian Splatting referred to Optimal Gaussian Splatting, which can accommodate a variety of camera models. Experimental validation further confirms that this projection methodology reduces artifacts, resulting in a more convincingly realistic rendering.
comment: Accepted by ECCV2024; Project Page: https://letianhuang.github.io/op43dgs/
♻ ☆ The Categorical Data Map: A Multidimensional Scaling-Based Approach IEEE VIS 2024
Categorical data does not have an intrinsic definition of distance or order, and therefore, established visualization techniques for categorical data only allow for a set-based or frequency-based analysis, e.g., through Euler diagrams or Parallel Sets, and do not support a similarity-based analysis. We present a novel dimensionality reduction-based visualization for categorical data, which is based on defining the distance of two data items as the number of varying attributes. Our technique enables users to pre-attentively detect groups of similar data items and observe the properties of the projection, such as attributes strongly influencing the embedding. Our prototype visually encodes data properties in an enhanced scatterplot-like visualization, encoding attributes in the background to show the distribution of categories. In addition, we propose two graph-based measures to quantify the plot's visual quality, which rank attributes according to their contribution to cluster cohesion. To demonstrate the capabilities of our similarity-based approach, we compare it to Euler diagrams and Parallel Sets regarding visual scalability and show its benefits through an expert study with five data scientists analyzing the Titanic and Mushroom datasets with up to 23 attributes and 8124 category combinations. Our results indicate that the Categorical Data Map offers an effective analysis method, especially for large datasets with a high number of category combinations.
comment: Fully replaced; 10 pages, 9 figures, LaTeX; to appear at Visual Data Science (VDS) Symposium at IEEE VIS 2024
Computer Vision 27
☆ Shifted Window Fourier Transform And Retention For Image Captioning ICONIP 2024
Image Captioning is an important Language and Vision task that finds application in a variety of contexts, ranging from healthcare to autonomous vehicles. As many real-world applications rely on devices with limited resources, much effort in the field was put into the development of lighter and faster models. However, much of the current optimizations focus on the Transformer architecture in contrast to the existence of more efficient methods. In this work, we introduce SwiFTeR, an architecture almost entirely based on Fourier Transform and Retention, to tackle the main efficiency bottlenecks of current light image captioning models, being the visual backbone's onerosity, and the decoder's quadratic cost. SwiFTeR is made of only 20M parameters, and requires 3.1 GFLOPs for a single forward pass. Additionally, it showcases superior scalability to the caption length and its small memory requirements enable more images to be processed in parallel, compared to the traditional transformer-based architectures. For instance, it can generate 400 captions in one second. Although, for the time being, the caption quality is lower (110.2 CIDEr-D), most of the decrease is not attributed to the architecture but rather an incomplete training practice which currently leaves much room for improvements. Overall, SwiFTeR points toward a promising direction to new efficient architectural design. The implementation code will be released in the future.
comment: Pre-print version of paper accepted for ICONIP 2024
☆ InterTrack: Tracking Human Object Interaction without Object Templates
Tracking human object interaction from videos is important to understand human behavior from the rapidly growing stream of video data. Previous video-based methods require predefined object templates while single-image-based methods are template-free but lack temporal consistency. In this paper, we present a method to track human object interaction without any object shape templates. We decompose the 4D tracking problem into per-frame pose tracking and canonical shape optimization. We first apply a single-view reconstruction method to obtain temporally-inconsistent per-frame interaction reconstructions. Then, for the human, we propose an efficient autoencoder to predict SMPL vertices directly from the per-frame reconstructions, introducing temporally consistent correspondence. For the object, we introduce a pose estimator that leverages temporal information to predict smooth object rotations under occlusions. To train our model, we propose a method to generate synthetic interaction videos and synthesize in total 10 hour videos of 8.5k sequences with full 3D ground truth. Experiments on BEHAVE and InterCap show that our method significantly outperforms previous template-based video tracking and single-frame reconstruction methods. Our proposed synthetic video dataset also allows training video-based methods that generalize to real-world videos. Our code and dataset will be publicly released.
comment: 17 pages, 13 figures and 6 tables. Project page: https://virtualhumans.mpi-inf.mpg.de/InterTrack/
☆ Personalized Topology-Informed 12-Lead ECG Electrode Localization from Incomplete Cardiac MRIs for Efficient Cardiac Digital Twins
Cardiac digital twins (CDTs) offer personalized \textit{in-silico} cardiac representations for the inference of multi-scale properties tied to cardiac mechanisms. The creation of CDTs requires precise information about the electrode position on the torso, especially for the personalized electrocardiogram (ECG) calibration. However, current studies commonly rely on additional acquisition of torso imaging and manual/semi-automatic methods for ECG electrode localization. In this study, we propose a novel and efficient topology-informed model to fully automatically extract personalized ECG electrode locations from 2D clinically standard cardiac MRIs. Specifically, we obtain the sparse torso contours from the cardiac MRIs and then localize the electrodes from the contours. Cardiac MRIs aim at imaging of the heart instead of the torso, leading to incomplete torso geometry within the imaging. To tackle the missing topology, we incorporate the electrodes as a subset of the keypoints, which can be explicitly aligned with the 3D torso topology. The experimental results demonstrate that the proposed model outperforms the time-consuming conventional method in terms of accuracy (Euclidean distance: $1.24 \pm 0.293$ cm vs. $1.48 \pm 0.362$ cm) and efficiency ($2$~s vs. $30$-$35$~min). We further demonstrate the effectiveness of using the detected electrodes for \textit{in-silico} ECG simulation, highlighting their potential for creating accurate and efficient CDT models. The code will be released publicly after the manuscript is accepted for publication.
comment: 12 pages
☆ OpenNav: Efficient Open Vocabulary 3D Object Detection for Smart Wheelchair Navigation ECCV
Open vocabulary 3D object detection (OV3D) allows precise and extensible object recognition crucial for adapting to diverse environments encountered in assistive robotics. This paper presents OpenNav, a zero-shot 3D object detection pipeline based on RGB-D images for smart wheelchairs. Our pipeline integrates an open-vocabulary 2D object detector with a mask generator for semantic segmentation, followed by depth isolation and point cloud construction to create 3D bounding boxes. The smart wheelchair exploits these 3D bounding boxes to identify potential targets and navigate safely. We demonstrate OpenNav's performance through experiments on the Replica dataset and we report preliminary results with a real wheelchair. OpenNav improves state-of-the-art significantly on the Replica dataset at mAP25 (+9pts) and mAP50 (+5pts) with marginal improvement at mAP. The code is publicly available at this link: https://github.com/EasyWalk-PRIN/OpenNav.
comment: ECCVW
☆ GeoPlant: Spatial Plant Species Prediction Dataset
The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.
☆ Infrared Domain Adaptation with Zero-Shot Quantization
Quantization is one of the most popular techniques for reducing computation time and shrinking model size. However, ensuring the accuracy of quantized models typically involves calibration using training data, which may be inaccessible due to privacy concerns. In such cases, zero-shot quantization, a technique that relies on pretrained models and statistical information without the need for specific training data, becomes valuable. Exploring zero-shot quantization in the infrared domain is important due to the prevalence of infrared imaging in sensitive fields like medical and security applications. In this work, we demonstrate how to apply zero-shot quantization to an object detection model retrained with thermal imagery. We use batch normalization statistics of the model to distill data for calibration. RGB image-trained models and thermal image-trained models are compared in the context of zero-shot quantization. Our investigation focuses on the contributions of mean and standard deviation statistics to zero-shot quantization performance. Additionally, we compare zero-shot quantization with post-training quantization on a thermal dataset. We demonstrated that zero-shot quantization successfully generates data that represents the training dataset for the quantization of object detection models. Our results indicate that our zero-shot quantization framework is effective in the absence of training data and is well-suited for the infrared domain.
comment: ICMV 2024
COMPOSE: Comprehensive Portrait Shadow Editing ECCV 2024
Existing portrait relighting methods struggle with precise control over facial shadows, particularly when faced with challenges such as handling hard shadows from directional light sources or adjusting shadows while remaining in harmony with existing lighting conditions. In many situations, completely altering input lighting is undesirable for portrait retouching applications: one may want to preserve some authenticity in the captured environment. Existing shadow editing methods typically restrict their application to just the facial region and often offer limited lighting control options, such as shadow softening or rotation. In this paper, we introduce COMPOSE: a novel shadow editing pipeline for human portraits, offering precise control over shadow attributes such as shape, intensity, and position, all while preserving the original environmental illumination of the portrait. This level of disentanglement and controllability is obtained thanks to a novel decomposition of the environment map representation into ambient light and an editable gaussian dominant light source. COMPOSE is a four-stage pipeline that consists of light estimation and editing, light diffusion, shadow synthesis, and finally shadow editing. We define facial shadows as the result of a dominant light source, encoded using our novel gaussian environment map representation. Utilizing an OLAT dataset, we have trained models to: (1) predict this light source representation from images, and (2) generate realistic shadows using this representation. We also demonstrate comprehensive and intuitive shadow editing with our pipeline. Through extensive quantitative and qualitative evaluations, we have demonstrated the robust capability of our system in shadow editing.
comment: Accepted at ECCV 2024
☆ Splatt3R: Zero-shot Gaussian Splatting from Uncalibarated Image Pairs
In this paper, we introduce Splatt3R, a pose-free, feed-forward method for in-the-wild 3D reconstruction and novel view synthesis from stereo pairs. Given uncalibrated natural images, Splatt3R can predict 3D Gaussian Splats without requiring any camera parameters or depth information. For generalizability, we start from a 'foundation' 3D geometry reconstruction method, MASt3R, and extend it to be a full 3D structure and appearance reconstructor. Specifically, unlike the original MASt3R which reconstructs only 3D point clouds, we predict the additional Gaussian attributes required to construct a Gaussian primitive for each point. Hence, unlike other novel view synthesis methods, Splatt3R is first trained by optimizing the 3D point cloud's geometry loss, and then a novel view synthesis objective. By doing this, we avoid the local minima present in training 3D Gaussian Splats from stereo views. We also propose a novel loss masking strategy that we empirically find is critical for strong performance on extrapolated viewpoints. We train Splatt3R on the ScanNet++ dataset and demonstrate excellent generalisation to uncalibrated, in-the-wild images. Splatt3R can reconstruct scenes at 4FPS at 512 x 512 resolution, and the resultant splats can be rendered in real-time.
comment: Our project page can be found at: https://splatt3r.active.vision/
☆ LowCLIP: Adapting the CLIP Model Architecture for Low-Resource Languages in Multimodal Image Retrieval Task
This research explores the development of multimodal vision-language models for image retrieval in low-resource languages, specifically Azerbaijani. Existing vision-language models primarily support high-resource languages, and fine-tuning them remains computationally demanding. To address challenges in vision-language retrieval for low-resource languages, we integrated the CLIP model architecture and employed several techniques to balance computational efficiency with performance. These techniques include synthetic data generation through machine translation, image augmentation, and further training the attention mechanisms of transformer-based models with domain-specific data. We integrated Multilingual BERT as a text encoder with image encoders like ResNet50, EfficientNet0, Vision Transformer (ViT), and Tiny Swin Transformer. Our study found that models like EfficientNet0 and Tiny Swin Transformer perform best on the datasets they were trained on, such as COCO, Flickr30k, and Flickr8k. Augmentation techniques boosted EfficientNet0 MAP on Flickr30k from 0.84 to 0.87 and ResNet50 MAP on MSCOCO from 0.70 to 0.80, contributing to a new state of the art in vision-language retrieval. We share our configurations and results to support further research. Code and pre-trained models are available at https://github.com/aliasgerovs/azclip.
☆ ConVis: Contrastive Decoding with Hallucination Visualization for Mitigating Hallucinations in Multimodal Large Language Models
Hallucinations in Multimodal Large Language Models (MLLMs) where generated responses fail to accurately reflect the given image pose a significant challenge to their reliability. To address this, we introduce ConVis, a novel training-free contrastive decoding method. ConVis leverages a text-to-image (T2I) generation model to semantically reconstruct the given image from hallucinated captions. By comparing the contrasting probability distributions produced by the original and reconstructed images, ConVis enables MLLMs to capture visual contrastive signals that penalize hallucination generation. Notably, this method operates purely within the decoding process, eliminating the need for additional data or model updates. Our extensive experiments on five popular benchmarks demonstrate that ConVis effectively reduces hallucinations across various MLLMs, highlighting its potential to enhance model reliability.
comment: First two authors contributed equally. Source code is available at https://github.com/yejipark-m/ConVis
☆ TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training BMVC 2024
3D point clouds are essential for perceiving outdoor scenes, especially within the realm of autonomous driving. Recent advances in 3D LiDAR Object Detection focus primarily on the spatial positioning and distribution of points to ensure accurate detection. However, despite their robust performance in variable conditions, these methods are hindered by their sole reliance on coordinates and point intensity, resulting in inadequate isometric invariance and suboptimal detection outcomes. To tackle this challenge, our work introduces Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture. Our TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize the inherent isotropic radiation of LiDAR to enhance local representation, improve computational efficiency, and boost detection performance. To effectively process the geometric relations among points within each proposal, we propose a Multi-head self-Attention Encoder (MAE) with asymmetric geometric features to encode high-dimensional TraIL features into manageable representations. Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI (67.8, 20% label, moderate) and Waymo (68.9, 20% label, moderate) datasets under various label ratios (20%, 50%, and 100%).
comment: BMVC 2024; 15 pages, 3 figures, 3 tables; Code at https://github.com/l1997i/rapid_seg
☆ Evaluating Attribute Comprehension in Large Vision-Language Models
Currently, large vision-language models have gained promising progress on many downstream tasks. However, they still suffer many challenges in fine-grained visual understanding tasks, such as object attribute comprehension. Besides, there have been growing efforts on the evaluations of large vision-language models, but lack of in-depth study of attribute comprehension and the visual language fine-tuning process. In this paper, we propose to evaluate the attribute comprehension ability of large vision-language models from two perspectives: attribute recognition and attribute hierarchy understanding. We evaluate three vision-language interactions, including visual question answering, image-text matching, and image-text cosine similarity. Furthermore, we explore the factors affecting attribute comprehension during fine-tuning. Through a series of quantitative and qualitative experiments, we introduce three main findings: (1) Large vision-language models possess good attribute recognition ability, but their hierarchical understanding ability is relatively limited. (2) Compared to ITC, ITM exhibits superior capability in capturing finer details, making it more suitable for attribute understanding tasks. (3) The attribute information in the captions used for fine-tuning plays a crucial role in attribute understanding. We hope this work can help guide future progress in fine-grained visual understanding of large vision-language models.
comment: 15 pages, 4 figures
☆ Making Large Language Models Better Planners with Reasoning-Decision Alignment
Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.
☆ Camouflaged_Object_Tracking__A_Benchmark
Visual tracking has seen remarkable advancements, largely driven by the availability of large-scale training datasets that have enabled the development of highly accurate and robust algorithms. While significant progress has been made in tracking general objects, research on more challenging scenarios, such as tracking camouflaged objects, remains limited. Camouflaged objects, which blend seamlessly with their surroundings or other objects, present unique challenges for detection and tracking in complex environments. This challenge is particularly critical in applications such as military, security, agriculture, and marine monitoring, where precise tracking of camouflaged objects is essential. To address this gap, we introduce the Camouflaged Object Tracking Dataset (COTD), a specialized benchmark designed specifically for evaluating camouflaged object tracking methods. The COTD dataset comprises 200 sequences and approximately 80,000 frames, each annotated with detailed bounding boxes. Our evaluation of 20 existing tracking algorithms reveals significant deficiencies in their performance with camouflaged objects. To address these issues, we propose a novel tracking framework, HiPTrack-MLS, which demonstrates promising results in improving tracking performance for camouflaged objects. COTD and code are avialable at https://github.com/openat25/HIPTrack-MLS.
☆ Particle-Filtering-based Latent Diffusion for Inverse Problems
Current strategies for solving image-based inverse problems apply latent diffusion models to perform posterior sampling.However, almost all approaches make no explicit attempt to explore the solution space, instead drawing only a single sample from a Gaussian distribution from which to generate their solution. In this paper, we introduce a particle-filtering-based framework for a nonlinear exploration of the solution space in the initial stages of reverse SDE methods. Our proposed particle-filtering-based latent diffusion (PFLD) method and proposed problem formulation and framework can be applied to any diffusion-based solution for linear or nonlinear inverse problems. Our experimental results show that PFLD outperforms the SoTA solver PSLD on the FFHQ-1K and ImageNet-1K datasets on inverse problem tasks of super resolution, Gaussian debluring and inpainting.
comment: Mohammad Hadi Sepanj, Nicholas Pellegrino, and Chris Czarnecki contributed equally
☆ Knowledge-Aware Reasoning over Multimodal Semi-structured Tables
Existing datasets for tabular question answering typically focus exclusively on text within cells. However, real-world data is inherently multimodal, often blending images such as symbols, faces, icons, patterns, and charts with textual content in tables. With the evolution of AI models capable of multimodal reasoning, it is pertinent to assess their efficacy in handling such structured data. This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data. We explore their ability to reason on tables that integrate both images and text, introducing MMTabQA, a new dataset designed for this purpose. Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs, understanding visual context, and comparing visual content across images. These findings establish our dataset as a robust benchmark for advancing AI's comprehension and capabilities in analyzing multimodal structured data.
☆ Draw Like an Artist: Complex Scene Generation with Diffusion Model via Composition, Painting, and Retouching
Recent advances in text-to-image diffusion models have demonstrated impressive capabilities in image quality. However, complex scene generation remains relatively unexplored, and even the definition of `complex scene' itself remains unclear. In this paper, we address this gap by providing a precise definition of complex scenes and introducing a set of Complex Decomposition Criteria (CDC) based on this definition. Inspired by the artists painting process, we propose a training-free diffusion framework called Complex Diffusion (CxD), which divides the process into three stages: composition, painting, and retouching. Our method leverages the powerful chain-of-thought capabilities of large language models (LLMs) to decompose complex prompts based on CDC and to manage composition and layout. We then develop an attention modulation method that guides simple prompts to specific regions to complete the complex scene painting. Finally, we inject the detailed output of the LLM into a retouching model to enhance the image details, thus implementing the retouching stage. Extensive experiments demonstrate that our method outperforms previous SOTA approaches, significantly improving the generation of high-quality, semantically consistent, and visually diverse images for complex scenes, even with intricate prompts.
☆ Tangram: A Challenging Benchmark for Geometric Element Recognizing
Significant advancements in Large Multimodal Models (LMMs) have enabled them to tackle complex problems involving visual-mathematical reasoning. However, their ability to identify geometric elements remains understudied. To bridge this gap, we introduce Tangram, a novel benchmark designed to evaluate the performance of LMMs on geometric element recognition. Tangram includes 1,080 diverse geometric diagrams sourced from primary and secondary school exams, competitions, and textbooks, covering from simple basic geometric shapes to complex combinations. Each diagram is associated with four questions, resulting in a total of 4,320 visual-question-answer pairs. Unlike existing benchmarks that seek higher-level cognition and reasoning, Tangram focuses on the understanding of geometric elements, requiring models to perform a "simple but interesting" counting task. Systematic evaluation of 10 prominent LMMs, such as GPT-4o and Claude 3.5 Sonnet, shows that even in the seemingly simple task, these models still face significant challenges. Notably, the overall accuracy of the top performer across all tested models is only 56.8%, marking a significant gap when compared to human performance. These findings highlight the limitations of current multimodal artificial intelligence systems in handling basic perception tasks, and will inspire the development of the next generation of expert-level multimodal foundational models. The Tangram and evaluation code will be available soon.
comment: 12 pages, 7 figures
☆ LaneTCA: Enhancing Video Lane Detection with Temporal Context Aggregation
In video lane detection, there are rich temporal contexts among successive frames, which is under-explored in existing lane detectors. In this work, we propose LaneTCA to bridge the individual video frames and explore how to effectively aggregate the temporal context. Technically, we develop an accumulative attention module and an adjacent attention module to abstract the long-term and short-term temporal context, respectively. The accumulative attention module continuously accumulates visual information during the journey of a vehicle, while the adjacent attention module propagates this lane information from the previous frame to the current frame. The two modules are meticulously designed based on the transformer architecture. Finally, these long-short context features are fused with the current frame features to predict the lane lines in the current frame. Extensive quantitative and qualitative experiments are conducted on two prevalent benchmark datasets. The results demonstrate the effectiveness of our method, achieving several new state-of-the-art records. The codes and models are available at https://github.com/Alex-1337/LaneTCA
☆ Bring the Power of Diffusion Model to Defect Detection
Due to the high complexity and technical requirements of industrial production processes, surface defects will inevitably appear, which seriously affects the quality of products. Although existing lightweight detection networks are highly efficient, they are susceptible to false or missed detection of non-salient defects due to the lack of semantic information. In contrast, the diffusion model can generate higher-order semantic representations in the denoising process. Therefore, the aim of this paper is to incorporate the higher-order modelling capability of the diffusion model into the detection model, so as to better assist in the classification and localization of difficult targets. First, the denoising diffusion probabilistic model (DDPM) is pre-trained to extract the features of denoising process to construct as a feature repository. In particular, to avoid the potential bottleneck of memory caused by the dataloader loading high-dimensional features, a residual convolutional variational auto-encoder (ResVAE) is designed to further compress the feature repository. The image is fed into both image backbone and feature repository for feature extraction and querying respectively. The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features. A dynamic cross-fusion method is proposed to fully refine the contextual features of DDPM to optimize the detection model. Finally, we employ knowledge distillation to migrate the higher-order modelling capabilities back into the lightweight baseline model without additional efficiency cost. Experiment results demonstrate that our method achieves competitive results on several industrial datasets.
♻ ☆ MuMA-ToM: Multi-modal Multi-Agent Theory of Mind SC
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
comment: Project website: https://scai.cs.jhu.edu/projects/MuMA-ToM/ Code: https://github.com/SCAI-JHU/MuMA-ToM
Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical Report
♻ ☆ Enhancing Evaluation Methods for Infrared Small-Target Detection in Real-world Scenarios
Infrared small target detection (IRSTD) poses a significant challenge in the field of computer vision. While substantial efforts have been made over the past two decades to improve the detection capabilities of IRSTD algorithms, there has been a lack of extensive investigation into the evaluation metrics used for assessing their performance. In this paper, we employ a systematic approach to address this issue by first evaluating the effectiveness of existing metrics and then proposing new metrics to overcome the limitations of conventional ones. To achieve this, we carefully analyze the necessary conditions for successful detection and identify the shortcomings of current evaluation metrics, including both pre-thresholding and post-thresholding metrics. We then introduce new metrics that are designed to align with the requirements of real-world systems. Furthermore, we utilize these newly proposed metrics to compare and evaluate the performance of five widely recognized small infrared target detection algorithms. The results demonstrate that the new metrics provide consistent and meaningful quantitative assessments, aligning with qualitative observations.
♻ ☆ RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation ECCV 2024
3D point clouds play a pivotal role in outdoor scene perception, especially in the context of autonomous driving. Recent advancements in 3D LiDAR segmentation often focus intensely on the spatial positioning and distribution of points for accurate segmentation. However, these methods, while robust in variable conditions, encounter challenges due to sole reliance on coordinates and point intensity, leading to poor isometric invariance and suboptimal segmentation. To tackle this challenge, our work introduces Range-Aware Pointwise Distance Distribution (RAPiD) features and the associated RAPiD-Seg architecture. Our RAPiD features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize inherent LiDAR isotropic radiation and semantic categorization for enhanced local representation and computational efficiency, while incorporating a 4D distance metric that integrates geometric and surface material reflectivity for improved semantic segmentation. To effectively embed high-dimensional RAPiD features, we propose a double-nested autoencoder structure with a novel class-aware embedding objective to encode high-dimensional features into manageable voxel-wise embeddings. Additionally, we propose RAPiD-Seg which incorporates a channel-wise attention fusion and two effective RAPiD-Seg variants, further optimizing the embedding for enhanced performance and generalization. Our method outperforms contemporary LiDAR segmentation work in terms of mIoU on SemanticKITTI (76.1) and nuScenes (83.6) datasets.
comment: ECCV 2024 (Oral); 18 pages, 6 figures, 7 tables; Code at https://github.com/l1997i/rapid_seg
♻ ☆ Bayesian Low-Rank LeArning (Bella): A Practical Approach to Bayesian Neural Networks
Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
comment: 17 pages, 14 figures, 11 tables
♻ ☆ Cross-Age and Cross-Site Domain Shift Impacts on Deep Learning-Based White Matter Fiber Estimation in Newborn and Baby Brains
Deep learning models have shown great promise in estimating tissue microstructure from limited diffusion magnetic resonance imaging data. However, these models face domain shift challenges when test and train data are from different scanners and protocols, or when the models are applied to data with inherent variations such as the developing brains of infants and children scanned at various ages. Several techniques have been proposed to address some of these challenges, such as data harmonization or domain adaptation in the adult brain. However, those techniques remain unexplored for the estimation of fiber orientation distribution functions in the rapidly developing brains of infants. In this work, we extensively investigate the age effect and domain shift within and across two different cohorts of 201 newborns and 165 babies using the Method of Moments and fine-tuning strategies. Our results show that reduced variations in the microstructural development of babies in comparison to newborns directly impact the deep learning models' cross-age performance. We also demonstrate that a small number of target domain samples can significantly mitigate domain shift problems.
comment: 5 pages, 5 figures; accepted as an Oral Presentation at the 2024 IEEE International Symposium on Biomedical Imaging (ISBI) in Athens, Greece
Epsilon: Exploring Comprehensive Visual-Semantic Projection for Multi-Label Zero-Shot Learning
This paper investigates a challenging problem of zero-shot learning in the multi-label scenario (MLZSL), wherein the model is trained to recognize multiple unseen classes within a sample (e.g., an image) based on seen classes and auxiliary knowledge, e.g., semantic information. Existing methods usually resort to analyzing the relationship of various seen classes residing in a sample from the dimension of spatial or semantic characteristics and transferring the learned model to unseen ones. However, they neglect the integrity of local and global features. Although the use of the attention structure will accurately locate local features, especially objects, it will significantly lose its integrity, and the relationship between classes will also be affected. Rough processing of global features will also directly affect comprehensiveness. This neglect will make the model lose its grasp of the main components of the image. Relying only on the local existence of seen classes during the inference stage introduces unavoidable bias. In this paper, we propose a novel and comprehensive visual-semantic framework for MLZSL, dubbed Epsilon, to fully make use of such properties and enable a more accurate and robust visual-semantic projection. In terms of spatial information, we achieve effective refinement by group aggregating image features into several semantic prompts. It can aggregate semantic information rather than class information, preserving the correlation between semantics. In terms of global semantics, we use global forward propagation to collect as much information as possible to ensure that semantics are not omitted. Experiments on large-scale MLZSL benchmark datasets NUS-Wide and Open-Images-v4 demonstrate that the proposed Epsilon outperforms other state-of-the-art methods with large margins.
comment: 11 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:2309.00923
Artificial Intelligence 50
☆ Bridging the Gap between Real-world and Synthetic Images for Testing Autonomous Driving Systems
Deep Neural Networks (DNNs) for Autonomous Driving Systems (ADS) are typically trained on real-world images and tested using synthetic simulator images. This approach results in training and test datasets with dissimilar distributions, which can potentially lead to erroneously decreased test accuracy. To address this issue, the literature suggests applying domain-to-domain translators to test datasets to bring them closer to the training datasets. However, translating images used for testing may unpredictably affect the reliability, effectiveness and efficiency of the testing process. Hence, this paper investigates the following questions in the context of ADS: Could translators reduce the effectiveness of images used for ADS-DNN testing and their ability to reveal faults in ADS-DNNs? Can translators result in excessive time overhead during simulation-based testing? To address these questions, we consider three domain-to-domain translators: CycleGAN and neural style transfer, from the literature, and SAEVAE, our proposed translator. Our results for two critical ADS tasks -- lane keeping and object detection -- indicate that translators significantly narrow the gap in ADS test accuracy caused by distribution dissimilarities between training and test data, with SAEVAE outperforming the other two translators. We show that, based on the recent diversity, coverage, and fault-revealing ability metrics for testing deep-learning systems, translators do not compromise the diversity and the coverage of test data, nor do they lead to revealing fewer faults in ADS-DNNs. Further, among the translators considered, SAEVAE incurs a negligible overhead in simulation time and can be efficiently integrated into simulation-based testing. Finally, we show that translators increase the correlation between offline and simulation-based testing results, which can help reduce the cost of simulation-based testing.
comment: Accepted for publication by the International Conference on Automated Software Engineering (ASE 2024)
☆ Learning to Move Like Professional Counter-Strike Players
In multiplayer, first-person shooter games like Counter-Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high-level strategic play. However, the complexity of team coordination and the variety of conditions present in popular game maps make it impractical to author hand-crafted movement policies for every scenario. We show that it is possible to take a data-driven approach to creating human-like movement controllers for CS:GO. We curate a team movement dataset comprising 123 hours of professional game play traces, and use this dataset to train a transformer-based movement model that generates human-like team movement for all players in a "Retakes" round of the game. Importantly, the movement prediction model is efficient. Performing inference for all players takes less than 0.5 ms per game step (amortized cost) on a single CPU core, making it plausible for use in commercial games today. Human evaluators assess that our model behaves more like humans than both commercially-available bots and procedural movement controllers scripted by experts (16% to 59% higher by TrueSkill rating of "human-like"). Using experiments involving in-game bot vs. bot self-play, we demonstrate that our model performs simple forms of teamwork, makes fewer common movement mistakes, and yields movement distributions, player lifetimes, and kill locations similar to those observed in professional CS:GO match play.
comment: The project website is at https://davidbdurst.com/mlmove/
☆ FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions
Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions, improving glycemic control among patients with diabetes. However, identifying rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency. Moreover, limited access to sensitive patient data hampers the development of robust machine learning models. Our objective is to accurately predict glycemic excursions while addressing data privacy concerns. To tackle excursion prediction, we propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions. The HH loss function demonstrates a 46% improvement over mean-squared error (MSE) loss across 125 patients. To address privacy concerns, we propose FedGlu, a machine learning model trained in a federated learning (FL) framework. FL allows collaborative learning without sharing sensitive data by training models locally and sharing only model parameters across other patients. FedGlu achieves a 35% superior glycemic excursion detection rate compared to local models. This improvement translates to enhanced performance in predicting both, hypoglycemia and hyperglycemia, for 105 out of 125 patients. These results underscore the effectiveness of the proposed HH loss function in augmenting the predictive capabilities of glucose predictions. Moreover, implementing models within a federated learning framework not only ensures better predictive capabilities but also safeguards sensitive data concurrently.
☆ Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. Despite the progress, most of them suffer from training stability issues and scale poorly with growing data size. More importantly, they generally lack control mechanisms to steer the generated trajectories based on spatiotemporal constraints such as fixing specific visits. To address such limitations, we formally define the controlled trajectory generation problem with spatiotemporal constraints and propose Geo-Llama. This novel LLM-inspired framework enforces explicit visit constraints in a contextually coherent way. It fine-tunes pre-trained LLMs on trajectories with a visit-wise permutation strategy where each visit corresponds to a time and location. This enables the model to capture the spatiotemporal patterns regardless of visit orders and allows flexible and in-context constraint integration through prompts during generation. Extensive experiments on real-world and synthetic datasets validate the effectiveness of Geo-Llama, demonstrating its versatility and robustness in handling a broad range of constraints to generate more realistic trajectories compared to existing methods.
☆ LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback
Large Language Models (LLMs) excel at generating human-like dialogues and comprehending text. However, understanding the subtleties of complex exchanges in language remains a challenge. We propose a bootstrapping framework that leverages self-generated feedback to enhance LLM reasoning capabilities for lie detection. The framework consists of three stages: suggestion, feedback collection, and modification. In the suggestion stage, a cost-effective language model generates initial predictions based on game state and dialogue. The feedback-collection stage involves a language model providing feedback on these predictions. In the modification stage, a more advanced language model refines the initial predictions using the auto-generated feedback. We investigate the application of the proposed framework for detecting betrayal and deception in Diplomacy games, and compare it with feedback from professional human players. The LLM-generated feedback exhibits superior quality and significantly enhances the performance of the model. Our approach achieves a 39% improvement over the zero-shot baseline in lying-F1 without the need for any training data, rivaling state-of-the-art supervised learning results.
comment: 19 pages, 18 figures
☆ ConVis: Contrastive Decoding with Hallucination Visualization for Mitigating Hallucinations in Multimodal Large Language Models
Hallucinations in Multimodal Large Language Models (MLLMs) where generated responses fail to accurately reflect the given image pose a significant challenge to their reliability. To address this, we introduce ConVis, a novel training-free contrastive decoding method. ConVis leverages a text-to-image (T2I) generation model to semantically reconstruct the given image from hallucinated captions. By comparing the contrasting probability distributions produced by the original and reconstructed images, ConVis enables MLLMs to capture visual contrastive signals that penalize hallucination generation. Notably, this method operates purely within the decoding process, eliminating the need for additional data or model updates. Our extensive experiments on five popular benchmarks demonstrate that ConVis effectively reduces hallucinations across various MLLMs, highlighting its potential to enhance model reliability.
comment: First two authors contributed equally. Source code is available at https://github.com/yejipark-m/ConVis
☆ Enhancing SQL Query Generation with Neurosymbolic Reasoning
Neurosymbolic approaches blend the effectiveness of symbolic reasoning with the flexibility of neural networks. In this work, we propose a neurosymbolic architecture for generating SQL queries that builds and explores a solution tree using Best-First Search, with the possibility of backtracking. For this purpose, it integrates a Language Model (LM) with symbolic modules that help catch and correct errors made by the LM on SQL queries, as well as guiding the exploration of the solution tree. We focus on improving the performance of smaller open-source LMs, and we find that our tool, Xander, increases accuracy by an average of 10.9% and reduces runtime by an average of 28% compared to the LM without Xander, enabling a smaller LM (with Xander) to outperform its four-times larger counterpart (without Xander).
comment: 11 pages, 8 figures
☆ Flexible game-playing AI with AlphaViT: adapting to multiple games and board sizes
This paper presents novel game AI agents based on the AlphaZero framework, enhanced with Vision Transformers (ViT): AlphaViT, AlphaViD, and AlphaVDA. These agents are designed to play various board games of different sizes using a single model, overcoming AlphaZero's limitation of being restricted to a fixed board size. AlphaViT uses only a transformer encoder, while AlphaViD and AlphaVDA contain both an encoder and a decoder. AlphaViD's decoder receives input from the encoder output, while AlphaVDA uses a learnable matrix as decoder input. Using the AlphaZero framework, the three proposed methods demonstrate their versatility in different game environments, including Connect4, Gomoku, and Othello. Experimental results show that these agents, whether trained on a single game or on multiple games simultaneously, consistently outperform traditional algorithms such as Minimax and Monte Carlo tree search using a single DNN with shared weights, while approaching the performance of AlphaZero. In particular, AlphaViT and AlphaViD show strong performance across games, with AlphaViD benefiting from an additional decoder layer that enhances its ability to adapt to different action spaces and board sizes. These results may suggest the potential of transformer-based architectures to develop more flexible and robust game AI agents capable of excelling in multiple games and dynamic environments.
☆ CodeGraph: Enhancing Graph Reasoning of LLMs with Code
With the increasing popularity of large language models (LLMs), reasoning on basic graph algorithm problems is an essential intermediate step in assessing their abilities to process and infer complex graph reasoning tasks. Existing methods usually convert graph-structured data to textual descriptions and then use LLMs for reasoning and computation. However, LLMs often produce computation errors on arithmetic parts in basic graph algorithm problems, such as counting number of edges. In addition, they struggle to control or understand the output of the reasoning process, raising concerns about whether LLMs are simply guessing. In this paper, we introduce CodeGraph, a method that encodes graph problem solutions as code. The methods solve new graph problems by learning from exemplars, generating programs, and executing them via a program interpreter. Using the few-shot setting, we evaluate CodeGraph with the base LLM being GPT-3.5 Turbo, Llama3-70B Instruct, Mixtral-8x22B Instruct, and Mixtral-8x7B Instruct. Experimental results on six tasks with six graph encoding methods in the GraphQA dataset demonstrate that CodeGraph can boost performance on graph reasoning tasks inside LLMs by 1.3% to 58.6%, depending on the task. Compared to the existing methods, CodeGraph demonstrates strong performance on arithmetic problems in graph tasks and offers a more controllable and interpretable approach to the reasoning process.
comment: In Progress
☆ Tangram: A Challenging Benchmark for Geometric Element Recognizing
Significant advancements in Large Multimodal Models (LMMs) have enabled them to tackle complex problems involving visual-mathematical reasoning. However, their ability to identify geometric elements remains understudied. To bridge this gap, we introduce Tangram, a novel benchmark designed to evaluate the performance of LMMs on geometric element recognition. Tangram includes 1,080 diverse geometric diagrams sourced from primary and secondary school exams, competitions, and textbooks, covering from simple basic geometric shapes to complex combinations. Each diagram is associated with four questions, resulting in a total of 4,320 visual-question-answer pairs. Unlike existing benchmarks that seek higher-level cognition and reasoning, Tangram focuses on the understanding of geometric elements, requiring models to perform a "simple but interesting" counting task. Systematic evaluation of 10 prominent LMMs, such as GPT-4o and Claude 3.5 Sonnet, shows that even in the seemingly simple task, these models still face significant challenges. Notably, the overall accuracy of the top performer across all tested models is only 56.8%, marking a significant gap when compared to human performance. These findings highlight the limitations of current multimodal artificial intelligence systems in handling basic perception tasks, and will inspire the development of the next generation of expert-level multimodal foundational models. The Tangram and evaluation code will be available soon.
comment: 12 pages, 7 figures
☆ Condensed Sample-Guided Model Inversion for Knowledge Distillation
Knowledge distillation (KD) is a key element in neural network compression that allows knowledge transfer from a pre-trained teacher model to a more compact student model. KD relies on access to the training dataset, which may not always be fully available due to privacy concerns or logistical issues related to the size of the data. To address this, "data-free" KD methods use synthetic data, generated through model inversion, to mimic the target data distribution. However, conventional model inversion methods are not designed to utilize supplementary information from the target dataset, and thus, cannot leverage it to improve performance, even when it is available. In this paper, we consider condensed samples, as a form of supplementary information, and introduce a method for using them to better approximate the target data distribution, thereby enhancing the KD performance. Our approach is versatile, evidenced by improvements of up to 11.4% in KD accuracy across various datasets and model inversion-based methods. Importantly, it remains effective even when using as few as one condensed sample per class, and can also enhance performance in few-shot scenarios where only limited real data samples are available.
☆ PropSAM: A Propagation-Based Model for Segmenting Any 3D Objects in Multi-Modal Medical Images
Volumetric segmentation is crucial for medical imaging but is often constrained by labor-intensive manual annotations and the need for scenario-specific model training. Furthermore, existing general segmentation models are inefficient due to their design and inferential approaches. Addressing this clinical demand, we introduce PropSAM, a propagation-based segmentation model that optimizes the use of 3D medical structure information. PropSAM integrates a CNN-based UNet for intra-slice processing with a Transformer-based module for inter-slice propagation, focusing on structural and semantic continuities to enhance segmentation across various modalities. Distinctively, PropSAM operates on a one-view prompt, such as a 2D bounding box or sketch mask, unlike conventional models that require two-view prompts. It has demonstrated superior performance, significantly improving the Dice Similarity Coefficient (DSC) across 44 medical datasets and various imaging modalities, outperforming models like MedSAM and SegVol with an average DSC improvement of 18.1%. PropSAM also maintains stable predictions despite prompt deviations and varying propagation configurations, confirmed by one-way ANOVA tests with P>0.5985 and P>0.6131, respectively. Moreover, PropSAM's efficient architecture enables faster inference speeds (Wilcoxon rank-sum test, P<0.001) and reduces user interaction time by 37.8% compared to two-view prompt models. Its ability to handle irregular and complex objects with robust performance further demonstrates its potential in clinical settings, facilitating more automated and reliable medical imaging analyses with minimal retraining.
comment: 26 figures, 6 figures
☆ Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In! ACL 2024
Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics, ranking them according to their correlation with human judgments. Their results guide researchers toward enhancing the next generation of metrics and MT systems. With the recent introduction of neural metrics, the field has witnessed notable advancements. Nevertheless, the inherent opacity of these metrics has posed substantial challenges to the meta-evaluation process. This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings. To do this, we introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process's accuracy, robustness, and fairness. By employing sentinel metrics, we aim to validate our findings, and shed light on and monitor the potential biases or inconsistencies in the rankings. We discover that the present meta-evaluation framework favors two categories of metrics: i) those explicitly trained to mimic human quality assessments, and ii) continuous metrics. Finally, we raise concerns regarding the evaluation capabilities of state-of-the-art metrics, emphasizing that they might be basing their assessments on spurious correlations found in their training data.
comment: Presented at ACL 2024 Main Conference. 29 pages
☆ RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting outcomes in graph-structured data. However, a notable limitation of GNNs is their inability to provide robust uncertainty estimates, which undermines their reliability in contexts where errors are costly. One way to address this issue is by providing prediction sets that contain the true label with a predefined probability margin. Our approach builds upon conformal prediction (CP), a framework that promises to construct statistically robust prediction sets or intervals. There are two primary challenges: first, given dependent data like graphs, it is unclear whether the critical assumption in CP - exchangeability - still holds when applied to node classification. Second, even if the exchangeability assumption is valid for conformalized link prediction, we need to ensure high efficiency, i.e., the resulting prediction set or the interval length is small enough to provide useful information. In this article, we propose a novel approach termed Robust Conformal Prediction for GNNs (RoCP-GNN), which integrates conformal prediction (CP) directly into the GNN training process. This method generates prediction sets, instead of just point predictions, that are valid at a user-defined confidence level, assuming only exchangeability. Our approach robustly predicts outcomes with any predictive GNN model while quantifying the uncertainty in predictions within the realm of graph-based semi-supervised learning (SSL). Experimental results demonstrate that GNN models with size loss provide a statistically significant increase in performance. We validate our approach on standard graph benchmark datasets by coupling it with various state-of-the-art GNNs in node classification. The code will be made available after publication.
comment: 12, 5 figures
Localization of Synthetic Manipulations in Western Blot Images
Recent breakthroughs in deep learning and generative systems have significantly fostered the creation of synthetic media, as well as the local alteration of real content via the insertion of highly realistic synthetic manipulations. Local image manipulation, in particular, poses serious challenges to the integrity of digital content and societal trust. This problem is not only confined to multimedia data, but also extends to biological images included in scientific publications, like images depicting Western blots. In this work, we address the task of localizing synthetic manipulations in Western blot images. To discriminate between pristine and synthetic pixels of an analyzed image, we propose a synthetic detector that operates on small patches extracted from the image. We aggregate patch contributions to estimate a tampering heatmap, highlighting synthetic pixels out of pristine ones. Our methodology proves effective when tested over two manipulated Western blot image datasets, one altered automatically and the other manually by exploiting advanced AI-based image manipulation tools that are unknown at our training stage. We also explore the robustness of our method over an external dataset of other scientific images depicting different semantics, manipulated through unseen generation techniques.
☆ Analyzing the Impact of Splicing Artifacts in Partially Fake Speech Signals
Speech deepfake detection has recently gained significant attention within the multimedia forensics community. Related issues have also been explored, such as the identification of partially fake signals, i.e., tracks that include both real and fake speech segments. However, generating high-quality spliced audio is not as straightforward as it may appear. Spliced signals are typically created through basic signal concatenation. This process could introduce noticeable artifacts that can make the generated data easier to detect. We analyze spliced audio tracks resulting from signal concatenation, investigate their artifacts and assess whether such artifacts introduce any bias in existing datasets. Our findings reveal that by analyzing splicing artifacts, we can achieve a detection EER of 6.16% and 7.36% on PartialSpoof and HAD datasets, respectively, without needing to train any detector. These results underscore the complexities of generating reliable spliced audio data and lead to discussions that can help improve future research in this area.
comment: Accepted at ASVspoof 5 Workshop (Interspeech2024 Satellite)
☆ SAB:A Stealing and Robust Backdoor Attack based on Steganographic Algorithm against Federated Learning
Federated learning, an innovative network architecture designed to safeguard user privacy, is gaining widespread adoption in the realm of technology. However, given the existence of backdoor attacks in federated learning, exploring the security of federated learning is significance. Nevertheless, the backdoors investigated in current federated learning research can be readily detected by human inspection or resisted by detection algorithms. Accordingly, a new goal has been set to develop stealing and robust federated learning backdoor attacks. In this paper, we introduce a novel approach, SAB, tailored specifically for backdoor attacks in federated learning, presenting an alternative gradient updating mechanism. SAB attack based on steganographic algorithm, using image steganographic algorithm to build a full-size trigger to improve the accuracy of backdoors and use multiple loss joint computation to produce triggers. SAB exhibits smaller distances to benign samples and greater imperceptibility to the human eye. As such, our triggers are capable of mitigating or evading specific backdoor defense methods. In SAB, the bottom-95\% method is applied to extend the lifespan of backdoor attacks. It updates the gradient on minor value points to reduce the probability of being cleaned. Finally, the generalization of backdoors is enhanced with Sparse-update to improve the backdoor accuracy.
☆ Lecture Notes on Linear Neural Networks: A Tale of Optimization and Generalization in Deep Learning
These notes are based on a lecture delivered by NC on March 2021, as part of an advanced course in Princeton University on the mathematical understanding of deep learning. They present a theory (developed by NC, NR and collaborators) of linear neural networks -- a fundamental model in the study of optimization and generalization in deep learning. Practical applications born from the presented theory are also discussed. The theory is based on mathematical tools that are dynamical in nature. It showcases the potential of such tools to push the envelope of our understanding of optimization and generalization in deep learning. The text assumes familiarity with the basics of statistical learning theory. Exercises (without solutions) are included.
comment: Lecture notes
☆ Multimodal Ensemble with Conditional Feature Fusion for Dysgraphia Diagnosis in Children from Handwriting Samples
Developmental dysgraphia is a neurological disorder that hinders children's writing skills. In recent years, researchers have increasingly explored machine learning methods to support the diagnosis of dysgraphia based on offline and online handwriting. In most previous studies, the two types of handwriting have been analysed separately, which does not necessarily lead to promising results. In this way, the relationship between online and offline data cannot be explored. To address this limitation, we propose a novel multimodal machine learning approach utilizing both online and offline handwriting data. We created a new dataset by transforming an existing online handwritten dataset, generating corresponding offline handwriting images. We considered only different types of word data (simple word, pseudoword & difficult word) in our multimodal analysis. We trained SVM and XGBoost classifiers separately on online and offline features as well as implemented multimodal feature fusion and soft-voted ensemble. Furthermore, we proposed a novel ensemble with conditional feature fusion method which intelligently combines predictions from online and offline classifiers, selectively incorporating feature fusion when confidence scores fall below a threshold. Our novel approach achieves an accuracy of 88.8%, outperforming SVMs for single modalities by 12-14%, existing methods by 8-9%, and traditional multimodal approaches (soft-vote ensemble and feature fusion) by 3% and 5%, respectively. Our methodology contributes to the development of accurate and efficient dysgraphia diagnosis tools, requiring only a single instance of multimodal word/pseudoword data to determine the handwriting impairment. This work highlights the potential of multimodal learning in enhancing dysgraphia diagnosis, paving the way for accessible and practical diagnostic tools.
☆ Multi-Agent Target Assignment and Path Finding for Intelligent Warehouse: A Cooperative Multi-Agent Deep Reinforcement Learning Perspective
Multi-agent target assignment and path planning (TAPF) are two key problems in intelligent warehouse. However, most literature only addresses one of these two problems separately. In this study, we propose a method to simultaneously solve target assignment and path planning from a perspective of cooperative multi-agent deep reinforcement learning (RL). To the best of our knowledge, this is the first work to model the TAPF problem for intelligent warehouse to cooperative multi-agent deep RL, and the first to simultaneously address TAPF based on multi-agent deep RL. Furthermore, previous literature rarely considers the physical dynamics of agents. In this study, the physical dynamics of the agents is considered. Experimental results show that our method performs well in various task settings, which means that the target assignment is solved reasonably well and the planned path is almost shortest. Moreover, our method is more time-efficient than baselines.
☆ DOCE: Finding the Sweet Spot for Execution-Based Code Generation
Recently, a diverse set of decoding and reranking procedures have been shown effective for LLM-based code generation. However, a comprehensive framework that links and experimentally compares these methods is missing. We address this by proposing Decoding Objectives for Code Execution, a comprehensive framework that includes candidate generation, $n$-best reranking, minimum Bayes risk (MBR) decoding, and self-debugging as the core components. We then study the contributions of these components through execution-based evaluation metrics. Our findings highlight the importance of execution-based methods and the difference gap between execution-based and execution-free methods. Furthermore, we assess the impact of filtering based on trial unit tests, a simple and effective strategy that has been often overlooked in prior works. We also propose self-debugging on multiple candidates, obtaining state-of-the-art performance on reranking for code generation. We expect our framework to provide a solid guideline for future research on code generation.
comment: 10 pages (32 including appendix), 5 figures, 25 tables. arXiv admin note: text overlap with arXiv:2304.05128 by other authors
☆ LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models KDD 2024
Logs are ubiquitous digital footprints, playing an indispensable role in system diagnostics, security analysis, and performance optimization. The extraction of actionable insights from logs is critically dependent on the log parsing process, which converts raw logs into structured formats for downstream analysis. Yet, the complexities of contemporary systems and the dynamic nature of logs pose significant challenges to existing automatic parsing techniques. The emergence of Large Language Models (LLM) offers new horizons. With their expansive knowledge and contextual prowess, LLMs have been transformative across diverse applications. Building on this, we introduce LogParser-LLM, a novel log parser integrated with LLM capabilities. This union seamlessly blends semantic insights with statistical nuances, obviating the need for hyper-parameter tuning and labeled training data, while ensuring rapid adaptability through online parsing. Further deepening our exploration, we address the intricate challenge of parsing granularity, proposing a new metric and integrating human interactions to allow users to calibrate granularity to their specific needs. Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark. In evaluations on the LogPub benchmark, involving an average of 3.6 million logs per dataset across 14 datasets, our LogParser-LLM requires only 272.5 LLM invocations on average, achieving a 90.6% F1 score for grouping accuracy and an 81.1% for parsing accuracy. These results demonstrate the method's high efficiency and accuracy, outperforming current state-of-the-art log parsers, including pattern-based, neural network-based, and existing LLM-enhanced approaches.
comment: Accepted by ACM KDD 2024
☆ Count-based Novelty Exploration in Classical Planning
Count-based exploration methods are widely employed to improve the exploratory behavior of learning agents over sequential decision problems. Meanwhile, Novelty search has achieved success in Classical Planning through recording of the first, but not successive, occurrences of tuples. In order to structure the exploration, however, the number of tuples considered needs to grow exponentially as the search progresses. We propose a new novelty technique, classical count-based novelty, which aims to explore the state space with a constant number of tuples, by leveraging the frequency of each tuple's appearance in a search tree. We then justify the mechanisms through which lower tuple counts lead the search towards novel tuples. We also introduce algorithmic contributions in the form of a trimmed open list that maintains a constant size by pruning nodes with bad novelty values. These techniques are shown to complement existing novelty heuristics when integrated in a classical solver, achieving competitive results in challenging benchmarks from recent International Planning Competitions. Moreover, adapting our solver as the frontend planner in dual configurations that utilize both memory and time thresholds demonstrates a significant increase in instance coverage, surpassing current state-of-the-art solvers.
comment: Extended version of paper accepted for publication at ECAI 2024
☆ DHP Benchmark: Are LLMs Good NLG Evaluators?
Large Language Models (LLMs) are increasingly serving as evaluators in Natural Language Generation (NLG) tasks. However, the capabilities of LLMs in scoring NLG quality remain inadequately explored. Current studies depend on human assessments and simple metrics that fail to capture the discernment of LLMs across diverse NLG tasks. To address this gap, we propose the Discernment of Hierarchical Perturbation (DHP) benchmarking framework, which provides quantitative discernment scores for LLMs utilizing hierarchically perturbed text data and statistical tests to measure the NLG evaluation capabilities of LLMs systematically. We have re-established six evaluation datasets for this benchmark, covering four NLG tasks: Summarization, Story Completion, Question Answering, and Translation. Our comprehensive benchmarking of five major LLM series provides critical insight into their strengths and limitations as NLG evaluators.
☆ A Joint Learning Model with Variational Interaction for Multilingual Program Translation
Programs implemented in various programming languages form the foundation of software applications. To alleviate the burden of program migration and facilitate the development of software systems, automated program translation across languages has garnered significant attention. Previous approaches primarily focus on pairwise translation paradigms, learning translation between pairs of languages using bilingual parallel data. However, parallel data is difficult to collect for some language pairs, and the distribution of program semantics across languages can shift, posing challenges for pairwise program translation. In this paper, we argue that jointly learning a unified model to translate code across multiple programming languages is superior to separately learning from bilingual parallel data. We propose Variational Interaction for Multilingual Program Translation~(VIM-PT), a disentanglement-based generative approach that jointly trains a unified model for multilingual program translation across multiple languages. VIM-PT disentangles code into language-shared and language-specific features, using variational inference and interaction information with a novel lower bound, then achieves program translation through conditional generation. VIM-PT demonstrates four advantages: 1) captures language-shared information more accurately from various implementations and improves the quality of multilingual program translation, 2) mines and leverages the capability of non-parallel data, 3) addresses the distribution shift of program semantics across languages, 4) and serves as a unified model, reducing deployment complexity.
comment: Accepted by the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)
☆ Variational autoencoder-based neural network model compression
Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years, and shown great great peformance in a number of different domains, including image generation and anomaly detection, etc.. This paper aims to explore neural network model compression method based on VAE. The experiment uses different neural network models for MNIST recognition as compression targets, including Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). These models are the most basic models in deep learning, and other more complex and advanced models are based on them or inherit their features and evolve. In the experiment, the first step is to train the models mentioned above, each trained model will have different accuracy and number of total parameters. And then the variants of parameters for each model are processed as training data in VAEs separately, and the trained VAEs are tested by the true model parameters. The experimental results show that using the latent space as a representation of the model compression can improve the compression rate compared to some traditional methods such as pruning and quantization, meanwhile the accuracy is not greatly affected using the model parameters reconstructed based on the latent space. In the future, a variety of different large-scale deep learning models will be used more widely, so exploring different ways to save time and space on saving or transferring models will become necessary, and the use of VAE in this paper can provide a basis for these further explorations.
☆ LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings
Zero-shot graph machine learning, especially with graph neural networks (GNNs), has garnered significant interest due to the challenge of scarce labeled data. While methods like self-supervised learning and graph prompt learning have been extensively explored, they often rely on fine-tuning with task-specific labels, limiting their effectiveness in zero-shot scenarios. Inspired by the zero-shot capabilities of instruction-fine-tuned large language models (LLMs), we introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM) that leverages LLMs as cross-dataset and cross-task zero-shot learners for graph machine learning. Concretely, we pretrain a GNN, aligning its representations with token embeddings of an LLM. We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings without tuning the LLM. A unified instruction is designed for various graph tasks at different levels, such as node classification (node-level) and link prediction (edge-level). These design choices collectively enhance our method's effectiveness in zero-shot learning, setting it apart from existing methods. Experiments show that our graph token embeddings help the LLM predictor achieve state-of-the-art performance on unseen datasets and tasks compared to other methods using LLMs as predictors.
♻ ☆ Differentiable Logic Programming for Distant Supervision
We introduce a new method for integrating neural networks with logic programming in Neural-Symbolic AI (NeSy), aimed at learning with distant supervision, in which direct labels are unavailable. Unlike prior methods, our approach does not depend on symbolic solvers for reasoning about missing labels. Instead, it evaluates logical implications and constraints in a differentiable manner by embedding both neural network outputs and logic programs into matrices. This method facilitates more efficient learning under distant supervision. We evaluated our approach against existing methods while maintaining a constant volume of training data. The findings indicate that our method not only matches or exceeds the accuracy of other methods across various tasks but also speeds up the learning process. These results highlight the potential of our approach to enhance both accuracy and learning efficiency in NeSy applications.
comment: Updated Figure 1 and fixed the overlapping caption issue. 11 pages including the appendix. To be published in ECAI 2024
♻ ☆ MuMA-ToM: Multi-modal Multi-Agent Theory of Mind SC
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
comment: Project website: https://scai.cs.jhu.edu/projects/MuMA-ToM/ Code: https://github.com/SCAI-JHU/MuMA-ToM
♻ ☆ Relaxed Rotational Equivariance via $G$-Biases in Vision
Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.
♻ ☆ The Over-Certainty Phenomenon in Modern UDA Algorithms
When neural networks are confronted with unfamiliar data that deviate from their training set, this signifies a domain shift. While these networks output predictions on their inputs, they typically fail to account for their level of familiarity with these novel observations. While prevailing works navigate unsupervised domain adaptation with the goal of curtailing model entropy, they unintentionally birth models that grapple with sub-optimal calibration - a dilemma we term the over-certainty phenomenon. In this paper, we uncover a concerning trend in unsupervised domain adaptation and propose a solution that not only maintains accuracy but also addresses calibration.
♻ ☆ Better Not to Propagate: Understanding Edge Uncertainty and Over-smoothing in Signed Graph Neural Networks
Traditional Graph Neural Networks (GNNs) rely on network homophily, which can lead to performance degradation due to over-smoothing in many real-world heterophily scenarios. Recent studies analyze the smoothing effect (separability) after message-passing (MP), depending on the expectation of node features. Regarding separability gain, they provided theoretical backgrounds on over-smoothing caused by various propagation schemes, including positive, signed, and blocked MPs. More recently, by extending these theorems, some works have suggested improvements in signed propagation under multiple classes. However, prior works assume that the error ratio of all propagation schemes is fixed, failing to investigate this phenomenon correctly. To solve this problem, we propose a novel method for estimating homophily and edge error ratio, integrated with dynamic selection between blocked and signed propagation during training. Our theoretical analysis, supported by extensive experiments, demonstrates that blocking MP can be more effective than signed propagation under high edge error ratios, improving the performance in both homophilic and heterophilic graphs.
♻ ☆ Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM)
Traffic state data, such as speed, volume and travel time collected from ubiquitous traffic monitoring sensors require advanced network level analytics for forecasting and identifying significant traffic patterns. This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark and achieved promising performance compared to well recognized spatial-temporal models. Drawing inspiration from the success of hierarchical architectures in various Artificial Intelligence (AI) tasks, we integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism, similar to human perception systems. The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states, enabling the prediction of traffic states for all corridors rather than a single link or route. The efficiency of designed attention-based LSTM is analyzed by ablation study. Comparative results with baseline LSTM models demonstrate that the Hierarchical Attention LSTM (HierAttnLSTM) model not only provides higher prediction accuracy but also effectively forecasts unusual congestion patterns. Data and code are made publicly available to support reproducible scientific research.
♻ ☆ Efficient Shield Synthesis via State-Space Transformation
We consider the problem of synthesizing safety strategies for control systems, also known as shields. Since the state space is infinite, shields are typically computed over a finite-state abstraction, with the most common abstraction being a rectangular grid. However, for many systems, such a grid does not align well with the safety property or the system dynamics. That is why a coarse grid is rarely sufficient, but a fine grid is typically computationally infeasible to obtain. In this paper, we show that appropriate state-space transformations can still allow to use a coarse grid at almost no computational overhead. We demonstrate in three case studies that our transformation-based synthesis outperforms a standard synthesis by several orders of magnitude. In the first two case studies, we use domain knowledge to select a suitable transformation. In the third case study, we instead report on results in engineering a transformation without domain knowledge.
♻ ☆ Boolean Matrix Logic Programming
We describe a datalog query evaluation approach based on efficient and composable boolean matrix manipulation modules. We first define an overarching problem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices as an alternative computation to evaluate datalog programs. We develop two novel BMLP modules for bottom-up inferences on linear dyadic recursive datalog programs, and show how additional modules can extend this capability to compute both linear and non-linear recursive datalog programs of arity two. Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively, when evaluating large programs with millions of facts. This boolean matrix approach significantly enhances the efficiency of datalog querying to support logic programming techniques.
♻ ☆ QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs
Table summarization is a crucial task aimed at condensing information from tabular data into concise and comprehensible textual summaries. However, existing approaches often fall short of adequately meeting users' information and quality requirements and tend to overlook the complexities of real-world queries. In this paper, we propose a novel method to address these limitations by introducing query-focused multi-table summarization. Our approach, which comprises a table serialization module, a summarization controller, and a large language model (LLM), utilizes textual queries and multiple tables to generate query-dependent table summaries tailored to users' information needs. To facilitate research in this area, we present a comprehensive dataset specifically tailored for this task, consisting of 4909 query-summary pairs, each associated with multiple tables. Through extensive experiments using our curated dataset, we demonstrate the effectiveness of our proposed method compared to baseline approaches. Our findings offer insights into the challenges of complex table reasoning for precise summarization, contributing to the advancement of research in query-focused multi-table summarization.
comment: Accepted by the 27th European Conference on Artificial Intelligence (ECAI-2024)
♻ ☆ Bayesian Low-Rank LeArning (Bella): A Practical Approach to Bayesian Neural Networks
Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
comment: 17 pages, 14 figures, 11 tables
♻ ☆ Optimizing Delegation in Collaborative Human-AI Hybrid Teams
When humans and autonomous systems operate together as what we refer to as a hybrid team, we of course wish to ensure the team operates successfully and effectively. We refer to team members as agents. In our proposed framework, we address the case of hybrid teams in which, at any time, only one team member (the control agent) is authorized to act as control for the team. To determine the best selection of a control agent, we propose the addition of an AI manager (via Reinforcement Learning) which learns as an outside observer of the team. The manager learns a model of behavior linking observations of agent performance and the environment/world the team is operating in, and from these observations makes the most desirable selection of a control agent. We restrict the manager task by introducing a set of constraints. The manager constraints indicate acceptable team operation, so a violation occurs if the team enters a condition which is unacceptable and requires manager intervention. To ensure minimal added complexity or potential inefficiency for the team, the manager should attempt to minimize the number of times the team reaches a constraint violation and requires subsequent manager intervention. Therefore our manager is optimizing its selection of authorized agents to boost overall team performance while minimizing the frequency of manager intervention. We demonstrate our manager performance in a simulated driving scenario representing the case of a hybrid team of agents composed of a human driver and autonomous driving system. We perform experiments for our driving scenario with interfering vehicles, indicating the need for collision avoidance and proper speed control. Our results indicate a positive impact of our manager, with some cases resulting in increased team performance up to ~187% that of the best solo agent performance.
♻ ☆ Conformalized Answer Set Prediction for Knowledge Graph Embedding
Knowledge graph embeddings (KGE) apply machine learning methods on knowledge graphs (KGs) to provide non-classical reasoning capabilities based on similarities and analogies. The learned KG embeddings are typically used to answer queries by ranking all potential answers, but rankings often lack a meaningful probabilistic interpretation - lower-ranked answers do not necessarily have a lower probability of being true. This limitation makes it difficult to distinguish plausible from implausible answers, posing challenges for the application of KGE methods in high-stakes domains like medicine. We address this issue by applying the theory of conformal prediction that allows generating answer sets, which contain the correct answer with probabilistic guarantees. We explain how conformal prediction can be used to generate such answer sets for link prediction tasks. Our empirical evaluation on four benchmark datasets using six representative KGE methods validates that the generated answer sets satisfy the probabilistic guarantees given by the theory of conformal prediction. We also demonstrate that the generated answer sets often have a sensible size and that the size adapts well with respect to the difficulty of the query.
comment: Under Review
♻ ☆ Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
comment: 28 pages, 12 figures
♻ ☆ Evidential Graph Contrastive Alignment for Source-Free Blending-Target Domain Adaptation
In this paper, we firstly tackle a more realistic Domain Adaptation (DA) setting: Source-Free Blending-Target Domain Adaptation (SF-BTDA), where we can not access to source domain data while facing mixed multiple target domains without any domain labels in prior. Compared to existing DA scenarios, SF-BTDA generally faces the co-existence of different label shifts in different targets, along with noisy target pseudo labels generated from the source model. In this paper, we propose a new method called Evidential Contrastive Alignment (ECA) to decouple the blending target domain and alleviate the effect from noisy target pseudo labels. First, to improve the quality of pseudo target labels, we propose a calibrated evidential learning module to iteratively improve both the accuracy and certainty of the resulting model and adaptively generate high-quality pseudo target labels. Second, we design a graph contrastive learning with the domain distance matrix and confidence-uncertainty criterion, to minimize the distribution gap of samples of a same class in the blended target domains, which alleviates the co-existence of different label shifts in blended targets. We conduct a new benchmark based on three standard DA datasets and ECA outperforms other methods with considerable gains and achieves comparable results compared with those that have domain labels or source data in prior.
♻ ☆ Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena
Recent advancements in Large Language Models (LLMs) showcase advanced reasoning, yet NLP evaluations often depend on static benchmarks. Evaluating this necessitates environments that test strategic reasoning in dynamic, competitive scenarios requiring long-term planning. We introduce AucArena, a novel evaluation suite that simulates auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct controlled experiments using state-of-the-art LLMs to power bidding agents to benchmark their planning and execution skills. Our research demonstrates that LLMs, such as GPT-4, possess key skills for auction participation, such as budget management and goal adherence, which improve with adaptive strategies. This highlights LLMs' potential in modeling complex social interactions in competitive contexts. However, variability in LLM performance and occasional outperformance by simpler methods indicate opportunities for further advancements in LLM design and the value of our simulation environment for ongoing testing and refinement.
comment: Project page: https://auction-arena.github.io
♻ ☆ AlignBench: Benchmarking Chinese Alignment of Large Language Models ACL 2024
Alignment has become a critical step for instruction-tuned Large Language Models (LLMs) to become helpful assistants. However, the effective evaluation of alignment for emerging Chinese LLMs is still largely unexplored. To fill in this gap, we introduce AlignBench, a comprehensive multi-dimensional benchmark for evaluating LLMs' alignment in Chinese. We design a human-in-the-loop data curation pipeline, containing eight main categories, 683 real-scenario rooted queries and corresponding human verified references. To ensure the correctness of references, each knowledge-intensive query is accompanied with evidences collected from reliable web sources (including URLs and quotations) by our annotators. For automatic evaluation, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judge~\cite{zheng2023judging} approach with Chain-of-Thought to generate explanations and final ratings, ensuring high reliability and interpretability. All evaluation code, data, and LLM generations are available at \url{https://github.com/THUDM/AlignBench}. Since its release, AlignBench has been adopted by top (Chinese) LLMs for evaluating their alignment capabilities in Chinese, including ChatGLM, Qwen, DeepSeek, Yi, Baichuan, and Abab.
comment: Accepted to ACL 2024
♻ ☆ From Zero to Hero: Harnessing Transformers for Biomedical Named Entity Recognition in Zero- and Few-shot Contexts
Supervised named entity recognition (NER) in the biomedical domain depends on large sets of annotated texts with the given named entities. The creation of such datasets can be time-consuming and expensive, while extraction of new entities requires additional annotation tasks and retraining the model. To address these challenges, this paper proposes a method for zero- and few-shot NER in the biomedical domain. The method is based on transforming the task of multi-class token classification into binary token classification and pre-training on a large amount of datasets and biomedical entities, which allow the model to learn semantic relations between the given and potentially novel named entity labels. We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities with fine-tuned PubMedBERT-based model. The results demonstrate the effectiveness of the proposed method for recognizing new biomedical entities with no or limited number of examples, outperforming previous transformer-based methods, and being comparable to GPT3-based models using models with over 1000 times fewer parameters. We make models and developed code publicly available.
comment: Collaboration between Bayer Pharma R&D and Serbian Institute for Artificial Intelligence Research and Development. Artificial Intelligence in Medicine (2024)
♻ ☆ Tackling the Local Bias in Federated Graph Learning
Federated graph learning (FGL) has become an important research topic in response to the increasing scale and the distributed nature of graph-structured data in the real world. In FGL, a global graph is distributed across different clients, where each client holds a subgraph. Existing FGL methods often fail to effectively utilize cross-client edges, losing structural information during the training; additionally, local graphs often exhibit significant distribution divergence. These two issues make local models in FGL less desirable than in centralized graph learning, namely the local bias problem in this paper. To solve this problem, we propose a novel FGL framework to make the local models similar to the model trained in a centralized setting. Specifically, we design a distributed learning scheme, fully leveraging cross-client edges to aggregate information from other clients. In addition, we propose a label-guided sampling approach to alleviate the imbalanced local data and meanwhile, distinctly reduce the training overhead. Extensive experiments demonstrate that local bias can compromise the model performance and slow down the convergence during training. Experimental results also verify that our framework successfully mitigates local bias, achieving better performance than other baselines with lower time and memory overhead.
comment: 19 pages, 6 figures
♻ ☆ A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications
While AI is extensively transforming Software Engineering (SE) fields, SE is still in need of a framework to overall consider all phases to facilitate Automated Software Evolution (ASEv), particularly for intelligent applications that are context-rich, instead of conquering each division independently. Its complexity comes from the intricacy of the intelligent applications, the heterogeneity of the data sources, and the constant changes in the context. This study proposes a conceptual framework for achieving automated software evolution, emphasizing the importance of multimodality learning. A Selective Sequential Scope Model (3S) model is developed based on the conceptual framework, and it can be used to categorize existing and future research when it covers different SE phases and multimodal learning tasks. This research is a preliminary step toward the blueprint of a higher-level ASEv. The proposed conceptual framework can act as a practical guideline for practitioners to prepare themselves for diving into this area. Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
♻ ☆ Interpretable and Robust AI in EEG Systems: A Survey
The close coupling of artificial intelligence (AI) and electroencephalography (EEG) has substantially advanced human-computer interaction (HCI) technologies in the AI era. Different from traditional EEG systems, the interpretability and robustness of AI-based EEG systems are becoming particularly crucial. The interpretability clarifies the inner working mechanisms of AI models and thus can gain the trust of users. The robustness reflects the AI's reliability against attacks and perturbations, which is essential for sensitive and fragile EEG signals. Thus the interpretability and robustness of AI in EEG systems have attracted increasing attention, and their research has achieved great progress recently. However, there is still no survey covering recent advances in this field. In this paper, we present the first comprehensive survey and summarize the interpretable and robust AI techniques for EEG systems. Specifically, we first propose a taxonomy of interpretability by characterizing it into three types: backpropagation, perturbation, and inherently interpretable methods. Then we classify the robustness mechanisms into four classes: noise and artifacts, human variability, data acquisition instability, and adversarial attacks. Finally, we identify several critical and unresolved challenges for interpretable and robust AI in EEG systems and further discuss their future directions.
♻ ☆ On the Effects of Data Scale on Computer Control Agents
Autonomous agents that control computer interfaces to accomplish human tasks are emerging. Leveraging LLMs to power such agents has been of special interest, but unless fine-tuned on human-collected task demonstrations, performance is still relatively low. In this work we study whether fine-tuning alone is a viable approach for building real-world computer control agents. In particularly, we investigate how performance measured on both high and low-level tasks in domain and out of domain scales as more training data is collected. To this end we collect and release a new dataset, AndroidControl, consisting of 15,283 demonstrations of everyday tasks with Android apps. Compared to existing datasets, each AndroidControl task instance includes both high and low-level human-generated instructions, allowing us to explore the level of task complexity an agent can handle. Moreover, AndroidControl is the most diverse computer control dataset to date, including 15,283 unique tasks over 833 Android apps, thus allowing us to conduct in-depth analysis of the model performance in and out of the domain of the training data. Using the dataset, we find that when tested in domain fine-tuned models outperform zero and few-shot baselines and scale in such a way that robust performance might feasibly be obtained simply by collecting more data. Out of domain, performance scales significantly more slowly and suggests that in particular for high-level tasks, fine-tuning on more data alone may be insufficient for achieving robust out-of-domain performance.
♻ ☆ Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models
Remote sensing imagery has attracted significant attention in recent years due to its instrumental role in global environmental monitoring, land usage monitoring, and more. As image databases grow each year, performing automatic segmentation with deep learning models has gradually become the standard approach for processing the data. Despite the improved performance of current models, certain limitations remain unresolved. Firstly, training deep learning models for segmentation requires per-pixel annotations. Given the large size of datasets, only a small portion is fully annotated and ready for training. Additionally, the high intra-dataset variance in remote sensing data limits the transfer learning ability of such models. Although recently proposed generic segmentation models like SAM have shown promising results in zero-shot instance-level segmentation, adapting them to semantic segmentation is a non-trivial task. To tackle these challenges, we propose a novel method named Text2Seg for remote sensing semantic segmentation. Text2Seg overcomes the dependency on extensive annotations by employing an automatic prompt generation process using different visual foundation models (VFMs), which are trained to understand semantic information in various ways. This approach not only reduces the need for fully annotated datasets but also enhances the model's ability to generalize across diverse datasets. Evaluations on four widely adopted remote sensing datasets demonstrate that Text2Seg significantly improves zero-shot prediction performance compared to the vanilla SAM model, with relative improvements ranging from 31% to 225%. Our code is available at https://github.com/Douglas2Code/Text2Seg.
comment: 10 pages, 3 figures
♻ ☆ Infinite-Horizon Reach-Avoid Zero-Sum Games via Deep Reinforcement Learning
In this paper, we consider the infinite-horizon reach-avoid zero-sum game problem, where the goal is to find a set in the state space, referred to as the reach-avoid set, such that the system starting at a state therein could be controlled to reach a given target set without violating constraints under the worst-case disturbance. We address this problem by designing a new value function with a contracting Bellman backup, where the super-zero level set, i.e., the set of states where the value function is evaluated to be non-negative, recovers the reach-avoid set. Building upon this, we prove that the proposed method can be adapted to compute the viability kernel, or the set of states which could be controlled to satisfy given constraints, and the backward reachable set, or the set of states that could be driven towards a given target set. Finally, we propose to alleviate the curse of dimensionality issue in high-dimensional problems by extending Conservative Q-Learning, a deep reinforcement learning technique, to learn a value function such that the super-zero level set of the learned value function serves as a (conservative) approximation to the reach-avoid set. Our theoretical and empirical results suggest that the proposed method could learn reliably the reach-avoid set and the optimal control policy even with neural network approximation.
Robotics 12
☆ TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training BMVC 2024
3D point clouds are essential for perceiving outdoor scenes, especially within the realm of autonomous driving. Recent advances in 3D LiDAR Object Detection focus primarily on the spatial positioning and distribution of points to ensure accurate detection. However, despite their robust performance in variable conditions, these methods are hindered by their sole reliance on coordinates and point intensity, resulting in inadequate isometric invariance and suboptimal detection outcomes. To tackle this challenge, our work introduces Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture. Our TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize the inherent isotropic radiation of LiDAR to enhance local representation, improve computational efficiency, and boost detection performance. To effectively process the geometric relations among points within each proposal, we propose a Multi-head self-Attention Encoder (MAE) with asymmetric geometric features to encode high-dimensional TraIL features into manageable representations. Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI (67.8, 20% label, moderate) and Waymo (68.9, 20% label, moderate) datasets under various label ratios (20%, 50%, and 100%).
comment: BMVC 2024; 15 pages, 3 figures, 3 tables; Code at https://github.com/l1997i/rapid_seg
☆ Safe Policy Exploration Improvement via Subgoals
Reinforcement learning is a widely used approach to autonomous navigation, showing potential in various tasks and robotic setups. Still, it often struggles to reach distant goals when safety constraints are imposed (e.g., the wheeled robot is prohibited from moving close to the obstacles). One of the main reasons for poor performance in such setups, which is common in practice, is that the need to respect the safety constraints degrades the exploration capabilities of an RL agent. To this end, we introduce a novel learnable algorithm that is based on decomposing the initial problem into smaller sub-problems via intermediate goals, on the one hand, and respects the limit of the cumulative safety constraints, on the other hand -- SPEIS(Safe Policy Exploration Improvement via Subgoals). It comprises the two coupled policies trained end-to-end: subgoal and safe. The subgoal policy is trained to generate the subgoal based on the transitions from the buffer of the safe (main) policy that helps the safe policy to reach distant goals. Simultaneously, the safe policy maximizes its rewards while attempting not to violate the limit of the cumulative safety constraints, thus providing a certain level of safety. We evaluate SPEIS in a wide range of challenging (simulated) environments that involve different types of robots in two different environments: autonomous vehicles from the POLAMP environment and car, point, doggo, and sweep from the safety-gym environment. We demonstrate that our method consistently outperforms state-of-the-art competitors and can significantly reduce the collision rate while maintaining high success rates (higher by 80% compared to the best-performing methods).
comment: 11 pages, 8 figures
☆ Improving GNSS Positioning in Challenging Urban Areas by Digital Twin Database Correction
Accurate positioning technology is the foundation for industry and business applications. Although indoor and outdoor positioning techniques have been well studied separately, positioning performance in the intermediate period of changing the positioning environment is still challenging. This paper proposed a digital twin-aided positioning correction method for seamless positioning focusing on improving the receiver's outdoor positioning performance in urban areas, where the change of the positioning environment usually happens. The proposed algorithm will simulate the positioning solution for virtual receivers in a grid-based digital twin. Based on the simulated positioning solutions, a statistical model will be used to study the positioning characteristics and generate a correction information database for real receivers to improve their positioning performance. This algorithm has a low computation load on the receiver side and does not require a specially designed antenna, making it implementable for small-sized devices.
comment: 7 pages conference paper in indoor positioning and indoor navigation 2024
☆ TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
LiDAR sensors are crucial for providing high-resolution 3D point cloud data in autonomous driving systems, enabling precise environmental perception. However, real-world adverse weather conditions, such as rain, fog, and snow, introduce significant noise and interference, degrading the reliability of LiDAR data and the performance of downstream tasks like semantic segmentation. Existing datasets often suffer from limited weather diversity and small dataset sizes, which restrict their effectiveness in training models. Additionally, current deep learning denoising methods, while effective in certain scenarios, often lack interpretability, complicating the ability to understand and validate their decision-making processes. To overcome these limitations, we introduce two large-scale datasets, Weather-KITTI and Weather-NuScenes, which cover three common adverse weather conditions: rain, fog, and snow. These datasets retain the original LiDAR acquisition information and provide point-level semantic labels for rain, fog, and snow. Furthermore, we propose a novel point cloud denoising model, TripleMixer, comprising three mixer layers: the Geometry Mixer Layer, the Frequency Mixer Layer, and the Channel Mixer Layer. These layers are designed to capture geometric spatial information, extract multi-scale frequency information, and enhance the multi-channel feature information of point clouds, respectively. Experiments conducted on the WADS dataset in real-world scenarios, as well as on our proposed Weather-KITTI and Weather-NuScenes datasets, demonstrate that our model achieves state-of-the-art denoising performance. Additionally, our experiments show that integrating the denoising model into existing segmentation frameworks enhances the performance of downstream tasks.The datasets and code will be made publicly available at https://github.com/Grandzxw/TripleMixer.
comment: 15 pages, submit to IEEE TIP
☆ MASQ: Multi-Agent Reinforcement Learning for Single Quadruped Robot Locomotion
This paper proposes a novel method to improve locomotion learning for a single quadruped robot using multi-agent deep reinforcement learning (MARL). Many existing methods use single-agent reinforcement learning for an individual robot or MARL for the cooperative task in multi-robot systems. Unlike existing methods, this paper proposes using MARL for the locomotion learning of a single quadruped robot. We develop a learning structure called Multi-Agent Reinforcement Learning for Single Quadruped Robot Locomotion (MASQ), considering each leg as an agent to explore the action space of the quadruped robot, sharing a global critic, and learning collaboratively. Experimental results indicate that MASQ not only speeds up learning convergence but also enhances robustness in real-world settings, suggesting that applying MASQ to single robots such as quadrupeds could surpass traditional single-robot reinforcement learning approaches. Our study provides insightful guidance on integrating MARL with single-robot locomotion learning.
Multi-modal Integrated Prediction and Decision-making with Adaptive Interaction Modality Explorations
Navigating dense and dynamic environments poses a significant challenge for autonomous driving systems, owing to the intricate nature of multimodal interaction, wherein the actions of various traffic participants and the autonomous vehicle are complex and implicitly coupled. In this paper, we propose a novel framework, Multi-modal Integrated predictioN and Decision-making (MIND), which addresses the challenges by efficiently generating joint predictions and decisions covering multiple distinctive interaction modalities. Specifically, MIND leverages learning-based scenario predictions to obtain integrated predictions and decisions with social-consistent interaction modality and utilizes a modality-aware dynamic branching mechanism to generate scenario trees that efficiently capture the evolutions of distinctive interaction modalities with low variation of interaction uncertainty along the planning horizon. The scenario trees are seamlessly utilized by the contingency planning under interaction uncertainty to obtain clear and considerate maneuvers accounting for multi-modal evolutions. Comprehensive experimental results in the closed-loop simulation based on the real-world driving dataset showcase superior performance to other strong baselines under various driving contexts.
comment: 8 pages, 9 figures
☆ PhysPart: Physically Plausible Part Completion for Interactable Objects
Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.
☆ SeeBelow: Sub-dermal 3D Reconstruction of Tumors with Surgical Robotic Palpation and Tactile Exploration IROS 2024
Surgical scene understanding in Robot-assisted Minimally Invasive Surgery (RMIS) is highly reliant on visual cues and lacks tactile perception. Force-modulated surgical palpation with tactile feedback is necessary for localization, geometry/depth estimation, and dexterous exploration of abnormal stiff inclusions in subsurface tissue layers. Prior works explored surface-level tissue abnormalities or single layered tissue-tumor embeddings with more than 300 palpations for dense 2D stiffness mapping. Our approach focuses on 3D reconstructions of sub-dermal tumor surface profiles in multi-layered tissue (skin-fat-muscle) using a visually-guided novel tactile navigation policy. A robotic palpation probe with tri-axial force sensing was leveraged for tactile exploration of the phantom. From a surface mesh of the surgical region initialized from a depth camera, the policy explores a surgeon's region of interest through palpation, sampled from bayesian optimization. Each palpation includes contour following using a contact-safe impedance controller to trace the sub-dermal tumor geometry, until the underlying tumor-tissue boundary is reached. Projections of these contour following palpation trajectories allows 3D reconstruction of the subdermal tumor surface profile in less than 100 palpations. Our approach generates high-fidelity 3D surface reconstructions of rigid tumor embeddings in tissue layers with isotropic elasticities, although soft tumor geometries are yet to be explored.
comment: 8 pages, 6 figures, accepted to IROS 2024
♻ ☆ Equivariant Ensembles and Regularization for Reinforcement Learning in Map-based Path Planning IROS 2024
In reinforcement learning (RL), exploiting environmental symmetries can significantly enhance efficiency, robustness, and performance. However, ensuring that the deep RL policy and value networks are respectively equivariant and invariant to exploit these symmetries is a substantial challenge. Related works try to design networks that are equivariant and invariant by construction, limiting them to a very restricted library of components, which in turn hampers the expressiveness of the networks. This paper proposes a method to construct equivariant policies and invariant value functions without specialized neural network components, which we term equivariant ensembles. We further add a regularization term for adding inductive bias during training. In a map-based path planning case study, we show how equivariant ensembles and regularization benefit sample efficiency and performance.
comment: Accepted at IROS 2024. A video can be found here: https://youtu.be/L6NOdvU7n7s. The code is available at https://github.com/theilem/uavSim
♻ ☆ RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation ECCV 2024
3D point clouds play a pivotal role in outdoor scene perception, especially in the context of autonomous driving. Recent advancements in 3D LiDAR segmentation often focus intensely on the spatial positioning and distribution of points for accurate segmentation. However, these methods, while robust in variable conditions, encounter challenges due to sole reliance on coordinates and point intensity, leading to poor isometric invariance and suboptimal segmentation. To tackle this challenge, our work introduces Range-Aware Pointwise Distance Distribution (RAPiD) features and the associated RAPiD-Seg architecture. Our RAPiD features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize inherent LiDAR isotropic radiation and semantic categorization for enhanced local representation and computational efficiency, while incorporating a 4D distance metric that integrates geometric and surface material reflectivity for improved semantic segmentation. To effectively embed high-dimensional RAPiD features, we propose a double-nested autoencoder structure with a novel class-aware embedding objective to encode high-dimensional features into manageable voxel-wise embeddings. Additionally, we propose RAPiD-Seg which incorporates a channel-wise attention fusion and two effective RAPiD-Seg variants, further optimizing the embedding for enhanced performance and generalization. Our method outperforms contemporary LiDAR segmentation work in terms of mIoU on SemanticKITTI (76.1) and nuScenes (83.6) datasets.
comment: ECCV 2024 (Oral); 18 pages, 6 figures, 7 tables; Code at https://github.com/l1997i/rapid_seg
♻ ☆ Feeling Optimistic? Ambiguity Attitudes for Online Decision Making
Due to the complexity of many decision making problems, tree search algorithms often have inadequate information to produce accurate transition models. This results in ambiguities (uncertainties for which there are multiple plausible models). Faced with ambiguities, robust methods have been used to produce safe solutions--often by maximizing the lower bound over the set of plausible transition models. However, they often overlook how much the representation of uncertainty can impact how a decision is made. This work introduces the Ambiguity Attitude Graph Search (AAGS), advocating for more comprehensive representations of ambiguities in decision making. Additionally, AAGS allows users to adjust their ambiguity attitude (or preference), promoting exploration and improving users' ability to control how an agent should respond when faced with a set of plausible alternatives. Simulation in a dynamic sailing environment shows how environments with high entropy transition models can lead robust methods to fail. Results further demonstrate how adjusting ambiguity attitudes better fulfills objectives while mitigating this failure mode of robust approaches. Because this approach is a generalization of the robust framework, these results further demonstrate how algorithms focused on ambiguity have applicability beyond safety-critical systems.
comment: 6 pages, 5 figures, 2 algorithms. Accepted to the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems in Abu Dhabi, UAE (Oct 14-18, 2024) \c{opyright} 2024 IEEE
♻ ☆ DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction
Temporal information plays a pivotal role in Bird's-Eye-View (BEV) driving scene understanding, which can alleviate the visual information sparsity. However, the indiscriminate temporal fusion method will cause the barrier of feature redundancy when constructing vectorized High-Definition (HD) maps. In this paper, we revisit the temporal fusion of vectorized HD maps, focusing on temporal instance consistency and temporal map consistency learning. To improve the representation of instances in single-frame maps, we introduce a novel method, DTCLMapper. This approach uses a dual-stream temporal consistency learning module that combines instance embedding with geometry maps. In the instance embedding component, our approach integrates temporal Instance Consistency Learning (ICL), ensuring consistency from vector points and instance features aggregated from points. A vectorized points pre-selection module is employed to enhance the regression efficiency of vector points from each instance. Then aggregated instance features obtained from the vectorized points preselection module are grounded in contrastive learning to realize temporal consistency, where positive and negative samples are selected based on position and semantic information. The geometry mapping component introduces Map Consistency Learning (MCL) designed with self-supervised learning. The MCL enhances the generalization capability of our consistent learning approach by concentrating on the global location and distribution constraints of the instances. Extensive experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks, reaching 61.9% and 65.1% mAP scores on the nuScenes and Argoverse datasets, respectively. The source code is available at https://github.com/lynn-yu/DTCLMapper.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code is available at https://github.com/lynn-yu/DTCLMapper
Graphics 3
☆ Learning to Move Like Professional Counter-Strike Players
In multiplayer, first-person shooter games like Counter-Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high-level strategic play. However, the complexity of team coordination and the variety of conditions present in popular game maps make it impractical to author hand-crafted movement policies for every scenario. We show that it is possible to take a data-driven approach to creating human-like movement controllers for CS:GO. We curate a team movement dataset comprising 123 hours of professional game play traces, and use this dataset to train a transformer-based movement model that generates human-like team movement for all players in a "Retakes" round of the game. Importantly, the movement prediction model is efficient. Performing inference for all players takes less than 0.5 ms per game step (amortized cost) on a single CPU core, making it plausible for use in commercial games today. Human evaluators assess that our model behaves more like humans than both commercially-available bots and procedural movement controllers scripted by experts (16% to 59% higher by TrueSkill rating of "human-like"). Using experiments involving in-game bot vs. bot self-play, we demonstrate that our model performs simple forms of teamwork, makes fewer common movement mistakes, and yields movement distributions, player lifetimes, and kill locations similar to those observed in professional CS:GO match play.
comment: The project website is at https://davidbdurst.com/mlmove/
☆ Quantized neural network for complex hologram generation
Computer-generated holography (CGH) is a promising technology for augmented reality displays, such as head-mounted or head-up displays. However, its high computational demand makes it impractical for implementation. Recent efforts to integrate neural networks into CGH have successfully accelerated computing speed, demonstrating the potential to overcome the trade-off between computational cost and image quality. Nevertheless, deploying neural network-based CGH algorithms on computationally limited embedded systems requires more efficient models with lower computational cost, memory footprint, and power consumption. In this study, we developed a lightweight model for complex hologram generation by introducing neural network quantization. Specifically, we built a model based on tensor holography and quantized it from 32-bit floating-point precision (FP32) to 8-bit integer precision (INT8). Our performance evaluation shows that the proposed INT8 model achieves hologram quality comparable to that of the FP32 model while reducing the model size by approximately 70% and increasing the speed fourfold. Additionally, we implemented the INT8 model on a system-on-module to demonstrate its deployability on embedded platforms and high power efficiency.
comment: 10 pages, 2 figures
☆ McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction
Iso-surface extraction from an implicit field is a fundamental process in various applications of computer vision and graphics. When dealing with geometric shapes with complicated geometric details, many existing algorithms suffer from high computational costs and memory usage. This paper proposes McGrids, a novel approach to improve the efficiency of iso-surface extraction. The key idea is to construct adaptive grids for iso-surface extraction rather than using a simple uniform grid as prior art does. Specifically, we formulate the problem of constructing adaptive grids as a probability sampling problem, which is then solved by Monte Carlo process. We demonstrate McGrids' capability with extensive experiments from both analytical SDFs computed from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
Robotics 4
☆ Effects of fiber number and density on fiber jamming: Towards follow-the-leader deployment of a continuum robot IROS2024
Fiber jamming modules (FJMs) offer flexibility and quick stiffness variation, making them suitable for follow-the-leader (FTL) motions in continuum robots, which is ideal for minimally invasive surgery (MIS). However, their potential has not been fully exploited, particularly in designing and manufacturing small-sized FJMs with high stiffness variation. Although existing research has focused on factors like fiber materials and geometry to maximize stiffness variation, the results often do not apply to FJMs for MIS due to size constraints. Meanwhile, other factors such as fiber number and packing density, less significant to large FJMs but critical to small-sized FJMs, have received insufficient investigation regarding their impact on the stiffness variation for FTL deployment. In this paper, we design and fabricate FJMs with a diameter of 4mm. Through theoretical and experimental analysis, we find that fiber number and packing density significantly affect both absolute stiffness and stiffness variation. Our experiments confirm the feasibility of using FJMs in a medical FTL robot design. The optimal configuration is a 4mm FJM with 0.4mm fibers at a 56% packing density, achieving up to 3400% stiffness variation. A video demonstration of a prototype robot using the suggested parameters for achieving FTL motions can be found at https://youtu.be/7pI5U0z7kcE.
comment: 6 pages, 6 figures, accepted by IROS2024
☆ Modeling of Terrain Deformation by a Grouser Wheel for Lunar Rover Simulation
Simulation of vehicle motion in planetary environments is challenging. This is due to the modeling of complex terrain, optical conditions, and terrain-aware vehicle dynamics. One of the critical issues of typical simulators is that they assume terrain is a rigid body, which limits their ability to render wheel traces and compute the wheel-terrain interactions. This prevents, for example, the use of wheel traces as landmarks for localization, as well as the accurate simulation of motion. In the context of lunar regolith, the surface is not rigid but granular. As such, there are differences in the rover's motion, such as sinkage and slippage, and a clear wheel trace left behind the rover, compared to that on a rigid terrain. This study presents a novel approach to integrating a terramechanics-aware terrain deformation engine to simulate a realistic wheel trace in a digital lunar environment. By leveraging Discrete Element Method simulation results alongside experimental single-wheel test data, we construct a regression model to derive deformation height as a function of contact normal force. The region of interest in a height map is retrieved from the wheel poses. The elevation values of corresponding pixels are subsequently modified using contact normal forces and the regression model. Finally, we apply the determined elevation change to each mesh vertex to render wheel traces during runtime. The deformation engine is integrated into our ongoing development of a lunar simulator based on NVIDIA's Omniverse IsaacSim. We hypothesize that our work will be crucial to testing perception and downstream navigation systems under conditions similar to outdoor or terrestrial fields. A demonstration video is available here: https://www.youtube.com/watch?v=TpzD0h-5hv4
comment: 7pages, 7 figures, to be published in proceedings of the 21st International and 12th Asia-Pacific Regional Conference of the ISTVS (ISTVS)
♻ ☆ A Comparison of Imitation Learning Algorithms for Bimanual Manipulation
Amidst the wide popularity of imitation learning algorithms in robotics, their properties regarding hyperparameter sensitivity, ease of training, data efficiency, and performance have not been well-studied in high-precision industry-inspired environments. In this work, we demonstrate the limitations and benefits of prominent imitation learning approaches and analyze their capabilities regarding these properties. We evaluate each algorithm on a complex bimanual manipulation task involving an over-constrained dynamics system in a setting involving multiple contacts between the manipulated object and the environment. While we find that imitation learning is well suited to solve such complex tasks, not all algorithms are equal in terms of handling environmental and hyperparameter perturbations, training requirements, performance, and ease of use. We investigate the empirical influence of these key characteristics by employing a carefully designed experimental procedure and learning environment. Paper website: https://bimanual-imitation.github.io/
♻ ☆ Learning and Blending Robot Hugging Behaviors in Time and Space
We introduce an imitation learning-based physical human-robot interaction algorithm capable of predicting appropriate robot responses in complex interactions involving a superposition of multiple interactions. Our proposed algorithm, Blending Bayesian Interaction Primitives (B-BIP) allows us to achieve responsive interactions in complex hugging scenarios, capable of reciprocating and adapting to a hugs motion and timing. We show that this algorithm is a generalization of prior work, for which the original formulation reduces to the particular case of a single interaction, and evaluate our method through both an extensive user study and empirical experiments. Our algorithm yields significantly better quantitative prediction error and more-favorable participant responses with respect to accuracy, responsiveness, and timing, when compared to existing state-of-the-art methods.
Artificial Intelligence 55
☆ Evaluating Alternative Training Interventions Using Personalized Computational Models of Learning
Evaluating different training interventions to determine which produce the best learning outcomes is one of the main challenges faced by instructional designers. Typically, these designers use A/B experiments to evaluate each intervention; however, it is costly and time consuming to run such studies. To address this issue, we explore how computational models of learning might support designers in reasoning causally about alternative interventions within a fractions tutor. We present an approach for automatically tuning models to specific individuals and show that personalized models make better predictions of students' behavior than generic ones. Next, we conduct simulations to generate counterfactual predictions of performance and learning for two students (high and low performing) in different versions of the fractions tutor. Our approach makes predictions that align with previous human findings, as well as testable predictions that might be evaluated with future human experiments.
comment: 18 pages, 7 figures
☆ Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
In a conventional Federated Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration. However, this random selection often leads to disparate performance among clients, raising concerns regarding fairness, particularly in applications where equitable outcomes are crucial, such as in medical or financial machine learning tasks. This disparity typically becomes more pronounced with the advent of performance-centric client sampling techniques. This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection. Both approaches utilize submodular function maximization to achieve more balanced models. By modifying the facility location problem, they aim to mitigate the fairness concerns associated with random selection. SUBTRUNC leverages client loss information to diversify solutions, while UNIONFL relies on historical client selection data to ensure a more equitable performance of the final model. Moreover, these algorithms are accompanied by robust theoretical guarantees regarding convergence under reasonable assumptions. The efficacy of these methods is demonstrated through extensive evaluations across heterogeneous scenarios, revealing significant improvements in fairness as measured by a client dissimilarity metric.
comment: 13 pages
☆ Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models NeurIPS 2023
Characterizing materials with electron micrographs is a crucial task in fields such as semiconductors and quantum materials. The complex hierarchical structure of micrographs often poses challenges for traditional classification methods. In this study, we propose an innovative backbone architecture for analyzing electron micrographs. We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs, commonly referred to as patch attributed graphs. We introduce the Hierarchical Network Fusion (HNF), a multi-layered network structure architecture that facilitates information exchange between the multi-modal representations and knowledge integration across different patch resolutions. Furthermore, we leverage large language models (LLMs) to generate detailed technical descriptions of nanomaterials as auxiliary information to assist in the downstream task. We utilize a cross-modal attention mechanism for knowledge fusion across cross-domain representations(both image-based and linguistic insights) to predict the nanomaterial category. This multi-faceted approach promises a more comprehensive and accurate representation and classification of micrographs for nanomaterial identification. Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts, and facilitating high-throughput screening.
comment: Our paper is published at the workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023
☆ Reactzyme: A Benchmark for Enzyme-Reaction Prediction
Enzymes, with their specific catalyzed reactions, are necessary for all aspects of life, enabling diverse biological processes and adaptations. Predicting enzyme functions is essential for understanding biological pathways, guiding drug development, enhancing bioproduct yields, and facilitating evolutionary studies. Addressing the inherent complexities, we introduce a new approach to annotating enzymes based on their catalyzed reactions. This method provides detailed insights into specific reactions and is adaptable to newly discovered reactions, diverging from traditional classifications by protein family or expert-derived reaction classes. We employ machine learning algorithms to analyze enzyme reaction datasets, delivering a much more refined view on the functionality of enzymes. Our evaluation leverages the largest enzyme-reaction dataset to date, derived from the SwissProt and Rhea databases with entries up to January 8, 2024. We frame the enzyme-reaction prediction as a retrieval problem, aiming to rank enzymes by their catalytic ability for specific reactions. With our model, we can recruit proteins for novel reactions and predict reactions in novel proteins, facilitating enzyme discovery and function annotation.
☆ Studying the Effect of Audio Filters in Pre-Trained Models for Environmental Sound Classification
Environmental Sound Classification is an important problem of sound recognition and is more complicated than speech recognition problems as environmental sounds are not well structured with respect to time and frequency. Researchers have used various CNN models to learn audio features from different audio features like log mel spectrograms, gammatone spectral coefficients, mel-frequency spectral coefficients, generated from the audio files, over the past years. In this paper, we propose a new methodology : Two-Level Classification; the Level 1 Classifier will be responsible to classify the audio signal into a broader class and the Level 2 Classifiers will be responsible to find the actual class to which the audio belongs, based on the output of the Level 1 Classifier. We have also shown the effects of different audio filters, among which a new method of Audio Crop is introduced in this paper, which gave the highest accuracies in most of the cases. We have used the ESC-50 dataset for our experiment and obtained a maximum accuracy of 78.75% in case of Level 1 Classification and 98.04% in case of Level 2 Classifications.
comment: 19 pages, 16 figures
☆ Temporal Elections: Welfare, Strategyproofness, and Proportionality
We investigate a model of sequential decision-making where a single alternative is chosen at each round. We focus on two objectives-utilitarian welfare (Util) and egalitarian welfare (Egal)-and consider the computational complexity of the associated maximization problems, as well as their compatibility with strategyproofness and proportionality. We observe that maximizing Util is easy, but the corresponding decision problem for Egal is NP-complete even in restricted cases. We complement this hardness result for Egal with parameterized complexity analysis and an approximation algorithm. Additionally, we show that, while a mechanism that outputs a Util outcome is strategyproof, all deterministic mechanisms for computing Egal outcomes fail a very weak variant of strategyproofness, called non-obvious manipulability (NOM). However, we show that when agents have non-empty approval sets at each timestep, choosing an Egal-maximizing outcome while breaking ties lexicographically satisfies NOM. Regarding proportionality, we prove that a proportional (PROP) outcome can be computed efficiently, but finding an outcome that maximizes Util while guaranteeing PROP is NP-hard. We also derive upper and lower bounds on the price of proportionality with respect to Util and Egal.
comment: Appears in the 27th European Conference on Artificial Intelligence (ECAI), 2024
☆ DeepVoting: Learning Voting Rules with Tailored Embeddings
Aggregating the preferences of multiple agents into a collective decision is a common step in many important problems across areas of computer science including information retrieval, reinforcement learning, and recommender systems. As Social Choice Theory has shown, the problem of designing algorithms for aggregation rules with specific properties (axioms) can be difficult, or provably impossible in some cases. Instead of designing algorithms by hand, one can learn aggregation rules, particularly voting rules, from data. However, the prior work in this area has required extremely large models, or been limited by the choice of preference representation, i.e., embedding. We recast the problem of designing a good voting rule into one of learning probabilistic versions of voting rules that output distributions over a set of candidates. Specifically, we use neural networks to learn probabilistic social choice functions from the literature. We show that embeddings of preference profiles derived from the social choice literature allows us to learn existing voting rules more efficiently and scale to larger populations of voters more easily than other work if the embedding is tailored to the learning objective. Moreover, we show that rules learned using embeddings can be tweaked to create novel voting rules with improved axiomatic properties. Namely, we show that existing voting rules require only minor modification to combat a probabilistic version of the No Show Paradox.
☆ Towards Case-based Interpretability for Medical Federated Learning
We explore deep generative models to generate case-based explanations in a medical federated learning setting. Explaining AI model decisions through case-based interpretability is paramount to increasing trust and allowing widespread adoption of AI in clinical practice. However, medical AI training paradigms are shifting towards federated learning settings in order to comply with data protection regulations. In a federated scenario, past data is inaccessible to the current user. Thus, we use a deep generative model to generate synthetic examples that protect privacy and explain decisions. Our proof-of-concept focuses on pleural effusion diagnosis and uses publicly available Chest X-ray data.
comment: \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ No Dataset Needed for Downstream Knowledge Benchmarking: Response Dispersion Inversely Correlates with Accuracy on Domain-specific QA
This research seeks to obviate the need for creating QA datasets and grading (chatbot) LLM responses when comparing LLMs' knowledge in specific topic domains. This is done in an entirely end-user centric way without need for access to any inner workings of the LLM, so long as it can be prompted and given a random seed to create different generations to the same prompt. The paper does this by, for a given topic domain, defining the "response dispersion" of an LLM by repeatedly asking an LLM the same opinion question about that topic domain. Namely, the response dispersion is the count of singular values needed to explain 95% of the variance in the embedding matrix of the LLM's responses. It is found that the response dispersion is inversely correlated with accuracy on relevant QA evaluations (average spearman rank correlation stronger than -.59). A use-case analysis shows that when comparing two different LLMs on the same topic domain, comparing their response dispersion is a suitable replacement for comparing their QA accuracy between 74% and 89% of the time, the range depending on certain reasonable accuracy-difference tolerances that may be acceptable to an end-user in exchange for the labor being saved using response dispersion instead of QA accuracy for comparison. Two response embeddings are studied for creating the embedding matrix in this study, one is from OpenAI's APIs and one is a novel embedding, here named reference sentence similarity embeddings, that can be computed locally and performs very nearly as well in calculating response dispersion. Also in this research, a pre-existing dataset called the IRC-Wiki Trivia dataset, originally developed for trivia games, has been re-purposed, curated, and the curation, called IRC-WikiTriviaQA, is made available for the purpose of this research.
comment: 16 pages, 3 tables, 1 figure
☆ Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings ICLR 2024
Spatio-temporal forecasting is crucial in transportation, logistics, and supply chain management. However, current methods struggle with large, complex datasets. We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models for time series trend analysis. This approach utilizes a mixture of experts (MoE) architecture with parameter-efficient fine-tuning (PEFT) methods, tailored for consumer hardware to scale up AI solutions in low resource settings while balancing performance and latency tradeoffs. Additionally, our approach leverages related past experiences for similar input time series to efficiently handle both intra-series and inter-series dependencies of non-stationary data with a time-then-space modeling approach, using grouped-query attention, while mitigating the limitations of traditional forecasting techniques in handling distributional shifts. Our approach models predictive uncertainty to improve decision-making. Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security. Extensive experiments on various real-world datasets demonstrate that our framework provides robust and accurate forecasts, significantly outperforming existing methods.
comment: Published at the ICLR 2024 Workshop on Practical ML for Low Resource Settings(PML4LRS)
☆ Preliminary Investigations of a Multi-Faceted Robust and Synergistic Approach in Semiconductor Electron Micrograph Analysis: Integrating Vision Transformers with Large Language and Multimodal Models AAAI-2024
Characterizing materials using electron micrographs is crucial in areas such as semiconductors and quantum materials. Traditional classification methods falter due to the intricatestructures of these micrographs. This study introduces an innovative architecture that leverages the generative capabilities of zero-shot prompting in Large Language Models (LLMs) such as GPT-4(language only), the predictive ability of few-shot (in-context) learning in Large Multimodal Models (LMMs) such as GPT-4(V)ision, and fuses knowledge across image based and linguistic insights for accurate nanomaterial category prediction. This comprehensive approach aims to provide a robust solution for the automated nanomaterial identification task in semiconductor manufacturing, blending performance, efficiency, and interpretability. Our method surpasses conventional approaches, offering precise nanomaterial identification and facilitating high-throughput screening.
comment: Published at Deployable AI (DAI) Workshop at AAAI-2024
☆ Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation
Sampling-based decoding strategies have been widely adopted for Large Language Models (LLMs) in numerous applications, which target a balance between diversity and quality via temperature tuning and tail truncation (e.g., top-k and top-p sampling). Considering the high dynamic range of the candidate next-token given different prefixes, recent studies propose to adaptively truncate the tail of LLM's predicted distribution. Although improved results haven been reported with these methods on open-ended text generation tasks, the results are highly dependent on the curated truncation parameters and exemplar text. In this paper, we propose a systematic way to estimate the intrinsic capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step, based on our collected prefix tree which preserves the context of a full sentence. Our work provides a comprehensive comparison between existing truncation sampling methods, as well as their recommended parameters as a guideline for users.
☆ Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics
Integrated sensing and communication (ISAC) technology plays a crucial role in vehicular networks. However, the communication channel within this context exhibits time-varying characteristics, and potential targets may move rapidly, resulting in double dynamics. These presents significant challenges for real-time ISAC precoding design that have not been thoroughly explored. While optimization-based precoding methods have been extensively studied, they are computationally complex and heavily rely on perfect prior information that is rarely available in situations with double dynamics. In this paper, we propose a synesthesia of machine (SoM)-enhanced precoding paradigm, where the base station leverages various modalities such as positioning and channel information to adapt to double dynamics, and effectively utilizes environmental information to stretch ISAC performance boundaries through a deep reinforcement learning framework. Additionally, a parameter-shared actor-critic architecture is tailored to expedite training in complex state and action spaces. Extensive experimental validation has demonstrated the multifaceted superiority of our method over existing approaches.
comment: 13 pages, 17 figures, 4 tables
☆ Selective Preference Optimization via Token-Level Reward Function Estimation
Recent advancements in large language model alignment leverage token-level supervisions to perform fine-grained preference optimization. However, existing token-level alignment methods either optimize on all available tokens, which can be noisy and inefficient, or perform selective training with complex and expensive key token selection strategies. In this work, we propose Selective Preference Optimization (SePO), a novel selective alignment strategy that centers on efficient key token selection. SePO proposes the first token selection method based on Direct Preference Optimization (DPO), which trains an oracle model to estimate a token-level reward function on the target data. This method applies to any existing alignment datasets with response-level annotations and enables cost-efficient token selection with small-scale oracle models and training data. The estimated reward function is then utilized to score all tokens within the target dataset, where only the key tokens are selected to supervise the target policy model with a reference model-free contrastive objective function. Extensive experiments on three public evaluation benchmarks show that SePO significantly outperforms competitive baseline methods by only optimizing 30% key tokens on the target dataset. SePO applications on weak-to-strong generalization show that weak oracle models effectively supervise strong policy models with up to 16.8x more parameters. SePO also effectively selects key tokens from out-of-distribution data to enhance strong policy models and alleviate the over-optimization problem.
comment: Work in progress
☆ AnoPLe: Few-Shot Anomaly Detection via Bi-directional Prompt Learning with Only Normal Samples
Few-shot Anomaly Detection (FAD) poses significant challenges due to the limited availability of training samples and the frequent absence of abnormal samples. Previous approaches often rely on annotations or true abnormal samples to improve detection, but such textual or visual cues are not always accessible. To address this, we introduce AnoPLe, a multi-modal prompt learning method designed for anomaly detection without prior knowledge of anomalies. AnoPLe simulates anomalies and employs bidirectional coupling of textual and visual prompts to facilitate deep interaction between the two modalities. Additionally, we integrate a lightweight decoder with a learnable multi-view signal, trained on multi-scale images to enhance local semantic comprehension. To further improve performance, we align global and local semantics, enriching the image-level understanding of anomalies. The experimental results demonstrate that AnoPLe achieves strong FAD performance, recording 94.1% and 86.2% Image AUROC on MVTec-AD and VisA respectively, with only around a 1% gap compared to the SoTA, despite not being exposed to true anomalies. Code is available at https://github.com/YoojLee/AnoPLe.
comment: Code is available at https://github.com/YoojLee/AnoPLe
☆ Thresholded Lexicographic Ordered Multiobjective Reinforcement Learning
Lexicographic multi-objective problems, which impose a lexicographic importance order over the objectives, arise in many real-life scenarios. Existing Reinforcement Learning work directly addressing lexicographic tasks has been scarce. The few proposed approaches were all noted to be heuristics without theoretical guarantees as the Bellman equation is not applicable to them. Additionally, the practical applicability of these prior approaches also suffers from various issues such as not being able to reach the goal state. While some of these issues have been known before, in this work we investigate further shortcomings, and propose fixes for improving practical performance in many cases. We also present a policy optimization approach using our Lexicographic Projection Optimization (LPO) algorithm that has the potential to address these theoretical and practical concerns. Finally, we demonstrate our proposed algorithms on benchmark problems.
comment: Full version of ECAI 2024 paper
☆ MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning
Determining the optimal size of a neural network is critical, as it directly impacts runtime performance and memory usage. Pruning is a well-established model compression technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation. However, many recent pruning methods overlook the global contributions of individual model components, making it difficult to ensure that a pruned model meets the desired dataset and performance requirements. To address these challenges, we developed a new pruning algorithm, MPruner, that leverages mutual information through vector similarity. MPruner utilizes layer clustering with the Centered Kernel Alignment (CKA) similarity metric, allowing us to incorporate global information from the neural network for more precise and efficient layer-wise pruning. We evaluated MPruner across various architectures and configurations, demonstrating its versatility and providing practical guidelines. MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.
☆ Disentangled Generative Graph Representation Learning
Recently, generative graph models have shown promising results in learning graph representations through self-supervised methods. However, most existing generative graph representation learning (GRL) approaches rely on random masking across the entire graph, which overlooks the entanglement of learned representations. This oversight results in non-robustness and a lack of explainability. Furthermore, disentangling the learned representations remains a significant challenge and has not been sufficiently explored in GRL research. Based on these insights, this paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework. DiGGR aims to learn latent disentangled factors and utilizes them to guide graph mask modeling, thereby enhancing the disentanglement of learned representations and enabling end-to-end joint learning. Extensive experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods, verifying the effectiveness of the proposed approach.
☆ LlamaDuo: LLMOps Pipeline for Seamless Migration from Service LLMs to Small-Scale Local LLMs
The widespread adoption of cloud-based proprietary large language models (LLMs) has introduced significant challenges, including operational dependencies, privacy concerns, and the necessity of continuous internet connectivity. In this work, we introduce an LLMOps pipeline, "LlamaDuo", for the seamless migration of knowledge and abilities from service-oriented LLMs to smaller, locally manageable models. This pipeline is crucial for ensuring service continuity in the presence of operational failures, strict privacy policies, or offline requirements. Our LlamaDuo involves fine-tuning a small language model against the service LLM using a synthetic dataset generated by the latter. If the performance of the fine-tuned model falls short of expectations, it is enhanced by further fine-tuning with additional similar data created by the service LLM. This iterative process guarantees that the smaller model can eventually match or even surpass the service LLM's capabilities in specific downstream tasks, offering a practical and scalable solution for managing AI deployments in constrained environments. Extensive experiments with leading edge LLMs are conducted to demonstrate the effectiveness, adaptability, and affordability of LlamaDuo across various downstream tasks. Our pipeline implementation is available at https://github.com/deep-diver/llamaduo.
comment: 28 pages, 18 figures, 6 tables
☆ Uncovering Biases with Reflective Large Language Models
Biases inherent in human endeavors pose significant challenges for machine learning, particularly in supervised learning that relies on potentially biased "ground truth" data. This reliance, coupled with models' tendency to generalize based on statistical maximal likelihood, can propagate and amplify biases, exacerbating societal issues. To address this, our study proposes a reflective methodology utilizing multiple Large Language Models (LLMs) engaged in a dynamic dialogue to uncover diverse perspectives. By leveraging conditional statistics, information theory, and divergence metrics, this novel approach fosters context-dependent linguistic behaviors, promoting unbiased outputs. Furthermore, it enables measurable progress tracking and explainable remediation actions to address identified biases.
comment: 16 pages, 3 figures, 8 tables
☆ Probing the Robustness of Vision-Language Pretrained Models: A Multimodal Adversarial Attack Approach
Vision-language pretraining (VLP) with transformers has demonstrated exceptional performance across numerous multimodal tasks. However, the adversarial robustness of these models has not been thoroughly investigated. Existing multimodal attack methods have largely overlooked cross-modal interactions between visual and textual modalities, particularly in the context of cross-attention mechanisms. In this paper, we study the adversarial vulnerability of recent VLP transformers and design a novel Joint Multimodal Transformer Feature Attack (JMTFA) that concurrently introduces adversarial perturbations in both visual and textual modalities under white-box settings. JMTFA strategically targets attention relevance scores to disrupt important features within each modality, generating adversarial samples by fusing perturbations and leading to erroneous model predictions. Experimental results indicate that the proposed approach achieves high attack success rates on vision-language understanding and reasoning downstream tasks compared to existing baselines. Notably, our findings reveal that the textual modality significantly influences the complex fusion processes within VLP transformers. Moreover, we observe no apparent relationship between model size and adversarial robustness under our proposed attacks. These insights emphasize a new dimension of adversarial robustness and underscore potential risks in the reliable deployment of multimodal AI systems.
☆ Make Every Penny Count: Difficulty-Adaptive Self-Consistency for Cost-Efficient Reasoning
Self-consistency (SC), a widely used decoding strategy for chain-of-thought reasoning, shows significant gains across various multi-step reasoning tasks but comes with a high cost due to multiple sampling with the preset size. Its variants, Adaptive self-consistency (ASC) and Early-stopping self-consistency (ESC), dynamically adjust the number of samples based on the posterior distribution of a set of pre-samples, reducing the cost of SC with minimal impact on performance. Both methods, however, do not exploit the prior information about question difficulty. It often results in unnecessary repeated sampling for easy questions that could be accurately answered with just one attempt, wasting resources. To tackle this problem, we propose Difficulty-Adaptive Self-Consistency (DSC), which leverages the difficulty information from both prior and posterior perspectives to adaptively allocate inference resources, further reducing the cost of SC. To demonstrate the effectiveness of DSC, we conduct extensive experiments on three popular categories of reasoning tasks: arithmetic, commonsense and symbolic reasoning on six benchmarks. The empirical results show that DSC consistently surpasses the strong baseline ASC and ESC in terms of costs by a significant margin, while attaining comparable performances.
comment: Preprint
☆ A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, built on architectures such as Transformer, RWKV, and Mamba. We demonstrate that this law offers new perspectives and insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and information flow. Overall, our law enables more fine-grained approaches to the design, training, and interpretation of LLMs through scrutinizing their internal data processing mechanisms.
♻ ☆ Neuro-Symbolic AI for Military Applications
Artificial Intelligence (AI) plays a significant role in enhancing the capabilities of defense systems, revolutionizing strategic decision-making, and shaping the future landscape of military operations. Neuro-Symbolic AI is an emerging approach that leverages and augments the strengths of neural networks and symbolic reasoning. These systems have the potential to be more impactful and flexible than traditional AI systems, making them well-suited for military applications. This paper comprehensively explores the diverse dimensions and capabilities of Neuro-Symbolic AI, aiming to shed light on its potential applications in military contexts. We investigate its capacity to improve decision-making, automate complex intelligence analysis, and strengthen autonomous systems. We further explore its potential to solve complex tasks in various domains, in addition to its applications in military contexts. Through this exploration, we address ethical, strategic, and technical considerations crucial to the development and deployment of Neuro-Symbolic AI in military and civilian applications. Contributing to the growing body of research, this study represents a comprehensive exploration of the extensive possibilities offered by Neuro-Symbolic AI.
comment: Accepted at IEEE Transactions on Artificial Intelligence (TAI)
♻ ☆ Fast Unsupervised Deep Outlier Model Selection with Hypernetworks KDD 2024
Outlier detection (OD) finds many applications with a rich literature of numerous techniques. Deep neural network based OD (DOD) has seen a recent surge of attention thanks to the many advances in deep learning. In this paper, we consider a critical-yet-understudied challenge with unsupervised DOD, that is, effective hyperparameter (HP) tuning/model selection. While several prior work report the sensitivity of OD models to HPs, it becomes ever so critical for the modern DOD models that exhibit a long list of HPs. We introduce HYPER for tuning DOD models, tackling two fundamental challenges: (1) validation without supervision (due to lack of labeled anomalies), and (2) efficient search of the HP/model space (due to exponential growth in the number of HPs). A key idea is to design and train a novel hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model. In turn, HYPER capitalizes on a single HN that can dynamically generate weights for many DOD models (corresponding to varying HPs), which offers significant speed-up. In addition, it employs meta-learning on historical OD tasks with labels to train a proxy validation function, likewise trained with our proposed HN efficiently. Extensive experiments on 35 OD tasks show that HYPER achieves high performance against 8 baselines with significant efficiency gains.
comment: 12 pages, 7 figures, accepted at KDD 2024
♻ ☆ Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value ICML 2024
We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost. The code for our algorithm is available at https://github.com/YoungWu559/game-modification .
comment: Accepted by ICML 2024 Conference
♻ ☆ Unc-TTP: A Method for Classifying LLM Uncertainty to Improve In-Context Example Selection
Nowadays, Large Language Models (LLMs) have demonstrated exceptional performance across various downstream tasks. However, it is challenging for users to discern whether the responses are generated with certainty or are fabricated to meet user expectations. Estimating the uncertainty of LLMs is particularly challenging due to their vast scale and the lack of white-box access. In this work, we propose a novel Uncertainty Tripartite Testing Paradigm (Unc-TTP) to classify LLM uncertainty, via evaluating the consistency of LLM outputs when incorporating label interference into the sampling-based approach. Based on Unc-TTP outputs, we aggregate instances into certain and uncertain categories. Further, we conduct a detailed analysis of the uncertainty properties of LLMs and show Unc-TTP's superiority over the existing sampling-based methods. In addition, we leverage the obtained uncertainty information to guide in-context example selection, demonstrating that Unc-TTP obviously outperforms retrieval-based and sampling-based approaches in selecting more informative examples. Our work paves a new way to classify the uncertainty of both open- and closed-source LLMs, and introduces a practical approach to exploit this uncertainty to improve LLMs performance.
comment: The model diagram in Figure 1 on page 3 of the paper has significant ambiguities. It may lead readers to mistakenly believe that the experiments were conducted in a multi-turn dialogue format. Therefore, we request the withdrawal of this submission
♻ ☆ Improving Robustness to Model Inversion Attacks via Sparse Coding Architectures ECCV 2024
Recent model inversion attack algorithms permit adversaries to reconstruct a neural network's private and potentially sensitive training data by repeatedly querying the network. In this work, we develop a novel network architecture that leverages sparse-coding layers to obtain superior robustness to this class of attacks. Three decades of computer science research has studied sparse coding in the context of image denoising, object recognition, and adversarial misclassification settings, but to the best of our knowledge, its connection to state-of-the-art privacy vulnerabilities remains unstudied. In this work, we hypothesize that sparse coding architectures suggest an advantageous means to defend against model inversion attacks because they allow us to control the amount of irrelevant private information encoded by a network in a manner that is known to have little effect on classification accuracy. Specifically, compared to networks trained with a variety of state-of-the-art defenses, our sparse-coding architectures maintain comparable or higher classification accuracy while degrading state-of-the-art training data reconstructions by factors of 1.1 to 18.3 across a variety of reconstruction quality metrics (PSNR, SSIM, FID). This performance advantage holds across 5 datasets ranging from CelebA faces to medical images and CIFAR-10, and across various state-of-the-art SGD-based and GAN-based inversion attacks, including Plug-&-Play attacks. We provide a cluster-ready PyTorch codebase to promote research and standardize defense evaluations.
comment: ECCV 2024
♻ ☆ Learning and Blending Robot Hugging Behaviors in Time and Space
We introduce an imitation learning-based physical human-robot interaction algorithm capable of predicting appropriate robot responses in complex interactions involving a superposition of multiple interactions. Our proposed algorithm, Blending Bayesian Interaction Primitives (B-BIP) allows us to achieve responsive interactions in complex hugging scenarios, capable of reciprocating and adapting to a hugs motion and timing. We show that this algorithm is a generalization of prior work, for which the original formulation reduces to the particular case of a single interaction, and evaluate our method through both an extensive user study and empirical experiments. Our algorithm yields significantly better quantitative prediction error and more-favorable participant responses with respect to accuracy, responsiveness, and timing, when compared to existing state-of-the-art methods.
♻ ☆ Nondeterministic Causal Models
We generalize acyclic deterministic structural equation models to the nondeterministic case and argue that it offers an improved semantics for counterfactuals. The standard, deterministic, semantics developed by Halpern (and based on the initial proposal of Galles & Pearl) assumes that for each assignment of values to parent variables there is a unique assignment to their child variable, and it assumes that the actual world (an assignment of values to all variables of a model) specifies a unique counterfactual world for each intervention. Both assumptions are unrealistic, and therefore we drop both of them in our proposal. We do so by allowing multi-valued functions in the structural equations. In addition, we adjust the semantics so that the solutions to the equations that obtained in the actual world are preserved in any counterfactual world. We provide a sound and complete axiomatization of the resulting logic and compare it to the standard one by Halpern and to more recent proposals that are closer to ours. Finally, we extend our models to the probabilistic case and show that they open up the way to identifying counterfactuals even in Causal Bayesian Networks.
comment: Preliminary version: currently under review
♻ ☆ A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease
In the era of rapidly advancing medical technologies, the segmentation of medical data has become inevitable, necessitating the development of privacy preserving machine learning algorithms that can train on distributed data. Consolidating sensitive medical data is not always an option particularly due to the stringent privacy regulations imposed by the Health Insurance Portability and Accountability Act (HIPAA). In this paper, I introduce a HIPAA compliant framework that can train from distributed data. I then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection, a serious neurodegenerative condition that can cause dementia, severely impairing brain function and hindering simple tasks, especially without preventative care. This vertical federated learning (VFL) model offers a distributed architecture that enables collaborative learning across diverse sources of medical data while respecting privacy constraints imposed by HIPAA. The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data while respecting statutory privacy constraints. By leveraging multiple modalities of data, the robustness and accuracy of AD detection can be enhanced. This model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research.
comment: 17 pages, 7 figures, 2 tables
♻ ☆ minimax: Efficient Baselines for Autocurricula in JAX
Unsupervised environment design (UED) is a form of automatic curriculum learning for training robust decision-making agents to zero-shot transfer into unseen environments. Such autocurricula have received much interest from the RL community. However, UED experiments, based on CPU rollouts and GPU model updates, have often required several weeks of training. This compute requirement is a major obstacle to rapid innovation for the field. This work introduces the minimax library for UED training on accelerated hardware. Using JAX to implement fully-tensorized environments and autocurriculum algorithms, minimax allows the entire training loop to be compiled for hardware acceleration. To provide a petri dish for rapid experimentation, minimax includes a tensorized grid-world based on MiniGrid, in addition to reusable abstractions for conducting autocurricula in procedurally-generated environments. With these components, minimax provides strong UED baselines, including new parallelized variants, which achieve over 120$\times$ speedups in wall time compared to previous implementations when training with equal batch sizes. The minimax library is available under the Apache 2.0 license at https://github.com/facebookresearch/minimax.
comment: Presented at ALOE 2023
♻ ☆ SheetAgent: Towards A Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models ICML 2024
Spreadsheet manipulation is widely existing in most daily works and significantly improves working efficiency. Large language model (LLM) has been recently attempted for automatic spreadsheet manipulation but has not yet been investigated in complicated and realistic tasks where reasoning challenges exist (e.g., long horizon manipulation with multi-step reasoning and ambiguous requirements). To bridge the gap with the real-world requirements, we introduce $\textbf{SheetRM}$, a benchmark featuring long-horizon and multi-category tasks with reasoning-dependent manipulation caused by real-life challenges. To mitigate the above challenges, we further propose $\textbf{SheetAgent}$, a novel autonomous agent that utilizes the power of LLMs. SheetAgent consists of three collaborative modules: $\textit{Planner}$, $\textit{Informer}$, and $\textit{Retriever}$, achieving both advanced reasoning and accurate manipulation over spreadsheets without human interaction through iterative task reasoning and reflection. Extensive experiments demonstrate that SheetAgent delivers 20-30% pass rate improvements on multiple benchmarks over baselines, achieving enhanced precision in spreadsheet manipulation and demonstrating superior table reasoning abilities. More details and visualizations are available at https://sheetagent.github.io.
comment: Paper of new version. Accepted by Large Language Models and Cognition @ ICML 2024
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ Your Turn: At Home Turning Angle Estimation for Parkinson's Disease Severity Assessment
People with Parkinson's Disease (PD) often experience progressively worsening gait, including changes in how they turn around, as the disease progresses. Existing clinical rating tools are not capable of capturing hour-by-hour variations of PD symptoms, as they are confined to brief assessments within clinic settings. Measuring gait turning angles continuously and passively is a component step towards using gait characteristics as sensitive indicators of disease progression in PD. This paper presents a deep learning-based approach to automatically quantify turning angles by extracting 3D skeletons from videos and calculating the rotation of hip and knee joints. We utilise state-of-the-art human pose estimation models, Fastpose and Strided Transformer, on a total of 1386 turning video clips from 24 subjects (12 people with PD and 12 healthy control volunteers), trimmed from a PD dataset of unscripted free-living videos in a home-like setting (Turn-REMAP). We also curate a turning video dataset, Turn-H3.6M, from the public Human3.6M human pose benchmark with 3D ground truth, to further validate our method. Previous gait research has primarily taken place in clinics or laboratories evaluating scripted gait outcomes, but this work focuses on free-living home settings where complexities exist, such as baggy clothing and poor lighting. Due to difficulties in obtaining accurate ground truth data in a free-living setting, we quantise the angle into the nearest bin $45^\circ$ based on the manual labelling of expert clinicians. Our method achieves a turning calculation accuracy of 41.6%, a Mean Absolute Error (MAE) of 34.7{\deg}, and a weighted precision WPrec of 68.3% for Turn-REMAP. This is the first work to explore the use of single monocular camera data to quantify turns by PD patients in a home setting.
♻ ☆ Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs
Camera traps are important tools in animal ecology for biodiversity monitoring and conservation. However, their practical application is limited by issues such as poor generalization to new and unseen locations. Images are typically associated with diverse forms of context, which may exist in different modalities. In this work, we exploit the structured context linked to camera trap images to boost out-of-distribution generalization for species classification tasks in camera traps. For instance, a picture of a wild animal could be linked to details about the time and place it was captured, as well as structured biological knowledge about the animal species. While often overlooked by existing studies, incorporating such context offers several potential benefits for better image understanding, such as addressing data scarcity and enhancing generalization. However, effectively incorporating such heterogeneous context into the visual domain is a challenging problem. To address this, we propose a novel framework that transforms species classification as link prediction in a multimodal knowledge graph (KG). This framework enables the seamless integration of diverse multimodal contexts for visual recognition. We apply this framework for out-of-distribution species classification on the iWildCam2020-WILDS and Snapshot Mountain Zebra datasets and achieve competitive performance with state-of-the-art approaches. Furthermore, our framework enhances sample efficiency for recognizing under-represented species.
comment: 12 pages, 5 figures
♻ ☆ EAS-SNN: End-to-End Adaptive Sampling and Representation for Event-based Detection with Recurrent Spiking Neural Networks ECCV2024
Event cameras, with their high dynamic range and temporal resolution, are ideally suited for object detection, especially under scenarios with motion blur and challenging lighting conditions. However, while most existing approaches prioritize optimizing spatiotemporal representations with advanced detection backbones and early aggregation functions, the crucial issue of adaptive event sampling remains largely unaddressed. Spiking Neural Networks (SNNs), which operate on an event-driven paradigm through sparse spike communication, emerge as a natural fit for addressing this challenge. In this study, we discover that the neural dynamics of spiking neurons align closely with the behavior of an ideal temporal event sampler. Motivated by this insight, we propose a novel adaptive sampling module that leverages recurrent convolutional SNNs enhanced with temporal memory, facilitating a fully end-to-end learnable framework for event-based detection. Additionally, we introduce Residual Potential Dropout (RPD) and Spike-Aware Training (SAT) to regulate potential distribution and address performance degradation encountered in spike-based sampling modules. Empirical evaluation on neuromorphic detection datasets demonstrates that our approach outperforms existing state-of-the-art spike-based methods with significantly fewer parameters and time steps. For instance, our method yields a 4.4\% mAP improvement on the Gen1 dataset, while requiring 38\% fewer parameters and only three time steps. Moreover, the applicability and effectiveness of our adaptive sampling methodology extend beyond SNNs, as demonstrated through further validation on conventional non-spiking models. Code is available at https://github.com/Windere/EAS-SNN.
comment: Accepted by ECCV2024
♻ ☆ Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but the associated expensive API cost greatly limits the real application. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing API cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts"(SoT) to unleash the synergistic potential of hybrid LLMs with different scales for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost intuitive thoughts, which resembles the parallel intuitions produced by System 1. We then design a confidence evaluator where the intuitive thoughts are cross-evaluated and introduce a controllable threshold mechanism to decide their mutual conflict. If these intuitive thoughts exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning results. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the API cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%.
comment: 19 pages, 16 figures, 12 tables
♻ ☆ Self-Supervised Disentangled Representation Learning for Robust Target Speech Extraction AAAI2024
Speech signals are inherently complex as they encompass both global acoustic characteristics and local semantic information. However, in the task of target speech extraction, certain elements of global and local semantic information in the reference speech, which are irrelevant to speaker identity, can lead to speaker confusion within the speech extraction network. To overcome this challenge, we propose a self-supervised disentangled representation learning method. Our approach tackles this issue through a two-phase process, utilizing a reference speech encoding network and a global information disentanglement network to gradually disentangle the speaker identity information from other irrelevant factors. We exclusively employ the disentangled speaker identity information to guide the speech extraction network. Moreover, we introduce the adaptive modulation Transformer to ensure that the acoustic representation of the mixed signal remains undisturbed by the speaker embeddings. This component incorporates speaker embeddings as conditional information, facilitating natural and efficient guidance for the speech extraction network. Experimental results substantiate the effectiveness of our meticulously crafted approach, showcasing a substantial reduction in the likelihood of speaker confusion.
comment: Accepted by AAAI2024
♻ ☆ Optimization-based Prompt Injection Attack to LLM-as-a-Judge CCS
LLM-as-a-Judge uses a large language model (LLM) to select the best response from a set of candidates for a given question. LLM-as-a-Judge has many applications such as LLM-powered search, reinforcement learning with AI feedback (RLAIF), and tool selection. In this work, we propose JudgeDeceiver, an optimization-based prompt injection attack to LLM-as-a-Judge. JudgeDeceiver injects a carefully crafted sequence into an attacker-controlled candidate response such that LLM-as-a-Judge selects the candidate response for an attacker-chosen question no matter what other candidate responses are. Specifically, we formulate finding such sequence as an optimization problem and propose a gradient based method to approximately solve it. Our extensive evaluation shows that JudgeDeceive is highly effective, and is much more effective than existing prompt injection attacks that manually craft the injected sequences and jailbreak attacks when extended to our problem. We also show the effectiveness of JudgeDeceiver in three case studies, i.e., LLM-powered search, RLAIF, and tool selection. Moreover, we consider defenses including known-answer detection, perplexity detection, and perplexity windowed detection. Our results show these defenses are insufficient, highlighting the urgent need for developing new defense strategies.
comment: To appear in the Proceedings of The ACM Conference on Computer and Communications Security (CCS), 2024
♻ ☆ Fuzzy Convolution Neural Networks for Tabular Data Classification
Recently, convolution neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains, particularly in image and text classification tasks. However, their application to tabular data classification remains underexplored. There are many fields such as bioinformatics, finance, medicine where nonimage data are prevalent. Adaption of CNNs to classify nonimage data remains highly challenging. This paper investigates the efficacy of CNNs for tabular data classification, aiming to bridge the gap between traditional machine learning approaches and deep learning techniques. We propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data to capture local patterns within feature vectors. In our approach, we map feature values to fuzzy memberships. The fuzzy membership vectors are converted into images that are used to train the CNN model. The trained CNN model is used to classify unknown feature vectors. To validate our approach, we generated six complex noisy data sets. We used randomly selected seventy percent samples from each data set for training and thirty percent for testing. The data sets were also classified using the state-of-the-art machine learning algorithms such as the decision tree (DT), support vector machine (SVM), fuzzy neural network (FNN), Bayes classifier, and Random Forest (RF). Experimental results demonstrate that our proposed model can effectively learn meaningful representations from tabular data, achieving competitive or superior performance compared to existing methods. Overall, our finding suggests that the proposed FCNN model holds promise as a viable alternative for tabular data classification tasks, offering a fresh prospective and potentially unlocking new opportunities for leveraging deep learning in structured data analysis.
comment: 10 pages, 16 figures, Submitted to IEEE Access
♻ ☆ Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors
Large language models have become increasingly prominent, also signaling a shift towards multimodality as the next frontier in artificial intelligence, where their embeddings are harnessed as prompts to generate textual content. Vision-language models (VLMs) stand at the forefront of this advancement, offering innovative ways to combine visual and textual data for enhanced understanding and interaction. However, this integration also enlarges the attack surface. Patch-based adversarial attack is considered the most realistic threat model in physical vision applications, as demonstrated in many existing literature. In this paper, we propose to address patched visual prompt injection, where adversaries exploit adversarial patches to generate target content in VLMs. Our investigation reveals that patched adversarial prompts exhibit sensitivity to pixel-wise randomization, a trait that remains robust even against adaptive attacks designed to counteract such defenses. Leveraging this insight, we introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, specifically tailored to protect VLMs from the threat of patched visual prompt injectors. Our framework significantly lowers the attack success rate to a range between 0% and 5.0% on two leading VLMs, while achieving around 67.3% to 95.0% context recovery of the benign images, demonstrating a balance between security and usability.
comment: 15 pages
♻ ☆ Retro: Reusing teacher projection head for efficient embedding distillation on Lightweight Models via Self-supervised Learning BMVC 2024
Self-supervised learning (SSL) is gaining attention for its ability to learn effective representations with large amounts of unlabeled data. Lightweight models can be distilled from larger self-supervised pre-trained models using contrastive and consistency constraints. Still, the different sizes of the projection heads make it challenging for students to mimic the teacher's embedding accurately. We propose \textsc{Retro}, which reuses the teacher's projection head for students, and our experimental results demonstrate significant improvements over the state-of-the-art on all lightweight models. For instance, when training EfficientNet-B0 using ResNet-50/101/152 as teachers, our approach improves the linear result on ImageNet to $66.9\%$, $69.3\%$, and $69.8\%$, respectively, with significantly fewer parameters.
comment: Accepted at BMVC 2024
♻ ☆ The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
♻ ☆ Large Language Models Reflect Human Citation Patterns with a Heightened Citation Bias
Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date. In our experiment, LLMs are tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias, which persists even after controlling for publication year, title length, number of authors, and venue. The results hold for both GPT-4, and the more capable models GPT-4o and Claude 3.5 where the papers are part of the training data. Additionally, we observe a large consistency between the characteristics of LLM's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases, such as the Matthew effect, and introduce new ones, potentially skewing scientific knowledge dissemination.
comment: 30 pages, 13 figures, 4 tables. Added GPT-4o and Claude 3.5 results
♻ ☆ Lyra: Orchestrating Dual Correction in Automated Theorem Proving
Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.
comment: Accepted to TMLR: https://openreview.net/forum?id=9Z0yB8rmQ2
♻ ☆ Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
In practical scenarios, time series forecasting necessitates timeliness, especially when dealing with large datasets. Consequently, the exploration of model architectures remains a perennially trending topic in research. To meet these performance demands, we propose a novel backbone from the perspective of information fusion. Introducing the Basic Probability Assignment (BPA) Module and the Time Evidence Fusion Network (TEFN), based on evidence theory, allows us to achieve superior performance. On the other hand, the perspective of multi-source information fusion effectively improves the accuracy of forecasting. Due to the fact that BPA is generated by fuzzy theory, TEFN also has considerable interpretability. In real data experiments, the TEFN partially achieved state-of-the-art, with low errors comparable to PatchTST, and operating efficiency surpass performance models such as Dlinear. Meanwhile, TEFN has high robustness and small error fluctuations in the random hyperparameter selection. TEFN is not a model that achieves the ultimate in single aspect, but a model that balances performance, accuracy, stability, and interpretability.
♻ ☆ SarcasmBench: Towards Evaluating Large Language Models on Sarcasm Understanding
In the era of large language models (LLMs), the task of ``System I''~-~the fast, unconscious, and intuitive tasks, e.g., sentiment analysis, text classification, etc., have been argued to be successfully solved. However, sarcasm, as a subtle linguistic phenomenon, often employs rhetorical devices like hyperbole and figuration to convey true sentiments and intentions, involving a higher level of abstraction than sentiment analysis. There is growing concern that the argument about LLMs' success may not be fully tenable when considering sarcasm understanding. To address this question, we select eleven SOTA LLMs and eight SOTA pre-trained language models (PLMs) and present comprehensive evaluations on six widely used benchmark datasets through different prompting approaches, i.e., zero-shot input/output (IO) prompting, few-shot IO prompting, chain of thought (CoT) prompting. Our results highlight three key findings: (1) current LLMs underperform supervised PLMs based sarcasm detection baselines across six sarcasm benchmarks. This suggests that significant efforts are still required to improve LLMs' understanding of human sarcasm. (2) GPT-4 consistently and significantly outperforms other LLMs across various prompting methods, with an average improvement of 14.0\%$\uparrow$. Claude 3 and ChatGPT demonstrate the next best performance after GPT-4. (3) Few-shot IO prompting method outperforms the other two methods: zero-shot IO and few-shot CoT. The reason is that sarcasm detection, being a holistic, intuitive, and non-rational cognitive process, is argued not to adhere to step-by-step logical reasoning, making CoT less effective in understanding sarcasm compared to its effectiveness in mathematical reasoning tasks.
♻ ☆ From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models
Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
♻ ☆ IDEA:Enhancing the Rule Learning Ability of Language Agents through Induction, Deduction, and Abduction
While large language models (LLMs) have been thoroughly evaluated for deductive and inductive reasoning, their proficiency in abductive reasoning and holistic rule learning in interactive environments remains less explored. This work introduces RULEARN, a novel benchmark specifically designed to assess the rule-learning ability of LLMs in interactive settings. In RULEARN, agents interact with the environment to gather observations and discern patterns, using these insights to solve problems. To further enhance the rule-learning capabilities of LLM agents within this benchmark, we propose IDEA agent, which integrates Induction, Deduction, and Abduction processes. IDEA agent refines this approach by leveraging a structured reasoning sequence: generating hypotheses through abduction, testing them via deduction, and refining them based on feedback from induction. This sequence enables agents to dynamically establish and apply rules, mimicking human-like reasoning processes. Our evaluation of five representative LLMs indicates that while these models can generate plausible initial hypotheses, they often struggle with strategic interaction within the environment, effective incorporation of feedback, and adaptive refinement of their hypotheses. IDEA agent demonstrates significantly improved performance on the RULEARN benchmark, offering valuable insights for the development of agents capable of human-like rule-learning in real-world scenarios. We will release our code and data.
comment: 9pages, 12 figs, 4 tables
♻ ☆ LBC: Language-Based-Classifier for Out-Of-Variable Generalization
Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/sksmssh/LBCforOOVGen
comment: 16 pages, 7 figures, 4 tables
♻ ☆ Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment
Large Language Models (LLMs) are often aligned using contrastive alignment objectives and preference pair datasets. The interaction between model, paired data, and objective makes alignment a complicated procedure, sometimes producing subpar results. We study this and find that (i) preference data gives a better learning signal when the underlying responses are contrastive, and (ii) alignment objectives lead to better performance when they specify more control over the model during training. Based on these insights, we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation method which leads to more contrastive preference pairs, and Anchored Preference Optimization (APO), a controllable and more stable alignment objective. We align Llama-3-8B-Instruct using various comparable datasets and alignment objectives and measure MixEval-Hard scores, which correlate highly with human judgments. The CLAIR preferences lead to the strongest performance out of all datasets, and APO consistently outperforms less controllable objectives. Our best model, trained on 32K CLAIR preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the gap with GPT4-turbo by 45%. Our code is available at https://github.com/ContextualAI/CLAIR_and_APO.
♻ ☆ Intelligent Model Update Strategy for Sequential Recommendation WWW'24
Modern online platforms are increasingly employing recommendation systems to address information overload and improve user engagement. There is an evolving paradigm in this research field that recommendation network learning occurs both on the cloud and on edges with knowledge transfer in between (i.e., edge-cloud collaboration). Recent works push this field further by enabling edge-specific context-aware adaptivity, where model parameters are updated in real-time based on incoming on-edge data. However, we argue that frequent data exchanges between the cloud and edges often lead to inefficiency and waste of communication/computation resources, as considerable parameter updates might be redundant. To investigate this problem, we introduce Intelligent Edge-Cloud Parameter Request Model, abbreviated as IntellectReq. IntellectReq is designed to operate on edge, evaluating the cost-benefit landscape of parameter requests with minimal computation and communication overhead. We formulate this as a novel learning task, aimed at the detection of out-of-distribution data, thereby fine-tuning adaptive communication strategies. Further, we employ statistical mapping techniques to convert real-time user behavior into a normal distribution, thereby employing multi-sample outputs to quantify the model's uncertainty and thus its generalization capabilities. Rigorous empirical validation on four widely-adopted benchmarks evaluates our approach, evidencing a marked improvement in the efficiency and generalizability of edge-cloud collaborative and dynamic recommendation systems.
comment: Published on WWW'24(Oral): Proceedings of the ACM on Web Conference 2024 (pp. 3117-3128)
♻ ☆ Time-Series Contrastive Learning against False Negatives and Class Imbalance
As an exemplary self-supervised approach for representation learning, time-series contrastive learning has exhibited remarkable advancements in contemporary research. While recent contrastive learning strategies have focused on how to construct appropriate positives and negatives, in this study, we conduct theoretical analysis and find they have overlooked the fundamental issues: false negatives and class imbalance inherent in the InfoNCE loss-based framework. Therefore, we introduce a straightforward modification grounded in the SimCLR framework, universally adaptable to models engaged in the instance discrimination task. By constructing instance graphs to facilitate interactive learning among instances, we emulate supervised contrastive learning via the multiple-instances discrimination task, mitigating the harmful impact of false negatives. Moreover, leveraging the graph structure and few-labeled data, we perform semi-supervised consistency classification and enhance the representative ability of minority classes. We compared our method with the most popular time-series contrastive learning methods on four real-world time-series datasets and demonstrated our significant advantages in overall performance.
♻ ☆ An Information-Theoretic Approach for Detecting Edits in AI-Generated Text
We propose a method to determine whether a given article was written entirely by a generative language model or perhaps contains edits by a different author, possibly a human. Our process involves multiple tests for the origin of individual sentences or other pieces of text and combining these tests using a method that is sensitive to rare alternatives, i.e., non-null effects are few and scattered across the text in unknown locations. Interestingly, this method also identifies pieces of text suspected to contain edits. We demonstrate the effectiveness of the method in detecting edits through extensive evaluations using real data and provide an information-theoretic analysis of the factors affecting its success. In particular, we discuss optimality properties under a theoretical framework for text editing saying that sentences are generated mainly by the language model, except perhaps for a few sentences that might have originated via a different mechanism. Our analysis raises several interesting research questions at the intersection of information theory and data science.
comment: Accepted for publication in Harvard Data Science Review: https://hdsr.mitpress.mit.edu/pub/f90vid3h/release/1?readingCollection=5531bd2e
Graphics 1
☆ Real-Time Rendering of Glints in the Presence of Area Lights
Many real-world materials are characterized by a glittery appearance. Reproducing this effect in physically based renderings is a challenging problem due to its discrete nature, especially in real-time applications which require a consistently low runtime. Recent work focuses on glittery appearance illuminated by infinitesimally small light sources only. For light sources like the sun this approximation is a reasonable choice. In the real world however, all light sources are fundamentally area light sources. In this paper, we derive an efficient method for rendering glints illuminated by spatially constant diffuse area lights in real time. To this end, we require an adequate estimate for the probability of a single microfacet to be correctly oriented for reflection from the source to the observer. A good estimate is achieved either using linearly transformed cosines (LTC) for large light sources, or a locally constant approximation of the normal distribution for small spherical caps of light directions. To compute the resulting number of reflecting microfacets, we employ a counting model based on the binomial distribution. In the evaluation, we demonstrate the visual accuracy of our approach, which is easily integrated into existing real-time rendering frameworks, especially if they already implement shading for area lights using LTCs and a counting model for glint shading under point and directional illumination. Besides the overhead of the preexisting constituents, our method adds little to no additional overhead.
Robotics 26
☆ Multi-finger Manipulation via Trajectory Optimization with Differentiable Rolling and Geometric Constraints
Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. Our method is tested in a peg alignment task and a screwdriver turning task, where it outperforms the baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task, demonstrating its robustness to the sim2real gap.
☆ Do Mistakes Matter? Comparing Trust Responses of Different Age Groups to Errors Made by Physically Assistive Robots
Trust is a key factor in ensuring acceptable human-robot interaction, especially in settings where robots may be assisting with critical activities of daily living. When practically deployed, robots are bound to make occasional mistakes, yet the degree to which these errors will impact a care recipient's trust in the robot, especially in performing physically assistive tasks, remains an open question. To investigate this, we conducted experiments where participants interacted with physically assistive robots which would occasionally make intentional mistakes while performing two different tasks: bathing and feeding. Our study considered the error response of two populations: younger adults at a university (median age 26) and older adults at an independent living facility (median age 83). We observed that the impact of errors on a users' trust in the robot depends on both their age and the task that the robot is performing. We also found that older adults tend to evaluate the robot on factors unrelated to the robot's performance, making their trust in the system more resilient to errors when compared to younger adults. Code and supplementary materials are available on our project webpage.
comment: 8 pages, 5 figures, in proceedings for IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 2024
☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its wide applications in robotics and self-driving. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together but only a single view of depth measurements is provided. The vast majority of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns and typically two, running with the risk of failing to generalize to unseen domains. The shape representations used in the prior work also mainly focus on point cloud and signed distance field (SDF). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from any pose-annotated data. In addition, we adopt a novel mesh-based object active shape model that has not been explored by the previous literature. Our algorithm, named ShapeICP, has its foundation in the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. The results show that even without using any pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on the pose data for training, opening up new solution space for researchers to consider.
☆ Complete Autonomous Robotic Nasopharyngeal Swab System with Evaluation on a Stochastically Moving Phantom Head
The application of autonomous robotics to close-contact healthcare tasks has a clear role for the future due to its potential to reduce infection risks to staff and improve clinical efficiency. Nasopharyngeal (NP) swab sample collection for diagnosing upper-respiratory illnesses is one type of close contact task that is interesting for robotics due to the dexterity requirements and the unobservability of the nasal cavity. We propose a control system that performs the test using a collaborative manipulator arm with an instrumented end-effector to take visual and force measurements, under the scenario that the patient is unrestrained and the tools are general enough to be applied to other close contact tasks. The system employs a visual servo controller to align the swab with the nostrils. A compliant joint velocity controller inserts the swab along a trajectory optimized through a simulation environment, that also reacts to measured forces applied to the swab. Additional subsystems include a fuzzy logic system for detecting when the swab reaches the nasopharynx and a method for detaching the swab and aborting the procedure if safety criteria is violated. The system is evaluated using a second robotic arm that holds a nasal cavity phantom and simulates the natural head motions that could occur during the procedure. Through extensive experiments, we identify controller configurations capable of effectively performing the NP swab test even with significant head motion, which demonstrates the safety and reliability of the system.
comment: 18 pages, 26 figures. Supplementary files may be found at https://uwaterloo.ca/scholar/pqjlee/supplementary-files-complete-autonomous-robotic-nasopharyngeal-swab-system-evaluation
☆ cc-DRL: a Convex Combined Deep Reinforcement Learning Flight Control Design for a Morphing Quadrotor
In comparison to common quadrotors, the shape change of morphing quadrotors endows it with a more better flight performance but also results in more complex flight dynamics. Generally, it is extremely difficult or even impossible for morphing quadrotors to establish an accurate mathematical model describing their complex flight dynamics. To figure out the issue of flight control design for morphing quadrotors, this paper resorts to a combination of model-free control techniques (e.g., deep reinforcement learning, DRL) and convex combination (CC) technique, and proposes a convex-combined-DRL (cc-DRL) flight control algorithm for position and attitude of a class of morphing quadrotors, where the shape change is realized by the length variation of four arm rods. In the proposed cc-DRL flight control algorithm, proximal policy optimization algorithm that is a model-free DRL algorithm is utilized to off-line train the corresponding optimal flight control laws for some selected representative arm length modes and hereby a cc-DRL flight control scheme is constructed by the convex combination technique. Finally, simulation results are presented to show the effectiveness and merit of the proposed flight control algorithm.
☆ Identification and validation of the dynamic model of a tendon-driven anthropomorphic finger
This study addresses the absence of an identification framework to quantify a comprehensive dynamic model of human and anthropomorphic tendon-driven fingers, which is necessary to investigate the physiological properties of human fingers and improve the control of robotic hands. First, a generalized dynamic model was formulated, which takes into account the inherent properties of such a mechanical system. This includes rigid-body dynamics, coupling matrix, joint viscoelasticity, and tendon friction. Then, we propose a methodology comprising a series of experiments, for step-wise identification and validation of this dynamic model. Moreover, an experimental setup was designed and constructed that features actuation modules and peripheral sensors to facilitate the identification process. To verify the proposed methodology, a 3D-printed robotic finger based on the index finger design of the Dexmart hand was developed, and the proposed experiments were executed to identify and validate its dynamic model. This study could be extended to explore the identification of cadaver hands, aiming for a consistent dataset from a single cadaver specimen to improve the development of musculoskeletal hand models.
comment: 8 pages, 9 figures
☆ Robust Iterative Value Conversion: Deep Reinforcement Learning for Neurochip-driven Edge Robots
A neurochip is a device that reproduces the signal processing mechanisms of brain neurons and calculates Spiking Neural Networks (SNNs) with low power consumption and at high speed. Thus, neurochips are attracting attention from edge robot applications, which suffer from limited battery capacity. This paper aims to achieve deep reinforcement learning (DRL) that acquires SNN policies suitable for neurochip implementation. Since DRL requires a complex function approximation, we focus on conversion techniques from Floating Point NN (FPNN) because it is one of the most feasible SNN techniques. However, DRL requires conversions to SNNs for every policy update to collect the learning samples for a DRL-learning cycle, which updates the FPNN policy and collects the SNN policy samples. Accumulative conversion errors can significantly degrade the performance of the SNN policies. We propose Robust Iterative Value Conversion (RIVC) as a DRL that incorporates conversion error reduction and robustness to conversion errors. To reduce them, FPNN is optimized with the same number of quantization bits as an SNN. The FPNN output is not significantly changed by quantization. To robustify the conversion error, an FPNN policy that is applied with quantization is updated to increase the gap between the probability of selecting the optimal action and other actions. This step prevents unexpected replacements of the policy's optimal actions. We verified RIVC's effectiveness on a neurochip-driven robot. The results showed that RIVC consumed 1/15 times less power and increased the calculation speed by five times more than an edge CPU (quad-core ARM Cortex-A72). The previous framework with no countermeasures against conversion errors failed to train the policies. Videos from our experiments are available: https://youtu.be/Q5Z0-BvK1Tc.
comment: Accepted by Robotics and Autonomous Systems
☆ Informational Embodiment: Computational role of information structure in codes and robots
The body morphology plays an important role in the way information is perceived and processed by an agent. We address an information theory (IT) account on how the precision of sensors, the accuracy of motors, their placement, the body geometry, shape the information structure in robots and computational codes. As an original idea, we envision the robot's body as a physical communication channel through which information is conveyed, in and out, despite intrinsic noise and material limitations. Following this, entropy, a measure of information and uncertainty, can be used to maximize the efficiency of robot design and of algorithmic codes per se. This is known as the principle of Entropy Maximization (PEM) introduced in biology by Barlow in 1969. The Shannon's source coding theorem provides then a framework to compare different types of bodies in terms of sensorimotor information. In line with PME, we introduce a special class of efficient codes used in IT that reached the Shannon limits in terms of information capacity for error correction and robustness against noise, and parsimony. These efficient codes, which exploit insightfully quantization and randomness, permit to deal with uncertainty, redundancy and compacity. These features can be used for perception and control in intelligent systems. In various examples and closing discussions, we reflect on the broader implications of our framework that we called Informational Embodiment to motor theory and bio-inspired robotics, touching upon concepts like motor synergies, reservoir computing, and morphological computation. These insights can contribute to a deeper understanding of how information theory intersects with the embodiment of intelligence in both natural and artificial systems.
☆ SIMPNet: Spatial-Informed Motion Planning Network
Current robotic manipulators require fast and efficient motion-planning algorithms to operate in cluttered environments. State-of-the-art sampling-based motion planners struggle to scale to high-dimensional configuration spaces and are inefficient in complex environments. This inefficiency arises because these planners utilize either uniform or hand-crafted sampling heuristics within the configuration space. To address these challenges, we present the Spatial-informed Motion Planning Network (SIMPNet). SIMPNet consists of a stochastic graph neural network (GNN)-based sampling heuristic for informed sampling within the configuration space. The sampling heuristic of SIMPNet encodes the workspace embedding into the configuration space through a cross-attention mechanism. It encodes the manipulator's kinematic structure into a graph, which is used to generate informed samples within the framework of sampling-based motion planning algorithms. We have evaluated the performance of SIMPNet using a UR5e robotic manipulator operating within simple and complex workspaces, comparing it against baseline state-of-the-art motion planners. The evaluation results show the effectiveness and advantages of the proposed planner compared to the baseline planners.
☆ Towards Human-Robot Teaming through Augmented Reality and Gaze-Based Attention Control
Robots are now increasingly integrated into various real world applications and domains. In these new domains, robots are mostly employed to improve, in some ways, the work done by humans. So, the need for effective Human-Robot Teaming (HRT) capabilities grows. These capabilities usually involve the dynamic collaboration between humans and robots at different levels of involvement, leveraging the strengths of both to efficiently navigate complex situations. Crucial to this collaboration is the ability of robotic systems to adjust their level of autonomy to match the needs of the task and the human team members. This paper introduces a system designed to control attention using HRT through the use of ground robots and augmented reality (AR) technology. Traditional methods of controlling attention, such as pointing, touch, and voice commands, sometimes fall short in precision and subtlety. Our system overcomes these limitations by employing AR headsets to display virtual visual markers. These markers act as dynamic cues to attract and shift human attention seamlessly, irrespective of the robot's physical location.
comment: Accepted to the Variable Autonomy for Human-Robot Teaming Workshop, IEEE ROMAN 2024
☆ Courteous MPC for Autonomous Driving with CBF-inspired Risk Assessment SC 2024
With more autonomous vehicles (AVs) sharing roadways with human-driven vehicles (HVs), ensuring safe and courteous maneuvers that respect HVs' behavior becomes increasingly important. To promote both safety and courtesy in AV's behavior, an extension of Control Barrier Functions (CBFs)-inspired risk evaluation framework is proposed in this paper by considering both noisy observed positions and velocities of surrounding vehicles. The perceived risk by the ego vehicle can be visualized as a risk map that reflects the understanding of the surrounding environment and thus shows the potential for facilitating safe and courteous driving. By incorporating the risk evaluation framework into the Model Predictive Control (MPC) scheme, we propose a Courteous MPC for ego AV to generate courteous behaviors that 1) reduce the overall risk imposed on other vehicles and 2) respect the hard safety constraints and the original objective for efficiency. We demonstrate the performance of the proposed Courteous MPC via theoretical analysis and simulation experiments.
comment: 7 pages, accepted to ITSC 2024
☆ Environment-Centric Active Inference
To handle unintended changes in the environment by agents, we propose an environment-centric active inference EC-AIF in which the Markov Blanket of active inference is defined starting from the environment. In normal active inference, the Markov Blanket is defined starting from the agent. That is, first the agent was defined as the entity that performs the "action" such as a robot or a person, then the environment was defined as other people or objects that are directly affected by the agent's "action," and the boundary between the agent and the environment was defined as the Markov Blanket. This agent-centric definition does not allow the agent to respond to unintended changes in the environment caused by factors outside of the defined environment. In the proposed EC-AIF, there is no entity corresponding to an agent. The environment includes all observable things, including people and things conventionally considered to be the environment, as well as entities that perform "actions" such as robots and people. Accordingly, all states, including robots and people, are included in inference targets, eliminating unintended changes in the environment. The EC-AIF was applied to a robot arm and validated with an object transport task by the robot arm. The results showed that the robot arm successfully transported objects while responding to changes in the target position of the object and to changes in the orientation of another robot arm.
comment: 14 pages, 9 figures
☆ Towards Robust Perception for Assistive Robotics: An RGB-Event-LiDAR Dataset and Multi-Modal Detection Pipeline
The increasing adoption of human-robot interaction presents opportunities for technology to positively impact lives, particularly those with visual impairments, through applications such as guide-dog-like assistive robotics. We present a pipeline exploring the perception and "intelligent disobedience" required by such a system. A dataset of two people moving in and out of view has been prepared to compare RGB-based and event-based multi-modal dynamic object detection using LiDAR data for 3D position localisation. Our analysis highlights challenges in accurate 3D localisation using 2D image-LiDAR fusion, indicating the need for further refinement. Compared to the performance of the frame-based detection algorithm utilised (YOLOv4), current cutting-edge event-based detection models appear limited to contextual scenarios, such as for automotive platforms. This is highlighted by weak precision and recall over varying confidence and Intersection over Union (IoU) thresholds when using frame-based detections as a ground truth. Therefore, we have publicly released this dataset to the community, containing RGB, event, point cloud and Inertial Measurement Unit (IMU) data along with ground truth poses for the two people in the scene to fill a gap in the current landscape of publicly available datasets and provide a means to assist in the development of safer and more robust algorithms in the future: https://uts-ri.github.io/revel/.
comment: Accepted to the 2024 IEEE International Conference on Automation Science and Engineering (CASE)
☆ Safe Bubble Cover for Motion Planning on Distance Fields
We consider the problem of planning collision-free trajectories on distance fields. Our key observation is that querying a distance field at one configuration reveals a region of safe space whose radius is given by the distance value, obviating the need for additional collision checking within the safe region. We refer to such regions as safe bubbles, and show that safe bubbles can be obtained from any Lipschitz-continuous safety constraint. Inspired by sampling-based planning algorithms, we present three algorithms for constructing a safe bubble cover of free space, named bubble roadmap (BRM), rapidly exploring bubble graph (RBG), and expansive bubble graph (EBG). The bubble sampling algorithms are combined with a hierarchical planning method that first computes a discrete path of bubbles, followed by a continuous path within the bubbles computed via convex optimization. Experimental results show that the bubble-based methods yield up to 5- 10 times cost reduction relative to conventional baselines while simultaneously reducing computational efforts by orders of magnitude.
comment: 16 pages, 11 figures. Submitted to International Symposium on Robotics Research 2024
☆ Beyond Winning Strategies: Admissible and Admissible Winning Strategies for Quantitative Reachability Games
Classical reactive synthesis approaches aim to synthesize a reactive system that always satisfies a given specifications. These approaches often reduce to playing a two-player zero-sum game where the goal is to synthesize a winning strategy. However, in many pragmatic domains, such as robotics, a winning strategy does not always exist, yet it is desirable for the system to make an effort to satisfy its requirements instead of "giving up". To this end, this paper investigates the notion of admissible strategies, which formalize "doing-your-best", in quantitative reachability games. We show that, unlike the qualitative case, quantitative admissible strategies are history-dependent even for finite payoff functions, making synthesis a challenging task. In addition, we prove that admissible strategies always exist but may produce undesirable optimistic behaviors. To mitigate this, we propose admissible winning strategies, which enforce the best possible outcome while being admissible. We show that both strategies always exist but are not memoryless. We provide necessary and sufficient conditions for the existence of both strategies and propose synthesis algorithms. Finally, we illustrate the strategies on gridworld and robot manipulator domains.
comment: TL;DR: This paper relaxes the notion of winning strategies by introducing Admissible and Admissible Winning strategies for quantitative reachability games, providing existence proofs and synthesis algorithms with applications in robotics
♻ ☆ Tactile-Morph Skills: Energy-Based Control Meets Data-Driven Learning
Robotic manipulation is essential for modernizing factories and automating industrial tasks like polishing, which require advanced tactile abilities. These robots must be easily set up, safely work with humans, learn tasks autonomously, and transfer skills to similar tasks. Addressing these needs, we introduce the tactile-morph skill framework, which integrates unified force-impedance control with data-driven learning. Our system adjusts robot movements and force application based on estimated energy levels for the desired trajectory and force profile, ensuring safety by stopping if energy allocated for the control runs out. Using a Temporal Convolutional Network, we estimate the energy distribution for a given motion and force profile, enabling skill transfer across different tasks and surfaces. Our approach maintains stability and performance even on unfamiliar geometries with similar friction characteristics, demonstrating improved accuracy, zero-shot transferable performance, and enhanced safety in real-world scenarios. This framework promises to enhance robotic capabilities in industrial settings, making intelligent robots more accessible and valuable.
comment: 15 pages, 7 figures,updated footnote
♻ ☆ iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).
comment: 8 pages, 3 figures, 3 tables
♻ ☆ AirPilot: A PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
comment: 14 pages, 17 figures
♻ ☆ Multimodal Reinforcement Learning for Robots Collaborating with Humans
Robot assistants for older adults and people with disabilities need to interact with their users in collaborative tasks. The core component of these systems is an interaction manager whose job is to observe and assess the task, and infer the state of the human and their intent to choose the best course of action for the robot. Due to the sparseness of the data in this domain, the policy for such multi-modal systems is often crafted by hand; as the complexity of interactions grows this process is not scalable. In this paper, we propose a reinforcement learning (RL) approach to learn the robot policy. In contrast to the dialog systems, our agent is trained with a simulator developed by using human data and can deal with multiple modalities such as language and physical actions. We conducted a human study to evaluate the performance of the system in the interaction with a user. Our designed system shows promising preliminary results when it is used by a real user.
♻ ☆ Solving Robotics Problems in Zero-Shot with Vision-Language Models
We introduce Wonderful Team, a multi-agent visual LLM (VLLM) framework for solving robotics problems in the zero-shot regime. By zero-shot we mean that, for a novel environment, we feed a VLLM an image of the robot's environment and a description of the task, and have the VLLM output the sequence of actions necessary for the robot to complete the task. Prior work on VLLMs in robotics has largely focused on settings where some part of the pipeline is fine-tuned, such as tuning an LLM on robot data or training a separate vision encoder for perception and action generation. Surprisingly, due to recent advances in the capabilities of VLLMs, this type of fine-tuning may no longer be necessary for many tasks. In this work, we show that with careful engineering, we can prompt a single off-the-shelf VLLM to handle all aspects of a robotics task, from high-level planning to low-level location-extraction and action-execution. Wonderful Team builds on recent advances in multi-agent LLMs to partition tasks across an agent hierarchy, making it self-corrective and able to effectively partition and solve even long-horizon tasks. Extensive experiments on VIMABench and real-world robotic environments demonstrate the system's capability to handle a variety of robotic tasks, including manipulation, visual goal-reaching, and visual reasoning, all in a zero-shot manner. These results underscore a key point: vision-language models have progressed rapidly in the past year, and should strongly be considered as a backbone for robotics problems going forward.
comment: aka Wonderful Team
♻ ☆ Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks IROS 2024
In multi-agent reinforcement learning (MARL), the Centralized Training with Decentralized Execution (CTDE) framework is pivotal but struggles due to a gap: global state guidance in training versus reliance on local observations in execution, lacking global signals. Inspired by human societal consensus mechanisms, we introduce the Hierarchical Consensus-based Multi-Agent Reinforcement Learning (HC-MARL) framework to address this limitation. HC-MARL employs contrastive learning to foster a global consensus among agents, enabling cooperative behavior without direct communication. This approach enables agents to form a global consensus from local observations, using it as an additional piece of information to guide collaborative actions during execution. To cater to the dynamic requirements of various tasks, consensus is divided into multiple layers, encompassing both short-term and long-term considerations. Short-term observations prompt the creation of an immediate, low-layer consensus, while long-term observations contribute to the formation of a strategic, high-layer consensus. This process is further refined through an adaptive attention mechanism that dynamically adjusts the influence of each consensus layer. This mechanism optimizes the balance between immediate reactions and strategic planning, tailoring it to the specific demands of the task at hand. Extensive experiments and real-world applications in multi-robot systems showcase our framework's superior performance, marking significant advancements over baselines.
comment: 8 pages, 10 figures. Accepted for presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments
Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.
comment: Project Page: https://air-discover.github.io/PreAfford/
♻ ☆ Servo Integrated Nonlinear Model Predictive Control for Overactuated Tiltable-Quadrotors
Utilizing a servo to tilt each rotor transforms quadrotors from underactuated to overactuated systems, allowing for independent control of both attitude and position, which provides advantages for aerial manipulation. However, this enhancement also introduces model nonlinearity, sluggish servo response, and limited operational range into the system, posing challenges to dynamic control. In this study, we propose a control approach for tiltable-quadrotors based on nonlinear model predictive control (NMPC). Unlike conventional cascade methods, our approach preserves the full dynamics without simplification. It directly uses rotor thrust and servo angle as control inputs, where their limited working ranges are considered input constraints. Notably, we incorporate a first-order servo model within the NMPC framework. Simulation reveals that integrating the servo dynamics is not only an enhancement to control performance but also a critical factor for optimization convergence. To evaluate the effectiveness of our approach, we fabricate a tiltable-quadrotor and deploy the algorithm onboard at 100 Hz. Extensive real-world experiments demonstrate rapid, robust, and smooth pose-tracking performance.
comment: 8 pages, 10 figures. This article has been accepted by RA-L
Field Testing of a Stochastic Planner for ASV Navigation Using Satellite Images
We introduce a multi-sensor navigation system for autonomous surface vessels (ASV) intended for water-quality monitoring in freshwater lakes. Our mission planner uses satellite imagery as a prior map, formulating offline a mission-level policy for global navigation of the ASV and enabling autonomous online execution via local perception and local planning modules. A significant challenge is posed by the inconsistencies in traversability estimation between satellite images and real lakes, due to environmental effects such as wind, aquatic vegetation, shallow waters, and fluctuating water levels. Hence, we specifically modelled these traversability uncertainties as stochastic edges in a graph and optimized for a mission-level policy that minimizes the expected total travel distance. To execute the policy, we propose a modern local planner architecture that processes sensor inputs and plans paths to execute the high-level policy under uncertain traversability conditions. Our system was tested on three km-scale missions on a Northern Ontario lake, demonstrating that our GPS-, vision-, and sonar-enabled ASV system can effectively execute the mission-level policy and disambiguate the traversability of stochastic edges. Finally, we provide insights gained from practical field experience and offer several future directions to enhance the overall reliability of ASV navigation systems.
comment: To appear in IEEE Transactions on Field Robotics (T-FR). 40 pages, 21 figures. Video available at https://youtu.be/KVSTmWFLqjk?si=Gvt1uOgLH-6OUrfD. Journal extension of arXiv:2209.11864
♻ ☆ "Golden Ratio Yoshimura" for Meta-Stable and Massively Reconfigurable Deployment
Yoshimura origami is a classical folding pattern that has inspired many deployable structure designs. Its applications span from space exploration, kinetic architectures, and soft robots to even everyday household items. However, despite its wide usage, Yoshimura has been fixated on a set of design constraints to ensure its flat-foldability. Through extensive kinematic analysis and prototype tests, this study presents a new Yoshimura that intentionally defies these constraints. Remarkably, one can impart a unique meta-stability by using the Golden Ratio angle to define the triangular facets of a generalized Yoshimura. As a result, when its facets are strategically popped out, a ``Golden Ratio Yoshimura'' boom with $m$ modules can be theoretically reconfigured into $8^m$ geometrically unique and load-bearing shapes. This result not only challenges the existing design norms but also opens up a new avenue to create deployable and versatile structural systems.
♻ ☆ Sensing environmental interaction physics to traverse cluttered obstacles
When legged robots physically interact with obstacles in applications such as search and rescue through rubble and planetary exploration across Martain rocks, even the most advanced ones struggle because they lack a fundamental framework to model the robot-obstacle physical interaction paralleling artificial potential fields for obstacle avoidance. To remedy this, recent studies established a novel framework - potential energy landscape modeling - that explains and predicts the destabilizing transitions across locomotor modes from the physical interaction between robots and obstacles, and governs a wide range of complex locomotion. However, this framework was confined to the laboratory because we lack methods to obtain the potential energy landscape in unknown environments. Here, we explore the feasibility of introducing this framework to such environments. We showed that a robot can reconstruct the potential energy landscape for unknown obstacles by measuring the obstacle contact forces and resulting torques. To elaborate, we developed a minimalistic robot capable of sensing contact forces and torques when propelled against a pair of grass-like obstacles. Despite the forces and torques not being fully conservative, they well-matched the potential energy landscape gradients, and the reconstructed landscape well-matched ground truth. In addition, we found that using normal forces and torques and head oscillation inspired by cockroach observations further improved the estimation of conservative ones. Our study will finally inspire free-running robots to achieve low-effort, "zero-shot" traversing clustered, large obstacles in real-world applications by sampling contact forces and torques and reconstructing the landscape around its neighboring states in real time.
Computer Vision 111
☆ MME-RealWorld: Could Your Multimodal LLM Challenge High-Resolution Real-World Scenarios that are Difficult for Humans?
Comprehensive evaluation of Multimodal Large Language Models (MLLMs) has recently garnered widespread attention in the research community. However, we observe that existing benchmarks present several common barriers that make it difficult to measure the significant challenges that models face in the real world, including: 1) small data scale leads to a large performance variance; 2) reliance on model-based annotations results in restricted data quality; 3) insufficient task difficulty, especially caused by the limited image resolution. To tackle these issues, we introduce MME-RealWorld. Specifically, we collect more than $300$K images from public datasets and the Internet, filtering $13,366$ high-quality images for annotation. This involves the efforts of professional $25$ annotators and $7$ experts in MLLMs, contributing to $29,429$ question-answer pairs that cover $43$ subtasks across $5$ real-world scenarios, extremely challenging even for humans. As far as we know, MME-RealWorld is the largest manually annotated benchmark to date, featuring the highest resolution and a targeted focus on real-world applications. We further conduct a thorough evaluation involving $28$ prominent MLLMs, such as GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet. Our results show that even the most advanced models struggle with our benchmarks, where none of them reach $60\%$ accuracy. The challenges of perceiving high-resolution images and understanding complex real-world scenarios remain urgent issues to be addressed. The data and evaluation code are released at https://mme-realworld.github.io/ .
comment: Project Page: $\href{https://mme-realworld.github.io/}{\text{https://mme-realworld.github.io/}}$
How Diffusion Models Learn to Factorize and Compose
Diffusion models are capable of generating photo-realistic images that combine elements which likely do not appear together in the training set, demonstrating the ability to compositionally generalize. Nonetheless, the precise mechanism of compositionality and how it is acquired through training remains elusive. Inspired by cognitive neuroscientific approaches, we consider a highly reduced setting to examine whether and when diffusion models learn semantically meaningful and factorized representations of composable features. We performed extensive controlled experiments on conditional Denoising Diffusion Probabilistic Models (DDPMs) trained to generate various forms of 2D Gaussian data. We found that the models learn factorized but not fully continuous manifold representations for encoding continuous features of variation underlying the data. With such representations, models demonstrate superior feature compositionality but limited ability to interpolate over unseen values of a given feature. Our experimental results further demonstrate that diffusion models can attain compositionality with few compositional examples, suggesting a more efficient way to train DDPMs. Finally, we connect manifold formation in diffusion models to percolation theory in physics, offering insight into the sudden onset of factorized representation learning. Our thorough toy experiments thus contribute a deeper understanding of how diffusion models capture compositional structure in data.
comment: 11 pages, 6 figures, plus appendix, some content overlap with arXiv:2402.03305
☆ Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder
Early detection of autism, a neurodevelopmental disorder marked by social communication challenges, is crucial for timely intervention. Recent advancements have utilized naturalistic home videos captured via the mobile application GuessWhat. Through interactive games played between children and their guardians, GuessWhat has amassed over 3,000 structured videos from 382 children, both diagnosed with and without Autism Spectrum Disorder (ASD). This collection provides a robust dataset for training computer vision models to detect ASD-related phenotypic markers, including variations in emotional expression, eye contact, and head movements. We have developed a protocol to curate high-quality videos from this dataset, forming a comprehensive training set. Utilizing this set, we trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%, respectively. To boost diagnostic accuracy, we applied late fusion techniques to create ensemble models, improving the overall AUC to 90%. This approach also yielded more equitable results across different genders and age groups. Our methodology offers a significant step forward in the early detection of ASD by potentially reducing the reliance on subjective assessments and making early identification more accessibly and equitable.
☆ LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation
3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce LayerPano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. LayerPano3D comprises multiple dedicated designs: 1) we introduce a novel text-guided anchor view synthesis pipeline for high-quality, consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that LayerPano3D holds promise for advancing 3D panoramic scene creation with numerous applications.
comment: Project page: https://ys-imtech.github.io/projects/LayerPano3D/
☆ Re-evaluation of Face Anti-spoofing Algorithm in Post COVID-19 Era Using Mask Based Occlusion Attack
Face anti-spoofing algorithms play a pivotal role in the robust deployment of face recognition systems against presentation attacks. Conventionally, full facial images are required by such systems to correctly authenticate individuals, but the widespread requirement of masks due to the current COVID-19 pandemic has introduced new challenges for these biometric authentication systems. Hence, in this work, we investigate the performance of presentation attack detection (PAD) algorithms under synthetic facial occlusions using masks and glasses. We have used five variants of masks to cover the lower part of the face with varying coverage areas (low-coverage, medium-coverage, high-coverage, round coverage), and 3D cues. We have also used different variants of glasses that cover the upper part of the face. We systematically tested the performance of four PAD algorithms under these occlusion attacks using a benchmark dataset. We have specifically looked at four different baseline PAD algorithms that focus on, texture, image quality, frame difference/motion, and abstract features through a convolutional neural network (CNN). Additionally we have introduced a new hybrid model that uses CNN and local binary pattern textures. Our experiment shows that adding the occlusions significantly degrades the performance of all of the PAD algorithms. Our results show the vulnerability of face anti-spoofing algorithms with occlusions, which could be in the usage of such algorithms in the post-pandemic era.
comment: 10 pages, This work was done in 2020
☆ Foundational Model for Electron Micrograph Analysis: Instruction-Tuning Small-Scale Language-and-Vision Assistant for Enterprise Adoption ICML 2024
Semiconductor imaging and analysis are critical yet understudied in deep learning, limiting our ability for precise control and optimization in semiconductor manufacturing. We introduce a small-scale multimodal framework for analyzing semiconductor electron microscopy images (MAEMI) through vision-language instruction tuning. We generate a customized instruction-following dataset using large multimodal models on microscopic image analysis. We perform knowledge transfer from larger to smaller models through knowledge distillation, resulting in improved accuracy of smaller models on visual question answering (VQA) tasks. This approach eliminates the need for expensive, human expert-annotated datasets for microscopic image analysis tasks. Enterprises can further finetune MAEMI on their intellectual data, enhancing privacy and performance on low-cost consumer hardware. Our experiments show that MAEMI outperforms traditional methods, adapts to data distribution shifts, and supports high-throughput screening.
comment: Our paper is published at ICML 2024 Workshop ML for Life and Material Science: From Theory to Industry Applications, Vienna, Austria
☆ MCTR: Multi Camera Tracking Transformer
Multi-camera tracking plays a pivotal role in various real-world applications. While end-to-end methods have gained significant interest in single-camera tracking, multi-camera tracking remains predominantly reliant on heuristic techniques. In response to this gap, this paper introduces Multi-Camera Tracking tRansformer (MCTR), a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras with overlapping fields of view. MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view. The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating the local information from the view-specific detection embeddings. The track embeddings are probabilistically associated with detections in every camera view and frame to generate consistent object tracks. The soft probabilistic association facilitates the design of differentiable losses that enable end-to-end training of the entire system. To validate our approach, we conduct experiments on MMPTrack and AI City Challenge, two recently introduced large-scale multi-camera multi-object tracking datasets.
☆ CustomCrafter: Customized Video Generation with Preserving Motion and Concept Composition Abilities
Customized video generation aims to generate high-quality videos guided by text prompts and subject's reference images. However, since it is only trained on static images, the fine-tuning process of subject learning disrupts abilities of video diffusion models (VDMs) to combine concepts and generate motions. To restore these abilities, some methods use additional video similar to the prompt to fine-tune or guide the model. This requires frequent changes of guiding videos and even re-tuning of the model when generating different motions, which is very inconvenient for users. In this paper, we propose CustomCrafter, a novel framework that preserves the model's motion generation and conceptual combination abilities without additional video and fine-tuning to recovery. For preserving conceptual combination ability, we design a plug-and-play module to update few parameters in VDMs, enhancing the model's ability to capture the appearance details and the ability of concept combinations for new subjects. For motion generation, we observed that VDMs tend to restore the motion of video in the early stage of denoising, while focusing on the recovery of subject details in the later stage. Therefore, we propose Dynamic Weighted Video Sampling Strategy. Using the pluggability of our subject learning modules, we reduce the impact of this module on motion generation in the early stage of denoising, preserving the ability to generate motion of VDMs. In the later stage of denoising, we restore this module to repair the appearance details of the specified subject, thereby ensuring the fidelity of the subject's appearance. Experimental results show that our method has a significant improvement compared to previous methods.
comment: project page: https://customcrafter.github.io/
☆ D&M: Enriching E-commerce Videos with Sound Effects by Key Moment Detection and SFX Matching
Videos showcasing specific products are increasingly important for E-commerce. Key moments naturally exist as the first appearance of a specific product, presentation of its distinctive features, the presence of a buying link, etc. Adding proper sound effects (SFX) to these key moments, or video decoration with SFX (VDSFX), is crucial for enhancing the user engaging experience. Previous studies about adding SFX to videos perform video to SFX matching at a holistic level, lacking the ability of adding SFX to a specific moment. Meanwhile, previous studies on video highlight detection or video moment retrieval consider only moment localization, leaving moment to SFX matching untouched. By contrast, we propose in this paper D&M, a unified method that accomplishes key moment detection and moment to SFX matching simultaneously. Moreover, for the new VDSFX task we build a large-scale dataset SFX-Moment from an E-commerce platform. For a fair comparison, we build competitive baselines by extending a number of current video moment detection methods to the new task. Extensive experiments on SFX-Moment show the superior performance of the proposed method over the baselines. Code and data will be released.
comment: 9 pages, 4 figures
☆ Deep Learning for Lung Disease Classification Using Transfer Learning and a Customized CNN Architecture with Attention
Many people die from lung-related diseases every year. X-ray is an effective way to test if one is diagnosed with a lung-related disease or not. This study concentrates on categorizing three distinct types of lung X-rays: those depicting healthy lungs, those showing lung opacities, and those indicative of viral pneumonia. Accurately diagnosing the disease at an early phase is critical. In this paper, five different pre-trained models will be tested on the Lung X-ray Image Dataset. SqueezeNet, VGG11, ResNet18, DenseNet, and MobileNetV2 achieved accuracies of 0.64, 0.85, 0.87, 0.88, and 0.885, respectively. MobileNetV2, as the best-performing pre-trained model, will then be further analyzed as the base model. Eventually, our own model, MobileNet-Lung based on MobileNetV2, with fine-tuning and an additional layer of attention within feature layers, was invented to tackle the lung disease classification task and achieved an accuracy of 0.933. This result is significantly improved compared with all five pre-trained models.
☆ Identifying Crucial Objects in Blind and Low-Vision Individuals' Navigation
This paper presents a curated list of 90 objects essential for the navigation of blind and low-vision (BLV) individuals, encompassing road, sidewalk, and indoor environments. We develop the initial list by analyzing 21 publicly available videos featuring BLV individuals navigating various settings. Then, we refine the list through feedback from a focus group study involving blind, low-vision, and sighted companions of BLV individuals. A subsequent analysis reveals that most contemporary datasets used to train recent computer vision models contain only a small subset of the objects in our proposed list. Furthermore, we provide detailed object labeling for these 90 objects across 31 video segments derived from the original 21 videos. Finally, we make the object list, the 21 videos, and object labeling in the 31 video segments publicly available. This paper aims to fill the existing gap and foster the development of more inclusive and effective navigation aids for the BLV community.
comment: Paper accepted at ASSETS'24 (Oct 27-30, 2024, St. Johns, Newfoundland, Canada). arXiv admin note: substantial text overlap with arXiv:2407.16777
☆ KonvLiNA: Integrating Kolmogorov-Arnold Network with Linear Nyström Attention for feature fusion in Crop Field Detection
Crop field detection is a critical component of precision agriculture, essential for optimizing resource allocation and enhancing agricultural productivity. This study introduces KonvLiNA, a novel framework that integrates Convolutional Kolmogorov-Arnold Networks (cKAN) with Nystr\"om attention mechanisms for effective crop field detection. Leveraging KAN adaptive activation functions and the efficiency of Nystr\"om attention in handling largescale data, KonvLiNA significantly enhances feature extraction, enabling the model to capture intricate patterns in complex agricultural environments. Experimental results on rice crop dataset demonstrate KonvLiNA superiority over state-of-the-art methods, achieving a 0.415 AP and 0.459 AR with the Swin-L backbone, outperforming traditional YOLOv8 by significant margins. Additionally, evaluation on the COCO dataset showcases competitive performance across small, medium, and large objects, highlighting KonvLiNA efficacy in diverse agricultural settings. This work highlights the potential of hybrid KAN and attention mechanisms for advancing precision agriculture through improved crop field detection and management.
☆ Interpretable breast cancer classification using CNNs on mammographic images
Deep learning models have achieved promising results in breast cancer classification, yet their 'black-box' nature raises interpretability concerns. This research addresses the crucial need to gain insights into the decision-making process of convolutional neural networks (CNNs) for mammogram classification, specifically focusing on the underlying reasons for the CNN's predictions of breast cancer. For CNNs trained on the Mammographic Image Analysis Society (MIAS) dataset, we compared the post-hoc interpretability techniques LIME, Grad-CAM, and Kernel SHAP in terms of explanatory depth and computational efficiency. The results of this analysis indicate that Grad-CAM, in particular, provides comprehensive insights into the behavior of the CNN, revealing distinctive patterns in normal, benign, and malignant breast tissue. We discuss the implications of the current findings for the use of machine learning models and interpretation techniques in clinical practice.
comment: 16 pages, 13 figures (9 in the main text, 3 in the appendix). Accepted at PMLR 2024
☆ Long-Term Pre-training for Temporal Action Detection with Transformers
Temporal action detection (TAD) is challenging, yet fundamental for real-world video applications. Recently, DETR-based models for TAD have been prevailing thanks to their unique benefits. However, transformers demand a huge dataset, and unfortunately data scarcity in TAD causes a severe degeneration. In this paper, we identify two crucial problems from data scarcity: attention collapse and imbalanced performance. To this end, we propose a new pre-training strategy, Long-Term Pre-training (LTP), tailored for transformers. LTP has two main components: 1) class-wise synthesis, 2) long-term pretext tasks. Firstly, we synthesize long-form video features by merging video snippets of a target class and non-target classes. They are analogous to untrimmed data used in TAD, despite being created from trimmed data. In addition, we devise two types of long-term pretext tasks to learn long-term dependency. They impose long-term conditions such as finding second-to-fourth or short-duration actions. Our extensive experiments show state-of-the-art performances in DETR-based methods on ActivityNet-v1.3 and THUMOS14 by a large margin. Moreover, we demonstrate that LTP significantly relieves the data scarcity issues in TAD.
☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its wide applications in robotics and self-driving. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together but only a single view of depth measurements is provided. The vast majority of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns and typically two, running with the risk of failing to generalize to unseen domains. The shape representations used in the prior work also mainly focus on point cloud and signed distance field (SDF). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from any pose-annotated data. In addition, we adopt a novel mesh-based object active shape model that has not been explored by the previous literature. Our algorithm, named ShapeICP, has its foundation in the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. The results show that even without using any pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on the pose data for training, opening up new solution space for researchers to consider.
☆ Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation. The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz optimisation. A feature of the method is that it obtains tighter over-approximations of the perturbation region than the present state-of-the-art. We report results from experiments on a comprehensive set of benchmarks. We show that our proposed implementation resolves more verification cases than present approaches while being more computationally efficient.
☆ Deep Learning at the Intersection: Certified Robustness as a Tool for 3D Vision ICCV 2023
This paper presents preliminary work on a novel connection between certified robustness in machine learning and the modeling of 3D objects. We highlight an intriguing link between the Maximal Certified Radius (MCR) of a classifier representing a space's occupancy and the space's Signed Distance Function (SDF). Leveraging this relationship, we propose to use the certification method of randomized smoothing (RS) to compute SDFs. Since RS' high computational cost prevents its practical usage as a way to compute SDFs, we propose an algorithm to efficiently run RS in low-dimensional applications, such as 3D space, by expressing RS' fundamental operations as Gaussian smoothing on pre-computed voxel grids. Our approach offers an innovative and practical tool to compute SDFs, validated through proof-of-concept experiments in novel view synthesis. This paper bridges two previously disparate areas of machine learning, opening new avenues for further exploration and potential cross-domain advancements.
comment: This paper is an accepted extended abstract to the LatinX workshop at ICCV 2023. This was uploaded a year late
☆ CathAction: A Benchmark for Endovascular Intervention Understanding
Real-time visual feedback from catheterization analysis is crucial for enhancing surgical safety and efficiency during endovascular interventions. However, existing datasets are often limited to specific tasks, small scale, and lack the comprehensive annotations necessary for broader endovascular intervention understanding. To tackle these limitations, we introduce CathAction, a large-scale dataset for catheterization understanding. Our CathAction dataset encompasses approximately 500,000 annotated frames for catheterization action understanding and collision detection, and 25,000 ground truth masks for catheter and guidewire segmentation. For each task, we benchmark recent related works in the field. We further discuss the challenges of endovascular intentions compared to traditional computer vision tasks and point out open research questions. We hope that CathAction will facilitate the development of endovascular intervention understanding methods that can be applied to real-world applications. The dataset is available at https://airvlab.github.io/cathdata/.
comment: 10 pages. Webpage: https://airvlab.github.io/cathdata/
☆ Evidential Deep Partial Multi-View Classification With Discount Fusion
Incomplete multi-view data classification poses significant challenges due to the common issue of missing views in real-world scenarios. Despite advancements, existing methods often fail to provide reliable predictions, largely due to the uncertainty of missing views and the inconsistent quality of imputed data. To tackle these problems, we propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC). Initially, we use K-means imputation to address missing views, creating a complete set of multi-view data. However, the potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences. To manage this, we introduce a Conflict-Aware Evidential Fusion Network (CAEFN), which dynamically adjusts based on the reliability of the evidence, ensuring trustworthy discount fusion and producing reliable inference outcomes. Comprehensive experiments on various benchmark datasets reveal EDP-MVC not only matches but often surpasses the performance of state-of-the-art methods.
comment: Ongoing work. 13 pages, 3 figures, 6 tables
☆ End-to-end Surface Optimization for Light Control
Designing a freeform surface to reflect or refract light to achieve a target distribution is a challenging inverse problem. In this paper, we propose an end-to-end optimization strategy for an optical surface mesh. Our formulation leverages a novel differentiable rendering model, and is directly driven by the difference between the resulting light distribution and the target distribution. We also enforce geometric constraints related to fabrication requirements, to facilitate CNC milling and polishing of the designed surface. To address the issue of local minima, we formulate a face-based optimal transport problem between the current mesh and the target distribution, which makes effective large changes to the surface shape. The combination of our optimal transport update and rendering-guided optimization produces an optical surface design with a resulting image closely resembling the target, while the fabrication constraints in our optimization help to ensure consistency between the rendering model and the final physical results. The effectiveness of our algorithm is demonstrated on a variety of target images using both simulated rendering and physical prototypes.
Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks
Adversarial training is one of the most effective methods for enhancing model robustness. Recent approaches incorporate adversarial distillation in adversarial training architectures. However, we notice two scenarios of defense methods that limit their performance: (1) Previous methods primarily use static ground truth for adversarial training, but this often causes robust overfitting; (2) The loss functions are either Mean Squared Error or KL-divergence leading to a sub-optimal performance on clean accuracy. To solve those problems, we propose a dynamic label adversarial training (DYNAT) algorithm that enables the target model to gradually and dynamically gain robustness from the guide model's decisions. Additionally, we found that a budgeted dimension of inner optimization for the target model may contribute to the trade-off between clean accuracy and robust accuracy. Therefore, we propose a novel inner optimization method to be incorporated into the adversarial training. This will enable the target model to adaptively search for adversarial examples based on dynamic labels from the guiding model, contributing to the robustness of the target model. Extensive experiments validate the superior performance of our approach.
☆ Map-Free Visual Relocalization Enhanced by Instance Knowledge and Depth Knowledge
Map-free relocalization technology is crucial for applications in autonomous navigation and augmented reality, but relying on pre-built maps is often impractical. It faces significant challenges due to limitations in matching methods and the inherent lack of scale in monocular images. These issues lead to substantial rotational and metric errors and even localization failures in real-world scenarios. Large matching errors significantly impact the overall relocalization process, affecting both rotational and translational accuracy. Due to the inherent limitations of the camera itself, recovering the metric scale from a single image is crucial, as this significantly impacts the translation error. To address these challenges, we propose a map-free relocalization method enhanced by instance knowledge and depth knowledge. By leveraging instance-based matching information to improve global matching results, our method significantly reduces the possibility of mismatching across different objects. The robustness of instance knowledge across the scene helps the feature point matching model focus on relevant regions and enhance matching accuracy. Additionally, we use estimated metric depth from a single image to reduce metric errors and improve scale recovery accuracy. By integrating methods dedicated to mitigating large translational and rotational errors, our approach demonstrates superior performance in map-free relocalization techniques.
comment: 17 pages,6 figures
☆ SIMPLE: Simultaneous Multi-Plane Self-Supervised Learning for Isotropic MRI Restoration from Anisotropic Data
Magnetic resonance imaging (MRI) is crucial in diagnosing various abdominal conditions and anomalies. Traditional MRI scans often yield anisotropic data due to technical constraints, resulting in varying resolutions across spatial dimensions, which limits diagnostic accuracy and volumetric analysis. Super-resolution (SR) techniques aim to address these limitations by reconstructing isotropic high-resolution images from anisotropic data. However, current SR methods often rely on indirect mappings and limited training data, focusing mainly on two-dimensional improvements rather than achieving true three-dimensional isotropy. We introduce SIMPLE, a Simultaneous Multi-Plane Self-Supervised Learning approach for isotropic MRI restoration from anisotropic data. Our method leverages existing anisotropic clinical data acquired in different planes, bypassing the need for simulated downsampling processes. By considering the inherent three-dimensional nature of MRI data, SIMPLE ensures realistic isotropic data generation rather than solely improving through-plane slices. This approach flexibility allows it to be extended to multiple contrast types and acquisition methods commonly used in clinical settings. Our experiments show that SIMPLE outperforms state-of-the-art methods both quantitatively using the Kernel Inception Distance (KID) and semi-quantitatively through radiologist evaluations. The generated isotropic volume facilitates more accurate volumetric analysis and 3D reconstructions, promising significant improvements in clinical diagnostic capabilities.
☆ Atlas Gaussians Diffusion for 3D Generation with Infinite Number of Points
Using the latent diffusion model has proven effective in developing novel 3D generation techniques. To harness the latent diffusion model, a key challenge is designing a high-fidelity and efficient representation that links the latent space and the 3D space. In this paper, we introduce Atlas Gaussians, a novel representation for feed-forward native 3D generation. Atlas Gaussians represent a shape as the union of local patches, and each patch can decode 3D Gaussians. We parameterize a patch as a sequence of feature vectors and design a learnable function to decode 3D Gaussians from the feature vectors. In this process, we incorporate UV-based sampling, enabling the generation of a sufficiently large, and theoretically infinite, number of 3D Gaussian points. The large amount of 3D Gaussians enables high-quality details of generation results. Moreover, due to local awareness of the representation, the transformer-based decoding procedure operates on a patch level, ensuring efficiency. We train a variational autoencoder to learn the Atlas Gaussians representation, and then apply a latent diffusion model on its latent space for learning 3D Generation. Experiments show that our approach outperforms the prior arts of feed-forward native 3D generation.
☆ G3FA: Geometry-guided GAN for Face Animation BMVC 2024
Animating human face images aims to synthesize a desired source identity in a natural-looking way mimicking a driving video's facial movements. In this context, Generative Adversarial Networks have demonstrated remarkable potential in real-time face reenactment using a single source image, yet are constrained by limited geometry consistency compared to graphic-based approaches. In this paper, we introduce Geometry-guided GAN for Face Animation (G3FA) to tackle this limitation. Our novel approach empowers the face animation model to incorporate 3D information using only 2D images, improving the image generation capabilities of the talking head synthesis model. We integrate inverse rendering techniques to extract 3D facial geometry properties, improving the feedback loop to the generator through a weighted average ensemble of discriminators. In our face reenactment model, we leverage 2D motion warping to capture motion dynamics along with orthogonal ray sampling and volume rendering techniques to produce the ultimate visual output. To evaluate the performance of our G3FA, we conducted comprehensive experiments using various evaluation protocols on VoxCeleb2 and TalkingHead benchmarks to demonstrate the effectiveness of our proposed framework compared to the state-of-the-art real-time face animation methods.
comment: BMVC 2024, Accepted
☆ Improving the Classification Effect of Clinical Images of Diseases for Multi-Source Privacy Protection
Privacy data protection in the medical field poses challenges to data sharing, limiting the ability to integrate data across hospitals for training high-precision auxiliary diagnostic models. Traditional centralized training methods are difficult to apply due to violations of privacy protection principles. Federated learning, as a distributed machine learning framework, helps address this issue, but it requires multiple hospitals to participate in training simultaneously, which is hard to achieve in practice. To address these challenges, we propose a medical privacy data training framework based on data vectors. This framework allows each hospital to fine-tune pre-trained models on private data, calculate data vectors (representing the optimization direction of model parameters in the solution space), and sum them up to generate synthetic weights that integrate model information from multiple hospitals. This approach enhances model performance without exchanging private data or requiring synchronous training. Experimental results demonstrate that this method effectively utilizes dispersed private data resources while protecting patient privacy. The auxiliary diagnostic model trained using this approach significantly outperforms models trained independently by a single hospital, providing a new perspective for resolving the conflict between medical data privacy protection and model training and advancing the development of medical intelligence.
comment: Under review
☆ S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points
Recently, the dynamic scene reconstruction using Gaussians has garnered increased interest. Mainstream approaches typically employ a global deformation field to warp a 3D scene in the canonical space. However, the inherently low-frequency nature of implicit neural fields often leads to ineffective representations of complex motions. Moreover, their structural rigidity can hinder adaptation to scenes with varying resolutions and durations. To overcome these challenges, we introduce a novel approach utilizing discrete 3D control points. This method models local rays physically and establishes a motion-decoupling coordinate system, which effectively merges traditional graphics with learnable pipelines for a robust and efficient local 6-degrees-of-freedom (6-DoF) motion representation. Additionally, we have developed a generalized framework that incorporates our control points with Gaussians. Starting from an initial 3D reconstruction, our workflow decomposes the streaming 4D real-world reconstruction into four independent submodules: 3D segmentation, 3D control points generation, object-wise motion manipulation, and residual compensation. Our experiments demonstrate that this method outperforms existing state-of-the-art 4D Gaussian Splatting techniques on both the Neu3DV and CMU-Panoptic datasets. Our approach also significantly accelerates training, with the optimization of our 3D control points achievable within just 2 seconds per frame on a single NVIDIA 4070 GPU.
☆ VFM-Det: Towards High-Performance Vehicle Detection via Large Foundation Models
Existing vehicle detectors are usually obtained by training a typical detector (e.g., YOLO, RCNN, DETR series) on vehicle images based on a pre-trained backbone (e.g., ResNet, ViT). Some researchers also exploit and enhance the detection performance using pre-trained large foundation models. However, we think these detectors may only get sub-optimal results because the large models they use are not specifically designed for vehicles. In addition, their results heavily rely on visual features, and seldom of they consider the alignment between the vehicle's semantic information and visual representations. In this work, we propose a new vehicle detection paradigm based on a pre-trained foundation vehicle model (VehicleMAE) and a large language model (T5), termed VFM-Det. It follows the region proposal-based detection framework and the features of each proposal can be enhanced using VehicleMAE. More importantly, we propose a new VAtt2Vec module that predicts the vehicle semantic attributes of these proposals and transforms them into feature vectors to enhance the vision features via contrastive learning. Extensive experiments on three vehicle detection benchmark datasets thoroughly proved the effectiveness of our vehicle detector. Specifically, our model improves the baseline approach by $+5.1\%$, $+6.2\%$ on the $AP_{0.5}$, $AP_{0.75}$ metrics, respectively, on the Cityscapes dataset.The source code of this work will be released at https://github.com/Event-AHU/VFM-Det.
comment: In Peer Review
☆ Indoor scene recognition from images under visual corruptions
The classification of indoor scenes is a critical component in various applications, such as intelligent robotics for assistive living. While deep learning has significantly advanced this field, models often suffer from reduced performance due to image corruption. This paper presents an innovative approach to indoor scene recognition that leverages multimodal data fusion, integrating caption-based semantic features with visual data to enhance both accuracy and robustness against corruption. We examine two multimodal networks that synergize visual features from CNN models with semantic captions via a Graph Convolutional Network (GCN). Our study shows that this fusion markedly improves model performance, with notable gains in Top-1 accuracy when evaluated against a corrupted subset of the Places365 dataset. Moreover, while standalone visual models displayed high accuracy on uncorrupted images, their performance deteriorated significantly with increased corruption severity. Conversely, the multimodal models demonstrated improved accuracy in clean conditions and substantial robustness to a range of image corruptions. These results highlight the efficacy of incorporating high-level contextual information through captions, suggesting a promising direction for enhancing the resilience of classification systems.
☆ Learning 2D Invariant Affordance Knowledge for 3D Affordance Grounding
3D Object Affordance Grounding aims to predict the functional regions on a 3D object and has laid the foundation for a wide range of applications in robotics. Recent advances tackle this problem via learning a mapping between 3D regions and a single human-object interaction image. However, the geometric structure of the 3D object and the object in the human-object interaction image are not always consistent, leading to poor generalization. To address this issue, we propose to learn generalizable invariant affordance knowledge from multiple human-object interaction images within the same affordance category. Specifically, we introduce the \textbf{M}ulti-\textbf{I}mage Guided Invariant-\textbf{F}eature-Aware 3D \textbf{A}ffordance \textbf{G}rounding (\textbf{MIFAG}) framework. It grounds 3D object affordance regions by identifying common interaction patterns across multiple human-object interaction images. First, the Invariant Affordance Knowledge Extraction Module (\textbf{IAM}) utilizes an iterative updating strategy to gradually extract aligned affordance knowledge from multiple images and integrate it into an affordance dictionary. Then, the Affordance Dictionary Adaptive Fusion Module (\textbf{ADM}) learns comprehensive point cloud representations that consider all affordance candidates in multiple images. Besides, the Multi-Image and Point Affordance (\textbf{MIPA}) benchmark is constructed and our method outperforms existing state-of-the-art methods on various experimental comparisons. Project page: \url{https://goxq.github.io/mifag}
☆ EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
Following the advancements in text-guided image generation technology exemplified by Stable Diffusion, video generation is gaining increased attention in the academic community. However, relying solely on text guidance for video generation has serious limitations, as videos contain much richer content than images, especially in terms of motion. This information can hardly be adequately described with plain text. Fortunately, in computer vision, various visual representations can serve as additional control signals to guide generation. With the help of these signals, video generation can be controlled in finer detail, allowing for greater flexibility for different applications. Integrating various controls, however, is nontrivial. In this paper, we propose a universal framework called EasyControl. By propagating and injecting condition features through condition adapters, our method enables users to control video generation with a single condition map. With our framework, various conditions including raw pixels, depth, HED, etc., can be integrated into different Unet-based pre-trained video diffusion models at a low practical cost. We conduct comprehensive experiments on public datasets, and both quantitative and qualitative results indicate that our method outperforms state-of-the-art methods. EasyControl significantly improves various evaluation metrics across multiple validation datasets compared to previous works. Specifically, for the sketch-to-video generation task, EasyControl achieves an improvement of 152.0 on FVD and 19.9 on IS, respectively, in UCF101 compared with VideoComposer. For fidelity, our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT compared to other image-to-video models.
☆ BoostTrack++: using tracklet information to detect more objects in multiple object tracking
Multiple object tracking (MOT) depends heavily on selection of true positive detected bounding boxes. However, this aspect of the problem is mostly overlooked or mitigated by employing two-stage association and utilizing low confidence detections in the second stage. Recently proposed BoostTrack attempts to avoid the drawbacks of multiple stage association approach and use low-confidence detections by applying detection confidence boosting. In this paper, we identify the limitations of the confidence boost used in BoostTrack and propose a method to improve its performance. To construct a richer similarity measure and enable a better selection of true positive detections, we propose to use a combination of shape, Mahalanobis distance and novel soft BIoU similarity. We propose a soft detection confidence boost technique which calculates new confidence scores based on the similarity measure and the previous confidence scores, and we introduce varying similarity threshold to account for lower similarity measure between detections and tracklets which are not regularly updated. The proposed additions are mutually independent and can be used in any MOT algorithm. Combined with the BoostTrack+ baseline, our method achieves near state of the art results on the MOT17 dataset and new state of the art HOTA and IDF1 scores on the MOT20 dataset. The source code is available at: https://github.com/vukasin-stanojevic/BoostTrack .
☆ A Survey on Drowsiness Detection -- Modern Applications and Methods
Drowsiness detection holds paramount importance in ensuring safety in workplaces or behind the wheel, enhancing productivity, and healthcare across diverse domains. Therefore accurate and real-time drowsiness detection plays a critical role in preventing accidents, enhancing safety, and ultimately saving lives across various sectors and scenarios. This comprehensive review explores the significance of drowsiness detection in various areas of application, transcending the conventional focus solely on driver drowsiness detection. We delve into the current methodologies, challenges, and technological advancements in drowsiness detection schemes, considering diverse contexts such as public transportation, healthcare, workplace safety, and beyond. By examining the multifaceted implications of drowsiness, this work contributes to a holistic understanding of its impact and the crucial role of accurate and real-time detection techniques in enhancing safety and performance. We identified weaknesses in current algorithms and limitations in existing research such as accurate and real-time detection, stable data transmission, and building bias-free systems. Our survey frames existing works and leads to practical recommendations like mitigating the bias issue by using synthetic data, overcoming the hardware limitations with model compression, and leveraging fusion to boost model performance. This is a pioneering work to survey the topic of drowsiness detection in such an entirely and not only focusing on one single aspect. We consider the topic of drowsiness detection as a dynamic and evolving field, presenting numerous opportunities for further exploration.
comment: accepted at the IEEE Transactions on Intelligent Vehicles 2024
☆ Optimal OnTheFly Feedback Control of Event Sensors ECCV 2024
Event-based vision sensors produce an asynchronous stream of events which are triggered when the pixel intensity variation exceeds a predefined threshold. Such sensors offer significant advantages, including reduced data redundancy, micro-second temporal resolution, and low power consumption, making them valuable for applications in robotics and computer vision. In this work, we consider the problem of video reconstruction from events, and propose an approach for dynamic feedback control of activation thresholds, in which a controller network analyzes the past emitted events and predicts the optimal distribution of activation thresholds for the following time segment. Additionally, we allow a user-defined target peak-event-rate for which the control network is conditioned and optimized to predict per-column activation thresholds that would eventually produce the best possible video reconstruction. The proposed OnTheFly control scheme is data-driven and trained in an end-to-end fashion using probabilistic relaxation of the discrete event representation. We demonstrate that our approach outperforms both fixed and randomly-varying threshold schemes by 6-12% in terms of LPIPS perceptual image dissimilarity metric, and by 49% in terms of event rate, achieving superior reconstruction quality while enabling a fine-tuned balance between performance accuracy and the event rate. Additionally, we show that sampling strategies provided by our OnTheFly control are interpretable and reflect the characteristics of the scene. Our results, derived from a physically-accurate simulator, underline the promise of the proposed methodology in enhancing the utility of event cameras for image reconstruction and other downstream tasks, paving the way for hardware implementation of dynamic feedback EVS control in silicon.
comment: 17 pages, 5 figures, ECCV 2024, NEVI workshop
☆ Accuracy Improvement of Cell Image Segmentation Using Feedback Former ECCV2024
Semantic segmentation of microscopy cell images by deep learning is a significant technique. We considered that the Transformers, which have recently outperformed CNNs in image recognition, could also be improved and developed for cell image segmentation. Transformers tend to focus more on contextual information than on detailed information. This tendency leads to a lack of detailed information for segmentation. Therefore, to supplement or reinforce the missing detailed information, we hypothesized that feedback processing in the human visual cortex should be effective. Our proposed Feedback Former is a novel architecture for semantic segmentation, in which Transformers is used as an encoder and has a feedback processing mechanism. Feature maps with detailed information are fed back to the lower layers from near the output of the model to compensate for the lack of detailed information which is the weakness of Transformers and improve the segmentation accuracy. By experiments on three cell image datasets, we confirmed that our method surpasses methods without feedback, demonstrating its superior accuracy in cell image segmentation. Our method achieved higher segmentation accuracy while consuming less computational cost than conventional feedback approaches. Moreover, our method offered superior precision without simply increasing the model size of Transformer encoder, demonstrating higher accuracy with lower computational cost.
comment: Accepted by ECCV2024 Workshop "Human-inspired Computer Vision (HCV)"
Image Segmentation in Foundation Model Era: A Survey
Image segmentation is a long-standing challenge in computer vision, studied continuously over several decades, as evidenced by seminal algorithms such as N-Cut, FCN, and MaskFormer. With the advent of foundation models (FMs), contemporary segmentation methodologies have embarked on a new epoch by either adapting FMs (e.g., CLIP, Stable Diffusion, DINO) for image segmentation or developing dedicated segmentation foundation models (e.g., SAM). These approaches not only deliver superior segmentation performance, but also herald newfound segmentation capabilities previously unseen in deep learning context. However, current research in image segmentation lacks a detailed analysis of distinct characteristics, challenges, and solutions associated with these advancements. This survey seeks to fill this gap by providing a thorough review of cutting-edge research centered around FM-driven image segmentation. We investigate two basic lines of research -- generic image segmentation (i.e., semantic segmentation, instance segmentation, panoptic segmentation), and promptable image segmentation (i.e., interactive segmentation, referring segmentation, few-shot segmentation) -- by delineating their respective task settings, background concepts, and key challenges. Furthermore, we provide insights into the emergence of segmentation knowledge from FMs like CLIP, Stable Diffusion, and DINO. An exhaustive overview of over 300 segmentation approaches is provided to encapsulate the breadth of current research efforts. Subsequently, we engage in a discussion of open issues and potential avenues for future research. We envisage that this fresh, comprehensive, and systematic survey catalyzes the evolution of advanced image segmentation systems.
comment: A comprehensive survey of image segmentation in foundation model era (work in progress)
☆ State-of-the-Art Fails in the Art of Damage Detection
Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting global degradation if the damage operator is known a priori, we show that they fail to predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. We introduce DamBench, a dataset for damage detection in diverse analogue media, with over 11,000 annotations covering 15 damage types across various subjects and media. We evaluate CNN, Transformer, and text-guided diffusion segmentation models, revealing their limitations in generalising across media types.
☆ Find the Assembly Mistakes: Error Segmentation for Industrial Applications ECCV
Recognizing errors in assembly and maintenance procedures is valuable for industrial applications, since it can increase worker efficiency and prevent unplanned down-time. Although assembly state recognition is gaining attention, none of the current works investigate assembly error localization. Therefore, we propose StateDiffNet, which localizes assembly errors based on detecting the differences between a (correct) intended assembly state and a test image from a similar viewpoint. StateDiffNet is trained on synthetically generated image pairs, providing full control over the type of meaningful change that should be detected. The proposed approach is the first to correctly localize assembly errors taken from real ego-centric video data for both states and error types that are never presented during training. Furthermore, the deployment of change detection to this industrial application provides valuable insights and considerations into the mechanisms of state-of-the-art change detection algorithms. The code and data generation pipeline are publicly available at: https://timschoonbeek.github.io/error_seg.
comment: 23 pages (14 main paper, 2 references, 7 supplementary), 15 figures (8 main paper, 7 supplementary). Accepted at ECCV Vision-based InduStrial InspectiON (VISION) workshop
☆ WildFusion: Individual Animal Identification with Calibrated Similarity Fusion
We propose a new method - WildFusion - for individual identification of a broad range of animal species. The method fuses deep scores (e.g., MegaDescriptor or DINOv2) and local matching similarity (e.g., LoFTR and LightGlue) to identify individual animals. The global and local information fusion is facilitated by similarity score calibration. In a zero-shot setting, relying on local similarity score only, WildFusion achieved mean accuracy, measured on 17 datasets, of 76.2%. This is better than the state-of-the-art model, MegaDescriptor-L, whose training set included 15 of the 17 datasets. If a dataset-specific calibration is applied, mean accuracy increases by 2.3% percentage points. WildFusion, with both local and global similarity scores, outperforms the state-of-the-art significantly - mean accuracy reached 84.0%, an increase of 8.5 percentage points; the mean relative error drops by 35%. We make the code and pre-trained models publicly available5, enabling immediate use in ecology and conservation.
☆ Animal Identification with Independent Foreground and Background Modeling
We propose a method that robustly exploits background and foreground in visual identification of individual animals. Experiments show that their automatic separation, made easy with methods like Segment Anything, together with independent foreground and background-related modeling, improves results. The two predictions are combined in a principled way, thanks to novel Per-Instance Temperature Scaling that helps the classifier to deal with appearance ambiguities in training and to produce calibrated outputs in the inference phase. For identity prediction from the background, we propose novel spatial and temporal models. On two problems, the relative error w.r.t. the baseline was reduced by 22.3% and 8.8%, respectively. For cases where objects appear in new locations, an example of background drift, accuracy doubles.
☆ ParGo: Bridging Vision-Language with Partial and Global Views
This work presents ParGo, a novel Partial-Global projector designed to connect the vision and language modalities for Multimodal Large Language Models (MLLMs). Unlike previous works that rely on global attention-based projectors, our ParGo bridges the representation gap between the separately pre-trained vision encoders and the LLMs by integrating global and partial views, which alleviates the overemphasis on prominent regions. To facilitate the effective training of ParGo, we collect a large-scale detail-captioned image-text dataset named ParGoCap-1M-PT, consisting of 1 million images paired with high-quality captions. Extensive experiments on several MLLM benchmarks demonstrate the effectiveness of our ParGo, highlighting its superiority in aligning vision and language modalities. Compared to conventional Q-Former projector, our ParGo achieves an improvement of 259.96 in MME benchmark. Furthermore, our experiments reveal that ParGo significantly outperforms other projectors, particularly in tasks that emphasize detail perception ability.
☆ When Diffusion MRI Meets Diffusion Model: A Novel Deep Generative Model for Diffusion MRI Generation
Diffusion MRI (dMRI) is an advanced imaging technique characterizing tissue microstructure and white matter structural connectivity of the human brain. The demand for high-quality dMRI data is growing, driven by the need for better resolution and improved tissue contrast. However, acquiring high-quality dMRI data is expensive and time-consuming. In this context, deep generative modeling emerges as a promising solution to enhance image quality while minimizing acquisition costs and scanning time. In this study, we propose a novel generative approach to perform dMRI generation using deep diffusion models. It can generate high dimension (4D) and high resolution data preserving the gradients information and brain structure. We demonstrated our method through an image mapping task aimed at enhancing the quality of dMRI images from 3T to 7T. Our approach demonstrates highly enhanced performance in generating dMRI images when compared to the current state-of-the-art (SOTA) methods. This achievement underscores a substantial progression in enhancing dMRI quality, highlighting the potential of our novel generative approach to revolutionize dMRI imaging standards.
comment: 11 pages, 3 figures
☆ FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering
3D Gaussian Splatting (3DGS) achieves fast and high-quality renderings by using numerous small Gaussians, which leads to significant memory consumption. This reliance on a large number of Gaussians restricts the application of 3DGS-based models on low-cost devices due to memory limitations. However, simply reducing the number of Gaussians to accommodate devices with less memory capacity leads to inferior quality compared to the quality that can be achieved on high-end hardware. To address this lack of scalability, we propose integrating a Flexible Level of Detail (FLoD) to 3DGS, to allow a scene to be rendered at varying levels of detail according to hardware capabilities. While existing 3DGSs with LoD focus on detailed reconstruction, our method provides reconstructions using a small number of Gaussians for reduced memory requirements, and a larger number of Gaussians for greater detail. Experiments demonstrate our various rendering options with tradeoffs between rendering quality and memory usage, thereby allowing real-time rendering across different memory constraints. Furthermore, we show that our method generalizes to different 3DGS frameworks, indicating its potential for integration into future state-of-the-art developments. Project page: https://3dgs-flod.github.io/flod.github.io/
comment: Project page: https://3dgs-flod.github.io/flod.github.io/
☆ Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey
The unprecedented developments in segmentation foundational models have become a dominant force in the field of computer vision, introducing a multitude of previously unexplored capabilities in a wide range of natural images and videos. Specifically, the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation. The recent introduction of SAM2 effectively extends the original SAM to a streaming fashion and demonstrates strong performance in video segmentation. However, due to the substantial distinctions between natural and medical images, the effectiveness of these models on biomedical images and videos is still under exploration. This paper presents an overview of recent efforts in applying and adapting SAM2 to biomedical images and videos. The findings indicate that while SAM2 shows promise in reducing annotation burdens and enabling zero-shot segmentation, its performance varies across different datasets and tasks. Addressing the domain gap between natural and medical images through adaptation and fine-tuning is essential to fully unleash SAM2's potential in clinical applications. To support ongoing research endeavors, we maintain an active repository that contains up-to-date SAM & SAM2-related papers and projects at https://github.com/YichiZhang98/SAM4MIS.
☆ T3M: Text Guided 3D Human Motion Synthesis from Speech
Speech-driven 3D motion synthesis seeks to create lifelike animations based on human speech, with potential uses in virtual reality, gaming, and the film production. Existing approaches reply solely on speech audio for motion generation, leading to inaccurate and inflexible synthesis results. To mitigate this problem, we introduce a novel text-guided 3D human motion synthesis method, termed \textit{T3M}. Unlike traditional approaches, T3M allows precise control over motion synthesis via textual input, enhancing the degree of diversity and user customization. The experiment results demonstrate that T3M can greatly outperform the state-of-the-art methods in both quantitative metrics and qualitative evaluations. We have publicly released our code at \href{https://github.com/Gloria2tt/T3M.git}{https://github.com/Gloria2tt/T3M.git}
comment: 10 pages,4figures
☆ Frequency-aware Feature Fusion for Dense Image Prediction
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.
comment: Accepted by TPAMI (2024)
☆ Can AI Assistance Aid in the Grading of Handwritten Answer Sheets?
With recent advancements in artificial intelligence (AI), there has been growing interest in using state of the art (SOTA) AI solutions to provide assistance in grading handwritten answer sheets. While a few commercial products exist, the question of whether AI-assistance can actually reduce grading effort and time has not yet been carefully considered in published literature. This work introduces an AI-assisted grading pipeline. The pipeline first uses text detection to automatically detect question regions present in a question paper PDF. Next, it uses SOTA text detection methods to highlight important keywords present in the handwritten answer regions of scanned answer sheets to assist in the grading process. We then evaluate a prototype implementation of the AI-assisted grading pipeline deployed on an existing e-learning management platform. The evaluation involves a total of 5 different real-life examinations across 4 different courses at a reputed institute; it consists of a total of 42 questions, 17 graders, and 468 submissions. We log and analyze the grading time for each handwritten answer while using AI assistance and without it. Our evaluations have shown that, on average, the graders take 31% less time while grading a single response and 33% less grading time while grading a single answer sheet using AI assistance.
☆ Semantic Alignment for Multimodal Large Language Models
Research on Multi-modal Large Language Models (MLLMs) towards the multi-image cross-modal instruction has received increasing attention and made significant progress, particularly in scenarios involving closely resembling images (e.g., change captioning). Existing MLLMs typically follow a two-step process in their pipelines: first, extracting visual tokens independently for each input image, and then aligning these visual tokens from different images with the Large Language Model (LLM) in its textual feature space. However, the independent extraction of visual tokens for each image may result in different semantics being prioritized for different images in the first step, leading to a lack of preservation of linking information among images for subsequent LLM analysis. This issue becomes more serious in scenarios where significant variations exist among the images (e.g., visual storytelling). To address this challenge, we introduce Semantic Alignment for Multi-modal large language models (SAM). By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis and align the semantics of different images before feeding them into LLM. As the test bed, we propose a large-scale dataset named MmLINK consisting of 69K samples. Different from most existing datasets for MLLMs fine-tuning, our MmLINK dataset comprises multi-modal instructions with significantly diverse images. Extensive experiments on the group captioning task and the storytelling task prove the effectiveness of our SAM model, surpassing the state-of-the-art methods by a large margin (+37% for group captioning and +22% for storytelling on CIDEr score). Project page: https://mccartney01.github.io/SAM.
comment: Accepted by MM 2024
☆ Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence
Deep learning techniques have revolutionized image classification by mimicking human cognition and automating complex decision-making processes. However, the deployment of AI systems in the wild, especially in high-security domains such as defence, is curbed by the lack of explainability of the model. To this end, eXplainable AI (XAI) is an emerging area of research that is intended to explore the unexplained hidden black box nature of deep neural networks. This paper explores the application of the eXplainable Artificial Intelligence (XAI) tool to interpret the underwater image classification results, one of the first works in the domain to the best of our knowledge. Our study delves into the realm of SONAR image classification using a custom dataset derived from diverse sources, including the Seabed Objects KLSG dataset, the camera SONAR dataset, the mine SONAR images dataset, and the SCTD dataset. An extensive analysis of transfer learning techniques for image classification using benchmark Convolutional Neural Network (CNN) architectures such as VGG16, ResNet50, InceptionV3, DenseNet121, etc. is carried out. On top of this classification model, a post-hoc XAI technique, viz. Local Interpretable Model-Agnostic Explanations (LIME) are incorporated to provide transparent justifications for the model's decisions by perturbing input data locally to see how predictions change. Furthermore, Submodular Picks LIME (SP-LIME) a version of LIME particular to images, that perturbs the image based on the submodular picks is also extensively studied. To this end, two submodular optimization algorithms i.e. Quickshift and Simple Linear Iterative Clustering (SLIC) are leveraged towards submodular picks. The extensive analysis of XAI techniques highlights interpretability of the results in a more human-compliant way, thus boosting our confidence and reliability.
comment: 55 pages, 9 tables, 18 figures
☆ S3Simulator: A benchmarking Side Scan Sonar Simulator dataset for Underwater Image Analysis
Acoustic sonar imaging systems are widely used for underwater surveillance in both civilian and military sectors. However, acquiring high-quality sonar datasets for training Artificial Intelligence (AI) models confronts challenges such as limited data availability, financial constraints, and data confidentiality. To overcome these challenges, we propose a novel benchmark dataset of Simulated Side-Scan Sonar images, which we term as 'S3Simulator dataset'. Our dataset creation utilizes advanced simulation techniques to accurately replicate underwater conditions and produce diverse synthetic sonar imaging. In particular, the cutting-edge AI segmentation tool i.e. Segment Anything Model (SAM) is leveraged for optimally isolating and segmenting the object images, such as ships and planes, from real scenes. Further, advanced Computer-Aided Design tools i.e. SelfCAD and simulation software such as Gazebo are employed to create the 3D model and to optimally visualize within realistic environments, respectively. Further, a range of computational imaging techniques are employed to improve the quality of the data, enabling the AI models for the analysis of the sonar images. Extensive analyses are carried out on S3simulator as well as real sonar datasets to validate the performance of AI models for underwater object classification. Our experimental results highlight that the S3Simulator dataset will be a promising benchmark dataset for research on underwater image analysis. https://github.com/bashakamal/S3Simulator.
☆ MergeUp-augmented Semi-Weakly Supervised Learning for WSI Classification
Recent advancements in computational pathology and artificial intelligence have significantly improved whole slide image (WSI) classification. However, the gigapixel resolution of WSIs and the scarcity of manual annotations present substantial challenges. Multiple instance learning (MIL) is a promising weakly supervised learning approach for WSI classification. Recently research revealed employing pseudo bag augmentation can encourage models to learn various data, thus bolstering models' performance. While directly inheriting the parents' labels can introduce more noise by mislabeling in training. To address this issue, we translate the WSI classification task from weakly supervised learning to semi-weakly supervised learning, termed SWS-MIL, where adaptive pseudo bag augmentation (AdaPse) is employed to assign labeled and unlabeled data based on a threshold strategy. Using the "student-teacher" pattern, we introduce a feature augmentation technique, MergeUp, which merges bags with low-priority bags to enhance inter-category information, increasing training data diversity. Experimental results on the CAMELYON-16, BRACS, and TCGA-LUNG datasets demonstrate the superiority of our method over existing state-of-the-art approaches, affirming its efficacy in WSI classification.
Examining the Commitments and Difficulties Inherent in Multimodal Foundation Models for Street View Imagery
The emergence of Large Language Models (LLMs) and multimodal foundation models (FMs) has generated heightened interest in their applications that integrate vision and language. This paper investigates the capabilities of ChatGPT-4V and Gemini Pro for Street View Imagery, Built Environment, and Interior by evaluating their performance across various tasks. The assessments include street furniture identification, pedestrian and car counts, and road width measurement in Street View Imagery; building function classification, building age analysis, building height analysis, and building structure classification in the Built Environment; and interior room classification, interior design style analysis, interior furniture counts, and interior length measurement in Interior. The results reveal proficiency in length measurement, style analysis, question answering, and basic image understanding, but highlight limitations in detailed recognition and counting tasks. While zero-shot learning shows potential, performance varies depending on the problem domains and image complexities. This study provides new insights into the strengths and weaknesses of multimodal foundation models for practical challenges in Street View Imagery, Built Environment, and Interior. Overall, the findings demonstrate foundational multimodal intelligence, emphasizing the potential of FMs to drive forward interdisciplinary applications at the intersection of computer vision and language.
☆ O-Mamba: O-shape State-Space Model for Underwater Image Enhancement
Underwater image enhancement (UIE) face significant challenges due to complex underwater lighting conditions. Recently, mamba-based methods have achieved promising results in image enhancement tasks. However, these methods commonly rely on Vmamba, which focuses only on spatial information modeling and struggles to deal with the cross-color channel dependency problem in underwater images caused by the differential attenuation of light wavelengths, limiting the effective use of deep networks. In this paper, we propose a novel UIE framework called O-mamba. O-mamba employs an O-shaped dual-branch network to separately model spatial and cross-channel information, utilizing the efficient global receptive field of state-space models optimized for underwater images. To enhance information interaction between the two branches and effectively utilize multi-scale information, we design a Multi-scale Bi-mutual Promotion Module. This branch includes MS-MoE for fusing multi-scale information within branches, Mutual Promotion module for interaction between spatial and channel information across branches, and Cyclic Multi-scale optimization strategy to maximize the use of multi-scale information. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) results.The code is available at https://github.com/chenydong/O-Mamba.
☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Detecting cracks with pixel-level precision for key structures is a significant challenge, as existing methods struggle to effectively integrate local textures and pixel dependencies of cracks. Furthermore, these methods often possess numerous parameters and substantial computational requirements, complicating deployment on edge devices. In this paper, we propose a staircase cascaded fusion crack segmentation network (CrackSCF) that generates high-quality crack segmentation maps using minimal computational resources. We constructed a staircase cascaded fusion module that effectively captures local patterns of cracks and long-range dependencies of pixels, and it can suppress background noise well. To reduce the computational resources required by the model, we introduced a lightweight convolution block, which replaces all convolution operations in the network, significantly reducing the required computation and parameters without affecting the network's performance. To evaluate our method, we created a challenging benchmark dataset called TUT and conducted experiments on this dataset and five other public datasets. The experimental results indicate that our method offers significant advantages over existing methods, especially in handling background noise interference and detailed crack segmentation. The F1 and mIoU scores on the TUT dataset are 0.8382 and 0.8473, respectively, achieving state-of-the-art (SOTA) performance while requiring the least computational resources. The code and dataset is available at https://github.com/Karl1109/CrackSCF.
☆ From Few to More: Scribble-based Medical Image Segmentation via Masked Context Modeling and Continuous Pseudo Labels
Scribble-based weakly supervised segmentation techniques offer comparable performance to fully supervised methods while significantly reducing annotation costs, making them an appealing alternative. Existing methods often rely on auxiliary tasks to enforce semantic consistency and use hard pseudo labels for supervision. However, these methods often overlook the unique requirements of models trained with sparse annotations. Since the model must predict pixel-wise segmentation maps with limited annotations, the ability to handle varying levels of annotation richness is critical. In this paper, we adopt the principle of `from few to more' and propose MaCo, a weakly supervised framework designed for medical image segmentation. MaCo employs masked context modeling (MCM) and continuous pseudo labels (CPL). MCM uses an attention-based masking strategy to disrupt the input image, compelling the model's predictions to remain consistent with those of the original image. CPL converts scribble annotations into continuous pixel-wise labels by applying an exponential decay function to distance maps, resulting in continuous maps that represent the confidence of each pixel belonging to a specific category, rather than using hard pseudo labels. We evaluate MaCo against other weakly supervised methods using three public datasets. The results indicate that MaCo outperforms competing methods across all datasets, setting a new record in weakly supervised medical image segmentation.
☆ VALE: A Multimodal Visual and Language Explanation Framework for Image Classifiers using eXplainable AI and Language Models
Deep Neural Networks (DNNs) have revolutionized various fields by enabling task automation and reducing human error. However, their internal workings and decision-making processes remain obscure due to their black box nature. Consequently, the lack of interpretability limits the application of these models in high-risk scenarios. To address this issue, the emerging field of eXplainable Artificial Intelligence (XAI) aims to explain and interpret the inner workings of DNNs. Despite advancements, XAI faces challenges such as the semantic gap between machine and human understanding, the trade-off between interpretability and performance, and the need for context-specific explanations. To overcome these limitations, we propose a novel multimodal framework named VALE Visual and Language Explanation. VALE integrates explainable AI techniques with advanced language models to provide comprehensive explanations. This framework utilizes visual explanations from XAI tools, an advanced zero-shot image segmentation model, and a visual language model to generate corresponding textual explanations. By combining visual and textual explanations, VALE bridges the semantic gap between machine outputs and human interpretation, delivering results that are more comprehensible to users. In this paper, we conduct a pilot study of the VALE framework for image classification tasks. Specifically, Shapley Additive Explanations (SHAP) are used to identify the most influential regions in classified images. The object of interest is then extracted using the Segment Anything Model (SAM), and explanations are generated using state-of-the-art pre-trained Vision-Language Models (VLMs). Extensive experimental studies are performed on two datasets: the ImageNet dataset and a custom underwater SONAR image dataset, demonstrating VALEs real-world applicability in underwater image classification.
comment: 15 pages, 10 tables, 3 figures
☆ Universal dimensions of visual representation
Do neural network models of vision learn brain-aligned representations because they share architectural constraints and task objectives with biological vision or because they learn universal features of natural image processing? We characterized the universality of hundreds of thousands of representational dimensions from visual neural networks with varied construction. We found that networks with varied architectures and task objectives learn to represent natural images using a shared set of latent dimensions, despite appearing highly distinct at a surface level. Next, by comparing these networks with human brain representations measured with fMRI, we found that the most brain-aligned representations in neural networks are those that are universal and independent of a network's specific characteristics. Remarkably, each network can be reduced to fewer than ten of its most universal dimensions with little impact on its representational similarity to the human brain. These results suggest that the underlying similarities between artificial and biological vision are primarily governed by a core set of universal image representations that are convergently learned by diverse systems.
☆ Real-Time Posture Monitoring and Risk Assessment for Manual Lifting Tasks Using MediaPipe and LSTM ACM MM'24
This research focuses on developing a real-time posture monitoring and risk assessment system for manual lifting tasks using advanced AI and computer vision technologies. Musculoskeletal disorders (MSDs) are a significant concern for workers involved in manual lifting, and traditional methods for posture correction are often inadequate due to delayed feedback and lack of personalized assessment. Our proposed solution integrates AI-driven posture detection, detailed keypoint analysis, risk level determination, and real-time feedback delivered through a user-friendly web interface. The system aims to improve posture, reduce the risk of MSDs, and enhance user engagement. The research involves comprehensive data collection, model training, and iterative development to ensure high accuracy and user satisfaction. The solution's effectiveness is evaluated against existing methodologies, demonstrating significant improvements in real-time feedback and risk assessment. This study contributes to the field by offering a novel approach to posture correction that addresses existing gaps and provides practical, immediate benefits to users.
comment: Proceedings of the 1st International Workshop on Multimedia Computing for Health and Medicine at ACM MM'24
☆ La-SoftMoE CLIP for Unified Physical-Digital Face Attack Detection
Facial recognition systems are susceptible to both physical and digital attacks, posing significant security risks. Traditional approaches often treat these two attack types separately due to their distinct characteristics. Thus, when being combined attacked, almost all methods could not deal. Some studies attempt to combine the sparse data from both types of attacks into a single dataset and try to find a common feature space, which is often impractical due to the space is difficult to be found or even non-existent. To overcome these challenges, we propose a novel approach that uses the sparse model to handle sparse data, utilizing different parameter groups to process distinct regions of the sparse feature space. Specifically, we employ the Mixture of Experts (MoE) framework in our model, expert parameters are matched to tokens with varying weights during training and adaptively activated during testing. However, the traditional MoE struggles with the complex and irregular classification boundaries of this problem. Thus, we introduce a flexible self-adapting weighting mechanism, enabling the model to better fit and adapt. In this paper, we proposed La-SoftMoE CLIP, which allows for more flexible adaptation to the Unified Attack Detection (UAD) task, significantly enhancing the model's capability to handle diversity attacks. Experiment results demonstrate that our proposed method has SOTA performance.
☆ Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture
Open-set face forgery detection poses significant security threats and presents substantial challenges for existing detection models. These detectors primarily have two limitations: they cannot generalize across unknown forgery domains and inefficiently adapt to new data. To address these issues, we introduce an approach that is both general and parameter-efficient for face forgery detection. It builds on the assumption that different forgery source domains exhibit distinct style statistics. Previous methods typically require fully fine-tuning pre-trained networks, consuming substantial time and computational resources. In turn, we design a forgery-style mixture formulation that augments the diversity of forgery source domains, enhancing the model's generalizability across unseen domains. Drawing on recent advancements in vision transformers (ViT) for face forgery detection, we develop a parameter-efficient ViT-based detection model that includes lightweight forgery feature extraction modules and enables the model to extract global and local forgery clues simultaneously. We only optimize the inserted lightweight modules during training, maintaining the original ViT structure with its pre-trained ImageNet weights. This training strategy effectively preserves the informative pre-trained knowledge while flexibly adapting the model to the task of Deepfake detection. Extensive experimental results demonstrate that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters, representing an important step toward open-set Deepfake detection in the wild.
☆ Context-Aware Temporal Embedding of Objects in Video Data
In video analysis, understanding the temporal context is crucial for recognizing object interactions, event patterns, and contextual changes over time. The proposed model leverages adjacency and semantic similarities between objects from neighboring video frames to construct context-aware temporal object embeddings. Unlike traditional methods that rely solely on visual appearance, our temporal embedding model considers the contextual relationships between objects, creating a meaningful embedding space where temporally connected object's vectors are positioned in proximity. Empirical studies demonstrate that our context-aware temporal embeddings can be used in conjunction with conventional visual embeddings to enhance the effectiveness of downstream applications. Moreover, the embeddings can be used to narrate a video using a Large Language Model (LLM). This paper describes the intricate details of the proposed objective function to generate context-aware temporal object embeddings for video data and showcases the potential applications of the generated embeddings in video analysis and object classification tasks.
☆ Data-Centric Approach to Constrained Machine Learning: A Case Study on Conway's Game of Life
This paper focuses on a data-centric approach to machine learning applications in the context of Conway's Game of Life. Specifically, we consider the task of training a minimal architecture network to learn the transition rules of Game of Life for a given number of steps ahead, which is known to be challenging due to restrictions on the allowed number of trainable parameters. An extensive quantitative analysis showcases the benefits of utilizing a strategically designed training dataset, with its advantages persisting regardless of other parameters of the learning configuration, such as network initialization weights or optimization algorithm. Importantly, our findings highlight the integral role of domain expert insights in creating effective machine learning applications for constrained real-world scenarios.
☆ Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling ICPR
Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples via an acquisition function. For example, variational adversarial active learning (VAAL) leverages an adversarial network to discriminate unlabeled samples from labeled ones using latent space information. However, VAAL has the following shortcomings: (i) it does not exploit target task information, and (ii) unlabeled data is only used for sample selection rather than model training. To address these limitations, we introduce novel techniques that significantly improve the use of abundant unlabeled data during training and take into account the task information. Concretely, we propose an improved pseudo-labeling algorithm that leverages information from all unlabeled data in a semi-supervised manner, thus allowing a model to explore a richer data space. In addition, we develop a ranking-based loss prediction module that converts predicted relative ranking information into a differentiable ranking loss. This loss can be embedded as a rank variable into the latent space of a variational autoencoder and then trained with a discriminator in an adversarial fashion for sample selection. We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
comment: To be published in the 2024 International Conference on Pattern Recognition (ICPR)
☆ Symmetric masking strategy enhances the performance of Masked Image Modeling ICPR 2024
Masked Image Modeling (MIM) is a technique in self-supervised learning that focuses on acquiring detailed visual representations from unlabeled images by estimating the missing pixels in randomly masked sections. It has proven to be a powerful tool for the preliminary training of Vision Transformers (ViTs), yielding impressive results across various tasks. Nevertheless, most MIM methods heavily depend on the random masking strategy to formulate the pretext task. This strategy necessitates numerous trials to ascertain the optimal dropping ratio, which can be resource-intensive, requiring the model to be pre-trained for anywhere between 800 to 1600 epochs. Furthermore, this approach may not be suitable for all datasets. In this work, we propose a new masking strategy that effectively helps the model capture global and local features. Based on this masking strategy, SymMIM, our proposed training pipeline for MIM is introduced. SymMIM achieves a new SOTA accuracy of 85.9\% on ImageNet using ViT-Large and surpasses previous SOTA across downstream tasks such as image classification, semantic segmentation, object detection, instance segmentation tasks, and so on.
comment: Accepted at ICPR 2024
☆ Enhancing Vehicle Environmental Awareness via Federated Learning and Automatic Labeling
Vehicle environmental awareness is a crucial issue in improving road safety. Through a variety of sensors and vehicle-to-vehicle communication, vehicles can collect a wealth of data. However, to make these data useful, sensor data must be integrated effectively. This paper focuses on the integration of image data and vehicle-to-vehicle communication data. More specifically, our goal is to identify the locations of vehicles sending messages within images, a challenge termed the vehicle identification problem. In this paper, we employ a supervised learning model to tackle the vehicle identification problem. However, we face two practical issues: first, drivers are typically unwilling to share privacy-sensitive image data, and second, drivers usually do not engage in data labeling. To address these challenges, this paper introduces a comprehensive solution to the vehicle identification problem, which leverages federated learning and automatic labeling techniques in combination with the aforementioned supervised learning model. We have validated the feasibility of our proposed approach through experiments.
♻ ☆ UMERegRobust -- Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration ECCV 2024
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method).
comment: ECCV 2024
♻ ☆ GarmentAligner: Text-to-Garment Generation via Retrieval-augmented Multi-level Corrections ECCV 2024
General text-to-image models bring revolutionary innovation to the fields of arts, design, and media. However, when applied to garment generation, even the state-of-the-art text-to-image models suffer from fine-grained semantic misalignment, particularly concerning the quantity, position, and interrelations of garment components. Addressing this, we propose GarmentAligner, a text-to-garment diffusion model trained with retrieval-augmented multi-level corrections. To achieve semantic alignment at the component level, we introduce an automatic component extraction pipeline to obtain spatial and quantitative information of garment components from corresponding images and captions. Subsequently, to exploit component relationships within the garment images, we construct retrieval subsets for each garment by retrieval augmentation based on component-level similarity ranking and conduct contrastive learning to enhance the model perception of components from positive and negative samples. To further enhance the alignment of components across semantic, spatial, and quantitative granularities, we propose the utilization of multi-level correction losses that leverage detailed component information. The experimental findings demonstrate that GarmentAligner achieves superior fidelity and fine-grained semantic alignment when compared to existing competitors.
comment: Accepted by ECCV 2024
♻ ☆ Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar
We consider the problem of few-viewpoint 3D surface reconstruction using raw measurements from a lidar system. Lidar captures 3D scene geometry by emitting pulses of light to a target and recording the speed-of-light time delay of the reflected light. However, conventional lidar systems do not output the raw, captured waveforms of backscattered light; instead, they pre-process these data into a 3D point cloud. Since this procedure typically does not accurately model the noise statistics of the system, exploit spatial priors, or incorporate information about downstream tasks, it ultimately discards useful information that is encoded in raw measurements of backscattered light. Here, we propose to leverage raw measurements captured with a single-photon lidar system from multiple viewpoints to optimize a neural surface representation of a scene. The measurements consist of time-resolved photon count histograms, or transients, which capture information about backscattered light at picosecond time scales. Additionally, we develop new regularization strategies that improve robustness to photon noise, enabling accurate surface reconstruction with as few as 10 photons per pixel. Our method outperforms other techniques for few-viewpoint 3D reconstruction based on depth maps, point clouds, or conventional lidar as demonstrated in simulation and with captured data.
comment: https://weihan1.github.io/transientangelo/
♻ ☆ SPARK: Multi-Vision Sensor Perception and Reasoning Benchmark for Large-scale Vision-Language Models SP
Large-scale Vision-Language Models (LVLMs) have significantly advanced with text-aligned vision inputs. They have made remarkable progress in computer vision tasks by aligning text modality with vision inputs. There are also endeavors to incorporate multi-vision sensors beyond RGB, including thermal, depth, and medical X-ray images. However, we observe that current LVLMs view images taken from multi-vision sensors as if they were in the same RGB domain without considering the physical characteristics of multi-vision sensors. They fail to convey the fundamental multi-vision sensor information from the dataset and the corresponding contextual knowledge properly. Consequently, alignment between the information from the actual physical environment and the text is not achieved correctly, making it difficult to answer complex sensor-related questions that consider the physical environment. In this paper, we aim to establish a multi-vision Sensor Perception And Reasoning benchmarK called SPARK that can reduce the fundamental multi-vision sensor information gap between images and multi-vision sensors. We generated 6,248 vision-language test samples to investigate multi-vision sensory perception and multi-vision sensory reasoning on physical sensor knowledge proficiency across different formats, covering different types of sensor-related questions. We utilized these samples to assess ten leading LVLMs. The results showed that most models displayed deficiencies in multi-vision sensory reasoning to varying extents. Codes and data are available at https://github.com/top-yun/SPARK
comment: Codes and data are available at https://github.com/top-yun/SPARK
♻ ☆ Classifier-Free Guidance is a Predictor-Corrector
We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-powered distribution $p(x|c)^\gamma p(x)^{1-\gamma}$. Then, we clarify the behavior of CFG by showing that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the conditional distribution together with a Langevin dynamics corrector for a gamma-powered distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically understand CFG by embedding it in a broader design space of principled sampling methods.
comment: AB and PN contributed equally. v2: Fixed typos
♻ ☆ Low-light phase retrieval with implicit generative priors
Phase retrieval (PR) is fundamentally important in scientific imaging and is crucial for nanoscale techniques like coherent diffractive imaging (CDI). Low radiation dose imaging is essential for applications involving radiation-sensitive samples. However, most PR methods struggle in low-dose scenarios due to high shot noise. Recent advancements in optical data acquisition setups, such as in-situ CDI, have shown promise for low-dose imaging, but they rely on a time series of measurements, making them unsuitable for single-image applications. Similarly, data-driven phase retrieval techniques are not easily adaptable to data-scarce situations. Zero-shot deep learning methods based on pre-trained and implicit generative priors have been effective in various imaging tasks but have shown limited success in PR. In this work, we propose low-dose deep image prior (LoDIP), which combines in-situ CDI with the power of implicit generative priors to address single-image low-dose phase retrieval. Quantitative evaluations demonstrate LoDIP's superior performance in this task and its applicability to real experimental scenarios.
♻ ☆ Spiking NeRF: Representing the Real-World Geometry by a Discontinuous Representation
A crucial reason for the success of existing NeRF-based methods is to build a neural density field for the geometry representation via multiple perceptron layers (MLPs). MLPs are continuous functions, however, real geometry or density field is frequently discontinuous at the interface between the air and the surface. Such a contrary brings the problem of unfaithful geometry representation. To this end, this paper proposes spiking NeRF, which leverages spiking neurons and a hybrid Artificial Neural Network (ANN)-Spiking Neural Network (SNN) framework to build a discontinuous density field for faithful geometry representation. Specifically, we first demonstrate the reason why continuous density fields will bring inaccuracy. Then, we propose to use the spiking neurons to build a discontinuous density field. We conduct a comprehensive analysis for the problem of existing spiking neuron models and then provide the numerical relationship between the parameter of the spiking neuron and the theoretical accuracy of geometry. Based on this, we propose a bounded spiking neuron to build the discontinuous density field. Our method achieves SOTA performance. The source code and the supplementary material are available at https://github.com/liaozhanfeng/Spiking-NeRF.
♻ ☆ Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery ICPR 2024
Discovering novel concepts in unlabelled datasets and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where novel classes are learned by jointly accessing a related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-trained model (e.g., class-iNCD). In this work we challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly, without needing any related labelled set. In detail, we propose to exploit the richer priors from strong self-supervised pre-trained models (PTM). To this end, we propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines when compared with sophisticated state-of-the-art methods. The code is open source.
comment: Accepted as a conference paper to ICPR 2024; The code is opensource
♻ ☆ A Heterogeneous Dynamic Convolutional Neural Network for Image Super-resolution
Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, robustness of obtained models may have challenges in varying scenes. Bigger differences of a network architecture are beneficial to extract more complementary structural information to enhance robustness of an obtained super-resolution model. In this paper, we present a heterogeneous dynamic convolutional network in image super-resolution (HDSRNet). To capture more information, HDSRNet is implemented by a heterogeneous parallel network. The upper network can facilitate more contexture information via stacked heterogeneous blocks to improve effects of image super-resolution. Each heterogeneous block is composed of a combination of a dilated, dynamic, common convolutional layers, ReLU and residual learning operation. It can not only adaptively adjust parameters, according to different inputs, but also prevent long-term dependency problem. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed HDSRNet is effective to deal with image resolving. The code of HDSRNet can be obtained at https://github.com/hellloxiaotian/HDSRNet.
comment: 11pages, 7 figures
♻ ☆ Physics-Inspired Generative Models in Medical Imaging: A Review
Physics-inspired Generative Models (GMs), in particular Diffusion Models (DMs) and Poisson Flow Models (PFMs), enhance Bayesian methods and promise great utility in medical imaging. This review examines the transformative role of such generative methods. First, a variety of physics-inspired GMs, including Denoising Diffusion Probabilistic Models (DDPMs), Score-based Diffusion Models (SDMs), and Poisson Flow Generative Models (PFGMs and PFGM++), are revisited, with an emphasis on their accuracy, robustness as well as acceleration. Then, major applications of physics-inspired GMs in medical imaging are presented, comprising image reconstruction, image generation, and image analysis. Finally, future research directions are brainstormed, including unification of physics-inspired GMs, integration with Vision-Language Models (VLMs), and potential novel applications of GMs. Since the development of generative methods has been rapid, this review will hopefully give peers and learners a timely snapshot of this new family of physics-driven generative models and help capitalize their enormous potential for medical imaging.
♻ ☆ MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark
With the development of Multimodal Large Language Models (MLLMs), the evaluation of multimodal models in the context of mathematical problems has become a valuable research field. Multimodal visual-textual mathematical reasoning serves as a critical indicator for evaluating the comprehension and complex multi-step quantitative reasoning abilities of MLLMs. However, previous multimodal math benchmarks have not sufficiently integrated visual and textual information. To address this gap, we proposed MathScape, a new benchmark that emphasizes the understanding and application of combined visual and textual information. MathScape is designed to evaluate photo-based math problem scenarios, assessing the theoretical understanding and application ability of MLLMs through a categorical hierarchical approach. We conduct a multi-dimensional evaluation on 11 advanced MLLMs, revealing that our benchmark is challenging even for the most sophisticated models. By analyzing the evaluation results, we identify the limitations of MLLMs, offering valuable insights for enhancing model performance.
♻ ☆ Object Recognition from Scientific Document based on Compartment Refinement Framework
With the rapid development of the internet in the past decade, it has become increasingly important to extract valuable information from vast resources efficiently, which is crucial for establishing a comprehensive digital ecosystem, particularly in the context of research surveys and comprehension. The foundation of these tasks focuses on accurate extraction and deep mining of data from scientific documents, which are essential for building a robust data infrastructure. However, parsing raw data or extracting data from complex scientific documents have been ongoing challenges. Current data extraction methods for scientific documents typically use rule-based (RB) or machine learning (ML) approaches. However, using rule-based methods can incur high coding costs for articles with intricate typesetting. Conversely, relying solely on machine learning methods necessitates annotation work for complex content types within the scientific document, which can be costly. Additionally, few studies have thoroughly defined and explored the hierarchical layout within scientific documents. The lack of a comprehensive definition of the internal structure and elements of the documents indirectly impacts the accuracy of text classification and object recognition tasks. From the perspective of analyzing the standard layout and typesetting used in the specified publication, we propose a new document layout analysis framework called CTBR(Compartment & Text Blocks Refinement). Firstly, we define scientific documents into hierarchical divisions: base domain, compartment, and text blocks. Next, we conduct an in-depth exploration and classification of the meanings of text blocks. Finally, we utilize the results of text block classification to implement object recognition within scientific documents based on rule-based compartment segmentation.
comment: The extension of this paper has been published in SN Computer Science. arXiv admin note: text overlap with arXiv:2305.17401
♻ ☆ SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models
Computer-assisted surgery (CAS) systems are designed to assist surgeons during procedures, thereby reducing complications and enhancing patient care. Training machine learning models for these systems requires a large corpus of annotated datasets, which is challenging to obtain in the surgical domain due to patient privacy concerns and the significant labeling effort required from doctors. Previous methods have explored unpaired image translation using generative models to create realistic surgical images from simulations. However, these approaches have struggled to produce high-quality, diverse surgical images. In this work, we introduce \emph{SurgicaL-CD}, a consistency-distilled diffusion method to generate realistic surgical images with only a few sampling steps without paired data. We evaluate our approach on three datasets, assessing the generated images in terms of quality and utility as downstream training datasets. Our results demonstrate that our method outperforms GANs and diffusion-based approaches. Our code is available at https://gitlab.com/nct_tso_public/gan2diffusion.
♻ ☆ PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments
Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.
comment: Project Page: https://air-discover.github.io/PreAfford/
♻ ☆ TokenPacker: Efficient Visual Projector for Multimodal LLM
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM) in a Multimodal LLM (MLLM). Typically, MLLMs adopt a simple MLP to preserve all visual contexts via one-to-one transformation. However, the visual tokens are redundant and can be considerably increased when dealing with high-resolution images, impairing the efficiency of MLLMs significantly. Some recent works have introduced resampler or abstractor to reduce the number of resulting visual tokens. Unfortunately, they fail to capture finer details and undermine the visual reasoning capabilities of MLLMs. In this work, we propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens. In specific, we first interpolate the visual features as a low-resolution point query, providing the overall visual representation as the foundation. Then, we introduce a region-to-point injection module that utilizes high-resolution, multi-level region-based cues as fine-grained reference keys and values, allowing them to be fully absorbed within the corresponding local context region. This step effectively updates the coarse point query, transforming it into an enriched one for the subsequent LLM reasoning. Extensive experiments demonstrate that our approach compresses the visual tokens by 75%~89%, while achieves comparable or even better performance across diverse benchmarks with significantly higher efficiency. The source codes can be found at https://github.com/CircleRadon/TokenPacker.
comment: 16 pages, Codes:https://github.com/CircleRadon/TokenPacker
♻ ☆ MAML MOT: Multiple Object Tracking based on Meta-Learning
With the advancement of video analysis technology, the multi-object tracking (MOT) problem in complex scenes involving pedestrians is gaining increasing importance. This challenge primarily involves two key tasks: pedestrian detection and re-identification. While significant progress has been achieved in pedestrian detection tasks in recent years, enhancing the effectiveness of re-identification tasks remains a persistent challenge. This difficulty arises from the large total number of pedestrian samples in multi-object tracking datasets and the scarcity of individual instance samples. Motivated by recent rapid advancements in meta-learning techniques, we introduce MAML MOT, a meta-learning-based training approach for multi-object tracking. This approach leverages the rapid learning capability of meta-learning to tackle the issue of sample scarcity in pedestrian re-identification tasks, aiming to improve the model's generalization performance and robustness. Experimental results demonstrate that the proposed method achieves high accuracy on mainstream datasets in the MOT Challenge. This offers new perspectives and solutions for research in the field of pedestrian multi-object tracking.
♻ ☆ Collaborative Control for Geometry-Conditioned PBR Image Generation
Graphics pipelines require physically-based rendering (PBR) materials, yet current 3D content generation approaches are built on RGB models. We propose to model the PBR image distribution directly, avoiding photometric inaccuracies in RGB generation and the inherent ambiguity in extracting PBR from RGB. As existing paradigms for cross-modal fine-tuning are not suited for PBR generation due to both a lack of data and the high dimensionality of the output modalities, we propose to train a new PBR model that is tightly linked to a frozen RGB model using a novel cross-network communication paradigm. As the base RGB model is fully frozen, the proposed method retains its general performance and remains compatible with e.g. IPAdapters for that base model.
comment: 19 pages, 10 figures; Project page: https://unity-research.github.io/holo-gen/
♻ ☆ Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification
In recent years, the emergence of Transformers with self-attention mechanism has revolutionized the hyperspectral image (HSI) classification. However, these models face major challenges in computational efficiency, as their complexity increases quadratically with the sequence length. The Mamba architecture, leveraging a state space model (SSM), offers a more efficient alternative to Transformers. This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model in which, a token generation module first converts the HSI patch into spatial-spectral tokens. These tokens are then processed by morphological operations, which compute structural and shape information using depthwise separable convolutional operations. The extracted information is enhanced in a feature enhancement module that adjusts the spatial and spectral tokens based on the center region of the HSI sample, allowing for effective information fusion within each block. Subsequently, the tokens are refined through a multi-head self-attention which further improves the feature space. Finally, the combined information is fed into the state space block for classification and the creation of the ground truth map. Experiments on widely used HSI datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models. The source code will be made publicly available at \url{https://github.com/MHassaanButt/MorpMamba}.
♻ ☆ EMAG: Ego-motion Aware and Generalizable 2D Hand Forecasting from Egocentric Videos ECCV'24
Predicting future human behavior from egocentric videos is a challenging but critical task for human intention understanding. Existing methods for forecasting 2D hand positions rely on visual representations and mainly focus on hand-object interactions. In this paper, we investigate the hand forecasting task and tackle two significant issues that persist in the existing methods: (1) 2D hand positions in future frames are severely affected by ego-motions in egocentric videos; (2) prediction based on visual information tends to overfit to background or scene textures, posing a challenge for generalization on novel scenes or human behaviors. To solve the aforementioned problems, we propose EMAG, an ego-motion-aware and generalizable 2D hand forecasting method. In response to the first problem, we propose a method that considers ego-motion, represented by a sequence of homography matrices of two consecutive frames. We further leverage modalities such as optical flow, trajectories of hands and interacting objects, and ego-motions, thereby alleviating the second issue. Extensive experiments on two large-scale egocentric video datasets, Ego4D and EPIC-Kitchens 55, verify the effectiveness of the proposed method. In particular, our model outperforms prior methods by 1.7% and 7.0% on intra and cross-dataset evaluations, respectively. Project page: https://masashi-hatano.github.io/EMAG/
comment: Accepted at HANDS Workshop@ECCV'24
♻ ☆ Robust Diffusion Models for Adversarial Purification
Diffusion models (DMs) based adversarial purification (AP) has shown to be the most powerful alternative to adversarial training (AT). However, these methods neglect the fact that pre-trained diffusion models themselves are not robust to adversarial attacks as well. Additionally, the diffusion process can easily destroy semantic information and generate a high quality image but totally different from the original input image after the reverse process, leading to degraded standard accuracy. To overcome these issues, a natural idea is to harness adversarial training strategy to retrain or fine-tune the pre-trained diffusion model, which is computationally prohibitive. We propose a novel robust reverse process with adversarial guidance, which is independent of given pre-trained DMs and avoids retraining or fine-tuning the DMs. This robust guidance can not only ensure to generate purified examples retaining more semantic content but also mitigate the accuracy-robustness trade-off of DMs for the first time, which also provides DM-based AP an efficient adaptive ability to new attacks. Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to demonstrate that our method achieves the state-of-the-art results and exhibits generalization against different attacks.
♻ ☆ Semi-Supervised Unconstrained Head Pose Estimation in the Wild
Existing research on unconstrained in-the-wild head pose estimation suffers from the flaws of its datasets, which consist of either numerous samples by non-realistic synthesis or constrained collection, or small-scale natural images yet with plausible manual annotations. To alleviate it, we propose the first semi-supervised unconstrained head pose estimation method SemiUHPE, which can leverage abundant easily available unlabeled head images. Technically, we choose semi-supervised rotation regression and adapt it to the error-sensitive and label-scarce problem of unconstrained head pose. Our method is based on the observation that the aspect-ratio invariant cropping of wild heads is superior to the previous landmark-based affine alignment given that landmarks of unconstrained human heads are usually unavailable, especially for less-explored non-frontal heads. Instead of using an empirically fixed threshold to filter out pseudo labeled heads, we propose dynamic entropy based filtering to adaptively remove unlabeled outliers as training progresses by updating the threshold in multiple stages. We then revisit the design of weak-strong augmentations and improve it by devising two novel head-oriented strong augmentations, termed pose-irrelevant cut-occlusion and pose-altering rotation consistency respectively. Extensive experiments and ablation studies show that SemiUHPE outperforms existing methods greatly on public benchmarks under both the front-range and full-range settings. Code is released in \url{https://github.com/hnuzhy/SemiUHPE}.
comment: 15 pages. Semi-Supervised Unconstrained Head Pose Estimation
♻ ☆ UMERegRobust - Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration ECCV 2024
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method).
comment: ECCV 2024
♻ ☆ Exploring Multi-modal Neural Scene Representations With Applications on Thermal Imaging ECCV
Neural Radiance Fields (NeRFs) quickly evolved as the new de-facto standard for the task of novel view synthesis when trained on a set of RGB images. In this paper, we conduct a comprehensive evaluation of neural scene representations, such as NeRFs, in the context of multi-modal learning. Specifically, we present four different strategies of how to incorporate a second modality, other than RGB, into NeRFs: (1) training from scratch independently on both modalities; (2) pre-training on RGB and fine-tuning on the second modality; (3) adding a second branch; and (4) adding a separate component to predict (color) values of the additional modality. We chose thermal imaging as second modality since it strongly differs from RGB in terms of radiosity, making it challenging to integrate into neural scene representations. For the evaluation of the proposed strategies, we captured a new publicly available multi-view dataset, ThermalMix, consisting of six common objects and about 360 RGB and thermal images in total. We employ cross-modality calibration prior to data capturing, leading to high-quality alignments between RGB and thermal images. Our findings reveal that adding a second branch to NeRF performs best for novel view synthesis on thermal images while also yielding compelling results on RGB. Finally, we also show that our analysis generalizes to other modalities, including near-infrared images and depth maps. Project page: https://mert-o.github.io/ThermalNeRF/.
comment: Accepted to ECCVW'24
♻ ☆ Linear Combinations of Patches are Unreasonably Effective for Single-Image Denoising
In the past decade, deep neural networks have revolutionized image denoising in achieving significant accuracy improvements by learning on datasets composed of noisy/clean image pairs. However, this strategy is extremely dependent on training data quality, which is a well-established weakness. To alleviate the requirement to learn image priors externally, single-image (a.k.a., self-supervised or zero-shot) methods perform denoising solely based on the analysis of the input noisy image without external dictionary or training dataset. This work investigates the effectiveness of linear combinations of patches for denoising under this constraint. Although conceptually very simple, we show that linear combinations of patches are enough to achieve state-of-the-art performance. The proposed parametric approach relies on quadratic risk approximation via multiple pilot images to guide the estimation of the combination weights. Experiments on images corrupted artificially with Gaussian noise as well as on real-world noisy images demonstrate that our method is on par with the very best single-image denoisers, outperforming the recent neural network based techniques, while being much faster and fully interpretable.
♻ ☆ Seeing is not Believing: An Identity Hider for Human Vision Privacy Protection
Massive captured face images are stored in the database for the identification of individuals. However, these images can be observed unintentionally by data managers, which is not at the will of individuals and may cause privacy violations. Existing protection schemes can maintain identifiability but slightly change the facial appearance, rendering it still susceptible to the visual perception of the original identity by data managers. In this paper, we propose an effective identity hider for human vision protection, which can significantly change appearance to visually hide identity while allowing identification for face recognizers. Concretely, the identity hider benefits from two specially designed modules: 1) The virtual face generation module generates a virtual face with a new appearance by manipulating the latent space of StyleGAN2. In particular, the virtual face has a similar parsing map to the original face, supporting other vision tasks such as head pose detection. 2) The appearance transfer module transfers the appearance of the virtual face into the original face via attribute replacement. Meanwhile, identity information can be preserved well with the help of the disentanglement networks. In addition, diversity and background preservation are supported to meet the various requirements. Extensive experiments demonstrate that the proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
♻ ☆ Multimodal Analysis of White Blood Cell Differentiation in Acute Myeloid Leukemia Patients using a β-Variational Autoencoder MICCAI 2024
Biomedical imaging and RNA sequencing with single-cell resolution improves our understanding of white blood cell diseases like leukemia. By combining morphological and transcriptomic data, we can gain insights into cellular functions and trajectoriess involved in blood cell differentiation. However, existing methodologies struggle with integrating morphological and transcriptomic data, leaving a significant research gap in comprehensively understanding the dynamics of cell differentiation. Here, we introduce an unsupervised method that explores and reconstructs these two modalities and uncovers the relationship between different subtypes of white blood cells from human peripheral blood smears in terms of morphology and their corresponding transcriptome. Our method is based on a beta-variational autoencoder ({\ss}-VAE) with a customized loss function, incorporating a R-CNN architecture to distinguish single-cell from background and to minimize any interference from artifacts. This implementation of {\ss}-VAE shows good reconstruction capability along with continuous latent embeddings, while maintaining clear differentiation between single-cell classes. Our novel approach is especially helpful to uncover the correlation of two latent features in complex biological processes such as formation of granules in the cell (granulopoiesis) with gene expression patterns. It thus provides a unique tool to improve the understanding of white blood cell maturation for biomedicine and diagnostics.
comment: Accepted for publication at MICCAI 2024 workshop on AI for Imaging Genomics Learning (AIIG)
♻ ☆ AnyDesign: Versatile Area Fashion Editing via Mask-Free Diffusion
Fashion image editing aims to modify a person's appearance based on a given instruction. Existing methods require auxiliary tools like segmenters and keypoint extractors, lacking a flexible and unified framework. Moreover, these methods are limited in the variety of clothing types they can handle, as most datasets focus on people in clean backgrounds and only include generic garments such as tops, pants, and dresses. These limitations restrict their applicability in real-world scenarios. In this paper, we first extend an existing dataset for human generation to include a wider range of apparel and more complex backgrounds. This extended dataset features people wearing diverse items such as tops, pants, dresses, skirts, headwear, scarves, shoes, socks, and bags. Additionally, we propose AnyDesign, a diffusion-based method that enables mask-free editing on versatile areas. Users can simply input a human image along with a corresponding prompt in either text or image format. Our approach incorporates Fashion DiT, equipped with a Fashion-Guidance Attention (FGA) module designed to fuse explicit apparel types and CLIP-encoded apparel features. Both Qualitative and quantitative experiments demonstrate that our method delivers high-quality fashion editing and outperforms contemporary text-guided fashion editing methods.
♻ ☆ OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation
Recent advancements in 3D reconstruction technologies have paved the way for high-quality and real-time rendering of complex 3D scenes. Despite these achievements, a notable challenge persists: it is difficult to precisely reconstruct specific objects from large scenes. Current scene reconstruction techniques frequently result in the loss of object detail textures and are unable to reconstruct object portions that are occluded or unseen in views. To address this challenge, we delve into the meticulous 3D reconstruction of specific objects within large scenes and propose a framework termed OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation. Specifically, we proposed a novel 3D target segmentation technique based on 2D Gaussian Splatting, which segments 3D consistent target masks in multi-view scene images and generates a preliminary target model. Moreover, to reconstruct the unseen portions of the target, we propose a novel target replenishment technique driven by large-scale generative diffusion priors. We demonstrate that our method can accurately reconstruct specific targets from large scenes, both quantitatively and qualitatively. Our experiments show that OMEGAS significantly outperforms existing reconstruction methods across various scenarios. Our project page is at: https://github.com/CrystalWlz/OMEGAS
♻ ☆ View-Consistent 3D Editing with Gaussian Splatting ECCV 2024
The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further video results are shown in http://vcedit.github.io.
comment: accepted to ECCV 2024
♻ ☆ Multi-rater Prompting for Ambiguous Medical Image Segmentation
Multi-rater annotations commonly occur when medical images are independently annotated by multiple experts (raters). In this paper, we tackle two challenges arisen in multi-rater annotations for medical image segmentation (called ambiguous medical image segmentation): (1) How to train a deep learning model when a group of raters produces a set of diverse but plausible annotations, and (2) how to fine-tune the model efficiently when computation resources are not available for re-training the entire model on a different dataset domain. We propose a multi-rater prompt-based approach to address these two challenges altogether. Specifically, we introduce a series of rater-aware prompts that can be plugged into the U-Net model for uncertainty estimation to handle multi-annotation cases. During the prompt-based fine-tuning process, only 0.3% of learnable parameters are required to be updated comparing to training the entire model. Further, in order to integrate expert consensus and disagreement, we explore different multi-rater incorporation strategies and design a mix-training strategy for comprehensive insight learning. Extensive experiments verify the effectiveness of our new approach for ambiguous medical image segmentation on two public datasets while alleviating the heavy burden of model re-training.
comment: Accepted by BIBM 2024
♻ ☆ The All-Seeing Project V2: Towards General Relation Comprehension of the Open World ECCV2024
We present the All-Seeing Project V2: a new model and dataset designed for understanding object relations in images. Specifically, we propose the All-Seeing Model V2 (ASMv2) that integrates the formulation of text generation, object localization, and relation comprehension into a relation conversation (ReC) task. Leveraging this unified task, our model excels not only in perceiving and recognizing all objects within the image but also in grasping the intricate relation graph between them, diminishing the relation hallucination often encountered by Multi-modal Large Language Models (MLLMs). To facilitate training and evaluation of MLLMs in relation understanding, we created the first high-quality ReC dataset ({AS-V2) which is aligned with the format of standard instruction tuning data. In addition, we design a new benchmark, termed Circular-based Relation Probing Evaluation (CRPE) for comprehensively evaluating the relation comprehension capabilities of MLLMs. Notably, our ASMv2 achieves an overall accuracy of 52.04 on this relation-aware benchmark, surpassing the 43.14 of LLaVA-1.5 by a large margin. We hope that our work can inspire more future research and contribute to the evolution towards artificial general intelligence. Our project is released at https://github.com/OpenGVLab/all-seeing.
comment: Accepted to ECCV2024 main conference
♻ ☆ AICL: Action In-Context Learning for Video Diffusion Model
The open-domain video generation models are constrained by the scale of the training video datasets, and some less common actions still cannot be generated. Some researchers explore video editing methods and achieve action generation by editing the spatial information of the same action video. However, this method mechanically generates identical actions without understanding, which does not align with the characteristics of open-domain scenarios. In this paper, we propose AICL, which empowers the generative model with the ability to understand action information in reference videos, similar to how humans do, through in-context learning. Extensive experiments demonstrate that AICL effectively captures the action and achieves state-of-the-art generation performance across three typical video diffusion models on five metrics when using randomly selected categories from non-training datasets.
♻ ☆ LLaVA-VSD: Large Language-and-Vision Assistant for Visual Spatial Description
Visual Spatial Description (VSD) aims to generate texts that describe the spatial relationships between objects within images. Traditional visual spatial relationship classification (VSRC) methods typically output the spatial relationship between two objects in an image, often neglecting world knowledge and lacking general language capabilities. In this paper, we propose a Large Language-and-Vision Assistant for Visual Spatial Description, named LLaVA-VSD, which is designed for the classification, description, and open-ended description of visual spatial relationships. Specifically, the model first constructs a VSD instruction-following dataset using given figure-caption pairs for the three tasks. It then employs LoRA to fine-tune a Large Language and Vision Assistant for VSD, which has 13 billion parameters and supports high-resolution images. Finally, a large language model (Qwen-2) is used to refine the generated sentences, enhancing their diversity and accuracy. LLaVA-VSD demonstrates excellent multimodal conversational capabilities and can follow open-ended instructions to assist with inquiries about object relationships in images.
♻ ☆ Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting
Open-vocabulary 3D scene understanding presents a significant challenge in computer vision, with wide-ranging applications in embodied agents and augmented reality systems. Existing methods adopt neurel rendering methods as 3D representations and jointly optimize color and semantic features to achieve rendering and scene understanding simultaneously. In this paper, we introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting. Our key idea is to distill knowledge from 2D pre-trained models to 3D Gaussians. Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features from pre-trained image encoders into a novel semantic component of 3D Gaussians, which is based on spatial relationship and need no additional training. We further build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference. The quantitative results on ScanNet segmentation and LERF object localization demonstates the superior performance of our method. Additionally, we explore several applications of Semantic Gaussians including object part segmentation, instance segmentation, scene editing, and spatiotemporal segmentation with better qualitative results over 2D and 3D baselines, highlighting its versatility and effectiveness on supporting diverse downstream tasks.
comment: Project page: see https://semantic-gaussians.github.io
♻ ☆ Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel pipeline to acquire the robust purifier model, named Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks, resulting in the robustness generalization to unseen attacks, and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves optimal robustness and exhibits generalization ability against unseen attacks.
♻ ☆ Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection with Single Point Supervision
Training a convolutional neural network (CNN) to detect infrared small targets in a fully supervised manner has gained remarkable research interests in recent years, but is highly labor expensive since a large number of per-pixel annotations are required. To handle this problem, in this paper, we make the first attempt to achieve infrared small target detection with point-level supervision. Interestingly, during the training phase supervised by point labels, we discover that CNNs first learn to segment a cluster of pixels near the targets, and then gradually converge to predict groundtruth point labels. Motivated by this "mapping degeneration" phenomenon, we propose a label evolution framework named label evolution with single point supervision (LESPS) to progressively expand the point label by leveraging the intermediate predictions of CNNs. In this way, the network predictions can finally approximate the updated pseudo labels, and a pixel-level target mask can be obtained to train CNNs in an end-to-end manner. We conduct extensive experiments with insightful visualizations to validate the effectiveness of our method. Experimental results show that CNNs equipped with LESPS can well recover the target masks from corresponding point labels, {and can achieve over 70% and 95% of their fully supervised performance in terms of pixel-level intersection over union (IoU) and object-level probability of detection (Pd), respectively. Code is available at https://github.com/XinyiYing/LESPS.
♻ ☆ S$^3$Attention: Improving Long Sequence Attention with Smoothed Skeleton Sketching
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks. Various improved Attention structures are proposed to reduce the computation cost by inducing low rankness and approximating the whole sequence by sub-sequences. The most challenging part of those approaches is maintaining the proper balance between information preservation and computation reduction: the longer sub-sequences used, the better information is preserved, but at the price of introducing more noise and computational costs. In this paper, we propose a smoothed skeleton sketching based Attention structure, coined S$^3$Attention, which significantly improves upon the previous attempts to negotiate this trade-off. S$^3$Attention has two mechanisms to effectively minimize the impact of noise while keeping the linear complexity to the sequence length: a smoothing block to mix information over long sequences and a matrix sketching method that simultaneously selects columns and rows from the input matrix. We verify the effectiveness of S$^3$Attention both theoretically and empirically. Extensive studies over Long Range Arena (LRA) datasets and six time-series forecasting show that S$^3$Attention significantly outperforms both vanilla Attention and other state-of-the-art variants of Attention structures.
♻ ☆ UniM$^2$AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving
Masked Autoencoders (MAE) play a pivotal role in learning potent representations, delivering outstanding results across various 3D perception tasks essential for autonomous driving. In real-world driving scenarios, it's commonplace to deploy multiple sensors for comprehensive environment perception. Despite integrating multi-modal features from these sensors can produce rich and powerful features, there is a noticeable challenge in MAE methods addressing this integration due to the substantial disparity between the different modalities. This research delves into multi-modal Masked Autoencoders tailored for a unified representation space in autonomous driving, aiming to pioneer a more efficient fusion of two distinct modalities. To intricately marry the semantics inherent in images with the geometric intricacies of LiDAR point clouds, we propose UniM$^2$AE. This model stands as a potent yet straightforward, multi-modal self-supervised pre-training framework, mainly consisting of two designs. First, it projects the features from both modalities into a cohesive 3D volume space to intricately marry the bird's eye view (BEV) with the height dimension. The extension allows for a precise representation of objects and reduces information loss when aligning multi-modal features. Second, the Multi-modal 3D Interactive Module (MMIM) is invoked to facilitate the efficient inter-modal interaction during the interaction process. Extensive experiments conducted on the nuScenes Dataset attest to the efficacy of UniM$^2$AE, indicating enhancements in 3D object detection and BEV map segmentation by 1.2\% NDS and 6.5\% mIoU, respectively. The code is available at https://github.com/hollow-503/UniM2AE.
comment: Code available at https://github.com/hollow-503/UniM2AE
♻ ☆ TWLV-I: Analysis and Insights from Holistic Evaluation on Video Foundation Models
In this work, we discuss evaluating video foundation models in a fair and robust manner. Unlike language or image foundation models, many video foundation models are evaluated with differing parameters (such as sampling rate, number of frames, pretraining steps, etc.), making fair and robust comparisons challenging. Therefore, we present a carefully designed evaluation framework for measuring two core capabilities of video comprehension: appearance and motion understanding. Our findings reveal that existing video foundation models, whether text-supervised like UMT or InternVideo2, or self-supervised like V-JEPA, exhibit limitations in at least one of these capabilities. As an alternative, we introduce TWLV-I, a new video foundation model that constructs robust visual representations for both motion- and appearance-based videos. Based on the average top-1 accuracy of linear probing on five action recognition benchmarks, pretrained only on publicly accessible datasets, our model shows a 4.6%p improvement compared to V-JEPA (ViT-L) and a 7.7%p improvement compared to UMT (ViT-L). Even when compared to much larger models, our model demonstrates a 7.2%p improvement compared to DFN (ViT-H), a 2.7%p improvement compared to V-JEPA (ViT-H) and a 2.8%p improvement compared to InternVideo2 (ViT-g). We provide embedding vectors obtained by TWLV-I from videos of several commonly used video benchmarks, along with evaluation source code that can directly utilize these embeddings. The code is available at https://github.com/twelvelabs-io/video-embeddings-evaluation-framework.
comment: 17 pages; Twelve Labs Technical Report
♻ ☆ Accurate Explanation Model for Image Classifiers using Class Association Embedding ICDE
Image classification is a primary task in data analysis where explainable models are crucially demanded in various applications. Although amounts of methods have been proposed to obtain explainable knowledge from the black-box classifiers, these approaches lack the efficiency of extracting global knowledge regarding the classification task, thus is vulnerable to local traps and often leads to poor accuracy. In this study, we propose a generative explanation model that combines the advantages of global and local knowledge for explaining image classifiers. We develop a representation learning method called class association embedding (CAE), which encodes each sample into a pair of separated class-associated and individual codes. Recombining the individual code of a given sample with altered class-associated code leads to a synthetic real-looking sample with preserved individual characters but modified class-associated features and possibly flipped class assignments. A building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones. The extracted feature space forms a low-dimensional manifold that visualizes the classification decision patterns. Explanation on each individual sample can be then achieved in a counter-factual generation manner which continuously modifies the sample in one direction, by shifting its class-associated code along a guided path, until its classification outcome is changed. We compare our method with state-of-the-art ones on explaining image classification tasks in the form of saliency maps, demonstrating that our method achieves higher accuracies. The code is available at https://github.com/xrt11/XAI-CODE.
comment: 2024 IEEE 40th International Conference on Data Engineering (ICDE)
♻ ☆ RSTAR: Rotational Streak Artifact Reduction in 4D CBCT using Separable and Circular Convolutions
Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.
♻ ☆ Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring
We are interested in developing an automated system for detection of organized movements in human crowds. Computer vision algorithms can extract information from videos of crowded scenes and automatically detect and track groups of individuals undergoing organized motion that represents an anomalous behavior in the context of conflict aversion. Our system can detect organized cohorts against the background of randomly moving objects and we can estimate the number of participants in an organized cohort, the speed and direction of motion in real time, within three to four video frames, which is less than one second from the onset of motion captured on a CCTV. We have performed preliminary analysis in this context in biological cell data containing up to four thousand objects per frame and will extend this numerically to a hundred-fold for public safety applications. We envisage using the existing infrastructure of video cameras for acquiring image datasets on-the-fly and deploying an easy-to-use data-driven software system for parsing of significant events by analyzing image sequences taken inside and outside of sports stadiums or other public venues. Other prospective users are organizers of political rallies, civic and wildlife organizations, security firms, and the military. We will optimize the performance of the software by implementing a classification method able to distinguish between activities posing a threat and those not posing a threat.
♻ ☆ ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling
In recent years, studies on image generation models of spiking neural networks (SNNs) have gained the attention of many researchers. Variational autoencoders (VAEs), as one of the most popular image generation models, have attracted a lot of work exploring their SNN implementation. Due to the constrained binary representation in SNNs, existing SNN VAE methods implicitly construct the latent space by an elaborated autoregressive network and use the network outputs as the sampling variables. However, this unspecified implicit representation of the latent space will increase the difficulty of generating high-quality images and introduces additional network parameters. In this paper, we propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution and design a reparameterizable spiking sampling method. Specifically, we construct the prior and posterior of the latent space as a Poisson distribution using the firing rate of the spiking neurons. Subsequently, we propose a reparameterizable Poisson spiking sampling method, which is free from the additional network. Comprehensive experiments have been conducted, and the experimental results show that the proposed ESVAE outperforms previous SNN VAE methods in reconstructed & generated images quality. In addition, experiments demonstrate that ESVAE's encoder is able to retain the original image information more efficiently, and the decoder is more robust. The source code is available at https://github.com/QgZhan/ESVAE.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography
Ultrasound imaging is pivotal in various medical diagnoses due to its non-invasive nature and safety. In clinical practice, the accuracy and precision of ultrasound image analysis are critical. Recent advancements in deep learning are showing great capacity of processing medical images. However, the data hungry nature of deep learning and the shortage of high-quality ultrasound image training data suppress the development of deep learning based ultrasound analysis methods. To address these challenges, we introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data. This model incorporates semantic discriminators within a CycleGAN framework to ensure that critical anatomical details are preserved during the style transfer process. The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system. The data and code will be available at https://github.com/yhsong98/ct-us-i2i-translation.
comment: This paper is accepted by 2024 IEEE International Conference on Cyborg and Bionic Systems
♻ ☆ ControlDreamer: Blending Geometry and Style in Text-to-3D
Recent advancements in text-to-3D generation have significantly contributed to the automation and democratization of 3D content creation. Building upon these developments, we aim to address the limitations of current methods in blending geometries and styles in text-to-3D generation. We introduce multi-view ControlNet, a novel depth-aware multi-view diffusion model trained on generated datasets from a carefully curated text corpus. Our multi-view ControlNet is then integrated into our two-stage pipeline, ControlDreamer, enabling text-guided generation of stylized 3D models. Additionally, we present a comprehensive benchmark for 3D style editing, encompassing a broad range of subjects, including objects, animals, and characters, to further facilitate research on diverse 3D generation. Our comparative analysis reveals that this new pipeline outperforms existing text-to-3D methods as evidenced by human evaluations and CLIP score metrics. Project page: https://controldreamer.github.io
comment: Project page: https://controldreamer.github.io/
♻ ☆ Sapiens: Foundation for Human Vision Models ECCV 2024
We present Sapiens, a family of models for four fundamental human-centric vision tasks - 2D pose estimation, body-part segmentation, depth estimation, and surface normal prediction. Our models natively support 1K high-resolution inference and are extremely easy to adapt for individual tasks by simply fine-tuning models pretrained on over 300 million in-the-wild human images. We observe that, given the same computational budget, self-supervised pretraining on a curated dataset of human images significantly boosts the performance for a diverse set of human-centric tasks. The resulting models exhibit remarkable generalization to in-the-wild data, even when labeled data is scarce or entirely synthetic. Our simple model design also brings scalability - model performance across tasks improves as we scale the number of parameters from 0.3 to 2 billion. Sapiens consistently surpasses existing baselines across various human-centric benchmarks. We achieve significant improvements over the prior state-of-the-art on Humans-5K (pose) by 7.6 mAP, Humans-2K (part-seg) by 17.1 mIoU, Hi4D (depth) by 22.4% relative RMSE, and THuman2 (normal) by 53.5% relative angular error. Project page: $\href{https://about.meta.com/realitylabs/codecavatars/sapiens}{\text{this https URL}}$.
comment: ECCV 2024 (Oral)
Artificial Intelligence 149
How Diffusion Models Learn to Factorize and Compose
Diffusion models are capable of generating photo-realistic images that combine elements which likely do not appear together in the training set, demonstrating the ability to compositionally generalize. Nonetheless, the precise mechanism of compositionality and how it is acquired through training remains elusive. Inspired by cognitive neuroscientific approaches, we consider a highly reduced setting to examine whether and when diffusion models learn semantically meaningful and factorized representations of composable features. We performed extensive controlled experiments on conditional Denoising Diffusion Probabilistic Models (DDPMs) trained to generate various forms of 2D Gaussian data. We found that the models learn factorized but not fully continuous manifold representations for encoding continuous features of variation underlying the data. With such representations, models demonstrate superior feature compositionality but limited ability to interpolate over unseen values of a given feature. Our experimental results further demonstrate that diffusion models can attain compositionality with few compositional examples, suggesting a more efficient way to train DDPMs. Finally, we connect manifold formation in diffusion models to percolation theory in physics, offering insight into the sudden onset of factorized representation learning. Our thorough toy experiments thus contribute a deeper understanding of how diffusion models capture compositional structure in data.
comment: 11 pages, 6 figures, plus appendix, some content overlap with arXiv:2402.03305
☆ Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder
Early detection of autism, a neurodevelopmental disorder marked by social communication challenges, is crucial for timely intervention. Recent advancements have utilized naturalistic home videos captured via the mobile application GuessWhat. Through interactive games played between children and their guardians, GuessWhat has amassed over 3,000 structured videos from 382 children, both diagnosed with and without Autism Spectrum Disorder (ASD). This collection provides a robust dataset for training computer vision models to detect ASD-related phenotypic markers, including variations in emotional expression, eye contact, and head movements. We have developed a protocol to curate high-quality videos from this dataset, forming a comprehensive training set. Utilizing this set, we trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%, respectively. To boost diagnostic accuracy, we applied late fusion techniques to create ensemble models, improving the overall AUC to 90%. This approach also yielded more equitable results across different genders and age groups. Our methodology offers a significant step forward in the early detection of ASD by potentially reducing the reliance on subjective assessments and making early identification more accessibly and equitable.
☆ Foundational Model for Electron Micrograph Analysis: Instruction-Tuning Small-Scale Language-and-Vision Assistant for Enterprise Adoption ICML 2024
Semiconductor imaging and analysis are critical yet understudied in deep learning, limiting our ability for precise control and optimization in semiconductor manufacturing. We introduce a small-scale multimodal framework for analyzing semiconductor electron microscopy images (MAEMI) through vision-language instruction tuning. We generate a customized instruction-following dataset using large multimodal models on microscopic image analysis. We perform knowledge transfer from larger to smaller models through knowledge distillation, resulting in improved accuracy of smaller models on visual question answering (VQA) tasks. This approach eliminates the need for expensive, human expert-annotated datasets for microscopic image analysis tasks. Enterprises can further finetune MAEMI on their intellectual data, enhancing privacy and performance on low-cost consumer hardware. Our experiments show that MAEMI outperforms traditional methods, adapts to data distribution shifts, and supports high-throughput screening.
comment: Our paper is published at ICML 2024 Workshop ML for Life and Material Science: From Theory to Industry Applications, Vienna, Austria
☆ Data Exposure from LLM Apps: An In-depth Investigation of OpenAI's GPTs
LLM app ecosystems are quickly maturing and supporting a wide range of use cases, which requires them to collect excessive user data. Given that the LLM apps are developed by third-parties and that anecdotal evidence suggests LLM platforms currently do not strictly enforce their policies, user data shared with arbitrary third-parties poses a significant privacy risk. In this paper we aim to bring transparency in data practices of LLM apps. As a case study, we study OpenAI's GPT app ecosystem. We develop an LLM-based framework to conduct the static analysis of natural language-based source code of GPTs and their Actions (external services) to characterize their data collection practices. Our findings indicate that Actions collect expansive data about users, including sensitive information prohibited by OpenAI, such as passwords. We find that some Actions, including related to advertising and analytics, are embedded in multiple GPTs, which allow them to track user activities across GPTs. Additionally, co-occurrence of Actions exposes as much as 9.5x more data to them, than it is exposed to individual Actions. Lastly, we develop an LLM-based privacy policy analysis framework to automatically check the consistency of data collection by Actions with disclosures in their privacy policies. Our measurements indicate that the disclosures for most of the collected data types are omitted in privacy policies, with only 5.8% of Actions clearly disclosing their data collection practices.
☆ JacNet: Learning Functions with Structured Jacobians ICML 2019
Neural networks are trained to learn an approximate mapping from an input domain to a target domain. Incorporating prior knowledge about true mappings is critical to learning a useful approximation. With current architectures, it is challenging to enforce structure on the derivatives of the input-output mapping. We propose to use a neural network to directly learn the Jacobian of the input-output function, which allows easy control of the derivative. We focus on structuring the derivative to allow invertibility and also demonstrate that other useful priors, such as $k$-Lipschitz, can be enforced. Using this approach, we can learn approximations to simple functions that are guaranteed to be invertible and easily compute the inverse. We also show similar results for 1-Lipschitz functions.
comment: 6 pages, 3 Figures, ICML 2019 INNF Workshop
☆ Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
The quadratic computational complexity in the self-attention mechanism of popular transformer architectures poses significant challenges for training and inference, particularly in terms of efficiency and memory requirements. Towards addressing these challenges, this paper introduces a novel fast computation method for gradient calculation in multi-layer transformer models. Our approach enables the computation of gradients for the entire multi-layer transformer model in almost linear time $n^{1+o(1)}$, where $n$ is the input sequence length. This breakthrough significantly reduces the computational bottleneck associated with the traditional quadratic time complexity. Our theory holds for any loss function and maintains a bounded approximation error across the entire model. Furthermore, our analysis can hold when the multi-layer transformer model contains many practical sub-modules, such as residual connection, casual mask, and multi-head attention. By improving the efficiency of gradient computation in large language models, we hope that our work will facilitate the more effective training and deployment of long-context language models based on our theoretical results.
☆ Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
In recent years, multi-task prompt tuning has garnered considerable attention for its inherent modularity and potential to enhance parameter-efficient transfer learning across diverse tasks. This paper aims to analyze and improve the performance of multiple tasks by facilitating the transfer of knowledge between their corresponding prompts in a multi-task setting. Our proposed approach decomposes the prompt for each target task into a combination of shared prompts (source prompts) and a task-specific prompt (private prompt). During training, the source prompts undergo fine-tuning and are integrated with the private prompt to drive the target prompt for each task. We present and compare multiple methods for combining source prompts to construct the target prompt, analyzing the roles of both source and private prompts within each method. We investigate their contributions to task performance and offer flexible, adjustable configurations based on these insights to optimize performance. Our empirical findings clearly showcase improvements in accuracy and robustness compared to the conventional practice of prompt tuning and related works. Notably, our results substantially outperform other methods in the field in few-shot settings, demonstrating superior performance in various tasks across GLUE benchmark, among other tasks. This achievement is attained with a significantly reduced amount of training data, making our method a promising one for few-shot settings.
☆ HBIC: A Biclustering Algorithm for Heterogeneous Datasets
Biclustering is an unsupervised machine-learning approach aiming to cluster rows and columns simultaneously in a data matrix. Several biclustering algorithms have been proposed for handling numeric datasets. However, real-world data mining problems often involve heterogeneous datasets with mixed attributes. To address this challenge, we introduce a biclustering approach called HBIC, capable of discovering meaningful biclusters in complex heterogeneous data, including numeric, binary, and categorical data. The approach comprises two stages: bicluster generation and bicluster model selection. In the initial stage, several candidate biclusters are generated iteratively by adding and removing rows and columns based on the frequency of values in the original matrix. In the second stage, we introduce two approaches for selecting the most suitable biclusters by considering their size and homogeneity. Through a series of experiments, we investigated the suitability of our approach on a synthetic benchmark and in a biomedical application involving clinical data of systemic sclerosis patients. The evaluation comparing our method to existing approaches demonstrates its ability to discover high-quality biclusters from heterogeneous data. Our biclustering approach is a starting point for heterogeneous bicluster discovery, leading to a better understanding of complex underlying data structures.
comment: 11 pages, 5 figures
☆ EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods
Accurate forecasting of the EUR/USD exchange rate is crucial for investors, businesses, and policymakers. This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators to enhance exchange rate prediction. The IUS framework employs large language models for sentiment polarity scoring and exchange rate movement classification of texts. These textual features are combined with quantitative features and input into a Causality-Driven Feature Generator. An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate. Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline. Results also show the benefits of data fusion, with the combination of unstructured and structured data yielding higher accuracy than structured data alone. Furthermore, feature selection using the top 12 important quantitative features combined with the textual features proves most effective. The proposed IUS framework and Optuna-Bi-LSTM model provide a powerful new approach for exchange rate forecasting through multi-source data integration.
☆ Optimal Quantum Circuit Design via Unitary Neural Networks
The process of translating a quantum algorithm into a form suitable for implementation on a quantum computing platform is crucial but yet challenging. This entails specifying quantum operations with precision, a typically intricate task. In this paper, we present an alternative approach: an automated method for synthesizing the functionality of a quantum algorithm into a quantum circuit model representation. Our methodology involves training a neural network model using diverse input-output mappings of the quantum algorithm. We demonstrate that this trained model can effectively generate a quantum circuit model equivalent to the original algorithm. Remarkably, our observations indicate that the trained model achieves near-perfect mapping of unseen inputs to their respective outputs.
☆ Temporal Fairness in Decision Making Problems
In this work we consider a new interpretation of fairness in decision making problems. Building upon existing fairness formulations, we focus on how to reason over fairness from a temporal perspective, taking into account the fairness of a history of past decisions. After introducing the concept of temporal fairness, we propose three approaches that incorporate temporal fairness in decision making problems formulated as optimization problems. We present a qualitative evaluation of our approach in four different domains and compare the solutions against a baseline approach that does not consider the temporal aspect of fairness.
comment: Paper accepted at ECAI 2024. This is an extended version that includes Supplementary Material
☆ DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation
Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at https://domaineval.github.io/.
☆ Instruct-DeBERTa: A Hybrid Approach for Aspect-based Sentiment Analysis on Textual Reviews
Aspect-based Sentiment Analysis (ABSA) is a critical task in Natural Language Processing (NLP) that focuses on extracting sentiments related to specific aspects within a text, offering deep insights into customer opinions. Traditional sentiment analysis methods, while useful for determining overall sentiment, often miss the implicit opinions about particular product or service features. This paper presents a comprehensive review of the evolution of ABSA methodologies, from lexicon-based approaches to machine learning and deep learning techniques. We emphasize the recent advancements in Transformer-based models, particularly Bidirectional Encoder Representations from Transformers (BERT) and its variants, which have set new benchmarks in ABSA tasks. We focused on finetuning Llama and Mistral models, building hybrid models using the SetFit framework, and developing our own model by exploiting the strengths of state-of-the-art (SOTA) Transformer-based models for aspect term extraction (ATE) and aspect sentiment classification (ASC). Our hybrid model Instruct - DeBERTa uses SOTA InstructABSA for aspect extraction and DeBERTa-V3-baseabsa-V1 for aspect sentiment classification. We utilize datasets from different domains to evaluate our model's performance. Our experiments indicate that the proposed hybrid model significantly improves the accuracy and reliability of sentiment analysis across all experimented domains. As per our findings, our hybrid model Instruct - DeBERTa is the best-performing model for the joint task of ATE and ASC for both SemEval restaurant 2014 and SemEval laptop 2014 datasets separately. By addressing the limitations of existing methodologies, our approach provides a robust solution for understanding detailed consumer feedback, thus offering valuable insights for businesses aiming to enhance customer satisfaction and product development.
☆ Accelerating the k-means++ Algorithm by Using Geometric Information
In this paper, we propose an acceleration of the exact k-means++ algorithm using geometric information, specifically the Triangle Inequality and additional norm filters, along with a two-step sampling procedure. Our experiments demonstrate that the accelerated version outperforms the standard k-means++ version in terms of the number of visited points and distance calculations, achieving greater speedup as the number of clusters increases. The version utilizing the Triangle Inequality is particularly effective for low-dimensional data, while the additional norm-based filter enhances performance in high-dimensional instances with greater norm variance among points. Additional experiments show the behavior of our algorithms when executed concurrently across multiple jobs and examine how memory performance impacts practical speedup.
☆ Say No to Freeloader: Protecting Intellectual Property of Your Deep Model
Model intellectual property (IP) protection has attracted growing attention as science and technology advancements stem from human intellectual labor and computational expenses. Ensuring IP safety for trainers and owners is of utmost importance, particularly in domains where ownership verification and applicability authorization are required. A notable approach to safeguarding model IP involves proactively preventing the use of well-trained models of authorized domains from unauthorized domains. In this paper, we introduce a novel Compact Un-transferable Pyramid Isolation Domain (CUPI-Domain) which serves as a barrier against illegal transfers from authorized to unauthorized domains. Drawing inspiration from human transitive inference and learning abilities, the CUPI-Domain is designed to obstruct cross-domain transfers by emphasizing the distinctive style features of the authorized domain. This emphasis leads to failure in recognizing irrelevant private style features on unauthorized domains. To this end, we propose novel CUPI-Domain generators, which select features from both authorized and CUPI-Domain as anchors. Then, we fuse the style features and semantic features of these anchors to generate labeled and style-rich CUPI-Domain. Additionally, we design external Domain-Information Memory Banks (DIMB) for storing and updating labeled pyramid features to obtain stable domain class features and domain class-wise style features. Based on the proposed whole method, the novel style and discriminative loss functions are designed to effectively enhance the distinction in style and discriminative features between authorized and unauthorized domains, respectively. Moreover, we provide two solutions for utilizing CUPI-Domain based on whether the unauthorized domain is known: target-specified CUPI-Domain and target-free CUPI-Domain.
☆ Causal machine learning for sustainable agroecosystems
In a changing climate, sustainable agriculture is essential for food security and environmental health. However, it is challenging to understand the complex interactions among its biophysical, social, and economic components. Predictive machine learning (ML), with its capacity to learn from data, is leveraged in sustainable agriculture for applications like yield prediction and weather forecasting. Nevertheless, it cannot explain causal mechanisms and remains descriptive rather than prescriptive. To address this gap, we propose causal ML, which merges ML's data processing with causality's ability to reason about change. This facilitates quantifying intervention impacts for evidence-based decision-making and enhances predictive model robustness. We showcase causal ML through eight diverse applications that benefit stakeholders across the agri-food chain, including farmers, policymakers, and researchers.
☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its wide applications in robotics and self-driving. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together but only a single view of depth measurements is provided. The vast majority of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns and typically two, running with the risk of failing to generalize to unseen domains. The shape representations used in the prior work also mainly focus on point cloud and signed distance field (SDF). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from any pose-annotated data. In addition, we adopt a novel mesh-based object active shape model that has not been explored by the previous literature. Our algorithm, named ShapeICP, has its foundation in the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. The results show that even without using any pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on the pose data for training, opening up new solution space for researchers to consider.
☆ Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation. The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz optimisation. A feature of the method is that it obtains tighter over-approximations of the perturbation region than the present state-of-the-art. We report results from experiments on a comprehensive set of benchmarks. We show that our proposed implementation resolves more verification cases than present approaches while being more computationally efficient.
☆ Deep Learning at the Intersection: Certified Robustness as a Tool for 3D Vision ICCV 2023
This paper presents preliminary work on a novel connection between certified robustness in machine learning and the modeling of 3D objects. We highlight an intriguing link between the Maximal Certified Radius (MCR) of a classifier representing a space's occupancy and the space's Signed Distance Function (SDF). Leveraging this relationship, we propose to use the certification method of randomized smoothing (RS) to compute SDFs. Since RS' high computational cost prevents its practical usage as a way to compute SDFs, we propose an algorithm to efficiently run RS in low-dimensional applications, such as 3D space, by expressing RS' fundamental operations as Gaussian smoothing on pre-computed voxel grids. Our approach offers an innovative and practical tool to compute SDFs, validated through proof-of-concept experiments in novel view synthesis. This paper bridges two previously disparate areas of machine learning, opening new avenues for further exploration and potential cross-domain advancements.
comment: This paper is an accepted extended abstract to the LatinX workshop at ICCV 2023. This was uploaded a year late
☆ DeTPP: Leveraging Object Detection for Robust Long-Horizon Event Prediction
Forecasting future events over extended periods, known as long-horizon prediction, is a fundamental task in various domains, including retail, finance, healthcare, and social networks. Traditional methods, such as Marked Temporal Point Processes (MTPP), typically use autoregressive models to predict multiple future events. However, these models frequently encounter issues such as converging to constant or repetitive outputs, which significantly limits their effectiveness and applicability. To overcome these limitations, we propose DeTPP (Detection-based Temporal Point Processes), a novel approach inspired by object detection methods from computer vision. DeTPP utilizes a novel matching-based loss function that selectively focuses on reliably predictable events, enhancing both training robustness and inference diversity. Our method sets a new state-of-the-art in long-horizon event prediction, significantly outperforming existing MTPP and next-K approaches. The implementation of DeTPP is publicly available on GitHub.
☆ Map-Free Visual Relocalization Enhanced by Instance Knowledge and Depth Knowledge
Map-free relocalization technology is crucial for applications in autonomous navigation and augmented reality, but relying on pre-built maps is often impractical. It faces significant challenges due to limitations in matching methods and the inherent lack of scale in monocular images. These issues lead to substantial rotational and metric errors and even localization failures in real-world scenarios. Large matching errors significantly impact the overall relocalization process, affecting both rotational and translational accuracy. Due to the inherent limitations of the camera itself, recovering the metric scale from a single image is crucial, as this significantly impacts the translation error. To address these challenges, we propose a map-free relocalization method enhanced by instance knowledge and depth knowledge. By leveraging instance-based matching information to improve global matching results, our method significantly reduces the possibility of mismatching across different objects. The robustness of instance knowledge across the scene helps the feature point matching model focus on relevant regions and enhance matching accuracy. Additionally, we use estimated metric depth from a single image to reduce metric errors and improve scale recovery accuracy. By integrating methods dedicated to mitigating large translational and rotational errors, our approach demonstrates superior performance in map-free relocalization techniques.
comment: 17 pages,6 figures
☆ Avatar Visual Similarity for Social HCI: Increasing Self-Awareness
Self-awareness is a critical factor in social human-human interaction and, hence, in social HCI interaction. Increasing self-awareness through mirrors or video recordings is common in face-to-face trainings, since it influences antecedents of self-awareness like explicit identification and implicit affective identification (affinity). However, increasing self-awareness has been scarcely examined in virtual trainings with virtual avatars, which allow for adjusting the similarity, e.g. to avoid negative effects of self-consciousness. Automatic visual similarity in avatars is an open issue related to high costs. It is important to understand which features need to be manipulated and which degree of similarity is necessary for self-awareness to leverage the added value of using avatars for self-awareness. This article examines the relationship between avatar visual similarity and increasing self-awareness in virtual training environments. We define visual similarity based on perceptually important facial features for human-human identification and develop a theory-based methodology to systematically manipulate visual similarity of virtual avatars and support self-awareness. Three personalized versions of virtual avatars with varying degrees of visual similarity to participants were created (weak, medium and strong facial features manipulation). In a within-subject study (N=33), we tested effects of degree of similarity on perceived similarity, explicit identification and implicit affective identification (affinity). Results show significant differences between the weak similarity manipulation, and both the strong manipulation and the random avatar for all three antecedents of self-awareness. An increasing degree of avatar visual similarity influences antecedents of self-awareness in virtual environments.
☆ Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis CIKM 2024
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention. Multivariate time series pose a complex challenge due to their feature and temporal dimensions. Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies. These methods focus narrowly on one dimension or engage in coarse-grained feature extraction, which can be inadequate for large datasets characterized by intricate relationships and dynamic changes. This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN. Our model analyzes both time and feature dimensions from a fine-grained perspective. First, we introduce a multi-scale temporal convolution module to extract detailed temporal features. Additionally, we present an augmented GAT to manage complex inter-feature dependencies, which incorporates graph topology into node features across multiple scales, a versatile, plug-and-play enhancement that significantly boosts the performance of GAT. Our experimental results confirm that our approach surpasses the baseline models on four datasets, demonstrating its potential for widespread application in fields requiring robust anomaly detection. The code is available at https://github.com/ljj-cyber/TopoGDN.
comment: 10 pages, 5 figures, to be published in CIKM 2024
☆ AEMLO: AutoEncoder-Guided Multi-Label Oversampling
Class imbalance significantly impacts the performance of multi-label classifiers. Oversampling is one of the most popular approaches, as it augments instances associated with less frequent labels to balance the class distribution. Existing oversampling methods generate feature vectors of synthetic samples through replication or linear interpolation and assign labels through neighborhood information. Linear interpolation typically generates new samples between existing data points, which may result in insufficient diversity of synthesized samples and further lead to the overfitting issue. Deep learning-based methods, such as AutoEncoders, have been proposed to generate more diverse and complex synthetic samples, achieving excellent performance on imbalanced binary or multi-class datasets. In this study, we introduce AEMLO, an AutoEncoder-guided Oversampling technique specifically designed for tackling imbalanced multi-label data. AEMLO is built upon two fundamental components. The first is an encoder-decoder architecture that enables the model to encode input data into a low-dimensional feature space, learn its latent representations, and then reconstruct it back to its original dimension, thus applying to the generation of new data. The second is an objective function tailored to optimize the sampling task for multi-label scenarios. We show that AEMLO outperforms the existing state-of-the-art methods with extensive empirical studies.
☆ Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
Recent advances in deep learning structured state space models, especially the Mamba architecture, have demonstrated remarkable performance improvements while maintaining linear complexity. In this study, we introduce functional spatiotemporal Mamba (FST-Mamba), a Mamba-based model designed for discovering neurological biomarkers using functional magnetic resonance imaging (fMRI). We focus on dynamic functional network connectivity (dFNC) derived from fMRI and propose a hierarchical spatiotemporal Mamba-based network that processes spatial and temporal information separately using Mamba-based encoders. Leveraging the topological uniqueness of the FNC matrix, we introduce a component-wise varied-scale aggregation (CVA) mechanism to aggregate connectivity across individual components within brain networks, enabling the model to capture both inter-component and inter-network information. To better handle the FNC data, we develop a new component-specific scanning order. Additionally, we propose symmetric rotary position encoding (SymRope) to encode the relative positions of each functional connection while considering the symmetric nature of the FNC matrix. Experimental results demonstrate significant improvements in the proposed FST-Mamba model on various brain-based classification and regression tasks. Our work reveals the substantial potential of attention-free sequence modeling in brain discovery.
☆ cc-DRL: a Convex Combined Deep Reinforcement Learning Flight Control Design for a Morphing Quadrotor
In comparison to common quadrotors, the shape change of morphing quadrotors endows it with a more better flight performance but also results in more complex flight dynamics. Generally, it is extremely difficult or even impossible for morphing quadrotors to establish an accurate mathematical model describing their complex flight dynamics. To figure out the issue of flight control design for morphing quadrotors, this paper resorts to a combination of model-free control techniques (e.g., deep reinforcement learning, DRL) and convex combination (CC) technique, and proposes a convex-combined-DRL (cc-DRL) flight control algorithm for position and attitude of a class of morphing quadrotors, where the shape change is realized by the length variation of four arm rods. In the proposed cc-DRL flight control algorithm, proximal policy optimization algorithm that is a model-free DRL algorithm is utilized to off-line train the corresponding optimal flight control laws for some selected representative arm length modes and hereby a cc-DRL flight control scheme is constructed by the convex combination technique. Finally, simulation results are presented to show the effectiveness and merit of the proposed flight control algorithm.
☆ SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks
Prompting has become a practical method for utilizing pre-trained language models (LMs). This approach offers several advantages. It allows an LM to adapt to new tasks with minimal training and parameter updates, thus achieving efficiency in both storage and computation. Additionally, prompting modifies only the LM's inputs and harnesses the generative capabilities of language models to address various downstream tasks in a unified manner. This significantly reduces the need for human labor in designing task-specific models. These advantages become even more evident as the number of tasks served by the LM scales up. Motivated by the strengths of prompting, we are the first to explore the potential of prompting speech LMs in the domain of speech processing. Recently, there has been a growing interest in converting speech into discrete units for language modeling. Our pioneer research demonstrates that these quantized speech units are highly versatile within our unified prompting framework. Not only can they serve as class labels, but they also contain rich phonetic information that can be re-synthesized back into speech signals for speech generation tasks. Specifically, we reformulate speech processing tasks into speech-to-unit generation tasks. As a result, we can seamlessly integrate tasks such as speech classification, sequence generation, and speech generation within a single, unified prompting framework. The experiment results show that the prompting method can achieve competitive performance compared to the strong fine-tuning method based on self-supervised learning models with a similar number of trainable parameters. The prompting method also shows promising results in the few-shot setting. Moreover, with the advanced speech LMs coming into the stage, the proposed prompting framework attains great potential.
comment: Published in IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)
☆ VFM-Det: Towards High-Performance Vehicle Detection via Large Foundation Models
Existing vehicle detectors are usually obtained by training a typical detector (e.g., YOLO, RCNN, DETR series) on vehicle images based on a pre-trained backbone (e.g., ResNet, ViT). Some researchers also exploit and enhance the detection performance using pre-trained large foundation models. However, we think these detectors may only get sub-optimal results because the large models they use are not specifically designed for vehicles. In addition, their results heavily rely on visual features, and seldom of they consider the alignment between the vehicle's semantic information and visual representations. In this work, we propose a new vehicle detection paradigm based on a pre-trained foundation vehicle model (VehicleMAE) and a large language model (T5), termed VFM-Det. It follows the region proposal-based detection framework and the features of each proposal can be enhanced using VehicleMAE. More importantly, we propose a new VAtt2Vec module that predicts the vehicle semantic attributes of these proposals and transforms them into feature vectors to enhance the vision features via contrastive learning. Extensive experiments on three vehicle detection benchmark datasets thoroughly proved the effectiveness of our vehicle detector. Specifically, our model improves the baseline approach by $+5.1\%$, $+6.2\%$ on the $AP_{0.5}$, $AP_{0.75}$ metrics, respectively, on the Cityscapes dataset.The source code of this work will be released at https://github.com/Event-AHU/VFM-Det.
comment: In Peer Review
☆ BoostTrack++: using tracklet information to detect more objects in multiple object tracking
Multiple object tracking (MOT) depends heavily on selection of true positive detected bounding boxes. However, this aspect of the problem is mostly overlooked or mitigated by employing two-stage association and utilizing low confidence detections in the second stage. Recently proposed BoostTrack attempts to avoid the drawbacks of multiple stage association approach and use low-confidence detections by applying detection confidence boosting. In this paper, we identify the limitations of the confidence boost used in BoostTrack and propose a method to improve its performance. To construct a richer similarity measure and enable a better selection of true positive detections, we propose to use a combination of shape, Mahalanobis distance and novel soft BIoU similarity. We propose a soft detection confidence boost technique which calculates new confidence scores based on the similarity measure and the previous confidence scores, and we introduce varying similarity threshold to account for lower similarity measure between detections and tracklets which are not regularly updated. The proposed additions are mutually independent and can be used in any MOT algorithm. Combined with the BoostTrack+ baseline, our method achieves near state of the art results on the MOT17 dataset and new state of the art HOTA and IDF1 scores on the MOT20 dataset. The source code is available at: https://github.com/vukasin-stanojevic/BoostTrack .
☆ CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
comment: 13pages
☆ Enhancing Knowledge Tracing with Concept Map and Response Disentanglement
In the rapidly advancing realm of educational technology, it becomes critical to accurately trace and understand student knowledge states. Conventional Knowledge Tracing (KT) models have mainly focused on binary responses (i.e., correct and incorrect answers) to questions. Unfortunately, they largely overlook the essential information in students' actual answer choices, particularly for Multiple Choice Questions (MCQs), which could help reveal each learner's misconceptions or knowledge gaps. To tackle these challenges, we propose the Concept map-driven Response disentanglement method for enhancing Knowledge Tracing (CRKT) model. CRKT benefits KT by directly leveraging answer choices--beyond merely identifying correct or incorrect answers--to distinguish responses with different incorrect choices. We further introduce the novel use of unchosen responses by employing disentangled representations to get insights from options not selected by students. Additionally, CRKT tracks the student's knowledge state at the concept level and encodes the concept map, representing the relationships between them, to better predict unseen concepts. This approach is expected to provide actionable feedback, improving the learning experience. Our comprehensive experiments across multiple datasets demonstrate CRKT's effectiveness, achieving superior performance in prediction accuracy and interpretability over state-of-the-art models.
comment: Accepted to Knowledge-Based Systems Journal
☆ RIFF: Inducing Rules for Fraud Detection from Decision Trees
Financial fraud is the cause of multi-billion dollar losses annually. Traditionally, fraud detection systems rely on rules due to their transparency and interpretability, key features in domains where decisions need to be explained. However, rule systems require significant input from domain experts to create and tune, an issue that rule induction algorithms attempt to mitigate by inferring rules directly from data. We explore the application of these algorithms to fraud detection, where rule systems are constrained to have a low false positive rate (FPR) or alert rate, by proposing RIFF, a rule induction algorithm that distills a low FPR rule set directly from decision trees. Our experiments show that the induced rules are often able to maintain or improve performance of the original models for low FPR tasks, while substantially reducing their complexity and outperforming rules hand-tuned by experts.
comment: Published as a conference paper at RuleML+RR 2024
☆ QD-VMR: Query Debiasing with Contextual Understanding Enhancement for Video Moment Retrieval
Video Moment Retrieval (VMR) aims to retrieve relevant moments of an untrimmed video corresponding to the query. While cross-modal interaction approaches have shown progress in filtering out query-irrelevant information in videos, they assume the precise alignment between the query semantics and the corresponding video moments, potentially overlooking the misunderstanding of the natural language semantics. To address this challenge, we propose a novel model called \textit{QD-VMR}, a query debiasing model with enhanced contextual understanding. Firstly, we leverage a Global Partial Aligner module via video clip and query features alignment and video-query contrastive learning to enhance the cross-modal understanding capabilities of the model. Subsequently, we employ a Query Debiasing Module to obtain debiased query features efficiently, and a Visual Enhancement module to refine the video features related to the query. Finally, we adopt the DETR structure to predict the possible target video moments. Through extensive evaluations of three benchmark datasets, QD-VMR achieves state-of-the-art performance, proving its potential to improve the accuracy of VMR. Further analytical experiments demonstrate the effectiveness of our proposed module. Our code will be released to facilitate future research.
comment: 9 pages, 4 figures, 4 tables
☆ Open Llama2 Model for the Lithuanian Language
In this paper, we propose and describe the first open Llama2 large language models (LLMs) for the Lithuanian language, including an accompanying question/answer (Q/A) dataset and translations of popular LLM benchmarks. We provide a brief review of open regional LLMs and detailed information on the proposed LLMs and their training process. We also conduct an empirical evaluation, comparing the perplexities of the proposed LLMs with those of other modern open LLMs. In addition, benchmarking the proposed LLMs against language understanding tasks reveals that high-quality pretraining datasets may be essential for achieving models that perform efficiently on these benchmarks. The full realisations of the described LLMs are available in the accompanying open repository~\url{https://huggingface.co/neurotechnology}.
comment: 12 pages, 8 figures, 5 tables
☆ Multimodal Contrastive In-Context Learning
The rapid growth of Large Language Models (LLMs) usage has highlighted the importance of gradient-free in-context learning (ICL). However, interpreting their inner workings remains challenging. This paper introduces a novel multimodal contrastive in-context learning framework to enhance our understanding of ICL in LLMs. First, we present a contrastive learning-based interpretation of ICL in real-world settings, marking the distance of the key-value representation as the differentiator in ICL. Second, we develop an analytical framework to address biases in multimodal input formatting for real-world datasets. We demonstrate the effectiveness of ICL examples where baseline performance is poor, even when they are represented in unseen formats. Lastly, we propose an on-the-fly approach for ICL (Anchored-by-Text ICL) that demonstrates effectiveness in detecting hateful memes, a task where typical ICL struggles due to resource limitations. Extensive experiments on multimodal datasets reveal that our approach significantly improves ICL performance across various scenarios, such as challenging tasks and resource-constrained environments. Moreover, it provides valuable insights into the mechanisms of in-context learning in LLMs. Our findings have important implications for developing more interpretable, efficient, and robust multimodal AI systems, especially in challenging tasks and resource-constrained environments.
☆ Informational Embodiment: Computational role of information structure in codes and robots
The body morphology plays an important role in the way information is perceived and processed by an agent. We address an information theory (IT) account on how the precision of sensors, the accuracy of motors, their placement, the body geometry, shape the information structure in robots and computational codes. As an original idea, we envision the robot's body as a physical communication channel through which information is conveyed, in and out, despite intrinsic noise and material limitations. Following this, entropy, a measure of information and uncertainty, can be used to maximize the efficiency of robot design and of algorithmic codes per se. This is known as the principle of Entropy Maximization (PEM) introduced in biology by Barlow in 1969. The Shannon's source coding theorem provides then a framework to compare different types of bodies in terms of sensorimotor information. In line with PME, we introduce a special class of efficient codes used in IT that reached the Shannon limits in terms of information capacity for error correction and robustness against noise, and parsimony. These efficient codes, which exploit insightfully quantization and randomness, permit to deal with uncertainty, redundancy and compacity. These features can be used for perception and control in intelligent systems. In various examples and closing discussions, we reflect on the broader implications of our framework that we called Informational Embodiment to motor theory and bio-inspired robotics, touching upon concepts like motor synergies, reservoir computing, and morphological computation. These insights can contribute to a deeper understanding of how information theory intersects with the embodiment of intelligence in both natural and artificial systems.
☆ Causal-Guided Active Learning for Debiasing Large Language Models ACL
Although achieving promising performance, recent analyses show that current generative large language models (LLMs) may still capture dataset biases and utilize them for generation, leading to poor generalizability and harmfulness of LLMs. However, due to the diversity of dataset biases and the over-optimization problem, previous prior-knowledge-based debiasing methods and fine-tuning-based debiasing methods may not be suitable for current LLMs. To address this issue, we explore combining active learning with the causal mechanisms and propose a casual-guided active learning (CAL) framework, which utilizes LLMs itself to automatically and autonomously identify informative biased samples and induce the bias patterns. Then a cost-effective and efficient in-context learning based method is employed to prevent LLMs from utilizing dataset biases during generation. Experimental results show that CAL can effectively recognize typical biased instances and induce various bias patterns for debiasing LLMs.
comment: ACL main conference
☆ iSee: Advancing Multi-Shot Explainable AI Using Case-based Recommendations
Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual users may require multiple explanations. This highlights the necessity for a "multi-shot" approach, employing a combination of explainers to form what we introduce as an "explanation strategy". Tailored to a specific user or a user group, an "explanation experience" describes interactions with personalised strategies designed to enhance their AI decision-making processes. The iSee platform is designed for the intelligent sharing and reuse of explanation experiences, using Case-based Reasoning to advance best practices in XAI. The platform provides tools that enable AI system designers, i.e. design users, to design and iteratively revise the most suitable explanation strategy for their AI system to satisfy end-user needs. All knowledge generated within the iSee platform is formalised by the iSee ontology for interoperability. We use a summative mixed methods study protocol to evaluate the usability and utility of the iSee platform with six design users across varying levels of AI and XAI expertise. Our findings confirm that the iSee platform effectively generalises across applications and its potential to promote the adoption of XAI best practices.
comment: Accepted to appear at the ECAI-PAIS 2024 main conference proceedings
☆ Smooth InfoMax -- Towards easier Post-Hoc interpretability
We introduce Smooth InfoMax (SIM), a novel method for self-supervised representation learning that incorporates an interpretability constraint into the learned representations at various depths of the neural network. SIM's architecture is split up into probabilistic modules, each locally optimized using the InfoNCE bound. Inspired by VAEs, the representations from these modules are designed to be samples from Gaussian distributions and are further constrained to be close to the standard normal distribution. This results in a smooth and predictable space, enabling traversal of the latent space through a decoder for easier post-hoc analysis of the learned representations. We evaluate SIM's performance on sequential speech data, showing that it performs competitively with its less interpretable counterpart, Greedy InfoMax (GIM). Moreover, we provide insights into SIM's internal representations, demonstrating that the contained information is less entangled throughout the representation and more concentrated in a smaller subset of the dimensions. This further highlights the improved interpretability of SIM.
☆ Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems. With the rapid proliferation of AI and especially with the recent advancement of Generative AI (or GAI), the technology ecosystem behind the design, development, adoption, and deployment of AI systems has drastically changed, broadening the scope of AI Safety to address impacts on public safety and national security. In this paper, we propose a novel architectural framework for understanding and analyzing AI Safety; defining its characteristics from three perspectives: Trustworthy AI, Responsible AI, and Safe AI. We provide an extensive review of current research and advancements in AI safety from these perspectives, highlighting their key challenges and mitigation approaches. Through examples from state-of-the-art technologies, particularly Large Language Models (LLMs), we present innovative mechanism, methodologies, and techniques for designing and testing AI safety. Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
☆ What Do You Want? User-centric Prompt Generation for Text-to-image Synthesis via Multi-turn Guidance
The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.
☆ CSPs with Few Alien Constraints
The constraint satisfaction problem asks to decide if a set of constraints over a relational structure $\mathcal{A}$ is satisfiable (CSP$(\mathcal{A})$). We consider CSP$(\mathcal{A} \cup \mathcal{B})$ where $\mathcal{A}$ is a structure and $\mathcal{B}$ is an alien structure, and analyse its (parameterized) complexity when at most $k$ alien constraints are allowed. We establish connections and obtain transferable complexity results to several well-studied problems that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies for Boolean structures and first-order reducts of $(\mathbb{N},=)$ (equality CSPs), together with many partial results for general $\omega$-categorical structures.
☆ IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities
In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
☆ Multiple Areal Feature Aware Transportation Demand Prediction
A reliable short-term transportation demand prediction supports the authorities in improving the capability of systems by optimizing schedules, adjusting fleet sizes, and generating new transit networks. A handful of research efforts incorporate one or a few areal features while learning spatio-temporal correlation, to capture similar demand patterns between similar areas. However, urban characteristics are polymorphic, and they need to be understood by multiple areal features such as land use, sociodemographics, and place-of-interest (POI) distribution. In this paper, we propose a novel spatio-temporal multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during spatio-temproal understanding. Inside ST-MFGCRN, we devise sentinel attention to calculate the areal similarity matrix by allowing each area to take partial attention if the feature is not useful. We evaluate the proposed model on two real-world transportation datasets, one with our constructed BusDJ dataset and one with benchmark TaxiBJ. Results show that our model outperforms the state-of-the-art baselines up to 7\% on BusDJ and 8\% on TaxiBJ dataset.
☆ Spatio-Temporal Road Traffic Prediction using Real-time Regional Knowledge
For traffic prediction in transportation services such as car-sharing and ride-hailing, mid-term road traffic prediction (within a few hours) is considered essential. However, the existing road-level traffic prediction has mainly studied how significantly micro traffic events propagate to the adjacent roads in terms of short-term prediction. On the other hand, recent attempts have been made to incorporate regional knowledge such as POIs, road characteristics, and real-time social events to help traffic prediction. However, these studies lack in understandings of different modalities of road-level and region-level spatio-temporal correlations and how to combine such knowledge. This paper proposes a novel method that embeds real-time region-level knowledge using POIs, satellite images, and real-time LTE access traces via a regional spatio-temporal module that consists of dynamic convolution and temporal attention, and conducts bipartite spatial transform attention to convert into road-level knowledge. Then the model ingests this embedded knowledge into a road-level attention-based prediction model. Experimental results on real-world road traffic prediction show that our model outperforms the baselines.
☆ Has Multimodal Learning Delivered Universal Intelligence in Healthcare? A Comprehensive Survey
The rapid development of artificial intelligence has constantly reshaped the field of intelligent healthcare and medicine. As a vital technology, multimodal learning has increasingly garnered interest due to data complementarity, comprehensive modeling form, and great application potential. Currently, numerous researchers are dedicating their attention to this field, conducting extensive studies and constructing abundant intelligent systems. Naturally, an open question arises that has multimodal learning delivered universal intelligence in healthcare? To answer the question, we adopt three unique viewpoints for a holistic analysis. Firstly, we conduct a comprehensive survey of the current progress of medical multimodal learning from the perspectives of datasets, task-oriented methods, and universal foundation models. Based on them, we further discuss the proposed question from five issues to explore the real impacts of advanced techniques in healthcare, from data and technologies to performance and ethics. The answer is that current technologies have NOT achieved universal intelligence and there remains a significant journey to undertake. Finally, in light of the above reviews and discussions, we point out ten potential directions for exploration towards the goal of universal intelligence in healthcare.
comment: 21 pages, 6 figures
☆ Frequency-aware Feature Fusion for Dense Image Prediction
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.
comment: Accepted by TPAMI (2024)
☆ DeepDelveAI: Identifying AI Related Documents in Large Scale Literature Data
This paper presents DeepDelveAI, a comprehensive dataset specifically curated to identify AI-related research papers from a large-scale academic literature database. The dataset was created using an advanced Long Short-Term Memory (LSTM) model trained on a binary classification task to distinguish between AI-related and non-AI-related papers. The model was trained and validated on a vast dataset, achieving high accuracy, precision, recall, and F1-score. The resulting DeepDelveAI dataset comprises over 9.4 million AI-related papers published since Dartmouth Conference, from 1956 to 2024, providing a crucial resource for analyzing trends, thematic developments, and the evolution of AI research across various disciplines.
comment: 28 pages and 10 figures
☆ Can AI Assistance Aid in the Grading of Handwritten Answer Sheets?
With recent advancements in artificial intelligence (AI), there has been growing interest in using state of the art (SOTA) AI solutions to provide assistance in grading handwritten answer sheets. While a few commercial products exist, the question of whether AI-assistance can actually reduce grading effort and time has not yet been carefully considered in published literature. This work introduces an AI-assisted grading pipeline. The pipeline first uses text detection to automatically detect question regions present in a question paper PDF. Next, it uses SOTA text detection methods to highlight important keywords present in the handwritten answer regions of scanned answer sheets to assist in the grading process. We then evaluate a prototype implementation of the AI-assisted grading pipeline deployed on an existing e-learning management platform. The evaluation involves a total of 5 different real-life examinations across 4 different courses at a reputed institute; it consists of a total of 42 questions, 17 graders, and 468 submissions. We log and analyze the grading time for each handwritten answer while using AI assistance and without it. Our evaluations have shown that, on average, the graders take 31% less time while grading a single response and 33% less grading time while grading a single answer sheet using AI assistance.
☆ Obfuscated Memory Malware Detection
Providing security for information is highly critical in the current era with devices enabled with smart technology, where assuming a day without the internet is highly impossible. Fast internet at a cheaper price, not only made communication easy for legitimate users but also for cybercriminals to induce attacks in various dimensions to breach privacy and security. Cybercriminals gain illegal access and breach the privacy of users to harm them in multiple ways. Malware is one such tool used by hackers to execute their malicious intent. Development in AI technology is utilized by malware developers to cause social harm. In this work, we intend to show how Artificial Intelligence and Machine learning can be used to detect and mitigate these cyber-attacks induced by malware in specific obfuscated malware. We conducted experiments with memory feature engineering on memory analysis of malware samples. Binary classification can identify whether a given sample is malware or not, but identifying the type of malware will only guide what next step to be taken for that malware, to stop it from proceeding with its further action. Hence, we propose a multi-class classification model to detect the three types of obfuscated malware with an accuracy of 89.07% using the Classic Random Forest algorithm. To the best of our knowledge, there is very little amount of work done in classifying multiple obfuscated malware by a single model. We also compared our model with a few state-of-the-art models and found it comparatively better.
comment: 8 pages 9 figures presented in IEEE CCEM Conference paper
☆ Memory-Efficient LLM Training with Online Subspace Descent
Recently, a wide range of memory-efficient LLM training algorithms have gained substantial popularity. These methods leverage the low-rank structure of gradients to project optimizer states into a subspace using projection matrix found by singular value decomposition (SVD). However, convergence of these algorithms is highly dependent on the update rules of their projection matrix. In this work, we provide the \emph{first} convergence guarantee for arbitrary update rules of projection matrix. This guarantee is generally applicable to optimizers that can be analyzed with Hamiltonian Descent, including most common ones, such as LION, Adam. Inspired by our theoretical understanding, we propose Online Subspace Descent, a new family of subspace descent optimizer without SVD. Instead of updating the projection matrix with eigenvectors, Online Subspace Descent updates the projection matrix with online PCA. Online Subspace Descent is flexible and introduces only minimum overhead to training. We show that for the task of pretraining LLaMA models ranging from 60M to 7B parameters on the C4 dataset, Online Subspace Descent achieves lower perplexity and better downstream tasks performance than state-of-the-art low-rank training methods across different settings and narrows the gap with full-rank baselines.
comment: Code is available at https://github.com/kyleliang919/Online-Subspace-Descent
☆ Online Fair Division with Contextual Bandits
This paper considers a novel online fair division problem involving multiple agents in which a learner observes an indivisible item that has to be irrevocably allocated to one of the agents while satisfying a fairness and efficiency constraint. Existing algorithms assume a small number of items with a sufficiently large number of copies, which ensures a good utility estimation for all item-agent pairs. However, such an assumption may not hold in many real-life applications, e.g., an online platform that has a large number of users (items) who only use the platform's service providers (agents) a few times (a few copies of items), which makes it difficult to estimate the utility for all item-agent pairs. To overcome this challenge, we model the online fair division problem using contextual bandits, assuming the utility is an unknown function of the item-agent features. We then propose algorithms for online fair division with sub-linear regret guarantees. Our experimental results also verify the different performance aspects of the proposed algorithms.
comment: We study an online fair division problem that has a large number of items with only a few copies of each item and propose contextual bandits-based algorithms with sub-linear regret guarantees
☆ Predicting Affective States from Screen Text Sentiment
The proliferation of mobile sensing technologies has enabled the study of various physiological and behavioural phenomena through unobtrusive data collection from smartphone sensors. This approach offers real-time insights into individuals' physical and mental states, creating opportunities for personalised treatment and interventions. However, the potential of analysing the textual content viewed on smartphones to predict affective states remains underexplored. To better understand how the screen text that users are exposed to and interact with can influence their affects, we investigated a subset of data obtained from a digital phenotyping study of Australian university students conducted in 2023. We employed linear regression, zero-shot, and multi-shot prompting using a large language model (LLM) to analyse relationships between screen text and affective states. Our findings indicate that multi-shot prompting substantially outperforms both linear regression and zero-shot prompting, highlighting the importance of context in affect prediction. We discuss the value of incorporating textual and sentiment data for improving affect prediction, providing a basis for future advancements in understanding smartphone use and wellbeing.
comment: 7 pages
☆ COVID-19 Probability Prediction Using Machine Learning: An Infectious Approach
The ongoing COVID-19 pandemic continues to pose significant challenges to global public health, despite the widespread availability of vaccines. Early detection of the disease remains paramount in curbing its transmission and mitigating its impact on public health systems. In response, this study delves into the application of advanced machine learning (ML) techniques for predicting COVID-19 infection probability. We conducted a rigorous investigation into the efficacy of various ML models, including XGBoost, LGBM, AdaBoost, Logistic Regression, Decision Tree, RandomForest, CatBoost, KNN, and Deep Neural Networks (DNN). Leveraging a dataset comprising 4000 samples, with 3200 allocated for training and 800 for testing, our experiment offers comprehensive insights into the performance of these models in COVID-19 prediction. Our findings reveal that Deep Neural Networks (DNN) emerge as the top-performing model, exhibiting superior accuracy and recall metrics. With an impressive accuracy rate of 89%, DNN demonstrates remarkable potential in early COVID-19 detection. This underscores the efficacy of deep learning approaches in leveraging complex data patterns to identify COVID-19 infections accurately. This study underscores the critical role of machine learning, particularly deep learning methodologies, in augmenting early detection efforts amidst the ongoing pandemic. The success of DNN in accurately predicting COVID-19 infection probability highlights the importance of continued research and development in leveraging advanced technologies to combat infectious diseases.
☆ Exploring Machine Learning Models for Lung Cancer Level Classification: A comparative ML Approach
This paper explores machine learning (ML) models for classifying lung cancer levels to improve diagnostic accuracy and prognosis. Through parameter tuning and rigorous evaluation, we assess various ML algorithms. Techniques like minimum child weight and learning rate monitoring were used to reduce overfitting and optimize performance. Our findings highlight the robust performance of Deep Neural Network (DNN) models across all phases. Ensemble methods, including voting and bagging, also showed promise in enhancing predictive accuracy and robustness. However, Support Vector Machine (SVM) models with the Sigmoid kernel faced challenges, indicating a need for further refinement. Overall, our study provides insights into ML-based lung cancer classification, emphasizing the importance of parameter tuning to optimize model performance and improve diagnostic accuracy in oncological care.
☆ Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence
Deep learning techniques have revolutionized image classification by mimicking human cognition and automating complex decision-making processes. However, the deployment of AI systems in the wild, especially in high-security domains such as defence, is curbed by the lack of explainability of the model. To this end, eXplainable AI (XAI) is an emerging area of research that is intended to explore the unexplained hidden black box nature of deep neural networks. This paper explores the application of the eXplainable Artificial Intelligence (XAI) tool to interpret the underwater image classification results, one of the first works in the domain to the best of our knowledge. Our study delves into the realm of SONAR image classification using a custom dataset derived from diverse sources, including the Seabed Objects KLSG dataset, the camera SONAR dataset, the mine SONAR images dataset, and the SCTD dataset. An extensive analysis of transfer learning techniques for image classification using benchmark Convolutional Neural Network (CNN) architectures such as VGG16, ResNet50, InceptionV3, DenseNet121, etc. is carried out. On top of this classification model, a post-hoc XAI technique, viz. Local Interpretable Model-Agnostic Explanations (LIME) are incorporated to provide transparent justifications for the model's decisions by perturbing input data locally to see how predictions change. Furthermore, Submodular Picks LIME (SP-LIME) a version of LIME particular to images, that perturbs the image based on the submodular picks is also extensively studied. To this end, two submodular optimization algorithms i.e. Quickshift and Simple Linear Iterative Clustering (SLIC) are leveraged towards submodular picks. The extensive analysis of XAI techniques highlights interpretability of the results in a more human-compliant way, thus boosting our confidence and reliability.
comment: 55 pages, 9 tables, 18 figures
☆ CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity Recognition
Few-shot Named Entity Recognition (NER), the task of identifying named entities with only a limited amount of labeled data, has gained increasing significance in natural language processing. While existing methodologies have shown some effectiveness, such as enriching label semantics through various prompting modes or employing metric learning techniques, their performance exhibits limited robustness across diverse domains due to the lack of rich knowledge in their pre-trained models. To address this issue, we propose CLLMFS, a Contrastive Learning enhanced Large Language Model (LLM) Framework for Few-Shot Named Entity Recognition, achieving promising results with limited training data. Considering the impact of LLM's internal representations on downstream tasks, CLLMFS integrates Low-Rank Adaptation (LoRA) and contrastive learning mechanisms specifically tailored for few-shot NER. By enhancing the model's internal representations, CLLMFS effectively improves both entity boundary awareness ability and entity recognition accuracy. Our method has achieved state-of-the-art performance improvements on F1-score ranging from 2.58\% to 97.74\% over existing best-performing methods across several recognized benchmarks. Furthermore, through cross-domain NER experiments conducted on multiple datasets, we have further validated the robust generalization capability of our method. Our code will be released in the near future.
comment: 27TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE
Examining the Commitments and Difficulties Inherent in Multimodal Foundation Models for Street View Imagery
The emergence of Large Language Models (LLMs) and multimodal foundation models (FMs) has generated heightened interest in their applications that integrate vision and language. This paper investigates the capabilities of ChatGPT-4V and Gemini Pro for Street View Imagery, Built Environment, and Interior by evaluating their performance across various tasks. The assessments include street furniture identification, pedestrian and car counts, and road width measurement in Street View Imagery; building function classification, building age analysis, building height analysis, and building structure classification in the Built Environment; and interior room classification, interior design style analysis, interior furniture counts, and interior length measurement in Interior. The results reveal proficiency in length measurement, style analysis, question answering, and basic image understanding, but highlight limitations in detailed recognition and counting tasks. While zero-shot learning shows potential, performance varies depending on the problem domains and image complexities. This study provides new insights into the strengths and weaknesses of multimodal foundation models for practical challenges in Street View Imagery, Built Environment, and Interior. Overall, the findings demonstrate foundational multimodal intelligence, emphasizing the potential of FMs to drive forward interdisciplinary applications at the intersection of computer vision and language.
☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Detecting cracks with pixel-level precision for key structures is a significant challenge, as existing methods struggle to effectively integrate local textures and pixel dependencies of cracks. Furthermore, these methods often possess numerous parameters and substantial computational requirements, complicating deployment on edge devices. In this paper, we propose a staircase cascaded fusion crack segmentation network (CrackSCF) that generates high-quality crack segmentation maps using minimal computational resources. We constructed a staircase cascaded fusion module that effectively captures local patterns of cracks and long-range dependencies of pixels, and it can suppress background noise well. To reduce the computational resources required by the model, we introduced a lightweight convolution block, which replaces all convolution operations in the network, significantly reducing the required computation and parameters without affecting the network's performance. To evaluate our method, we created a challenging benchmark dataset called TUT and conducted experiments on this dataset and five other public datasets. The experimental results indicate that our method offers significant advantages over existing methods, especially in handling background noise interference and detailed crack segmentation. The F1 and mIoU scores on the TUT dataset are 0.8382 and 0.8473, respectively, achieving state-of-the-art (SOTA) performance while requiring the least computational resources. The code and dataset is available at https://github.com/Karl1109/CrackSCF.
☆ DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
Uncertainty quantification in travel time estimation (TTE) aims to estimate the confidence interval for travel time, given the origin (O), destination (D), and departure time (T). Accurately quantifying this uncertainty requires generating the most likely path and assessing travel time uncertainty along the path. This involves two main challenges: 1) Predicting a path that aligns with the ground truth, and 2) modeling the impact of travel time in each segment on overall uncertainty under varying conditions. We propose DutyTTE to address these challenges. For the first challenge, we introduce a deep reinforcement learning method to improve alignment between the predicted path and the ground truth, providing more accurate travel time information from road segments to improve TTE. For the second challenge, we propose a mixture of experts guided uncertainty quantification mechanism to better capture travel time uncertainty for each segment under varying contexts. Additionally, we calibrate our results using Hoeffding's upper-confidence bound to provide statistical guarantees for the estimated confidence intervals. Extensive experiments on two real-world datasets demonstrate the superiority of our proposed method.
comment: 7 pages
☆ VALE: A Multimodal Visual and Language Explanation Framework for Image Classifiers using eXplainable AI and Language Models
Deep Neural Networks (DNNs) have revolutionized various fields by enabling task automation and reducing human error. However, their internal workings and decision-making processes remain obscure due to their black box nature. Consequently, the lack of interpretability limits the application of these models in high-risk scenarios. To address this issue, the emerging field of eXplainable Artificial Intelligence (XAI) aims to explain and interpret the inner workings of DNNs. Despite advancements, XAI faces challenges such as the semantic gap between machine and human understanding, the trade-off between interpretability and performance, and the need for context-specific explanations. To overcome these limitations, we propose a novel multimodal framework named VALE Visual and Language Explanation. VALE integrates explainable AI techniques with advanced language models to provide comprehensive explanations. This framework utilizes visual explanations from XAI tools, an advanced zero-shot image segmentation model, and a visual language model to generate corresponding textual explanations. By combining visual and textual explanations, VALE bridges the semantic gap between machine outputs and human interpretation, delivering results that are more comprehensible to users. In this paper, we conduct a pilot study of the VALE framework for image classification tasks. Specifically, Shapley Additive Explanations (SHAP) are used to identify the most influential regions in classified images. The object of interest is then extracted using the Segment Anything Model (SAM), and explanations are generated using state-of-the-art pre-trained Vision-Language Models (VLMs). Extensive experimental studies are performed on two datasets: the ImageNet dataset and a custom underwater SONAR image dataset, demonstrating VALEs real-world applicability in underwater image classification.
comment: 15 pages, 10 tables, 3 figures
☆ Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks
In an era where digital threats are increasingly sophisticated, the intersection of Artificial Intelligence and cybersecurity presents both promising defenses and potent dangers. This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs). This study details various techniques like the switch method and character play method, which can be exploited by cybercriminals to generate and automate cyber attacks. Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks such as social engineering, malicious code, payload generation, and spyware. By testing these AI generated attacks on live systems, the study assesses their effectiveness and the vulnerabilities they exploit, offering a practical perspective on the risks AI poses to critical infrastructure. We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks. This specialized AI driven tool is adept at crafting steps and generating executable code for a variety of cyber threats, including phishing, malware injection, and system exploitation. The results underscore the urgency for ethical AI practices, robust cybersecurity measures, and regulatory oversight to mitigate AI related threats. This paper aims to elevate awareness within the cybersecurity community about the evolving digital threat landscape, advocating for proactive defense strategies and responsible AI development to protect against emerging cyber threats.
comment: Journal Paper
☆ A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model
Autonomous driving systems with self-evolution capabilities have the potential to independently evolve in complex and open environments, allowing to handle more unknown scenarios. However, as a result of the safety-performance trade-off mechanism of evolutionary algorithms, it is difficult to ensure safe exploration without sacrificing the improvement ability. This problem is especially prominent in dynamic traffic scenarios. Therefore, this paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model. Specifically, a risk quantification model based on the attention mechanism is proposed by modeling the way humans perceive risks during driving, with the idea of achieving safety situation estimation of the surrounding environment through a data-driven approach. To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed, and the proposed risk quantization model is integrated into it. Simulation and real-vehicle experiments results illustrate the effectiveness of the proposed method. The results show that the proposed algorithm can generate safe and reasonable actions in a variety of complex scenarios and guarantee safety without losing the evolutionary potential of learning-based autonomous driving systems.
☆ Multi-Treatment Multi-Task Uplift Modeling for Enhancing User Growth
As a key component in boosting online user growth, uplift modeling aims to measure individual user responses (e.g., whether to play the game) to various treatments, such as gaming bonuses, thereby enhancing business outcomes. However, previous research typically considers a single-task, single-treatment setting, where only one treatment exists and the overall treatment effect is measured by a single type of user response. In this paper, we propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment effects in a multi-task scenario. We identify the multi-treatment problem as a causal inference problem with a tiered response, comprising a base effect (from offering a treatment) and an incremental effect (from offering a specific type of treatment), where the base effect can be numerically much larger than the incremental effect. Specifically, MTMT separately encodes user features and treatments. The user feature encoder uses a multi-gate mixture of experts (MMOE) network to encode relevant user features, explicitly learning inter-task relations. The resultant embeddings are used to measure natural responses per task. Furthermore, we introduce a treatment-user feature interaction module to model correlations between each treatment and user feature. Consequently, we separately measure the base and incremental treatment effect for each task based on the produced treatment-aware representations. Experimental results based on an offline public dataset and an online proprietary dataset demonstrate the effectiveness of MTMT in single/multi-treatment and single/multi-task settings. Additionally, MTMT has been deployed in our gaming platform to improve user experience.
☆ Less for More: Enhancing Preference Learning in Generative Language Models with Automated Self-Curation of Training Corpora
Ambiguity in language presents challenges in developing more enhanced language models, particularly in preference learning, where variability among annotators results in inconsistently annotated datasets used for model alignment. To address this issue, we introduce a self-curation method that preprocesses annotated datasets by leveraging proxy models trained directly on these datasets. Our method enhances preference learning by automatically detecting and removing ambiguous annotations within the dataset. The proposed approach is validated through extensive experiments, demonstrating a marked improvement in performance across various instruction-following tasks. Our work provides a straightforward and reliable method to overcome annotation inconsistencies, serving as an initial step towards the development of more advanced preference learning techniques.
☆ BackdoorLLM: A Comprehensive Benchmark for Backdoor Attacks on Large Language Models
Generative Large Language Models (LLMs) have made significant strides across various tasks, but they remain vulnerable to backdoor attacks, where specific triggers in the prompt cause the LLM to generate adversary-desired responses. While most backdoor research has focused on vision or text classification tasks, backdoor attacks in text generation have been largely overlooked. In this work, we introduce \textit{BackdoorLLM}, the first comprehensive benchmark for studying backdoor attacks on LLMs. \textit{BackdoorLLM} features: 1) a repository of backdoor benchmarks with a standardized training pipeline, 2) diverse attack strategies, including data poisoning, weight poisoning, hidden state attacks, and chain-of-thought attacks, 3) extensive evaluations with over 200 experiments on 8 attacks across 7 scenarios and 6 model architectures, and 4) key insights into the effectiveness and limitations of backdoors in LLMs. We hope \textit{BackdoorLLM} will raise awareness of backdoor threats and contribute to advancing AI safety. The code is available at \url{https://github.com/bboylyg/BackdoorLLM}.
☆ Real-Time Posture Monitoring and Risk Assessment for Manual Lifting Tasks Using MediaPipe and LSTM ACM MM'24
This research focuses on developing a real-time posture monitoring and risk assessment system for manual lifting tasks using advanced AI and computer vision technologies. Musculoskeletal disorders (MSDs) are a significant concern for workers involved in manual lifting, and traditional methods for posture correction are often inadequate due to delayed feedback and lack of personalized assessment. Our proposed solution integrates AI-driven posture detection, detailed keypoint analysis, risk level determination, and real-time feedback delivered through a user-friendly web interface. The system aims to improve posture, reduce the risk of MSDs, and enhance user engagement. The research involves comprehensive data collection, model training, and iterative development to ensure high accuracy and user satisfaction. The solution's effectiveness is evaluated against existing methodologies, demonstrating significant improvements in real-time feedback and risk assessment. This study contributes to the field by offering a novel approach to posture correction that addresses existing gaps and provides practical, immediate benefits to users.
comment: Proceedings of the 1st International Workshop on Multimedia Computing for Health and Medicine at ACM MM'24
☆ Event Detection via Probability Density Function Regression
In the domain of time series analysis, particularly in event detection tasks, current methodologies predominantly rely on segmentation-based approaches, which predict the class label for each individual timesteps and use the changepoints of these labels to detect events. However, these approaches may not effectively detect the precise onset and offset of events within the data and suffer from class imbalance problems. This study introduces a generalized regression-based approach to reframe the time-interval-defined event detection problem. Inspired by heatmap regression techniques from computer vision, our approach aims to predict probability densities at event locations rather than class labels across the entire time series. The primary aim of this approach is to improve the accuracy of event detection methods, particularly for long-duration events where identifying the onset and offset is more critical than classifying individual event states. We demonstrate that regression-based approaches outperform segmentation-based methods across various state-of-the-art baseline networks and datasets, offering a more effective solution for specific event detection tasks.
☆ Context-Aware Temporal Embedding of Objects in Video Data
In video analysis, understanding the temporal context is crucial for recognizing object interactions, event patterns, and contextual changes over time. The proposed model leverages adjacency and semantic similarities between objects from neighboring video frames to construct context-aware temporal object embeddings. Unlike traditional methods that rely solely on visual appearance, our temporal embedding model considers the contextual relationships between objects, creating a meaningful embedding space where temporally connected object's vectors are positioned in proximity. Empirical studies demonstrate that our context-aware temporal embeddings can be used in conjunction with conventional visual embeddings to enhance the effectiveness of downstream applications. Moreover, the embeddings can be used to narrate a video using a Large Language Model (LLM). This paper describes the intricate details of the proposed objective function to generate context-aware temporal object embeddings for video data and showcases the potential applications of the generated embeddings in video analysis and object classification tasks.
☆ LLM-PBE: Assessing Data Privacy in Large Language Models
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis. Their profound capabilities in processing and interpreting complex language data, however, bring to light pressing concerns regarding data privacy, especially the risk of unintentional training data leakage. Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs. Addressing this gap, our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs. LLM-PBE is designed to analyze privacy across the entire lifecycle of LLMs, incorporating diverse attack and defense strategies, and handling various data types and metrics. Through detailed experimentation with multiple LLMs, LLM-PBE facilitates an in-depth exploration of data privacy concerns, shedding light on influential factors such as model size, data characteristics, and evolving temporal dimensions. This study not only enriches the understanding of privacy issues in LLMs but also serves as a vital resource for future research in the field. Aimed at enhancing the breadth of knowledge in this area, the findings, resources, and our full technical report are made available at https://llm-pbe.github.io/, providing an open platform for academic and practical advancements in LLM privacy assessment.
☆ The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction
The utilization of AI in an increasing number of fields is the latest iteration of a long process, where machines and systems have been replacing humans, or changing the roles that they play, in various tasks. Although humans are often resistant to technological innovation, especially in workplaces, there is a general trend towards increasing automation, and more recently, AI. AI is now capable of carrying out, or assisting with, many tasks that used to be regarded as exclusively requiring human expertise. In this paper we consider the case of tasks that could be performed either by human experts or by AI and locate them on a continuum running from exclusively human task performance at one end to AI autonomy on the other, with a variety of forms of human-AI interaction between those extremes. Implementation of AI is constrained by the context of the systems and workflows that it will be embedded within. There is an urgent need for methods to determine how AI should be used in different situations and to develop appropriate methods of human-AI interaction so that humans and AI can work together effectively to perform tasks. In response to the evolving landscape of AI progress and increasing mastery, we introduce an AI Mastery Lifecycle framework and discuss its implications for human-AI interaction. The framework provides guidance on human-AI task allocation and how human-AI interfaces need to adapt to improvements in AI task performance over time. Within the framework we identify a zone of uncertainty where the issues of human-AI task allocation and user interface design are likely to be most challenging.
☆ Investigating LLM Applications in E-Commerce
The emergence of Large Language Models (LLMs) has revolutionized natural language processing in various applications especially in e-commerce. One crucial step before the application of such LLMs in these fields is to understand and compare the performance in different use cases in such tasks. This paper explored the efficacy of LLMs in the e-commerce domain, focusing on instruction-tuning an open source LLM model with public e-commerce datasets of varying sizes and comparing the performance with the conventional models prevalent in industrial applications. We conducted a comprehensive comparison between LLMs and traditional pre-trained language models across specific tasks intrinsic to the e-commerce domain, namely classification, generation, summarization, and named entity recognition (NER). Furthermore, we examined the effectiveness of the current niche industrial application of very large LLM, using in-context learning, in e-commerce specific tasks. Our findings indicate that few-shot inference with very large LLMs often does not outperform fine-tuning smaller pre-trained models, underscoring the importance of task-specific model optimization.Additionally, we investigated different training methodologies such as single-task training, mixed-task training, and LoRA merging both within domain/tasks and between different tasks. Through rigorous experimentation and analysis, this paper offers valuable insights into the potential effectiveness of LLMs to advance natural language processing capabilities within the e-commerce industry.
☆ Data-Centric Approach to Constrained Machine Learning: A Case Study on Conway's Game of Life
This paper focuses on a data-centric approach to machine learning applications in the context of Conway's Game of Life. Specifically, we consider the task of training a minimal architecture network to learn the transition rules of Game of Life for a given number of steps ahead, which is known to be challenging due to restrictions on the allowed number of trainable parameters. An extensive quantitative analysis showcases the benefits of utilizing a strategically designed training dataset, with its advantages persisting regardless of other parameters of the learning configuration, such as network initialization weights or optimization algorithm. Importantly, our findings highlight the integral role of domain expert insights in creating effective machine learning applications for constrained real-world scenarios.
☆ Environment-Centric Active Inference
To handle unintended changes in the environment by agents, we propose an environment-centric active inference EC-AIF in which the Markov Blanket of active inference is defined starting from the environment. In normal active inference, the Markov Blanket is defined starting from the agent. That is, first the agent was defined as the entity that performs the "action" such as a robot or a person, then the environment was defined as other people or objects that are directly affected by the agent's "action," and the boundary between the agent and the environment was defined as the Markov Blanket. This agent-centric definition does not allow the agent to respond to unintended changes in the environment caused by factors outside of the defined environment. In the proposed EC-AIF, there is no entity corresponding to an agent. The environment includes all observable things, including people and things conventionally considered to be the environment, as well as entities that perform "actions" such as robots and people. Accordingly, all states, including robots and people, are included in inference targets, eliminating unintended changes in the environment. The EC-AIF was applied to a robot arm and validated with an object transport task by the robot arm. The results showed that the robot arm successfully transported objects while responding to changes in the target position of the object and to changes in the orientation of another robot arm.
comment: 14 pages, 9 figures
☆ Intelligent OPC Engineer Assistant for Semiconductor Manufacturing
Advancements in chip design and manufacturing have enabled the processing of complex tasks such as deep learning and natural language processing, paving the way for the development of artificial general intelligence (AGI). AI, on the other hand, can be leveraged to innovate and streamline semiconductor technology from planning and implementation to manufacturing. In this paper, we present \textit{Intelligent OPC Engineer Assistant}, an AI/LLM-powered methodology designed to solve the core manufacturing-aware optimization problem known as optical proximity correction (OPC). The methodology involves a reinforcement learning-based OPC recipe search and a customized multi-modal agent system for recipe summarization. Experiments demonstrate that our methodology can efficiently build OPC recipes on various chip designs with specially handled design topologies, a task that typically requires the full-time effort of OPC engineers with years of experience.
☆ Symmetric masking strategy enhances the performance of Masked Image Modeling ICPR 2024
Masked Image Modeling (MIM) is a technique in self-supervised learning that focuses on acquiring detailed visual representations from unlabeled images by estimating the missing pixels in randomly masked sections. It has proven to be a powerful tool for the preliminary training of Vision Transformers (ViTs), yielding impressive results across various tasks. Nevertheless, most MIM methods heavily depend on the random masking strategy to formulate the pretext task. This strategy necessitates numerous trials to ascertain the optimal dropping ratio, which can be resource-intensive, requiring the model to be pre-trained for anywhere between 800 to 1600 epochs. Furthermore, this approach may not be suitable for all datasets. In this work, we propose a new masking strategy that effectively helps the model capture global and local features. Based on this masking strategy, SymMIM, our proposed training pipeline for MIM is introduced. SymMIM achieves a new SOTA accuracy of 85.9\% on ImageNet using ViT-Large and surpasses previous SOTA across downstream tasks such as image classification, semantic segmentation, object detection, instance segmentation tasks, and so on.
comment: Accepted at ICPR 2024
☆ Optimizing Collaboration of LLM based Agents for Finite Element Analysis
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks. We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup. The study focuses on developing a flexible automation framework for applying the Finite Element Method (FEM) to solve linear elastic problems. Our findings emphasize the importance of optimizing agent roles and clearly defining their responsibilities, rather than merely increasing the number of agents. Effective collaboration among agents is shown to be crucial for addressing general FEM challenges. This research demonstrates the potential of LLM multi-agent systems to enhance computational automation in simulation methodologies, paving the way for future advancements in engineering and artificial intelligence.
☆ Transforming Location Retrieval at Airbnb: A Journey from Heuristics to Reinforcement Learning
The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature.
☆ N-DriverMotion: Driver motion learning and prediction using an event-based camera and directly trained spiking neural networks
Driver motion recognition is a principal factor in ensuring the safety of driving systems. This paper presents a novel system for learning and predicting driver motions and an event-based high-resolution (1280x720) dataset, N-DriverMotion, newly collected to train on a neuromorphic vision system. The system comprises an event-based camera that generates the first high-resolution driver motion dataset representing spike inputs and efficient spiking neural networks (SNNs) that are effective in training and predicting the driver's gestures. The event dataset consists of 13 driver motion categories classified by direction (front, side), illumination (bright, moderate, dark), and participant. A novel simplified four-layer convolutional spiking neural network (CSNN) that we proposed was directly trained using the high-resolution dataset without any time-consuming preprocessing. This enables efficient adaptation to on-device SNNs for real-time inference on high-resolution event-based streams. Compared with recent gesture recognition systems adopting neural networks for vision processing, the proposed neuromorphic vision system achieves comparable accuracy, 94.04\%, in recognizing driver motions with the CSNN architecture. Our proposed CSNN and the dataset can be used to develop safer and more efficient driver monitoring systems for autonomous vehicles or edge devices requiring an efficient neural network architecture.
comment: 10 pages, 5 figures
☆ DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning
Drug repurposing offers a promising avenue for accelerating drug development by identifying new therapeutic potentials of existing drugs. In this paper, we propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration. Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics Database (CTD), and Search Tool for Interactions of Chemicals (STITCH) to systematically extract DTIs; and a Search Agent interacts with biomedical literature to annotate and verify computational predictions. By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates. Preliminary results demonstrate the potential of our approach in not only predicting drug-disease interactions but also in reducing the time and cost associated with traditional drug discovery methods. This paper highlights the scalability of multi-agent systems in biomedical research and their role in driving innovation in drug repurposing. Our approach not only outperforms existing methods in predicting drug repurposing potential but also provides interpretable results, paving the way for more efficient and cost-effective drug discovery processes.
comment: 18 pages, 1 figure
☆ Reduce, Reuse, Recycle: Categories for Compositional Reinforcement Learning
In reinforcement learning, conducting task composition by forming cohesive, executable sequences from multiple tasks remains challenging. However, the ability to (de)compose tasks is a linchpin in developing robotic systems capable of learning complex behaviors. Yet, compositional reinforcement learning is beset with difficulties, including the high dimensionality of the problem space, scarcity of rewards, and absence of system robustness after task composition. To surmount these challenges, we view task composition through the prism of category theory -- a mathematical discipline exploring structures and their compositional relationships. The categorical properties of Markov decision processes untangle complex tasks into manageable sub-tasks, allowing for strategical reduction of dimensionality, facilitating more tractable reward structures, and bolstering system robustness. Experimental results support the categorical theory of reinforcement learning by enabling skill reduction, reuse, and recycling when learning complex robotic arm tasks.
comment: ECAI 2024
☆ Understanding Defects in Generated Codes by Language Models
This study investigates the reliability of code generation by Large Language Models (LLMs), focusing on identifying and analyzing defects in the generated code. Despite the advanced capabilities of LLMs in automating code generation, ensuring the accuracy and functionality of the output remains a significant challenge. By using a structured defect classification method to understand their nature and origins this study categorizes and analyzes 367 identified defects from code snippets generated by LLMs, with a significant proportion being functionality and algorithm errors. These error categories indicate key areas where LLMs frequently fail, underscoring the need for targeted improvements. To enhance the accuracy of code generation, this paper implemented five prompt engineering techniques, including Scratchpad Prompting, Program of Thoughts Prompting, Chain-of-Thought Prompting, Chain of Code Prompting, and Structured Chain-of-Thought Prompting. These techniques were applied to refine the input prompts, aiming to reduce ambiguities and improve the models' accuracy rate. The research findings suggest that precise and structured prompting significantly mitigates common defects, thereby increasing the reliability of LLM-generated code.
☆ CodeRefine: A Pipeline for Enhancing LLM-Generated Code Implementations of Research Papers
This paper presents CodeRefine, a novel framework for automatically transforming research paper methodologies into functional code using Large Language Models (LLMs). Our multi-step approach first extracts and summarizes key text chunks from papers, analyzes their code relevance, and creates a knowledge graph using a predefined ontology. Code is then generated from this structured representation and enhanced through a proposed retrospective retrieval-augmented generation approach. CodeRefine addresses the challenge of bridging theoretical research and practical implementation, offering a more accurate alternative to LLM zero-shot prompting. Evaluations on diverse scientific papers demonstrate CodeRefine's ability to improve code implementation from the paper, potentially accelerating the adoption of cutting-edge algorithms in real-world applications.
☆ Reconciling Different Theories of Learning with an Agent-based Model of Procedural Learning
Computational models of human learning can play a significant role in enhancing our knowledge about nuances in theoretical and qualitative learning theories and frameworks. There are many existing frameworks in educational settings that have shown to be verified using empirical studies, but at times we find these theories make conflicting claims or recommendations for instruction. In this study, we propose a new computational model of human learning, Procedural ABICAP, that reconciles the ICAP, Knowledge-Learning-Instruction (KLI), and cognitive load theory (CLT) frameworks for learning procedural knowledge. ICAP assumes that constructive learning generally yields better learning outcomes, while theories such as KLI and CLT claim that this is not always true. We suppose that one reason for this may be that ICAP is primarily used for conceptual learning and is underspecified as a framework for thinking about procedural learning. We show how our computational model, both by design and through simulations, can be used to reconcile different results in the literature. More generally, we position our computational model as an executable theory of learning that can be used to simulate various educational settings.
☆ Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler
Finding the optimal learning rate for language model pretraining is a challenging task. This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored. In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (muP) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models. We open-source these pretrained models at https://ibm.biz/BdKhLa.
☆ Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting
A keyword spotting (KWS) engine that is continuously running on device is exposed to various speech signals that are usually unseen before. It is a challenging problem to build a small-footprint and high-performing KWS model with robustness under different acoustic environments. In this paper, we explore how to effectively apply adversarial examples to improve KWS robustness. We propose datasource-aware disentangled learning with adversarial examples to reduce the mismatch between the original and adversarial data as well as the mismatch across original training datasources. The KWS model architecture is based on depth-wise separable convolution and a simple attention module. Experimental results demonstrate that the proposed learning strategy improves false reject rate by $40.31%$ at $1%$ false accept rate on the internal dataset, compared to the strongest baseline without using adversarial examples. Our best-performing system achieves $98.06%$ accuracy on the Google Speech Commands V1 dataset.
☆ Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples
Advances in automatic speaker verification (ASV) promote research into the formulation of spoofing detection systems for real-world applications. The performance of ASV systems can be degraded severely by multiple types of spoofing attacks, namely, synthetic speech (SS), voice conversion (VC), replay, twins and impersonation, especially in the case of unseen synthetic spoofing attacks. A reliable and robust spoofing detection system can act as a security gate to filter out spoofing attacks instead of having them reach the ASV system. A weighted additive angular margin loss is proposed to address the data imbalance issue, and different margins has been assigned to improve generalization to unseen spoofing attacks in this study. Meanwhile, we incorporate a meta-learning loss function to optimize differences between the embeddings of support versus query set in order to learn a spoofing-category-independent embedding space for utterances. Furthermore, we craft adversarial examples by adding imperceptible perturbations to spoofing speech as a data augmentation strategy, then we use an auxiliary batch normalization (BN) to guarantee that corresponding normalization statistics are performed exclusively on the adversarial examples. Additionally, A simple attention module is integrated into the residual block to refine the feature extraction process. Evaluation results on the Logical Access (LA) track of the ASVspoof 2019 corpus provides confirmation of our proposed approaches' effectiveness in terms of a pooled EER of 0.87%, and a min t-DCF of 0.0277. These advancements offer effective options to reduce the impact of spoofing attacks on voice recognition/authentication systems.
comment: IEEE ACCESS 2024
☆ LalaEval: A Holistic Human Evaluation Framework for Domain-Specific Large Language Models
This paper introduces LalaEval, a holistic framework designed for the human evaluation of domain-specific large language models (LLMs). LalaEval proposes a comprehensive suite of end-to-end protocols that cover five main components including domain specification, criteria establishment, benchmark dataset creation, construction of evaluation rubrics, and thorough analysis and interpretation of evaluation outcomes. This initiative aims to fill a crucial research gap by providing a systematic methodology for conducting standardized human evaluations within specific domains, a practice that, despite its widespread application, lacks substantial coverage in the literature and human evaluation are often criticized to be less reliable due to subjective factors, so standardized procedures adapted to the nuanced requirements of specific domains or even individual organizations are in great need. Furthermore, the paper demonstrates the framework's application within the logistics industry, presenting domain-specific evaluation benchmarks, datasets, and a comparative analysis of LLMs for the logistics domain use, highlighting the framework's capacity to elucidate performance differences and guide model selection and development for domain-specific LLMs. Through real-world deployment, the paper underscores the framework's effectiveness in advancing the field of domain-specific LLM evaluation, thereby contributing significantly to the ongoing discussion on LLMs' practical utility and performance in domain-specific applications.
☆ Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning
In today's rapidly evolving military landscape, advancing artificial intelligence (AI) in support of wargaming becomes essential. Despite reinforcement learning (RL) showing promise for developing intelligent agents, conventional RL faces limitations in handling the complexity inherent in combat simulations. This dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning (HRL) framework. Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods. Our multi-model framework combines various AI methodologies, optimizing performance while still enabling the use of diverse, specialized individual behavior models. Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance. Our HRL architecture and training framework decomposes complex problems into manageable subproblems, aligning with military decision-making structures. Although initial tests did not show improved performance, insights were gained to improve future iterations. This study underscores AI's potential to revolutionize wargaming, emphasizing the need for continued research in this domain.
☆ Localized Observation Abstraction Using Piecewise Linear Spatial Decay for Reinforcement Learning in Combat Simulations
In the domain of combat simulations, the training and deployment of deep reinforcement learning (RL) agents still face substantial challenges due to the dynamic and intricate nature of such environments. Unfortunately, as the complexity of the scenarios and available information increases, the training time required to achieve a certain threshold of performance does not just increase, but often does so exponentially. This relationship underscores the profound impact of complexity in training RL agents. This paper introduces a novel approach that addresses this limitation in training artificial intelligence (AI) agents using RL. Traditional RL methods have been shown to struggle in these high-dimensional, dynamic environments due to real-world computational constraints and the known sample inefficiency challenges of RL. To overcome these limitations, we propose a method of localized observation abstraction using piecewise linear spatial decay. This technique simplifies the state space, reducing computational demands while still preserving essential information, thereby enhancing AI training efficiency in dynamic environments where spatial relationships are often critical. Our analysis reveals that this localized observation approach consistently outperforms the more traditional global observation approach across increasing scenario complexity levels. This paper advances the research on observation abstractions for RL, illustrating how localized observation with piecewise linear spatial decay can provide an effective solution to large state representation challenges in dynamic environments.
☆ An Overview and Comparison of Axiomatization Structures Regarding Inconsistency Indices' Properties in Pairwise Comparisons Methods
Mathematical analysis of the analytic hierarchy process (AHP) led to the development of a mathematical function, usually called the inconsistency index, which has the center role in measuring the inconsistency of the judgements in AHP. Inconsistency index is a mathematical function which maps every pairwise comparison matrix (PCM) into a real number. An inconsistency index can be considered more trustworthy when it satisfies a set of suitable properties. Therefore, the research community has been trying to postulate a set of desirable rules (axioms, properties) for inconsistency indices. Subsequently, many axiomatic frameworks for these functions have been suggested independently, however, the literature on the topic is fragmented and missing a broader framework. Therefore, the objective of this article is twofold. Firstly, we provide a comprehensive review of the advancements in the axiomatization of inconsistency indices' properties during the last decade. Secondly, we provide a comparison and discussion of the aforementioned axiomatic structures along with directions of the future research.
comment: 21 pages, 2 figures
☆ Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction
Accurate and reliable prediction has profound implications to a wide range of applications. In this study, we focus on an instance of spatio-temporal learning problem--traffic prediction--to demonstrate an advanced deep learning model developed for making accurate and reliable forecast. Despite the significant progress in traffic prediction, limited studies have incorporated both explicit and implicit traffic patterns simultaneously to improve prediction performance. Meanwhile, the variability nature of traffic states necessitates quantifying the uncertainty of model predictions in a statistically principled way; however, extant studies offer no provable guarantee on the statistical validity of confidence intervals in reflecting its actual likelihood of containing the ground truth. In this paper, we propose an end-to-end traffic prediction framework that leverages three primary components to generate accurate and reliable traffic predictions: dynamic causal structure learning for discovering implicit traffic patterns from massive traffic data, causally-aware spatio-temporal multi-graph convolution network (CASTMGCN) for learning spatio-temporal dependencies, and conformal prediction for uncertainty quantification. CASTMGCN fuses several graphs that characterize different important aspects of traffic networks and an auxiliary graph that captures the effect of exogenous factors on the road network. On this basis, a conformal prediction approach tailored to spatio-temporal data is further developed for quantifying the uncertainty in node-wise traffic predictions over varying prediction horizons. Experimental results on two real-world traffic datasets demonstrate that the proposed method outperforms several state-of-the-art models in prediction accuracy; moreover, it generates more efficient prediction regions than other methods while strictly satisfying the statistical validity in coverage.
♻ ☆ RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering
With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
comment: 13 pages, 4 figures
♻ ☆ Enhanced Fine-Tuning of Lightweight Domain-Specific Q&A Model Based on Large Language Models
Large language models (LLMs) excel at general question-answering (Q&A) but often fall short in specialized domains due to a lack of domain-specific knowledge. Commercial companies face the dual challenges of privacy protection and resource constraints when involving LLMs for fine-tuning. This paper propose a novel framework, Self-Evolution, designed to address these issues by leveraging lightweight open-source LLMs through multiple iterative fine-tuning rounds. To enhance the efficiency of iterative fine-tuning, Self-Evolution employ a strategy that filters and reinforces the knowledge with higher value during the iterative process. We employed Self-Evolution on Qwen1.5-7B-Chat using 4,000 documents containing rich domain knowledge from China Mobile, achieving a performance score 174% higher on domain-specific question-answering evaluations than Qwen1.5-7B-Chat and even 22% higher than Qwen1.5-72B-Chat. Self-Evolution has been deployed in China Mobile's daily operation and maintenance for 117 days, and it improves the efficiency of locating alarms, fixing problems, and finding related reports, with an average efficiency improvement of over 18.6%. In addition, we release Self-Evolution framework code in https://github.com/Zero-Pointer/Self-Evolution.
♻ ☆ SUBLLM: A Novel Efficient Architecture with Token Sequence Subsampling for LLM
While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. Our code is available at https://github.com/XiaoMi/subllm.
comment: 10 pages, 5 figures, accepted by ECAI 2024
♻ ☆ Xinyu: An Efficient LLM-based System for Commentary Generation
Commentary provides readers with a deep understanding of events by presenting diverse arguments and evidence. However, creating commentary is a time-consuming task, even for skilled commentators. Large language models (LLMs) have simplified the process of natural language generation, but their direct application in commentary creation still faces challenges due to unique task requirements. These requirements can be categorized into two levels: 1) fundamental requirements, which include creating well-structured and logically consistent narratives, and 2) advanced requirements, which involve generating quality arguments and providing convincing evidence. In this paper, we introduce Xinyu, an efficient LLM-based system designed to assist commentators in generating Chinese commentaries. To meet the fundamental requirements, we deconstruct the generation process into sequential steps, proposing targeted strategies and supervised fine-tuning (SFT) for each step. To address the advanced requirements, we present an argument ranking model for arguments and establish a comprehensive evidence database that includes up-to-date events and classic books, thereby strengthening the substantiation of the evidence with retrieval augmented generation (RAG) technology. To evaluate the generated commentaries more fairly, corresponding to the two-level requirements, we introduce a comprehensive evaluation metric that considers five distinct perspectives in commentary generation. Our experiments confirm the effectiveness of our proposed system. We also observe a significant increase in the efficiency of commentators in real-world scenarios, with the average time spent on creating a commentary dropping from 4 hours to 20 minutes. Importantly, such an increase in efficiency does not compromise the quality of the commentaries.
♻ ☆ Bidirectional Gated Mamba for Sequential Recommendation
In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named Selective Gated Mamba (SIGMA) for Sequential Recommendation. This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at https://github.com/ziwliu-cityu/SIMGA to ease reproducibility.
♻ ☆ Classifier-Free Guidance is a Predictor-Corrector
We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-powered distribution $p(x|c)^\gamma p(x)^{1-\gamma}$. Then, we clarify the behavior of CFG by showing that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the conditional distribution together with a Langevin dynamics corrector for a gamma-powered distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically understand CFG by embedding it in a broader design space of principled sampling methods.
comment: AB and PN contributed equally. v2: Fixed typos
♻ ☆ DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation
This research introduces DesignQA, a novel benchmark aimed at evaluating the proficiency of multimodal large language models (MLLMs) in comprehending and applying engineering requirements in technical documentation. Developed with a focus on real-world engineering challenges, DesignQA uniquely combines multimodal data-including textual design requirements, CAD images, and engineering drawings-derived from the Formula SAE student competition. Different from many existing MLLM benchmarks, DesignQA contains document-grounded visual questions where the input image and input document come from different sources. The benchmark features automatic evaluation metrics and is divided into segments-Rule Comprehension, Rule Compliance, and Rule Extraction-based on tasks that engineers perform when designing according to requirements. We evaluate state-of-the-art models (at the time of writing) like GPT-4o, GPT-4, Claude-Opus, Gemini-1.0, and LLaVA-1.5 against the benchmark, and our study uncovers the existing gaps in MLLMs' abilities to interpret complex engineering documentation. The MLLMs tested, while promising, struggle to reliably retrieve relevant rules from the Formula SAE documentation, face challenges in recognizing technical components in CAD images, and encounter difficulty in analyzing engineering drawings. These findings underscore the need for multimodal models that can better handle the multifaceted questions characteristic of design according to technical documentation. This benchmark sets a foundation for future advancements in AI-supported engineering design processes. DesignQA is publicly available at: https://github.com/anniedoris/design_qa/.
♻ ☆ Model Merging by Uncertainty-Based Gradient Matching ICLR 2024
Models trained on different datasets can be merged by a weighted-averaging of their parameters, but why does it work and when can it fail? Here, we connect the inaccuracy of weighted-averaging to mismatches in the gradients and propose a new uncertainty-based scheme to improve the performance by reducing the mismatch. The connection also reveals implicit assumptions in other schemes such as averaging, task arithmetic, and Fisher-weighted averaging. Our new method gives consistent improvements for large language models and vision transformers, both in terms of performance and robustness to hyperparameters. Code available here.
comment: ICLR 2024; Code: https://github.com/UKPLab/iclr2024-model-merging
♻ ☆ Advancing Voice Cloning for Nepali: Leveraging Transfer Learning in a Low-Resource Language
Voice cloning is a prominent feature in personalized speech interfaces. A neural vocal cloning system can mimic someone's voice using just a few audio samples. Both speaker encoding and speaker adaptation are topics of research in the field of voice cloning. Speaker adaptation relies on fine-tuning a multi-speaker generative model, which involves training a separate model to infer a new speaker embedding used for speaker encoding. Both methods can achieve excellent performance, even with a small number of cloning audios, in terms of the speech's naturalness and similarity to the original speaker. Speaker encoding approaches are more appropriate for low-resource deployment since they require significantly less memory and have a faster cloning time than speaker adaption, which can offer slightly greater naturalness and similarity. The main goal is to create a vocal cloning system that produces audio output with a Nepali accent or that sounds like Nepali. For the further advancement of TTS, the idea of transfer learning was effectively used to address several issues that were encountered in the development of this system, including the poor audio quality and the lack of available data.
comment: 6 pages, 10 figures
♻ ☆ Solving Robotics Problems in Zero-Shot with Vision-Language Models
We introduce Wonderful Team, a multi-agent visual LLM (VLLM) framework for solving robotics problems in the zero-shot regime. By zero-shot we mean that, for a novel environment, we feed a VLLM an image of the robot's environment and a description of the task, and have the VLLM output the sequence of actions necessary for the robot to complete the task. Prior work on VLLMs in robotics has largely focused on settings where some part of the pipeline is fine-tuned, such as tuning an LLM on robot data or training a separate vision encoder for perception and action generation. Surprisingly, due to recent advances in the capabilities of VLLMs, this type of fine-tuning may no longer be necessary for many tasks. In this work, we show that with careful engineering, we can prompt a single off-the-shelf VLLM to handle all aspects of a robotics task, from high-level planning to low-level location-extraction and action-execution. Wonderful Team builds on recent advances in multi-agent LLMs to partition tasks across an agent hierarchy, making it self-corrective and able to effectively partition and solve even long-horizon tasks. Extensive experiments on VIMABench and real-world robotic environments demonstrate the system's capability to handle a variety of robotic tasks, including manipulation, visual goal-reaching, and visual reasoning, all in a zero-shot manner. These results underscore a key point: vision-language models have progressed rapidly in the past year, and should strongly be considered as a backbone for robotics problems going forward.
comment: aka Wonderful Team
♻ ☆ AI Reliance and Decision Quality: Fundamentals, Interdependence, and the Effects of Interventions
In AI-assisted decision-making, a central promise of having a human-in-the-loop is that they should be able to complement the AI system by overriding its wrong recommendations. In practice, however, we often see that humans cannot assess the correctness of AI recommendations and, as a result, adhere to wrong or override correct advice. Different ways of relying on AI recommendations have immediate, yet distinct, implications for decision quality. Unfortunately, reliance and decision quality are often inappropriately conflated in the current literature on AI-assisted decision-making. In this work, we disentangle and formalize the relationship between reliance and decision quality, and we characterize the conditions under which human-AI complementarity is achievable. To illustrate how reliance and decision quality relate to one another, we propose a visual framework and demonstrate its usefulness for interpreting empirical findings, including the effects of interventions like explanations. Overall, our research highlights the importance of distinguishing between reliance behavior and decision quality in AI-assisted decision-making.
comment: Accepted at Journal of Artificial Intelligence Research (JAIR)
♻ ☆ Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach
Integrated sensing and communication (ISAC) technology is essential for supporting vehicular networks. However, the communication channel in this scenario exhibits time variations, and the potential targets may move rapidly, resulting in double dynamics. This nature poses a challenge for real-time precoder design. While optimization-based solutions are widely researched, they are complex and heavily rely on perfect channel-related information, which is impractical in double dynamics. To address this challenge, we propose using constrained deep reinforcement learning to facilitate dynamic updates to the ISAC precoder. Additionally, the primal dual-deep deterministic policy gradient and Wolpertinger architecture are tailored to efficiently train the algorithm under complex constraints and varying numbers of users. The proposed scheme not only adapts to the dynamics based on observations but also leverages environmental information to enhance performance and reduce complexity. Its superiority over existing candidates has been validated through experiments.
comment: Accepted by 2024 IEEE Global Communications Conference
♻ ☆ AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online Labor Platform
The emergence of Large Language Models (LLMs) has renewed the debate on the important issue of "technology displacement". While prior research has investigated the effect of information technology in general on human labor from a macro perspective, this paper complements the literature by examining the impact of LLMs on freelancers from a micro perspective. Specifically, we leverage the release of ChatGPT to investigate how AI influences freelancers across different online labor markets (OLMs). Employing the Difference-in-Differences method, we discovered two distinct scenarios following ChatGPT's release: 1) the displacement effect of LLMs, featuring reduced work volume and earnings, as is exemplified by the translation & localization OLM; 2) the productivity effect of LLMs, featuring increased work volume and earnings, as is exemplified by the web development OLM. To shed light on the underlying mechanisms, we developed a Cournot-type competition model to highlight the existence of an inflection point for each occupation which separates the timeline of AI progress into a honeymoon phase and a substitution phase. Before AI performance crosses the inflection point, human labor benefits each time AI improves, resulting in the honeymoon phase. However, after AI performance crosses the inflection point, additional AI enhancement hurts human labor. Further analyzing the progression from ChatGPT 3.5 to 4.0, we found three effect scenarios (i.e., productivity to productivity, displacement to displacement, and productivity to displacement), consistent with the inflection point conjecture. Heterogeneous analyses reveal that U.S. web developers tend to benefit more from the release of ChatGPT compared to their counterparts in other regions, and somewhat surprisingly, experienced translators seem more likely to exit the market than less experienced translators after the release of ChatGPT.
comment: 41 pages, 3 figures, 13 tables
♻ ☆ Generative Topological Networks
Generative models have seen significant advancements in recent years, yet often remain challenging and costly to train and use. We introduce Generative Topological Networks (GTNs) -- a new class of generative models that addresses these shortcomings. GTNs are trained deterministically using a simple supervised learning approach grounded in topology theory. GTNs are fast to train, and require only a single forward pass in a standard feedforward neural network to generate samples. We demonstrate the strengths of GTNs on several datasets, including MNIST, CelebA and the Hands and Palm Images dataset. Finally, the theory behind GTNs offers insights into how to train generative models for improved performance. Code and weights are available at: https://github.com/alonalj/GTN
♻ ☆ iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).
comment: 8 pages, 3 figures, 3 tables
♻ ☆ Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives
The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP), introducing unprecedented capabilities that are revolutionizing various domains. This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications. Our paper contributes to providing a holistic perspective on the technical foundations, practical applications, and emerging challenges within the evolving landscape of Generative AI and LLMs. We believe that understanding the generative capabilities of AI systems and the specific context of LLMs is crucial for researchers, practitioners, and policymakers to collaboratively shape the responsible and ethical integration of these technologies into various domains. Furthermore, we identify and address main research gaps, providing valuable insights to guide future research endeavors within the AI research community.
comment: This version is accepted for publication in the Journal of IEEE Transactions on Artificial Intelligence (TAI)
♻ ☆ Enhancing Training Efficiency Using Packing with Flash Attention
Padding is often used in tuning LLM models by adding special tokens to shorter training examples to match the length of the longest sequence in each batch. While this ensures uniformity for batch processing, it introduces inefficiencies by including irrelevant padding tokens in the computation and wastes GPU resources. Hugging Face SFT trainer has always offered the option to use packing to combine multiple training examples, allowing for maximal utilization of GPU resources. However, up till now, it did not offer proper masking of each packed training example. This capability has now been added to Hugging Face Transformers 4.44. We analyse this new feature and show the benefits across different variations of packing.
♻ ☆ Abductive Reasoning in a Paraconsistent Framework KR 2024
We explore the problem of explaining observations starting from a classically inconsistent theory by adopting a paraconsistent framework. We consider two expansions of the well-known Belnap--Dunn paraconsistent four-valued logic $\mathsf{BD}$: $\mathsf{BD}_\circ$ introduces formulas of the form $\circ\phi$ (the information on $\phi$ is reliable), while $\mathsf{BD}_\triangle$ augments the language with $\triangle\phi$'s (there is information that $\phi$ is true). We define and motivate the notions of abduction problems and explanations in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ and show that they are not reducible to one another. We analyse the complexity of standard abductive reasoning tasks (solution recognition, solution existence, and relevance / necessity of hypotheses) in both logics. Finally, we show how to reduce abduction in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ to abduction in classical propositional logic, thereby enabling the reuse of existing abductive reasoning procedures.
comment: This is an extended version of a paper with the same title appearing at the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
♻ ☆ Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks IROS 2024
In multi-agent reinforcement learning (MARL), the Centralized Training with Decentralized Execution (CTDE) framework is pivotal but struggles due to a gap: global state guidance in training versus reliance on local observations in execution, lacking global signals. Inspired by human societal consensus mechanisms, we introduce the Hierarchical Consensus-based Multi-Agent Reinforcement Learning (HC-MARL) framework to address this limitation. HC-MARL employs contrastive learning to foster a global consensus among agents, enabling cooperative behavior without direct communication. This approach enables agents to form a global consensus from local observations, using it as an additional piece of information to guide collaborative actions during execution. To cater to the dynamic requirements of various tasks, consensus is divided into multiple layers, encompassing both short-term and long-term considerations. Short-term observations prompt the creation of an immediate, low-layer consensus, while long-term observations contribute to the formation of a strategic, high-layer consensus. This process is further refined through an adaptive attention mechanism that dynamically adjusts the influence of each consensus layer. This mechanism optimizes the balance between immediate reactions and strategic planning, tailoring it to the specific demands of the task at hand. Extensive experiments and real-world applications in multi-robot systems showcase our framework's superior performance, marking significant advancements over baselines.
comment: 8 pages, 10 figures. Accepted for presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ MAML MOT: Multiple Object Tracking based on Meta-Learning
With the advancement of video analysis technology, the multi-object tracking (MOT) problem in complex scenes involving pedestrians is gaining increasing importance. This challenge primarily involves two key tasks: pedestrian detection and re-identification. While significant progress has been achieved in pedestrian detection tasks in recent years, enhancing the effectiveness of re-identification tasks remains a persistent challenge. This difficulty arises from the large total number of pedestrian samples in multi-object tracking datasets and the scarcity of individual instance samples. Motivated by recent rapid advancements in meta-learning techniques, we introduce MAML MOT, a meta-learning-based training approach for multi-object tracking. This approach leverages the rapid learning capability of meta-learning to tackle the issue of sample scarcity in pedestrian re-identification tasks, aiming to improve the model's generalization performance and robustness. Experimental results demonstrate that the proposed method achieves high accuracy on mainstream datasets in the MOT Challenge. This offers new perspectives and solutions for research in the field of pedestrian multi-object tracking.
♻ ☆ Pseudo Channel: Time Embedding for Motor Imagery Decoding
Motor imagery (MI) based EEG represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation. This study introduces a novel time embedding technique, termed traveling-wave based time embedding, utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures. Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference, our approach captures time-related changes for different participants based on a priori knowledge. Through extensive experimentation with multiple participants, we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture. Significantly, our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy, particularly for participants typically considered "EEG-illiteracy". As a novel direction in EEG research, the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.
comment: 13 pages, 5 figures
♻ ☆ Robust Diffusion Models for Adversarial Purification
Diffusion models (DMs) based adversarial purification (AP) has shown to be the most powerful alternative to adversarial training (AT). However, these methods neglect the fact that pre-trained diffusion models themselves are not robust to adversarial attacks as well. Additionally, the diffusion process can easily destroy semantic information and generate a high quality image but totally different from the original input image after the reverse process, leading to degraded standard accuracy. To overcome these issues, a natural idea is to harness adversarial training strategy to retrain or fine-tune the pre-trained diffusion model, which is computationally prohibitive. We propose a novel robust reverse process with adversarial guidance, which is independent of given pre-trained DMs and avoids retraining or fine-tuning the DMs. This robust guidance can not only ensure to generate purified examples retaining more semantic content but also mitigate the accuracy-robustness trade-off of DMs for the first time, which also provides DM-based AP an efficient adaptive ability to new attacks. Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to demonstrate that our method achieves the state-of-the-art results and exhibits generalization against different attacks.
♻ ☆ XEQ Scale for Evaluating XAI Experience Quality Grounded in Psychometric Theory
Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
♻ ☆ Exploring Multi-modal Neural Scene Representations With Applications on Thermal Imaging ECCV
Neural Radiance Fields (NeRFs) quickly evolved as the new de-facto standard for the task of novel view synthesis when trained on a set of RGB images. In this paper, we conduct a comprehensive evaluation of neural scene representations, such as NeRFs, in the context of multi-modal learning. Specifically, we present four different strategies of how to incorporate a second modality, other than RGB, into NeRFs: (1) training from scratch independently on both modalities; (2) pre-training on RGB and fine-tuning on the second modality; (3) adding a second branch; and (4) adding a separate component to predict (color) values of the additional modality. We chose thermal imaging as second modality since it strongly differs from RGB in terms of radiosity, making it challenging to integrate into neural scene representations. For the evaluation of the proposed strategies, we captured a new publicly available multi-view dataset, ThermalMix, consisting of six common objects and about 360 RGB and thermal images in total. We employ cross-modality calibration prior to data capturing, leading to high-quality alignments between RGB and thermal images. Our findings reveal that adding a second branch to NeRF performs best for novel view synthesis on thermal images while also yielding compelling results on RGB. Finally, we also show that our analysis generalizes to other modalities, including near-infrared images and depth maps. Project page: https://mert-o.github.io/ThermalNeRF/.
comment: Accepted to ECCVW'24
♻ ☆ DiffLoad: Uncertainty Quantification in Load Forecasting with Diffusion Model
Electrical load forecasting plays a crucial role in decision-making for power systems, including unit commitment and economic dispatch. The integration of renewable energy sources and the occurrence of external events, such as the COVID-19 pandemic, have rapidly increased uncertainties in load forecasting. The uncertainties in load forecasting can be divided into two types: epistemic uncertainty and aleatoric uncertainty. Separating these types of uncertainties can help decision-makers better understand where and to what extent the uncertainty is, thereby enhancing their confidence in the following decision-making. This paper proposes a diffusion-based Seq2Seq structure to estimate epistemic uncertainty and employs the robust additive Cauchy distribution to estimate aleatoric uncertainty. Our method not only ensures the accuracy of load forecasting but also demonstrates the ability to separate the two types of uncertainties and be applicable to different levels of loads. The relevant code can be found at \url{https://anonymous.4open.science/r/DiffLoad-4714/}.
comment: Accepted by IEEE Transactions on Power Systems, 2024
♻ ☆ The News Comment Gap and Algorithmic Agenda Setting in Online Forums
The disparity between news stories valued by journalists and those preferred by readers, known as the "News Gap", is well-documented. However, the difference in expectations regarding news related user-generated content is less studied. Comment sections, hosted by news websites, are popular venues for reader engagement, yet still subject to editorial decisions. It is thus important to understand journalist vs reader comment preferences and how these are served by various comment ranking algorithms that represent discussions differently. We analyse 1.2 million comments from Austrian newspaper Der Standard to understand the "News Comment Gap" and the effects of different ranking algorithms. We find that journalists prefer positive, timely, complex, direct responses, while readers favour comments similar to article content from elite authors. We introduce the versatile Feature-Oriented Ranking Utility Metric (FORUM) to assess the impact of different ranking algorithms and find dramatic differences in how they prioritise the display of comments by sentiment, topical relevance, lexical diversity, and readability. Journalists can exert substantial influence over the discourse through both curatorial and algorithmic means. Understanding these choices' implications is vital in fostering engaging and civil discussions while aligning with journalistic objectives, especially given the increasing legal scrutiny and societal importance of online discourse.
♻ ☆ Large Language Models are Zero-Shot Next Location Predictors
Predicting the locations an individual will visit in the future is crucial for solving many societal issues like disease diffusion and reduction of pollution. However, next-location predictors require a significant amount of individual-level information that may be scarce or unavailable in some scenarios (e.g., cold-start). Large Language Models (LLMs) have shown good generalization and reasoning capabilities and are rich in geographical knowledge, allowing us to believe that these models can act as zero-shot next-location predictors. We tested more than 15 LLMs on three real-world mobility datasets and we found that LLMs can obtain accuracies up to 36.2%, a significant relative improvement of almost 640% when compared to other models specifically designed for human mobility. We also test for data contamination and explored the possibility of using LLMs as text-based explainers for next-location prediction, showing that, regardless of the model size, LLMs can explain their decision.
♻ ☆ Pessimistic Off-Policy Optimization for Learning to Rank
Off-policy learning is a framework for optimizing policies without deploying them, using data collected by another policy. In recommender systems, this is especially challenging due to the imbalance in logged data: some items are recommended and thus logged more frequently than others. This is further perpetuated when recommending a list of items, as the action space is combinatorial. To address this challenge, we study pessimistic off-policy optimization for learning to rank. The key idea is to compute lower confidence bounds on parameters of click models and then return the list with the highest pessimistic estimate of its value. This approach is computationally efficient, and we analyze it. We study its Bayesian and frequentist variants and overcome the limitation of unknown prior by incorporating empirical Bayes. To show the empirical effectiveness of our approach, we compare it to off-policy optimizers that use inverse propensity scores or neglect uncertainty. Our approach outperforms all baselines and is both robust and general.
comment: 13 pages, 10 figures, to be published in ECAI 2024
♻ ☆ Federated Neural Graph Databases
The increasing demand for large-scale language models (LLMs) has highlighted the importance of efficient data retrieval mechanisms. Neural graph databases (NGDBs) have emerged as a promising approach to storing and querying graph-structured data in neural space, enabling the retrieval of relevant information for LLMs. However, existing NGDBs are typically designed to operate on a single graph, limiting their ability to reason across multiple graphs. Furthermore, the lack of support for multi-source graph data in existing NGDBs hinders their ability to capture the complexity and diversity of real-world data. In many applications, data is distributed across multiple sources, and the ability to reason across these sources is crucial for making informed decisions. This limitation is particularly problematic when dealing with sensitive graph data, as directly sharing and aggregating such data poses significant privacy risks. As a result, many applications that rely on NGDBs are forced to choose between compromising data privacy or sacrificing the ability to reason across multiple graphs. To address these limitations, we propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy. FedNGDB leverages federated learning to collaboratively learn graph representations across multiple sources, enriching relationships between entities and improving the overall quality of the graph data. Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
♻ ☆ OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models
Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.
♻ ☆ BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims to associate a text with a set of aspects and infer their respective sentimental polarities. State-of-the-art approaches are built on fine-tuning pre-trained language models, focusing on learning aspect-specific representations from the corpus. However, aspects are often expressed implicitly, making implicit mapping challenging without sufficient labeled examples, which may be scarce in real-world scenarios. This paper proposes a unified framework to address aspect categorization and aspect-based sentiment subtasks. We introduce a mechanism to construct an auxiliary-sentence for the implicit aspect using the corpus's semantic information. We then encourage BERT to learn aspect-specific representation in response to this auxiliary-sentence, not the aspect itself. We evaluate our approach on real benchmark datasets for both ABSA and Targeted-ABSA tasks. Our experiments show that it consistently achieves state-of-the-art performance in aspect categorization and aspect-based sentiment across all datasets, with considerable improvement margins. The BERT-ASC code is available at https://github.com/amurtadha/BERT-ASC.
comment: under review
♻ ☆ Distillation Contrastive Decoding: Improving LLMs Reasoning with Contrastive Decoding and Distillation
We propose a straightforward approach called Distillation Contrastive Decoding (DCD) to enhance the reasoning capabilities of Large Language Models (LLMs) during inference. In contrast to previous approaches that relied on smaller amateur models or analysis of hidden state differences, DCD employs Contrastive Chain-of-thought Prompting and advanced distillation techniques, including Dropout and Quantization. This approach effectively addresses the limitations of Contrastive Decoding (CD), which typically requires both an expert and an amateur model, thus increasing computational resource demands. By integrating contrastive prompts with distillation, DCD obviates the need for an amateur model and reduces memory usage. Our evaluations demonstrate that DCD significantly enhances LLM performance across a range of reasoning benchmarks, surpassing both CD and existing methods in the GSM8K and StrategyQA datasets.
comment: Under Review
♻ ☆ A Review of Nine Physics Engines for Reinforcement Learning Research
We present a review of popular simulation engines and frameworks used in reinforcement learning (RL) research, aiming to guide researchers in selecting tools for creating simulated physical environments for RL and training setups. It evaluates nine frameworks (Brax, Chrono, Gazebo, MuJoCo, ODE, PhysX, PyBullet, Webots, and Unity) based on their popularity, feature range, quality, usability, and RL capabilities. We highlight the challenges in selecting and utilizing physics engines for RL research, including the need for detailed comparisons and an understanding of each framework's capabilities. Key findings indicate MuJoCo as the leading framework due to its performance and flexibility, despite usability challenges. Unity is noted for its ease of use but lacks scalability and simulation fidelity. The study calls for further development to improve simulation engines' usability and performance and stresses the importance of transparency and reproducibility in RL research. This review contributes to the RL community by offering insights into the selection process for simulation engines, facilitating informed decision-making.
comment: 11 pages, 3 figures
♻ ☆ LLaVA-VSD: Large Language-and-Vision Assistant for Visual Spatial Description
Visual Spatial Description (VSD) aims to generate texts that describe the spatial relationships between objects within images. Traditional visual spatial relationship classification (VSRC) methods typically output the spatial relationship between two objects in an image, often neglecting world knowledge and lacking general language capabilities. In this paper, we propose a Large Language-and-Vision Assistant for Visual Spatial Description, named LLaVA-VSD, which is designed for the classification, description, and open-ended description of visual spatial relationships. Specifically, the model first constructs a VSD instruction-following dataset using given figure-caption pairs for the three tasks. It then employs LoRA to fine-tune a Large Language and Vision Assistant for VSD, which has 13 billion parameters and supports high-resolution images. Finally, a large language model (Qwen-2) is used to refine the generated sentences, enhancing their diversity and accuracy. LLaVA-VSD demonstrates excellent multimodal conversational capabilities and can follow open-ended instructions to assist with inquiries about object relationships in images.
♻ ☆ Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel pipeline to acquire the robust purifier model, named Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks, resulting in the robustness generalization to unseen attacks, and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves optimal robustness and exhibits generalization ability against unseen attacks.
♻ ☆ EWMoE: An effective model for global weather forecasting with mixture-of-experts
Weather forecasting is a crucial task for meteorologic research, with direct social and economic impacts. Recently, data-driven weather forecasting models based on deep learning have shown great potential, achieving superior performance compared with traditional numerical weather prediction methods. However, these models often require massive training data and computational resources. In this paper, we propose EWMoE, an effective model for accurate global weather forecasting, which requires significantly less training data and computational resources. Our model incorporates three key components to enhance prediction accuracy: 3D absolute position embedding, a core Mixture-of-Experts (MoE) layer, and two specific loss functions. We conduct our evaluation on the ERA5 dataset using only two years of training data. Extensive experiments demonstrate that EWMoE outperforms current models such as FourCastNet and ClimaX at all forecast time, achieving competitive performance compared with the state-of-the-art models Pangu-Weather and GraphCast in evaluation metrics such as Anomaly Correlation Coefficient (ACC) and Root Mean Square Error (RMSE). Additionally, ablation studies indicate that applying the MoE architecture to weather forecasting offers significant advantages in improving accuracy and resource efficiency. Code is available at https://github.com/Tomoyi/EWMoE.
♻ ☆ AppAgent v2: Advanced Agent for Flexible Mobile Interactions
With the advancement of Multimodal Large Language Models (MLLM), LLM-driven visual agents are increasingly impacting software interfaces, particularly those with graphical user interfaces. This work introduces a novel LLM-based multimodal agent framework for mobile devices. This framework, capable of navigating mobile devices, emulates human-like interactions. Our agent constructs a flexible action space that enhances adaptability across various applications including parser, text and vision descriptions. The agent operates through two main phases: exploration and deployment. During the exploration phase, functionalities of user interface elements are documented either through agent-driven or manual explorations into a customized structured knowledge base. In the deployment phase, RAG technology enables efficient retrieval and update from this knowledge base, thereby empowering the agent to perform tasks effectively and accurately. This includes performing complex, multi-step operations across various applications, thereby demonstrating the framework's adaptability and precision in handling customized task workflows. Our experimental results across various benchmarks demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios. Our code will be open source soon.
comment: Pre-print version, some content needs to be supplemented
♻ ☆ Instruction-Driven Game Engines on Large Language Models
The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game rules and autonomously generate game-play processes. The IDGE allows users to create games by issuing simple natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts in-game states given player actions. It is a challenging task because the computation of in-game states must be precise; otherwise, slight errors could disrupt the game-play. To address this, we train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, a universally cherished card game. The engine we've designed not only supports a wide range of poker variants but also allows for high customization of rules through natural language inputs. Furthermore, it also favors rapid prototyping of new games from minimal samples, proposing an innovative paradigm in game development that relies on minimal prompt and data engineering. This work lays the groundwork for future advancements in instruction-driven game creation, potentially transforming how games are designed and played.
♻ ☆ Scaling Virtual World with Delta-Engine
In this paper, we focus on the \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by individuals' capability to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \textbf{\emph{Delta-Engine}} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's scalability. It consists of a base engine and a neural proxy. The base engine programs the prototype of the virtual world; given a trigger, the neural proxy generates new snippets on the base engine through \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We introduce an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss the human-LLM collaborative design to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation.
♻ ☆ The Best of Both Worlds: Toward an Honest and Helpful Large Language Model
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H$^{2}$ (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.
♻ ☆ Accurate Explanation Model for Image Classifiers using Class Association Embedding ICDE
Image classification is a primary task in data analysis where explainable models are crucially demanded in various applications. Although amounts of methods have been proposed to obtain explainable knowledge from the black-box classifiers, these approaches lack the efficiency of extracting global knowledge regarding the classification task, thus is vulnerable to local traps and often leads to poor accuracy. In this study, we propose a generative explanation model that combines the advantages of global and local knowledge for explaining image classifiers. We develop a representation learning method called class association embedding (CAE), which encodes each sample into a pair of separated class-associated and individual codes. Recombining the individual code of a given sample with altered class-associated code leads to a synthetic real-looking sample with preserved individual characters but modified class-associated features and possibly flipped class assignments. A building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones. The extracted feature space forms a low-dimensional manifold that visualizes the classification decision patterns. Explanation on each individual sample can be then achieved in a counter-factual generation manner which continuously modifies the sample in one direction, by shifting its class-associated code along a guided path, until its classification outcome is changed. We compare our method with state-of-the-art ones on explaining image classification tasks in the form of saliency maps, demonstrating that our method achieves higher accuracies. The code is available at https://github.com/xrt11/XAI-CODE.
comment: 2024 IEEE 40th International Conference on Data Engineering (ICDE)
♻ ☆ ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling
In recent years, studies on image generation models of spiking neural networks (SNNs) have gained the attention of many researchers. Variational autoencoders (VAEs), as one of the most popular image generation models, have attracted a lot of work exploring their SNN implementation. Due to the constrained binary representation in SNNs, existing SNN VAE methods implicitly construct the latent space by an elaborated autoregressive network and use the network outputs as the sampling variables. However, this unspecified implicit representation of the latent space will increase the difficulty of generating high-quality images and introduces additional network parameters. In this paper, we propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution and design a reparameterizable spiking sampling method. Specifically, we construct the prior and posterior of the latent space as a Poisson distribution using the firing rate of the spiking neurons. Subsequently, we propose a reparameterizable Poisson spiking sampling method, which is free from the additional network. Comprehensive experiments have been conducted, and the experimental results show that the proposed ESVAE outperforms previous SNN VAE methods in reconstructed & generated images quality. In addition, experiments demonstrate that ESVAE's encoder is able to retain the original image information more efficiently, and the decoder is more robust. The source code is available at https://github.com/QgZhan/ESVAE.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ DBHP: Trajectory Imputation in Multi-Agent Sports Using Derivative-Based Hybrid Prediction
Many spatiotemporal domains handle multi-agent trajectory data, but in real-world scenarios, collected trajectory data are often partially missing due to various reasons. While existing approaches demonstrate good performance in trajectory imputation, they face challenges in capturing the complex dynamics and interactions between agents due to a lack of physical constraints that govern realistic trajectories, leading to suboptimal results. To address this issue, the paper proposes a Derivative-Based Hybrid Prediction (DBHP) framework that can effectively impute multiple agents' missing trajectories. First, a neural network equipped with Set Transformers produces a naive prediction of missing trajectories while satisfying the permutation-equivariance in terms of the order of input agents. Then, the framework makes alternative predictions leveraging velocity and acceleration information and combines all the predictions with properly determined weights to provide final imputed trajectories. In this way, our proposed framework not only accurately predicts position, velocity, and acceleration values but also enforces the physical relationship between them, eventually improving both the accuracy and naturalness of the predicted trajectories. Accordingly, the experiment results about imputing player trajectories in team sports show that our framework significantly outperforms existing imputation baselines.
♻ ☆ Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory
The development of Large Language Models (LLMs) provides human-centered Artificial General Intelligence (AGI) with a glimmer of hope. Empathy serves as a key emotional attribute of humanity, playing an irreplaceable role in human-centered AGI. Despite numerous researches aim to improve the cognitive empathy of models by incorporating external knowledge, there has been limited attention on the sensibility and rationality of the conversation itself, which are vital components of the empathy. However, the rationality information within the conversation is restricted, and previous methods of extending knowledge are subject to semantic conflict and single-role view. In this paper, we design an innovative encoder module inspired by self-presentation theory in sociology, which specifically processes sensibility and rationality sentences in dialogues. And we employ a LLM as a rational brain to decipher profound logical information preserved within the conversation, which assists our model in assessing the balance between sensibility and rationality to produce high-quality empathetic response. Experimental results demonstrate that our model outperforms other methods in both automatic and human evaluations.
♻ ☆ A Survey on Retrieval-Augmented Text Generation for Large Language Models
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but possibly incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
comment: Ongoing Work
♻ ☆ Phi-3 Safety Post-Training: Aligning Language Models with a "Break-Fix" Cycle
Recent innovations in language model training have demonstrated that it is possible to create highly performant models that are small enough to run on a smartphone. As these models are deployed in an increasing number of domains, it is critical to ensure that they are aligned with human preferences and safety considerations. In this report, we present our methodology for safety aligning the Phi-3 series of language models. We utilized a "break-fix" cycle, performing multiple rounds of dataset curation, safety post-training, benchmarking, red teaming, and vulnerability identification to cover a variety of harm areas in both single and multi-turn scenarios. Our results indicate that this approach iteratively improved the performance of the Phi-3 models across a wide range of responsible AI benchmarks. Finally, we include additional red teaming strategies and evaluations that were used to test the safety behavior of Phi-3.5-mini and Phi-3.5-MoE, which were optimized for multilingual capabilities.
♻ ☆ Predicting Solar Energy Generation with Machine Learning based on AQI and Weather Features
This paper addresses the pressing need for an accurate solar energy prediction model, which is crucial for efficient grid integration. We explore the influence of the Air Quality Index and weather features on solar energy generation, employing advanced Machine Learning and Deep Learning techniques. Our methodology uses time series modeling and makes novel use of power transform normalization and zero-inflated modeling. Various Machine Learning algorithms and Conv2D Long Short-Term Memory model based Deep Learning models are applied to these transformations for precise predictions. Results underscore the effectiveness of our approach, demonstrating enhanced prediction accuracy with Air Quality Index and weather features. We achieved a 0.9691 $R^2$ Score, 0.18 MAE, 0.10 RMSE with Conv2D Long Short-Term Memory model, showcasing the power transform technique's innovation in enhancing time series forecasting for solar energy generation. Such results help our research contribute valuable insights to the synergy between Air Quality Index, weather features, and Deep Learning techniques for solar energy prediction.
comment: 10 pages, 11 figures
♻ ☆ Mechanistic Interpretability for AI Safety -- A Review
Understanding AI systems' inner workings is critical for ensuring value alignment and safety. This review explores mechanistic interpretability: reverse engineering the computational mechanisms and representations learned by neural networks into human-understandable algorithms and concepts to provide a granular, causal understanding. We establish foundational concepts such as features encoding knowledge within neural activations and hypotheses about their representation and computation. We survey methodologies for causally dissecting model behaviors and assess the relevance of mechanistic interpretability to AI safety. We examine benefits in understanding, control, alignment, and risks such as capability gains and dual-use concerns. We investigate challenges surrounding scalability, automation, and comprehensive interpretation. We advocate for clarifying concepts, setting standards, and scaling techniques to handle complex models and behaviors and expand to domains such as vision and reinforcement learning. Mechanistic interpretability could help prevent catastrophic outcomes as AI systems become more powerful and inscrutable.
comment: Accepted to TMLR; for an HTML version, visit https://leonardbereska.github.io/blog/2024/mechinterpreview/
♻ ☆ Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.
comment: Accepted to the 27th European Conference on Artificial Intelligence (ECAI 2024)
♻ ☆ CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation RecSys 2024
Traditional recommender systems such as matrix factorization methods have primarily focused on learning a shared dense embedding space to represent both items and user preferences. Subsequently, sequence models such as RNN, GRUs, and, recently, Transformers have emerged and excelled in the task of sequential recommendation. This task requires understanding the sequential structure present in users' historical interactions to predict the next item they may like. Building upon the success of Large Language Models (LLMs) in a variety of tasks, researchers have recently explored using LLMs that are pretrained on vast corpora of text for sequential recommendation. To use LLMs for sequential recommendation, both the history of user interactions and the model's prediction of the next item are expressed in text form. We propose CALRec, a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss: the LLM is first finetuned on a data mixture from multiple domains followed by another round of target domain finetuning. Our model significantly outperforms many state-of-the-art baselines (+37% in Recall@1 and +24% in NDCG@10) and our systematic ablation studies reveal that (i) both stages of finetuning are crucial, and, when combined, we achieve improved performance, and (ii) contrastive alignment is effective among the target domains explored in our experiments.
comment: RecSys 2024 (Long Paper)
♻ ☆ Real-time goal recognition using approximations in Euclidean space
While recent work on online goal recognition efficiently infers goals under low observability, comparatively less work focuses on online goal recognition that works in both discrete and continuous domains. Online goal recognition approaches often rely on repeated calls to the planner at each new observation, incurring high computational costs. Recognizing goals online in continuous space quickly and reliably is critical for any trajectory planning problem since the real physical world is fast-moving, e.g. robot applications. We develop an efficient method for goal recognition that relies either on a single call to the planner for each possible goal in discrete domains or a simplified motion model that reduces the computational burden in continuous ones. The resulting approach performs the online component of recognition orders of magnitude faster than the current state of the art, making it the first online method effectively usable for robotics applications that require sub-second recognition.
♻ ☆ Learning a Decision Tree Algorithm with Transformers
Decision trees are renowned for their ability to achieve high predictive performance while remaining interpretable, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying a good partition is challenging, as decision trees optimized for local segments may not yield global generalization. To address this, we introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees. Specifically, we fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance. This training enables MetaTree to emulate these algorithms and intelligently adapt its strategy according to the context, thereby achieving superior generalization performance.
♻ ☆ CoSQA+: Enhancing Code Search Dataset with Matching Code
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets are problematic: either using unrealistic queries, or with mismatched codes, and typically using one-to-one query-code pairing, which fails to reflect the reality that a query might have multiple valid code matches. This paper introduces CoSQA+, pairing high-quality queries (reused from CoSQA) with multiple suitable codes. We collect code candidates from diverse sources and form candidate pairs by pairing queries with these codes. Utilizing the power of large language models (LLMs), we automate pair annotation, filtering, and code generation for queries without suitable matches. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. Furthermore, we propose a new metric Mean Multi-choice Reciprocal Rank (MMRR), to assess one-to-N code search performance. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: 11 pages, 4 figures, conference
♻ ☆ MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection
Graph anomaly detection has long been an important problem in various domains pertaining to information security such as financial fraud, social spam and network intrusion. The majority of existing methods are performed in an unsupervised manner, as labeled anomalies in a large scale are often too expensive to acquire. However, the identified anomalies may turn out to be uninteresting data instances due to the lack of prior knowledge. In real-world scenarios, it is often feasible to obtain limited labeled anomalies, which have great potential to advance graph anomaly detection. However, the work exploring limited labeled anomalies and a large amount of unlabeled nodes in graphs to detect anomalies is relatively limited. Therefore, in this paper, we study an important problem of few-shot graph anomaly detection. Nonetheless, it is challenging to fully leverage the information of few-shot anomalous nodes due to the irregularity of anomalies and the overfitting issue in the few-shot learning. To tackle the above challenges, we propose a novel meta-learning based framework, MetaGAD, that learns to adapt the knowledge from self-supervised learning to few-shot supervised learning for graph anomaly detection. In specific, we formulate the problem as a bi-level optimization, ensuring MetaGAD converging to minimizing the validation loss, thus enhancing the generalization capacity. The comprehensive experiments on six real-world datasets with synthetic anomalies and "organic" anomalies (available in the datasets) demonstrate the effectiveness of MetaGAD in detecting anomalies with few-shot anomalies. The code is available at https://github.com/XiongxiaoXu/MetaGAD.
comment: Accepted by IEEE DSAA 2024
♻ ☆ Bidirectional Generative Pre-training for Improving Healthcare Time-series Representation Learning
Learning time-series representations for discriminative tasks, such as classification and regression, has been a long-standing challenge in the healthcare domain. Current pre-training methods are limited in either unidirectional next-token prediction or randomly masked token prediction. We propose a novel architecture called Bidirectional Timely Generative Pre-trained Transformer (BiTimelyGPT), which pre-trains on biosignals and longitudinal clinical records by both next-token and previous-token prediction in alternating transformer layers. This pre-training task preserves original distribution and data shapes of the time-series. Additionally, the full-rank forward and backward attention matrices exhibit more expressive representation capabilities. Using biosignals and longitudinal clinical records, BiTimelyGPT demonstrates superior performance in predicting neurological functionality, disease diagnosis, and physiological signs. By visualizing the attention heatmap, we observe that the pre-trained BiTimelyGPT can identify discriminative segments from biosignal time-series sequences, even more so after fine-tuning on the task.
♻ ☆ UAV-Enhanced Combination to Application: Comprehensive Analysis and Benchmarking of a Human Detection Dataset for Disaster Scenarios ICPR 2024
Unmanned aerial vehicles (UAVs) have revolutionized search and rescue (SAR) operations, but the lack of specialized human detection datasets for training machine learning models poses a significant challenge.To address this gap, this paper introduces the Combination to Application (C2A) dataset, synthesized by overlaying human poses onto UAV-captured disaster scenes. Through extensive experimentation with state-of-the-art detection models, we demonstrate that models fine-tuned on the C2A dataset exhibit substantial performance improvements compared to those pre-trained on generic aerial datasets. Furthermore, we highlight the importance of combining the C2A dataset with general human datasets to achieve optimal performance and generalization across various scenarios. This points out the crucial need for a tailored dataset to enhance the effectiveness of SAR operations. Our contributions also include developing dataset creation pipeline and integrating diverse human poses and disaster scenes information to assess the severity of disaster scenarios. Our findings advocate for future developments, to ensure that SAR operations benefit from the most realistic and effective AI-assisted interventions possible.
comment: This Paper is accepted for 27th International Conference on Pattern Recognition (ICPR 2024)
♻ ☆ Hypothesis Generation with Large Language Models
Effective generation of novel hypotheses is instrumental to scientific progress. So far, researchers have been the main powerhouse behind hypothesis generation by painstaking data analysis and thinking (also known as the Eureka moment). In this paper, we examine the potential of large language models (LLMs) to generate hypotheses. We focus on hypothesis generation based on data (i.e., labeled examples). To enable LLMs to handle arbitrarily long contexts, we generate initial hypotheses from a small number of examples and then update them iteratively to improve the quality of hypotheses. Inspired by multi-armed bandits, we design a reward function to inform the exploitation-exploration tradeoff in the update process. Our algorithm is able to generate hypotheses that enable much better predictive performance than few-shot prompting in classification tasks, improving accuracy by 31.7% on a synthetic dataset and by 13.9%, 3.3% and, 24.9% on three real-world datasets. We also outperform supervised learning by 12.8% and 11.2% on two challenging real-world datasets. Furthermore, we find that the generated hypotheses not only corroborate human-verified theories but also uncover new insights for the tasks.
comment: 28 pages, 6 figures, code link: https://github.com/ChicagoHAI/hypothesis_generation
Graphics 5
☆ End-to-end Surface Optimization for Light Control
Designing a freeform surface to reflect or refract light to achieve a target distribution is a challenging inverse problem. In this paper, we propose an end-to-end optimization strategy for an optical surface mesh. Our formulation leverages a novel differentiable rendering model, and is directly driven by the difference between the resulting light distribution and the target distribution. We also enforce geometric constraints related to fabrication requirements, to facilitate CNC milling and polishing of the designed surface. To address the issue of local minima, we formulate a face-based optimal transport problem between the current mesh and the target distribution, which makes effective large changes to the surface shape. The combination of our optimal transport update and rendering-guided optimization produces an optical surface design with a resulting image closely resembling the target, while the fabrication constraints in our optimization help to ensure consistency between the rendering model and the final physical results. The effectiveness of our algorithm is demonstrated on a variety of target images using both simulated rendering and physical prototypes.
☆ BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting
We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique designed to represent and render 3D objects with surface and volumetric materials under dynamic illumination. Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects. To unify surface and volumetric material within a cohesive appearance model, we adopt a light- and view-dependent scattering representation via bidirectional spherical harmonics. Our model does not use a specific surface normal-related reflectance function, making it more compatible with volumetric representations like Gaussian splatting, where the normals are undefined. We demonstrate our method by reconstructing and rendering objects with complex materials. Using One-Light-At-a-Time (OLAT) data as input, we can reproduce photorealistic appearances under novel lighting conditions in real time.
♻ ☆ View-Consistent 3D Editing with Gaussian Splatting ECCV 2024
The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further video results are shown in http://vcedit.github.io.
comment: accepted to ECCV 2024
♻ ☆ Collaborative Control for Geometry-Conditioned PBR Image Generation
Graphics pipelines require physically-based rendering (PBR) materials, yet current 3D content generation approaches are built on RGB models. We propose to model the PBR image distribution directly, avoiding photometric inaccuracies in RGB generation and the inherent ambiguity in extracting PBR from RGB. As existing paradigms for cross-modal fine-tuning are not suited for PBR generation due to both a lack of data and the high dimensionality of the output modalities, we propose to train a new PBR model that is tightly linked to a frozen RGB model using a novel cross-network communication paradigm. As the base RGB model is fully frozen, the proposed method retains its general performance and remains compatible with e.g. IPAdapters for that base model.
comment: 19 pages, 10 figures; Project page: https://unity-research.github.io/holo-gen/
♻ ☆ Exploring Multi-modal Neural Scene Representations With Applications on Thermal Imaging ECCV
Neural Radiance Fields (NeRFs) quickly evolved as the new de-facto standard for the task of novel view synthesis when trained on a set of RGB images. In this paper, we conduct a comprehensive evaluation of neural scene representations, such as NeRFs, in the context of multi-modal learning. Specifically, we present four different strategies of how to incorporate a second modality, other than RGB, into NeRFs: (1) training from scratch independently on both modalities; (2) pre-training on RGB and fine-tuning on the second modality; (3) adding a second branch; and (4) adding a separate component to predict (color) values of the additional modality. We chose thermal imaging as second modality since it strongly differs from RGB in terms of radiosity, making it challenging to integrate into neural scene representations. For the evaluation of the proposed strategies, we captured a new publicly available multi-view dataset, ThermalMix, consisting of six common objects and about 360 RGB and thermal images in total. We employ cross-modality calibration prior to data capturing, leading to high-quality alignments between RGB and thermal images. Our findings reveal that adding a second branch to NeRF performs best for novel view synthesis on thermal images while also yielding compelling results on RGB. Finally, we also show that our analysis generalizes to other modalities, including near-infrared images and depth maps. Project page: https://mert-o.github.io/ThermalNeRF/.
comment: Accepted to ECCVW'24
Robotics 30
☆ Automating Deformable Gasket Assembly
In Gasket Assembly, a deformable gasket must be aligned and pressed into a narrow channel. This task is common for sealing surfaces in the manufacturing of automobiles, appliances, electronics, and other products. Gasket Assembly is a long-horizon, high-precision task and the gasket must align with the channel and be fully pressed in to achieve a secure fit. To compare approaches, we present 4 methods for Gasket Assembly: one policy from deep imitation learning and three procedural algorithms. We evaluate these methods with 100 physical trials. Results suggest that the Binary+ algorithm succeeds in 10/10 on the straight channel whereas the learned policy based on 250 human teleoperated demonstrations succeeds in 8/10 trials and is significantly slower. Code, CAD models, videos, and data can be found at https://berkeleyautomation.github.io/robot-gasket/
comment: Content without Appendix accepted for IEEE CASE 2024
☆ UMAD: University of Macau Anomaly Detection Benchmark Dataset IROS
Anomaly detection is critical in surveillance systems and patrol robots by identifying anomalous regions in images for early warning. Depending on whether reference data are utilized, anomaly detection can be categorized into anomaly detection with reference and anomaly detection without reference. Currently, anomaly detection without reference, which is closely related to out-of-distribution (OoD) object detection, struggles with learning anomalous patterns due to the difficulty of collecting sufficiently large and diverse anomaly datasets with the inherent rarity and novelty of anomalies. Alternatively, anomaly detection with reference employs the scheme of change detection to identify anomalies by comparing semantic changes between a reference image and a query one. However, there are very few ADr works due to the scarcity of public datasets in this domain. In this paper, we aim to address this gap by introducing the UMAD Benchmark Dataset. To our best knowledge, this is the first benchmark dataset designed specifically for anomaly detection with reference in robotic patrolling scenarios, e.g., where an autonomous robot is employed to detect anomalous objects by comparing a reference and a query video sequences. The reference sequences can be taken by the robot along a specified route when there are no anomalous objects in the scene. The query sequences are captured online by the robot when it is patrolling in the same scene following the same route. Our benchmark dataset is elaborated such that each query image can find a corresponding reference based on accurate robot localization along the same route in the prebuilt 3D map, with which the reference and query images can be geometrically aligned using adaptive warping. Besides the proposed benchmark dataset, we evaluate the baseline models of ADr on this dataset.
comment: Accepted by the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024, project code at https://github.com/IMRL/UMAD
☆ Beyond Shortsighted Navigation: Merging Best View Trajectory Planning with Robot Navigation
Gathering visual information effectively to monitor known environments is a key challenge in robotics. To be as efficient as human surveyors, robotic systems must continuously collect observational data required to complete their survey task. Inspection personnel instinctively know to look at relevant equipment that happens to be ``along the way.'' In this paper, we introduce a novel framework for continuous long-horizon viewpoint planning, for ground robots, applied to tasks involving patrolling, monitoring or visual data gathering in known environments. Our approach to Long Horizon Viewpoint Planning (LHVP), enables the robot to autonomously navigate and collect environmental data optimizing for coverage over the horizon of the patrol. Leveraging a quadruped's mobility and sensory capabilities, our LHVP framework plans patrol paths that account for coupling the viewpoint planner for the arm camera with the mobile base's navigation planner. The viewpath optimization algorithm seeks a balance between comprehensive environmental coverage and dynamically feasible movements, thus ensuring prolonged and effective operation in scenarios including monitoring, security surveillance, and disaster response. We validate our approach through simulations and in the real world and show that our LHVP significantly outperforms naive patrolling methods in terms of area coverage generating information-gathering trajectories for the robot arm. Our results indicate a promising direction for the deployment of mobile robots in long-term, autonomous surveying, and environmental data collection tasks, highlighting the potential of intelligent robotic systems in challenging real-world applications.
comment: 7 pages, 8 figures, 5 tables
☆ Integrated Hardware and Software Architecture for Industrial AGV with Manual Override Capability
This paper presents a study on transforming a traditional human-operated vehicle into a fully autonomous device. By leveraging previous research and state-of-the-art technologies, the study addresses autonomy, safety, and operational efficiency in industrial environments. Motivated by the demand for automation in hazardous and complex industries, the autonomous system integrates sensors, actuators, advanced control algorithms, and communication systems to enhance safety, streamline processes, and improve productivity. The paper covers system requirements, hardware architecture, software framework and preliminary results. This research offers insights into designing and implementing autonomous capabilities in human-operated vehicles, with implications for improving safety and efficiency in various industrial sectors.
comment: accepted for presentation as WiP at the 2024 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA2024)
☆ Smart Fleet Solutions: Simulating Electric AGV Performance in Industrial Settings
This paper explores the potential benefits and challenges of integrating Electric Vehicles (EVs) and Autonomous Ground Vehicles (AGVs) in industrial settings to improve sustainability and operational efficiency. While EVs offer environmental advantages, barriers like high costs and limited range hinder their widespread use. Similarly, AGVs, despite their autonomous capabilities, face challenges in technology integration and reliability. To address these issues, the paper develops a fleet management tool tailored for coordinating electric AGVs in industrial environments. The study focuses on simulating electric AGV performance in a primary aluminum plant to provide insights into their effectiveness and offer recommendations for optimizing fleet performance.
comment: accepted for presentation as WiP at the 2024 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA2024)
☆ Probabilistic Homotopy Optimization for Dynamic Motion Planning IROS 2024
We present a homotopic approach to solving challenging, optimization-based motion planning problems. The approach uses Homotopy Optimization, which, unlike standard continuation methods for solving homotopy problems, solves a sequence of constrained optimization problems rather than a sequence of nonlinear systems of equations. The insight behind our proposed algorithm is formulating the discovery of this sequence of optimization problems as a search problem in a multidimensional homotopy parameter space. Our proposed algorithm, the Probabilistic Homotopy Optimization algorithm, switches between solve and sample phases, using solutions to easy problems as initial guesses to more challenging problems. We analyze how our algorithm performs in the presence of common challenges to homotopy methods, such as bifurcation, folding, and disconnectedness of the homotopy solution manifold. Finally, we demonstrate its utility via a case study on two dynamic motion planning problems: the cart-pole and the MIT Humanoid.
comment: 8 pages, 9 Figures, 2 Tables, to appear in the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
☆ Robotic Eye-in-hand Visual Servo Axially Aligning Nasopharyngeal Swabs with the Nasal Cavity
The nasopharyngeal (NP) swab test is a method for collecting cultures to diagnose for different types of respiratory illnesses, including COVID-19. Delegating this task to robots would be beneficial in terms of reducing infection risks and bolstering the healthcare system, but a critical component of the NP swab test is having the swab aligned properly with the nasal cavity so that it does not cause excessive discomfort or injury by traveling down the wrong passage. Existing research towards robotic NP swabbing typically assumes the patient's head is held within a fixture. This simplifies the alignment problem, but is also dissimilar to clinical scenarios where patients are typically free-standing. Consequently, our work creates a vision-guided pipeline to allow an instrumented robot arm to properly position and orient NP swabs with respect to the nostrils of free-standing patients. The first component of the pipeline is a precomputed joint lookup table to allow the arm to meet the patient's arbitrary position in the designated workspace, while avoiding joint limits. Our pipeline leverages semantic face models from computer vision to estimate the Euclidean pose of the face with respect to a monocular RGB-D camera placed on the end-effector. These estimates are passed into an unscented Kalman filter on manifolds state estimator and a pose based visual servo control loop to move the swab to the designated pose in front of the nostril. Our pipeline was validated with human trials, featuring a cohort of 25 participants. The system is effective, reaching the nostril for 84% of participants, and our statistical analysis did not find significant demographic biases within the cohort.
comment: 12 pages, 13 figures
☆ Multi Agent Framework for Collective Intelligence Research
This paper presents a scalable decentralized multi agent framework that facilitates the exchange of information between computing units through computer networks. The architectural boundaries imposed by the tool make it suitable for collective intelligence research experiments ranging from agents that exchange hello world messages to virtual drone agents exchanging positions and eventually agents exchanging information via radio with real Crazyflie drones in VU Amsterdam laboratory. The field modulation theory is implemented to construct synthetic local perception maps for agents, which are constructed based on neighbouring agents positions and neighbouring points of interest dictated by the environment. By constraining the experimental setup to a 2D environment with discrete actions, constant velocity and parameters tailored to VU Amsterdam laboratory, UAV Crazyflie drones running hill climbing controller followed collision-free trajectories and bridged sim-to-real gap.
☆ Characterization, Experimental Validation and Pilot User Study of the Vibro-Inertial Bionic Enhancement System (VIBES)
This study presents the characterization and validation of the VIBES, a wearable vibrotactile device that provides high-frequency tactile information embedded in a prosthetic socket. A psychophysical characterization involving ten able-bodied participants is performed to compute the Just Noticeable Difference (JND) related to the discrimination of vibrotactile cues delivered on the skin in two forearm positions, with the goal of optimising vibrotactile actuator position to maximise perceptual response. Furthermore, system performance is validated and tested both with ten able-bodied participants and one prosthesis user considering three tasks. More specifically, in the Active Texture Identification, Slippage and Fragile Object Experiments, we investigate if the VIBES could enhance users' roughness discrimination and manual usability and dexterity. Finally, we test the effect of the vibrotactile system on prosthetic embodiment in a Rubber Hand Illusion (RHI) task. Results show the system's effectiveness in conveying contact and texture cues, making it a potential tool to restore sensory feedback and enhance the embodiment in prosthetic users.
☆ Recursive Distributed Collaborative Aided Inertial Navigation
In this dissertation, we investigate the issue of robust localization in swarms of heterogeneous mobile agents with multiple and time-varying sensing modalities. Our focus is the development of filter-based and decoupled estimators under the assumption that agents possess communication and processing capabilities. Based on the findings from Distributed Collaborative State Estimation and modular sensor fusion, we propose a novel Kalman filter decoupling paradigm, which is termed Isolated Kalman Filtering (IKF). This paradigm is formally discussed and the treatment of delayed measurement is studied. The impact of approximation made was investigated on different observation graphs and the filter credibility was evaluated on a linear system in a Monte Carlo simulation. Finally, we propose a multi-agent modular sensor fusion approach based on the IKF paradigm, in order to cooperatively estimate the global state of a multi-agent system in a distributed way and fuse information provided by different on-board sensors in a computationally efficient way. As a consequence, this approach can be performed distributed among agents, while (i) communication between agents is only required at the moment of inter-agent joint observations, (ii) one agent acts as interim master to process state corrections isolated, (iii) agents can be added and removed from the swarm, (iv) each agent's full state can vary during mission (each local sensor suite can be truly modular), and (v) delayed and multi-rate sensor updates are supported. Extensive evaluation on realistic simulated and real-world data sets show that the proposed Isolated Kalman Filtering (IKF) paradigm, is applicable for both, truly modular single agent estimation and distributed collaborative multi-agent estimation problems.
comment: PhD thesis
☆ Star-shaped Tilted Hexarotor Maneuverability: Analysis of the Role of the Tilt Cant Angles
Star-shaped Tilted Hexarotors are rapidly emerging for applications highly demanding in terms of robustness and maneuverability. To ensure improvement in such features, a careful selection of the tilt angles is mandatory. In this work, we present a rigorous analysis of how the force subspace varies with the tilt cant angles, namely the tilt angles along the vehicle arms, taking into account gravity compensation and torque decoupling to abide by the hovering condition. Novel metrics are introduced to assess the performance of existing tilted platforms, as well as to provide some guidelines for the selection of the tilt cant angle in the design phase.
comment: accepted for presentation at the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE2024)
☆ Tactile-Morph Skills: Energy-Based Control Meets Data-Driven Learning
Robotic manipulation is essential for modernizing factories and automating industrial tasks like polishing, which require advanced tactile abilities. These robots must be easily set up, safely work with humans, learn tasks autonomously, and transfer skills to similar tasks. Addressing these needs, we introduce the tactile-morph skill framework, which integrates unified force-impedance control with data-driven learning. Our system adjusts robot movements and force application based on estimated energy levels for the desired trajectory and force profile, ensuring safety by stopping if energy allocated for the control runs out. Using a Temporal Convolutional Network, we estimate the energy distribution for a given motion and force profile, enabling skill transfer across different tasks and surfaces. Our approach maintains stability and performance even on unfamiliar geometries with similar friction characteristics, demonstrating improved accuracy, zero-shot transferable performance, and enhanced safety in real-world scenarios. This framework promises to enhance robotic capabilities in industrial settings, making intelligent robots more accessible and valuable.
comment: 15 pages, 7 figures
☆ A Safety-Oriented Self-Learning Algorithm for Autonomous Driving: Evolution Starting from a Basic Model
Autonomous driving vehicles with self-learning capabilities are expected to evolve in complex environments to improve their ability to cope with different scenarios. However, most self-learning algorithms suffer from low learning efficiency and lacking safety, which limits their applications. This paper proposes a safety-oriented self-learning algorithm for autonomous driving, which focuses on how to achieve evolution from a basic model. Specifically, a basic model based on the transformer encoder is designed to extract and output policy features from a small number of demonstration trajectories. To improve the learning efficiency, a policy mixed approach is developed. The basic model provides initial values to improve exploration efficiency, and the self-learning algorithm enhances the adaptability and generalization of the model, enabling continuous improvement without external intervention. Finally, an actor approximator based on receding horizon optimization is designed considering the constraints of the environmental input to ensure safety. The proposed method is verified in a challenging mixed traffic environment with pedestrians and vehicles. Simulation and real-vehicle test results show that the proposed method can safely and efficiently learn appropriate autonomous driving behaviors. Compared reinforcement learning and behavior cloning methods, it can achieve comprehensive improvement in learning efficiency and performance under the premise of ensuring safety.
☆ A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems
Autonomous vehicles with a self-evolving ability are expected to cope with unknown scenarios in the real-world environment. Take advantage of trial and error mechanism, reinforcement learning is able to self evolve by learning the optimal policy, and it is particularly well suitable for solving decision-making problems. However, reinforcement learning suffers from safety issues and low learning efficiency, especially in the continuous action space. Therefore, the motivation of this paper is to address the above problem by proposing a hybrid Mechanism-Experience-Learning augmented approach. Specifically, to realize the efficient self-evolution, the driving tendency by analogy with human driving experience is proposed to reduce the search space of the autonomous driving problem, while the constrained optimization problem based on a mechanistic model is designed to ensure safety during the self-evolving process. Experimental results show that the proposed method is capable of generating safe and reasonable actions in various complex scenarios, improving the performance of the autonomous driving system. Compared to conventional reinforcement learning, the safety and efficiency of the proposed algorithm are greatly improved. The training process is collision-free, and the training time is equivalent to less than 10 minutes in the real world.
Control-Theoretic Analysis of Shared Control Systems
Users of shared control systems change their behavior in the presence of assistance, which conflicts with assumpts about user behavior that some assistance methods make. In this paper, we propose an analysis technique to evaluate the user's experience with the assistive systems that bypasses required assumptions: we model the assistance as a dynamical system that can be analyzed using control theory techniques. We analyze the shared autonomy assistance algorithm and make several observations: we identify a problem with runaway goal confidence and propose a system adjustment to mitigate it, we demonstrate that the system inherently limits the possible actions available to the user, and we show that in a simplified setting, the effect of the assistance is to drive the system to the convex hull of the goals and, once there, add a layer of indirection between the user control and the system behavior. We conclude by discussing the possible uses of this analysis for the field.
comment: Presented in the Variable Autonomy for Human-Robot Teaming (VAT) workshop at 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 2024
☆ LLM-enhanced Scene Graph Learning for Household Rearrangement SIGGRAPH
The household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places. It depends both on common-sense knowledge on the objective side and human user preference on the subjective side. In achieving such task, we propose to mine object functionality with user preference alignment directly from the scene itself, without relying on human intervention. To do so, we work with scene graph representation and propose LLM-enhanced scene graph learning which transforms the input scene graph into an affordance-enhanced graph (AEG) with information-enhanced nodes and newly discovered edges (relations). In AEG, the nodes corresponding to the receptacle objects are augmented with context-induced affordance which encodes what kind of carriable objects can be placed on it. New edges are discovered with newly discovered non-local relations. With AEG, we perform task planning for scene rearrangement by detecting misplaced carriables and determining a proper placement for each of them. We test our method by implementing a tiding robot in simulator and perform evaluation on a new benchmark we build. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.
comment: SIGGRAPH ASIA 2024
☆ Highly Accurate Robot Calibration Using Adaptive and Momental Bound with Decoupled Weight Decay
Within the context of intelligent manufacturing, industrial robots have a pivotal function. Nonetheless, extended operational periods cause a decline in their absolute positioning accuracy, preventing them from meeting high precision. To address this issue, this paper presents a novel robot algorithm that combines an adaptive and momental bound algorithm with decoupled weight decay (AdaModW), which has three-fold ideas: a) adopting an adaptive moment estimation (Adam) algorithm to achieve a high convergence rate, b) introducing a hyperparameter into the Adam algorithm to define the length of memory, effectively addressing the issue of the abnormal learning rate, and c) interpolating a weight decay coefficient to improve its generalization. Numerous experiments on an HRS-JR680 industrial robot show that the presented algorithm significantly outperforms state-of-the-art algorithms in robot calibration performance. Thus, in light of its reliability, this algorithm provides an efficient way to address robot calibration concerns.
☆ One-shot Video Imitation via Parameterized Symbolic Abstraction Graphs
Learning to manipulate dynamic and deformable objects from a single demonstration video holds great promise in terms of scalability. Previous approaches have predominantly focused on either replaying object relationships or actor trajectories. The former often struggles to generalize across diverse tasks, while the latter suffers from data inefficiency. Moreover, both methodologies encounter challenges in capturing invisible physical attributes, such as forces. In this paper, we propose to interpret video demonstrations through Parameterized Symbolic Abstraction Graphs (PSAG), where nodes represent objects and edges denote relationships between objects. We further ground geometric constraints through simulation to estimate non-geometric, visually imperceptible attributes. The augmented PSAG is then applied in real robot experiments. Our approach has been validated across a range of tasks, such as Cutting Avocado, Cutting Vegetable, Pouring Liquid, Rolling Dough, and Slicing Pizza. We demonstrate successful generalization to novel objects with distinct visual and physical properties.
comment: Robot Learning, Computer Vision, Learning from Videos
♻ ☆ Text2Interaction: Establishing Safe and Preferable Human-Robot Interaction
Adjusting robot behavior to human preferences can require intensive human feedback, preventing quick adaptation to new users and changing circumstances. Moreover, current approaches typically treat user preferences as a reward, which requires a manual balance between task success and user satisfaction. To integrate new user preferences in a zero-shot manner, our proposed Text2Interaction framework invokes large language models to generate a task plan, motion preferences as Python code, and parameters of a safe controller. By maximizing the combined probability of task completion and user satisfaction instead of a weighted sum of rewards, we can reliably find plans that fulfill both requirements. We find that 83% of users working with Text2Interaction agree that it integrates their preferences into the robot's plan, and 94% prefer Text2Interaction over the baseline. Our ablation study shows that Text2Interaction aligns better with unseen preferences than other baselines while maintaining a high success rate.
♻ ☆ Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
The sensor placement problem is a common problem that arises when monitoring correlated phenomena, such as temperature, precipitation, and salinity. Existing approaches to this problem typically formulate it as the maximization of information metrics, such as mutual information~(MI), and use optimization methods such as greedy algorithms in discrete domains, and derivative-free optimization methods such as genetic algorithms in continuous domains. However, computing MI for sensor placement requires discretizing the environment, and its computation cost depends on the size of the discretized environment. These limitations restrict these approaches from scaling to large problems. We present a novel formulation to the SP problem based on variational approximation that can be optimized using gradient descent, allowing us to efficiently find solutions in continuous domains. We generalize our method to also handle discrete environments. Our experimental results on four real-world datasets demonstrate that our approach generates sensor placements consistently on par with or better than the prior state-of-the-art approaches in terms of both MI and reconstruction quality, all while being significantly faster. Our computationally efficient approach enables both large-scale sensor placement and fast robotic sensor placement for informative path planning algorithms.
comment: preprint
♻ ☆ Learning to Imitate Spatial Organization in Multi-robot Systems IROS 2024
Understanding collective behavior and how it evolves is important to ensure that robot swarms can be trusted in a shared environment. One way to understand the behavior of the swarm is through collective behavior reconstruction using prior demonstrations. Existing approaches often require access to the swarm controller which may not be available. We reconstruct collective behaviors in distinct swarm scenarios involving shared environments without using swarm controller information. We achieve this by transforming prior demonstrations into features that describe multi-agent interactions before behavior reconstruction with multi-agent generative adversarial imitation learning (MA-GAIL). We show that our approach outperforms existing algorithms in spatial organization, and can be used to observe and reconstruct a swarm's behavior for further analysis and testing, which might be impractical or undesirable on the original robot swarm.
comment: 6 pages, 4 figures. Accepted for presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ Contextual Tuning of Model Predictive Control for Autonomous Racing
Learning-based model predictive control has been widely applied in autonomous racing to improve the closed-loop behaviour of vehicles in a data-driven manner. When environmental conditions change, e.g., due to rain, often only the predictive model is adapted, but the controller parameters are kept constant. However, this can lead to suboptimal behaviour. In this paper, we address the problem of data-efficient controller tuning, adapting both the model and objective simultaneously. The key novelty of the proposed approach is that we leverage a learned dynamics model to encode the environmental condition as a so-called context. This insight allows us to employ contextual Bayesian optimization to efficiently transfer knowledge across different environmental conditions. Consequently, we require fewer data to find the optimal controller configuration for each context. The proposed framework is extensively evaluated with more than 3'000 laps driven on an experimental platform with 1:28 scale RC race cars. The results show that our approach successfully optimizes the lap time across different contexts requiring fewer data compared to other approaches based on standard Bayesian optimization.
♻ ☆ StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection
Cooperative perception via communication among intelligent traffic agents has great potential to improve the safety of autonomous driving. However, limited communication bandwidth, localization errors and asynchronized capturing time of sensor data, all introduce difficulties to the data fusion of different agents. To some extend, previous works have attempted to reduce the shared data size, mitigate the spatial feature misalignment caused by localization errors and communication delay. However, none of them have considered the asynchronized sensor ticking times, which can lead to dynamic object misplacement of more than one meter during data fusion. In this work, we propose Time-Aligned COoperative Object Detection (TA-COOD), for which we adapt widely used dataset OPV2V and DairV2X with considering asynchronous LiDAR sensor ticking times and build an efficient fully sparse framework with modeling the temporal information of individual objects with query-based techniques. The experiment results confirmed the superior efficiency of our fully sparse framework compared to the state-of-the-art dense models. More importantly, they show that the point-wise observation timestamps of the dynamic objects are crucial for accurate modeling the object temporal context and the predictability of their time-related locations. The official code is available at \url{https://github.com/YuanYunshuang/CoSense3D}.
♻ ☆ ManipVQA: Injecting Robotic Affordance and Physically Grounded Information into Multi-Modal Large Language Models IROS2024
While the integration of Multi-modal Large Language Models (MLLMs) with robotic systems has significantly improved robots' ability to understand and execute natural language instructions, their performance in manipulation tasks remains limited due to a lack of robotics-specific knowledge. Conventional MLLMs are typically trained on generic image-text pairs, leaving them deficient in understanding affordances and physical concepts crucial for manipulation. To address this gap, we propose ManipVQA, a novel framework that infuses MLLMs with manipulation-centric knowledge through a Visual Question-Answering (VQA) format. This approach encompasses tool detection, affordance recognition, and a broader understanding of physical concepts. We curated a diverse dataset of images depicting interactive objects, to challenge robotic understanding in tool detection, affordance prediction, and physical concept comprehension. To effectively integrate this robotics-specific knowledge with the inherent vision-reasoning capabilities of MLLMs, we leverage a unified VQA format and devise a fine-tuning strategy. This strategy preserves the original vision-reasoning abilities while incorporating the newly acquired robotic insights. Empirical evaluations conducted in robotic simulators and across various vision task benchmarks demonstrate the robust performance of ManipVQA. The code and dataset are publicly available at https://github.com/SiyuanHuang95/ManipVQA.
comment: Code and dataset are publicly available at https://github.com/SiyuanHuang95/ManipVQA. Accepted by IROS2024
♻ ☆ Tactile Perception in Upper Limb Prostheses: Mechanical Characterization, Human Experiments, and Computational Findings
Our research investigates vibrotactile perception in four prosthetic hands with distinct kinematics and mechanical characteristics. We found that rigid and simple socket-based prosthetic devices can transmit tactile information and surprisingly enable users to identify the stimulated finger with high reliability. This ability decreases with more advanced prosthetic hands with additional articulations and softer mechanics. We conducted experiments to understand the underlying mechanisms. We assessed a prosthetic user's ability to discriminate finger contacts based on vibrations transmitted through the four prosthetic hands. We also performed numerical and mechanical vibration tests on the prostheses and used a machine learning classifier to identify the contacted finger. Our results show that simpler and rigid prosthetic hands facilitate contact discrimination (for instance, a user of a purely cosmetic hand can distinguish a contact on the index finger from other fingers with 83% accuracy), but all tested hands, including soft advanced ones, performed above chance level. Despite advanced hands reducing vibration transmission, a machine learning algorithm still exceeded human performance in discriminating finger contacts. These findings suggest the potential for enhancing vibrotactile feedback in advanced prosthetic hands and lay the groundwork for future integration of such feedback in prosthetic devices.
♻ ☆ Energy-Optimized Planning in Non-Uniform Wind Fields with Fixed-Wing Aerial Vehicles
Fixed-wing small uncrewed aerial vehicles (sUAVs) possess the capability to remain airborne for extended durations and traverse vast distances. However, their operation is susceptible to wind conditions, particularly in regions of complex terrain where high wind speeds may push the aircraft beyond its operational limitations, potentially raising safety concerns. Moreover, wind impacts the energy required to follow a path, especially in locations where the wind direction and speed are not favorable. Incorporating wind information into mission planning is essential to ensure both safety and energy efficiency. In this paper, we propose a sampling-based planner using the kinematic Dubins aircraft paths with respect to the ground, to plan energy-efficient paths in non-uniform wind fields. We study the planner characteristics with synthetic and real-world wind data and compare its performance against baseline cost and path formulations. We demonstrate that the energy-optimized planner effectively utilizes updrafts to minimize energy consumption, albeit at the expense of increased travel time. The ground-relative path formulation facilitates the generation of safe trajectories onboard sUAVs within reasonable computational timeframes.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ MuTT: A Multimodal Trajectory Transformer for Robot Skills
High-level robot skills represent an increasingly popular paradigm in robot programming. However, configuring the skills' parameters for a specific task remains a manual and time-consuming endeavor. Existing approaches for learning or optimizing these parameters often require numerous real-world executions or do not work in dynamic environments. To address these challenges, we propose MuTT, a novel encoder-decoder transformer architecture designed to predict environment-aware executions of robot skills by integrating vision, trajectory, and robot skill parameters. Notably, we pioneer the fusion of vision and trajectory, introducing a novel trajectory projection. Furthermore, we illustrate MuTT's efficacy as a predictor when combined with a model-based robot skill optimizer. This approach facilitates the optimization of robot skill parameters for the current environment, without the need for real-world executions during optimization. Designed for compatibility with any representation of robot skills, MuTT demonstrates its versatility across three comprehensive experiments, showcasing superior performance across two different skill representations.
♻ ☆ CGGM: A conditional graph generation model with adaptive sparsity for node anomaly detection in IoT networks
Dynamic graphs are extensively employed for detecting anomalous behavior in nodes within the Internet of Things (IoT). Graph generative models are often used to address the issue of imbalanced node categories in dynamic graphs. Neverthe less, the constraints it faces include the monotonicity of adjacency relationships, the difficulty in constructing multi-dimensional features for nodes, and the lack of a method for end-to-end generation of multiple categories of nodes. In this paper, we propose a novel graph generation model, called CGGM, specifically for generating samples belonging to the minority class. The framework consists two core module: a conditional graph generation module and a graph-based anomaly detection module. The generative module adapts to the sparsity of the matrix by downsampling a noise adjacency matrix, and incorporates a multi-dimensional feature encoder based on multi-head self-attention to capture latent dependencies among features. Additionally, a latent space constraint is combined with the distribution distance to approximate the latent distribution of real data. The graph-based anomaly detection module utilizes the generated balanced dataset to predict the node behaviors. Extensive experiments have shown that CGGM outperforms the state-of-the-art methods in terms of accuracy and divergence. The results also demonstrate CGGM can generated diverse data categories, that enhancing the performance of multi-category classification task.
comment: 23 pages, 19 figures
♻ ☆ GRADE: Generating Realistic And Dynamic Environments for Robotics Research with Isaac Sim
Synthetic data and novel rendering techniques have greatly influenced computer vision research in tasks like target tracking and human pose estimation. However, robotics research has lagged behind in leveraging it due to the limitations of most simulation frameworks, including the lack of low-level software control and flexibility, Robot Operating System integration, realistic physics, or photorealism. This hindered progress in (visual-)perception research, e.g. in autonomous robotics, especially in dynamic environments. Visual Simultaneous Localization and Mapping (V-SLAM), for instance, has been mostly developed passively, in static environments, and evaluated on few pre-recorded dynamic datasets due to the difficulties of realistically simulating dynamic worlds and the huge sim-to-real gap. To address these challenges, we present GRADE (Generating Realistic and Dynamic Environments), a highly customizable framework built upon NVIDIA Isaac Sim. We leverage Isaac's rendering capabilities and low-level APIs to populate and control the simulation, collect ground-truth data, and test online and offline approaches. Importantly, we introduce a new way to precisely repeat a recorded experiment within a physically enabled simulation while allowing environmental and simulation changes. Next, we collect a synthetic dataset of richly annotated videos in dynamic environments with a flying drone. Using that, we train detection and segmentation models for humans, closing the syn-to-real gap. Finally, we benchmark state-of-the-art dynamic V-SLAM algorithms, revealing their short tracking times and low generalization capabilities. We also show for the first time that the top-performing deep learning models do not achieve the best SLAM performance. Code and data are provided as open-source at https://grade.is.tue.mpg.de.
comment: 33 pages, 11 tables, 7 figures
♻ ☆ Robust Policy Learning via Offline Skill Diffusion AAAI
Skill-based reinforcement learning (RL) approaches have shown considerable promise, especially in solving long-horizon tasks via hierarchical structures. These skills, learned task-agnostically from offline datasets, can accelerate the policy learning process for new tasks. Yet, the application of these skills in different domains remains restricted due to their inherent dependency on the datasets, which poses a challenge when attempting to learn a skill-based policy via RL for a target domain different from the datasets' domains. In this paper, we present a novel offline skill learning framework DuSkill which employs a guided Diffusion model to generate versatile skills extended from the limited skills in datasets, thereby enhancing the robustness of policy learning for tasks in different domains. Specifically, we devise a guided diffusion-based skill decoder in conjunction with the hierarchical encoding to disentangle the skill embedding space into two distinct representations, one for encapsulating domain-invariant behaviors and the other for delineating the factors that induce domain variations in the behaviors. Our DuSkill framework enhances the diversity of skills learned offline, thus enabling to accelerate the learning procedure of high-level policies for different domains. Through experiments, we show that DuSkill outperforms other skill-based imitation learning and RL algorithms for several long-horizon tasks, demonstrating its benefits in few-shot imitation and online RL.
comment: 11 pages, 6 figures; Accepted for AAAI Conference on Artificial Intelligence (AAAI 2024); Published version
Computer Vision 132
☆ DreamCinema: Cinematic Transfer with Free Camera and 3D Character
We are living in a flourishing era of digital media, where everyone has the potential to become a personal filmmaker. Current research on cinematic transfer empowers filmmakers to reproduce and manipulate the visual elements (e.g., cinematography and character behaviors) from classic shots. However, characters in the reimagined films still rely on manual crafting, which involves significant technical complexity and high costs, making it unattainable for ordinary users. Furthermore, their estimated cinematography lacks smoothness due to inadequate capturing of inter-frame motion and modeling of physical trajectories. Fortunately, the remarkable success of 2D and 3D AIGC has opened up the possibility of efficiently generating characters tailored to users' needs, diversifying cinematography. In this paper, we propose DreamCinema, a novel cinematic transfer framework that pioneers generative AI into the film production paradigm, aiming at facilitating user-friendly film creation. Specifically, we first extract cinematic elements (i.e., human and camera pose) and optimize the camera trajectory. Then, we apply a character generator to efficiently create 3D high-quality characters with a human structure prior. Finally, we develop a structure-guided motion transfer strategy to incorporate generated characters into film creation and transfer it via 3D graphics engines smoothly. Extensive experiments demonstrate the effectiveness of our method for creating high-quality films with free camera and 3D characters.
comment: Project page: https://liuff19.github.io/DreamCinema
☆ ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction
Neural implicit reconstruction via volume rendering has demonstrated its effectiveness in recovering dense 3D surfaces. However, it is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics. To address this issue, previous methods typically employ geometric priors, which are often constrained by the performance of the prior models. In this paper, we propose ND-SDF, which learns a Normal Ddeflection field to represent the angular deviation between the scene normal and the prior normal. Unlike previous methods that uniformly apply geometric priors on all samples, introducing significant bias in accuracy, our proposed normal deflection field dynamically learns and adapts the utilization of samples based on their specific characteristics, thereby improving both the accuracy and effectiveness of the model. Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures. In addition, we introduce a novel ray sampling strategy based on the deflection angle to facilitate the unbiased rendering process, which significantly improves the quality and accuracy of intricate surfaces, especially on thin structures. Consistent improvements on various challenging datasets demonstrate the superiority of our method.
☆ Automating Deformable Gasket Assembly
In Gasket Assembly, a deformable gasket must be aligned and pressed into a narrow channel. This task is common for sealing surfaces in the manufacturing of automobiles, appliances, electronics, and other products. Gasket Assembly is a long-horizon, high-precision task and the gasket must align with the channel and be fully pressed in to achieve a secure fit. To compare approaches, we present 4 methods for Gasket Assembly: one policy from deep imitation learning and three procedural algorithms. We evaluate these methods with 100 physical trials. Results suggest that the Binary+ algorithm succeeds in 10/10 on the straight channel whereas the learned policy based on 250 human teleoperated demonstrations succeeds in 8/10 trials and is significantly slower. Code, CAD models, videos, and data can be found at https://berkeleyautomation.github.io/robot-gasket/
comment: Content without Appendix accepted for IEEE CASE 2024
☆ xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations ECCV24
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
comment: Accepted by ECCV24 AI4VA
☆ Real-Time Video Generation with Pyramid Attention Broadcast
We present Pyramid Attention Broadcast (PAB), a real-time, high quality and training-free approach for DiT-based video generation. Our method is founded on the observation that attention difference in the diffusion process exhibits a U-shaped pattern, indicating significant redundancy. We mitigate this by broadcasting attention outputs to subsequent steps in a pyramid style. It applies different broadcast strategies to each attention based on their variance for best efficiency. We further introduce broadcast sequence parallel for more efficient distributed inference. PAB demonstrates superior results across three models compared to baselines, achieving real-time generation for up to 720p videos. We anticipate that our simple yet effective method will serve as a robust baseline and facilitate future research and application for video generation.
☆ Enhanced Parking Perception by Multi-Task Fisheye Cross-view Transformers
Current parking area perception algorithms primarily focus on detecting vacant slots within a limited range, relying on error-prone homographic projection for both labeling and inference. However, recent advancements in Advanced Driver Assistance System (ADAS) require interaction with end-users through comprehensive and intelligent Human-Machine Interfaces (HMIs). These interfaces should present a complete perception of the parking area going from distinguishing vacant slots' entry lines to the orientation of other parked vehicles. This paper introduces Multi-Task Fisheye Cross View Transformers (MT F-CVT), which leverages features from a four-camera fisheye Surround-view Camera System (SVCS) with multihead attentions to create a detailed Bird-Eye View (BEV) grid feature map. Features are processed by both a segmentation decoder and a Polygon-Yolo based object detection decoder for parking slots and vehicles. Trained on data labeled using LiDAR, MT F-CVT positions objects within a 25m x 25m real open-road scenes with an average error of only 20 cm. Our larger model achieves an F-1 score of 0.89. Moreover the smaller model operates at 16 fps on an Nvidia Jetson Orin embedded board, with similar detection results to the larger one. MT F-CVT demonstrates robust generalization capability across different vehicles and camera rig configurations. A demo video from an unseen vehicle and camera rig is available at: https://streamable.com/jjw54x.
comment: 26th Irish Machine Vision and Image Processing Conference, Data-Driven Autonomy Workshop (matching camera-ready version)
☆ MuMA-ToM: Multi-modal Multi-Agent Theory of Mind SC
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
comment: Project website: https://scai.cs.jhu.edu/projects/MuMA-ToM/ Code: https://github.com/SCAI-JHU/MuMA-ToM
☆ Sapiens: Foundation for Human Vision Models ECCV 2024
We present Sapiens, a family of models for four fundamental human-centric vision tasks - 2D pose estimation, body-part segmentation, depth estimation, and surface normal prediction. Our models natively support 1K high-resolution inference and are extremely easy to adapt for individual tasks by simply fine-tuning models pretrained on over 300 million in-the-wild human images. We observe that, given the same computational budget, self-supervised pretraining on a curated dataset of human images significantly boosts the performance for a diverse set of human-centric tasks. The resulting models exhibit remarkable generalization to in-the-wild data, even when labeled data is scarce or entirely synthetic. Our simple model design also brings scalability - model performance across tasks improves as we scale the number of parameters from 0.3 to 2 billion. Sapiens consistently surpasses existing baselines across various human-centric benchmarks. We achieve significant improvements over the prior state-of-the-art on Humans-5K (pose) by 7.6 mAP, Humans-2K (part-seg) by 17.1 mIoU, Hi4D (depth) by 22.4% relative RMSE, and THuman2 (normal) by 53.5% relative angular error.
comment: ECCV 2024 (Oral)
☆ Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers ECCV 2024
To solve ever more complex problems, Deep Neural Networks are scaled to billions of parameters, leading to huge computational costs. An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of these often over-parameterized networks. Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion. We extend the current state by proposing to explicitly optimize hyperparameters of attribution methods for the task of pruning, and further include transformer-based networks in our analysis. Our approach yields higher model compression rates of large transformer- and convolutional architectures (VGG, ResNet, ViT) compared to previous works, while still attaining high performance on ImageNet classification tasks. Here, our experiments indicate that transformers have a higher degree of over-parameterization compared to convolutional neural networks. Code is available at $\href{https://github.com/erfanhatefi/Pruning-by-eXplaining-in-PyTorch}{\text{this https link}}$.
comment: Accepted as a workshop paper at ECCV 2024 31 pages (14 pages manuscript, 4 pages references, 13 pages appendix)
☆ Comparing YOLOv5 Variants for Vehicle Detection: A Performance Analysis
Vehicle detection is an important task in the management of traffic and automatic vehicles. This study provides a comparative analysis of five YOLOv5 variants, YOLOv5n6s, YOLOv5s6s, YOLOv5m6s, YOLOv5l6s, and YOLOv5x6s, for vehicle detection in various environments. The research focuses on evaluating the effectiveness of these models in detecting different types of vehicles, such as Car, Bus, Truck, Bicycle, and Motorcycle, under varying conditions including lighting, occlusion, and weather. Performance metrics such as precision, recall, F1-score, and mean Average Precision are utilized to assess the accuracy and reliability of each model. YOLOv5n6s demonstrated a strong balance between precision and recall, particularly in detecting Cars. YOLOv5s6s and YOLOv5m6s showed improvements in recall, enhancing their ability to detect all relevant objects. YOLOv5l6s, with its larger capacity, provided robust performance, especially in detecting Cars, but not good with identifying Motorcycles and Bicycles. YOLOv5x6s was effective in recognizing Buses and Cars but faced challenges with Motorcycle class.
☆ Automatic Organ and Pan-cancer Segmentation in Abdomen CT: the FLARE 2023 Challenge MICCAI 2024
Organ and cancer segmentation in abdomen Computed Tomography (CT) scans is the prerequisite for precise cancer diagnosis and treatment. Most existing benchmarks and algorithms are tailored to specific cancer types, limiting their ability to provide comprehensive cancer analysis. This work presents the first international competition on abdominal organ and pan-cancer segmentation by providing a large-scale and diverse dataset, including 4650 CT scans with various cancer types from over 40 medical centers. The winning team established a new state-of-the-art with a deep learning-based cascaded framework, achieving average Dice Similarity Coefficient scores of 92.3% for organs and 64.9% for lesions on the hidden multi-national testing set. The dataset and code of top teams are publicly available, offering a benchmark platform to drive further innovations https://codalab.lisn.upsaclay.fr/competitions/12239.
comment: MICCAI 2024 FLARE Challenge Summary
☆ Deep Learning Improvements for Sparse Spatial Field Reconstruction
Accurately reconstructing a global spatial field from sparse data has been a longstanding problem in several domains, such as Earth Sciences and Fluid Dynamics. Historically, scientists have approached this problem by employing complex physics models to reconstruct the spatial fields. However, these methods are often computationally intensive. With the increase in popularity of machine learning (ML), several researchers have applied ML to the spatial field reconstruction task and observed improvements in computational efficiency. One such method in arXiv:2101.00554 utilizes a sparse mask of sensor locations and a Voronoi tessellation with sensor measurements as inputs to a convolutional neural network for reconstructing the global spatial field. In this work, we propose multiple adjustments to the aforementioned approach and show improvements on geoscience and fluid dynamics simulation datasets. We identify and discuss scenarios that benefit the most using the proposed ML-based spatial field reconstruction approach.
Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical Report
☆ UMAD: University of Macau Anomaly Detection Benchmark Dataset IROS
Anomaly detection is critical in surveillance systems and patrol robots by identifying anomalous regions in images for early warning. Depending on whether reference data are utilized, anomaly detection can be categorized into anomaly detection with reference and anomaly detection without reference. Currently, anomaly detection without reference, which is closely related to out-of-distribution (OoD) object detection, struggles with learning anomalous patterns due to the difficulty of collecting sufficiently large and diverse anomaly datasets with the inherent rarity and novelty of anomalies. Alternatively, anomaly detection with reference employs the scheme of change detection to identify anomalies by comparing semantic changes between a reference image and a query one. However, there are very few ADr works due to the scarcity of public datasets in this domain. In this paper, we aim to address this gap by introducing the UMAD Benchmark Dataset. To our best knowledge, this is the first benchmark dataset designed specifically for anomaly detection with reference in robotic patrolling scenarios, e.g., where an autonomous robot is employed to detect anomalous objects by comparing a reference and a query video sequences. The reference sequences can be taken by the robot along a specified route when there are no anomalous objects in the scene. The query sequences are captured online by the robot when it is patrolling in the same scene following the same route. Our benchmark dataset is elaborated such that each query image can find a corresponding reference based on accurate robot localization along the same route in the prebuilt 3D map, with which the reference and query images can be geometrically aligned using adaptive warping. Besides the proposed benchmark dataset, we evaluate the baseline models of ADr on this dataset.
comment: Accepted by the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024, project code at https://github.com/IMRL/UMAD
☆ Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets
In this work, we introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels. Training or fine-tuning semantic segmentation models with weak supervision has become an important topic recently and was subject to significant advances in model quality. In this setting, scribbles are a promising label type to achieve high quality segmentation results while requiring a much lower annotation effort than usual pixel-wise dense semantic segmentation annotations. The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation, which hinders the development of novel methods and conclusive evaluations. To overcome this limitation, Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations, paving the way for new insights and model advancements in the field of weakly supervised segmentation. In addition to providing datasets and algorithm, we evaluate state-of-the-art segmentation models on our datasets and show that models trained with our synthetic labels perform competitively with respect to models trained on manual labels. Thus, our datasets enable state-of-the-art research into methods for scribble-labeled semantic segmentation. The datasets, scribble generation algorithm, and baselines are publicly available at https://github.com/wbkit/Scribbles4All
comment: under review
☆ Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation
Dataset Distillation (DD) aims to synthesize a small dataset capable of performing comparably to the original dataset. Despite the success of numerous DD methods, theoretical exploration of this area remains unaddressed. In this paper, we take an initial step towards understanding various matching-based DD methods from the perspective of sample difficulty. We begin by empirically examining sample difficulty, measured by gradient norm, and observe that different matching-based methods roughly correspond to specific difficulty tendencies. We then extend the neural scaling laws of data pruning to DD to theoretically explain these matching-based methods. Our findings suggest that prioritizing the synthesis of easier samples from the original dataset can enhance the quality of distilled datasets, especially in low IPC (image-per-class) settings. Based on our empirical observations and theoretical analysis, we introduce the Sample Difficulty Correction (SDC) approach, designed to predominantly generate easier samples to achieve higher dataset quality. Our SDC can be seamlessly integrated into existing methods as a plugin with minimal code adjustments. Experimental results demonstrate that adding SDC generates higher-quality distilled datasets across 7 distillation methods and 6 datasets.
☆ Frame Order Matters: A Temporal Sequence-Aware Model for Few-Shot Action Recognition
In this paper, we propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR), which incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings. Different from the existing fine-tuning approaches that capture temporal information by exploring the relationships among all the frames, our perceiver-based adapter recurrently captures the sequential dynamics alongside the timeline, which could perceive the order change. To obtain the discriminative representations for each class, we extend a textual corpus for each class derived from the large language models (LLMs) and enrich the visual prototypes by integrating the contextual semantic information. Besides, We introduce an unbalanced optimal transport strategy for feature matching that mitigates the impact of class-unrelated features, thereby facilitating more effective decision-making. Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
comment: 9 pages, 6 figures
☆ Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning
Few-shot learning (FSL) aims to recognize new concepts using a limited number of visual samples. Existing approaches attempt to incorporate semantic information into the limited visual data for category understanding. However, these methods often enrich class-level feature representations with abstract category names, failing to capture the nuanced features essential for effective generalization. To address this issue, we propose a novel framework for FSL, which incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs), to enhance the representation of the class prototypes. Specifically, our framework composes a Semantic-guided Visual Pattern Extraction (SVPE) module and a Prototype-Calibration (PC) module, where the SVPE meticulously extracts semantic-aware visual patterns across diverse scales, while the PC module seamlessly integrates these patterns to refine the visual prototype, enhancing its representativeness. Extensive experiments on four few-shot classification benchmarks and the BSCD-FSL cross-domain benchmarks showcase remarkable advancements over the current state-of-the-art methods. Notably, for the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an impressive average improvement of 1.95% over the second-best competitor.
comment: 9 pages, 7 figures
☆ WCEbleedGen: A wireless capsule endoscopy dataset and its benchmarking for automatic bleeding classification, detection, and segmentation
Computer-based analysis of Wireless Capsule Endoscopy (WCE) is crucial. However, a medically annotated WCE dataset for training and evaluation of automatic classification, detection, and segmentation of bleeding and non-bleeding frames is currently lacking. The present work focused on development of a medically annotated WCE dataset called WCEbleedGen for automatic classification, detection, and segmentation of bleeding and non-bleeding frames. It comprises 2,618 WCE bleeding and non-bleeding frames which were collected from various internet resources and existing WCE datasets. A comprehensive benchmarking and evaluation of the developed dataset was done using nine classification-based, three detection-based, and three segmentation-based deep learning models. The dataset is of high-quality, is class-balanced and contains single and multiple bleeding sites. Overall, our standard benchmark results show that Visual Geometric Group (VGG) 19, You Only Look Once version 8 nano (YOLOv8n), and Link network (Linknet) performed best in automatic classification, detection, and segmentation-based evaluations, respectively. Automatic bleeding diagnosis is crucial for WCE video interpretations. This diverse dataset will aid in developing of real-time, multi-task learning-based innovative solutions for automatic bleeding diagnosis in WCE. The dataset and code are publicly available at https://zenodo.org/records/10156571 and https://github.com/misahub2023/Benchmarking-Codes-of-the-WCEBleedGen-dataset.
☆ Smartphone-based Eye Tracking System using Edge Intelligence and Model Optimisation
A significant limitation of current smartphone-based eye-tracking algorithms is their low accuracy when applied to video-type visual stimuli, as they are typically trained on static images. Also, the increasing demand for real-time interactive applications like games, VR, and AR on smartphones requires overcoming the limitations posed by resource constraints such as limited computational power, battery life, and network bandwidth. Therefore, we developed two new smartphone eye-tracking techniques for video-type visuals by combining Convolutional Neural Networks (CNN) with two different Recurrent Neural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean Square Error of 0.955cm and 1.091cm, respectively. To address the computational constraints of smartphones, we developed an edge intelligence architecture to enhance the performance of smartphone-based eye tracking. We applied various optimisation methods like quantisation and pruning to deep learning models for better energy, CPU, and memory usage on edge devices, focusing on real-time processing. Using model quantisation, the model inference time in the CNN+LSTM and CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge devices.
☆ Finding Closure: A Closer Look at the Gestalt Law of Closure in Convolutional Neural Networks
The human brain has an inherent ability to fill in gaps to perceive figures as complete wholes, even when parts are missing or fragmented. This phenomenon is known as Closure in psychology, one of the Gestalt laws of perceptual organization, explaining how the human brain interprets visual stimuli. Given the importance of Closure for human object recognition, we investigate whether neural networks rely on a similar mechanism. Exploring this crucial human visual skill in neural networks has the potential to highlight their comparability to humans. Recent studies have examined the Closure effect in neural networks. However, they typically focus on a limited selection of Convolutional Neural Networks (CNNs) and have not reached a consensus on their capability to perform Closure. To address these gaps, we present a systematic framework for investigating the Closure principle in neural networks. We introduce well-curated datasets designed to test for Closure effects, including both modal and amodal completion. We then conduct experiments on various CNNs employing different measurements. Our comprehensive analysis reveals that VGG16 and DenseNet-121 exhibit the Closure effect, while other CNNs show variable results. We interpret these findings by blending insights from psychology and neural network research, offering a unique perspective that enhances transparency in understanding neural networks. Our code and dataset will be made available on GitHub.
☆ Relaxed Rotational Equivariance via $G$-Biases in Vision
Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.
☆ The 2nd Solution for LSVOS Challenge RVOS Track: Spatial-temporal Refinement for Consistent Semantic Segmentation
Referring Video Object Segmentation (RVOS) is a challenging task due to its requirement for temporal understanding. Due to the obstacle of computational complexity, many state-of-the-art models are trained on short time intervals. During testing, while these models can effectively process information over short time steps, they struggle to maintain consistent perception over prolonged time sequences, leading to inconsistencies in the resulting semantic segmentation masks. To address this challenge, we take a step further in this work by leveraging the tracking capabilities of the newly introduced Segment Anything Model version 2 (SAM-v2) to enhance the temporal consistency of the referring object segmentation model. Our method achieved a score of 60.40 \mathcal{J\text{\&}F} on the test set of the MeViS dataset, placing 2nd place in the final ranking of the RVOS Track at the ECCV 2024 LSVOS Challenge.
☆ A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures
We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
☆ Adapting MIMO video restoration networks to low latency constraints
MIMO (multiple input, multiple output) approaches are a recent trend in neural network architectures for video restoration problems, where each network evaluation produces multiple output frames. The video is split into non-overlapping stacks of frames that are processed independently, resulting in a very appealing trade-off between output quality and computational cost. In this work we focus on the low-latency setting by limiting the number of available future frames. We find that MIMO architectures suffer from problems that have received little attention so far, namely (1) the performance drops significantly due to the reduced temporal receptive field, particularly for frames at the borders of the stack, (2) there are strong temporal discontinuities at stack transitions which induce a step-wise motion artifact. We propose two simple solutions to alleviate these problems: recurrence across MIMO stacks to boost the output quality by implicitly increasing the temporal receptive field, and overlapping of the output stacks to smooth the temporal discontinuity at stack transitions. These modifications can be applied to any MIMO architecture. We test them on three state-of-the-art video denoising networks with different computational cost. The proposed contributions result in a new state-of-the-art for low-latency networks, both in terms of reconstruction error and temporal consistency. As an additional contribution, we introduce a new benchmark consisting of drone footage that highlights temporal consistency issues that are not apparent in the standard benchmarks.
comment: See the project web page to download the associated videos
☆ Robotic Eye-in-hand Visual Servo Axially Aligning Nasopharyngeal Swabs with the Nasal Cavity
The nasopharyngeal (NP) swab test is a method for collecting cultures to diagnose for different types of respiratory illnesses, including COVID-19. Delegating this task to robots would be beneficial in terms of reducing infection risks and bolstering the healthcare system, but a critical component of the NP swab test is having the swab aligned properly with the nasal cavity so that it does not cause excessive discomfort or injury by traveling down the wrong passage. Existing research towards robotic NP swabbing typically assumes the patient's head is held within a fixture. This simplifies the alignment problem, but is also dissimilar to clinical scenarios where patients are typically free-standing. Consequently, our work creates a vision-guided pipeline to allow an instrumented robot arm to properly position and orient NP swabs with respect to the nostrils of free-standing patients. The first component of the pipeline is a precomputed joint lookup table to allow the arm to meet the patient's arbitrary position in the designated workspace, while avoiding joint limits. Our pipeline leverages semantic face models from computer vision to estimate the Euclidean pose of the face with respect to a monocular RGB-D camera placed on the end-effector. These estimates are passed into an unscented Kalman filter on manifolds state estimator and a pose based visual servo control loop to move the swab to the designated pose in front of the nostril. Our pipeline was validated with human trials, featuring a cohort of 25 participants. The system is effective, reaching the nostril for 84% of participants, and our statistical analysis did not find significant demographic biases within the cohort.
comment: 12 pages, 13 figures
☆ FlexEdit: Marrying Free-Shape Masks to VLLM for Flexible Image Editing
Combining Vision Large Language Models (VLLMs) with diffusion models offers a powerful method for executing image editing tasks based on human language instructions. However, language instructions alone often fall short in accurately conveying user requirements, particularly when users want to add, replace elements in specific areas of an image. Luckily, masks can effectively indicate the exact locations or elements to be edited, while they require users to precisely draw the shapes at the desired locations, which is highly user-unfriendly. To address this, we propose FlexEdit, an end-to-end image editing method that leverages both free-shape masks and language instructions for Flexible Editing. Our approach employs a VLLM in comprehending the image content, mask, and user instructions. Additionally, we introduce the Mask Enhance Adapter (MEA) that fuses the embeddings of the VLLM with the image data, ensuring a seamless integration of mask information and model output embeddings. Furthermore, we construct FSMI-Edit, a benchmark specifically tailored for free-shape mask, including 8 types of free-shape mask. Extensive experiments show that our method achieves state-of-the-art (SOTA) performance in LLM-based image editing, and our simple prompting technique stands out in its effectiveness. The code and data can be found at https://github.com/A-new-b/flex_edit.
comment: 15 pages, 14 figures
☆ Enhanced Infield Agriculture with Interpretable Machine Learning Approaches for Crop Classification
The increasing popularity of Artificial Intelligence in recent years has led to a surge in interest in image classification, especially in the agricultural sector. With the help of Computer Vision, Machine Learning, and Deep Learning, the sector has undergone a significant transformation, leading to the development of new techniques for crop classification in the field. Despite the extensive research on various image classification techniques, most have limitations such as low accuracy, limited use of data, and a lack of reporting model size and prediction. The most significant limitation of all is the need for model explainability. This research evaluates four different approaches for crop classification, namely traditional ML with handcrafted feature extraction methods like SIFT, ORB, and Color Histogram; Custom Designed CNN and established DL architecture like AlexNet; transfer learning on five models pre-trained using ImageNet such as EfficientNetV2, ResNet152V2, Xception, Inception-ResNetV2, MobileNetV3; and cutting-edge foundation models like YOLOv8 and DINOv2, a self-supervised Vision Transformer Model. All models performed well, but Xception outperformed all of them in terms of generalization, achieving 98% accuracy on the test data, with a model size of 80.03 MB and a prediction time of 0.0633 seconds. A key aspect of this research was the application of Explainable AI to provide the explainability of all the models. This journal presents the explainability of Xception model with LIME, SHAP, and GradCAM, ensuring transparency and trustworthiness in the models' predictions. This study highlights the importance of selecting the right model according to task-specific needs. It also underscores the important role of explainability in deploying AI in agriculture, providing insightful information to help enhance AI-driven crop management strategies.
☆ CODE: Confident Ordinary Differential Editing
Conditioning image generation facilitates seamless editing and the creation of photorealistic images. However, conditioning on noisy or Out-of-Distribution (OoD) images poses significant challenges, particularly in balancing fidelity to the input and realism of the output. We introduce Confident Ordinary Differential Editing (CODE), a novel approach for image synthesis that effectively handles OoD guidance images. Utilizing a diffusion model as a generative prior, CODE enhances images through score-based updates along the probability-flow Ordinary Differential Equation (ODE) trajectory. This method requires no task-specific training, no handcrafted modules, and no assumptions regarding the corruptions affecting the conditioning image. Our method is compatible with any diffusion model. Positioned at the intersection of conditional image generation and blind image restoration, CODE operates in a fully blind manner, relying solely on a pre-trained generative model. Our method introduces an alternative approach to blind restoration: instead of targeting a specific ground truth image based on assumptions about the underlying corruption, CODE aims to increase the likelihood of the input image while maintaining fidelity. This results in the most probable in-distribution image around the input. Our contributions are twofold. First, CODE introduces a novel editing method based on ODE, providing enhanced control, realism, and fidelity compared to its SDE-based counterpart. Second, we introduce a confidence interval-based clipping method, which improves CODE's effectiveness by allowing it to disregard certain pixels or information, thus enhancing the restoration process in a blind manner. Experimental results demonstrate CODE's effectiveness over existing methods, particularly in scenarios involving severe degradation or OoD inputs.
☆ Generalized SAM: Efficient Fine-Tuning of SAM for Variable Input Image Sizes ECCV2024
There has been a lot of recent research on improving the efficiency of fine-tuning foundation models. In this paper, we propose a novel efficient fine-tuning method that allows the input image size of Segment Anything Model (SAM) to be variable. SAM is a powerful foundational model for image segmentation trained on huge datasets, but it requires fine-tuning to recognize arbitrary classes. The input image size of SAM is fixed at 1024 x 1024, resulting in substantial computational demands during training. Furthermore, the fixed input image size may result in the loss of image information, e.g. due to fixed aspect ratios. To address this problem, we propose Generalized SAM (GSAM). Different from the previous methods, GSAM is the first to apply random cropping during training with SAM, thereby significantly reducing the computational cost of training. Experiments on datasets of various types and various pixel counts have shown that GSAM can train more efficiently than SAM and other fine-tuning methods for SAM, achieving comparable or higher accuracy.
comment: Accepted by ECCV2024 Workshop "Computational Aspects of Deep Learning (CADL)"
☆ Multi-Style Facial Sketch Synthesis through Masked Generative Modeling
The facial sketch synthesis (FSS) model, capable of generating sketch portraits from given facial photographs, holds profound implications across multiple domains, encompassing cross-modal face recognition, entertainment, art, media, among others. However, the production of high-quality sketches remains a formidable task, primarily due to the challenges and flaws associated with three key factors: (1) the scarcity of artist-drawn data, (2) the constraints imposed by limited style types, and (3) the deficiencies of processing input information in existing models. To address these difficulties, we propose a lightweight end-to-end synthesis model that efficiently converts images to corresponding multi-stylized sketches, obviating the necessity for any supplementary inputs (\eg, 3D geometry). In this study, we overcome the issue of data insufficiency by incorporating semi-supervised learning into the training process. Additionally, we employ a feature extraction module and style embeddings to proficiently steer the generative transformer during the iterative prediction of masked image tokens, thus achieving a continuous stylized output that retains facial features accurately in sketches. The extensive experiments demonstrate that our method consistently outperforms previous algorithms across multiple benchmarks, exhibiting a discernible disparity.
☆ Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis
We explore adapting foundation models (FMs) from the computer vision domain to geoscience. FMs, large neural networks trained on massive datasets, excel in diverse tasks with remarkable adaptability and generality. However, geoscience faces challenges like lacking curated training datasets and high computational costs for developing specialized FMs. This study considers adapting FMs from computer vision to geoscience, analyzing their scale, adaptability, and generality for geoscientific data analysis. We introduce a workflow that leverages existing computer vision FMs, fine-tuning them for geoscientific tasks, reducing development costs while enhancing accuracy. Through experiments, we demonstrate this workflow's effectiveness in broad applications to process and interpret geoscientific data of lunar images, seismic data, DAS arrays and so on. Our findings introduce advanced ML techniques to geoscience, proving the feasibility and advantages of cross-domain FMs adaptation, driving further advancements in geoscientific data analysis and offering valuable insights for FMs applications in other scientific domains.
☆ Sampling Strategies based on Wisdom of Crowds for Amazon Deforestation Detection
Conserving tropical forests is highly relevant socially and ecologically because of their critical role in the global ecosystem. However, the ongoing deforestation and degradation affect millions of hectares each year, necessitating government or private initiatives to ensure effective forest monitoring. In April 2019, a project based on Citizen Science and Machine Learning models called ForestEyes (FE) was launched with the aim of providing supplementary data to assist experts from government and non-profit organizations in their deforestation monitoring efforts. Recent research has shown that labeling FE project volunteers/citizen scientists helps tailor machine learning models. In this sense, we adopt the FE project to create different sampling strategies based on the wisdom of crowds to select the most suitable samples from the training set to learn an SVM technique and obtain better classification results in deforestation detection tasks. In our experiments, we can show that our strategy based on user entropy-increasing achieved the best classification results in the deforestation detection task when compared with the random sampling strategies, as well as, reducing the convergence time of the SVM technique.
comment: 6 pages, 5 figus, paper accepted at the SIBGRAPI 2024
☆ UMERegRobust -- Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration ECCV 2024
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method). Our code is available at https://github.com/yuvalH9/UMERegRobust.
comment: ECCV 2024
☆ Robust Principal Component Analysis via Discriminant Sample Weight Learning
Principal component analysis (PCA) is a classical feature extraction method, but it may be adversely affected by outliers, resulting in inaccurate learning of the projection matrix. This paper proposes a robust method to estimate both the data mean and the PCA projection matrix by learning discriminant sample weights from data containing outliers. Each sample in the dataset is assigned a weight, and the proposed algorithm iteratively learns the weights, the mean, and the projection matrix, respectively. Specifically, when the mean and the projection matrix are available, via fine-grained analysis of outliers, a weight for each sample is learned hierarchically so that outliers have small weights while normal samples have large weights. With the learned weights available, a weighted optimization problem is solved to estimate both the data mean and the projection matrix. Because the learned weights discriminate outliers from normal samples, the adverse influence of outliers is mitigated due to the corresponding small weights. Experiments on toy data, UCI dataset, and face dataset demonstrate the effectiveness of the proposed method in estimating the mean and the projection matrix from the data containing outliers.
☆ SAM-SP: Self-Prompting Makes SAM Great Again
The recently introduced Segment Anything Model (SAM), a Visual Foundation Model (VFM), has demonstrated impressive capabilities in zero-shot segmentation tasks across diverse natural image datasets. Despite its success, SAM encounters noticeably performance degradation when applied to specific domains, such as medical images. Current efforts to address this issue have involved fine-tuning strategies, intended to bolster the generalizability of the vanilla SAM. However, these approaches still predominantly necessitate the utilization of domain specific expert-level prompts during the evaluation phase, which severely constrains the model's practicality. To overcome this limitation, we introduce a novel self-prompting based fine-tuning approach, called SAM-SP, tailored for extending the vanilla SAM model. Specifically, SAM-SP leverages the output from the previous iteration of the model itself as prompts to guide subsequent iteration of the model. This self-prompting module endeavors to learn how to generate useful prompts autonomously and alleviates the dependence on expert prompts during the evaluation phase, significantly broadening SAM's applicability. Additionally, we integrate a self-distillation module to enhance the self-prompting process further. Extensive experiments across various domain specific datasets validate the effectiveness of the proposed SAM-SP. Our SAM-SP not only alleviates the reliance on expert prompts but also exhibits superior segmentation performance comparing to the state-of-the-art task-specific segmentation approaches, the vanilla SAM, and SAM-based approaches.
comment: Under Review
☆ Class-balanced Open-set Semi-supervised Object Detection for Medical Images
Medical image datasets in the real world are often unlabeled and imbalanced, and Semi-Supervised Object Detection (SSOD) can utilize unlabeled data to improve an object detector. However, existing approaches predominantly assumed that the unlabeled data and test data do not contain out-of-distribution (OOD) classes. The few open-set semi-supervised object detection methods have two weaknesses: first, the class imbalance is not considered; second, the OOD instances are distinguished and simply discarded during pseudo-labeling. In this paper, we consider the open-set semi-supervised object detection problem which leverages unlabeled data that contain OOD classes to improve object detection for medical images. Our study incorporates two key innovations: Category Control Embed (CCE) and out-of-distribution Detection Fusion Classifier (OODFC). CCE is designed to tackle dataset imbalance by constructing a Foreground information Library, while OODFC tackles open-set challenges by integrating the ``unknown'' information into basic pseudo-labels. Our method outperforms the state-of-the-art SSOD performance, achieving a 4.25 mAP improvement on the public Parasite dataset.
☆ GarmentAligner: Text-to-Garment Generation via Retrieval-augmented Multi-level Corrections
General text-to-image models bring revolutionary innovation to the fields of arts, design, and media. However, when applied to garment generation, even the state-of-the-art text-to-image models suffer from fine-grained semantic misalignment, particularly concerning the quantity, position, and interrelations of garment components. Addressing this, we propose GarmentAligner, a text-to-garment diffusion model trained with retrieval-augmented multi-level corrections. To achieve semantic alignment at the component level, we introduce an automatic component extraction pipeline to obtain spatial and quantitative information of garment components from corresponding images and captions. Subsequently, to exploit component relationships within the garment images, we construct retrieval subsets for each garment by retrieval augmentation based on component-level similarity ranking and conduct contrastive learning to enhance the model perception of components from positive and negative samples. To further enhance the alignment of components across semantic, spatial, and quantitative granularities, we propose the utilization of multi-level correction losses that leverage detailed component information. The experimental findings demonstrate that GarmentAligner achieves superior fidelity and fine-grained semantic alignment when compared to existing competitors.
☆ VTON-HandFit: Virtual Try-on for Arbitrary Hand Pose Guided by Hand Priors Embedding
Although diffusion-based image virtual try-on has made considerable progress, emerging approaches still struggle to effectively address the issue of hand occlusion (i.e., clothing regions occluded by the hand part), leading to a notable degradation of the try-on performance. To tackle this issue widely existing in real-world scenarios, we propose VTON-HandFit, leveraging the power of hand priors to reconstruct the appearance and structure for hand occlusion cases. Firstly, we tailor a Handpose Aggregation Net using the ControlNet-based structure explicitly and adaptively encoding the global hand and pose priors. Besides, to fully exploit the hand-related structure and appearance information, we propose Hand-feature Disentanglement Embedding module to disentangle the hand priors into the hand structure-parametric and visual-appearance features, and customize a masked cross attention for further decoupled feature embedding. Lastly, we customize a hand-canny constraint loss to better learn the structure edge knowledge from the hand template of model image. VTON-HandFit outperforms the baselines in qualitative and quantitative evaluations on the public dataset and our self-collected hand-occlusion Handfit-3K dataset particularly for the arbitrary hand pose occlusion cases in real-world scenarios. Code and dataset will be made publicly available.
☆ EUIS-Net: A Convolutional Neural Network for Efficient Ultrasound Image Segmentation
Segmenting ultrasound images is critical for various medical applications, but it offers significant challenges due to ultrasound images' inherent noise and unpredictability. To address these challenges, we proposed EUIS-Net, a CNN network designed to segment ultrasound images efficiently and precisely. The proposed EUIS-Net utilises four encoder-decoder blocks, resulting in a notable decrease in computational complexity while achieving excellent performance. The proposed EUIS-Net integrates both channel and spatial attention mechanisms into the bottleneck to improve feature representation and collect significant contextual information. In addition, EUIS-Net incorporates a region-aware attention module in skip connections, which enhances the ability to concentrate on the region of the injury. To enable thorough information exchange across various network blocks, skip connection aggregation is employed from the network's lowermost to the uppermost block. Comprehensive evaluations are conducted on two publicly available ultrasound image segmentation datasets. The proposed EUIS-Net achieved mean IoU and dice scores of 78. 12\%, 85. 42\% and 84. 73\%, 89. 01\% in the BUSI and DDTI datasets, respectively. The findings of our study showcase the substantial capabilities of EUIS-Net for immediate use in clinical settings and its versatility in various ultrasound imaging tasks.
☆ Multimodal Foundational Models for Unsupervised 3D General Obstacle Detection
Current autonomous driving perception models primarily rely on supervised learning with predefined categories. However, these models struggle to detect general obstacles not included in the fixed category set due to their variability and numerous edge cases. To address this issue, we propose a combination of multimodal foundational model-based obstacle segmentation with traditional unsupervised computational geometry-based outlier detection. Our approach operates offline, allowing us to leverage non-causality, and utilizes training-free methods. This enables the detection of general obstacles in 3D without the need for expensive retraining. To overcome the limitations of publicly available obstacle detection datasets, we collected and annotated our dataset, which includes various obstacles even in distant regions.
MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model
This paper presents MaVEn, an innovative Multi-granularity Visual Encoding framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning. Current MLLMs primarily focus on single-image visual understanding, limiting their ability to interpret and integrate information across multiple images. MaVEn addresses this limitation by combining discrete visual symbol sequences, which abstract coarse-grained semantic concepts, with traditional continuous representation sequences that model fine-grained features. This dual approach bridges the semantic gap between visual and textual data, thereby improving the model's ability to process and interpret information from multiple images effectively. Additionally, we design a dynamic reduction mechanism by for long-sequence continuous features to enhance multi-image processing efficiency. Experimental results demonstrate that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
☆ Adapt CLIP as Aggregation Instructor for Image Dehazing
Most dehazing methods suffer from limited receptive field and do not explore the rich semantic prior encapsulated in vision-language models, which have proven effective in downstream tasks. In this paper, we introduce CLIPHaze, a pioneering hybrid framework that synergizes the efficient global modeling of Mamba with the prior knowledge and zero-shot capabilities of CLIP to address both issues simultaneously. Specifically, our method employs parallel state space model and window-based self-attention to obtain global contextual dependency and local fine-grained perception, respectively. To seamlessly aggregate information from both paths, we introduce CLIP-instructed Aggregation Module (CAM). For non-homogeneous and homogeneous haze, CAM leverages zero-shot estimated haze density map and high-quality image embedding without degradation information to explicitly and implicitly determine the optimal neural operation range for each pixel, thereby adaptively fusing two paths with different receptive fields. Extensive experiments on various benchmarks demonstrate that CLIPHaze achieves state-of-the-art (SOTA) performance, particularly in non-homogeneous haze. Code will be publicly after acceptance.
comment: 12 pages, 6 figures
☆ Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement
Obtaining pairs of low/normal-light videos, with motions, is more challenging than still images, which raises technical issues and poses the technical route of unpaired learning as a critical role. This paper makes endeavors in the direction of learning for low-light video enhancement without using paired ground truth. Compared to low-light image enhancement, enhancing low-light videos is more difficult due to the intertwined effects of noise, exposure, and contrast in the spatial domain, jointly with the need for temporal coherence. To address the above challenge, we propose the Unrolled Decomposed Unpaired Network (UDU-Net) for enhancing low-light videos by unrolling the optimization functions into a deep network to decompose the signal into spatial and temporal-related factors, which are updated iteratively. Firstly, we formulate low-light video enhancement as a Maximum A Posteriori estimation (MAP) problem with carefully designed spatial and temporal visual regularization. Then, via unrolling the problem, the optimization of the spatial and temporal constraints can be decomposed into different steps and updated in a stage-wise manner. From the spatial perspective, the designed Intra subnet leverages unpair prior information from expert photography retouched skills to adjust the statistical distribution. Additionally, we introduce a novel mechanism that integrates human perception feedback to guide network optimization, suppressing over/under-exposure conditions. Meanwhile, to address the issue from the temporal perspective, the designed Inter subnet fully exploits temporal cues in progressive optimization, which helps achieve improved temporal consistency in enhancement results. Consequently, the proposed method achieves superior performance to state-of-the-art methods in video illumination, noise suppression, and temporal consistency across outdoor and indoor scenes.
☆ MakeupAttack: Feature Space Black-box Backdoor Attack on Face Recognition via Makeup Transfer
Backdoor attacks pose a significant threat to the training process of deep neural networks (DNNs). As a widely-used DNN-based application in real-world scenarios, face recognition systems once implanted into the backdoor, may cause serious consequences. Backdoor research on face recognition is still in its early stages, and the existing backdoor triggers are relatively simple and visible. Furthermore, due to the perceptibility, diversity, and similarity of facial datasets, many state-of-the-art backdoor attacks lose effectiveness on face recognition tasks. In this work, we propose a novel feature space backdoor attack against face recognition via makeup transfer, dubbed MakeupAttack. In contrast to many feature space attacks that demand full access to target models, our method only requires model queries, adhering to black-box attack principles. In our attack, we design an iterative training paradigm to learn the subtle features of the proposed makeup-style trigger. Additionally, MakeupAttack promotes trigger diversity using the adaptive selection method, dispersing the feature distribution of malicious samples to bypass existing defense methods. Extensive experiments were conducted on two widely-used facial datasets targeting multiple models. The results demonstrate that our proposed attack method can bypass existing state-of-the-art defenses while maintaining effectiveness, robustness, naturalness, and stealthiness, without compromising model performance.
☆ AT-SNN: Adaptive Tokens for Vision Transformer on Spiking Neural Network
In the training and inference of spiking neural networks (SNNs), direct training and lightweight computation methods have been orthogonally developed, aimed at reducing power consumption. However, only a limited number of approaches have applied these two mechanisms simultaneously and failed to fully leverage the advantages of SNN-based vision transformers (ViTs) since they were originally designed for convolutional neural networks (CNNs). In this paper, we propose AT-SNN designed to dynamically adjust the number of tokens processed during inference in SNN-based ViTs with direct training, wherein power consumption is proportional to the number of tokens. We first demonstrate the applicability of adaptive computation time (ACT), previously limited to RNNs and ViTs, to SNN-based ViTs, enhancing it to discard less informative spatial tokens selectively. Also, we propose a new token-merge mechanism that relies on the similarity of tokens, which further reduces the number of tokens while enhancing accuracy. We implement AT-SNN to Spikformer and show the effectiveness of AT-SNN in achieving high energy efficiency and accuracy compared to state-of-the-art approaches on the image classification tasks, CIFAR10, CIFAR-100, and TinyImageNet. For example, our approach uses up to 42.4% fewer tokens than the existing best-performing method on CIFAR-100, while conserving higher accuracy.
comment: 8 pages
☆ Towards Deconfounded Image-Text Matching with Causal Inference ACM MM
Prior image-text matching methods have shown remarkable performance on many benchmark datasets, but most of them overlook the bias in the dataset, which exists in intra-modal and inter-modal, and tend to learn the spurious correlations that extremely degrade the generalization ability of the model. Furthermore, these methods often incorporate biased external knowledge from large-scale datasets as prior knowledge into image-text matching model, which is inevitable to force model further learn biased associations. To address above limitations, this paper firstly utilizes Structural Causal Models (SCMs) to illustrate how intra- and inter-modal confounders damage the image-text matching. Then, we employ backdoor adjustment to propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task. DCIN (1) decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features, effectively eliminating the spurious correlations during image-text matching, and (2) uses causal inference to mitigate biases of external knowledge. Consequently, the model can learn causality instead of spurious correlations caused by dataset bias. Extensive experiments on two well-known benchmark datasets, i.e., Flickr30K and MSCOCO, demonstrate the superiority of our proposed method.
comment: ACM MM
☆ Subsurface Scattering for 3D Gaussian Splatting
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
comment: Project page: https://sss.jdihlmann.com/
☆ Whole Slide Image Classification of Salivary Gland Tumours
This work shows promising results using multiple instance learning on salivary gland tumours in classifying cancers on whole slide images. Utilising CTransPath as a patch-level feature extractor and CLAM as a feature aggregator, an F1 score of over 0.88 and AUROC of 0.92 are obtained for detecting cancer in whole slide images.
comment: 5 pages, 2 figures, 28th UK Conference on Medical Image Understanding and Analysis - clinical abstract
Epsilon: Exploring Comprehensive Visual-Semantic Projection for Multi-Label Zero-Shot Learning
This paper investigates a challenging problem of zero-shot learning in the multi-label scenario (MLZSL), wherein the model is trained to recognize multiple unseen classes within a sample (e.g., an image) based on seen classes and auxiliary knowledge, e.g., semantic information. Existing methods usually resort to analyzing the relationship of various seen classes residing in a sample from the dimension of spatial or semantic characteristics and transferring the learned model to unseen ones. However, they neglect the integrity of local and global features. Although the use of the attention structure will accurately locate local features, especially objects, it will significantly lose its integrity, and the relationship between classes will also be affected. Rough processing of global features will also directly affect comprehensiveness. This neglect will make the model lose its grasp of the main components of the image. Relying only on the local existence of seen classes during the inference stage introduces unavoidable bias. In this paper, we propose a novel and comprehensive visual-semantic framework for MLZSL, dubbed Epsilon, to fully make use of such properties and enable a more accurate and robust visual-semantic projection. In terms of spatial information, we achieve effective refinement by group aggregating image features into several semantic prompts. It can aggregate semantic information rather than class information, preserving the correlation between semantics. In terms of global semantics, we use global forward propagation to collect as much information as possible to ensure that semantics are not omitted. Experiments on large-scale MLZSL benchmark datasets NUS-Wide and Open-Images-v4 demonstrate that the proposed Epsilon outperforms other state-of-the-art methods with large margins.
comment: arXiv admin note: substantial text overlap with arXiv:2309.00923
☆ PRG: Prompt-Based Distillation Without Annotation via Proxy Relational Graph
In this paper, we propose a new distillation method for extracting knowledge from Large Foundation Models (LFM) into lightweight models, introducing a novel supervision mode that does not require manually annotated data. While LFMs exhibit exceptional zero-shot classification abilities across datasets, relying solely on LFM-generated embeddings for distillation poses two main challenges: LFM's task-irrelevant knowledge and the high density of features. The transfer of task-irrelevant knowledge could compromise the student model's discriminative capabilities, and the high density of features within target domains obstructs the extraction of discriminative knowledge essential for the task. To address this issue, we introduce the Proxy Relational Graph (PRG) method. We initially extract task-relevant knowledge from LFMs by calculating a weighted average of logits obtained through text prompt embeddings. Then we construct sample-class proxy graphs for LFM and student models, respectively, to model the correlation between samples and class proxies. Then, we achieve the distillation of selective knowledge by aligning the relational graphs produced by both the LFM and the student model. Specifically, the distillation from LFM to the student model is achieved through two types of alignment: 1) aligning the sample nodes produced by the student model with those produced by the LFM, and 2) aligning the edge relationships in the student model's graph with those in the LFM's graph. Our experimental results validate the effectiveness of PRG, demonstrating its ability to leverage the extensive knowledge base of LFMs while skillfully circumventing their inherent limitations in focused learning scenarios. Notably, in our annotation-free framework, PRG achieves an accuracy of 76.23\% (T: 77.9\%) on CIFAR-100 and 72.44\% (T: 75.3\%) on the ImageNet-1K.
☆ OVA-DETR: Open Vocabulary Aerial Object Detection Using Image-Text Alignment and Fusion
Aerial object detection has been a hot topic for many years due to its wide application requirements. However, most existing approaches can only handle predefined categories, which limits their applicability for the open scenarios in real-world. In this paper, we extend aerial object detection to open scenarios by exploiting the relationship between image and text, and propose OVA-DETR, a high-efficiency open-vocabulary detector for aerial images. Specifically, based on the idea of image-text alignment, we propose region-text contrastive loss to replace the category regression loss in the traditional detection framework, which breaks the category limitation. Then, we propose Bidirectional Vision-Language Fusion (Bi-VLF), which includes a dual-attention fusion encoder and a multi-level text-guided Fusion Decoder. The dual-attention fusion encoder enhances the feature extraction process in the encoder part. The multi-level text-guided Fusion Decoder is designed to improve the detection ability for small objects, which frequently appear in aerial object detection scenarios. Experimental results on three widely used benchmark datasets show that our proposed method significantly improves the mAP and recall, while enjoying faster inference speed. For instance, in zero shot detection experiments on DIOR, the proposed OVA-DETR outperforms DescReg and YOLO-World by 37.4% and 33.1%, respectively, while achieving 87 FPS inference speed, which is 7.9x faster than DescReg and 3x faster than YOLO-world. The code is available at https://github.com/GT-Wei/OVA-DETR.
☆ Scalable Autoregressive Image Generation with Mamba
We introduce AiM, an autoregressive (AR) image generative model based on Mamba architecture. AiM employs Mamba, a novel state-space model characterized by its exceptional performance for long-sequence modeling with linear time complexity, to supplant the commonly utilized Transformers in AR image generation models, aiming to achieve both superior generation quality and enhanced inference speed. Unlike existing methods that adapt Mamba to handle two-dimensional signals via multi-directional scan, AiM directly utilizes the next-token prediction paradigm for autoregressive image generation. This approach circumvents the need for extensive modifications to enable Mamba to learn 2D spatial representations. By implementing straightforward yet strategically targeted modifications for visual generative tasks, we preserve Mamba's core structure, fully exploiting its efficient long-sequence modeling capabilities and scalability. We provide AiM models in various scales, with parameter counts ranging from 148M to 1.3B. On the ImageNet1K 256*256 benchmark, our best AiM model achieves a FID of 2.21, surpassing all existing AR models of comparable parameter counts and demonstrating significant competitiveness against diffusion models, with 2 to 10 times faster inference speed. Code is available at https://github.com/hp-l33/AiM
comment: 9 pages, 8 figures
☆ BihoT: A Large-Scale Dataset and Benchmark for Hyperspectral Camouflaged Object Tracking
Hyperspectral object tracking (HOT) has exhibited potential in various applications, particularly in scenes where objects are camouflaged. Existing trackers can effectively retrieve objects via band regrouping because of the bias in existing HOT datasets, where most objects tend to have distinguishing visual appearances rather than spectral characteristics. This bias allows the tracker to directly use the visual features obtained from the false-color images generated by hyperspectral images without the need to extract spectral features. To tackle this bias, we find that the tracker should focus on the spectral information when object appearance is unreliable. Thus, we provide a new task called hyperspectral camouflaged object tracking (HCOT) and meticulously construct a large-scale HCOT dataset, termed BihoT, which consists of 41,912 hyperspectral images covering 49 video sequences. The dataset covers various artificial camouflage scenes where objects have similar appearances, diverse spectrums, and frequent occlusion, making it a very challenging dataset for HCOT. Besides, a simple but effective baseline model, named spectral prompt-based distractor-aware network (SPDAN), is proposed, comprising a spectral embedding network (SEN), a spectral prompt-based backbone network (SPBN), and a distractor-aware module (DAM). Specifically, the SEN extracts spectral-spatial features via 3-D and 2-D convolutions. Then, the SPBN fine-tunes powerful RGB trackers with spectral prompts and alleviates the insufficiency of training samples. Moreover, the DAM utilizes a novel statistic to capture the distractor caused by occlusion from objects and background. Extensive experiments demonstrate that our proposed SPDAN achieves state-of-the-art performance on the proposed BihoT and other HOT datasets.
☆ Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation
The prevention of falls is paramount in modern healthcare, particularly for the elderly, as falls can lead to severe injuries or even fatalities. Additionally, the growing incidence of falls among the elderly, coupled with the urgent need to prevent suicide attempts resulting from medication overdose, underscores the critical importance of accurate and efficient fall detection methods. In this scenario, a computer-aided fall detection system is inevitable to save elderly people's lives worldwide. Many researchers have been working to develop fall detection systems. However, the existing fall detection systems often struggle with issues such as unsatisfactory performance accuracy, limited robustness, high computational complexity, and sensitivity to environmental factors due to a lack of effective features. In response to these challenges, this paper proposes a novel three-stream spatial-temporal feature-based fall detection system. Our system incorporates joint skeleton-based spatial and temporal Graph Convolutional Network (GCN) features, joint motion-based spatial and temporal GCN features, and residual connections-based features. Each stream employs adaptive graph-based feature aggregation and consecutive separable convolutional neural networks (Sep-TCN), significantly reducing computational complexity and model parameters compared to prior systems. Experimental results across multiple datasets demonstrate the superior effectiveness and efficiency of our proposed system, with accuracies of 99.51\%, 99.15\%, 99.79\% and 99.85 \% achieved on the ImViA, UR-Fall, Fall-UP and FU-Kinect datasets, respectively. The remarkable performance of our system highlights its superiority, efficiency, and generalizability in real-world fall detection scenarios, offering significant advancements in healthcare and societal well-being.
☆ Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar
We consider the problem of few-viewpoint 3D surface reconstruction using raw measurements from a lidar system. Lidar captures 3D scene geometry by emitting pulses of light to a target and recording the speed-of-light time delay of the reflected light. However, conventional lidar systems do not output the raw, captured waveforms of backscattered light; instead, they pre-process these data into a 3D point cloud. Since this procedure typically does not accurately model the noise statistics of the system, exploit spatial priors, or incorporate information about downstream tasks, it ultimately discards useful information that is encoded in raw measurements of backscattered light. Here, we propose to leverage raw measurements captured with a single-photon lidar system from multiple viewpoints to optimize a neural surface representation of a scene. The measurements consist of time-resolved photon count histograms, or transients, which capture information about backscattered light at picosecond time scales. Additionally, we develop new regularization strategies that improve robustness to photon noise, enabling accurate surface reconstruction with as few as 10 photons per pixel. Our method outperforms other techniques for few-viewpoint 3D reconstruction based on depth maps, point clouds, or conventional lidar as demonstrated in simulation and with captured data.
☆ Rebalancing Multi-Label Class-Incremental Learning
Multi-label class-incremental learning (MLCIL) is essential for real-world multi-label applications, allowing models to learn new labels while retaining previously learned knowledge continuously. However, recent MLCIL approaches can only achieve suboptimal performance due to the oversight of the positive-negative imbalance problem, which manifests at both the label and loss levels because of the task-level partial label issue. The imbalance at the label level arises from the substantial absence of negative labels, while the imbalance at the loss level stems from the asymmetric contributions of the positive and negative loss parts to the optimization. To address the issue above, we propose a Rebalance framework for both the Loss and Label levels (RebLL), which integrates two key modules: asymmetric knowledge distillation (AKD) and online relabeling (OR). AKD is proposed to rebalance at the loss level by emphasizing the negative label learning in classification loss and down-weighting the contribution of overconfident predictions in distillation loss. OR is designed for label rebalance, which restores the original class distribution in memory by online relabeling the missing classes. Our comprehensive experiments on the PASCAL VOC and MS-COCO datasets demonstrate that this rebalancing strategy significantly improves performance, achieving new state-of-the-art results even with a vanilla CNN backbone.
☆ TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model
The vision-language modeling capability of multi-modal large language models has attracted wide attention from the community. However, in medical domain, radiology report generation using vision-language models still faces significant challenges due to the imbalanced data distribution caused by numerous negated descriptions in radiology reports and issues such as rough alignment between radiology reports and radiography. In this paper, we propose a truthful radiology report generation framework, namely TRRG, based on stage-wise training for cross-modal disease clue injection into large language models. In pre-training stage, During the pre-training phase, contrastive learning is employed to enhance the ability of visual encoder to perceive fine-grained disease details. In fine-tuning stage, the clue injection module we proposed significantly enhances the disease-oriented perception capability of the large language model by effectively incorporating the robust zero-shot disease perception. Finally, through the cross-modal clue interaction module, our model effectively achieves the multi-granular interaction of visual embeddings and an arbitrary number of disease clue embeddings. This significantly enhances the report generation capability and clinical effectiveness of multi-modal large language models in the field of radiology reportgeneration. Experimental results demonstrate that our proposed pre-training and fine-tuning framework achieves state-of-the-art performance in radiology report generation on datasets such as IU-Xray and MIMIC-CXR. Further analysis indicates that our proposed method can effectively enhance the model to perceive diseases and improve its clinical effectiveness.
☆ Diffusion-Based Visual Art Creation: A Survey and New Perspectives
The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
comment: 35 pages, 9 figures
☆ SPARK: Multi-Vision Sensor Perception and Reasoning Benchmark for Large-scale Vision-Language Models SP
Large-scale Vision-Language Models (LVLMs) have significantly advanced with text-aligned vision inputs. They have made remarkable progress in computer vision tasks by aligning text modality with vision inputs. There are also endeavors to incorporate multi-vision sensors beyond RGB, including thermal, depth, and medical X-ray images. However, we observe that current LVLMs view images taken from multi-vision sensors as if they were in the same RGB domain without considering the physical characteristics of multi-vision sensors. They fail to convey the fundamental multi-vision sensor information from the dataset and the corresponding contextual knowledge properly. Consequently, alignment between the information from the actual physical environment and the text is not achieved correctly, making it difficult to answer complex sensor-related questions that consider the physical environment. In this paper, we aim to establish a multi-vision Sensor Perception And Reasoning benchmarK called SPARK that can reduce the fundamental multi-vision sensor information gap between images and multi-vision sensors. We generated 6,248 vision-language test samples automatically to investigate multi-vision sensory perception and multi-vision sensory reasoning on physical sensor knowledge proficiency across different formats, covering different types of sensor-related questions. We utilized these samples to assess ten leading LVLMs. The results showed that most models displayed deficiencies in multi-vision sensory reasoning to varying extents. Codes and data are available at https://github.com/top-yun/SPARK
comment: Codes and data are available at https://github.com/top-yun/SPARK
☆ ZipGait: Bridging Skeleton and Silhouette with Diffusion Model for Advancing Gait Recognition
Current gait recognition research predominantly focuses on extracting appearance features effectively, but the performance is severely compromised by the vulnerability of silhouettes under unconstrained scenes. Consequently, numerous studies have explored how to harness information from various models, particularly by sufficiently utilizing the intrinsic information of skeleton sequences. While these model-based methods have achieved significant performance, there is still a huge gap compared to appearance-based methods, which implies the potential value of bridging silhouettes and skeletons. In this work, we make the first attempt to reconstruct dense body shapes from discrete skeleton distributions via the diffusion model, demonstrating a new approach that connects cross-modal features rather than focusing solely on intrinsic features to improve model-based methods. To realize this idea, we propose a novel gait diffusion model named DiffGait, which has been designed with four specific adaptations suitable for gait recognition. Furthermore, to effectively utilize the reconstructed silhouettes and skeletons, we introduce Perception Gait Integration (PGI) to integrate different gait features through a two-stage process. Incorporating those modifications leads to an efficient model-based gait recognition framework called ZipGait. Through extensive experiments on four public benchmarks, ZipGait demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both cross-domain and intra-domain settings, while achieving significant plug-and-play performance improvements.
☆ RoVRM: A Robust Visual Reward Model Optimized via Auxiliary Textual Preference Data
Large vision-language models (LVLMs) often fail to align with human preferences, leading to issues like generating misleading content without proper visual context (also known as hallucination). A promising solution to this problem is using human-preference alignment techniques, such as best-of-n sampling and reinforcement learning. However, these techniques face the difficulty arising from the scarcity of visual preference data, which is required to train a visual reward model (VRM). In this work, we continue the line of research. We present a Robust Visual Reward Model (RoVRM) which improves human-preference alignment for LVLMs. RoVRM leverages auxiliary textual preference data through a three-phase progressive training and optimal transport-based preference data selection to effectively mitigate the scarcity of visual preference data. We experiment with RoVRM on the commonly used vision-language tasks based on the LLaVA-1.5-7B and -13B models. Experimental results demonstrate that RoVRM consistently outperforms traditional VRMs. Furthermore, our three-phase progressive training and preference data selection approaches can yield consistent performance gains over ranking-based alignment techniques, such as direct preference optimization.
☆ Integrating Audio, Visual, and Semantic Information for Enhanced Multimodal Speaker Diarization
Speaker diarization, the process of segmenting an audio stream or transcribed speech content into homogenous partitions based on speaker identity, plays a crucial role in the interpretation and analysis of human speech. Most existing speaker diarization systems rely exclusively on unimodal acoustic information, making the task particularly challenging due to the innate ambiguities of audio signals. Recent studies have made tremendous efforts towards audio-visual or audio-semantic modeling to enhance performance. However, even the incorporation of up to two modalities often falls short in addressing the complexities of spontaneous and unstructured conversations. To exploit more meaningful dialogue patterns, we propose a novel multimodal approach that jointly utilizes audio, visual, and semantic cues to enhance speaker diarization. Our method elegantly formulates the multimodal modeling as a constrained optimization problem. First, we build insights into the visual connections among active speakers and the semantic interactions within spoken content, thereby establishing abundant pairwise constraints. Then we introduce a joint pairwise constraint propagation algorithm to cluster speakers based on these visual and semantic constraints. This integration effectively leverages the complementary strengths of different modalities, refining the affinity estimation between individual speaker embeddings. Extensive experiments conducted on multiple multimodal datasets demonstrate that our approach consistently outperforms state-of-the-art speaker diarization methods.
☆ A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems
In recent years Plug-and-Play (PnP) methods have achieved state-of-the-art performance in inverse imaging problems by replacing proximal operators with denoisers. Based on the proximal gradient method, some theoretical results of PnP have appeared, where appropriate step size is crucial for convergence analysis. However, in practical applications, applying PnP methods with theoretically guaranteed step sizes is difficult, and these algorithms are limited to Gaussian noise. In this paper,from a perspective of split convex feasibility problems (SCFP), an adaptive PnP algorithm with Projected Landweber Operator (PnP-PLO) is proposed to address these issues. Numerical experiments on image deblurring, super-resolution, and compressed sensing MRI experiments illustrate that PnP-PLO with theoretical guarantees outperforms state-of-the-art methods such as RED and RED-PRO.
☆ Query-Efficient Video Adversarial Attack with Stylized Logo
Video classification systems based on Deep Neural Networks (DNNs) have demonstrated excellent performance in accurately verifying video content. However, recent studies have shown that DNNs are highly vulnerable to adversarial examples. Therefore, a deep understanding of adversarial attacks can better respond to emergency situations. In order to improve attack performance, many style-transfer-based attacks and patch-based attacks have been proposed. However, the global perturbation of the former will bring unnatural global color, while the latter is difficult to achieve success in targeted attacks due to the limited perturbation space. Moreover, compared to a plethora of methods targeting image classifiers, video adversarial attacks are still not that popular. Therefore, to generate adversarial examples with a low budget and to provide them with a higher verisimilitude, we propose a novel black-box video attack framework, called Stylized Logo Attack (SLA). SLA is conducted through three steps. The first step involves building a style references set for logos, which can not only make the generated examples more natural, but also carry more target class features in the targeted attacks. Then, reinforcement learning (RL) is employed to determine the style reference and position parameters of the logo within the video, which ensures that the stylized logo is placed in the video with optimal attributes. Finally, perturbation optimization is designed to optimize perturbations to improve the fooling rate in a step-by-step manner. Sufficient experimental results indicate that, SLA can achieve better performance than state-of-the-art methods and still maintain good deception effects when facing various defense methods.
☆ LLM-enhanced Scene Graph Learning for Household Rearrangement SIGGRAPH
The household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places. It depends both on common-sense knowledge on the objective side and human user preference on the subjective side. In achieving such task, we propose to mine object functionality with user preference alignment directly from the scene itself, without relying on human intervention. To do so, we work with scene graph representation and propose LLM-enhanced scene graph learning which transforms the input scene graph into an affordance-enhanced graph (AEG) with information-enhanced nodes and newly discovered edges (relations). In AEG, the nodes corresponding to the receptacle objects are augmented with context-induced affordance which encodes what kind of carriable objects can be placed on it. New edges are discovered with newly discovered non-local relations. With AEG, we perform task planning for scene rearrangement by detecting misplaced carriables and determining a proper placement for each of them. We test our method by implementing a tiding robot in simulator and perform evaluation on a new benchmark we build. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.
comment: SIGGRAPH ASIA 2024
☆ Unlocking Attributes' Contribution to Successful Camouflage: A Combined Textual and VisualAnalysis Strategy ECCV 2024
In the domain of Camouflaged Object Segmentation (COS), despite continuous improvements in segmentation performance, the underlying mechanisms of effective camouflage remain poorly understood, akin to a black box. To address this gap, we present the first comprehensive study to examine the impact of camouflage attributes on the effectiveness of camouflage patterns, offering a quantitative framework for the evaluation of camouflage designs. To support this analysis, we have compiled the first dataset comprising descriptions of camouflaged objects and their attribute contributions, termed COD-Text And X-attributions (COD-TAX). Moreover, drawing inspiration from the hierarchical process by which humans process information: from high-level textual descriptions of overarching scenarios, through mid-level summaries of local areas, to low-level pixel data for detailed analysis. We have developed a robust framework that combines textual and visual information for the task of COS, named Attribution CUe Modeling with Eye-fixation Network (ACUMEN). ACUMEN demonstrates superior performance, outperforming nine leading methods across three widely-used datasets. We conclude by highlighting key insights derived from the attributes identified in our study. Code: https://github.com/lyu-yx/ACUMEN.
comment: Accepted by ECCV 2024
☆ Vision-Based Detection of Uncooperative Targets and Components on Small Satellites
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft and motivate the need for space situational awareness techniques. These uncooperative targets create a challenging tracking and detection problem due to a lack of prior knowledge of their features, trajectories, or even existence. Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets to make them more robust and reliable to the wide-ranging nature of the target. This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision. The autonomous detection method aims to identify and accurately track the uncooperative targets in varied circumstances, including different camera spectral sensitivities, lighting, and backgrounds. Our method adapts to the relative distance between the observing spacecraft and the target, and different detection strategies are adjusted based on distance. At larger distances, we utilize You Only Look Once (YOLOv8), a multitask Convolutional Neural Network (CNN), for zero-shot and domain-specific single-shot real time detection of the target. At shorter distances, we use knowledge distillation to combine visual foundation models with a lightweight fast segmentation CNN (Fast-SCNN) to segment the spacecraft components with low storage requirements and fast inference times, and to enable weight updates from earth and possible onboard training. Lastly, we test our method on a custom dataset simulating the unique conditions encountered in space, as well as a publicly-available dataset.
comment: Small Satellite 2024 Conference, 13 pages, 8 figures, 6 tables
☆ Through-the-Wall Radar Human Activity Micro-Doppler Signature Representation Method Based on Joint Boulic-Sinusoidal Pendulum Model
With the help of micro-Doppler signature, ultra-wideband (UWB) through-the-wall radar (TWR) enables the reconstruction of range and velocity information of limb nodes to accurately identify indoor human activities. However, existing methods are usually trained and validated directly using range-time maps (RTM) and Doppler-time maps (DTM), which have high feature redundancy and poor generalization ability. In order to solve this problem, this paper proposes a human activity micro-Doppler signature representation method based on joint Boulic-sinusoidal pendulum motion model. In detail, this paper presents a simplified joint Boulic-sinusoidal pendulum human motion model by taking head, torso, both hands and feet into consideration improved from Boulic-Thalmann kinematic model. The paper also calculates the minimum number of key points needed to describe the Doppler and micro-Doppler information sufficiently. Both numerical simulations and experiments are conducted to verify the effectiveness. The results demonstrate that the proposed number of key points of micro-Doppler signature can precisely represent the indoor human limb node motion characteristics, and substantially improve the generalization capability of the existing methods for different testers.
comment: 17 pages, 14 figures, 7 tables, in IEEE Transactions on Microwave Theory and Techniques, 2024
☆ Enhancing Sampling Protocol for Robust Point Cloud Classification
Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been recognized and utilized. However, real-world data often suffer from corrputions such as sensor noise, which violates the benignness assumption of point cloud in current protocols. Consequently, they are notably vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointDR, which comprises two components: 1) Downsampling for key point identification and 2) Resampling for flexible sample size. Furthermore, differentiated strategies are implemented for training and inference processes. Particularly, an isolation-rated weight considering local density is designed for the downsampling method, assisting it in performing random key points selection in the training phase and bypassing noise in the inference phase. A local-geometry-preserved upsampling is incorporated into resampling, facilitating it to maintain a stochastic sample size in the training stage and complete insufficient data in the inference. It is crucial to note that the proposed protocol is free of model architecture altering and extra learning, thus minimal efforts are demanded for its replacement of the existing one. Despite the simplicity, it substantially improves the robustness of point cloud learning, showcased by outperforming the state-of-the-art methods on multiple benchmarks of corrupted point cloud classification. The code will be available upon the paper's acceptance.
☆ ISETHDR: A Physics-based Synthetic Radiance Dataset for High Dynamic Range Driving Scenes
This paper describes a physics-based end-to-end software simulation for image systems. We use the software to explore sensors designed to enhance performance in high dynamic range (HDR) environments, such as driving through daytime tunnels and under nighttime conditions. We synthesize physically realistic HDR spectral radiance images and use them as the input to digital twins that model the optics and sensors of different systems. This paper makes three main contributions: (a) We create a labeled (instance segmentation and depth), synthetic radiance dataset of HDR driving scenes. (b) We describe the development and validation of the end-to-end simulation framework. (c) We present a comparative analysis of two single-shot sensors designed for HDR. We open-source both the dataset and the software.
☆ Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification
Hyperspectral image (HSI) and synthetic aperture radar (SAR) data joint classification is a crucial and yet challenging task in the field of remote sensing image interpretation. However, feature modeling in existing methods is deficient to exploit the abundant global, spectral, and local features simultaneously, leading to sub-optimal classification performance. To solve the problem, we propose a hierarchical attention and parallel filter fusion network for multi-source data classification. Concretely, we design a hierarchical attention module for hyperspectral feature extraction. This module integrates global, spectral, and local features simultaneously to provide more comprehensive feature representation. In addition, we develop parallel filter fusion module which enhances cross-modal feature interactions among different spatial locations in the frequency domain. Extensive experiments on two multi-source remote sensing data classification datasets verify the superiority of our proposed method over current state-of-the-art classification approaches. Specifically, our proposed method achieves 91.44% and 80.51% of overall accuracy (OA) on the respective datasets, highlighting its superior performance.
comment: Accepted by IEEE GRSL
☆ CatFree3D: Category-agnostic 3D Object Detection with Diffusion
Image-based 3D object detection is widely employed in applications such as autonomous vehicles and robotics, yet current systems struggle with generalisation due to complex problem setup and limited training data. We introduce a novel pipeline that decouples 3D detection from 2D detection and depth prediction, using a diffusion-based approach to improve accuracy and support category-agnostic detection. Additionally, we introduce the Normalised Hungarian Distance (NHD) metric for an accurate evaluation of 3D detection results, addressing the limitations of traditional IoU and GIoU metrics. Experimental results demonstrate that our method achieves state-of-the-art accuracy and strong generalisation across various object categories and datasets.
comment: Project page: https://bianwenjing.github.io/CatFree3D
☆ Segment Anything Model for Grain Characterization in Hard Drive Design CVPR 2024
Development of new materials in hard drive designs requires characterization of nanoscale materials through grain segmentation. The high-throughput quickly changing research environment makes zero-shot generalization an incredibly desirable feature. For this reason, we explore the application of Meta's Segment Anything Model (SAM) to this problem. We first analyze the out-of-the-box use of SAM. Then we discuss opportunities and strategies for improvement under the assumption of minimal labeled data availability. Out-of-the-box SAM shows promising accuracy at property distribution extraction. We are able to identify four potential areas for improvement and show preliminary gains in two of the four areas.
comment: This paper has been accepted by the International Workshop on Computer Vision for Materials Science in conjunction with the IEEE/CVF CVPR 2024
☆ BankTweak: Adversarial Attack against Multi-Object Trackers by Manipulating Feature Banks
Multi-object tracking (MOT) aims to construct moving trajectories for objects, and modern multi-object trackers mainly utilize the tracking-by-detection methodology. Initial approaches to MOT attacks primarily aimed to degrade the detection quality of the frames under attack, thereby reducing accuracy only in those specific frames, highlighting a lack of \textit{efficiency}. To improve efficiency, recent advancements manipulate object positions to cause persistent identity (ID) switches during the association phase, even after the attack ends within a few frames. However, these position-manipulating attacks have inherent limitations, as they can be easily counteracted by adjusting distance-related parameters in the association phase, revealing a lack of \textit{robustness}. In this paper, we present \textsf{BankTweak}, a novel adversarial attack designed for MOT trackers, which features efficiency and robustness. \textsf{BankTweak} focuses on the feature extractor in the association phase and reveals vulnerability in the Hungarian matching method used by feature-based MOT systems. Exploiting the vulnerability, \textsf{BankTweak} induces persistent ID switches (addressing \textit{efficiency}) even after the attack ends by strategically injecting altered features into the feature banks without modifying object positions (addressing \textit{robustness}). To demonstrate the applicability, we apply \textsf{BankTweak} to three multi-object trackers (DeepSORT, StrongSORT, and MOTDT) with one-stage, two-stage, anchor-free, and transformer detectors. Extensive experiments on the MOT17 and MOT20 datasets show that our method substantially surpasses existing attacks, exposing the vulnerability of the tracking-by-detection framework to \textsf{BankTweak}.
☆ Revisiting Cross-Domain Problem for LiDAR-based 3D Object Detection ICONIP 2024
Deep learning models such as convolutional neural networks and transformers have been widely applied to solve 3D object detection problems in the domain of autonomous driving. While existing models have achieved outstanding performance on most open benchmarks, the generalization ability of these deep networks is still in doubt. To adapt models to other domains including different cities, countries, and weather, retraining with the target domain data is currently necessary, which hinders the wide application of autonomous driving. In this paper, we deeply analyze the cross-domain performance of the state-of-the-art models. We observe that most models will overfit the training domains and it is challenging to adapt them to other domains directly. Existing domain adaptation methods for 3D object detection problems are actually shifting the models' knowledge domain instead of improving their generalization ability. We then propose additional evaluation metrics -- the side-view and front-view AP -- to better analyze the core issues of the methods' heavy drops in accuracy levels. By using the proposed metrics and further evaluating the cross-domain performance in each dimension, we conclude that the overfitting problem happens more obviously on the front-view surface and the width dimension which usually faces the sensor and has more 3D points surrounding it. Meanwhile, our experiments indicate that the density of the point cloud data also significantly influences the models' cross-domain performance.
comment: Accepted by the ICONIP 2024
☆ Quantization-free Lossy Image Compression Using Integer Matrix Factorization
Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and therefore necessitate carefully designed quantizers. Notably, SVD-based methods are more sensitive to quantization errors than DCT-based methods like JPEG. To address this issue, we introduce a variant of integer matrix factorization (IMF) to develop a novel quantization-free lossy image compression method. IMF provides a low-rank representation of the image data as a product of two smaller factor matrices with bounded integer elements, thereby eliminating the need for quantization. We propose an efficient, provably convergent iterative algorithm for IMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our IMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
comment: 19 pages, 6 figures, 1 table, 1 algorithm
☆ MultiMed: Massively Multimodal and Multitask Medical Understanding
Biomedical data is inherently multimodal, consisting of electronic health records, medical imaging, digital pathology, genome sequencing, wearable sensors, and more. The application of artificial intelligence tools to these multifaceted sensing technologies has the potential to revolutionize the prognosis, diagnosis, and management of human health and disease. However, current approaches to biomedical AI typically only train and evaluate with one or a small set of medical modalities and tasks. This limitation hampers the development of comprehensive tools that can leverage the rich interconnected information across many heterogeneous biomedical sensors. To address this challenge, we present MultiMed, a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks. MultiMed consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data, and is structured into eleven challenging tasks, including disease prognosis, protein structure prediction, and medical question answering. Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models. Our analysis highlights the advantages of training large-scale medical models across many related modalities and tasks. Moreover, MultiMed enables studies of generalization across related medical concepts, robustness to real-world noisy data and distribution shifts, and novel modality combinations to improve prediction performance. MultiMed will be publicly available and regularly updated and welcomes inputs from the community.
☆ One-shot Video Imitation via Parameterized Symbolic Abstraction Graphs
Learning to manipulate dynamic and deformable objects from a single demonstration video holds great promise in terms of scalability. Previous approaches have predominantly focused on either replaying object relationships or actor trajectories. The former often struggles to generalize across diverse tasks, while the latter suffers from data inefficiency. Moreover, both methodologies encounter challenges in capturing invisible physical attributes, such as forces. In this paper, we propose to interpret video demonstrations through Parameterized Symbolic Abstraction Graphs (PSAG), where nodes represent objects and edges denote relationships between objects. We further ground geometric constraints through simulation to estimate non-geometric, visually imperceptible attributes. The augmented PSAG is then applied in real robot experiments. Our approach has been validated across a range of tasks, such as Cutting Avocado, Cutting Vegetable, Pouring Liquid, Rolling Dough, and Slicing Pizza. We demonstrate successful generalization to novel objects with distinct visual and physical properties.
comment: Robot Learning, Computer Vision, Learning from Videos
☆ Research on Improved U-net Based Remote Sensing Image Segmentation Algorithm
In recent years, although U-Net network has made significant progress in the field of image segmentation, it still faces performance bottlenecks in remote sensing image segmentation. In this paper, we innovatively propose to introduce SimAM and CBAM attention mechanism in U-Net, and the experimental results show that after adding SimAM and CBAM modules alone, the model improves 17.41% and 12.23% in MIoU, and the Mpa and Accuracy are also significantly improved. And after fusing the two,the model performance jumps up to 19.11% in MIoU, and the Mpa and Accuracy are also improved by 16.38% and 14.8% respectively, showing excellent segmentation accuracy and visual effect with strong generalization ability and robustness. This study opens up a new path for remote sensing image segmentation technology and has important reference value for algorithm selection and improvement.
☆ Building and better understanding vision-language models: insights and future directions
The field of vision-language models (VLMs), which take images and texts as inputs and output texts, is rapidly evolving and has yet to reach consensus on several key aspects of the development pipeline, including data, architecture, and training methods. This paper can be seen as a tutorial for building a VLM. We begin by providing a comprehensive overview of the current state-of-the-art approaches, highlighting the strengths and weaknesses of each, addressing the major challenges in the field, and suggesting promising research directions for underexplored areas. We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B, while being trained efficiently, exclusively on open datasets, and using a straightforward pipeline. These steps include the creation of Docmatix, a dataset for improving document understanding capabilities, which is 240 times larger than previously available datasets. We release the model along with the datasets created for its training.
♻ ☆ Exploring Robustness of Visual State Space model against Backdoor Attacks
Visual State Space Model (VSS) has demonstrated remarkable performance in various computer vision tasks. However, in the process of development, backdoor attacks have brought severe challenges to security. Such attacks cause an infected model to predict target labels when a specific trigger is activated, while the model behaves normally on benign samples. In this paper, we conduct systematic experiments to comprehend on robustness of VSS through the lens of backdoor attacks, specifically how the state space model (SSM) mechanism affects robustness. We first investigate the vulnerability of VSS to different backdoor triggers and reveal that the SSM mechanism, which captures contextual information within patches, makes the VSS model more susceptible to backdoor triggers compared to models without SSM. Furthermore, we analyze the sensitivity of the VSS model to patch processing techniques and discover that these triggers are effectively disrupted. Based on these observations, we consider an effective backdoor for the VSS model that recurs in each patch to resist patch perturbations. Extensive experiments across three datasets and various backdoor attacks reveal that the VSS model performs comparably to Transformers (ViTs) but is less robust than the Gated CNNs, which comprise only stacked Gated CNN blocks without SSM.
comment: 11 pages, 9 figures, minor revise, under review
♻ ☆ A New Chinese Landscape Paintings Generation Model based on Stable Diffusion using DreamBooth HPCA
This study mainly introduces a method combining the Stable Diffusion Model (SDM) and Parameter-Efficient Fine-Tuning method for generating Chinese Landscape Paintings. This training process is accelerated by combining LoRA with pre-trained SDM and DreamBooth with pre-trained SDM, respectively. On the Chinese Landscape Paintings Internet dataset used in this paper, this study finds that SDM combined with DreamBooth exhibits superior performance, outperforming other models, including the generic pre-trained SDM and LoRA-based fine-tuning SDM. The SDM combined with DreamBooth achieves a FID of 12.75 on the dataset and outperforms all other models in terms of expert evaluation, highlighting the model's versatility in the field of Chinese Landscape Paintings given the unique identifier, high fidelity and high quality. This study illustrates the potential of specialised fine-tuning method to improve the performance of SDM on domain-specific tasks, particularly in the domain of Landscape Paintings.
comment: accepted by AHPCAI
♻ ☆ DeRainGS: Gaussian Splatting for Enhanced Scene Reconstruction in Rainy Environments
Reconstruction under adverse rainy conditions poses significant challenges due to reduced visibility and the distortion of visual perception. These conditions can severely impair the quality of geometric maps, which is essential for applications ranging from autonomous planning to environmental monitoring. In response to these challenges, this study introduces the novel task of 3D Reconstruction in Rainy Environments (3DRRE), specifically designed to address the complexities of reconstructing 3D scenes under rainy conditions. To benchmark this task, we construct the HydroViews dataset that comprises a diverse collection of both synthesized and real-world scene images characterized by various intensities of rain streaks and raindrops. Furthermore, we propose DeRainGS, the first 3DGS method tailored for reconstruction in adverse rainy environments. Extensive experiments across a wide range of rain scenarios demonstrate that our method delivers state-of-the-art performance, remarkably outperforming existing occlusion-free methods.
♻ ☆ SAM-REF: Rethinking Image-Prompt Synergy for Refinement in Segment Anything
The advent of the Segment Anything Model (SAM) marks a significant milestone for interactive segmentation using generalist models. As a late fusion model, SAM extracts image embeddings once and merges them with prompts in later interactions. This strategy limits the models ability to extract detailed information from the prompted target zone. Current specialist models utilize the early fusion strategy that encodes the combination of images and prompts to target the prompted objects, yet repetitive complex computations on the images result in high latency. The key to these issues is efficiently synergizing the images and prompts. We propose SAM-REF, a two-stage refinement framework that fully integrates images and prompts globally and locally while maintaining the accuracy of early fusion and the efficiency of late fusion. The first-stage GlobalDiff Refiner is a lightweight early fusion network that combines the whole image and prompts, focusing on capturing detailed information for the entire object. The second-stage PatchDiff Refiner locates the object detail window according to the mask and prompts, then refines the local details of the object. Experimentally, we demonstrated the high effectiveness and efficiency of our method in tackling complex cases with multiple interactions. Our SAM-REF model outperforms the current state-of-the-art method in most metrics on segmentation quality without compromising efficiency.
♻ ☆ LAKD-Activation Mapping Distillation Based on Local Learning
Knowledge distillation is widely applied in various fundamental vision models to enhance the performance of compact models. Existing knowledge distillation methods focus on designing different distillation targets to acquire knowledge from teacher models. However, these methods often overlook the efficient utilization of distilled information, crudely coupling different types of information, making it difficult to explain how the knowledge from the teacher network aids the student network in learning. This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD), which more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance. The framework establishes an independent interactive training mechanism through a separation-decoupling mechanism and non-directional activation mapping. LAKD decouples the teacher's features and facilitates progressive interaction training from simple to complex. Specifically, the student network is divided into local modules with independent gradients to decouple the knowledge transferred from the teacher. The non-directional activation mapping helps the student network integrate knowledge from different local modules by learning coarse-grained feature knowledge. We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods, consistently achieving state-of-the-art performance across different datasets.
comment: 8 pages,7 figures
♻ ☆ Video Emotion Open-vocabulary Recognition Based on Multimodal Large Language Model
Multimodal emotion recognition is a task of great concern. However, traditional data sets are based on fixed labels, resulting in models that often focus on main emotions and ignore detailed emotional changes in complex scenes. This report introduces the solution of using MLLMs technology to generate open-vocabulary emotion labels from a video. The solution includes the use of framework, data generation and processing, training methods, results generation and multi-model co-judgment. In the MER-OV (Open-Word Emotion Recognition) of the MER2024 challenge, our method achieved significant advantages, leading to its superior capabilities in complex emotion computation.
♻ ☆ SiNGR: Brain Tumor Segmentation via Signed Normalized Geodesic Transform Regression MICCAI 2024
One of the primary challenges in brain tumor segmentation arises from the uncertainty of voxels close to tumor boundaries. However, the conventional process of generating ground truth segmentation masks fails to treat such uncertainties properly. Those "hard labels" with 0s and 1s conceptually influenced the majority of prior studies on brain image segmentation. As a result, tumor segmentation is often solved through voxel classification. In this work, we instead view this problem as a voxel-level regression, where the ground truth represents a certainty mapping from any pixel to the border of the tumor. We propose a novel ground truth label transformation, which is based on a signed geodesic transform, to capture the uncertainty in brain tumors' vicinity. We combine this idea with a Focal-like regression L1-loss that enables effective regression learning in high-dimensional output space by appropriately weighting voxels according to their difficulty. We thoroughly conduct an experimental evaluation to validate the components of our proposed method, compare it to a diverse array of state-of-the-art segmentation models, and show that it is architecture-agnostic. The code of our method is made publicly available (\url{https://github.com/Oulu-IMEDS/SiNGR/}).
comment: Accepted as a conference paper at MICCAI 2024
♻ ☆ Generalizing Visual Question Answering from Synthetic to Human-Written Questions via a Chain of QA with a Large Language Model
Visual question answering (VQA) is a task where an image is given, and a series of questions are asked about the image. To build an efficient VQA algorithm, a large amount of QA data is required which is very expensive. Generating synthetic QA pairs based on templates is a practical way to obtain data. However, VQA models trained on those data do not perform well on complex, human-written questions. To address this issue, we propose a new method called {\it chain of QA for human-written questions} (CoQAH). CoQAH utilizes a sequence of QA interactions between a large language model and a VQA model trained on synthetic data to reason and derive logical answers for human-written questions. We tested the effectiveness of CoQAH on two types of human-written VQA datasets for 3D-rendered and chest X-ray images and found that it achieved state-of-the-art accuracy in both types of data. Notably, CoQAH outperformed general vision-language models, VQA models, and medical foundation models with no finetuning.
♻ ☆ Segment anything model 2: an application to 2D and 3D medical images
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt. The recently developed SAM 2 has extended this ability to video inputs. This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field. In this paper, we extensively evaluate SAM 2's ability to segment both 2D and 3D medical images by first collecting 21 medical imaging datasets, including surgical videos, common 3D modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) as well as 2D modalities such as X-ray and ultrasound. Two evaluation settings of SAM 2 are considered: (1) multi-frame 3D segmentation, where prompts are provided to one or multiple slice(s) selected from the volume, and (2) single-frame 2D segmentation, where prompts are provided to each slice. The former only applies to videos and 3D modalities, while the latter applies to all datasets. Our results show that SAM 2 exhibits similar performance as SAM under single-frame 2D segmentation, and has variable performance under multi-frame 3D segmentation depending on the choices of slices to annotate, the direction of the propagation, the predictions utilized during the propagation, etc. We believe our work enhances the understanding of SAM 2's behavior in the medical field and provides directions for future work in adapting SAM 2 to this domain. Our code is available at: https://github.com/mazurowski-lab/segment-anything2-medical-evaluation.
comment: 20 pages, 13 figures. Codes are available at https://github.com/mazurowski-lab/segment-anything2-medical-evaluation
♻ ☆ Real-world Image Dehazing with Coherence-based Label Generator and Cooperative Unfolding Network
Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.
comment: 10 pages, 7 figures, 6 tables
♻ ☆ StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection
Cooperative perception via communication among intelligent traffic agents has great potential to improve the safety of autonomous driving. However, limited communication bandwidth, localization errors and asynchronized capturing time of sensor data, all introduce difficulties to the data fusion of different agents. To some extend, previous works have attempted to reduce the shared data size, mitigate the spatial feature misalignment caused by localization errors and communication delay. However, none of them have considered the asynchronized sensor ticking times, which can lead to dynamic object misplacement of more than one meter during data fusion. In this work, we propose Time-Aligned COoperative Object Detection (TA-COOD), for which we adapt widely used dataset OPV2V and DairV2X with considering asynchronous LiDAR sensor ticking times and build an efficient fully sparse framework with modeling the temporal information of individual objects with query-based techniques. The experiment results confirmed the superior efficiency of our fully sparse framework compared to the state-of-the-art dense models. More importantly, they show that the point-wise observation timestamps of the dynamic objects are crucial for accurate modeling the object temporal context and the predictability of their time-related locations. The official code is available at \url{https://github.com/YuanYunshuang/CoSense3D}.
♻ ☆ SuperSimpleNet: Unifying Unsupervised and Supervised Learning for Fast and Reliable Surface Defect Detection ICPR 2024
The aim of surface defect detection is to identify and localise abnormal regions on the surfaces of captured objects, a task that's increasingly demanded across various industries. Current approaches frequently fail to fulfil the extensive demands of these industries, which encompass high performance, consistency, and fast operation, along with the capacity to leverage the entirety of the available training data. Addressing these gaps, we introduce SuperSimpleNet, an innovative discriminative model that evolved from SimpleNet. This advanced model significantly enhances its predecessor's training consistency, inference time, as well as detection performance. SuperSimpleNet operates in an unsupervised manner using only normal training images but also benefits from labelled abnormal training images when they are available. SuperSimpleNet achieves state-of-the-art results in both the supervised and the unsupervised settings, as demonstrated by experiments across four challenging benchmark datasets. Code: https://github.com/blaz-r/SuperSimpleNet .
comment: Accepted to ICPR 2024
♻ ☆ FOUND: Foot Optimization with Uncertain Normals for Surface Deformation Using Synthetic Data
Surface reconstruction from multi-view images is a challenging task, with solutions often requiring a large number of sampled images with high overlap. We seek to develop a method for few-view reconstruction, for the case of the human foot. To solve this task, we must extract rich geometric cues from RGB images, before carefully fusing them into a final 3D object. Our FOUND approach tackles this, with 4 main contributions: (i) SynFoot, a synthetic dataset of 50,000 photorealistic foot images, paired with ground truth surface normals and keypoints; (ii) an uncertainty-aware surface normal predictor trained on our synthetic dataset; (iii) an optimization scheme for fitting a generative foot model to a series of images; and (iv) a benchmark dataset of calibrated images and high resolution ground truth geometry. We show that our normal predictor outperforms all off-the-shelf equivalents significantly on real images, and our optimization scheme outperforms state-of-the-art photogrammetry pipelines, especially for a few-view setting. We release our synthetic dataset and baseline 3D scans to the research community.
comment: 14 pages, 15 figures
♻ ☆ Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Few-shot anomaly detection (FSAD) plays a crucial role in industrial manufacturing. However, existing FSAD methods encounter difficulties leveraging a limited number of normal samples, frequently failing to detect and locate inconspicuous anomalies in the spatial domain. We have further discovered that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. The original spatial images are transformed into multi-frequency images, making them more conducive to the tailored discriminators in detecting anomalies. Additionally, the discriminators learn a joint representation with forms of pseudo-anomalies. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. The code is available at \url{https://github.com/yuhbai/DFD}.
comment: Accepted by KBS
♻ ☆ Domain Generalization through Meta-Learning: A Survey
Deep neural networks (DNNs) have revolutionized artificial intelligence but often lack performance when faced with out-of-distribution (OOD) data, a common scenario due to the inevitable domain shifts in real-world applications. This limitation stems from the common assumption that training and testing data share the same distribution--an assumption frequently violated in practice. Despite their effectiveness with large amounts of data and computational power, DNNs struggle with distributional shifts and limited labeled data, leading to overfitting and poor generalization across various tasks and domains. Meta-learning presents a promising approach by employing algorithms that acquire transferable knowledge across various tasks for fast adaptation, eliminating the need to learn each task from scratch. This survey paper delves into the realm of meta-learning with a focus on its contribution to domain generalization. We first clarify the concept of meta-learning for domain generalization and introduce a novel taxonomy based on the feature extraction strategy and the classifier learning methodology, offering a granular view of methodologies. Additionally, we present a decision graph to assist readers in navigating the taxonomy based on data availability and domain shifts, enabling them to select and develop a proper model tailored to their specific problem requirements. Through an exhaustive review of existing methods and underlying theories, we map out the fundamentals of the field. Our survey provides practical insights and an informed discussion on promising research directions.
♻ ☆ Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method
Gaze plays a crucial role in revealing human attention and intention, particularly in hand-object interaction scenarios, where it guides and synchronizes complex tasks that require precise coordination between the brain, hand, and object. Motivated by this, we introduce a novel task: Gaze-Guided Hand-Object Interaction Synthesis, with potential applications in augmented reality, virtual reality, and assistive technologies. To support this task, we present GazeHOI, the first dataset to capture simultaneous 3D modeling of gaze, hand, and object interactions. This task poses significant challenges due to the inherent sparsity and noise in gaze data, as well as the need for high consistency and physical plausibility in generating hand and object motions. To tackle these issues, we propose a stacked gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. The stacked design effectively reduces the complexity of motion generation. We also introduce HOI-Manifold Guidance during the sampling stage of GHO-Diffusion, enabling fine-grained control over generated motions while maintaining the data manifold. Additionally, we propose a spatial-temporal gaze feature encoding for the diffusion condition and select diffusion results based on consistency scores between gaze-contact maps and gaze-interaction trajectories. Extensive experiments highlight the effectiveness of our method and the unique contributions of our dataset.
♻ ☆ Mixstyle-Entropy: Domain Generalization with Causal Intervention and Perturbation BMVC2024
Despite the considerable advancements achieved by deep neural networks, their performance tends to degenerate when the test environment diverges from the training ones. Domain generalization (DG) solves this issue by learning representations independent of domain-related information, thus facilitating extrapolation to unseen environments. Existing approaches typically focus on formulating tailored training objectives to extract shared features from the source data. However, the disjointed training and testing procedures may compromise robustness, particularly in the face of unforeseen variations during deployment. In this paper, we propose a novel and holistic framework based on causality, named InPer, designed to enhance model generalization by incorporating causal intervention during training and causal perturbation during testing. Specifically, during the training phase, we employ entropy-based causal intervention (EnIn) to refine the selection of causal variables. To identify samples with anti-interference causal variables from the target domain, we propose a novel metric, homeostatic score, through causal perturbation (HoPer) to construct a prototype classifier in test time. Experimental results across multiple cross-domain tasks confirm the efficacy of InPer.
comment: Accepted by BMVC2024
♻ ☆ A Personalized Zero-Shot ECG Arrhythmia Monitoring System: From Sparse Representation Based Domain Adaption to Energy Efficient Abnormal Beat Detection for Practical ECG Surveillance
This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors. Earlier supervised approaches for personalized ECG monitoring require both abnormal and normal heartbeats for the training of the dedicated classifier. However, in a real-world scenario where the personalized algorithm is embedded in a wearable device, such training data is not available for healthy people with no cardiac disorder history. In this study, (i) we propose a null space analysis on the healthy signal space obtained via sparse dictionary learning, and investigate how a simple null space projection or alternatively regularized least squares-based classification methods can reduce the computational complexity, without sacrificing the detection accuracy, when compared to sparse representation-based classification. (ii) Then we introduce a sparse representation-based domain adaptation technique in order to project other existing users' abnormal and normal signals onto the new user's signal space, enabling us to train the dedicated classifier without having any abnormal heartbeat of the new user. Therefore, zero-shot learning can be achieved without the need for synthetic abnormal heartbeat generation. An extensive set of experiments performed on the benchmark MIT-BIH ECG dataset shows that when this domain adaptation-based training data generator is used with a simple 1-D CNN classifier, the method outperforms the prior work by a significant margin. (iii) Then, by combining (i) and (ii), we propose an ensemble classifier that further improves the performance. This approach for zero-shot arrhythmia detection achieves an average accuracy level of 98.2% and an F1-Score of 92.8%. Finally, a personalized energy-efficient ECG monitoring scheme is proposed using the above-mentioned innovations.
comment: Software implementation: https://github.com/MertDuman/Zero-Shot-ECG
♻ ☆ U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation
U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page:\url{https://yes-u-kan.github.io/}.
♻ ☆ Object Re-identification via Spatial-temporal Fusion Networks and Causal Identity Matching
Object re-identification (ReID) in large camera networks faces numerous challenges. First, the similar appearances of objects degrade ReID performance, a challenge that needs to be addressed by existing appearance-based ReID methods. Second, most ReID studies are performed in laboratory settings and do not consider real-world scenarios. To overcome these challenges, we introduce a novel ReID framework that leverages a spatial-temporal fusion network and causal identity matching (CIM). Our framework estimates camera network topology using a proposed adaptive Parzen window and combines appearance features with spatial-temporal cues within the fusion network. This approach has demonstrated outstanding performance across several datasets, including VeRi776, Vehicle-3I, and Market-1501, achieving up to 99.70% rank-1 accuracy and 95.5% mAP. Furthermore, the proposed CIM approach, which dynamically assigns gallery sets based on camera network topology, has further improved ReID accuracy and robustness in real-world settings, evidenced by a 94.95% mAP and a 95.19% F1 score on the Vehicle-3I dataset. The experimental results support the effectiveness of incorporating spatial-temporal information and CIM for real-world ReID scenarios, regardless of the data domain (e.g., vehicle, person).
♻ ☆ FQGA-single: Towards Fewer Training Epochs and Fewer Model Parameters for Image-to-Image Translation Tasks
CycleGAN was trained on SynthRAD Grand Challenge Dataset using the single-epoch modification (SEM) method proposed in this paper which is referred to as (CycleGAN-single) compared to the usual method of training CycleGAN on around 200 epochs (CycleGAN-multi). Model performance were evaluated qualitatively and quantitatively with quantitative performance metrics like PSNR, SSIM, MAE and MSE. The consideration of both quantitative and qualitative performance when evaluating a model is unique to certain image-to-image translation tasks like medical imaging of patient data as detailed in this paper. Also, this paper shows that good quantitative performance does not always imply good qualitative performance and the converse is also not always True (i.e. good qualitative performance does not always imply good quantitative performance). This paper also proposes a lightweight model called FQGA (Fast Paired Image-to-Image Translation Quarter-Generator Adversary) which has 1/4 the number of parameters compared to CycleGAN (when comparing their Generator Models). FQGA outperforms CycleGAN qualitatively and quantitatively even only after training on 20 epochs. Finally, using SEM method on FQGA allowed it to again outperform CycleGAN both quantitatively and qualitatively. These performance gains even with fewer model parameters and fewer epochs (which will result in time and computational savings) may also be applicable to other image-to-image translation tasks in Machine Learning apart from the Medical image-translation task discussed in this paper between Cone Beam Computed Tomography (CBCT) and Computed Tomography (CT) images.
♻ ☆ High-resolution Population Maps Derived from Sentinel-1 and Sentinel-2
Detailed population maps play an important role in diverse fields ranging from humanitarian action to urban planning. Generating such maps in a timely and scalable manner presents a challenge, especially in data-scarce regions. To address it we have developed POPCORN, a population mapping method whose only inputs are free, globally available satellite images from Sentinel-1 and Sentinel-2; and a small number of aggregate population counts over coarse census districts for calibration. Despite the minimal data requirements our approach surpasses the mapping accuracy of existing schemes, including several that rely on building footprints derived from high-resolution imagery. E.g., we were able to produce population maps for Rwanda with 100m GSD based on less than 400 regional census counts. In Kigali, those maps reach an R^2 score of 66% w.r.t. a ground truth reference map, with an average error of only about 10 inhabitants/ha. Conveniently, POPCORN retrieves explicit maps of built-up areas and of local building occupancy rates, making the mapping process interpretable and offering additional insights, for instance about the distribution of built-up, but unpopulated areas, e.g., industrial warehouses. Moreover, we find that, once trained, the model can be applied repeatedly to track population changes; and that it can be transferred to geographically similar regions, e.g., from Uganda to Rwanda). With our work we aim to democratize access to up-to-date and high-resolution population maps, recognizing that some regions faced with particularly strong population dynamics may lack the resources for costly micro-census campaigns.
comment: Accepted to Remote Sensing of Environment 2024
DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark
Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at \url{https://github.com/chenhaoxing/DeMamba}.
♻ ☆ Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
♻ ☆ On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey
Zero-shot image recognition (ZSIR) aims at empowering models to recognize and reason in unseen domains via learning generalized knowledge from limited data in the seen domain. The gist for ZSIR is to execute element-wise representation and reasoning from the input visual space to the target semantic space, which is a bottom-up modeling paradigm inspired by the process by which humans observe the world, i.e., capturing new concepts by learning and combining the basic components or shared characteristics. In recent years, element-wise learning techniques have seen significant progress in ZSIR as well as widespread application. However, to the best of our knowledge, there remains a lack of a systematic overview of this topic. To enrich the literature and provide a sound basis for its future development, this paper presents a broad review of recent advances in element-wise ZSIR. Concretely, we first attempt to integrate the three basic ZSIR tasks of object recognition, compositional recognition, and foundation model-based open-world recognition into a unified element-wise perspective and provide a detailed taxonomy and analysis of the main research approaches. Then, we collect and summarize some key information and benchmarks, such as detailed technical implementations and common datasets. Finally, we sketch out the wide range of its related applications, discuss vital challenges, and suggest potential future directions.
comment: 23 pages, 7 figures, and 3 tables
♻ ☆ TsCA: On the Semantic Consistency Alignment via Conditional Transport for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to recognize novel \textit{state-object} compositions by leveraging the shared knowledge of their primitive components. Despite considerable progress, effectively calibrating the bias between semantically similar multimodal representations, as well as generalizing pre-trained knowledge to novel compositional contexts, remains an enduring challenge. In this paper, our interest is to revisit the conditional transport (CT) theory and its homology to the visual-semantics interaction in CZSL and further, propose a novel Trisets Consistency Alignment framework (dubbed TsCA) that well-addresses these issues. Concretely, we utilize three distinct yet semantically homologous sets, i.e., patches, primitives, and compositions, to construct pairwise CT costs to minimize their semantic discrepancies. To further ensure the consistency transfer within these sets, we implement a cycle-consistency constraint that refines the learning by guaranteeing the feature consistency of the self-mapping during transport flow, regardless of modality. Moreover, we extend the CT plans to an open-world setting, which enables the model to effectively filter out unfeasible pairs, thereby speeding up the inference as well as increasing the accuracy. Extensive experiments are conducted to verify the effectiveness of the proposed method.
comment: 12 pages, 8 figures
♻ ☆ MonoPatchNeRF: Improving Neural Radiance Fields with Patch-based Monocular Guidance
The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for large scale sparse view scenes, such as ETH3D. Density-based approaches tend to be under-constrained, while surface-based approaches tend to miss details. In this paper, we take a density-based approach, sampling patches instead of individual rays to better incorporate monocular depth and normal estimates and patch-based photometric consistency constraints between training views and sampled virtual views. Loosely constraining densities based on estimated depth aligned to sparse points further improves geometric accuracy. While maintaining similar view synthesis quality, our approach significantly improves geometric accuracy on the ETH3D benchmark, e.g. increasing the F1@2cm score by 4x-8x compared to other regularized density-based approaches, with much lower training and inference time than other approaches.
♻ ☆ RoadFormer+: Delivering RGB-X Scene Parsing through Scale-Aware Information Decoupling and Advanced Heterogeneous Feature Fusion
Task-specific data-fusion networks have marked considerable achievements in urban scene parsing. Among these networks, our recently proposed RoadFormer successfully extracts heterogeneous features from RGB images and surface normal maps and fuses these features through attention mechanisms, demonstrating compelling efficacy in RGB-Normal road scene parsing. However, its performance significantly deteriorates when handling other types/sources of data or performing more universal, all-category scene parsing tasks. To overcome these limitations, this study introduces RoadFormer+, an efficient, robust, and adaptable model capable of effectively fusing RGB-X data, where ``X'', represents additional types/modalities of data such as depth, thermal, surface normal, and polarization. Specifically, we propose a novel hybrid feature decoupling encoder to extract heterogeneous features and decouple them into global and local components. These decoupled features are then fused through a dual-branch multi-scale heterogeneous feature fusion block, which employs parallel Transformer attentions and convolutional neural network modules to merge multi-scale features across different scales and receptive fields. The fused features are subsequently fed into a decoder to generate the final semantic predictions. Notably, our proposed RoadFormer+ ranks first on the KITTI Road benchmark and achieves state-of-the-art performance in mean intersection over union on the Cityscapes, MFNet, FMB, and ZJU datasets. Moreover, it reduces the number of learnable parameters by 65\% compared to RoadFormer. Our source code will be publicly available at mias.group/RoadFormerPlus.
comment: 11 pages, 5 figures, accepted by Transactions on Intelligent Vehicles 2024
♻ ☆ Quater-GCN: Enhancing 3D Human Pose Estimation with Orientation and Semi-supervised Training
3D human pose estimation is a vital task in computer vision, involving the prediction of human joint positions from images or videos to reconstruct a skeleton of a human in three-dimensional space. This technology is pivotal in various fields, including animation, security, human-computer interaction, and automotive safety, where it promotes both technological progress and enhanced human well-being. The advent of deep learning significantly advances the performance of 3D pose estimation by incorporating temporal information for predicting the spatial positions of human joints. However, traditional methods often fall short as they primarily focus on the spatial coordinates of joints and overlook the orientation and rotation of the connecting bones, which are crucial for a comprehensive understanding of human pose in 3D space. To address these limitations, we introduce Quater-GCN (Q-GCN), a directed graph convolutional network tailored to enhance pose estimation by orientation. Q-GCN excels by not only capturing the spatial dependencies among node joints through their coordinates but also integrating the dynamic context of bone rotations in 2D space. This approach enables a more sophisticated representation of human poses by also regressing the orientation of each bone in 3D space, moving beyond mere coordinate prediction. Furthermore, we complement our model with a semi-supervised training strategy that leverages unlabeled data, addressing the challenge of limited orientation ground truth data. Through comprehensive evaluations, Q-GCN has demonstrated outstanding performance against current state-of-the-art methods.
comment: Accepted by ECAI24
♻ ☆ Addressing Diverging Training Costs using BEVRestore for High-resolution Bird's Eye View Map Construction
Recent advancements in Bird's Eye View (BEV) fusion for map construction have demonstrated remarkable mapping of urban environments. However, their deep and bulky architecture incurs substantial amounts of backpropagation memory and computing latency. Consequently, the problem poses an unavoidable bottleneck in constructing high-resolution (HR) BEV maps, as their large-sized features cause significant increases in costs including GPU memory consumption and computing latency, named diverging training costs issue. Affected by the problem, most existing methods adopt low-resolution (LR) BEV and struggle to estimate the precise locations of urban scene components like road lanes, and sidewalks. As the imprecision leads to risky motion planning like collision avoidance, the diverging training costs issue has to be resolved. In this paper, we address the issue with our novel BEVRestore mechanism. Specifically, our proposed model encodes the features of each sensor to LR BEV space and restores them to HR space to establish a memory-efficient map constructor. To this end, we introduce the BEV restoration strategy, which restores aliasing, and blocky artifacts of the up-scaled BEV features, and narrows down the width of the labels. Our extensive experiments show that the proposed mechanism provides a plug-and-play, memory-efficient pipeline, enabling an HR map construction with a broad BEV scope.
Local Conditional Controlling for Text-to-Image Diffusion Models
Diffusion models have exhibited impressive prowess in the text-to-image task. Recent methods add image-level structure controls, e.g., edge and depth maps, to manipulate the generation process together with text prompts to obtain desired images. This controlling process is globally operated on the entire image, which limits the flexibility of control regions. In this paper, we explore a novel and practical task setting: local control. It focuses on controlling specific local region according to user-defined image conditions, while the remaining regions are only conditioned by the original text prompt. However, it is non-trivial to achieve local conditional controlling. The naive manner of directly adding local conditions may lead to the local control dominance problem, which forces the model to focus on the controlled region and neglect object generation in other regions. To mitigate this problem, we propose Regional Discriminate Loss to update the noised latents, aiming at enhanced object generation in non-control regions. Furthermore, the proposed Focused Token Response suppresses weaker attention scores which lack the strongest response to enhance object distinction and reduce duplication. Lastly, we adopt Feature Mask Constraint to reduce quality degradation in images caused by information differences across the local control region. All proposed strategies are operated at the inference stage. Extensive experiments demonstrate that our method can synthesize high-quality images aligned with the text prompt under local control conditions.
♻ ☆ An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
Action recognition, an essential component of computer vision, plays a pivotal role in multiple applications. Despite significant improvements brought by Convolutional Neural Networks (CNNs), these models suffer performance declines when trained with discontinuous video frames, which is a frequent scenario in real-world settings. This decline primarily results from the loss of temporal continuity, which is crucial for understanding the semantics of human actions. To overcome this issue, we introduce the 4A (Action Animation-based Augmentation Approach) pipeline, which employs a series of sophisticated techniques: starting with 2D human pose estimation from RGB videos, followed by Quaternion-based Graph Convolution Network for joint orientation and trajectory prediction, and Dynamic Skeletal Interpolation for creating smoother, diversified actions using game engine technology. This innovative approach generates realistic animations in varied game environments, viewed from multiple viewpoints. In this way, our method effectively bridges the domain gap between virtual and real-world data. In experimental evaluations, the 4A pipeline achieves comparable or even superior performance to traditional training approaches using real-world data, while requiring only 10% of the original data volume. Additionally, our approach demonstrates enhanced performance on In-the-wild videos, marking a significant advancement in the field of action recognition.
comment: Accepted by ECAI24
♻ ☆ Flying with Photons: Rendering Novel Views of Propagating Light ECCV 2024
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
comment: ECCV 2024, Project page: https://anaghmalik.com/FlyingWithPhotons/
♻ ☆ EXAONEPath 1.0 Patch-level Foundation Model for Pathology
Recent advancements in digital pathology have led to the development of numerous foundational models that utilize self-supervised learning on patches extracted from gigapixel whole slide images (WSIs). While this approach leverages vast amounts of unlabeled data, we have discovered a significant issue: features extracted from these self-supervised models tend to cluster by individual WSIs, a phenomenon we term WSI-specific feature collapse. This problem can potentially limit the model's generalization ability and performance on various downstream tasks. To address this issue, we introduce EXAONEPath, a novel foundational model trained on patches that have undergone stain normalization. Stain normalization helps reduce color variability arising from different laboratories and scanners, enabling the model to learn more consistent features. EXAONEPath is trained using 285,153,903 patches extracted from a total of 34,795 WSIs. Our experiments demonstrate that EXAONEPath significantly mitigates the feature collapse problem, indicating that the model has learned more generalized features rather than overfitting to individual WSI characteristics. We compared EXAONEPath with state-of-the-art models across six downstream task datasets, and our results show that EXAONEPath achieves superior performance relative to the number of WSIs used and the model's parameter count. This suggests that the application of stain normalization has substantially improved the model's efficiency and generalization capabilities.
comment: License updated
♻ ☆ Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis
The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
comment: Github Page: https://github.com/Nihukat/Concept-Conductor
♻ ☆ Adversarial Examples in the Physical World: A Survey
Deep neural networks (DNNs) have demonstrated high vulnerability to adversarial examples, raising broad security concerns about their applications. Besides the attacks in the digital world, the practical implications of adversarial examples in the physical world present significant challenges and safety concerns. However, current research on physical adversarial examples (PAEs) lacks a comprehensive understanding of their unique characteristics, leading to limited significance and understanding. In this paper, we address this gap by thoroughly examining the characteristics of PAEs within a practical workflow encompassing training, manufacturing, and re-sampling processes. By analyzing the links between physical adversarial attacks, we identify manufacturing and re-sampling as the primary sources of distinct attributes and particularities in PAEs. Leveraging this knowledge, we develop a comprehensive analysis and classification framework for PAEs based on their specific characteristics, covering over 100 studies on physical-world adversarial examples. Furthermore, we investigate defense strategies against PAEs and identify open challenges and opportunities for future research. We aim to provide a fresh, thorough, and systematic understanding of PAEs, thereby promoting the development of robust adversarial learning and its application in open-world scenarios to provide the community with a continuously updated list of physical world adversarial sample resources, including papers, code, \etc, within the proposed framework
comment: Adversarial examples, physical-world scenarios, attacks and defenses
♻ ☆ MUC: Mixture of Uncalibrated Cameras for Robust 3D Human Body Reconstruction
Multiple cameras can provide comprehensive multi-view video coverage of a person. Fusing this multi-view data is crucial for tasks like behavioral analysis, although it traditionally requires camera calibration, a process that is often complex. Moreover, previous studies have overlooked the challenges posed by self-occlusion under multiple views and the continuity of human body shape estimation. In this study, we introduce a method to reconstruct the 3D human body from multiple uncalibrated camera views. Initially, we utilize a pre-trained human body encoder to process each camera view individually, enabling the reconstruction of human body models and parameters for each view along with predicted camera positions. Rather than merely averaging the models across views, we develop a neural network trained to assign weights to individual views for all human body joints, based on the estimated distribution of joint distances from each camera. Additionally, we focus on the mesh surface of the human body for dynamic fusion, allowing for the seamless integration of facial expressions and body shape into a unified human body model. Our method has shown excellent performance in reconstructing the human body on two public datasets, advancing beyond previous work from the SMPL model to the SMPL-X model. This extension incorporates more complex hand poses and facial expressions, enhancing the detail and accuracy of the reconstructions. Crucially, it supports the flexible ad-hoc deployment of any number of cameras, offering significant potential for various applications. Our code is available at https://github.com/AbsterZhu/MUC.
♻ ☆ Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer
With the rapid progress of generative models, the current challenge in face forgery detection is how to effectively detect realistic manipulated faces from different unseen domains. Though previous studies show that pre-trained Vision Transformer (ViT) based models can achieve some promising results after fully fine-tuning on the Deepfake dataset, their generalization performances are still unsatisfactory. One possible reason is that fully fine-tuned ViT-based models may disrupt the pre-trained features [1, 2] and overfit to some data-specific patterns [3]. To alleviate this issue, we present a \textbf{F}orgery-aware \textbf{A}daptive \textbf{Vi}sion \textbf{T}ransformer (FA-ViT) under the adaptive learning paradigm, where the parameters in the pre-trained ViT are kept fixed while the designed adaptive modules are optimized to capture forgery features. Specifically, a global adaptive module is designed to model long-range interactions among input tokens, which takes advantage of self-attention mechanism to mine global forgery clues. To further explore essential local forgery clues, a local adaptive module is proposed to expose local inconsistencies by enhancing the local contextual association. In addition, we introduce a fine-grained adaptive learning module that emphasizes the common compact representation of genuine faces through relationship learning in fine-grained pairs, driving these proposed adaptive modules to be aware of fine-grained forgery-aware information. Extensive experiments demonstrate that our FA-ViT achieves state-of-the-arts results in the cross-dataset evaluation, and enhances the robustness against unseen perturbations. Particularly, FA-ViT achieves 93.83\% and 78.32\% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation. The code and trained model have been released at: https://github.com/LoveSiameseCat/FAViT.
♻ ☆ A Scalable Quantum Non-local Neural Network for Image Classification
Non-local operations play a crucial role in computer vision enabling the capture of long-range dependencies through weighted sums of features across the input, surpassing the constraints of traditional convolution operations that focus solely on local neighborhoods. Non-local operations typically require computing pairwise relationships between all elements in a set, leading to quadratic complexity in terms of time and memory. Due to the high computational and memory demands, scaling non-local neural networks to large-scale problems can be challenging. This article introduces a hybrid quantum-classical scalable non-local neural network, referred to as Quantum Non-Local Neural Network (QNL-Net), to enhance pattern recognition. The proposed QNL-Net relies on inherent quantum parallelism to allow the simultaneous processing of a large number of input features enabling more efficient computations in quantum-enhanced feature space and involving pairwise relationships through quantum entanglement. We benchmark our proposed QNL-Net with other quantum counterparts to binary classification with datasets MNIST and CIFAR-10. The simulation findings showcase our QNL-Net achieves cutting-edge accuracy levels in binary image classification among quantum classifiers while utilizing fewer qubits.
comment: preprint, 12 pages (including references and appendix), 5 figures
♻ ☆ MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving professional molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e., SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX. In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. Moreover, a handcrafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. Then, to establish an alignment between MolX and the LLM's textual input space, the whole model in which the LLM is frozen, is pre-trained with a versatile strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across 4 downstream molecule-related tasks ranging from molecule-to-text translation to retrosynthesis, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters 0.53% and 0.82%, respectively.
♻ ☆ DGMamba: Domain Generalization via Generalized State Space Model ACM MM 2024
Domain generalization~(DG) aims at solving distribution shift problems in various scenes. Existing approaches are based on Convolution Neural Networks (CNNs) or Vision Transformers (ViTs), which suffer from limited receptive fields or quadratic complexities issues. Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields. Despite this, it can hardly be applied to DG to address distribution shifts, due to the hidden state issues and inappropriate scan mechanisms. In this paper, we propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains and meanwhile has the advantages of global receptive fields, and efficient linear complexity. Our DGMamba compromises two core components: Hidden State Suppressing~(HSS) and Semantic-aware Patch refining~(SPR). In particular, HSS is introduced to mitigate the influence of hidden states associated with domain-specific features during output prediction. SPR strives to encourage the model to concentrate more on objects rather than context, consisting of two designs: Prior-Free Scanning~(PFS), and Domain Context Interchange~(DCI). Concretely, PFS aims to shuffle the non-semantic patches within images, creating more flexible and effective sequences from images, and DCI is designed to regularize Mamba with the combination of mismatched non-semantic and semantic information by fusing patches among domains. Extensive experiments on five commonly used DG benchmarks demonstrate that the proposed DGMamba achieves remarkably superior results to state-of-the-art models. The code will be made publicly available at https://github.com/longshaocong/DGMamba.
comment: Accepted to ACM MM 2024
♻ ☆ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
The recent surge in popularity of deep generative models for 3D objects has highlighted the need for more efficient training methods, particularly given the difficulties associated with training with conventional 3D representations, such as voxels or point clouds. Neural Radiance Fields (NeRFs), which provide the current benchmark in terms of quality for the generation of novel views of complex 3D scenes from a limited set of 2D images, represent a promising solution to this challenge. However, the training of these models requires the knowledge of the respective camera positions from which the images were viewed. In this paper, we overcome this limitation by introducing HyperNeRFGAN, a Generative Adversarial Network (GAN) architecture employing a hypernetwork paradigm to transform a Gaussian noise into the weights of a NeRF architecture that does not utilize viewing directions in its training phase. Consequently, as evidenced by the findings of our experimental study, the proposed model, despite its notable simplicity in comparison to existing state-of-the-art alternatives, demonstrates superior performance on a diverse range of image datasets where camera position estimation is challenging, particularly in the context of medical data.
♻ ☆ Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection
We propose Lighthouse, a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD). Although researchers proposed various MR-HD approaches, the research community holds two main issues. The first is a lack of comprehensive and reproducible experiments across various methods, datasets, and video-text features. This is because no unified training and evaluation codebase covers multiple settings. The second is user-unfriendly design. Because previous works use different libraries, researchers set up individual environments. In addition, most works release only the training codes, requiring users to implement the whole inference process of MR-HD. Lighthouse addresses these issues by implementing a unified reproducible codebase that includes six models, three features, and five datasets. In addition, it provides an inference API and web demo to make these methods easily accessible for researchers and developers. Our experiments demonstrate that Lighthouse generally reproduces the reported scores in the reference papers. The code is available at https://github.com/line/lighthouse.
comment: 6 pages; library tech report
♻ ☆ A Neurosymbolic Framework for Bias Correction in Convolutional Neural Networks
Recent efforts in interpreting Convolutional Neural Networks (CNNs) focus on translating the activation of CNN filters into a stratified Answer Set Program (ASP) rule-sets. The CNN filters are known to capture high-level image concepts, thus the predicates in the rule-set are mapped to the concept that their corresponding filter represents. Hence, the rule-set exemplifies the decision-making process of the CNN w.r.t the concepts that it learns for any image classification task. These rule-sets help understand the biases in CNNs, although correcting the biases remains a challenge. We introduce a neurosymbolic framework called NeSyBiCor for bias correction in a trained CNN. Given symbolic concepts, as ASP constraints, that the CNN is biased towards, we convert the concepts to their corresponding vector representations. Then, the CNN is retrained using our novel semantic similarity loss that pushes the filters away from (or towards) learning the desired/undesired concepts. The final ASP rule-set obtained after retraining, satisfies the constraints to a high degree, thus showing the revision in the knowledge of the CNN. We demonstrate that our NeSyBiCor framework successfully corrects the biases of CNNs trained with subsets of classes from the "Places" dataset while sacrificing minimal accuracy and improving interpretability.
♻ ☆ Arc2Face: A Foundation Model for ID-Consistent Human Faces ECCV 2024
This paper presents Arc2Face, an identity-conditioned face foundation model, which, given the ArcFace embedding of a person, can generate diverse photo-realistic images with an unparalleled degree of face similarity than existing models. Despite previous attempts to decode face recognition features into detailed images, we find that common high-resolution datasets (e.g. FFHQ) lack sufficient identities to reconstruct any subject. To that end, we meticulously upsample a significant portion of the WebFace42M database, the largest public dataset for face recognition (FR). Arc2Face builds upon a pretrained Stable Diffusion model, yet adapts it to the task of ID-to-face generation, conditioned solely on ID vectors. Deviating from recent works that combine ID with text embeddings for zero-shot personalization of text-to-image models, we emphasize on the compactness of FR features, which can fully capture the essence of the human face, as opposed to hand-crafted prompts. Crucially, text-augmented models struggle to decouple identity and text, usually necessitating some description of the given face to achieve satisfactory similarity. Arc2Face, however, only needs the discriminative features of ArcFace to guide the generation, offering a robust prior for a plethora of tasks where ID consistency is of paramount importance. As an example, we train a FR model on synthetic images from our model and achieve superior performance to existing synthetic datasets.
comment: ECCV 2024 (Oral), 29 pages, 20 figures. Project page: https://arc2face.github.io/
♻ ☆ Self-Supervised Multiple Instance Learning for Acute Myeloid Leukemia Classification
Automated disease diagnosis using medical image analysis relies on deep learning, often requiring large labeled datasets for supervised model training. Diseases like Acute Myeloid Leukemia (AML) pose challenges due to scarce and costly annotations on a single-cell level. Multiple Instance Learning (MIL) addresses weakly labeled scenarios but necessitates powerful encoders typically trained with labeled data. In this study, we explore Self-Supervised Learning (SSL) as a pre-training approach for MIL-based AML subtype classification from blood smears, removing the need for labeled data during encoder training. We investigate the three state-of-the-art SSL methods SimCLR, SwAV, and DINO, and compare their performance against supervised pre-training. Our findings show that SSL-pretrained encoders achieve comparable performance, showcasing the potential of SSL in MIL. This breakthrough offers a cost-effective and data-efficient solution, propelling the field of AI-based disease diagnosis.
♻ ☆ Diverse Part Synthesis for 3D Shape Creation
Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
♻ ☆ LaWa: Using Latent Space for In-Generation Image Watermarking ECCV 2024
With generative models producing high quality images that are indistinguishable from real ones, there is growing concern regarding the malicious usage of AI-generated images. Imperceptible image watermarking is one viable solution towards such concerns. Prior watermarking methods map the image to a latent space for adding the watermark. Moreover, Latent Diffusion Models (LDM) generate the image in the latent space of a pre-trained autoencoder. We argue that this latent space can be used to integrate watermarking into the generation process. To this end, we present LaWa, an in-generation image watermarking method designed for LDMs. By using coarse-to-fine watermark embedding modules, LaWa modifies the latent space of pre-trained autoencoders and achieves high robustness against a wide range of image transformations while preserving perceptual quality of the image. We show that LaWa can also be used as a general image watermarking method. Through extensive experiments, we demonstrate that LaWa outperforms previous works in perceptual quality, robustness against attacks, and computational complexity, while having very low false positive rate. Code is available here.
comment: Accepted to ECCV 2024
♻ ☆ etuner: A Redundancy-Aware Framework for Efficient Continual Learning Application on Edge Devices
Many emerging applications, such as robot-assisted eldercare and object recognition, generally employ deep learning neural networks (DNNs) and require the deployment of DNN models on edge devices. These applications naturally require i) handling streaming-in inference requests and ii) fine-tuning the deployed models to adapt to possible deployment scenario changes. Continual learning (CL) is widely adopted to satisfy these needs. CL is a popular deep learning paradigm that handles both continuous model fine-tuning and overtime inference requests. However, an inappropriate model fine-tuning scheme could involve significant redundancy and consume considerable time and energy, making it challenging to apply CL on edge devices. In this paper, we propose ETuner, an efficient edge continual learning framework that optimizes inference accuracy, fine-tuning execution time, and energy efficiency through both inter-tuning and intra-tuning optimizations. Experimental results show that, on average, ETuner reduces overall fine-tuning execution time by 64%, energy consumption by 56%, and improves average inference accuracy by 1.75% over the immediate model fine-tuning approach.
♻ ☆ DH-Bench: Probing Depth and Height Perception of Large Visual-Language Models
Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications. The code and datasets for our benchmarks will be available at \url{https://github.com/sacrcv/DH-Bench}.
♻ ☆ A Geometric Perspective on Diffusion Models
Recent years have witnessed significant progress in developing effective training and fast sampling techniques for diffusion models. A remarkable advancement is the use of stochastic differential equations (SDEs) and their marginal-preserving ordinary differential equations (ODEs) to describe data perturbation and generative modeling in a unified framework. In this paper, we carefully inspect the ODE-based sampling of a popular variance-exploding SDE and reveal several intriguing structures of its sampling dynamics. We discover that the data distribution and the noise distribution are smoothly connected with a quasi-linear sampling trajectory and another implicit denoising trajectory that even converges faster. Meanwhile, the denoising trajectory governs the curvature of the corresponding sampling trajectory and its finite differences yield various second-order samplers used in practice. Furthermore, we establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm, with which we can characterize the asymptotic behavior of diffusion models and identify the empirical score deviation. Code is available at \url{https://github.com/zju-pi/diff-sampler}.
comment: 38 pages
Artificial Intelligence 173
☆ ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction
Neural implicit reconstruction via volume rendering has demonstrated its effectiveness in recovering dense 3D surfaces. However, it is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics. To address this issue, previous methods typically employ geometric priors, which are often constrained by the performance of the prior models. In this paper, we propose ND-SDF, which learns a Normal Ddeflection field to represent the angular deviation between the scene normal and the prior normal. Unlike previous methods that uniformly apply geometric priors on all samples, introducing significant bias in accuracy, our proposed normal deflection field dynamically learns and adapts the utilization of samples based on their specific characteristics, thereby improving both the accuracy and effectiveness of the model. Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures. In addition, we introduce a novel ray sampling strategy based on the deflection angle to facilitate the unbiased rendering process, which significantly improves the quality and accuracy of intricate surfaces, especially on thin structures. Consistent improvements on various challenging datasets demonstrate the superiority of our method.
☆ Differentiable Logic Programming for Distant Supervision
We introduce a new method for integrating neural networks with logic programming in Neural-Symbolic AI (NeSy), aimed at learning with distant supervision, in which direct labels are unavailable. Unlike prior methods, our approach does not depend on symbolic solvers for reasoning about missing labels. Instead, it evaluates logical implications and constraints in a differentiable manner by embedding both neural network outputs and logic programs into matrices. This method facilitates more efficient learning under distant supervision. We evaluated our approach against existing methods while maintaining a constant volume of training data. The findings indicate that our method not only matches or exceeds the accuracy of other methods across various tasks but also speeds up the learning process. These results highlight the potential of our approach to enhance both accuracy and learning efficiency in NeSy applications.
comment: To be published in ECAI 2024
☆ xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations ECCV24
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
comment: Accepted by ECCV24 AI4VA
☆ Identifying the Best Arm in the Presence of Global Environment Shifts
This paper formulates a new Best-Arm Identification problem in the non-stationary stochastic bandits setting, where the means of all arms are shifted in the same way due to a global influence of the environment. The aim is to identify the unique best arm across environmental change given a fixed total budget. While this setting can be regarded as a special case of Adversarial Bandits or Corrupted Bandits, we demonstrate that existing solutions tailored to those settings do not fully utilise the nature of this global influence, and thus, do not work well in practice (despite their theoretical guarantees). To overcome this issue, in this paper we develop a novel selection policy that is consistent and robust in dealing with global environmental shifts. We then propose an allocation policy, LinLUCB, which exploits information about global shifts across all arms in each environment. Empirical tests depict a significant improvement in our policies against other existing methods.
comment: Extended version of the paper accepted at the 27th European Conference on Artificial Intelligence (ECAI 2024); Paper ID: M1125
☆ RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment
Large Language Models (LLMs) like GPT-4, MedPaLM-2, and Med-Gemini achieve performance competitively with human experts across various medical benchmarks. However, they still face challenges in making professional diagnoses akin to physicians, particularly in efficiently gathering patient information and reasoning the final diagnosis. To this end, we introduce the RuleAlign framework, designed to align LLMs with specific diagnostic rules. We develop a medical dialogue dataset comprising rule-based communications between patients and physicians and design an alignment learning approach through preference learning. Experimental results demonstrate the effectiveness of the proposed approach. We hope that our work can serve as an inspiration for exploring the potential of LLMs as AI physicians.
comment: Ongoing work
☆ A Percolation Model of Emergence: Analyzing Transformers Trained on a Formal Language
Increase in data, size, or compute can lead to sudden learning of specific capabilities by a neural network -- a phenomenon often called "emergence". Beyond scientific understanding, establishing the causal factors underlying such emergent capabilities is crucial to enable risk regulation frameworks for AI. In this work, we seek inspiration from study of emergent properties in other fields and propose a phenomenological definition for the concept in the context of neural networks. Our definition implicates the acquisition of specific structures underlying the data-generating process as a cause of sudden performance growth for specific, narrower tasks. We empirically investigate this definition by proposing an experimental system grounded in a context-sensitive formal language and find that Transformers trained to perform tasks on top of strings from this language indeed exhibit emergent capabilities. Specifically, we show that once the language's underlying grammar and context-sensitivity inducing structures are learned by the model, performance on narrower tasks suddenly begins to improve. We then analogize our network's learning dynamics with the process of percolation on a bipartite graph, establishing a formal phase transition model that predicts the shift in the point of emergence observed in experiment when changing the data structure. Overall, our experimental and theoretical frameworks yield a step towards better defining, characterizing, and predicting emergence in neural networks.
comment: Preprint
☆ Enhanced Parking Perception by Multi-Task Fisheye Cross-view Transformers
Current parking area perception algorithms primarily focus on detecting vacant slots within a limited range, relying on error-prone homographic projection for both labeling and inference. However, recent advancements in Advanced Driver Assistance System (ADAS) require interaction with end-users through comprehensive and intelligent Human-Machine Interfaces (HMIs). These interfaces should present a complete perception of the parking area going from distinguishing vacant slots' entry lines to the orientation of other parked vehicles. This paper introduces Multi-Task Fisheye Cross View Transformers (MT F-CVT), which leverages features from a four-camera fisheye Surround-view Camera System (SVCS) with multihead attentions to create a detailed Bird-Eye View (BEV) grid feature map. Features are processed by both a segmentation decoder and a Polygon-Yolo based object detection decoder for parking slots and vehicles. Trained on data labeled using LiDAR, MT F-CVT positions objects within a 25m x 25m real open-road scenes with an average error of only 20 cm. Our larger model achieves an F-1 score of 0.89. Moreover the smaller model operates at 16 fps on an Nvidia Jetson Orin embedded board, with similar detection results to the larger one. MT F-CVT demonstrates robust generalization capability across different vehicles and camera rig configurations. A demo video from an unseen vehicle and camera rig is available at: https://streamable.com/jjw54x.
comment: 26th Irish Machine Vision and Image Processing Conference, Data-Driven Autonomy Workshop (matching camera-ready version)
☆ MuMA-ToM: Multi-modal Multi-Agent Theory of Mind SC
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
comment: Project website: https://scai.cs.jhu.edu/projects/MuMA-ToM/ Code: https://github.com/SCAI-JHU/MuMA-ToM
☆ Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers ECCV 2024
To solve ever more complex problems, Deep Neural Networks are scaled to billions of parameters, leading to huge computational costs. An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of these often over-parameterized networks. Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion. We extend the current state by proposing to explicitly optimize hyperparameters of attribution methods for the task of pruning, and further include transformer-based networks in our analysis. Our approach yields higher model compression rates of large transformer- and convolutional architectures (VGG, ResNet, ViT) compared to previous works, while still attaining high performance on ImageNet classification tasks. Here, our experiments indicate that transformers have a higher degree of over-parameterization compared to convolutional neural networks. Code is available at $\href{https://github.com/erfanhatefi/Pruning-by-eXplaining-in-PyTorch}{\text{this https link}}$.
comment: Accepted as a workshop paper at ECCV 2024 31 pages (14 pages manuscript, 4 pages references, 13 pages appendix)
☆ ssProp: Energy-Efficient Training for Convolutional Neural Networks with Scheduled Sparse Back Propagation
Recently, deep learning has made remarkable strides, especially with generative modeling, such as large language models and probabilistic diffusion models. However, training these models often involves significant computational resources, requiring billions of petaFLOPs. This high resource consumption results in substantial energy usage and a large carbon footprint, raising critical environmental concerns. Back-propagation (BP) is a major source of computational expense during training deep learning models. To advance research on energy-efficient training and allow for sparse learning on any machine and device, we propose a general, energy-efficient convolution module that can be seamlessly integrated into any deep learning architecture. Specifically, we introduce channel-wise sparsity with additional gradient selection schedulers during backward based on the assumption that BP is often dense and inefficient, which can lead to over-fitting and high computational consumption. Our experiments demonstrate that our approach reduces 40\% computations while potentially improving model performance, validated on image classification and generation tasks. This reduction can lead to significant energy savings and a lower carbon footprint during the research and development phases of large-scale AI systems. Additionally, our method mitigates over-fitting in a manner distinct from Dropout, allowing it to be combined with Dropout to further enhance model performance and reduce computational resource usage. Extensive experiments validate that our method generalizes to a variety of datasets and tasks and is compatible with a wide range of deep learning architectures and modules. Code is publicly available at https://github.com/lujiazho/ssProp.
comment: Under review
☆ Data Quality Antipatterns for Software Analytics
Background: Data quality is vital in software analytics, particularly for machine learning (ML) applications like software defect prediction (SDP). Despite the widespread use of ML in software engineering, the effect of data quality antipatterns on these models remains underexplored. Objective: This study develops a taxonomy of ML-specific data quality antipatterns and assesses their impact on software analytics models' performance and interpretation. Methods: We identified eight types and 14 sub-types of ML-specific data quality antipatterns through a literature review. We conducted experiments to determine the prevalence of these antipatterns in SDP data (RQ1), assess how cleaning order affects model performance (RQ2), evaluate the impact of antipattern removal on performance (RQ3), and examine the consistency of interpretation from models built with different antipatterns (RQ4). Results: In our SDP case study, we identified nine antipatterns. Over 90% of these overlapped at both row and column levels, complicating cleaning prioritization and risking excessive data removal. The order of cleaning significantly impacts ML model performance, with neural networks being more resilient to cleaning order changes than simpler models like logistic regression. Antipatterns such as Tailed Distributions and Class Overlap show a statistically significant correlation with performance metrics when other antipatterns are cleaned. Models built with different antipatterns showed moderate consistency in interpretation results. Conclusion: The cleaning order of different antipatterns impacts ML model performance. Five antipatterns have a statistically significant correlation with model performance when others are cleaned. Additionally, model interpretation is moderately affected by different data quality antipatterns.
☆ Modeling Time-Variant Responses of Optical Compressors with Selective State Space Models
This paper presents a method for modeling optical dynamic range compressors using deep neural networks with Selective State Space models. The proposed approach surpasses previous methods based on recurrent layers by employing a Selective State Space block to encode the input audio. It features a refined technique integrating Feature-wise Linear Modulation and Gated Linear Units to adjust the network dynamically, conditioning the compression's attack and release phases according to external parameters. The proposed architecture is well-suited for low-latency and real-time applications, crucial in live audio processing. The method has been validated on the analog optical compressors TubeTech CL 1B and Teletronix LA-2A, which possess distinct characteristics. Evaluation is performed using quantitative metrics and subjective listening tests, comparing the proposed method with other state-of-the-art models. Results show that our black-box modeling methods outperform all others, achieving accurate emulation of the compression process for both seen and unseen settings during training. We further show a correlation between this accuracy and the sampling density of the control parameters in the dataset and identify settings with fast attack and slow release as the most challenging to emulate.
☆ Automatic Organ and Pan-cancer Segmentation in Abdomen CT: the FLARE 2023 Challenge MICCAI 2024
Organ and cancer segmentation in abdomen Computed Tomography (CT) scans is the prerequisite for precise cancer diagnosis and treatment. Most existing benchmarks and algorithms are tailored to specific cancer types, limiting their ability to provide comprehensive cancer analysis. This work presents the first international competition on abdominal organ and pan-cancer segmentation by providing a large-scale and diverse dataset, including 4650 CT scans with various cancer types from over 40 medical centers. The winning team established a new state-of-the-art with a deep learning-based cascaded framework, achieving average Dice Similarity Coefficient scores of 92.3% for organs and 64.9% for lesions on the hidden multi-national testing set. The dataset and code of top teams are publicly available, offering a benchmark platform to drive further innovations https://codalab.lisn.upsaclay.fr/competitions/12239.
comment: MICCAI 2024 FLARE Challenge Summary
☆ PCGRL+: Scaling, Control and Generalization in Reinforcement Learning Level Generators
Procedural Content Generation via Reinforcement Learning (PCGRL) has been introduced as a means by which controllable designer agents can be trained based only on a set of computable metrics acting as a proxy for the level's quality and key characteristics. While PCGRL offers a unique set of affordances for game designers, it is constrained by the compute-intensive process of training RL agents, and has so far been limited to generating relatively small levels. To address this issue of scale, we implement several PCGRL environments in Jax so that all aspects of learning and simulation happen in parallel on the GPU, resulting in faster environment simulation; removing the CPU-GPU transfer of information bottleneck during RL training; and ultimately resulting in significantly improved training speed. We replicate several key results from prior works in this new framework, letting models train for much longer than previously studied, and evaluating their behavior after 1 billion timesteps. Aiming for greater control for human designers, we introduce randomized level sizes and frozen "pinpoints" of pivotal game tiles as further ways of countering overfitting. To test the generalization ability of learned generators, we evaluate models on large, out-of-distribution map sizes, and find that partial observation sizes learn more robust design strategies.
comment: 8 pages, 7 figures, 6 tables. Published at IEEE Conference on Games, 2024
☆ Advanced atom-level representations for protein flexibility prediction utilizing graph neural networks
Protein dynamics play a crucial role in many biological processes and drug interactions. However, measuring, and simulating protein dynamics is challenging and time-consuming. While machine learning holds promise in deciphering the determinants of protein dynamics from structural information, most existing methods for protein representation learning operate at the residue level, ignoring the finer details of atomic interactions. In this work, we propose for the first time to use graph neural networks (GNNs) to learn protein representations at the atomic level and predict B-factors from protein 3D structures. The B-factor reflects the atomic displacement of atoms in proteins, and can serve as a surrogate for protein flexibility. We compared different GNN architectures to assess their performance. The Meta-GNN model achieves a correlation coefficient of 0.71 on a large and diverse test set of over 4k proteins (17M atoms) from the Protein Data Bank (PDB), outperforming previous methods by a large margin. Our work demonstrates the potential of representations learned by GNNs for protein flexibility prediction and other related tasks.
☆ The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design
Embedding models play a crucial role in Natural Language Processing (NLP) by creating text embeddings used in various tasks such as information retrieval and assessing semantic text similarity. This paper focuses on research related to embedding models in the Russian language. It introduces a new Russian-focused embedding model called ru-en-RoSBERTa and the ruMTEB benchmark, the Russian version extending the Massive Text Embedding Benchmark (MTEB). Our benchmark includes seven categories of tasks, such as semantic textual similarity, text classification, reranking, and retrieval. The research also assesses a representative set of Russian and multilingual models on the proposed benchmark. The findings indicate that the new model achieves results that are on par with state-of-the-art models in Russian. We release the model ru-en-RoSBERTa, and the ruMTEB framework comes with open-source code, integration into the original framework and a public leaderboard.
☆ MEDCO: Medical Education Copilots Based on A Multi-Agent Framework
Large language models (LLMs) have had a significant impact on diverse research domains, including medicine and healthcare. However, the potential of LLMs as copilots in medical education remains underexplored. Current AI-assisted educational tools are limited by their solitary learning approach and inability to simulate the multi-disciplinary and interactive nature of actual medical training. To address these limitations, we propose MEDCO (Medical EDucation COpilots), a novel multi-agent-based copilot system specially developed to emulate real-world medical training environments. MEDCO incorporates three primary agents: an agentic patient, an expert doctor, and a radiologist, facilitating a multi-modal and interactive learning environment. Our framework emphasizes the learning of proficient question-asking skills, multi-disciplinary collaboration, and peer discussions between students. Our experiments show that simulated virtual students who underwent training with MEDCO not only achieved substantial performance enhancements comparable to those of advanced models, but also demonstrated human-like learning behaviors and improvements, coupled with an increase in the number of learning samples. This work contributes to medical education by introducing a copilot that implements an interactive and collaborative learning approach. It also provides valuable insights into the effectiveness of AI-integrated training paradigms.
☆ GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but they have also been observed to magnify societal biases, particularly those related to gender. In response to this issue, several benchmarks have been proposed to assess gender bias in LLMs. However, these benchmarks often lack practical flexibility or inadvertently introduce biases. To address these shortcomings, we introduce GenderCARE, a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics for quantifying and mitigating gender bias in LLMs. To begin, we establish pioneering criteria for gender equality benchmarks, spanning dimensions such as inclusivity, diversity, explainability, objectivity, robustness, and realisticity. Guided by these criteria, we construct GenderPair, a novel pair-based benchmark designed to assess gender bias in LLMs comprehensively. Our benchmark provides standardized and realistic evaluations, including previously overlooked gender groups such as transgender and non-binary individuals. Furthermore, we develop effective debiasing techniques that incorporate counterfactual data augmentation and specialized fine-tuning strategies to reduce gender bias in LLMs without compromising their overall performance. Extensive experiments demonstrate a significant reduction in various gender bias benchmarks, with reductions peaking at over 90% and averaging above 35% across 17 different LLMs. Importantly, these reductions come with minimal variability in mainstream language tasks, remaining below 2%. By offering a realistic assessment and tailored reduction of gender biases, we hope that our GenderCARE can represent a significant step towards achieving fairness and equity in LLMs. More details are available at https://github.com/kstanghere/GenderCARE-ccs24.
☆ AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
comment: 23 pages, 6 figures, 6 supplementary figures
☆ Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation
Dataset Distillation (DD) aims to synthesize a small dataset capable of performing comparably to the original dataset. Despite the success of numerous DD methods, theoretical exploration of this area remains unaddressed. In this paper, we take an initial step towards understanding various matching-based DD methods from the perspective of sample difficulty. We begin by empirically examining sample difficulty, measured by gradient norm, and observe that different matching-based methods roughly correspond to specific difficulty tendencies. We then extend the neural scaling laws of data pruning to DD to theoretically explain these matching-based methods. Our findings suggest that prioritizing the synthesis of easier samples from the original dataset can enhance the quality of distilled datasets, especially in low IPC (image-per-class) settings. Based on our empirical observations and theoretical analysis, we introduce the Sample Difficulty Correction (SDC) approach, designed to predominantly generate easier samples to achieve higher dataset quality. Our SDC can be seamlessly integrated into existing methods as a plugin with minimal code adjustments. Experimental results demonstrate that adding SDC generates higher-quality distilled datasets across 7 distillation methods and 6 datasets.
☆ Predicting Solar Energy Generation with Machine Learning based on AQI and Weather Features
This paper addresses the pressing need for an accurate solar energy prediction model, which is crucial for efficient grid integration. We explore the influence of the Air Quality Index and weather features on solar energy generation, employing advanced Machine Learning and Deep Learning techniques. Our methodology uses time series modeling and makes novel use of power transform normalization and zero-inflated modeling. Various Machine Learning algorithms and Conv2D Long Short-Term Memory model based Deep Learning models are applied to these transformations for precise predictions. Results underscore the effectiveness of our approach, demonstrating enhanced prediction accuracy with Air Quality Index and weather features. We achieved a 0.9691 $R^2$ Score, 0.18 MAE, 0.10 RMSE with Conv2D Long Short-Term Memory model, showcasing the power transform technique's innovation in enhancing time series forecasting for solar energy generation. Such results help our research contribute valuable insights to the synergy between Air Quality Index, weather features, and Deep Learning techniques for solar energy prediction.
comment: 10 pages, 11 figures
☆ WCEbleedGen: A wireless capsule endoscopy dataset and its benchmarking for automatic bleeding classification, detection, and segmentation
Computer-based analysis of Wireless Capsule Endoscopy (WCE) is crucial. However, a medically annotated WCE dataset for training and evaluation of automatic classification, detection, and segmentation of bleeding and non-bleeding frames is currently lacking. The present work focused on development of a medically annotated WCE dataset called WCEbleedGen for automatic classification, detection, and segmentation of bleeding and non-bleeding frames. It comprises 2,618 WCE bleeding and non-bleeding frames which were collected from various internet resources and existing WCE datasets. A comprehensive benchmarking and evaluation of the developed dataset was done using nine classification-based, three detection-based, and three segmentation-based deep learning models. The dataset is of high-quality, is class-balanced and contains single and multiple bleeding sites. Overall, our standard benchmark results show that Visual Geometric Group (VGG) 19, You Only Look Once version 8 nano (YOLOv8n), and Link network (Linknet) performed best in automatic classification, detection, and segmentation-based evaluations, respectively. Automatic bleeding diagnosis is crucial for WCE video interpretations. This diverse dataset will aid in developing of real-time, multi-task learning-based innovative solutions for automatic bleeding diagnosis in WCE. The dataset and code are publicly available at https://zenodo.org/records/10156571 and https://github.com/misahub2023/Benchmarking-Codes-of-the-WCEBleedGen-dataset.
☆ Relaxed Rotational Equivariance via $G$-Biases in Vision
Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.
☆ A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures
We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
☆ Enhanced Infield Agriculture with Interpretable Machine Learning Approaches for Crop Classification
The increasing popularity of Artificial Intelligence in recent years has led to a surge in interest in image classification, especially in the agricultural sector. With the help of Computer Vision, Machine Learning, and Deep Learning, the sector has undergone a significant transformation, leading to the development of new techniques for crop classification in the field. Despite the extensive research on various image classification techniques, most have limitations such as low accuracy, limited use of data, and a lack of reporting model size and prediction. The most significant limitation of all is the need for model explainability. This research evaluates four different approaches for crop classification, namely traditional ML with handcrafted feature extraction methods like SIFT, ORB, and Color Histogram; Custom Designed CNN and established DL architecture like AlexNet; transfer learning on five models pre-trained using ImageNet such as EfficientNetV2, ResNet152V2, Xception, Inception-ResNetV2, MobileNetV3; and cutting-edge foundation models like YOLOv8 and DINOv2, a self-supervised Vision Transformer Model. All models performed well, but Xception outperformed all of them in terms of generalization, achieving 98% accuracy on the test data, with a model size of 80.03 MB and a prediction time of 0.0633 seconds. A key aspect of this research was the application of Explainable AI to provide the explainability of all the models. This journal presents the explainability of Xception model with LIME, SHAP, and GradCAM, ensuring transparency and trustworthiness in the models' predictions. This study highlights the importance of selecting the right model according to task-specific needs. It also underscores the important role of explainability in deploying AI in agriculture, providing insightful information to help enhance AI-driven crop management strategies.
☆ Multi-Knowledge Fusion Network for Time Series Representation Learning ICLR
Forecasting the behaviour of complex dynamical systems such as interconnected sensor networks characterized by high-dimensional multivariate time series(MTS) is of paramount importance for making informed decisions and planning for the future in a broad spectrum of applications. Graph forecasting networks(GFNs) are well-suited for forecasting MTS data that exhibit spatio-temporal dependencies. However, most prior works of GFN-based methods on MTS forecasting rely on domain-expertise to model the nonlinear dynamics of the system, but neglect the potential to leverage the inherent relational-structural dependencies among time series variables underlying MTS data. On the other hand, contemporary works attempt to infer the relational structure of the complex dependencies between the variables and simultaneously learn the nonlinear dynamics of the interconnected system but neglect the possibility of incorporating domain-specific prior knowledge to improve forecast accuracy. To this end, we propose a hybrid architecture that combines explicit prior knowledge with implicit knowledge of the relational structure within the MTS data. It jointly learns intra-series temporal dependencies and inter-series spatial dependencies by encoding time-conditioned structural spatio-temporal inductive biases to provide more accurate and reliable forecasts. It also models the time-varying uncertainty of the multi-horizon forecasts to support decision-making by providing estimates of prediction uncertainty. The proposed architecture has shown promising results on multiple benchmark datasets and outperforms state-of-the-art forecasting methods by a significant margin. We report and discuss the ablation studies to validate our forecasting architecture.
comment: Paper accepted at ML4IoT Workshop, International Conference on Learning Representations(ICLR) 2023
Dataset | Mindset = Explainable AI | Interpretable AI
We often use "explainable" Artificial Intelligence (XAI)" and "interpretable AI (IAI)" interchangeably when we apply various XAI tools for a given dataset to explain the reasons that underpin machine learning (ML) outputs. However, these notions can sometimes be confusing because interpretation often has a subjective connotation, while explanations lean towards objective facts. We argue that XAI is a subset of IAI. The concept of IAI is beyond the sphere of a dataset. It includes the domain of a mindset. At the core of this ambiguity is the duality of reasons, in which we can reason either outwards or inwards. When directed outwards, we want the reasons to make sense through the laws of nature. When turned inwards, we want the reasons to be happy, guided by the laws of the heart. While XAI and IAI share reason as the common notion for the goal of transparency, clarity, fairness, reliability, and accountability in the context of ethical AI and trustworthy AI (TAI), their differences lie in that XAI emphasizes the post-hoc analysis of a dataset, and IAI requires a priori mindset of abstraction. This hypothesis can be proved by empirical experiments based on an open dataset and harnessed by High-Performance Computing (HPC). The demarcation of XAI and IAI is indispensable because it would be impossible to determine regulatory policies for many AI applications, especially in healthcare, human resources, banking, and finance. We aim to clarify these notions and lay the foundation of XAI, IAI, EAI, and TAI for many practitioners and policymakers in future AI applications and research.
☆ 4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment
Protein structure prediction is pivotal for understanding the structure-function relationship of proteins, advancing biological research, and facilitating pharmaceutical development and experimental design. While deep learning methods and the expanded availability of experimental 3D protein structures have accelerated structure prediction, the dynamic nature of protein structures has received limited attention. This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures. Our approach is distinguished by the following components: (1) a unified diffusion model capable of generating dynamic protein structures, including both the backbone and side chains, utilizing atomic grouping and side-chain dihedral angle predictions; (2) a reference network that enhances structural consistency by integrating the latent embeddings of the initial 3D protein structures; and (3) a motion alignment module aimed at improving temporal structural coherence across multiple time steps. To our knowledge, this is the first diffusion-based model aimed at predicting protein trajectories across multiple time steps simultaneously. Validation on benchmark datasets demonstrates that our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps, effectively capturing both local flexibility in stable states and significant conformational changes.
☆ CODE: Confident Ordinary Differential Editing
Conditioning image generation facilitates seamless editing and the creation of photorealistic images. However, conditioning on noisy or Out-of-Distribution (OoD) images poses significant challenges, particularly in balancing fidelity to the input and realism of the output. We introduce Confident Ordinary Differential Editing (CODE), a novel approach for image synthesis that effectively handles OoD guidance images. Utilizing a diffusion model as a generative prior, CODE enhances images through score-based updates along the probability-flow Ordinary Differential Equation (ODE) trajectory. This method requires no task-specific training, no handcrafted modules, and no assumptions regarding the corruptions affecting the conditioning image. Our method is compatible with any diffusion model. Positioned at the intersection of conditional image generation and blind image restoration, CODE operates in a fully blind manner, relying solely on a pre-trained generative model. Our method introduces an alternative approach to blind restoration: instead of targeting a specific ground truth image based on assumptions about the underlying corruption, CODE aims to increase the likelihood of the input image while maintaining fidelity. This results in the most probable in-distribution image around the input. Our contributions are twofold. First, CODE introduces a novel editing method based on ODE, providing enhanced control, realism, and fidelity compared to its SDE-based counterpart. Second, we introduce a confidence interval-based clipping method, which improves CODE's effectiveness by allowing it to disregard certain pixels or information, thus enhancing the restoration process in a blind manner. Experimental results demonstrate CODE's effectiveness over existing methods, particularly in scenarios involving severe degradation or OoD inputs.
Dynamic PDB: A New Dataset and a SE(3) Model Extension by Integrating Dynamic Behaviors and Physical Properties in Protein Structures
Despite significant progress in static protein structure collection and prediction, the dynamic behavior of proteins, one of their most vital characteristics, has been largely overlooked in prior research. This oversight can be attributed to the limited availability, diversity, and heterogeneity of dynamic protein datasets. To address this gap, we propose to enhance existing prestigious static 3D protein structural databases, such as the Protein Data Bank (PDB), by integrating dynamic data and additional physical properties. Specifically, we introduce a large-scale dataset, Dynamic PDB, encompassing approximately 12.6K proteins, each subjected to all-atom molecular dynamics (MD) simulations lasting 1 microsecond to capture conformational changes. Furthermore, we provide a comprehensive suite of physical properties, including atomic velocities and forces, potential and kinetic energies of proteins, and the temperature of the simulation environment, recorded at 1 picosecond intervals throughout the simulations. For benchmarking purposes, we evaluate state-of-the-art methods on the proposed dataset for the task of trajectory prediction. To demonstrate the value of integrating richer physical properties in the study of protein dynamics and related model design, we base our approach on the SE(3) diffusion model and incorporate these physical properties into the trajectory prediction process. Preliminary results indicate that this straightforward extension of the SE(3) model yields improved accuracy, as measured by MAE and RMSD, when the proposed physical properties are taken into consideration.
☆ Multi-Source Knowledge-Based Hybrid Neural Framework for Time Series Representation Learning IJCAI-23
Accurately predicting the behavior of complex dynamical systems, characterized by high-dimensional multivariate time series(MTS) in interconnected sensor networks, is crucial for informed decision-making in various applications to minimize risk. While graph forecasting networks(GFNs) are ideal for forecasting MTS data that exhibit spatio-temporal dependencies, prior works rely solely on the domain-specific knowledge of time-series variables inter-relationships to model the nonlinear dynamics, neglecting inherent relational structural dependencies among the variables within the MTS data. In contrast, contemporary works infer relational structures from MTS data but neglect domain-specific knowledge. The proposed hybrid architecture addresses these limitations by combining both domain-specific knowledge and implicit knowledge of the relational structure underlying the MTS data using Knowledge-Based Compositional Generalization. The hybrid architecture shows promising results on multiple benchmark datasets, outperforming state-of-the-art forecasting methods. Additionally, the architecture models the time varying uncertainty of multi-horizon forecasts.
comment: Paper is accepted at Knowledge-Based Compositional Generalization Workshop, International Joint Conferences on Artificial Intelligence(IJCAI-23)
☆ Multi-Style Facial Sketch Synthesis through Masked Generative Modeling
The facial sketch synthesis (FSS) model, capable of generating sketch portraits from given facial photographs, holds profound implications across multiple domains, encompassing cross-modal face recognition, entertainment, art, media, among others. However, the production of high-quality sketches remains a formidable task, primarily due to the challenges and flaws associated with three key factors: (1) the scarcity of artist-drawn data, (2) the constraints imposed by limited style types, and (3) the deficiencies of processing input information in existing models. To address these difficulties, we propose a lightweight end-to-end synthesis model that efficiently converts images to corresponding multi-stylized sketches, obviating the necessity for any supplementary inputs (\eg, 3D geometry). In this study, we overcome the issue of data insufficiency by incorporating semi-supervised learning into the training process. Additionally, we employ a feature extraction module and style embeddings to proficiently steer the generative transformer during the iterative prediction of masked image tokens, thus achieving a continuous stylized output that retains facial features accurately in sketches. The extensive experiments demonstrate that our method consistently outperforms previous algorithms across multiple benchmarks, exhibiting a discernible disparity.
☆ Cell-ontology guided transcriptome foundation model
Transcriptome foundation models TFMs hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present \textbf{s}ingle \textbf{c}ell, \textbf{Cell}-\textbf{o}ntology guided TFM scCello. We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses.
comment: All anonymous reviewers' constructive suggestions are appreciated. The next version will be updated soon
☆ RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering
With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
comment: 13 pages, 4 figures
☆ SAM-SP: Self-Prompting Makes SAM Great Again
The recently introduced Segment Anything Model (SAM), a Visual Foundation Model (VFM), has demonstrated impressive capabilities in zero-shot segmentation tasks across diverse natural image datasets. Despite its success, SAM encounters noticeably performance degradation when applied to specific domains, such as medical images. Current efforts to address this issue have involved fine-tuning strategies, intended to bolster the generalizability of the vanilla SAM. However, these approaches still predominantly necessitate the utilization of domain specific expert-level prompts during the evaluation phase, which severely constrains the model's practicality. To overcome this limitation, we introduce a novel self-prompting based fine-tuning approach, called SAM-SP, tailored for extending the vanilla SAM model. Specifically, SAM-SP leverages the output from the previous iteration of the model itself as prompts to guide subsequent iteration of the model. This self-prompting module endeavors to learn how to generate useful prompts autonomously and alleviates the dependence on expert prompts during the evaluation phase, significantly broadening SAM's applicability. Additionally, we integrate a self-distillation module to enhance the self-prompting process further. Extensive experiments across various domain specific datasets validate the effectiveness of the proposed SAM-SP. Our SAM-SP not only alleviates the reliance on expert prompts but also exhibits superior segmentation performance comparing to the state-of-the-art task-specific segmentation approaches, the vanilla SAM, and SAM-based approaches.
comment: Under Review
☆ Class-balanced Open-set Semi-supervised Object Detection for Medical Images
Medical image datasets in the real world are often unlabeled and imbalanced, and Semi-Supervised Object Detection (SSOD) can utilize unlabeled data to improve an object detector. However, existing approaches predominantly assumed that the unlabeled data and test data do not contain out-of-distribution (OOD) classes. The few open-set semi-supervised object detection methods have two weaknesses: first, the class imbalance is not considered; second, the OOD instances are distinguished and simply discarded during pseudo-labeling. In this paper, we consider the open-set semi-supervised object detection problem which leverages unlabeled data that contain OOD classes to improve object detection for medical images. Our study incorporates two key innovations: Category Control Embed (CCE) and out-of-distribution Detection Fusion Classifier (OODFC). CCE is designed to tackle dataset imbalance by constructing a Foreground information Library, while OODFC tackles open-set challenges by integrating the ``unknown'' information into basic pseudo-labels. Our method outperforms the state-of-the-art SSOD performance, achieving a 4.25 mAP improvement on the public Parasite dataset.
☆ Fine-tuning Smaller Language Models for Question Answering over Financial Documents
Recent research has shown that smaller language models can acquire substantial reasoning abilities when fine-tuned with reasoning exemplars crafted by a significantly larger teacher model. We explore this paradigm for the financial domain, focusing on the challenge of answering questions that require multi-hop numerical reasoning over financial texts. We assess the performance of several smaller models that have been fine-tuned to generate programs that encode the required financial reasoning and calculations. Our findings demonstrate that these fine-tuned smaller models approach the performance of the teacher model. To provide a granular analysis of model performance, we propose an approach to investigate the specific student model capabilities that are enhanced by fine-tuning. Our empirical analysis indicates that fine-tuning refines the student models ability to express and apply the required financial concepts along with adapting the entity extraction for the specific data format. In addition, we hypothesize and demonstrate that comparable financial reasoning capability can be induced using relatively smaller datasets.
☆ Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks compared to classical methods, mainly due to the limitations of the commonly used Message Passing GNNs (MPNNs). Notably, their ability to distinguish non-isomorphic graphs is limited by the 1-dimensional Weisfeiler-Lehman test. Our study presents a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis. We introduce a Learnable Lanczos algorithm with Linear Constraints (LLwLC), proposing two novel subgraph extraction strategies: encoding vertex-deleted subgraphs and applying Neumann eigenvalue constraints. For the former, we conjecture that LLwLC establishes a universal approximator, offering efficient time complexity. The latter focuses on link representations enabling differentiation between $k$-regular graphs and node automorphism, a vital aspect for link prediction tasks. Our approach results in an extremely lightweight architecture, reducing the need for extensive training datasets. Empirically, our method improves performance in challenging link prediction tasks across benchmark datasets, establishing its practical utility and supporting our theoretical findings. Notably, LLwLC achieves 20x and 10x speedup by only requiring 5% and 10% data from the PubMed and OGBL-Vessel datasets while comparing to the state-of-the-art.
Graph Retrieval Augmented Trustworthiness Reasoning
Trustworthiness reasoning is crucial in multiplayer games with incomplete information, enabling agents to identify potential allies and adversaries, thereby enhancing reasoning and decision-making processes. Traditional approaches relying on pre-trained models necessitate extensive domain-specific data and considerable reward feedback, with their lack of real-time adaptability hindering their effectiveness in dynamic environments. In this paper, we introduce the Graph Retrieval Augmented Reasoning (GRATR) framework, leveraging the Retrieval-Augmented Generation (RAG) technique to bolster trustworthiness reasoning in agents. GRATR constructs a dynamic trustworthiness graph, updating it in real-time with evidential information, and retrieves relevant trust data to augment the reasoning capabilities of Large Language Models (LLMs). We validate our approach through experiments on the multiplayer game "Werewolf," comparing GRATR against baseline LLM and LLM enhanced with Native RAG and Rerank RAG. Our results demonstrate that GRATR surpasses the baseline methods by over 30\% in winning rate, with superior reasoning performance. Moreover, GRATR effectively mitigates LLM hallucinations, such as identity and objective amnesia, and crucially, it renders the reasoning process more transparent and traceable through the use of the trustworthiness graph.
☆ Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks. Given the high costs of creating annotated datasets for supervised learning, LLMs offer a valuable alternative by enabling effective few-shot in-context learning. However, these models can produce hallucinations, particularly in domains with incomplete knowledge. Additionally, current methods for knowledge distillation using LLMs often struggle to enhance the effectiveness of both teacher and student models. To address these challenges, we introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models during knowledge distillation. DualChecker employs ContextAligner to ensure that the context provided by teacher models aligns with human labeling standards. It also features a dynamic checker system that enhances model interaction: one component re-prompts teacher models with more detailed content when they show low confidence, and another identifies borderline cases from student models to refine the teaching templates. This interactive process promotes continuous improvement and effective knowledge transfer between the models. We evaluate DualChecker using a green innovation textual dataset that includes binary, multiclass, and token classification tasks. The experimental results show that DualChecker significantly outperforms existing state-of-the-art methods, achieving up to a 17% improvement in F1 score for teacher models and 10% for student models. Notably, student models fine-tuned with LLM predictions perform comparably to those fine-tuned with actual data, even in a challenging domain. We make all datasets, models, and code from this research publicly available.
☆ PolyRouter: A Multi-LLM Querying System
With the rapid growth of Large Language Models (LLMs) across various domains, numerous new LLMs have emerged, each possessing domain-specific expertise. This proliferation has highlighted the need for quick, high-quality, and cost-effective LLM query response methods. Yet, no single LLM exists to efficiently balance this trilemma. Some models are powerful but extremely costly, while others are fast and inexpensive but qualitatively inferior. To address this challenge, we present PolyRouter, a non-monolithic LLM querying system that seamlessly integrates various LLM experts into a single query interface and dynamically routes incoming queries to the most high-performant expert based on query's requirements. Through extensive experiments, we demonstrate that when compared to standalone expert models, PolyRouter improves query efficiency by up to 40%, and leads to significant cost reductions of up to 30%, while maintaining or enhancing model performance by up to 10%.
comment: 14 pages, 7 figures, 2 tables
☆ Large Language Models Are Self-Taught Reasoners: Enhancing LLM Applications via Tailored Problem-Solving Demonstrations
Guiding large language models with a selected set of human-authored demonstrations is a common practice for improving LLM applications. However, human effort can be costly, especially in specialized domains (e.g., clinical diagnosis), and does not guarantee optimal performance due to the potential discrepancy of target skills between selected demonstrations and real test instances. Motivated by these, this paper explores the automatic creation of customized demonstrations, whose target skills align with the given target instance. We present SELF-TAUGHT, a problem-solving framework, which facilitates demonstrations that are "tailored" to the target problem and "filtered" for better quality (i.e., correctness) in a zero-shot manner. In 15 tasks of multiple-choice questions of diverse domains and the diagnosis of Alzheimer's disease (AD) with real-world patients, SELF-TAUGHT achieves superior performance to strong baselines (e.g., Few-shot CoT, Plan-and-Solve, Auto-CoT). We conduct comprehensive analyses on SELF-TAUGHT, including its generalizability to existing prompting methods and different LLMs, the quality of its intermediate generation, and more.
comment: preprint / under review
☆ Deep Learning with CNNs: A Compact Holistic Tutorial with Focus on Supervised Regression (Preprint)
In this tutorial, we present a compact and holistic discussion of Deep Learning with a focus on Convolutional Neural Networks (CNNs) and supervised regression. While there are numerous books and articles on the individual topics we cover, comprehensive and detailed tutorials that address Deep Learning from a foundational yet rigorous and accessible perspective are rare. Most resources on CNNs are either too advanced, focusing on cutting-edge architectures, or too narrow, addressing only specific applications like image classification.This tutorial not only summarizes the most relevant concepts but also provides an in-depth exploration of each, offering a complete yet agile set of ideas. Moreover, we highlight the powerful synergy between learning theory, statistic, and machine learning, which together underpin the Deep Learning and CNN frameworks. We aim for this tutorial to serve as an optimal resource for students, professors, and anyone interested in understanding the foundations of Deep Learning. Upon acceptance we will provide an accompanying repository under \href{https://github.com/neoglez/deep-learning-tutorial}{https://github.com/neoglez/deep-learning-tutorial} Keywords: Tutorial, Deep Learning, Convolutional Neural Networks, Machine Learning.
☆ Tipta uzmanlik sinavinda (tus) büyük dil modelleri insanlardan daha mi başarili?
The potential of artificial intelligence in medical education and assessment has been made evident by recent developments in natural language processing and artificial intelligence. Medical questions can now be successfully answered by artificial intelligence algorithms. It can help medical practitioners. This study evaluates the performance of three different artificial intelligence models in answering Turkish medical questions in the 2021 1st Term Medical Specialization Examination (MSE). MSE consists of a total of 240 questions across clinical (CMST) and basic (BMST) medical sciences. According to the results in CMST, it was concluded that Gemini correctly answered 82 questions, ChatGPT-4 answered 105 questions and ChatGPT-4o answered 117 questions. In BMST, Gemini and ChatGPT-4 answered 93 questions and ChatGPT-4o answered 107 questions correctly according to the answer key. ChatGPT-4o outperformed the candidate with the highest scores of 113 and 106 according to CMST and BMST respectively. This study highlights the importance of the potential of artificial intelligence in medical education and assessment. It demonstrates that advanced models can achieve high accuracy and contextual understanding, demonstrating their potential role in medical education and evaluation.
comment: 9 pages, in Turkish language, 8 figures
☆ OPTDTALS: Approximate Logic Synthesis via Optimal Decision Trees Approach
The growing interest in Explainable Artificial Intelligence (XAI) motivates promising studies of computing optimal Interpretable Machine Learning models, especially decision trees. Such models generally provide optimality in compact size or empirical accuracy. Recent works focus on improving efficiency due to the natural scalability issue. The application of such models to practical problems is quite limited. As an emerging problem in circuit design, Approximate Logic Synthesis (ALS) aims to reduce circuit complexity by sacrificing correctness. Recently, multiple heuristic machine learning methods have been applied in ALS, which learns approximated circuits from samples of input-output pairs. In this paper, we propose a new ALS methodology realizing the approximation via learning optimal decision trees in empirical accuracy. Compared to previous heuristic ALS methods, the guarantee of optimality achieves a more controllable trade-off between circuit complexity and accuracy. Experimental results show clear improvements in our methodology in the quality of approximated designs (circuit complexity and accuracy) compared to the state-of-the-art approaches.
☆ AT-SNN: Adaptive Tokens for Vision Transformer on Spiking Neural Network
In the training and inference of spiking neural networks (SNNs), direct training and lightweight computation methods have been orthogonally developed, aimed at reducing power consumption. However, only a limited number of approaches have applied these two mechanisms simultaneously and failed to fully leverage the advantages of SNN-based vision transformers (ViTs) since they were originally designed for convolutional neural networks (CNNs). In this paper, we propose AT-SNN designed to dynamically adjust the number of tokens processed during inference in SNN-based ViTs with direct training, wherein power consumption is proportional to the number of tokens. We first demonstrate the applicability of adaptive computation time (ACT), previously limited to RNNs and ViTs, to SNN-based ViTs, enhancing it to discard less informative spatial tokens selectively. Also, we propose a new token-merge mechanism that relies on the similarity of tokens, which further reduces the number of tokens while enhancing accuracy. We implement AT-SNN to Spikformer and show the effectiveness of AT-SNN in achieving high energy efficiency and accuracy compared to state-of-the-art approaches on the image classification tasks, CIFAR10, CIFAR-100, and TinyImageNet. For example, our approach uses up to 42.4% fewer tokens than the existing best-performing method on CIFAR-100, while conserving higher accuracy.
comment: 8 pages
☆ Towards Deconfounded Image-Text Matching with Causal Inference ACM MM
Prior image-text matching methods have shown remarkable performance on many benchmark datasets, but most of them overlook the bias in the dataset, which exists in intra-modal and inter-modal, and tend to learn the spurious correlations that extremely degrade the generalization ability of the model. Furthermore, these methods often incorporate biased external knowledge from large-scale datasets as prior knowledge into image-text matching model, which is inevitable to force model further learn biased associations. To address above limitations, this paper firstly utilizes Structural Causal Models (SCMs) to illustrate how intra- and inter-modal confounders damage the image-text matching. Then, we employ backdoor adjustment to propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task. DCIN (1) decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features, effectively eliminating the spurious correlations during image-text matching, and (2) uses causal inference to mitigate biases of external knowledge. Consequently, the model can learn causality instead of spurious correlations caused by dataset bias. Extensive experiments on two well-known benchmark datasets, i.e., Flickr30K and MSCOCO, demonstrate the superiority of our proposed method.
comment: ACM MM
☆ Developing vocal system impaired patient-aimed voice quality assessment approach using ASR representation-included multiple features
The potential of deep learning in clinical speech processing is immense, yet the hurdles of limited and imbalanced clinical data samples loom large. This article addresses these challenges by showcasing the utilization of automatic speech recognition and self-supervised learning representations, pre-trained on extensive datasets of normal speech. This innovative approach aims to estimate voice quality of patients with impaired vocal systems. Experiments involve checks on PVQD dataset, covering various causes of vocal system damage in English, and a Japanese dataset focusing on patients with Parkinson's disease before and after undergoing subthalamic nucleus deep brain stimulation (STN-DBS) surgery. The results on PVQD reveal a notable correlation (>0.8 on PCC) and an extraordinary accuracy (<0.5 on MSE) in predicting Grade, Breathy, and Asthenic indicators. Meanwhile, progress has been achieved in predicting the voice quality of patients in the context of STN-DBS.
comment: Accepted by Interspeech 2024
☆ Variance reduction of diffusion model's gradients with Taylor approximation-based control variate ICML
Score-based models, trained with denoising score matching, are remarkably effective in generating high dimensional data. However, the high variance of their training objective hinders optimisation. We attempt to reduce it with a control variate, derived via a $k$-th order Taylor expansion on the training objective and its gradient. We prove an equivalence between the two and demonstrate empirically the effectiveness of our approach on a low dimensional problem setting; and study its effect on larger problems.
comment: 14 pages, ICML Structured Probabilistic Inference & Generative Modeling 2024
☆ Toward the Evaluation of Large Language Models Considering Score Variance across Instruction Templates
The natural language understanding (NLU) performance of large language models (LLMs) has been evaluated across various tasks and datasets. The existing evaluation methods, however, do not take into account the variance in scores due to differences in prompts, which leads to unfair evaluation and comparison of NLU performance. Moreover, evaluation designed for specific prompts is inappropriate for instruction tuning, which aims to perform well with any prompt. It is therefore necessary to find a way to measure NLU performance in a fair manner, considering score variance between different instruction templates. In this study, we provide English and Japanese cross-lingual datasets for evaluating the NLU performance of LLMs, which include multiple instruction templates for fair evaluation of each task, along with regular expressions to constrain the output format. Furthermore, we propose the Sharpe score as an evaluation metric that takes into account the variance in scores between templates. Comprehensive analysis of English and Japanese LLMs reveals that the high variance among templates has a significant impact on the fair evaluation of LLMs.
comment: 19 pages, 7 figures
☆ Can You Trust Your Metric? Automatic Concatenation-Based Tests for Metric Validity
Consider a scenario where a harmfulness detection metric is employed by a system to filter unsafe responses generated by a Large Language Model. When analyzing individual harmful and unethical prompt-response pairs, the metric correctly classifies each pair as highly unsafe, assigning the highest score. However, when these same prompts and responses are concatenated, the metric's decision flips, assigning the lowest possible score, thereby misclassifying the content as safe and allowing it to bypass the filter. In this study, we discovered that several harmfulness LLM-based metrics, including GPT-based, exhibit this decision-flipping phenomenon. Additionally, we found that even an advanced metric like GPT-4o is highly sensitive to input order. Specifically, it tends to classify responses as safe if the safe content appears first, regardless of any harmful content that follows, and vice versa. This work introduces automatic concatenation-based tests to assess the fundamental properties a valid metric should satisfy. We applied these tests in a model safety scenario to assess the reliability of harmfulness detection metrics, uncovering a number of inconsistencies.
☆ A Language-agnostic Model of Child Language Acquisition
This work reimplements a recent semantic bootstrapping child-language acquisition model, which was originally designed for English, and trains it to learn a new language: Hebrew. The model learns from pairs of utterances and logical forms as meaning representations, and acquires both syntax and word meanings simultaneously. The results show that the model mostly transfers to Hebrew, but that a number of factors, including the richer morphology in Hebrew, makes the learning slower and less robust. This suggests that a clear direction for future work is to enable the model to leverage the similarities between different word forms.
☆ Can Artificial Intelligence Embody Moral Values?
The neutrality thesis holds that technology cannot be laden with values. This long-standing view has faced critiques, but much of the argumentation against neutrality has focused on traditional, non-smart technologies like bridges and razors. In contrast, AI is a smart technology increasingly used in high-stakes domains like healthcare, finance, and policing, where its decisions can cause moral harm. In this paper, we argue that artificial intelligence, particularly artificial agents that autonomously make decisions to pursue their goals, challenge the neutrality thesis. Our central claim is that the computational models underlying artificial agents can integrate representations of moral values such as fairness, honesty and avoiding harm. We provide a conceptual framework discussing the neutrality thesis, values, and AI. Moreover, we examine two approaches to designing computational models of morality, artificial conscience and ethical prompting, and present empirical evidence from text-based game environments that artificial agents with such models exhibit more ethical behavior compared to agents without these models. The findings support that AI can embody moral values, which contradicts the claim that all technologies are necessarily value-neutral.
☆ LLMs are not Zero-Shot Reasoners for Biomedical Information Extraction
Large Language Models (LLMs) are increasingly adopted for applications in healthcare, reaching the performance of domain experts on tasks such as question answering and document summarisation. Despite their success on these tasks, it is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain, such as structured information extration. To breach this gap, in this paper, we systematically benchmark LLM performance in Medical Classification and Named Entity Recognition (NER) tasks. We aim to disentangle the contribution of different factors to the performance, particularly the impact of LLMs' task knowledge and reasoning capabilities, their (parametric) domain knowledge, and addition of external knowledge. To this end we evaluate various open LLMs -- including BioMistral and Llama-2 models -- on a diverse set of biomedical datasets, using standard prompting, Chain-of-Thought (CoT) and Self-Consistency based reasoning as well as Retrieval-Augmented Generation (RAG) with PubMed and Wikipedia corpora. Counter-intuitively, our results reveal that standard prompting consistently outperforms more complex techniques across both tasks, laying bare the limitations in the current application of CoT, self-consistency and RAG in the biomedical domain. Our findings suggest that advanced prompting methods developed for knowledge- or reasoning-intensive tasks, such as CoT or RAG, are not easily portable to biomedical tasks where precise structured outputs are required. This highlights the need for more effective integration of external knowledge and reasoning mechanisms in LLMs to enhance their performance in real-world biomedical applications.
comment: 11 pages
☆ Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Web services
Large language models (LLMs) excel at general question-answering (Q&A) but often fall short in specialized domains due to a lack of domain-specific knowledge. Commercial companies face the dual challenges of privacy protection and resource constraints when involving LLMs for fine-tuning. This paper propose a novel framework, Self-Evolution, designed to address these issues by leveraging lightweight open-source LLMs through multiple iterative fine-tuning rounds. To enhance the efficiency of iterative fine-tuning, Self-Evolution employ a strategy that filters and reinforces the knowledge with higher value during the iterative process. We employed Self-Evolution on Qwen1.5-7B-Chat using 4,000 documents containing rich domain knowledge from China Mobile, achieving a performance score 174% higher on domain-specific question-answering evaluations than Qwen1.5-7B-Chat and even 22% higher than Qwen1.5-72B-Chat. Self-Evolution has been deployed in China Mobile's daily operation and maintenance for 117 days, and it improves the efficiency of locating alarms, fixing problems, and finding related reports, with an average efficiency improvement of over 18.6%. In addition, we release Self-Evolution framework code in https://github.com/Zero-Pointer/Self-Evolution.
☆ Weight Scope Alignment: A Frustratingly Easy Method for Model Merging
Merging models becomes a fundamental procedure in some applications that consider model efficiency and robustness. The training randomness or Non-I.I.D. data poses a huge challenge for averaging-based model fusion. Previous research efforts focus on element-wise regularization or neural permutations to enhance model averaging while overlooking weight scope variations among models, which can significantly affect merging effectiveness. In this paper, we reveal variations in weight scope under different training conditions, shedding light on its influence on model merging. Fortunately, the parameters in each layer basically follow the Gaussian distribution, which inspires a novel and simple regularization approach named Weight Scope Alignment (WSA). It contains two key components: 1) leveraging a target weight scope to guide the model training process for ensuring weight scope matching in the subsequent model merging. 2) fusing the weight scope of two or more models into a unified one for multi-stage model fusion. We extend the WSA regularization to two different scenarios, including Mode Connectivity and Federated Learning. Abundant experimental studies validate the effectiveness of our approach.
☆ MedDiT: A Knowledge-Controlled Diffusion Transformer Framework for Dynamic Medical Image Generation in Virtual Simulated Patient
Medical education relies heavily on Simulated Patients (SPs) to provide a safe environment for students to practice clinical skills, including medical image analysis. However, the high cost of recruiting qualified SPs and the lack of diverse medical imaging datasets have presented significant challenges. To address these issues, this paper introduces MedDiT, a novel knowledge-controlled conversational framework that can dynamically generate plausible medical images aligned with simulated patient symptoms, enabling diverse diagnostic skill training. Specifically, MedDiT integrates various patient Knowledge Graphs (KGs), which describe the attributes and symptoms of patients, to dynamically prompt Large Language Models' (LLMs) behavior and control the patient characteristics, mitigating hallucination during medical conversation. Additionally, a well-tuned Diffusion Transformer (DiT) model is incorporated to generate medical images according to the specified patient attributes in the KG. In this paper, we present the capabilities of MedDiT through a practical demonstration, showcasing its ability to act in diverse simulated patient cases and generate the corresponding medical images. This can provide an abundant and interactive learning experience for students, advancing medical education by offering an immersive simulation platform for future healthcare professionals. The work sheds light on the feasibility of incorporating advanced technologies like LLM, KG, and DiT in education applications, highlighting their potential to address the challenges faced in simulated patient-based medical education.
☆ EvalYaks: Instruction Tuning Datasets and LoRA Fine-tuned Models for Automated Scoring of CEFR B2 Speaking Assessment Transcripts
Relying on human experts to evaluate CEFR speaking assessments in an e-learning environment creates scalability challenges, as it limits how quickly and widely assessments can be conducted. We aim to automate the evaluation of CEFR B2 English speaking assessments in e-learning environments from conversation transcripts. First, we evaluate the capability of leading open source and commercial Large Language Models (LLMs) to score a candidate's performance across various criteria in the CEFR B2 speaking exam in both global and India-specific contexts. Next, we create a new expert-validated, CEFR-aligned synthetic conversational dataset with transcripts that are rated at different assessment scores. In addition, new instruction-tuned datasets are developed from the English Vocabulary Profile (up to CEFR B2 level) and the CEFR-SP WikiAuto datasets. Finally, using these new datasets, we perform parameter efficient instruction tuning of Mistral Instruct 7B v0.2 to develop a family of models called EvalYaks. Four models in this family are for assessing the four sections of the CEFR B2 speaking exam, one for identifying the CEFR level of vocabulary and generating level-specific vocabulary, and another for detecting the CEFR level of text and generating level-specific text. EvalYaks achieved an average acceptable accuracy of 96%, a degree of variation of 0.35 levels, and performed 3 times better than the next best model. This demonstrates that a 7B parameter LLM instruction tuned with high-quality CEFR-aligned assessment data can effectively evaluate and score CEFR B2 English speaking assessments, offering a promising solution for scalable, automated language proficiency evaluation.
☆ UNCO: Towards Unifying Neural Combinatorial Optimization through Large Language Model
Recently, applying neural networks to address combinatorial optimization problems (COPs) has attracted considerable research attention. The prevailing methods always train deep models independently on specific problems, lacking a unified framework for concurrently tackling various COPs. To this end, we propose a unified neural combinatorial optimization (UNCO) framework to solve different types of COPs by a single model. Specifically, we use natural language to formulate text-attributed instances for different COPs and encode them in the same embedding space by the large language model (LLM). The obtained embeddings are further advanced by an encoder-decoder model without any problem-specific modules, thereby facilitating a unified process of solution construction. We further adopt the conflict gradients erasing reinforcement learning (CGERL) algorithm to train the UNCO model, delivering better performance across different COPs than vanilla multi-objective learning. Experiments show that the UNCO model can solve multiple COPs after a single-session training, and achieves satisfactory performance that is comparable to several traditional or learning-based baselines. Instead of pursuing the best performance for each COP, we explore the synergy between tasks and few-shot generalization based on LLM to inspire future work.
☆ Relational decomposition for program synthesis
We introduce a novel approach to program synthesis that decomposes complex functional tasks into simpler relational synthesis sub-tasks. We demonstrate the effectiveness of our approach using an off-the-shelf inductive logic programming (ILP) system on three challenging datasets. Our results show that (i) a relational representation can outperform a functional one, and (ii) an off-the-shelf ILP system with a relational encoding can outperform domain-specific approaches.
☆ Two-level deep domain decomposition method
This study presents a two-level Deep Domain Decomposition Method (Deep-DDM) augmented with a coarse-level network for solving boundary value problems using physics-informed neural networks (PINNs). The addition of the coarse level network improves scalability and convergence rates compared to the single level method. Tested on a Poisson equation with Dirichlet boundary conditions, the two-level deep DDM demonstrates superior performance, maintaining efficient convergence regardless of the number of subdomains. This advance provides a more scalable and effective approach to solving complex partial differential equations with machine learning.
comment: Preprint proceeding format
☆ Reasoning Factual Knowledge in Structured Data with Large Language Models
Large language models (LLMs) have made remarkable progress in various natural language processing tasks as a benefit of their capability to comprehend and reason with factual knowledge. However, a significant amount of factual knowledge is stored in structured data, which possesses unique characteristics that differ from the unstructured texts used for pretraining. This difference can introduce imperceptible inference parameter deviations, posing challenges for LLMs in effectively utilizing and reasoning with structured data to accurately infer factual knowledge. To this end, we propose a benchmark named StructFact, to evaluate the structural reasoning capabilities of LLMs in inferring factual knowledge. StructFact comprises 8,340 factual questions encompassing various tasks, domains, timelines, and regions. This benchmark allows us to investigate the capability of LLMs across five factual tasks derived from the unique characteristics of structural facts. Extensive experiments on a set of LLMs with different training strategies reveal the limitations of current LLMs in inferring factual knowledge from structured data. We present this benchmark as a compass to navigate the strengths and weaknesses of LLMs in reasoning with structured data for knowledge-sensitive tasks, and to encourage advancements in related real-world applications. Please find our code at https://github.com/EganGu/StructFact.
☆ A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems
Autonomous vehicles with a self-evolving ability are expected to cope with unknown scenarios in the real-world environment. Take advantage of trial and error mechanism, reinforcement learning is able to self evolve by learning the optimal policy, and it is particularly well suitable for solving decision-making problems. However, reinforcement learning suffers from safety issues and low learning efficiency, especially in the continuous action space. Therefore, the motivation of this paper is to address the above problem by proposing a hybrid Mechanism-Experience-Learning augmented approach. Specifically, to realize the efficient self-evolution, the driving tendency by analogy with human driving experience is proposed to reduce the search space of the autonomous driving problem, while the constrained optimization problem based on a mechanistic model is designed to ensure safety during the self-evolving process. Experimental results show that the proposed method is capable of generating safe and reasonable actions in various complex scenarios, improving the performance of the autonomous driving system. Compared to conventional reinforcement learning, the safety and efficiency of the proposed algorithm are greatly improved. The training process is collision-free, and the training time is equivalent to less than 10 minutes in the real world.
☆ Rank and Align: Towards Effective Source-free Graph Domain Adaptation IJCAI2024
Graph neural networks (GNNs) have achieved impressive performance in graph domain adaptation. However, extensive source graphs could be unavailable in real-world scenarios due to privacy and storage concerns. To this end, we investigate an underexplored yet practical problem of source-free graph domain adaptation, which transfers knowledge from source models instead of source graphs to a target domain. To solve this problem, we introduce a novel GNN-based approach called Rank and Align (RNA), which ranks graph similarities with spectral seriation for robust semantics learning, and aligns inharmonic graphs with harmonic graphs which close to the source domain for subgraph extraction. In particular, to overcome label scarcity, we employ the spectral seriation algorithm to infer the robust pairwise rankings, which can guide semantic learning using a similarity learning objective. To depict distribution shifts, we utilize spectral clustering and the silhouette coefficient to detect harmonic graphs, which the source model can easily classify. To reduce potential domain discrepancy, we extract domain-invariant subgraphs from inharmonic graphs by an adversarial edge sampling process, which guides the invariant learning of GNNs. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our proposed RNA.
comment: Published in IJCAI2024
☆ Randomness control and reproducibility study of random forest algorithm in R and Python
When it comes to the safety of cosmetic products, compliance with regulatory standards is crucialto guarantee consumer protection against the risks of skin irritation. Toxicologists must thereforebe fully conversant with all risks. This applies not only to their day-to-day work, but also to allthe algorithms they integrate into their routines. Recognizing this, ensuring the reproducibility ofalgorithms becomes one of the most crucial aspects to address.However, how can we prove the robustness of an algorithm such as the random forest, that reliesheavily on randomness? In this report, we will discuss the strategy of integrating random forest intoocular tolerance assessment for toxicologists.We will compare four packages: randomForest and Ranger (R packages), adapted in Python via theSKRanger package, and the widely used Scikit-Learn with the RandomForestClassifier() function.Our goal is to investigate the parameters and sources of randomness affecting the outcomes ofRandom Forest algorithms.By setting comparable parameters and using the same Pseudo-Random Number Generator (PRNG),we expect to reproduce results consistently across the various available implementations of therandom forest algorithm. Nevertheless, this exploration will unveil hidden layers of randomness andguide our understanding of the critical parameters necessary to ensure reproducibility across all fourimplementations of the random forest algorithm.
☆ Search-Based LLMs for Code Optimization ICSE'25
The code written by developers usually suffers from efficiency problems and contain various performance bugs. These inefficiencies necessitate the research of automated refactoring methods for code optimization. Early research in code optimization employs rule-based methods and focuses on specific inefficiency issues, which are labor-intensive and suffer from the low coverage issue. Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs). These methods typically prompt LLMs to directly generate optimized code. Although these methods show state-of-the-art performance, such one-step generation paradigm is hard to achieve an optimal solution. First, complex optimization methods such as combinatorial ones are hard to be captured by LLMs. Second, the one-step generation paradigm poses challenge in precisely infusing the knowledge required for effective code optimization within LLMs, resulting in under-optimized code.To address these problems, we propose to model this task from the search perspective, and propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods. SBLLM synergistically integrate LLMs with evolutionary search and consists of three key components: 1) an execution-based representative sample selection part that evaluates the fitness of each existing optimized code and prioritizes promising ones to pilot the generation of improved code; 2) an adaptive optimization pattern retrieval part that infuses targeted optimization patterns into the model for guiding LLMs towards rectifying and progressively enhancing their optimization methods; and 3) a genetic operator-inspired chain-of-thought prompting part that aids LLMs in combining different optimization methods and generating improved optimization methods.
comment: Accepted by 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE'25)
☆ Implicit Sentiment Analysis Based on Chain of Thought Prompting
Implicit Sentiment Analysis (ISA) is a crucial research area in natural language processing. Inspired by the idea of large language model Chain of Thought (CoT), this paper introduces a Sentiment Analysis of Thinking (SAoT) framework. The framework first analyzes the implicit aspects and opinions in the text using common sense and thinking chain capabilities. Then, it reflects on the process of implicit sentiment analysis and finally deduces the polarity of sentiment. The model is evaluated on the SemEval 2014 dataset, consisting of 1120 restaurant reviews and 638 laptop reviews. The experimental results demonstrate that the utilization of the ERNIE-Bot-4+SAoT model yields a notable performance improvement. Specifically, on the restaurant dataset, the F1 score reaches 75.27, accompanied by an ISA score of 66.29. Similarly, on the computer dataset, the F1 score achieves 76.50, while the ISA score amounts to 73.46. Comparatively, the ERNIE-Bot-4+SAoT model surpasses the BERTAsp + SCAPt baseline by an average margin of 47.99%.
☆ A Tighter Complexity Analysis of SparseGPT
In this work, we improved the analysis of the running time of SparseGPT [Frantar, Alistarh ICML 2023] from $O(d^{3})$ to $O(d^{\omega} + d^{2+a+o(1)} + d^{1+\omega(1,1,a)-a})$ for any $a \in [0, 1]$, where $\omega$ is the exponent of matrix multiplication. In particular, for the current $\omega \approx 2.371$ [Alman, Duan, Williams, Xu, Xu, Zhou 2024], our running times boil down to $O(d^{2.53})$. This running time is due to the analysis of the lazy update behavior in iterative maintenance problems, such as [Deng, Song, Weinstein 2022, Brand, Song, Zhou ICML 2024].
☆ DeepHQ: Learned Hierarchical Quantizer for Progressive Deep Image Coding
Unlike fixed- or variable-rate image coding, progressive image coding (PIC) aims to compress various qualities of images into a single bitstream, increasing the versatility of bitstream utilization and providing high compression efficiency compared to simulcast compression. Research on neural network (NN)-based PIC is in its early stages, mainly focusing on applying varying quantization step sizes to the transformed latent representations in a hierarchical manner. These approaches are designed to compress only the progressively added information as the quality improves, considering that a wider quantization interval for lower-quality compression includes multiple narrower sub-intervals for higher-quality compression. However, the existing methods are based on handcrafted quantization hierarchies, resulting in sub-optimal compression efficiency. In this paper, we propose an NN-based progressive coding method that firstly utilizes learned quantization step sizes via learning for each quantization layer. We also incorporate selective compression with which only the essential representation components are compressed for each quantization layer. We demonstrate that our method achieves significantly higher coding efficiency than the existing approaches with decreased decoding time and reduced model size.
☆ Multi-tool Integration Application for Math Reasoning Using Large Language Model
Mathematical reasoning is an important research direction in the field of artificial intelligence. This article proposes a novel multi tool application framework for mathematical reasoning, aiming to achieve more comprehensive and accurate mathematical reasoning by utilizing the collaborative effect of large language models (LLMs) and multiple external tools. Firstly, use a Math Tool to perform basic mathematical calculations during the inference process through interaction with LLM. Secondly, Code Tool can generate code fragments that comply with syntax rules and execute them, providing support for complex mathematical problems. Then, through the iterative reasoning of the CoT Tool, the logical coherence and accuracy of mathematical reasoning are enhanced. Ultimately, by using self consistency tools to select the final answer based on different parameters, the consistency and reliability of reasoning are improved. Through the synergistic effect of these tools, the framework has achieved significant performance improvement in mathematical reasoning tasks. We conducted experiments on the NumGLUE Task 4 test set, which includes 220 mathematical reasoning fill in the blank questions. The experimental results showed that, based on Math Tool, Code Tool, and CoT Tool, in Task 4 task,our method achieved an accuracy of 89.09,compared with the GPT3+FewShot baseline, Few Shot+ERNIE-4.0+self consistency improved by 49.09%, and compared with fine-tuning the Fine tuning baseline, Few Shot+ERNIE-4.0+self consistency improved by 52.29%
☆ MDD-5k: A New Diagnostic Conversation Dataset for Mental Disorders Synthesized via Neuro-Symbolic LLM Agents
The clinical diagnosis of most mental disorders primarily relies on the conversations between psychiatrist and patient. The creation of such diagnostic conversation datasets is promising to boost the AI mental healthcare community. However, directly collecting the conversations in real diagnosis scenarios is near impossible due to stringent privacy and ethical considerations. To address this issue, we seek to synthesize diagnostic conversation by exploiting anonymous patient cases that are easier to access. Specifically, we design a neuro-symbolic multi-agent framework for synthesizing the diagnostic conversation of mental disorders with large language models. It takes patient case as input and is capable of generating multiple diverse conversations with one single patient case. The framework basically involves the interaction between a doctor agent and a patient agent, and achieves text generation under symbolic control via a dynamic diagnosis tree from a tool agent. By applying the proposed framework, we develop the largest Chinese mental disorders diagnosis dataset MDD-5k, which is built upon 1000 cleaned real patient cases by cooperating with a pioneering psychiatric hospital, and contains 5000 high-quality long conversations with diagnosis results as labels. To the best of our knowledge, it's also the first labelled Chinese mental disorders diagnosis dataset. Human evaluation demonstrates the proposed MDD-5k dataset successfully simulates human-like diagnostic process of mental disorders. The dataset and code will become publicly accessible in https://github.com/lemonsis/MDD-5k.
☆ DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
☆ Self-supervised Learning for Geospatial AI: A Survey
The proliferation of geospatial data in urban and territorial environments has significantly facilitated the development of geospatial artificial intelligence (GeoAI) across various urban applications. Given the vast yet inherently sparse labeled nature of geospatial data, there is a critical need for techniques that can effectively leverage such data without heavy reliance on labeled datasets. This requirement aligns with the principles of self-supervised learning (SSL), which has attracted increasing attention for its adoption in geospatial data. This paper conducts a comprehensive and up-to-date survey of SSL techniques applied to or developed for three primary data (geometric) types prevalent in geospatial vector data: points, polylines, and polygons. We systematically categorize various SSL techniques into predictive and contrastive methods, discussing their application with respect to each data type in enhancing generalization across various downstream tasks. Furthermore, we review the emerging trends of SSL for GeoAI, and several task-specific SSL techniques. Finally, we discuss several key challenges in the current research and outline promising directions for future investigation. By presenting a structured analysis of relevant studies, this paper aims to inspire continued advancements in the integration of SSL with GeoAI, encouraging innovative methods to harnessing the power of geospatial data.
☆ S-EPOA: Overcoming the Indivisibility of Annotations with Skill-Driven Preference-Based Reinforcement Learning AAAI 02025
Preference-based reinforcement learning (PbRL) stands out by utilizing human preferences as a direct reward signal, eliminating the need for intricate reward engineering. However, despite its potential, traditional PbRL methods are often constrained by the indivisibility of annotations, which impedes the learning process. In this paper, we introduce a groundbreaking approach, Skill-Enhanced Preference Optimization Algorithm~(S-EPOA), which addresses the annotation indivisibility issue by integrating skill mechanisms into the preference learning framework. Specifically, we first conduct the unsupervised pretraining to learn useful skills. Then, we propose a novel query selection mechanism to balance the information gain and discriminability over the learned skill space. Experimental results on a range of tasks, including robotic manipulation and locomotion, demonstrate that S-EPOA significantly outperforms conventional PbRL methods in terms of both robustness and learning efficiency. The results highlight the effectiveness of skill-driven learning in overcoming the challenges posed by annotation indivisibility.
comment: Submitted to AAAI 02025
☆ Deep Analysis of Time Series Data for Smart Grid Startup Strategies: A Transformer-LSTM-PSO Model Approach
Grid startup, an integral component of the power system, holds strategic importance for ensuring the reliability and efficiency of the electrical grid. However, current methodologies for in-depth analysis and precise prediction of grid startup scenarios are inadequate. To address these challenges, we propose a novel method based on the Transformer-LSTM-PSO model. This model uniquely combines the Transformer's self-attention mechanism, LSTM's temporal modeling capabilities, and the parameter tuning features of the particle swarm optimization algorithm. It is designed to more effectively capture the complex temporal relationships in grid startup schemes. Our experiments demonstrate significant improvements, with our model achieving lower RMSE and MAE values across multiple datasets compared to existing benchmarks, particularly in the NYISO Electric Market dataset where the RMSE was reduced by approximately 15% and the MAE by 20% compared to conventional models. Our main contribution is the development of a Transformer-LSTM-PSO model that significantly enhances the accuracy and efficiency of smart grid startup predictions. The application of the Transformer-LSTM-PSO model represents a significant advancement in smart grid predictive analytics, concurrently fostering the development of more reliable and intelligent grid management systems.
comment: 46 pages
☆ Diffusion-Based Visual Art Creation: A Survey and New Perspectives
The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
comment: 35 pages, 9 figures
☆ AutoTest: Evolutionary Code Solution Selection with Test Cases
With the development of code generation techniques, selecting the correct code solution from multiple candidate solutions has become a crucial task. This study proposes AutoTest, a novel technique that combines automated test case generation with code solution execution to optimize the selection process using an evolutionary genetic algorithm. Firstly, AutoTest utilizes large pre-trained language models such as codegen-16B, code-davinci-002, and incoder-6B to provide code solutions and their corresponding test cases. Then, by executing the code solutions and evaluating their performance on the test cases, a consensus set is formed. Fine-grained ranking is achieved through the selection, mutation, and crossover mechanisms based on the evolutionary genetic algorithm, with the adjustment of alpha and beta parameters. Finally, the best code solution is chosen. AutoTest demonstrates significant performance improvements on the HumanEval benchmark test. The HumanEval dataset consists of 164 programming problems, and AutoTest achieves approximately a 10% improvement over the baseline method in terms of pass@1 score.
☆ Emotion-Agent: Unsupervised Deep Reinforcement Learning with Distribution-Prototype Reward for Continuous Emotional EEG Analysis AAAI 2025
Continuous electroencephalography (EEG) signals are widely used in affective brain-computer interface (aBCI) applications. However, not all continuously collected EEG signals are relevant or meaningful to the task at hand (e.g., wondering thoughts). On the other hand, manually labeling the relevant parts is nearly impossible due to varying engagement patterns across different tasks and individuals. Therefore, effectively and efficiently identifying the important parts from continuous EEG recordings is crucial for downstream BCI tasks, as it directly impacts the accuracy and reliability of the results. In this paper, we propose a novel unsupervised deep reinforcement learning framework, called Emotion-Agent, to automatically identify relevant and informative emotional moments from continuous EEG signals. Specifically, Emotion-Agent involves unsupervised deep reinforcement learning combined with a heuristic algorithm. We first use the heuristic algorithm to perform an initial global search and form prototype representations of the EEG signals, which facilitates the efficient exploration of the signal space and identify potential regions of interest. Then, we design distribution-prototype reward functions to estimate the interactions between samples and prototypes, ensuring that the identified parts are both relevant and representative of the underlying emotional states. Emotion-Agent is trained using Proximal Policy Optimization (PPO) to achieve stable and efficient convergence. Our experiments compare the performance with and without Emotion-Agent. The results demonstrate that selecting relevant and informative emotional parts before inputting them into downstream tasks enhances the accuracy and reliability of aBCI applications.
comment: 11 pages, 4 figures, 4 tables, submitted to AAAI 2025
☆ Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective
Federated learning (FL) is an emerging collaborative learning paradigm that aims to protect data privacy. Unfortunately, recent works show FL algorithms are vulnerable to the serious data reconstruction attacks. However, existing works lack a theoretical foundation on to what extent the devices' data can be reconstructed and the effectiveness of these attacks cannot be compared fairly due to their unstable performance. To address this deficiency, we propose a theoretical framework to understand data reconstruction attacks to FL. Our framework involves bounding the data reconstruction error and an attack's error bound reflects its inherent attack effectiveness. Under the framework, we can theoretically compare the effectiveness of existing attacks. For instance, our results on multiple datasets validate that the iDLG attack inherently outperforms the DLG attack.
☆ Geolocation Representation from Large Language Models are Generic Enhancers for Spatio-Temporal Learning
In the geospatial domain, universal representation models are significantly less prevalent than their extensive use in natural language processing and computer vision. This discrepancy arises primarily from the high costs associated with the input of existing representation models, which often require street views and mobility data. To address this, we develop a novel, training-free method that leverages large language models (LLMs) and auxiliary map data from OpenStreetMap to derive geolocation representations (LLMGeovec). LLMGeovec can represent the geographic semantics of city, country, and global scales, which acts as a generic enhancer for spatio-temporal learning. Specifically, by direct feature concatenation, we introduce a simple yet effective paradigm for enhancing multiple spatio-temporal tasks including geographic prediction (GP), long-term time series forecasting (LTSF), and graph-based spatio-temporal forecasting (GSTF). LLMGeovec can seamlessly integrate into a wide spectrum of spatio-temporal learning models, providing immediate enhancements. Experimental results demonstrate that LLMGeovec achieves global coverage and significantly boosts the performance of leading GP, LTSF, and GSTF models.
☆ Risk Analysis in Customer Relationship Management via Quantile Region Convolutional Neural Network-Long Short-Term Memory and Cross-Attention Mechanism
Risk analysis is an important business decision support task in customer relationship management (CRM), involving the identification of potential risks or challenges that may affect customer satisfaction, retention rates, and overall business performance. To enhance risk analysis in CRM, this paper combines the advantages of quantile region convolutional neural network-long short-term memory (QRCNN-LSTM) and cross-attention mechanisms for modeling. The QRCNN-LSTM model combines sequence modeling with deep learning architectures commonly used in natural language processing tasks, enabling the capture of both local and global dependencies in sequence data. The cross-attention mechanism enhances interactions between different input data parts, allowing the model to focus on specific areas or features relevant to CRM risk analysis. By applying QRCNN-LSTM and cross-attention mechanisms to CRM risk analysis, empirical evidence demonstrates that this approach can effectively identify potential risks and provide data-driven support for business decisions.
comment: 44 pages
☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
☆ Extraction of Research Objectives, Machine Learning Model Names, and Dataset Names from Academic Papers and Analysis of Their Interrelationships Using LLM and Network Analysis
Machine learning is widely utilized across various industries. Identifying the appropriate machine learning models and datasets for specific tasks is crucial for the effective industrial application of machine learning. However, this requires expertise in both machine learning and the relevant domain, leading to a high learning cost. Therefore, research focused on extracting combinations of tasks, machine learning models, and datasets from academic papers is critically important, as it can facilitate the automatic recommendation of suitable methods. Conventional information extraction methods from academic papers have been limited to identifying machine learning models and other entities as named entities. To address this issue, this study proposes a methodology extracting tasks, machine learning methods, and dataset names from scientific papers and analyzing the relationships between these information by using LLM, embedding model, and network clustering. The proposed method's expression extraction performance, when using Llama3, achieves an F-score exceeding 0.8 across various categories, confirming its practical utility. Benchmarking results on financial domain papers have demonstrated the effectiveness of this method, providing insights into the use of the latest datasets, including those related to ESG (Environmental, Social, and Governance) data.
comment: 10 pages, 8 figures
☆ uMedSum: A Unified Framework for Advancing Medical Abstractive Summarization
Medical abstractive summarization faces the challenge of balancing faithfulness and informativeness. Current methods often sacrifice key information for faithfulness or introduce confabulations when prioritizing informativeness. While recent advancements in techniques like in-context learning (ICL) and fine-tuning have improved medical summarization, they often overlook crucial aspects such as faithfulness and informativeness without considering advanced methods like model reasoning and self-improvement. Moreover, the field lacks a unified benchmark, hindering systematic evaluation due to varied metrics and datasets. This paper addresses these gaps by presenting a comprehensive benchmark of six advanced abstractive summarization methods across three diverse datasets using five standardized metrics. Building on these findings, we propose uMedSum, a modular hybrid summarization framework that introduces novel approaches for sequential confabulation removal followed by key missing information addition, ensuring both faithfulness and informativeness. Our work improves upon previous GPT-4-based state-of-the-art (SOTA) medical summarization methods, significantly outperforming them in both quantitative metrics and qualitative domain expert evaluations. Notably, we achieve an average relative performance improvement of 11.8% in reference-free metrics over the previous SOTA. Doctors prefer uMedSum's summaries 6 times more than previous SOTA in difficult cases where there are chances of confabulations or missing information. These results highlight uMedSum's effectiveness and generalizability across various datasets and metrics, marking a significant advancement in medical summarization.
comment: 12 pages
☆ Unlocking Attributes' Contribution to Successful Camouflage: A Combined Textual and VisualAnalysis Strategy ECCV 2024
In the domain of Camouflaged Object Segmentation (COS), despite continuous improvements in segmentation performance, the underlying mechanisms of effective camouflage remain poorly understood, akin to a black box. To address this gap, we present the first comprehensive study to examine the impact of camouflage attributes on the effectiveness of camouflage patterns, offering a quantitative framework for the evaluation of camouflage designs. To support this analysis, we have compiled the first dataset comprising descriptions of camouflaged objects and their attribute contributions, termed COD-Text And X-attributions (COD-TAX). Moreover, drawing inspiration from the hierarchical process by which humans process information: from high-level textual descriptions of overarching scenarios, through mid-level summaries of local areas, to low-level pixel data for detailed analysis. We have developed a robust framework that combines textual and visual information for the task of COS, named Attribution CUe Modeling with Eye-fixation Network (ACUMEN). ACUMEN demonstrates superior performance, outperforming nine leading methods across three widely-used datasets. We conclude by highlighting key insights derived from the attributes identified in our study. Code: https://github.com/lyu-yx/ACUMEN.
comment: Accepted by ECCV 2024
☆ Exploring the Feasibility of Automated Data Standardization using Large Language Models for Seamless Positioning
We propose a feasibility study for real-time automated data standardization leveraging Large Language Models (LLMs) to enhance seamless positioning systems in IoT environments. By integrating and standardizing heterogeneous sensor data from smartphones, IoT devices, and dedicated systems such as Ultra-Wideband (UWB), our study ensures data compatibility and improves positioning accuracy using the Extended Kalman Filter (EKF). The core components include the Intelligent Data Standardization Module (IDSM), which employs a fine-tuned LLM to convert varied sensor data into a standardized format, and the Transformation Rule Generation Module (TRGM), which automates the creation of transformation rules and scripts for ongoing data standardization. Evaluated in real-time environments, our study demonstrates adaptability and scalability, enhancing operational efficiency and accuracy in seamless navigation. This study underscores the potential of advanced LLMs in overcoming sensor data integration complexities, paving the way for more scalable and precise IoT navigation solutions.
comment: Accepted at IPIN 2024. To be published in IEEE Xplore
☆ High-Quality Data Augmentation for Low-Resource NMT: Combining a Translation Memory, a GAN Generator, and Filtering
Back translation, as a technique for extending a dataset, is widely used by researchers in low-resource language translation tasks. It typically translates from the target to the source language to ensure high-quality translation results. This paper proposes a novel way of utilizing a monolingual corpus on the source side to assist Neural Machine Translation (NMT) in low-resource settings. We realize this concept by employing a Generative Adversarial Network (GAN), which augments the training data for the discriminator while mitigating the interference of low-quality synthetic monolingual translations with the generator. Additionally, this paper integrates Translation Memory (TM) with NMT, increasing the amount of data available to the generator. Moreover, we propose a novel procedure to filter the synthetic sentence pairs during the augmentation process, ensuring the high quality of the data.
☆ ConflictBank: A Benchmark for Evaluating the Influence of Knowledge Conflicts in LLM
Large language models (LLMs) have achieved impressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. Only a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge. However, a thorough assessment of knowledge conflict in LLMs is still missing. Motivated by this research gap, we present ConflictBank, the first comprehensive benchmark developed to systematically evaluate knowledge conflicts from three aspects: (i) conflicts encountered in retrieved knowledge, (ii) conflicts within the models' encoded knowledge, and (iii) the interplay between these conflict forms. Our investigation delves into four model families and twelve LLM instances, meticulously analyzing conflicts stemming from misinformation, temporal discrepancies, and semantic divergences. Based on our proposed novel construction framework, we create 7,453,853 claim-evidence pairs and 553,117 QA pairs. We present numerous findings on model scale, conflict causes, and conflict types. We hope our ConflictBank benchmark will help the community better understand model behavior in conflicts and develop more reliable LLMs.
comment: Under Review
☆ Distributed Noncoherent Joint Transmission Based on Multi-Agent Reinforcement Learning for Dense Small Cell MISO Systems
We consider a dense small cell (DSC) network where multi-antenna small cell base stations (SBSs) transmit data to single-antenna users over a shared frequency band. To enhance capacity, a state-of-the-art technique known as noncoherent joint transmission (JT) is applied, enabling users to receive data from multiple coordinated SBSs. However, the sum rate maximization problem with noncoherent JT is inherently nonconvex and NP-hard. While existing optimization-based noncoherent JT algorithms can provide near-optimal performance, they require global channel state information (CSI) and multiple iterations, which makes them difficult to be implemeted in DSC networks.To overcome these challenges, we first prove that the optimal beamforming structure is the same for both the power minimization problem and the sum rate maximization problem, and then mathematically derive the optimal beamforming structure for both problems by solving the power minimization problem.The optimal beamforming structure can effectively reduces the variable dimensions.By exploiting the optimal beamforming structure, we propose a deep deterministic policy gradient-based distributed noncoherent JT scheme to maximize the system sum rate.In the proposed scheme, each SBS utilizes global information for training and uses local CSI to determine beamforming vectors. Simulation results demonstrate that the proposed scheme achieves comparable performance with considerably lower computational complexity and information overhead compared to centralized iterative optimization-based techniques, making it more attractive for practical deployment.
☆ Transformers As Approximations of Solomonoff Induction
Solomonoff Induction is an optimal-in-the-limit unbounded algorithm for sequence prediction, representing a Bayesian mixture of every computable probability distribution and performing close to optimally in predicting any computable sequence. Being an optimal form of computational sequence prediction, it seems plausible that it may be used as a model against which other methods of sequence prediction might be compared. We put forth and explore the hypothesis that Transformer models - the basis of Large Language Models - approximate Solomonoff Induction better than any other extant sequence prediction method. We explore evidence for and against this hypothesis, give alternate hypotheses that take this evidence into account, and outline next steps for modelling Transformers and other kinds of AI in this way.
A Deconfounding Approach to Climate Model Bias Correction
Global Climate Models (GCMs) are crucial for predicting future climate changes by simulating the Earth systems. However, GCM outputs exhibit systematic biases due to model uncertainties, parameterization simplifications, and inadequate representation of complex climate phenomena. Traditional bias correction methods, which rely on historical observation data and statistical techniques, often neglect unobserved confounders, leading to biased results. This paper proposes a novel bias correction approach to utilize both GCM and observational data to learn a factor model that captures multi-cause latent confounders. Inspired by recent advances in causality based time series deconfounding, our method first constructs a factor model to learn latent confounders from historical data and then applies them to enhance the bias correction process using advanced time series forecasting models. The experimental results demonstrate significant improvements in the accuracy of precipitation outputs. By addressing unobserved confounders, our approach offers a robust and theoretically grounded solution for climate model bias correction.
☆ Enhancing Sampling Protocol for Robust Point Cloud Classification
Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been recognized and utilized. However, real-world data often suffer from corrputions such as sensor noise, which violates the benignness assumption of point cloud in current protocols. Consequently, they are notably vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointDR, which comprises two components: 1) Downsampling for key point identification and 2) Resampling for flexible sample size. Furthermore, differentiated strategies are implemented for training and inference processes. Particularly, an isolation-rated weight considering local density is designed for the downsampling method, assisting it in performing random key points selection in the training phase and bypassing noise in the inference phase. A local-geometry-preserved upsampling is incorporated into resampling, facilitating it to maintain a stochastic sample size in the training stage and complete insufficient data in the inference. It is crucial to note that the proposed protocol is free of model architecture altering and extra learning, thus minimal efforts are demanded for its replacement of the existing one. Despite the simplicity, it substantially improves the robustness of point cloud learning, showcased by outperforming the state-of-the-art methods on multiple benchmarks of corrupted point cloud classification. The code will be available upon the paper's acceptance.
☆ Evidence-backed Fact Checking using RAG and Few-Shot In-Context Learning with LLMs
Given the widespread dissemination of misinformation on social media, implementing fact-checking mechanisms for online claims is essential. Manually verifying every claim is highly challenging, underscoring the need for an automated fact-checking system. This paper presents our system designed to address this issue. We utilize the Averitec dataset to assess the veracity of claims. In addition to veracity prediction, our system provides supporting evidence, which is extracted from the dataset. We develop a Retrieve and Generate (RAG) pipeline to extract relevant evidence sentences from a knowledge base, which are then inputted along with the claim into a large language model (LLM) for classification. We also evaluate the few-shot In-Context Learning (ICL) capabilities of multiple LLMs. Our system achieves an 'Averitec' score of 0.33, which is a 22% absolute improvement over the baseline. All code will be made available on All code will be made available on https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms.
☆ Enhancing LLM-Based Automated Program Repair with Design Rationales
Automatic Program Repair (APR) endeavors to autonomously rectify issues within specific projects, which generally encompasses three categories of tasks: bug resolution, new feature development, and feature enhancement. Despite extensive research proposing various methodologies, their efficacy in addressing real issues remains unsatisfactory. It's worth noting that, typically, engineers have design rationales (DR) on solution-planed solutions and a set of underlying reasons-before they start patching code. In open-source projects, these DRs are frequently captured in issue logs through project management tools like Jira. This raises a compelling question: How can we leverage DR scattered across the issue logs to efficiently enhance APR? To investigate this premise, we introduce DRCodePilot, an approach designed to augment GPT-4-Turbo's APR capabilities by incorporating DR into the prompt instruction. Furthermore, given GPT-4's constraints in fully grasping the broader project context and occasional shortcomings in generating precise identifiers, we have devised a feedback-based self-reflective framework, in which we prompt GPT-4 to reconsider and refine its outputs by referencing a provided patch and suggested identifiers. We have established a benchmark comprising 938 issue-patch pairs sourced from two open-source repositories hosted on GitHub and Jira. Our experimental results are impressive: DRCodePilot achieves a full-match ratio that is a remarkable 4.7x higher than when GPT-4 is utilized directly. Additionally, the CodeBLEU scores also exhibit promising enhancements. Moreover, our findings reveal that the standalone application of DR can yield promising increase in the full-match ratio across CodeLlama, GPT-3.5, and GPT-4 within our benchmark suite. We believe that our DRCodePilot initiative heralds a novel human-in-the-loop avenue for advancing the field of APR.
☆ When In-memory Computing Meets Spiking Neural Networks -- A Perspective on Device-Circuit-System-and-Algorithm Co-design
This review explores the intersection of bio-plausible artificial intelligence in the form of Spiking Neural Networks (SNNs) with the analog In-Memory Computing (IMC) domain, highlighting their collective potential for low-power edge computing environments. Through detailed investigation at the device, circuit, and system levels, we highlight the pivotal synergies between SNNs and IMC architectures. Additionally, we emphasize the critical need for comprehensive system-level analyses, considering the inter-dependencies between algorithms, devices, circuit & system parameters, crucial for optimal performance. An in-depth analysis leads to identification of key system-level bottlenecks arising from device limitations which can be addressed using SNN-specific algorithm-hardware co-design techniques. This review underscores the imperative for holistic device to system design space co-exploration, highlighting the critical aspects of hardware and algorithm research endeavors for low-power neuromorphic solutions.
comment: 19 Pages, 13 Figures
☆ Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models
Multimodal large language models (MLLMs) can simultaneously process visual, textual, and auditory data, capturing insights that complement human analysis. However, existing video question-answering (VidQA) benchmarks and datasets often exhibit a bias toward a single modality, despite the goal of requiring advanced reasoning skills that integrate diverse modalities to answer the queries. In this work, we introduce the modality importance score (MIS) to identify such bias. It is designed to assess which modality embeds the necessary information to answer the question. Additionally, we propose an innovative method using state-of-the-art MLLMs to estimate the modality importance, which can serve as a proxy for human judgments of modality perception. With this MIS, we demonstrate the presence of unimodal bias and the scarcity of genuinely multimodal questions in existing datasets. We further validate the modality importance score with multiple ablation studies to evaluate the performance of MLLMs on permuted feature sets. Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets. Our proposed MLLM-derived MIS can guide the curation of modality-balanced datasets that advance multimodal learning and enhance MLLMs' capabilities to understand and utilize synergistic relations across modalities.
☆ Visual Verity in AI-Generated Imagery: Computational Metrics and Human-Centric Analysis
The rapid advancements in AI technologies have revolutionized the production of graphical content across various sectors, including entertainment, advertising, and e-commerce. These developments have spurred the need for robust evaluation methods to assess the quality and realism of AI-generated images. To address this, we conducted three studies. First, we introduced and validated a questionnaire called Visual Verity, which measures photorealism, image quality, and text-image alignment. Second, we applied this questionnaire to assess images from AI models (DALL-E2, DALL-E3, GLIDE, Stable Diffusion) and camera-generated images, revealing that camera-generated images excelled in photorealism and text-image alignment, while AI models led in image quality. We also analyzed statistical properties, finding that camera-generated images scored lower in hue, saturation, and brightness. Third, we evaluated computational metrics' alignment with human judgments, identifying MS-SSIM and CLIP as the most consistent with human assessments. Additionally, we proposed the Neural Feature Similarity Score (NFSS) for assessing image quality. Our findings highlight the need for refining computational metrics to better capture human visual perception, thereby enhancing AI-generated content evaluation.
☆ SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection
Large language models (LLMs) are highly capable but face latency challenges in real-time applications, such as conducting online hallucination detection. To overcome this issue, we propose a novel framework that leverages a small language model (SLM) classifier for initial detection, followed by a LLM as constrained reasoner to generate detailed explanations for detected hallucinated content. This study optimizes the real-time interpretable hallucination detection by introducing effective prompting techniques that align LLM-generated explanations with SLM decisions. Empirical experiment results demonstrate its effectiveness, thereby enhancing the overall user experience.
comment: preprint under review
☆ TReX- Reusing Vision Transformer's Attention for Efficient Xbar-based Computing
Due to the high computation overhead of Vision Transformers (ViTs), In-memory Computing architectures are being researched towards energy-efficient deployment in edge-computing scenarios. Prior works have proposed efficient algorithm-hardware co-design and IMC-architectural improvements to improve the energy-efficiency of IMC-implemented ViTs. However, all prior works have neglected the overhead and co-depencence of attention blocks on the accuracy-energy-delay-area of IMC-implemented ViTs. To this end, we propose TReX- an attention-reuse-driven ViT optimization framework that effectively performs attention reuse in ViT models to achieve optimal accuracy-energy-delay-area tradeoffs. TReX optimally chooses the transformer encoders for attention reuse to achieve near iso-accuracy performance while meeting the user-specified delay requirement. Based on our analysis on the Imagenet-1k dataset, we find that TReX achieves 2.3x (2.19x) EDAP reduction and 1.86x (1.79x) TOPS/mm2 improvement with ~1% accuracy drop in case of DeiT-S (LV-ViT-S) ViT models. Additionally, TReX achieves high accuracy at high EDAP reduction compared to state-of-the-art token pruning and weight sharing approaches. On NLP tasks such as CoLA, TReX leads to 2% higher non-ideal accuracy compared to baseline at 1.6x lower EDAP.
comment: 12 pages
☆ Towards measuring fairness in speech recognition: Fair-Speech dataset
The current public datasets for speech recognition (ASR) tend not to focus specifically on the fairness aspect, such as performance across different demographic groups. This paper introduces a novel dataset, Fair-Speech, a publicly released corpus to help researchers evaluate their ASR models for accuracy across a diverse set of self-reported demographic information, such as age, gender, ethnicity, geographic variation and whether the participants consider themselves native English speakers. Our dataset includes approximately 26.5K utterances in recorded speech by 593 people in the United States, who were paid to record and submit audios of themselves saying voice commands. We also provide ASR baselines, including on models trained on transcribed and untranscribed social media videos and open source models.
☆ SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging
Text-to-SQL systems, which convert natural language queries into SQL commands, have seen significant progress primarily for the SQLite dialect. However, adapting these systems to other SQL dialects like BigQuery and PostgreSQL remains a challenge due to the diversity in SQL syntax and functions. We introduce SQL-GEN, a framework for generating high-quality dialect-specific synthetic data guided by dialect-specific tutorials, and demonstrate its effectiveness in creating training datasets for multiple dialects. Our approach significantly improves performance, by up to 20\%, over previous methods and reduces the gap with large-scale human-annotated datasets. Moreover, combining our synthetic data with human-annotated data provides additional performance boosts of 3.3\% to 5.6\%. We also introduce a novel Mixture of Experts (MoE) initialization method that integrates dialect-specific models into a unified system by merging self-attention layers and initializing the gates with dialect-specific keywords, further enhancing performance across different SQL dialects.
☆ BankTweak: Adversarial Attack against Multi-Object Trackers by Manipulating Feature Banks
Multi-object tracking (MOT) aims to construct moving trajectories for objects, and modern multi-object trackers mainly utilize the tracking-by-detection methodology. Initial approaches to MOT attacks primarily aimed to degrade the detection quality of the frames under attack, thereby reducing accuracy only in those specific frames, highlighting a lack of \textit{efficiency}. To improve efficiency, recent advancements manipulate object positions to cause persistent identity (ID) switches during the association phase, even after the attack ends within a few frames. However, these position-manipulating attacks have inherent limitations, as they can be easily counteracted by adjusting distance-related parameters in the association phase, revealing a lack of \textit{robustness}. In this paper, we present \textsf{BankTweak}, a novel adversarial attack designed for MOT trackers, which features efficiency and robustness. \textsf{BankTweak} focuses on the feature extractor in the association phase and reveals vulnerability in the Hungarian matching method used by feature-based MOT systems. Exploiting the vulnerability, \textsf{BankTweak} induces persistent ID switches (addressing \textit{efficiency}) even after the attack ends by strategically injecting altered features into the feature banks without modifying object positions (addressing \textit{robustness}). To demonstrate the applicability, we apply \textsf{BankTweak} to three multi-object trackers (DeepSORT, StrongSORT, and MOTDT) with one-stage, two-stage, anchor-free, and transformer detectors. Extensive experiments on the MOT17 and MOT20 datasets show that our method substantially surpasses existing attacks, exposing the vulnerability of the tracking-by-detection framework to \textsf{BankTweak}.
☆ Generating Realistic X-ray Scattering Images Using Stable Diffusion and Human-in-the-loop Annotations
We fine-tuned a foundational stable diffusion model using X-ray scattering images and their corresponding descriptions to generate new scientific images from given prompts. However, some of the generated images exhibit significant unrealistic artifacts, commonly known as "hallucinations". To address this issue, we trained various computer vision models on a dataset composed of 60% human-approved generated images and 40% experimental images to detect unrealistic images. The classified images were then reviewed and corrected by human experts, and subsequently used to further refine the classifiers in next rounds of training and inference. Our evaluations demonstrate the feasibility of generating high-fidelity, domain-specific images using a fine-tuned diffusion model. We anticipate that generative AI will play a crucial role in enhancing data augmentation and driving the development of digital twins in scientific research facilities.
☆ Learning Valid Dual Bounds in Constraint Programming: Boosted Lagrangian Decomposition with Self-Supervised Learning
Lagrangian decomposition (LD) is a relaxation method that provides a dual bound for constrained optimization problems by decomposing them into more manageable sub-problems. This bound can be used in branch-and-bound algorithms to prune the search space effectively. In brief, a vector of Lagrangian multipliers is associated with each sub-problem, and an iterative procedure (e.g., a sub-gradient optimization) adjusts these multipliers to find the tightest bound. Initially applied to integer programming, Lagrangian decomposition also had success in constraint programming due to its versatility and the fact that global constraints provide natural sub-problems. However, the non-linear and combinatorial nature of sub-problems in constraint programming makes it computationally intensive to optimize the Lagrangian multipliers with sub-gradient methods at each node of the tree search. This currently limits the practicality of LD as a general bounding mechanism for constraint programming. To address this challenge, we propose a self-supervised learning approach that leverages neural networks to generate multipliers directly, yielding tight bounds. This approach significantly reduces the number of sub-gradient optimization steps required, enhancing the pruning efficiency and reducing the execution time of constraint programming solvers. This contribution is one of the few that leverage learning to enhance bounding mechanisms on the dual side, a critical element in the design of combinatorial solvers. To our knowledge, this work presents the first generic method for learning valid dual bounds in constraint programming.
☆ Unlocking Intrinsic Fairness in Stable Diffusion
Recent text-to-image models like Stable Diffusion produce photo-realistic images but often show demographic biases. Previous debiasing methods focused on training-based approaches, failing to explore the root causes of bias and overlooking Stable Diffusion's potential for unbiased image generation. In this paper, we demonstrate that Stable Diffusion inherently possesses fairness, which can be unlocked to achieve debiased outputs. Through carefully designed experiments, we identify the excessive bonding between text prompts and the diffusion process as a key source of bias. To address this, we propose a novel approach that perturbs text conditions to unleash Stable Diffusion's intrinsic fairness. Our method effectively mitigates bias without additional tuning, while preserving image-text alignment and image quality.
comment: 21 pages, 20 figures; First two authors contributed equally
☆ MultiMed: Massively Multimodal and Multitask Medical Understanding
Biomedical data is inherently multimodal, consisting of electronic health records, medical imaging, digital pathology, genome sequencing, wearable sensors, and more. The application of artificial intelligence tools to these multifaceted sensing technologies has the potential to revolutionize the prognosis, diagnosis, and management of human health and disease. However, current approaches to biomedical AI typically only train and evaluate with one or a small set of medical modalities and tasks. This limitation hampers the development of comprehensive tools that can leverage the rich interconnected information across many heterogeneous biomedical sensors. To address this challenge, we present MultiMed, a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks. MultiMed consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data, and is structured into eleven challenging tasks, including disease prognosis, protein structure prediction, and medical question answering. Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models. Our analysis highlights the advantages of training large-scale medical models across many related modalities and tasks. Moreover, MultiMed enables studies of generalization across related medical concepts, robustness to real-world noisy data and distribution shifts, and novel modality combinations to improve prediction performance. MultiMed will be publicly available and regularly updated and welcomes inputs from the community.
☆ Can LLMs Understand Social Norms in Autonomous Driving Games?
Social norm is defined as a shared standard of acceptable behavior in a society. The emergence of social norms fosters coordination among agents without any hard-coded rules, which is crucial for the large-scale deployment of AVs in an intelligent transportation system. This paper explores the application of LLMs in understanding and modeling social norms in autonomous driving games. We introduce LLMs into autonomous driving games as intelligent agents who make decisions according to text prompts. These agents are referred to as LLM-based agents. Our framework involves LLM-based agents playing Markov games in a multi-agent system (MAS), allowing us to investigate the emergence of social norms among individual agents. We aim to identify social norms by designing prompts and utilizing LLMs on textual information related to the environment setup and the observations of LLM-based agents. Using the OpenAI Chat API powered by GPT-4.0, we conduct experiments to simulate interactions and evaluate the performance of LLM-based agents in two driving scenarios: unsignalized intersection and highway platoon. The results show that LLM-based agents can handle dynamically changing environments in Markov games, and social norms evolve among LLM-based agents in both scenarios. In the intersection game, LLM-based agents tend to adopt a conservative driving policy when facing a potential car crash. The advantage of LLM-based agents in games lies in their strong operability and analyzability, which facilitate experimental design.
☆ Enhancing Transferability of Adversarial Attacks with GE-AdvGAN+: A Comprehensive Framework for Gradient Editing
Transferable adversarial attacks pose significant threats to deep neural networks, particularly in black-box scenarios where internal model information is inaccessible. Studying adversarial attack methods helps advance the performance of defense mechanisms and explore model vulnerabilities. These methods can uncover and exploit weaknesses in models, promoting the development of more robust architectures. However, current methods for transferable attacks often come with substantial computational costs, limiting their deployment and application, especially in edge computing scenarios. Adversarial generative models, such as Generative Adversarial Networks (GANs), are characterized by their ability to generate samples without the need for retraining after an initial training phase. GE-AdvGAN, a recent method for transferable adversarial attacks, is based on this principle. In this paper, we propose a novel general framework for gradient editing-based transferable attacks, named GE-AdvGAN+, which integrates nearly all mainstream attack methods to enhance transferability while significantly reducing computational resource consumption. Our experiments demonstrate the compatibility and effectiveness of our framework. Compared to the baseline AdvGAN, our best-performing method, GE-AdvGAN++, achieves an average ASR improvement of 47.8. Additionally, it surpasses the latest competing algorithm, GE-AdvGAN, with an average ASR increase of 5.9. The framework also exhibits enhanced computational efficiency, achieving 2217.7 FPS, outperforming traditional methods such as BIM and MI-FGSM. The implementation code for our GE-AdvGAN+ framework is available at https://github.com/GEAdvGANP
☆ Leveraging Information Consistency in Frequency and Spatial Domain for Adversarial Attacks PRICAI 2024
Adversarial examples are a key method to exploit deep neural networks. Using gradient information, such examples can be generated in an efficient way without altering the victim model. Recent frequency domain transformation has further enhanced the transferability of such adversarial examples, such as spectrum simulation attack. In this work, we investigate the effectiveness of frequency domain-based attacks, aligning with similar findings in the spatial domain. Furthermore, such consistency between the frequency and spatial domains provides insights into how gradient-based adversarial attacks induce perturbations across different domains, which is yet to be explored. Hence, we propose a simple, effective, and scalable gradient-based adversarial attack algorithm leveraging the information consistency in both frequency and spatial domains. We evaluate the algorithm for its effectiveness against different models. Extensive experiments demonstrate that our algorithm achieves state-of-the-art results compared to other gradient-based algorithms. Our code is available at: https://github.com/LMBTough/FSA.
comment: Accepted by PRICAI 2024
☆ Benchmarking Counterfactual Interpretability in Deep Learning Models for Time Series Classification
The popularity of deep learning methods in the time series domain boosts interest in interpretability studies, including counterfactual (CF) methods. CF methods identify minimal changes in instances to alter the model predictions. Despite extensive research, no existing work benchmarks CF methods in the time series domain. Additionally, the results reported in the literature are inconclusive due to the limited number of datasets and inadequate metrics. In this work, we redesign quantitative metrics to accurately capture desirable characteristics in CFs. We specifically redesign the metrics for sparsity and plausibility and introduce a new metric for consistency. Combined with validity, generation time, and proximity, we form a comprehensive metric set. We systematically benchmark 6 different CF methods on 20 univariate datasets and 10 multivariate datasets with 3 different classifiers. Results indicate that the performance of CF methods varies across metrics and among different models. Finally, we provide case studies and a guideline for practical usage.
comment: 15 pages, 27 figures
☆ Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
☆ AI-driven Transformer Model for Fault Prediction in Non-Linear Dynamic Automotive System
Fault detection in automotive engine systems is one of the most promising research areas. Several works have been done in the field of model-based fault diagnosis. Many researchers have discovered more advanced statistical methods and algorithms for better fault detection on any automotive dynamic engine system. The gas turbines/diesel engines produce highly complex and huge data which are highly non-linear. So, researchers should come up with an automated system that is more resilient and robust enough to handle this huge, complex data in highly non-linear dynamic automotive systems. Here, I present an AI-based fault classification and prediction model in the diesel engine that can be applied to any highly non-linear dynamic automotive system. The main contribution of this paper is the AI-based Transformer fault classification and prediction model in the diesel engine concerning the worldwide harmonic light vehicle test procedure (WLTP) driving cycle. This model used 27 input dimensions, 64 hidden dimensions with 2 layers, and 9 heads to create a classifier with 12 output heads (one for fault-free data and 11 different fault types). This model was trained on the UTSA Arc High-Performance Compute (HPC) cluster with 5 NVIDIA V100 GPUs, 40-core CPUs, and 384GB RAM and achieved 70.01 % accuracy on a held test set.
☆ Building and better understanding vision-language models: insights and future directions
The field of vision-language models (VLMs), which take images and texts as inputs and output texts, is rapidly evolving and has yet to reach consensus on several key aspects of the development pipeline, including data, architecture, and training methods. This paper can be seen as a tutorial for building a VLM. We begin by providing a comprehensive overview of the current state-of-the-art approaches, highlighting the strengths and weaknesses of each, addressing the major challenges in the field, and suggesting promising research directions for underexplored areas. We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B, while being trained efficiently, exclusively on open datasets, and using a straightforward pipeline. These steps include the creation of Docmatix, a dataset for improving document understanding capabilities, which is 240 times larger than previously available datasets. We release the model along with the datasets created for its training.
☆ Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology IJCAI-23
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors. This advanced technology offers a range of intelligent functionalities, such as modeling, simulation, and data-driven decision-making, that facilitate design optimization, performance estimation, and monitoring operations. Forecasting plays a pivotal role in Digital Twin technology, as it enables the prediction of future outcomes, supports informed decision-making, minimizes risks, driving improvements in efficiency, productivity, and cost reduction. Recently, Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios, fostering proactive and data-driven decision making. However, existing Graph forecasting techniques lack scalability for many real-world applications. They have limited ability to adapt to non-stationary environments, retain past knowledge, lack a mechanism to capture the higher order spatio-temporal dynamics, and estimate uncertainty in model predictions. To surmount the challenges, we introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge. This balance aims to improve the slowly-learned backbone and achieve better performance in adapting to recent changes. In addition, it models the time-varying uncertainty of multi-horizon forecasts, providing estimates of prediction uncertainty. Our forecasting architecture has been validated through ablation studies and has demonstrated promising results across multiple benchmark datasets, surpassing state-ofthe-art forecasting methods by a significant margin.
comment: Paper accepted at AI for Digital Twins and Cyber-Physical Applications Workshop, International Joint Conferences on Artificial Intelligence(IJCAI-23). arXiv admin note: text overlap with arXiv:2408.12409
☆ Generative Diffusion Model-based Downscaling of Observed Sea Surface Height over Kuroshio Extension since 2000
Satellite altimetry has been widely utilized to monitor global sea surface dynamics, enabling investigation of upper ocean variability from basin-scale to localized eddy ranges. However, the sparse spatial resolution of observational altimetry limits our understanding of oceanic submesoscale variability, prevalent at horizontal scales below 0.25o resolution. Here, we introduce a state-of-the-art generative diffusion model to train high-resolution sea surface height (SSH) reanalysis data and demonstrate its advantage in observational SSH downscaling over the eddy-rich Kuroshio Extension region. The diffusion-based model effectively downscales raw satellite-interpolated data from 0.25o resolution to 1/16o, corresponding to approximately 12-km wavelength. This model outperforms other high-resolution reanalysis datasets and neural network-based methods. Also, it successfully reproduces the spatial patterns and power spectra of satellite along-track observations. Our diffusion-based results indicate that eddy kinetic energy at horizontal scales less than 250 km has intensified significantly since 2004 in the Kuroshio Extension region. These findings underscore the great potential of deep learning in reconstructing satellite altimetry and enhancing our understanding of ocean dynamics at eddy scales.
comment: 28 pages, 7 figures, and 1 table
♻ ☆ GNN-SKAN: Harnessing the Power of SwallowKAN to Advance Molecular Representation Learning with GNNs
Effective molecular representation learning is crucial for advancing molecular property prediction and drug design. Mainstream molecular representation learning approaches are based on Graph Neural Networks (GNNs). However, these approaches struggle with three significant challenges: insufficient annotations, molecular diversity, and architectural limitations such as over-squashing, which leads to the loss of critical structural details. To address these challenges, we introduce a new class of GNNs that integrates the Kolmogorov-Arnold Networks (KANs), known for their robust data-fitting capabilities and high accuracy in small-scale AI + Science tasks. By incorporating KANs into GNNs, our model enhances the representation of molecular structures. We further advance this approach with a variant called SwallowKAN (SKAN), which employs adaptive Radial Basis Functions (RBFs) as the core of the non-linear neurons. This innovation improves both computational efficiency and adaptability to diverse molecular structures. Building on the strengths of SKAN, we propose a new class of GNNs, GNN-SKAN, and its augmented variant, GNN-SKAN+, which incorporates a SKAN-based classifier to further boost performance. To our knowledge, this is the first work to integrate KANs into GNN architectures tailored for molecular representation learning. Experiments across 6 classification datasets, 6 regression datasets, and 4 few-shot learning datasets demonstrate that our approach achieves new state-of-the-art performance in terms of accuracy and computational cost.
comment: 10 pages, 6 figures
♻ ☆ Recognizing Beam Profiles from Silicon Photonics Gratings using Transformer Model
Over the past decade, there has been extensive work in developing integrated silicon photonics (SiPh) gratings for the optical addressing of trapped ion qubits in the ion trap quantum computing community. However, when viewing beam profiles from infrared (IR) cameras, it is often difficult to determine the corresponding heights where the beam profiles are located. In this work, we developed transformer models to recognize the corresponding height categories of beam profiles of light from SiPh gratings. The model is trained using two techniques: (1) input patches, and (2) input sequence. For model trained with input patches, the model achieved recognition accuracy of 0.938. Meanwhile, model trained with input sequence shows lower accuracy of 0.895. However, when repeating the model-training 150 cycles, model trained with input patches shows inconsistent accuracy ranges between 0.445 to 0.959, while model trained with input sequence exhibit higher accuracy values between 0.789 to 0.936. The obtained outcomes can be expanded to various applications, including auto-focusing of light beam and auto-adjustment of z-axis stage to acquire desired beam profiles.
♻ ☆ Using Part-based Representations for Explainable Deep Reinforcement Learning
Utilizing deep learning models to learn part-based representations holds significant potential for interpretable-by-design approaches, as these models incorporate latent causes obtained from feature representations through simple addition. However, training a part-based learning model presents challenges, particularly in enforcing non-negative constraints on the model's parameters, which can result in training difficulties such as instability and convergence issues. Moreover, applying such approaches in Deep Reinforcement Learning (RL) is even more demanding due to the inherent instabilities that impact many optimization methods. In this paper, we propose a non-negative training approach for actor models in RL, enabling the extraction of part-based representations that enhance interpretability while adhering to non-negative constraints. To this end, we employ a non-negative initialization technique, as well as a modified sign-preserving training method, which can ensure better gradient flow compared to existing approaches. We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
♻ ☆ Clarify: Improving Model Robustness With Natural Language Corrections
The standard way to teach models is by feeding them lots of data. However, this approach often teaches models incorrect ideas because they pick up on misleading signals in the data. To prevent such misconceptions, we must necessarily provide additional information beyond the training data. Prior methods incorporate additional instance-level supervision, such as labels for misleading features or additional labels for debiased data. However, such strategies require a large amount of labeler effort. We hypothesize that people are good at providing textual feedback at the concept level, a capability that existing teaching frameworks do not leverage. We propose Clarify, a novel interface and method for interactively correcting model misconceptions. Through Clarify, users need only provide a short text description of a model's consistent failure patterns. Then, in an entirely automated way, we use such descriptions to improve the training process. Clarify is the first end-to-end system for user model correction. Our user studies show that non-expert users can successfully describe model misconceptions via Clarify, leading to increased worst-case performance in two datasets. We additionally conduct a case study on a large-scale image dataset, ImageNet, using Clarify to find and rectify 31 novel hard subpopulations.
comment: UIST 2024. Interface code available at https://github.com/yoonholee/Clarify
♻ ☆ SST: Multi-Scale Hybrid Mamba-Transformer Experts for Long-Short Range Time Series Forecasting
Despite significant progress in time series forecasting, existing forecasters often overlook the heterogeneity between long-range and short-range time series, leading to performance degradation in practical applications. In this work, we highlight the need of distinct objectives tailored to different ranges. We point out that time series can be decomposed into global patterns and local variations, which should be addressed separately in long- and short-range time series. To meet the objectives, we propose a multi-scale hybrid Mamba-Transformer experts model State Space Transformer (SST). SST leverages Mamba as an expert to extract global patterns in coarse-grained long-range time series, and Local Window Transformer (LWT), the other expert to focus on capturing local variations in fine-grained short-range time series. With an input-dependent mechanism, State Space Model (SSM)-based Mamba is able to selectively retain long-term patterns and filter out fluctuations, while LWT employs a local window to enhance locality-awareness capability, thus effectively capturing local variations. To adaptively integrate the global patterns and local variations, a long-short router dynamically adjusts contributions of the two experts. SST achieves superior performance with scaling linearly $O(L)$ on time series length $L$. The comprehensive experiments demonstrate the SST can achieve SOTA results in long-short range time series forecasting while maintaining low memory footprint and computational cost. The code of SST is available at https://github.com/XiongxiaoXu/SST.
♻ ☆ Comparative Study of States-based Neural Networks for Virtual Analog Audio Effects Modeling
Analog electronic circuits are at the core of an important category of musical devices. The nonlinear features of their electronic components give analog musical devices a distinctive timbre and sound quality, making them highly desirable. Artificial neural networks have rapidly gained popularity for the emulation of analog audio effects circuits, particularly recurrent networks. While neural approaches have been successful in accurately modeling distortion circuits, they require architectural improvements that account for parameter conditioning and low latency response. In this article, we explore the application of recent machine learning advancements for virtual analog modeling. We compare State Space models and Linear Recurrent Units against the more common Long Short Term Memory networks. These have shown promising ability in sequence to sequence modeling tasks, showing a notable improvement in signal history encoding. Our comparative study uses these black box neural modeling techniques with a variety of audio effects. We evaluate the performance and limitations using multiple metrics aiming to assess the models' ability to accurately replicate energy envelopes, frequency contents, and transients in the audio signal. To incorporate control parameters we employ the Feature wise Linear Modulation method. Long Short Term Memory networks exhibit better accuracy in emulating distortions and equalizers, while the State Space model, followed by Long Short Term Memory networks when integrated in an encoder decoder structure, outperforms others in emulating saturation and compression. When considering long time variant characteristics, the State Space model demonstrates the greatest accuracy. The Long Short Term Memory and, in particular, Linear Recurrent Unit networks present more tendency to introduce audio artifacts.
comment: arXiv admin note: text overlap with arXiv:1810.06603 by other authors
♻ ☆ Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks
In recent years, the rapid development of large language models (LLMs) has achieved remarkable performance across various tasks. However, research indicates that LLMs are vulnerable to jailbreak attacks, where adversaries can induce the generation of harmful content through meticulously crafted prompts. This vulnerability poses significant challenges to the secure use and promotion of LLMs. Existing defense methods offer protection from different perspectives but often suffer from insufficient effectiveness or a significant impact on the model's capabilities. In this paper, we propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG), which guides the model to identify harmful prompts by directly setting the first few tokens of the model's output. This approach combines the model's inherent security capabilities with an external classifier to defend against jailbreak attacks. We demonstrate the effectiveness of PG across three models and five attack methods. Compared to baselines, our approach is generally more effective on average. Additionally, results on the Just-Eval benchmark further confirm PG's superiority to preserve the model's performance. our code is available at https://github.com/weiyezhimeng/Prefix-Guidance.
♻ ☆ Segment anything model 2: an application to 2D and 3D medical images
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt. The recently developed SAM 2 has extended this ability to video inputs. This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field. In this paper, we extensively evaluate SAM 2's ability to segment both 2D and 3D medical images by first collecting 21 medical imaging datasets, including surgical videos, common 3D modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) as well as 2D modalities such as X-ray and ultrasound. Two evaluation settings of SAM 2 are considered: (1) multi-frame 3D segmentation, where prompts are provided to one or multiple slice(s) selected from the volume, and (2) single-frame 2D segmentation, where prompts are provided to each slice. The former only applies to videos and 3D modalities, while the latter applies to all datasets. Our results show that SAM 2 exhibits similar performance as SAM under single-frame 2D segmentation, and has variable performance under multi-frame 3D segmentation depending on the choices of slices to annotate, the direction of the propagation, the predictions utilized during the propagation, etc. We believe our work enhances the understanding of SAM 2's behavior in the medical field and provides directions for future work in adapting SAM 2 to this domain. Our code is available at: https://github.com/mazurowski-lab/segment-anything2-medical-evaluation.
comment: 20 pages, 13 figures. Codes are available at https://github.com/mazurowski-lab/segment-anything2-medical-evaluation
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Previous work often neglects the spatial structures and functional layouts between entities, limiting their ability to capture transferable knowledge across regions. Further, these methods struggle to adapt effectively to specific downstream tasks, as they do not adequately address the unique features and relationships required for different downstream tasks. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph that integrates detailed spatial entity data for more effective urban region representation. Then, we develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of interactions among entities. To further enhance the adaptability of these embeddings to different tasks, we design two graph-based prompting methods to incorporate explicit/hidden task knowledge. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our GURPP framework. We wil release code and data upon paper notification.
♻ ☆ Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy
The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Additionally, we design a downstream task as stance prediction by leveraging talking points in climate debates. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.
♻ ☆ The Oscars of AI Theater: A Survey on Role-Playing with Language Models
This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at https://github.com/nuochenpku/Awesome-Role-Play-Papers.
comment: 28 pages
♻ ☆ Time Series Clustering with General State Space Models via Stochastic Variational Inference
In this paper, we propose a novel method of model-based time series clustering with mixtures of general state space models (MSSMs). Each component of MSSMs is associated with each cluster. An advantage of the proposed method is that it enables the use of time series models appropriate to the specific time series. This not only improves clustering and prediction accuracy but also enhances the interpretability of the estimated parameters. The parameters of the MSSMs are estimated using stochastic variational inference, a subtype of variational inference. The proposed method estimates the latent variables of an arbitrary state space model by using neural networks with a normalizing flow as a variational estimator. The number of clusters can be estimated using the Bayesian information criterion. In addition, to prevent MSSMs from converging to the local optimum, we propose several optimization tricks, including an additional penalty term called entropy annealing. To our best knowledge, the proposed method is the first computationally feasible one for time series clustering based on general (possibly nonlinear, non-Gaussian) state space models. Experiments on simulated datasets show that the proposed method is effective for clustering, parameter estimation, and estimating the number of clusters.
comment: 23 pages, 4 figures
♻ ☆ Can we trust the evaluation on ChatGPT?
ChatGPT, the first large language model (LLM) with mass adoption, has demonstrated remarkable performance in numerous natural language tasks. Despite its evident usefulness, evaluating ChatGPT's performance in diverse problem domains remains challenging due to the closed nature of the model and its continuous updates via Reinforcement Learning from Human Feedback (RLHF). We highlight the issue of data contamination in ChatGPT evaluations, with a case study of the task of stance detection. We discuss the challenge of preventing data contamination and ensuring fair model evaluation in the age of closed and continuously trained models.
♻ ☆ Human-Aware Belief Revision: A Cognitively Inspired Framework for Explanation-Guided Revision of Human Models
Traditional belief revision frameworks often rely on the principle of minimalism, which advocates minimal changes to existing beliefs. However, research in human cognition suggests that people are inherently driven to seek explanations for inconsistencies, thereby striving for explanatory understanding rather than minimal changes when revising beliefs. Traditional frameworks often fail to account for these cognitive patterns, relying instead on formal principles that may not reflect actual human reasoning. To address this gap, we introduce Human-Aware Belief Revision, a cognitively-inspired framework for modeling human belief revision dynamics, where given a human model and an explanation for an explanandum, revises the model in a non-minimal way that aligns with human cognition. Finally, we conduct two human-subject studies to empirically evaluate our framework under real-world scenarios. Our findings support our hypotheses and provide insights into the strategies people employ when resolving inconsistencies, offering some guidance for developing more effective human-aware AI systems.
♻ ☆ Domain Generalization through Meta-Learning: A Survey
Deep neural networks (DNNs) have revolutionized artificial intelligence but often lack performance when faced with out-of-distribution (OOD) data, a common scenario due to the inevitable domain shifts in real-world applications. This limitation stems from the common assumption that training and testing data share the same distribution--an assumption frequently violated in practice. Despite their effectiveness with large amounts of data and computational power, DNNs struggle with distributional shifts and limited labeled data, leading to overfitting and poor generalization across various tasks and domains. Meta-learning presents a promising approach by employing algorithms that acquire transferable knowledge across various tasks for fast adaptation, eliminating the need to learn each task from scratch. This survey paper delves into the realm of meta-learning with a focus on its contribution to domain generalization. We first clarify the concept of meta-learning for domain generalization and introduce a novel taxonomy based on the feature extraction strategy and the classifier learning methodology, offering a granular view of methodologies. Additionally, we present a decision graph to assist readers in navigating the taxonomy based on data availability and domain shifts, enabling them to select and develop a proper model tailored to their specific problem requirements. Through an exhaustive review of existing methods and underlying theories, we map out the fundamentals of the field. Our survey provides practical insights and an informed discussion on promising research directions.
♻ ☆ AI-Augmented Predictions: LLM Assistants Improve Human Forecasting Accuracy
Large language models (LLMs) match and sometimes exceeding human performance in many domains. This study explores the potential of LLMs to augment human judgement in a forecasting task. We evaluate the effect on human forecasters of two LLM assistants: one designed to provide high-quality ("superforecasting") advice, and the other designed to be overconfident and base-rate neglecting, thus providing noisy forecasting advice. We compare participants using these assistants to a control group that received a less advanced model that did not provide numerical predictions or engaged in explicit discussion of predictions. Participants (N = 991) answered a set of six forecasting questions and had the option to consult their assigned LLM assistant throughout. Our preregistered analyses show that interacting with each of our frontier LLM assistants significantly enhances prediction accuracy by between 24 percent and 28 percent compared to the control group. Exploratory analyses showed a pronounced outlier effect in one forecasting item, without which we find that the superforecasting assistant increased accuracy by 41 percent, compared with 29 percent for the noisy assistant. We further examine whether LLM forecasting augmentation disproportionately benefits less skilled forecasters, degrades the wisdom-of-the-crowd by reducing prediction diversity, or varies in effectiveness with question difficulty. Our data do not consistently support these hypotheses. Our results suggest that access to a frontier LLM assistant, even a noisy one, can be a helpful decision aid in cognitively demanding tasks compared to a less powerful model that does not provide specific forecasting advice. However, the effects of outliers suggest that further research into the robustness of this pattern is needed.
comment: 22 pages pages (main text comprised of 19 pages, appendix comprised of three pages). 10 visualizations in the main text (four figures, six tables), three additional figures in the appendix
♻ ☆ Language Agents as Optimizable Graphs
Various human-designed prompt engineering techniques have been proposed to improve problem solvers based on Large Language Models (LLMs), yielding many disparate code bases. We unify these approaches by describing LLM-based agents as computational graphs. The nodes implement functions to process multimodal data or query LLMs, and the edges describe the information flow between operations. Graphs can be recursively combined into larger composite graphs representing hierarchies of inter-agent collaboration (where edges connect operations of different agents). Our novel automatic graph optimizers (1) refine node-level LLM prompts (node optimization) and (2) improve agent orchestration by changing graph connectivity (edge optimization). Experiments demonstrate that our framework can be used to efficiently develop, integrate, and automatically improve various LLM agents. The code can be found at https://github.com/metauto-ai/gptswarm.
comment: Project Website: https://gptswarm.org ; Github Repo: https://github.com/metauto-ai/gptswarm . In Forty-first International Conference on Machine Learning (2024)
♻ ☆ RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation
Contrastive learning (CL) has emerged as a promising technique for improving recommender systems, addressing the challenge of data sparsity by using self-supervised signals from raw data. Integration of CL with graph convolutional network (GCN)-based collaborative filterings (CFs) has been explored in recommender systems. However, current CL-based recommendation models heavily rely on low-pass filters and graph augmentations. In this paper, inspired by the reaction-diffusion equation, we propose a novel CL method for recommender systems called the reaction-diffusion graph contrastive learning model (RDGCL). We design our own GCN for CF based on the equations of diffusion, i.e., low-pass filter, and reaction, i.e., high-pass filter. Our proposed CL-based training occurs between reaction and diffusion-based embeddings, so there is no need for graph augmentations. Experimental evaluation on 5 benchmark datasets demonstrates that our proposed method outperforms state-of-the-art CL-based recommendation models. By enhancing recommendation accuracy and diversity, our method brings an advancement in CL for recommender systems.
comment: Jeongwhan Choi and Hyowon Wi are co-first authors with equal contributions
♻ ☆ Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach
Optimizing the deployment of large language models (LLMs) in edge computing environments is critical for enhancing privacy and computational efficiency. Toward efficient wireless LLM inference in edge computing, this study comprehensively analyzes the impact of different splitting points in mainstream open-source LLMs. On this basis, this study introduces a framework taking inspiration from model-based reinforcement learning (MBRL) to determine the optimal splitting point across the edge and user equipment (UE). By incorporating a reward surrogate model, our approach significantly reduces the computational cost of frequent performance evaluations. Extensive simulations demonstrate that this method effectively balances inference performance and computational load under varying network conditions, providing a robust solution for LLM deployment in decentralized settings.
♻ ☆ SpecRover: Code Intent Extraction via LLMs
Autonomous program improvement typically involves automatically producing bug fixes and feature additions. Such program improvement can be accomplished by a combination of large language model (LLM) and program analysis capabilities, in the form of an LLM agent. Since program repair or program improvement typically requires a specification of intended behavior - specification inference can be useful for producing high quality program patches. In this work, we examine efficient and low-cost workflows for iterative specification inference within an LLM agent. Given a GitHub issue to be resolved in a software project, our goal is to conduct iterative code search accompanied by specification inference - thereby inferring intent from both the project structure and behavior. The intent thus captured is examined by a reviewer agent with the goal of vetting the patches as well as providing a measure of confidence in the vetted patches. Our approach SpecRover (AutoCodeRover-v2) is built on the open-source LLM agent AutoCodeRover. In an evaluation on the full SWE-Bench consisting of 2294 GitHub issues, it shows more than 50% improvement in efficacy over AutoCodeRover. Compared to the open-source agents available, our work shows modest cost ($0.65 per issue) in resolving an average GitHub issue in SWE-Bench lite. The production of explanation by SpecRover allows for a better "signal" to be given to the developer, on when the suggested patches can be accepted with confidence. SpecRover also seeks to demonstrate the continued importance of specification inference in automated program repair, even as program repair technologies enter the LLM era.
comment: Haifeng Ruan and Yuntong Zhang contributed equally to this work
♻ ☆ Minor DPO reject penalty to increase training robustness
Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task. In the past it uses reinforcement learning from human feedback (RLHF) algorithm to optimize the LLM policy to align with these preferences and not to draft too far from the original model. Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method. Using preference pairs of chosen and reject data, DPO models the relative log probability as implicit reward function and optimize LLM policy using a simple binary cross entropy objective directly. DPO is quite straight forward and easy to be understood. It perform efficiently and well in most cases. In this article, we analyze the working mechanism of $\beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification. With these insights, we propose MinorDPO, which is better aligned to the original RL algorithm, and increase the stability of preference optimization process.
comment: 8 pages, 19 figures
♻ ☆ API-guided Dataset Synthesis to Finetune Large Code Models
Large code models (LCMs), pre-trained on vast code corpora, have demonstrated remarkable performance across a wide array of code-related tasks. Supervised fine-tuning (SFT) plays a vital role in aligning these models with specific requirements and enhancing their performance in particular domains. However, synthesizing high-quality SFT datasets poses a significant challenge due to the uneven quality of datasets and the scarcity of domain-specific datasets. Inspired by APIs as high-level abstractions of code that encapsulate rich semantic information in a concise structure, we propose DataScope, an API-guided dataset synthesis framework designed to enhance the SFT process for LCMs in both general and domain-specific scenarios. DataScope comprises two main components: Dsel and Dgen. On one hand, Dsel employs API coverage as a core metric, enabling efficient dataset synthesis in general scenarios by selecting subsets of existing (uneven-quality) datasets with higher API coverage. On the other hand, Dgen recasts domain dataset synthesis as a process of using API-specified high-level functionality and deliberately-constituted code skeletons to synthesize concrete code. Extensive experiments demonstrate DataScope's effectiveness, with models fine-tuned on its synthesized datasets outperforming those tuned on unoptimized datasets five times larger. Furthermore, a series of analyses on model internals, relevant hyperparameters, and case studies provide additional evidence for the efficacy of our proposed methods. These findings underscore the significance of dataset quality in SFT and advance the field of LCMs by providing an efficient, cost-effective framework for constructing high-quality datasets. This contribution enhances performance across both general and domain-specific scenarios, paving the way for more powerful and tailored LCMs.
♻ ☆ Convert and Speak: Zero-shot Accent Conversion with Minimum Supervision ACM MM2024
Low resource of parallel data is the key challenge of accent conversion(AC) problem in which both the pronunciation units and prosody pattern need to be converted. We propose a two-stage generative framework "convert-and-speak" in which the conversion is only operated on the semantic token level and the speech is synthesized conditioned on the converted semantic token with a speech generative model in target accent domain. The decoupling design enables the "speaking" module to use massive amount of target accent speech and relieves the parallel data required for the "conversion" module. Conversion with the bridge of semantic token also relieves the requirement for the data with text transcriptions and unlocks the usage of language pre-training technology to further efficiently reduce the need of parallel accent speech data. To reduce the complexity and latency of "speaking", a single-stage AR generative model is designed to achieve good quality as well as lower computation cost. Experiments on Indian-English to general American-English conversion show that the proposed framework achieves state-of-the-art performance in accent similarity, speech quality, and speaker maintenance with only 15 minutes of weakly parallel data which is not constrained to the same speaker. Extensive experimentation with diverse accent types suggests that this framework possesses a high degree of adaptability, making it readily scalable to accommodate other accents with low-resource data. Audio samples are available at https://www.microsoft.com/en-us/research/project/convert-and-speak-zero-shot-accent-conversion-with-minimumsupervision/.
comment: 9 pages, ACM MM2024(accepted)
♻ ☆ The Dark Side of Function Calling: Pathways to Jailbreaking Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities, but their power comes with significant security considerations. While extensive research has been conducted on the safety of LLMs in chat mode, the security implications of their function calling feature have been largely overlooked. This paper uncovers a critical vulnerability in the function calling process of LLMs, introducing a novel "jailbreak function" attack method that exploits alignment discrepancies, user coercion, and the absence of rigorous safety filters. Our empirical study, conducted on six state-of-the-art LLMs including GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-pro, reveals an alarming average success rate of over 90\% for this attack. We provide a comprehensive analysis of why function calls are susceptible to such attacks and propose defensive strategies, including the use of defensive prompts. Our findings highlight the urgent need for enhanced security measures in the function calling capabilities of LLMs, contributing to the field of AI safety by identifying a previously unexplored risk, designing an effective attack method, and suggesting practical defensive measures. Our code is available at https://github.com/wooozihui/jailbreakfunction.
♻ ☆ Active Sensing of Knee Osteoarthritis Progression with Reinforcement Learning
Osteoarthritis (OA) is the most common musculoskeletal disease, which has no cure. Knee OA (KOA) is one of the highest causes of disability worldwide, and it costs billions of United States dollars to the global community. Prediction of KOA progression has been of high interest to the community for years, as it can advance treatment development through more efficient clinical trials and improve patient outcomes through more efficient healthcare utilization. Existing approaches for predicting KOA, however, are predominantly static, i.e. consider data from a single time point to predict progression many years into the future, and knee level, i.e. consider progression in a single joint only. Due to these and related reasons, these methods fail to deliver the level of predictive performance, which is sufficient to result in cost savings and better patient outcomes. Collecting extensive data from all patients on a regular basis could address the issue, but it is limited by the high cost at a population level. In this work, we propose to go beyond static prediction models in OA, and bring a novel Active Sensing (AS) approach, designed to dynamically follow up patients with the objective of maximizing the number of informative data acquisitions, while minimizing their total cost over a period of time. Our approach is based on Reinforcement Learning (RL), and it leverages a novel reward function designed specifically for AS of disease progression in more than one part of a human body. Our method is end-to-end, relies on multi-modal Deep Learning, and requires no human input at inference time. Throughout an exhaustive experimental evaluation, we show that using RL can provide a higher monetary benefit when compared to state-of-the-art baselines.
♻ ☆ Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
♻ ☆ A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph
This study aims to improve knowledge-based question-answering (QA) systems by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an advanced RAG system based on Graph technology to develop high-quality generative AI services. While existing RAG models demonstrate high accuracy and fluency by utilizing retrieved information, they may suffer from accuracy degradation as they generate responses using pre-loaded knowledge without reprocessing. Additionally, they cannot incorporate real-time data after the RAG configuration stage, leading to issues with contextual understanding and biased information. To address these limitations, this study implemented an enhanced RAG system utilizing Graph technology. This system is designed to efficiently search and utilize information. Specifically, it employs LangGraph to evaluate the reliability of retrieved information and synthesizes diverse data to generate more accurate and enhanced responses. Furthermore, the study provides a detailed explanation of the system's operation, key implementation steps, and examples through implementation code and validation results, thereby enhancing the understanding of advanced RAG technology. This approach offers practical guidelines for implementing advanced RAG systems in corporate services, making it a valuable resource for practical application.
♻ ☆ ALS-HAR: Harnessing Wearable Ambient Light Sensors to Enhance IMU-based Human Activity Recogntion
Despite the widespread integration of ambient light sensors (ALS) in smart devices commonly used for screen brightness adaptation, their application in human activity recognition (HAR), primarily through body-worn ALS, is largely unexplored. In this work, we developed ALS-HAR, a robust wearable light-based motion activity classifier. Although ALS-HAR achieves comparable accuracy to other modalities, its natural sensitivity to external disturbances, such as changes in ambient light, weather conditions, or indoor lighting, makes it challenging for daily use. To address such drawbacks, we introduce strategies to enhance environment-invariant IMU-based activity classifications through augmented multi-modal and contrastive classifications by transferring the knowledge extracted from the ALS. Our experiments on a real-world activity dataset for three different scenarios demonstrate that while ALS-HAR's accuracy strongly relies on external lighting conditions, cross-modal information can still improve other HAR systems, such as IMU-based classifiers.Even in scenarios where ALS performs insufficiently, the additional knowledge enables improved accuracy and macro F1 score by up to 4.2 % and 6.4 %, respectively, for IMU-based classifiers and even surpasses multi-modal sensor fusion models in two of our three experiment scenarios. Our research highlights the untapped potential of ALS integration in advancing sensor-based HAR technology, paving the way for practical and efficient wearable ALS-based activity recognition systems with potential applications in healthcare, sports monitoring, and smart indoor environments.
♻ ☆ SUBLLM: A Novel Efficient Architecture with Token Sequence Subsampling for LLM
While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. Our code is available at https://github.com/XiaoMi/subllm.
comment: 10 pages, 5 figures, accepted by ECAI 2024
♻ ☆ Self-supervised Learning for Clustering of Wireless Spectrum Activity
In recent years, much work has been done on processing of wireless spectrum data involving machine learning techniques in domain-related problems for cognitive radio networks, such as anomaly detection, modulation classification, technology classification and device fingerprinting. Most of the solutions are based on labeled data, created in a controlled manner and processed with supervised learning approaches. However, spectrum data measured in real-world environment is highly nondeterministic, making its labeling a laborious and expensive process, requiring domain expertise, thus being one of the main drawbacks of using supervised learning approaches in this domain. In this paper, we investigate the use of self-supervised learning (SSL) for exploring spectrum activities in a real-world unlabeled data. In particular, we compare the performance of two SSL models, one based on a reference DeepCluster architecture and one adapted for spectrum activity identification and clustering, and a baseline model based on K-means clustering algorithm. We show that SSL models achieve superior performance regarding the quality of extracted features and clustering performance. With SSL models we achieve reduction of the feature vectors size by two orders of magnitude, while improving the performance by a factor of 2 to 2.5 across the evaluation metrics, supported by visual assessment. Additionally we show that adaptation of the reference SSL architecture to the domain data provides reduction of model complexity by one order of magnitude, while preserving or even improving the clustering performance.
♻ ☆ Large Investment Model
Traditional quantitative investment research is encountering diminishing returns alongside rising labor and time costs. To overcome these challenges, we introduce the Large Investment Model (LIM), a novel research paradigm designed to enhance both performance and efficiency at scale. LIM employs end-to-end learning and universal modeling to create an upstream foundation model capable of autonomously learning comprehensive signal patterns from diverse financial data spanning multiple exchanges, instruments, and frequencies. These "global patterns" are subsequently transferred to downstream strategy modeling, optimizing performance for specific tasks. We detail the system architecture design of LIM, address the technical challenges inherent in this approach, and outline potential directions for future research. The advantages of LIM are demonstrated through a series of numerical experiments on cross-instrument prediction for commodity futures trading, leveraging insights from stock markets.
comment: 20 pages, 10 figures, 2 tables
♻ ☆ Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models
Generative Large Language Models (LLMs) hold significant promise in healthcare, demonstrating capabilities such as passing medical licensing exams and providing clinical knowledge. However, their current use as information retrieval tools is limited by challenges like data staleness, resource demands, and occasional generation of incorrect information. This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center, using real-world clinical cases across multiple specialties. Both proprietary and open-source LLMs were evaluated, with Retrieval Augmented Generation (RAG) enhancing contextual relevance. Proprietary models, particularly GPT-4, generally outperformed open-source models, showing improved guideline adherence and more accurate responses with RAG. The manual evaluation by expert clinicians was crucial in validating models' outputs, underscoring the importance of human oversight in LLM operation. Further, the study emphasizes Natural Language Programming (NLP) as the appropriate paradigm for modifying model behavior, allowing for precise adjustments through tailored prompts and real-world interactions. This approach highlights the potential of LLMs to significantly enhance and supplement clinical decision-making, while also emphasizing the value of continuous expert involvement and the flexibility of NLP to ensure their reliability and effectiveness in healthcare settings.
comment: Figures: 5, Tables: 3
♻ ☆ KLoB: a Benchmark for Assessing Knowledge Locating Methods in Language Models
Recently, Locate-Then-Edit paradigm has emerged as one of the main approaches in changing factual knowledge stored in the Language models. However, there is a lack of research on whether present locating methods can pinpoint the exact parameters embedding the desired knowledge. Moreover, although many researchers have questioned the validity of locality hypothesis of factual knowledge, no method is provided to test the a hypothesis for more in-depth discussion and research. Therefore, we introduce KLoB, a benchmark examining three essential properties that a reliable knowledge locating method should satisfy. KLoB can serve as a benchmark for evaluating existing locating methods in language models, and can contributes a method to reassessing the validity of locality hypothesis of factual knowledge. KLoB is publicly available at an anonymous GitHub: \url{https://github.com/anon6662/KLoB}.
♻ ☆ A Survey of Mamba
As one of the most representative DL techniques, Transformer architecture has empowered numerous advanced models, especially the large language models (LLMs) that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models (SSMs), has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first review the foundational knowledge of various representative deep learning models and the details of Mamba-1&2 as preliminaries. Then, to showcase the significance of Mamba for AI, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present a discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
♻ ☆ On Early Detection of Hallucinations in Factual Question Answering KDD 2024
While large language models (LLMs) have taken great strides towards helping humans with a plethora of tasks, hallucinations remain a major impediment towards gaining user trust. The fluency and coherence of model generations even when hallucinating makes detection a difficult task. In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations. Specifically, we probe LLMs at 1) the inputs via Integrated Gradients based token attribution, 2) the outputs via the Softmax probabilities, and 3) the internal state via self-attention and fully-connected layer activations for signs of hallucinations on open-ended question answering tasks. Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations. Building on this insight, we train binary classifiers that use these artifacts as input features to classify model generations into hallucinations and non-hallucinations. These hallucination classifiers achieve up to $0.80$ AUROC. We also show that tokens preceding a hallucination can already predict the subsequent hallucination even before it occurs.
comment: KDD 2024
♻ ☆ Addressing Diverging Training Costs using BEVRestore for High-resolution Bird's Eye View Map Construction
Recent advancements in Bird's Eye View (BEV) fusion for map construction have demonstrated remarkable mapping of urban environments. However, their deep and bulky architecture incurs substantial amounts of backpropagation memory and computing latency. Consequently, the problem poses an unavoidable bottleneck in constructing high-resolution (HR) BEV maps, as their large-sized features cause significant increases in costs including GPU memory consumption and computing latency, named diverging training costs issue. Affected by the problem, most existing methods adopt low-resolution (LR) BEV and struggle to estimate the precise locations of urban scene components like road lanes, and sidewalks. As the imprecision leads to risky motion planning like collision avoidance, the diverging training costs issue has to be resolved. In this paper, we address the issue with our novel BEVRestore mechanism. Specifically, our proposed model encodes the features of each sensor to LR BEV space and restores them to HR space to establish a memory-efficient map constructor. To this end, we introduce the BEV restoration strategy, which restores aliasing, and blocky artifacts of the up-scaled BEV features, and narrows down the width of the labels. Our extensive experiments show that the proposed mechanism provides a plug-and-play, memory-efficient pipeline, enabling an HR map construction with a broad BEV scope.
♻ ☆ On Statistical Rates and Provably Efficient Criteria of Latent Diffusion Transformers (DiTs)
We investigate the statistical and computational limits of latent \textbf{Di}ffusion \textbf{T}ransformers (\textbf{DiT}s) under the low-dimensional linear latent space assumption. Statistically, we study the universal approximation and sample complexity of the DiTs score function, as well as the distribution recovery property of the initial data. Specifically, under mild data assumptions, we derive an approximation error bound for the score network of latent DiTs, which is sub-linear in the latent space dimension. Additionally, we derive the corresponding sample complexity bound and show that the data distribution generated from the estimated score function converges toward a proximate area of the original one. Computationally, we characterize the hardness of both forward inference and backward computation of latent DiTs, assuming the Strong Exponential Time Hypothesis (SETH). For forward inference, we identify efficient criteria for all possible latent DiTs inference algorithms and showcase our theory by pushing the efficiency toward almost-linear time inference. For backward computation, we leverage the low-rank structure within the gradient computation of DiTs training for possible algorithmic speedup. Specifically, we show that such speedup achieves almost-linear time latent DiTs training by casting the DiTs gradient as a series of chained low-rank approximations with bounded error. Under the low-dimensional assumption, we show that the convergence rate and the computational efficiency are both dominated by the dimension of the subspace, suggesting that latent DiTs have the potential to bypass the challenges associated with the high dimensionality of initial data.
comment: v2 fixed typos, added Fig. 1 and added clarifications
♻ ☆ EXAONEPath 1.0 Patch-level Foundation Model for Pathology
Recent advancements in digital pathology have led to the development of numerous foundational models that utilize self-supervised learning on patches extracted from gigapixel whole slide images (WSIs). While this approach leverages vast amounts of unlabeled data, we have discovered a significant issue: features extracted from these self-supervised models tend to cluster by individual WSIs, a phenomenon we term WSI-specific feature collapse. This problem can potentially limit the model's generalization ability and performance on various downstream tasks. To address this issue, we introduce EXAONEPath, a novel foundational model trained on patches that have undergone stain normalization. Stain normalization helps reduce color variability arising from different laboratories and scanners, enabling the model to learn more consistent features. EXAONEPath is trained using 285,153,903 patches extracted from a total of 34,795 WSIs. Our experiments demonstrate that EXAONEPath significantly mitigates the feature collapse problem, indicating that the model has learned more generalized features rather than overfitting to individual WSI characteristics. We compared EXAONEPath with state-of-the-art models across six downstream task datasets, and our results show that EXAONEPath achieves superior performance relative to the number of WSIs used and the model's parameter count. This suggests that the application of stain normalization has substantially improved the model's efficiency and generalization capabilities.
comment: License updated
♻ ☆ Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources
Scarcity of health care resources could result in the unavoidable consequence of rationing. For example, ventilators are often limited in supply, especially during public health emergencies or in resource-constrained health care settings, such as amid the pandemic of COVID-19. Currently, there is no universally accepted standard for health care resource allocation protocols, resulting in different governments prioritizing patients based on various criteria and heuristic-based protocols. In this study, we investigate the use of reinforcement learning for critical care resource allocation policy optimization to fairly and effectively ration resources. We propose a transformer-based deep Q-network to integrate the disease progression of individual patients and the interaction effects among patients during the critical care resource allocation. We aim to improve both fairness of allocation and overall patient outcomes. Our experiments demonstrate that our method significantly reduces excess deaths and achieves a more equitable distribution under different levels of ventilator shortage, when compared to existing severity-based and comorbidity-based methods in use by different governments. Our source code is included in the supplement and will be released on Github upon publication.
comment: 9 pages, 4 figures, 2 tables
♻ ☆ $ρ$-GNF: A Copula-based Sensitivity Analysis to Unobserved Confounding Using Normalizing Flows
We propose a novel sensitivity analysis to unobserved confounding in observational studies using copulas and normalizing flows. Using the idea of interventional equivalence of structural causal models, we develop $\rho$-GNF ($\rho$-graphical normalizing flow), where $\rho{\in}[-1,+1]$ is a bounded sensitivity parameter. This parameter represents the back-door non-causal association due to unobserved confounding, and which is encoded with a Gaussian copula. In other words, the $\rho$-GNF enables scholars to estimate the average causal effect (ACE) as a function of $\rho$, while accounting for various assumed strengths of the unobserved confounding. The output of the $\rho$-GNF is what we denote as the $\rho_{curve}$ that provides the bounds for the ACE given an interval of assumed $\rho$ values. In particular, the $\rho_{curve}$ enables scholars to identify the confounding strength required to nullify the ACE, similar to other sensitivity analysis methods (e.g., the E-value). Leveraging on experiments from simulated and real-world data, we show the benefits of $\rho$-GNF. One benefit is that the $\rho$-GNF uses a Gaussian copula to encode the distribution of the unobserved causes, which is commonly used in many applied settings. This distributional assumption produces narrower ACE bounds compared to other popular sensitivity analysis methods.
comment: 12 main pages (+8 reference pages), 4 Figures, Accepted at Probabilistic Graphical Models (PGM) 2024. Oral Presentation
♻ ☆ Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis
The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
comment: Github Page: https://github.com/Nihukat/Concept-Conductor
♻ ☆ Adversarial Examples in the Physical World: A Survey
Deep neural networks (DNNs) have demonstrated high vulnerability to adversarial examples, raising broad security concerns about their applications. Besides the attacks in the digital world, the practical implications of adversarial examples in the physical world present significant challenges and safety concerns. However, current research on physical adversarial examples (PAEs) lacks a comprehensive understanding of their unique characteristics, leading to limited significance and understanding. In this paper, we address this gap by thoroughly examining the characteristics of PAEs within a practical workflow encompassing training, manufacturing, and re-sampling processes. By analyzing the links between physical adversarial attacks, we identify manufacturing and re-sampling as the primary sources of distinct attributes and particularities in PAEs. Leveraging this knowledge, we develop a comprehensive analysis and classification framework for PAEs based on their specific characteristics, covering over 100 studies on physical-world adversarial examples. Furthermore, we investigate defense strategies against PAEs and identify open challenges and opportunities for future research. We aim to provide a fresh, thorough, and systematic understanding of PAEs, thereby promoting the development of robust adversarial learning and its application in open-world scenarios to provide the community with a continuously updated list of physical world adversarial sample resources, including papers, code, \etc, within the proposed framework
comment: Adversarial examples, physical-world scenarios, attacks and defenses
♻ ☆ Robust Policy Learning via Offline Skill Diffusion AAAI
Skill-based reinforcement learning (RL) approaches have shown considerable promise, especially in solving long-horizon tasks via hierarchical structures. These skills, learned task-agnostically from offline datasets, can accelerate the policy learning process for new tasks. Yet, the application of these skills in different domains remains restricted due to their inherent dependency on the datasets, which poses a challenge when attempting to learn a skill-based policy via RL for a target domain different from the datasets' domains. In this paper, we present a novel offline skill learning framework DuSkill which employs a guided Diffusion model to generate versatile skills extended from the limited skills in datasets, thereby enhancing the robustness of policy learning for tasks in different domains. Specifically, we devise a guided diffusion-based skill decoder in conjunction with the hierarchical encoding to disentangle the skill embedding space into two distinct representations, one for encapsulating domain-invariant behaviors and the other for delineating the factors that induce domain variations in the behaviors. Our DuSkill framework enhances the diversity of skills learned offline, thus enabling to accelerate the learning procedure of high-level policies for different domains. Through experiments, we show that DuSkill outperforms other skill-based imitation learning and RL algorithms for several long-horizon tasks, demonstrating its benefits in few-shot imitation and online RL.
comment: 11 pages, 6 figures; Accepted for AAAI Conference on Artificial Intelligence (AAAI 2024); Published version
♻ ☆ A Survey on Deep Learning for Theorem Proving
Theorem proving is a fundamental aspect of mathematics, spanning from informal reasoning in natural language to rigorous derivations in formal systems. In recent years, the advancement of deep learning, especially the emergence of large language models, has sparked a notable surge of research exploring these techniques to enhance the process of theorem proving. This paper presents a comprehensive survey of deep learning for theorem proving by offering (i) a thorough review of existing approaches across various tasks such as autoformalization, premise selection, proofstep generation, and proof search; (ii) an extensive summary of curated datasets and strategies for synthetic data generation; (iii) a detailed analysis of evaluation metrics and the performance of state-of-the-art methods; and (iv) a critical discussion on the persistent challenges and the promising avenues for future exploration. Our survey aims to serve as a foundational reference for deep learning approaches in theorem proving, inspiring and catalyzing further research endeavors in this rapidly growing field. A curated list of papers is available at https://github.com/zhaoyu-li/DL4TP.
♻ ☆ Vanilla Gradient Descent for Oblique Decision Trees
Decision Trees (DTs) constitute one of the major highly non-linear AI models, valued, e.g., for their efficiency on tabular data. Learning accurate DTs is, however, complicated, especially for oblique DTs, and does take a significant training time. Further, DTs suffer from overfitting, e.g., they proverbially "do not generalize" in regression tasks. Recently, some works proposed ways to make (oblique) DTs differentiable. This enables highly efficient gradient-descent algorithms to be used to learn DTs. It also enables generalizing capabilities by learning regressors at the leaves simultaneously with the decisions in the tree. Prior approaches to making DTs differentiable rely either on probabilistic approximations at the tree's internal nodes (soft DTs) or on approximations in gradient computation at the internal node (quantized gradient descent). In this work, we propose DTSemNet, a novel semantically equivalent and invertible encoding for (hard, oblique) DTs as Neural Networks (NNs), that uses standard vanilla gradient descent. Experiments across various classification and regression benchmarks show that oblique DTs learned using DTSemNet are more accurate than oblique DTs of similar size learned using state-of-the-art techniques. Further, DT training time is significantly reduced. We also experimentally demonstrate that DTSemNet can learn DT policies as efficiently as NN policies in the Reinforcement Learning (RL) setup with physical inputs (dimensions $\leq32$). The code is available at {\color{blue}\textit{\url{https://github.com/CPS-research-group/dtsemnet}}}.
comment: Published in ECAI-2024. Full version (includes supplementary material)
♻ ☆ Imperceptible Rhythm Backdoor Attacks: Exploring Rhythm Transformation for Embedding Undetectable Vulnerabilities on Speech Recognition
Speech recognition is an essential start ring of human-computer interaction, and recently, deep learning models have achieved excellent success in this task. However, when the model training and private data provider are always separated, some security threats that make deep neural networks (DNNs) abnormal deserve to be researched. In recent years, the typical backdoor attacks have been researched in speech recognition systems. The existing backdoor methods are based on data poisoning. The attacker adds some incorporated changes to benign speech spectrograms or changes the speech components, such as pitch and timbre. As a result, the poisoned data can be detected by human hearing or automatic deep algorithms. To improve the stealthiness of data poisoning, we propose a non-neural and fast algorithm called Random Spectrogram Rhythm Transformation (RSRT) in this paper. The algorithm combines four steps to generate stealthy poisoned utterances. From the perspective of rhythm component transformation, our proposed trigger stretches or squeezes the mel spectrograms and recovers them back to signals. The operation keeps timbre and content unchanged for good stealthiness. Our experiments are conducted on two kinds of speech recognition tasks, including testing the stealthiness of poisoned samples by speaker verification and automatic speech recognition. The results show that our method has excellent effectiveness and stealthiness. The rhythm trigger needs a low poisoning rate and gets a very high attack success rate.
♻ ☆ Neural Machine Unranking
We tackle the problem of machine unlearning within neural information retrieval, termed Neural Machine UnRanking (NuMuR) for short. Many of the mainstream task- or model-agnostic approaches for machine unlearning were designed for classification tasks. First, we demonstrate that these methods perform poorly on NuMuR tasks due to the unique challenges posed by neural information retrieval. Then, we develop a methodology for NuMuR named Contrastive and Consistent Loss (CoCoL), which effectively balances the objectives of data forgetting and model performance retention. Experimental results demonstrate that CoCoL facilitates more effective and controllable data removal than existing techniques.
♻ ☆ A Scalable Quantum Non-local Neural Network for Image Classification
Non-local operations play a crucial role in computer vision enabling the capture of long-range dependencies through weighted sums of features across the input, surpassing the constraints of traditional convolution operations that focus solely on local neighborhoods. Non-local operations typically require computing pairwise relationships between all elements in a set, leading to quadratic complexity in terms of time and memory. Due to the high computational and memory demands, scaling non-local neural networks to large-scale problems can be challenging. This article introduces a hybrid quantum-classical scalable non-local neural network, referred to as Quantum Non-Local Neural Network (QNL-Net), to enhance pattern recognition. The proposed QNL-Net relies on inherent quantum parallelism to allow the simultaneous processing of a large number of input features enabling more efficient computations in quantum-enhanced feature space and involving pairwise relationships through quantum entanglement. We benchmark our proposed QNL-Net with other quantum counterparts to binary classification with datasets MNIST and CIFAR-10. The simulation findings showcase our QNL-Net achieves cutting-edge accuracy levels in binary image classification among quantum classifiers while utilizing fewer qubits.
comment: preprint, 12 pages (including references and appendix), 5 figures
♻ ☆ MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving professional molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e., SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX. In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. Moreover, a handcrafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. Then, to establish an alignment between MolX and the LLM's textual input space, the whole model in which the LLM is frozen, is pre-trained with a versatile strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across 4 downstream molecule-related tasks ranging from molecule-to-text translation to retrosynthesis, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters 0.53% and 0.82%, respectively.
♻ ☆ Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove trojans and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
♻ ☆ Achieving the Tightest Relaxation of Sigmoids for Formal Verification
In the field of formal verification, Neural Networks (NNs) are typically reformulated into equivalent mathematical programs which are optimized over. To overcome the inherent non-convexity of these reformulations, convex relaxations of nonlinear activation functions are typically utilized. Common relaxations (i.e., static linear cuts) of "S-shaped" activation functions, however, can be overly loose, slowing down the overall verification process. In this paper, we derive tuneable hyperplanes which upper and lower bound the sigmoid activation function. When tuned in the dual space, these affine bounds smoothly rotate around the nonlinear manifold of the sigmoid activation function. This approach, termed $\alpha$-sig, allows us to tractably incorporate the tightest possible, element-wise convex relaxation of the sigmoid activation function into a formal verification framework. We embed these relaxations inside of large verification tasks and compare their performance to LiRPA and $\alpha$-CROWN, a state-of-the-art verification duo.
♻ ☆ Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?
Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns about how demographic groups might be treated unfairly by machine learning classifiers. In this work we consider a different motivation; learning from biased training data. We posit several ways in which training data may be biased, including having a more noisy or negatively biased labeling process on members of a disadvantaged group, or a decreased prevalence of positive or negative examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to correct this problem. In particular, we find that the Equal Opportunity fairness constraint (Hardt, Price, and Srebro 2016) combined with ERM will provably recover the Bayes Optimal Classifier under a range of bias models. We also consider other recovery methods including reweighting the training data, Equalized Odds, and Demographic Parity. These theoretical results provide additional motivation for considering fairness interventions even if an actor cares primarily about accuracy.
♻ ☆ Quantum Many-Body Physics Calculations with Large Language Models
Large language models (LLMs) have demonstrated an unprecedented ability to perform complex tasks in multiple domains, including mathematical and scientific reasoning. We demonstrate that with carefully designed prompts, LLMs can accurately carry out key calculations in research papers in theoretical physics. We focus on a broadly used approximation method in quantum physics: the Hartree-Fock method, requiring an analytic multi-step calculation deriving approximate Hamiltonian and corresponding self-consistency equations. To carry out the calculations using LLMs, we design multi-step prompt templates that break down the analytic calculation into standardized steps with placeholders for problem-specific information. We evaluate GPT-4's performance in executing the calculation for 15 research papers from the past decade, demonstrating that, with correction of intermediate steps, it can correctly derive the final Hartree-Fock Hamiltonian in 13 cases and makes minor errors in 2 cases. Aggregating across all research papers, we find an average score of 87.5 (out of 100) on the execution of individual calculation steps. Overall, the requisite skill for doing these calculations is at the graduate level in quantum condensed matter theory. We further use LLMs to mitigate the two primary bottlenecks in this evaluation process: (i) extracting information from papers to fill in templates and (ii) automatic scoring of the calculation steps, demonstrating good results in both cases. The strong performance is the first step for developing algorithms that automatically explore theoretical hypotheses at an unprecedented scale.
comment: 9 pages, 4 figures. Supplemental material in the source file
♻ ☆ Understanding Generative AI Content with Embedding Models
The construction of high-quality numerical features is critical to any quantitative data analysis. Feature engineering has been historically addressed by carefully hand-crafting data representations based on domain expertise. This work views the internal representations of modern deep neural networks (DNNs), called embeddings, as an automated form of traditional feature engineering. For trained DNNs, we show that these embeddings can reveal interpretable, high-level concepts in unstructured sample data. We use these embeddings in natural language and computer vision tasks to uncover both inherent heterogeneity in the underlying data and human-understandable explanations for it. In particular, we find empirical evidence that there is inherent separability between real data and that generated from AI models.
♻ ☆ Self-Supervised Multiple Instance Learning for Acute Myeloid Leukemia Classification
Automated disease diagnosis using medical image analysis relies on deep learning, often requiring large labeled datasets for supervised model training. Diseases like Acute Myeloid Leukemia (AML) pose challenges due to scarce and costly annotations on a single-cell level. Multiple Instance Learning (MIL) addresses weakly labeled scenarios but necessitates powerful encoders typically trained with labeled data. In this study, we explore Self-Supervised Learning (SSL) as a pre-training approach for MIL-based AML subtype classification from blood smears, removing the need for labeled data during encoder training. We investigate the three state-of-the-art SSL methods SimCLR, SwAV, and DINO, and compare their performance against supervised pre-training. Our findings show that SSL-pretrained encoders achieve comparable performance, showcasing the potential of SSL in MIL. This breakthrough offers a cost-effective and data-efficient solution, propelling the field of AI-based disease diagnosis.
Can a Bayesian Oracle Prevent Harm from an Agent?
Is there a way to design powerful AI systems based on machine learning methods that would satisfy probabilistic safety guarantees? With the long-term goal of obtaining a probabilistic guarantee that would apply in every context, we consider estimating a context-dependent bound on the probability of violating a given safety specification. Such a risk evaluation would need to be performed at run-time to provide a guardrail against dangerous actions of an AI. Noting that different plausible hypotheses about the world could produce very different outcomes, and because we do not know which one is right, we derive bounds on the safety violation probability predicted under the true but unknown hypothesis. Such bounds could be used to reject potentially dangerous actions. Our main results involve searching for cautious but plausible hypotheses, obtained by a maximization that involves Bayesian posteriors over hypotheses. We consider two forms of this result, in the iid case and in the non-iid case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.
♻ ☆ Unmasking Context Injection on Interactive Large Language Models
Large Language Models (LLMs) such as ChatGPT and Llama have become prevalent in real-world applications, exhibiting impressive text generation performance. LLMs are fundamentally developed from a scenario where the input data remains static and unstructured. To behave interactively, LLM-based chat systems must integrate prior chat history as context into their inputs, following a pre-defined structure. However, LLMs cannot separate user inputs from context, enabling context injection. This paper introduces a methodology to systematically inject misleading context (i.e., chat history) into LLM conversations without prior knowledge of the target model. We formalize context injection through a response retrieval task and propose an LLM-Guided Genetic Algorithm (LLMGA) to create effective injection prompts, leading the target LLM to recognize injected context as genuine. We explore how context injection can be used to elicit disallowed content, posing risks of illegal actions and inappropriate responses. Our elicitation strategies, including acceptance elicitation and word anonymization, can effectively elicit disallowed responses with success rates reaching 97% on ChatGPT. Comprehensive evaluations on real-world LLMs including ChatGPT and Llama-2/3 demonstrate the efficacy of LLMGA and our injection strategies. We also discuss potential countermeasures that can be adopted for detecting injection and developing more secure models. Our findings provide insights into the challenges associated with the real-world deployment of LLMs for interactive and structured data scenarios.
♻ ☆ On the Vulnerability of Fairness Constrained Learning to Malicious Noise
We consider the vulnerability of fairness-constrained learning to small amounts of malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and presented negative results showing there exist data distributions where for several fairness constraints, any proper learner will exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we show we can incur only a $\Theta(\alpha)$ loss in accuracy, where $\alpha$ is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an $O(\sqrt{\alpha})$ loss, and give a matching $\Omega(\sqrt{\alpha})$lower bound. In contrast, Konstantinov and Lampert (2021) showed for proper learners the loss in accuracy for both notions is $\Omega(1)$. The key technical novelty of our work is how randomization can bypass simple "tricks" an adversary can use to amplify his power. We also consider additional fairness notions including Equalized Odds and Calibration. For these fairness notions, the excess accuracy clusters into three natural regimes $O(\alpha)$,$O(\sqrt{\alpha})$ and $O(1)$. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data.
Graphics 5
☆ DreamCinema: Cinematic Transfer with Free Camera and 3D Character
We are living in a flourishing era of digital media, where everyone has the potential to become a personal filmmaker. Current research on cinematic transfer empowers filmmakers to reproduce and manipulate the visual elements (e.g., cinematography and character behaviors) from classic shots. However, characters in the reimagined films still rely on manual crafting, which involves significant technical complexity and high costs, making it unattainable for ordinary users. Furthermore, their estimated cinematography lacks smoothness due to inadequate capturing of inter-frame motion and modeling of physical trajectories. Fortunately, the remarkable success of 2D and 3D AIGC has opened up the possibility of efficiently generating characters tailored to users' needs, diversifying cinematography. In this paper, we propose DreamCinema, a novel cinematic transfer framework that pioneers generative AI into the film production paradigm, aiming at facilitating user-friendly film creation. Specifically, we first extract cinematic elements (i.e., human and camera pose) and optimize the camera trajectory. Then, we apply a character generator to efficiently create 3D high-quality characters with a human structure prior. Finally, we develop a structure-guided motion transfer strategy to incorporate generated characters into film creation and transfer it via 3D graphics engines smoothly. Extensive experiments demonstrate the effectiveness of our method for creating high-quality films with free camera and 3D characters.
comment: Project page: https://liuff19.github.io/DreamCinema
☆ A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures
We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
☆ Subsurface Scattering for 3D Gaussian Splatting
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
comment: Project page: https://sss.jdihlmann.com/
♻ ☆ Topological Simplifcation of Jacobi Sets for Piecewise-Linear Bivariate 2D Scalar Fields with Adjustment of the Underlying Data
Jacobi sets are an important tool to study the relationship between functions. Defined as the set of all points where the function's gradients are linearly dependent, Jacobi sets extend the notion of critical point to multifields. In practice, Jacobi sets for piecewise-linear approximations of smooth functions can become very complex and large due to noise and numerical errors. Existing methods that simplify Jacobi sets exist, but either do not address how the functions' values have to change in order to have simpler Jacobi sets or remain purely theoretical. In this paper, we present a method that modifies 2D bivariate scalar fields such that Jacobi set components that are due to noise are removed, while preserving the essential structures of the fields. The method uses the Jacobi set to decompose the domain, stores the and weighs the resulting regions in a neighborhood graph, which is then used to determine which regions to join by collapsing the image of the region's cells. We investigate the influence of different tie-breaks when building the neighborhood graphs and the treatment of collapsed cells. We apply our algorithm to a range of datasets, both analytical and real-world and compare its performance to simple data smoothing.
♻ ☆ Diverse Part Synthesis for 3D Shape Creation
Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
Robotics 42
☆ Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation
Modern machine learning systems rely on large datasets to attain broad generalization, and this often poses a challenge in robot learning, where each robotic platform and task might have only a small dataset. By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets, which in turn can lead to better generalization and robustness. However, training a single policy on multi-robot data is challenging because robots can have widely varying sensors, actuators, and control frequencies. We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment. We train CrossFormer on the largest and most diverse dataset to date, 900K trajectories across 20 different robot embodiments. We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds. Unlike prior work, our model does not require manual alignment of the observation or action spaces. Extensive experiments in the real world show that our method matches the performance of specialist policies tailored for each embodiment, while also significantly outperforming the prior state of the art in cross-embodiment learning.
comment: Project website at https://crossformer-model.github.io/
☆ EmbodiedSAM: Online Segment Any 3D Thing in Real Time
Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration, so an online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed. Since high-quality 3D data is limited, directly training such a model in 3D is almost infeasible. Meanwhile, vision foundation models (VFM) has revolutionized the field of 2D computer vision with superior performance, which makes the use of VFM to assist embodied 3D perception a promising direction. However, most existing VFM-assisted 3D perception methods are either offline or too slow that cannot be applied in practical embodied tasks. In this paper, we aim to leverage Segment Anything Model (SAM) for real-time 3D instance segmentation in an online setting. This is a challenging problem since future frames are not available in the input streaming RGB-D video, and an instance may be observed in several frames so object matching between frames is required. To address these challenges, we first propose a geometric-aware query lifting module to represent the 2D masks generated by SAM by 3D-aware queries, which is then iteratively refined by a dual-level query decoder. In this way, the 2D masks are transferred to fine-grained shapes on 3D point clouds. Benefit from the query representation for 3D masks, we can compute the similarity matrix between the 3D masks from different views by efficient matrix operation, which enables real-time inference. Experiments on ScanNet, ScanNet200, SceneNN and 3RScan show our method achieves leading performance even compared with offline methods. Our method also demonstrates great generalization ability in several zero-shot dataset transferring experiments and show great potential in open-vocabulary and data-efficient setting. Code and demo are available at https://xuxw98.github.io/ESAM/, with only one RTX 3090 GPU required for training and evaluation.
comment: Project page: https://xuxw98.github.io/ESAM/
☆ Informed, Constrained, Aligned: A Field Analysis on Degeneracy-aware Point Cloud Registration in the Wild
The ICP registration algorithm has been a preferred method for LiDAR-based robot localization for nearly a decade. However, even in modern SLAM solutions, ICP can degrade and become unreliable in geometrically ill-conditioned environments. Current solutions primarily focus on utilizing additional sources of information, such as external odometry, to either replace the degenerate directions of the optimization solution or add additional constraints in a sensor-fusion setup afterward. In response, this work investigates and compares new and existing degeneracy mitigation methods for robust LiDAR-based localization and analyzes the efficacy of these approaches in degenerate environments for the first time in the literature at this scale. Specifically, this work proposes and investigates i) the incorporation of different types of constraints into the ICP algorithm, ii) the effect of using active or passive degeneracy mitigation techniques, and iii) the choice of utilizing global point cloud registration methods on the ill-conditioned ICP problem in LiDAR degenerate environments. The study results are validated through multiple real-world field and simulated experiments. The analysis shows that active optimization degeneracy mitigation is necessary and advantageous in the absence of reliable external estimate assistance for LiDAR-SLAM. Furthermore, introducing degeneracy-aware hard constraints in the optimization before or during the optimization is shown to perform better in the wild than by including the constraints after. Moreover, with heuristic fine-tuned parameters, soft constraints can provide equal or better results in complex ill-conditioned scenarios. The implementations used in the analysis of this work are made publicly available to the community.
comment: Submitted to IEEE Transactions on Field Robotics
☆ ACE: A Cross-Platform Visual-Exoskeletons System for Low-Cost Dexterous Teleoperation
Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
comment: Webpage: https://ace-teleop.github.io/
☆ An Advanced Microscopic Energy Consumption Model for Automated Vehicle:Development, Calibration, Verification
The automated vehicle (AV) equipped with the Adaptive Cruise Control (ACC) system is expected to reduce the fuel consumption for the intelligent transportation system. This paper presents the Advanced ACC-Micro (AA-Micro) model, a new energy consumption model based on micro trajectory data, calibrated and verified by empirical data. Utilizing a commercial AV equipped with the ACC system as the test platform, experiments were conducted at the Columbus 151 Speedway, capturing data from multiple ACC and Human-Driven (HV) test runs. The calibrated AA-Micro model integrates features from traditional energy consumption models and demonstrates superior goodness of fit, achieving an impressive 90% accuracy in predicting ACC system energy consumption without overfitting. A comprehensive statistical evaluation of the AA-Micro model's applicability and adaptability in predicting energy consumption and vehicle trajectories indicated strong model consistency and reliability for ACC vehicles, evidenced by minimal variance in RMSE values and uniform RSS distributions. Conversely, significant discrepancies were observed when applying the model to HV data, underscoring the necessity for specialized models to accurately predict energy consumption for HV and ACC systems, potentially due to their distinct energy consumption characteristics.
☆ D-RMGPT: Robot-assisted collaborative tasks driven by large multimodal models
Collaborative robots are increasingly popular for assisting humans at work and daily tasks. However, designing and setting up interfaces for human-robot collaboration is challenging, requiring the integration of multiple components, from perception and robot task control to the hardware itself. Frequently, this leads to highly customized solutions that rely on large amounts of costly training data, diverging from the ideal of flexible and general interfaces that empower robots to perceive and adapt to unstructured environments where they can naturally collaborate with humans. To overcome these challenges, this paper presents the Detection-Robot Management GPT (D-RMGPT), a robot-assisted assembly planner based on Large Multimodal Models (LMM). This system can assist inexperienced operators in assembly tasks without requiring any markers or previous training. D-RMGPT is composed of DetGPT-V and R-ManGPT. DetGPT-V, based on GPT-4V(vision), perceives the surrounding environment through one-shot analysis of prompted images of the current assembly stage and the list of components to be assembled. It identifies which components have already been assembled by analysing their features and assembly requirements. R-ManGPT, based on GPT-4, plans the next component to be assembled and generates the robot's discrete actions to deliver it to the human co-worker. Experimental tests on assembling a toy aircraft demonstrated that D-RMGPT is flexible and intuitive to use, achieving an assembly success rate of 83% while reducing the assembly time for inexperienced operators by 33% compared to the manual process. http://robotics-and-ai.github.io/LMMmodels/
☆ Bayesian Optimization Framework for Efficient Fleet Design in Autonomous Multi-Robot Exploration
This study addresses the challenge of fleet design optimization in the context of heterogeneous multi-robot fleets, aiming to obtain feasible designs that balance performance and costs. In the domain of autonomous multi-robot exploration, reinforcement learning agents play a central role, offering adaptability to complex terrains and facilitating collaboration among robots. However, modifying the fleet composition results in changes in the learned behavior, and training multi-robot systems using multi-agent reinforcement learning is expensive. Therefore, an exhaustive evaluation of each potential fleet design is infeasible. To tackle these hurdles, we introduce Bayesian Optimization for Fleet Design (BOFD), a framework leveraging multi-objective Bayesian Optimization to explore fleets on the Pareto front of performance and cost while accounting for uncertainty in the design space. Moreover, we establish a sub-linear bound for cumulative regret, supporting BOFD's robustness and efficacy. Extensive benchmark experiments in synthetic and simulated environments demonstrate the superiority of our framework over state-of-the-art methods, achieving efficient fleet designs with minimal fleet evaluations.
☆ Collaborative Robot Arm Inserting Nasopharyngeal Swabs with Admittance Control
The nasopharyngeal (NP) swab sample test, commonly used to detect COVID-19 and other respiratory illnesses, involves moving a swab through the nasal cavity to collect samples from the nasopharynx. While typically this is done by human healthcare workers, there is a significant societal interest to enable robots to do this test to reduce exposure to patients and to free up human resources. The task is challenging from the robotics perspective because of the dexterity and safety requirements. While other works have implemented specific hardware solutions, our research differentiates itself by using a ubiquitous rigid robotic arm. This work presents a case study where we investigate the strengths and challenges using compliant control system to accomplish NP swab tests with such a robotic configuration. To accomplish this, we designed a force sensing end-effector that integrates with the proposed torque controlled compliant control loop. We then conducted experiments where the robot inserted NP swabs into a 3D printed nasal cavity phantom. Ultimately, we found that the compliant control system outperformed a basic position controller and shows promise for human use. However, further efforts are needed to ensure the initial alignment with the nostril and to address head motion.
comment: 13 pages, 9 figures. See https://uwaterloo.ca/scholar/pqjlee/collaborative-robot-arm-inserting-nasopharyngeal-swabs-admittance-control for supplementary data
☆ Online state vector reduction during model predictive control with gradient-based trajectory optimisation
Non-prehensile manipulation in high-dimensional systems is challenging for a variety of reasons, one of the main reasons is the computationally long planning times that come with a large state space. Trajectory optimisation algorithms have proved their utility in a wide variety of tasks, but, like most methods struggle scaling to the high dimensional systems ubiquitous to non-prehensile manipulation in clutter as well as deformable object manipulation. We reason that, during manipulation, different degrees of freedom will become more or less important to the task over time as the system evolves. We leverage this idea to reduce the number of degrees of freedom considered in a trajectory optimisation problem, to reduce planning times. This idea is particularly relevant in the context of model predictive control (MPC) where the cost landscape of the optimisation problem is constantly evolving. We provide simulation results under asynchronous MPC and show our methods are capable of achieving better overall performance due to the decreased policy lag whilst still being able to optimise trajectories effectively.
comment: 18 pages, 4 figures, accepted to WAFR 2024
☆ Enhanced Visual SLAM for Collision-free Driving with Lightweight Autonomous Cars
The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced with optical flow to estimate the car's poses and extract rich texture information from the scene. In the path planning phase, we employ a method combining a control Lyapunov function and control barrier function in the form of quadratic program (CLF-CBF-QP) together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To validate the performance and robustness of the proposed method, simulation experiments were conducted with a car in various complex indoor environments using the Gazebo simulation environment. Our method can effectively avoid obstacles in the scenes. The proposed algorithm outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple simulated scenes.
comment: 16 pages; Submitted to a journal
☆ RaNDT SLAM: Radar SLAM Based on Intensity-Augmented Normal Distributions Transform
Rescue robotics sets high requirements to perception algorithms due to the unstructured and potentially vision-denied environments. Pivoting Frequency-Modulated Continuous Wave radars are an emerging sensing modality for SLAM in this kind of environment. However, the complex noise characteristics of radar SLAM makes, particularly indoor, applications computationally demanding and slow. In this work, we introduce a novel radar SLAM framework, RaNDT SLAM, that operates fast and generates accurate robot trajectories. The method is based on the Normal Distributions Transform augmented by radar intensity measures. Motion estimation is based on fusion of motion model, IMU data, and registration of the intensity-augmented Normal Distributions Transform. We evaluate RaNDT SLAM in a new benchmark dataset and the Oxford Radar RobotCar dataset. The new dataset contains indoor and outdoor environments besides multiple sensing modalities (LiDAR, radar, and IMU).
comment: This work was accepted by the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024
☆ A Survey of Embodied Learning for Object-Centric Robotic Manipulation
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
☆ Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles
The global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments. However, GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks. Thus, an alternative navigation system is required when the use of GPS is restricted or prohibited. To this end, we present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in GNSS-restricted marine environments. In our approach, the UAV flies along the shoreline at a consistent altitude, continuously tracking and detecting the USV using a deep learning-based approach on camera images. Subsequently, triangulation techniques are applied to estimate the USV's position relative to the UAV, utilizing geometric information and datalink range from the UAV. We propose adjusting the UAV's camera angle based on the pixel error between the USV and the image center throughout the localization process to enhance accuracy. Additionally, visual measurements are integrated into an Extended Kalman Filter (EKF) for robust state estimation. To validate our proposed method, we utilize a USV equipped with onboard sensors and a UAV equipped with a camera. A heterogeneous robotic interface is established to facilitate communication between the USV and UAV. We demonstrate the efficacy of our approach through a series of experiments conducted during the ``Muhammad Bin Zayed International Robotic Challenge (MBZIRC-2024)'' in real marine environments, incorporating noisy measurements and ocean disturbances. The successful outcomes indicate the potential of our method to complement GPS for USV navigation.
☆ AS-LIO: Spatial Overlap Guided Adaptive Sliding Window LiDAR-Inertial Odometry for Aggressive FOV Variation
LiDAR-Inertial Odometry (LIO) demonstrates outstanding accuracy and stability in general low-speed and smooth motion scenarios. However, in high-speed and intense motion scenarios, such as sharp turns, two primary challenges arise: firstly, due to the limitations of IMU frequency, the error in estimating significantly non-linear motion states escalates; secondly, drastic changes in the Field of View (FOV) may diminish the spatial overlap between LiDAR frame and pointcloud map (or between frames), leading to insufficient data association and constraint degradation. To address these issues, we propose a novel Adaptive Sliding window LIO framework (AS-LIO) guided by the Spatial Overlap Degree (SOD). Initially, we assess the SOD between the LiDAR frames and the registered map, directly evaluating the adverse impact of current FOV variation on pointcloud alignment. Subsequently, we design an adaptive sliding window to manage the continuous LiDAR stream and control state updates, dynamically adjusting the update step according to the SOD. This strategy enables our odometry to adaptively adopt higher update frequency to precisely characterize trajectory during aggressive FOV variation, thus effectively reducing the non-linear error in positioning. Meanwhile, the historical constraints within the sliding window reinforce the frame-to-map data association, ensuring the robustness of state estimation. Experiments show that our AS-LIO framework can quickly perceive and respond to challenging FOV change, outperforming other state-of-the-art LIO frameworks in terms of accuracy and robustness.
comment: 8 pages, 6 figures
☆ Subgoal-based Hierarchical Reinforcement Learning for Multi-Agent Collaboration
Recent advancements in reinforcement learning have made significant impacts across various domains, yet they often struggle in complex multi-agent environments due to issues like algorithm instability, low sampling efficiency, and the challenges of exploration and dimensionality explosion. Hierarchical reinforcement learning (HRL) offers a structured approach to decompose complex tasks into simpler sub-tasks, which is promising for multi-agent settings. This paper advances the field by introducing a hierarchical architecture that autonomously generates effective subgoals without explicit constraints, enhancing both flexibility and stability in training. We propose a dynamic goal generation strategy that adapts based on environmental changes. This method significantly improves the adaptability and sample efficiency of the learning process. Furthermore, we address the critical issue of credit assignment in multi-agent systems by synergizing our hierarchical architecture with a modified QMIX network, thus improving overall strategy coordination and efficiency. Comparative experiments with mainstream reinforcement learning algorithms demonstrate the superior convergence speed and performance of our approach in both single-agent and multi-agent environments, confirming its effectiveness and flexibility in complex scenarios. Our code is open-sourced at: \url{https://github.com/SICC-Group/GMAH}.
☆ Reflex-Based Open-Vocabulary Navigation without Prior Knowledge Using Omnidirectional Camera and Multiple Vision-Language Models
Various robot navigation methods have been developed, but they are mainly based on Simultaneous Localization and Mapping (SLAM), reinforcement learning, etc., which require prior map construction or learning. In this study, we consider the simplest method that does not require any map construction or learning, and execute open-vocabulary navigation of robots without any prior knowledge to do this. We applied an omnidirectional camera and pre-trained vision-language models to the robot. The omnidirectional camera provides a uniform view of the surroundings, thus eliminating the need for complicated exploratory behaviors including trajectory generation. By applying multiple pre-trained vision-language models to this omnidirectional image and incorporating reflective behaviors, we show that navigation becomes simple and does not require any prior setup. Interesting properties and limitations of our method are discussed based on experiments with the mobile robot Fetch.
comment: Accepted at Advanced Robotics, website - https://haraduka.github.io/omnidirectional-vlm/
☆ Deep Reinforcement Learning for Decentralized Multi-Robot Control: A DQN Approach to Robustness and Information Integration
The superiority of Multi-Robot Systems (MRS) in various complex environments is unquestionable. However, in complex situations such as search and rescue, environmental monitoring, and automated production, robots are often required to work collaboratively without a central control unit. This necessitates an efficient and robust decentralized control mechanism to process local information and guide the robots' behavior. In this work, we propose a new decentralized controller design method that utilizes the Deep Q-Network (DQN) algorithm from deep reinforcement learning, aimed at improving the integration of local information and robustness of multi-robot systems. The designed controller allows each robot to make decisions independently based on its local observations while enhancing the overall system's collaborative efficiency and adaptability to dynamic environments through a shared learning mechanism. Through testing in simulated environments, we have demonstrated the effectiveness of this controller in improving task execution efficiency, strengthening system fault tolerance, and enhancing adaptability to the environment. Furthermore, we explored the impact of DQN parameter tuning on system performance, providing insights for further optimization of the controller design. Our research not only showcases the potential application of the DQN algorithm in the decentralized control of multi-robot systems but also offers a new perspective on how to enhance the overall performance and robustness of the system through the integration of local information.
comment: Multi-robot system, Reinforcement learning, Information ingrated
☆ ViIK: Flow-based Vision Inverse Kinematics Solver with Fusing Collision Checking
Inverse Kinematics (IK) is to find the robot's configurations that satisfy the target pose of the end effector. In motion planning, diverse configurations were required in case a feasible trajectory was not found. Meanwhile, collision checking (CC), e.g. Oriented bounding box (OBB), Discrete Oriented Polytope (DOP), and Quickhull \cite{quickhull}, needs to be done for each configuration provided by the IK solver to ensure every goal configuration for motion planning is available. This means the classical IK solver and CC algorithm should be executed repeatedly for every configuration. Thus, the preparation time is long when the required number of goal configurations is large, e.g. motion planning in cluster environments. Moreover, structured maps, which might be difficult to obtain, were required by classical collision-checking algorithms. To sidestep such two issues, we propose a flow-based vision method that can output diverse available configurations by fusing inverse kinematics and collision checking, named Vision Inverse Kinematics solver (ViIK). Moreover, ViIK uses RGB images as the perception of environments. ViIK can output 1000 configurations within 40 ms, and the accuracy is about 3 millimeters and 1.5 degrees. The higher accuracy can be obtained by being refined by the classical IK solver within a few iterations. The self-collision rates can be lower than 2%. The collision-with-env rates can be lower than 10% in most scenes. The code is available at: https://github.com/AdamQLMeng/ViIK.
☆ FUSELOC: Fusing Global and Local Descriptors to Disambiguate 2D-3D Matching in Visual Localization
Hierarchical methods represent state-of-the-art visual localization, optimizing search efficiency by using global descriptors to focus on relevant map regions. However, this state-of-the-art performance comes at the cost of substantial memory requirements, as all database images must be stored for feature matching. In contrast, direct 2D-3D matching algorithms require significantly less memory but suffer from lower accuracy due to the larger and more ambiguous search space. We address this ambiguity by fusing local and global descriptors using a weighted average operator within a 2D-3D search framework. This fusion rearranges the local descriptor space such that geographically nearby local descriptors are closer in the feature space according to the global descriptors. Therefore, the number of irrelevant competing descriptors decreases, specifically if they are geographically distant, thereby increasing the likelihood of correctly matching a query descriptor. We consistently improve the accuracy over local-only systems and achieve performance close to hierarchical methods while halving memory requirements. Extensive experiments using various state-of-the-art local and global descriptors across four different datasets demonstrate the effectiveness of our approach. For the first time, our approach enables direct matching algorithms to benefit from global descriptors while maintaining memory efficiency. The code for this paper will be published at \href{https://github.com/sontung/descriptor-disambiguation}{github.com/sontung/descriptor-disambiguation}.
☆ Evaluating Gait Symmetry with a Smart Robotic Walker: A Novel Approach to Mobility Assessment IROS
Gait asymmetry, a consequence of various neurological or physical conditions such as aging and stroke, detrimentally impacts bipedal locomotion, causing biomechanical alterations, increasing the risk of falls and reducing quality of life. Addressing this critical issue, this paper introduces a novel diagnostic method for gait symmetry analysis through the use of an assistive robotic Smart Walker equipped with an innovative asymmetry detection scheme. This method analyzes sensor measurements capturing the interaction torque between user and walker. By applying a seasonal-trend decomposition tool, we isolate gait-specific patterns within these data, allowing for the estimation of stride durations and calculation of a symmetry index. Through experiments involving 5 experimenters, we demonstrate the Smart Walker's capability in detecting and quantifying gait asymmetry by achieving an accuracy of 84.9% in identifying asymmetric cases in a controlled testing environment. Further analysis explores the classification of these asymmetries based on their underlying causes, providing valuable insights for gait assessment. The results underscore the potential of the device as a precise, ready-to-use monitoring tool for personalized rehabilitation, facilitating targeted interventions for enhanced patient outcomes.
comment: 7 pages, 5 figures, accepted for the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, UAE, 2024
☆ Optimized Kalman Filter based State Estimation and Height Control in Hopping Robots
Quadrotor-based multimodal hopping and flying locomotion significantly improves efficiency and operation time as compared to purely flying systems. However, effective control necessitates continuous estimation of the vertical states. A single hopping state estimator has been shown (Kang 2024), in which two vertical states (position, acceleration) are measured and only velocity is estimated using a moving horizon estimation and visual inertial odometry at 200 Hz. This technique requires complex sensors (IMU, lidar, depth camera, contact force sensor), and computationally intensive calculations (12-core, 5 GHz processor), for a maximum hop height of $\sim$0.6 m at 3.65 kg. Here we show a trained Kalman filter based hopping vertical state estimator (HVSE), requiring only vertical acceleration measurements. Our results show the HVSE can estimate more states (position, velocity) with a mean-absolute-error in the hop apex ratio (height error/ground truth) of 12.5\%, running $\sim$4.2x faster (840 Hz) on a substantially less powerful processor (dual-core 240 MHz) with over $\sim$6.7x the hopping height (4.02 m) at 20\% of the mass (672 g). The presented general HVSE, and training procedure are broadly applicable to jumping, hopping, and legged robots across a wide range of sizes and hopping heights.
comment: 14 pages, 6 figures, 5 tables
Visual Localization in 3D Maps: Comparing Point Cloud, Mesh, and NeRF Representations
This paper introduces and assesses a cross-modal global visual localization system that can localize camera images within a color 3D map representation built using both visual and lidar sensing. We present three different state-of-the-art methods for creating the color 3D maps: point clouds, meshes, and neural radiance fields (NeRF). Our system constructs a database of synthetic RGB and depth image pairs from these representations. This database serves as the basis for global localization. We present an automatic approach that builds this database by synthesizing novel images of the scene and exploiting the 3D structure encoded in the different representations. Next, we present a global localization system that relies on the synthetic image database to accurately estimate the 6 DoF camera poses of monocular query images. Our localization approach relies on different learning-based global descriptors and feature detectors which enable robust image retrieval and matching despite the domain gap between (real) query camera images and the synthetic database images. We assess the system's performance through extensive real-world experiments in both indoor and outdoor settings, in order to evaluate the effectiveness of each map representation and the benefits against traditional structure-from-motion localization approaches. Our results show that all three map representations can achieve consistent localization success rates of 55% and higher across various environments. NeRF synthesized images show superior performance, localizing query images at an average success rate of 72%. Furthermore, we demonstrate that our synthesized database enables global localization even when the map creation data and the localization sequence are captured when travelling in opposite directions. Our system, operating in real-time on a mobile laptop equipped with a GPU, achieves a processing rate of 1Hz.
♻ ☆ Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations TRO
Learning from Demonstrations, the field that proposes to learn robot behavior models from data, is gaining popularity with the emergence of deep generative models. Although the problem has been studied for years under names such as Imitation Learning, Behavioral Cloning, or Inverse Reinforcement Learning, classical methods have relied on models that don't capture complex data distributions well or don't scale well to large numbers of demonstrations. In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets. In this survey, we aim to provide a unified and comprehensive review of the last year's progress in the use of deep generative models in robotics. We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks. We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning. One of the most important elements of generative models is the generalization out of distributions. In our survey, we review the different decisions the community has made to improve the generalization of the learned models. Finally, we highlight the research challenges and propose a number of future directions for learning deep generative models in robotics.
comment: 20 pages, 11 figures, submitted to TRO
♻ ☆ D$^3$FlowSLAM: Self-Supervised Dynamic SLAM with Flow Motion Decomposition and DINO Guidance
In this paper, we introduce a self-supervised deep SLAM method that robustly operates in dynamic scenes while accurately identifying dynamic components. Our method leverages a dual-flow representation for static flow and dynamic flow, facilitating effective scene decomposition in dynamic environments. We propose a dynamic update module based on this representation and develop a dense SLAM system that excels in dynamic scenarios. In addition, we design a self-supervised training scheme using DINO as a prior, enabling label-free training. Our method achieves superior accuracy compared to other self-supervised methods. It also matches or even surpasses the performance of existing supervised methods in some cases. All code and data will be made publicly available upon acceptance.
comment: Homepage: https://zju3dv.github.io/deflowslam
♻ ☆ Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities since their data association usually relies on feature correspondences. Additionally, learning-based SLAM systems often fall short in terms of real-time performance and accuracy. Balancing real-time performance with dense 3D reconstruction capabilities is a challenging problem. In this paper, we propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting, for 3D scene representation and pose estimation. This technique leverages the real-time rendering performance of 3D Gaussian Splatting with rasterization and allows for differentiable optimization in real time through CUDA implementation. We also enable mesh reconstruction from 3D Gaussians for explicit dense 3D reconstruction. To estimate accurate camera poses, we utilize a rotation-translation decoupled strategy with inverse optimization. This involves iteratively updating both in several iterations through gradient-based optimization. This process includes differentiably rendering RGB, depth, and silhouette maps and updating the camera parameters to minimize a combined loss of photometric loss, depth geometry loss, and visibility loss, given the existing 3D Gaussian map. However, 3D Gaussian Splatting (3DGS) struggles to accurately represent surfaces due to the multi-view inconsistency of 3D Gaussians, which can lead to reduced accuracy in both camera pose estimation and scene reconstruction. To address this, we utilize depth priors as additional regularization to enforce geometric constraints, thereby improving the accuracy of both pose estimation and 3D reconstruction. We also provide extensive experimental results on public benchmark datasets to demonstrate the effectiveness of our proposed methods in terms of pose accuracy, geometric accuracy, and rendering performance.
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
♻ ☆ Tilde: Teleoperation for Dexterous In-Hand Manipulation Learning with a DeltaHand
Dexterous robotic manipulation remains a challenging domain due to its strict demands for precision and robustness on both hardware and software. While dexterous robotic hands have demonstrated remarkable capabilities in complex tasks, efficiently learning adaptive control policies for hands still presents a significant hurdle given the high dimensionalities of hands and tasks. To bridge this gap, we propose Tilde, an imitation learning-based in-hand manipulation system on a dexterous DeltaHand. It leverages 1) a low-cost, configurable, simple-to-control, soft dexterous robotic hand, DeltaHand, 2) a user-friendly, precise, real-time teleoperation interface, TeleHand, and 3) an efficient and generalizable imitation learning approach with diffusion policies. Our proposed TeleHand has a kinematic twin design to the DeltaHand that enables precise one-to-one joint control of the DeltaHand during teleoperation. This facilitates efficient high-quality data collection of human demonstrations in the real world. To evaluate the effectiveness of our system, we demonstrate the fully autonomous closed-loop deployment of diffusion policies learned from demonstrations across seven dexterous manipulation tasks with an average 90% success rate.
♻ ☆ Toward Control of Wheeled Humanoid Robots with Unknown Payloads: Equilibrium Point Estimation via Real-to-Sim Adaptation
Model-based controllers using a linearized model around the system's equilibrium point is a common approach in the control of a wheeled humanoid due to their less computational load and ease of stability analysis. However, controlling a wheeled humanoid robot while it lifts an unknown object presents significant challenges, primarily due to the lack of knowledge in object dynamics. This paper presents a framework designed for predicting the new equilibrium point explicitly to control a wheeled-legged robot with unknown dynamics. We estimated the total mass and center of mass of the system from its response to initially unknown dynamics, then calculated the new equilibrium point accordingly. To avoid using additional sensors (e.g., force torque sensor) and reduce the effort of obtaining expensive real data, a data-driven approach is utilized with a novel real-to-sim adaptation. A more accurate nonlinear dynamics model, offering a closer representation of real-world physics, is injected into a rigid-body simulation for real-to-sim adaptation. The nonlinear dynamics model parameters were optimized using Particle Swarm Optimization. The efficacy of this framework was validated on a physical wheeled inverted pendulum, a simplified model of a wheeled-legged robot. The experimental results indicate that employing a more precise analytical model with optimized parameters significantly reduces the gap between simulation and reality, thus improving the efficiency of a model-based controller in controlling a wheeled robot with unknown dynamics
♻ ☆ Online Learning-Based Inertial Parameter Identification of Unknown Object for Model-Based Control of Wheeled Humanoids
Identifying the dynamic properties of manipulated objects is essential for safe and accurate robot control. Most methods rely on low noise force torque sensors, long exciting signals, and solving nonlinear optimization problems, making the estimation process slow. In this work, we propose a fast, online learning based inertial parameter estimation framework that enhances model based control. We aim to quickly and accurately estimate the parameters of an unknown object using only the robot's proprioception through end to end learning, which is applicable for real-time system. To effectively capture features in robot proprioception affected by object dynamics and address the challenge of obtaining ground truth inertial parameters in the real world, we developed a high fidelity simulation that uses more accurate robot dynamics through real-to-sim adaptation. Since our adaptation focuses solely on the robot, task-relevant data (e.g., holding an object) is not required from the real world, simplifying the data collection process. Moreover, we address both parametric and non-parametric modeling errors independently using Robot System Identification and Gaussian Processes. We validate our estimator to assess how quickly and accurately it can estimate physically feasible parameters of an manipulated object given a specific trajectory obtained from a wheeled humanoid robot. Our estimator achieves faster estimation speeds (around 0.1 seconds) while maintaining accuracy comparable to other methods. Additionally, our estimator further highlight its benefits in improving the performance of model based control by compensating object's dynamics and reinitializing new equilibrium point of wheeled humanoid
♻ ☆ Comparative Analysis of NMPC and Fuzzy PID Controllers for Trajectory Tracking in Omni-Drive Robots: Design, Simulation, and Performance Evaluation
Trajectory tracking for an Omni-drive robot presents a challenging task that demands an efficient controller design. This paper introduces a self-optimizing controller, Type-1 fuzzyPID, which leverages dynamic and static system response analysis to overcome the limitations of manual tuning. To account for system uncertainties, an Interval Type-2 fuzzyPID controller is also developed. Both controllers are designed using Matlab/Simulink and tested through trajectory tracking simulations in the CoppeliaSim environment. Additionally, a non-linear model predictive controller(NMPC) is proposed and compared against the fuzzyPID controllers. The impact of tunable parameters on NMPC tracking accuracy is thoroughly examined. We also present plots of the step-response characteristics and noise rejection experiments for each controller. Simulation results validate the precision and effectiveness of NMPC over fuzzyPID controllers while trading computational complexity. Access to code and simulation environment is available in the following link: https://github.com/love481/Omni-drive-robot-Simulation.git.
♻ ☆ LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning IROS 2024
Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation. These domain-specific and labor-intensive modules are limited in addressing emerging tasks in real-world settings. Here, we present LLM^3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface. Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning. Crucially, LLM^3 incorporates motion planning feedback through prompting, allowing the LLM to iteratively refine its proposals by reasoning about motion failure. Consequently, LLM^3 interfaces between task planning and motion planning, alleviating the intricate design process of handling domain-specific messages between them. Through a series of simulations in a box-packing domain, we quantitatively demonstrate the effectiveness of LLM^3 in solving TAMP problems and the efficiency in selecting action parameters. Ablation studies underscore the significant contribution of motion failure reasoning to the success of LLM^3. Furthermore, we conduct qualitative experiments on a physical manipulator, demonstrating the practical applicability of our approach in real-world settings.
comment: IROS 2024. Codes available: https://github.com/AssassinWS/LLM-TAMP
♻ ☆ Runtime Verification and Field-based Testing for ROS-based Robotic Systems
Robotic systems are becoming pervasive and adopted in increasingly many domains, such as manufacturing, healthcare, and space exploration. To this end, engineering software has emerged as a crucial discipline for building maintainable and reusable robotic systems. The robotics software engineering research field has received increasing attention, fostering autonomy as a fundamental goal. However, robotics developers are still challenged to achieve this goal because simulation cannot realistically deliver solutions to emulate real-world phenomena. Robots also need to operate in unpredictable and uncontrollable environments, which require safe and trustworthy self-adaptation capabilities implemented in software. Typical techniques to address the challenges are runtime verification, field-based testing, and mitigation techniques that enable fail-safe solutions. However, no clear guidance exists for architecting ROS-based systems to enable and facilitate runtime verification and field-based testing. This paper aims to fill this gap by providing guidelines to help developers and quality assurance (QA) teams develop, verify, or test their robots in the field. These guidelines are carefully tailored to address the challenges and requirements of testing robotics systems in real-world scenarios. We conducted (i) a literature review on studies addressing runtime verification and field-based testing for robotic systems, (ii) mined ROS-based applications repositories, and (iii) validated the applicability, clarity, and usefulness via two questionnaires with 55 answers overall. We contribute 20 guidelines: 8 for developers and 12 for QA teams formulated for researchers and practitioners in robotic software engineering. Finally, we map our guidelines to open challenges in runtime verification and field-based testing for ROS-based systems, and we outline promising research directions in the field.
♻ ☆ Learning Coordinated Maneuver in Adversarial Environments
This paper aims to solve the coordination of a team of robots traversing a route in the presence of adversaries with random positions. Our goal is to minimize the overall cost of the team, which is determined by (i) the accumulated risk when robots stay in adversary-impacted zones and (ii) the mission completion time. During traversal, robots can reduce their speed and act as a `guard' (the slower, the better), which will decrease the risks certain adversary incurs. This leads to a trade-off between the robots' guarding behaviors and their travel speeds. The formulated problem is highly non-convex and cannot be efficiently solved by existing algorithms. Our approach includes a theoretical analysis of the robots' behaviors for the single-adversary case. As the scale of the problem expands, solving the optimal solution using optimization approaches is challenging, therefore, we employ reinforcement learning techniques by developing new encoding and policy-generating methods. Simulations demonstrate that our learning methods can efficiently produce team coordination behaviors. We discuss the reasoning behind these behaviors and explain why they reduce the overall team cost.
♻ ☆ Bi-CL: A Reinforcement Learning Framework for Robots Coordination Through Bi-level Optimization
In multi-robot systems, achieving coordinated missions remains a significant challenge due to the coupled nature of coordination behaviors and the lack of global information for individual robots. To mitigate these challenges, this paper introduces a novel approach, Bi-level Coordination Learning (Bi-CL), that leverages a bi-level optimization structure within a centralized training and decentralized execution paradigm. Our bi-level reformulation decomposes the original problem into a reinforcement learning level with reduced action space, and an imitation learning level that gains demonstrations from a global optimizer. Both levels contribute to improved learning efficiency and scalability. We note that robots' incomplete information leads to mismatches between the two levels of learning models. To address this, Bi-CL further integrates an alignment penalty mechanism, aiming to minimize the discrepancy between the two levels without degrading their training efficiency. We introduce a running example to conceptualize the problem formulation and apply Bi-CL to two variations of this example: route-based and graph-based scenarios. Simulation results demonstrate that Bi-CL can learn more efficiently and achieve comparable performance with traditional multi-agent reinforcement learning baselines for multi-robot coordination.
♻ ☆ MorphoMove: Bi-Modal Path Planner with MPC-based Path Follower for Multi-Limb Morphogenetic UAV
This paper discusses developments for a multi-limb morphogenetic UAV, MorphoGear, that is capable of both aerial flight and ground locomotion. A hybrid path planning algorithm based on the A* strategy has been developed, enabling seamless transition between air-to-ground navigation modes, thereby enhancing robot's mobility in complex environments. Moreover, precise path following is achieved during ground locomotion with a Model Predictive Control (MPC) architecture for its novel walking behaviour. Experimental validation was conducted in the Unity simulation environment utilizing Python scripts to compute control values. The algorithm's performance is validated by the Root Mean Squared Error (RMSE) of 0.91 cm and a maximum error of 1.85 cm, as demonstrated by the results. These developments highlight the adaptability of MorphoGear in navigation through cluttered environments, establishing it as a usable tool in autonomous exploration, both aerial and ground-based.
comment: Accepted in IEEE International Conference on Systems, Man, and Cybernetics (SMC 2024)
NGEL-SLAM: Neural Implicit Representation-based Global Consistent Low-Latency SLAM System
Neural implicit representations have emerged as a promising solution for providing dense geometry in Simultaneous Localization and Mapping (SLAM). However, existing methods in this direction fall short in terms of global consistency and low latency. This paper presents NGEL-SLAM to tackle the above challenges. To ensure global consistency, our system leverages a traditional feature-based tracking module that incorporates loop closure. Additionally, we maintain a global consistent map by representing the scene using multiple neural implicit fields, enabling quick adjustment to the loop closure. Moreover, our system allows for fast convergence through the use of octree-based implicit representations. The combination of rapid response to loop closure and fast convergence makes our system a truly low-latency system that achieves global consistency. Our system enables rendering high-fidelity RGB-D images, along with extracting dense and complete surfaces. Experiments on both synthetic and real-world datasets suggest that our system achieves state-of-the-art tracking and mapping accuracy while maintaining low latency.
♻ ☆ A Framework For Automated Dissection Along Tissue Boundary
Robotic surgery promises enhanced precision and adaptability over traditional surgical methods. It also offers the possibility of automating surgical interventions, resulting in reduced stress on the surgeon, better surgical outcomes, and lower costs. Cholecystectomy, the removal of the gallbladder, serves as an ideal model procedure for automation due to its distinct and well-contrasted anatomical features between the gallbladder and liver, along with standardized surgical maneuvers. Dissection is a frequently used subtask in cholecystectomy where the surgeon delivers the energy on the hook to detach the gallbladder from the liver. Hence, dissection along tissue boundaries is a good candidate for surgical automation. For the da Vinci surgical robot to perform the same procedure as a surgeon automatically, it needs to have the ability to (1) recognize and distinguish between the two different tissues (e.g. the liver and the gallbladder), (2) understand where the boundary between the two tissues is located in the 3D workspace, (3) locate the instrument tip relative to the boundary in the 3D space using visual feedback, and (4) move the instrument along the boundary. This paper presents a novel framework that addresses these challenges through AI-assisted image processing and vision-based robot control. We also present the ex-vivo evaluation of the automated procedure on chicken and pork liver specimens that demonstrates the effectiveness of the proposed framework.
comment: 9 pages, 7 figures, 7 tables, accepted in the 2024 International Conference on Biomedical Robotics and Biomechatronics (BioRob 2024)
♻ ☆ S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection
Recently, transformer-based methods have shown exceptional performance in monocular 3D object detection, which can predict 3D attributes from a single 2D image. These methods typically use visual and depth representations to generate query points on objects, whose quality plays a decisive role in the detection accuracy. However, current unsupervised attention mechanisms without any geometry appearance awareness in transformers are susceptible to producing noisy features for query points, which severely limits the network performance and also makes the model have a poor ability to detect multi-category objects in a single training process. To tackle this problem, this paper proposes a novel ``Supervised Shape&Scale-perceptive Deformable Attention'' (S$^3$-DA) module for monocular 3D object detection. Concretely, S$^3$-DA utilizes visual and depth features to generate diverse local features with various shapes and scales and predict the corresponding matching distribution simultaneously to impose valuable shape&scale perception for each query. Benefiting from this, S$^3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features. Besides, we propose a Multi-classification-based Shape&Scale Matching (MSM) loss to supervise the above process. Extensive experiments on KITTI and Waymo Open datasets demonstrate that S$^3$-DA significantly improves the detection accuracy, yielding state-of-the-art performance of single-category and multi-category 3D object detection in a single training process compared to the existing approaches. The source code will be made publicly available at https://github.com/mikasa3lili/S3-MonoDETR.
comment: The source code will be made publicly available at https://github.com/mikasa3lili/S3-MonoDETR
♻ ☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
Pointing the Way: Refining Radar-Lidar Localization Using Learned ICP Weights
This paper presents a novel deep-learning-based approach to improve localizing radar measurements against lidar maps. This radar-lidar localization leverages the benefits of both sensors; radar is resilient against adverse weather, while lidar produces high-quality maps in clear conditions. However, owing in part to the unique artefacts present in radar measurements, radar-lidar localization has struggled to achieve comparable performance to lidar-lidar systems, preventing it from being viable for autonomous driving. This work builds on ICP-based radar-lidar localization by including a learned preprocessing step that weights radar points based on high-level scan information. To train the weight-generating network, we present a novel, stand-alone, open-source differentiable ICP library. The learned weights facilitate ICP by filtering out harmful radar points related to artefacts, noise, and even vehicles on the road. Combining an analytical approach with a learned weight reduces overall localization errors and improves convergence in radar-lidar ICP results run on real-world autonomous driving data. Our code base is publicly available to facilitate reproducibility and extensions.
comment: 8 pages, 4 figures, 1 table. Submitted to Robotics and Automation Letters (RA-L)
♻ ☆ GazeRace: Revolutionizing Remote Piloting with Eye-Gaze Control
This paper presents GazeRace, a novel system that leverages eye-tracking technology for intuitive drone control. Using the MediaPipe library, the system translates eye movements into precise drone commands, enabling effective remote piloting. In testing, GazeRace demonstrated an 18% reduction in drone trajectory length while maintaining competitive speed with traditional controls. The results suggest that this approach enhances control accuracy and reduces user frustration, offering a significant advancement in the field of human-computer interaction and drone navigation.
comment: Accepted in: IEEE International Conference on Systems, Man, and Cybernetics (SMC 2024)
♻ ☆ Hamilton-Jacobi Reachability in Reinforcement Learning: A Survey
Recent literature has proposed approaches that learn control policies with high performance while maintaining safety guarantees. Synthesizing Hamilton-Jacobi (HJ) reachable sets has become an effective tool for verifying safety and supervising the training of reinforcement learning-based control policies for complex, high-dimensional systems. Previously, HJ reachability was restricted to verifying low-dimensional dynamical systems primarily because the computational complexity of the dynamic programming approach it relied on grows exponentially with the number of system states. In recent years, a litany of proposed methods addresses this limitation by computing the reachability value function simultaneously with learning control policies to scale HJ reachability analysis while still maintaining a reliable estimate of the true reachable set. These HJ reachability approximations are used to improve the safety, and even reward performance, of learned control policies and can solve challenging tasks such as those with dynamic obstacles and/or with lidar-based or vision-based observations. In this survey paper, we review the recent developments in the field of HJ reachability estimation in reinforcement learning that would provide a foundational basis for further research into reliability in high-dimensional systems.
comment: Accepted in IEEE Open Journal of Control Systems (OJ-CSYS)
Computer Vision 162
☆ GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models
Large multimodal models (LMMs) have exhibited proficiencies across many visual tasks. Although numerous well-known benchmarks exist to evaluate model performance, they increasingly have insufficient headroom. As such, there is a pressing need for a new generation of benchmarks challenging enough for the next generation of LMMs. One area that LMMs show potential is graph analysis, specifically, the tasks an analyst might typically perform when interpreting figures such as estimating the mean, intercepts or correlations of functions and data series. In this work, we introduce GRAB, a graph analysis benchmark, fit for current and future frontier LMMs. Our benchmark is entirely synthetic, ensuring high-quality, noise-free questions. GRAB is comprised of 2170 questions, covering four tasks and 23 graph properties. We evaluate 20 LMMs on GRAB, finding it to be a challenging benchmark, with the highest performing model attaining a score of just 21.7%. Finally, we conduct various ablations to investigate where the models succeed and struggle. We release GRAB to encourage progress in this important, growing domain.
☆ SynPlay: Importing Real-world Diversity for a Synthetic Human Dataset
We introduce Synthetic Playground (SynPlay), a new synthetic human dataset that aims to bring out the diversity of human appearance in the real world. We focus on two factors to achieve a level of diversity that has not yet been seen in previous works: i) realistic human motions and poses and ii) multiple camera viewpoints towards human instances. We first use a game engine and its library-provided elementary motions to create games where virtual players can take less-constrained and natural movements while following the game rules (i.e., rule-guided motion design as opposed to detail-guided design). We then augment the elementary motions with real human motions captured with a motion capture device. To render various human appearances in the games from multiple viewpoints, we use seven virtual cameras encompassing the ground and aerial views, capturing abundant aerial-vs-ground and dynamic-vs-static attributes of the scene. Through extensive and carefully-designed experiments, we show that using SynPlay in model training leads to enhanced accuracy over existing synthetic datasets for human detection and segmentation. The benefit of SynPlay becomes even greater for tasks in the data-scarce regime, such as few-shot and cross-domain learning tasks. These results clearly demonstrate that SynPlay can be used as an essential dataset with rich attributes of complex human appearances and poses suitable for model pretraining. SynPlay dataset comprising over 73k images and 6.5M human instances, is available for download at https://synplaydataset.github.io/.
comment: Project Page: https://synplaydataset.github.io/
☆ SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities, typically comprising a Vision Encoder, an Adapter, and a Large Language Model (LLM). The adapter serves as the critical bridge between the visual and language components. However, training adapters with image-level supervision often results in significant misalignment, undermining the LLMs' capabilities and limiting the potential of Multimodal LLMs. To address this, we introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models, such as CLIP, to align visual tokens with the LLM's embedding space through contrastive learning. This approach ensures a more coherent integration of visual and language representations, enhancing the performance and interpretability of multimodal LLMs while preserving their inherent capabilities. Extensive experiments show that SEA effectively improves MLLMs, particularly for smaller models, without adding extra data or inference computation. SEA also lays the groundwork for developing more general and adaptable solutions to enhance multimodal systems.
☆ EmbodiedSAM: Online Segment Any 3D Thing in Real Time
Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration, so an online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed. Since high-quality 3D data is limited, directly training such a model in 3D is almost infeasible. Meanwhile, vision foundation models (VFM) has revolutionized the field of 2D computer vision with superior performance, which makes the use of VFM to assist embodied 3D perception a promising direction. However, most existing VFM-assisted 3D perception methods are either offline or too slow that cannot be applied in practical embodied tasks. In this paper, we aim to leverage Segment Anything Model (SAM) for real-time 3D instance segmentation in an online setting. This is a challenging problem since future frames are not available in the input streaming RGB-D video, and an instance may be observed in several frames so object matching between frames is required. To address these challenges, we first propose a geometric-aware query lifting module to represent the 2D masks generated by SAM by 3D-aware queries, which is then iteratively refined by a dual-level query decoder. In this way, the 2D masks are transferred to fine-grained shapes on 3D point clouds. Benefit from the query representation for 3D masks, we can compute the similarity matrix between the 3D masks from different views by efficient matrix operation, which enables real-time inference. Experiments on ScanNet, ScanNet200, SceneNN and 3RScan show our method achieves leading performance even compared with offline methods. Our method also demonstrates great generalization ability in several zero-shot dataset transferring experiments and show great potential in open-vocabulary and data-efficient setting. Code and demo are available at https://xuxw98.github.io/ESAM/, with only one RTX 3090 GPU required for training and evaluation.
comment: Project page: https://xuxw98.github.io/ESAM/
☆ Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them. However, the ease of text-based image editing introduces significant risks, such as malicious editing for scams or intellectual property infringement. Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations. These methods are costly and specifically target prevalent Latent Diffusion Models (LDMs), while Pixel-domain Diffusion Models (PDMs) remain largely unexplored and robust against such attacks. Our work addresses this gap by proposing a novel attacking framework with a feature representation attack loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of protected images. Extensive experiments demonstrate the effectiveness of our approach in attacking dominant PDM-based editing methods (e.g., SDEdit) while maintaining reasonable protection fidelity and robustness against common defense methods. Additionally, our framework is extensible to LDMs, achieving comparable performance to existing approaches.
☆ ACE: A Cross-Platform Visual-Exoskeletons System for Low-Cost Dexterous Teleoperation
Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
comment: Webpage: https://ace-teleop.github.io/
☆ Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models
Traditional visual storytelling is complex, requiring specialized knowledge and substantial resources, yet often constrained by human creativity and creation precision. While Large Language Models (LLMs) enhance visual storytelling, current approaches often limit themselves to 2D visuals or oversimplify stories through motion synthesis and behavioral simulation, failing to create comprehensive, multi-dimensional narratives. To this end, we present Story3D-Agent, a pioneering approach that leverages the capabilities of LLMs to transform provided narratives into 3D-rendered visualizations. By integrating procedural modeling, our approach enables precise control over multi-character actions and motions, as well as diverse decorative elements, ensuring the long-range and dynamic 3D representation. Furthermore, our method supports narrative extension through logical reasoning, ensuring that generated content remains consistent with existing conditions. We have thoroughly evaluated our Story3D-Agent to validate its effectiveness, offering a basic framework to advance 3D story representation.
comment: Project page: https://yuzhou914.github.io/Story3D-Agent/
☆ EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model
In the realm of multimodal research, numerous studies leverage substantial image-text pairs to conduct modal alignment learning, transforming Large Language Models (LLMs) into Multimodal LLMs and excelling in a variety of visual-language tasks. The prevailing methodologies primarily fall into two categories: self-attention-based and cross-attention-based methods. While self-attention-based methods offer superior data efficiency due to their simple MLP architecture, they often suffer from lower computational efficiency due to concatenating visual and textual tokens as input for LLM. Conversely, cross-attention-based methods, although less data-efficient due to additional learnable parameters, exhibit higher computational efficiency by avoiding long sequence input for LLM. To address these trade-offs, we introduce the Data-Efficient and Compute-Efficient Multimodal Large Language Model (EE-MLLM). Without introducing additional modules or learnable parameters, EE-MLLM achieves both data and compute efficiency. Specifically, we modify the original self-attention mechanism in MLLM to a composite attention mechanism. This mechanism has two key characteristics: 1) Eliminating the computational overhead of self-attention within visual tokens to achieve compute efficiency, and 2) Reusing the weights on each layer of LLM to facilitate effective modality alignment between vision and language for data efficiency. Experimental results demonstrate the effectiveness of EE-MLLM across a range of benchmarks, including general-purpose datasets like MMBench and SeedBench, as well as fine-grained tasks such as TextVQA and DocVQA.
☆ DreamFactory: Pioneering Multi-Scene Long Video Generation with a Multi-Agent Framework
Current video generation models excel at creating short, realistic clips, but struggle with longer, multi-scene videos. We introduce \texttt{DreamFactory}, an LLM-based framework that tackles this challenge. \texttt{DreamFactory} leverages multi-agent collaboration principles and a Key Frames Iteration Design Method to ensure consistency and style across long videos. It utilizes Chain of Thought (COT) to address uncertainties inherent in large language models. \texttt{DreamFactory} generates long, stylistically coherent, and complex videos. Evaluating these long-form videos presents a challenge. We propose novel metrics such as Cross-Scene Face Distance Score and Cross-Scene Style Consistency Score. To further research in this area, we contribute the Multi-Scene Videos Dataset containing over 150 human-rated videos.
comment: 13 pages, 8 figures
☆ NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
comment: Under Reivew
☆ Timeline and Boundary Guided Diffusion Network for Video Shadow Detection ACM MM2024
Video Shadow Detection (VSD) aims to detect the shadow masks with frame sequence. Existing works suffer from inefficient temporal learning. Moreover, few works address the VSD problem by considering the characteristic (i.e., boundary) of shadow. Motivated by this, we propose a Timeline and Boundary Guided Diffusion (TBGDiff) network for VSD where we take account of the past-future temporal guidance and boundary information jointly. In detail, we design a Dual Scale Aggregation (DSA) module for better temporal understanding by rethinking the affinity of the long-term and short-term frames for the clipped video. Next, we introduce Shadow Boundary Aware Attention (SBAA) to utilize the edge contexts for capturing the characteristics of shadows. Moreover, we are the first to introduce the Diffusion model for VSD in which we explore a Space-Time Encoded Embedding (STEE) to inject the temporal guidance for Diffusion to conduct shadow detection. Benefiting from these designs, our model can not only capture the temporal information but also the shadow property. Extensive experiments show that the performance of our approach overtakes the state-of-the-art methods, verifying the effectiveness of our components. We release the codes, weights, and results at \url{https://github.com/haipengzhou856/TBGDiff}.
comment: ACM MM2024
☆ Embedding Ordinality to Binary Loss Function for Improving Solar Flare Forecasting
In this paper, we propose a novel loss function aimed at optimizing the binary flare prediction problem by embedding the intrinsic ordinal flare characteristics into the binary cross-entropy (BCE) loss function. This modification is intended to provide the model with better guidance based on the ordinal characteristics of the data and improve the overall performance of the models. For our experiments, we employ a ResNet34-based model with transfer learning to predict $\geq$M-class flares by utilizing the shape-based features of magnetograms of active region (AR) patches spanning from $-$90$^{\circ}$ to $+$90$^{\circ}$ of solar longitude as our input data. We use a composite skill score (CSS) as our evaluation metric, which is calculated as the geometric mean of the True Skill Score (TSS) and the Heidke Skill Score (HSS) to rank and compare our models' performance. The primary contributions of this work are as follows: (i) We introduce a novel approach to encode ordinality into a binary loss function showing an application to solar flare prediction, (ii) We enhance solar flare forecasting by enabling flare predictions for each AR across the entire solar disk, without any longitudinal restrictions, and evaluate and compare performance. (iii) Our candidate model, optimized with the proposed loss function, shows an improvement of $\sim$7%, $\sim$4%, and $\sim$3% for AR patches within $\pm$30$^\circ$, $\pm$60$^\circ$, and $\pm$90$^\circ$ of solar longitude, respectively in terms of CSS, when compared with standard BCE. Additionally, we demonstrate the ability to issue flare forecasts for ARs in near-limb regions (regions between $\pm$60$^{\circ}$ to $\pm$90$^{\circ}$) with a CSS=0.34 (TSS=0.50 and HSS=0.23), expanding the scope of AR-based models for solar flare prediction. This advances the reliability of solar flare forecasts, leading to more effective prediction capabilities.
comment: 10 Pages, 8 Figures. This manuscript is accepted to be published at DSAA 2024 conference. arXiv admin note: substantial text overlap with arXiv:2406.11054
☆ SBDet: A Symmetry-Breaking Object Detector via Relaxed Rotation-Equivariance
Introducing Group Equivariant Convolution (GConv) empowers models to explore symmetries hidden in visual data, improving their performance. However, in real-world scenarios, objects or scenes often exhibit perturbations of a symmetric system, specifically a deviation from a symmetric architecture, which can be characterized by a non-trivial action of a symmetry group, known as Symmetry-Breaking. Traditional GConv methods are limited by the strict operation rules in the group space, only ensuring features remain strictly equivariant under limited group transformations, making it difficult to adapt to Symmetry-Breaking or non-rigid transformations. Motivated by this, we introduce a novel Relaxed Rotation GConv (R2GConv) with our defined Relaxed Rotation-Equivariant group $\mathbf{R}_4$. Furthermore, we propose a Relaxed Rotation-Equivariant Network (R2Net) as the backbone and further develop the Symmetry-Breaking Object Detector (SBDet) for 2D object detection built upon it. Experiments demonstrate the effectiveness of our proposed R2GConv in natural image classification tasks, and SBDet achieves excellent performance in object detection tasks with improved generalization capabilities and robustness.
☆ MambaCSR: Dual-Interleaved Scanning for Compressed Image Super-Resolution With SSMs
We present MambaCSR, a simple but effective framework based on Mamba for the challenging compressed image super-resolution (CSR) task. Particularly, the scanning strategies of Mamba are crucial for effective contextual knowledge modeling in the restoration process despite it relying on selective state space modeling for all tokens. In this work, we propose an efficient dual-interleaved scanning paradigm (DIS) for CSR, which is composed of two scanning strategies: (i) hierarchical interleaved scanning is designed to comprehensively capture and utilize the most potential contextual information within an image by simultaneously taking advantage of the local window-based and sequential scanning methods; (ii) horizontal-to-vertical interleaved scanning is proposed to reduce the computational cost by leaving the redundancy between the scanning of different directions. To overcome the non-uniform compression artifacts, we also propose position-aligned cross-scale scanning to model multi-scale contextual information. Experimental results on multiple benchmarks have shown the great performance of our MambaCSR in the compressed image super-resolution task. The code will be soon available in~\textcolor{magenta}{\url{https://github.com/renyulin-f/MambaCSR}}.
☆ DH-Bench: Probing Depth and Height Perception of Large Visual-Language Models
Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications. The code and datasets for our benchmarks will be available at \url{https://tinyurl.com/DH-Bench1}.
☆ Open-Ended 3D Point Cloud Instance Segmentation
Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
☆ JieHua Paintings Style Feature Extracting Model using Stable Diffusion with ControlNet CCS
This study proposes a novel approach to extract stylistic features of Jiehua: the utilization of the Fine-tuned Stable Diffusion Model with ControlNet (FSDMC) to refine depiction techniques from artists' Jiehua. The training data for FSDMC is based on the opensource Jiehua artist's work collected from the Internet, which were subsequently manually constructed in the format of (Original Image, Canny Edge Features, Text Prompt). By employing the optimal hyperparameters identified in this paper, it was observed FSDMC outperforms CycleGAN, another mainstream style transfer model. FSDMC achieves FID of 3.27 on the dataset and also surpasses CycleGAN in terms of expert evaluation. This not only demonstrates the model's high effectiveness in extracting Jiehua's style features, but also preserves the original pre-trained semantic information. The findings of this study suggest that the application of FSDMC with appropriate hyperparameters can enhance the efficacy of the Stable Diffusion Model in the field of traditional art style migration tasks, particularly within the context of Jiehua.
comment: accepted by ICCSMT 2024
☆ CluMo: Cluster-based Modality Fusion Prompt for Continual Learning in Visual Question Answering
Large vision-language models (VLMs) have shown significant performance boost in various application domains. However, adopting them to deal with several sequentially encountered tasks has been challenging because finetuning a VLM on a task normally leads to reducing its generalization power and the capacity of learning new tasks as well as causing catastrophic forgetting on previously learned tasks. Enabling using VLMs in multimodal continual learning (CL) settings can help to address such scenarios. To improve generalization capacity and prevent catastrophic forgetting, we propose a novel prompt-based CL method for VLMs, namely $\textbf{Clu}$ster-based $\textbf{Mo}$dality Fusion Prompt (\textbf{CluMo}). We design a novel \textbf{Key-Key-Prompt} pair, where each prompt is associated with a visual prompt key and a textual prompt key. We adopt a two-stage training strategy. During the first stage, the single-modal keys are trained via $K$-means clustering algorithm to help select the best semantically matched prompt. During the second stage, the prompt keys are frozen, the selected prompt is attached to the input for training the VLM in the CL scenario. Experiments on two benchmarks demonstrate that our method achieves SOTA performance.
☆ Enhancing Cross-Modal Medical Image Segmentation through Compositionality MICCAI 2024
Cross-modal medical image segmentation presents a significant challenge, as different imaging modalities produce images with varying resolutions, contrasts, and appearances of anatomical structures. We introduce compositionality as an inductive bias in a cross-modal segmentation network to improve segmentation performance and interpretability while reducing complexity. The proposed network is an end-to-end cross-modal segmentation framework that enforces compositionality on the learned representations using learnable von Mises-Fisher kernels. These kernels facilitate content-style disentanglement in the learned representations, resulting in compositional content representations that are inherently interpretable and effectively disentangle different anatomical structures. The experimental results demonstrate enhanced segmentation performance and reduced computational costs on multiple medical datasets. Additionally, we demonstrate the interpretability of the learned compositional features. Code and checkpoints will be publicly available at: https://github.com/Trustworthy-AI-UU-NKI/Cross-Modal-Segmentation.
comment: 11 pages, 3 figures, 2 tables. Accepted at Deep Generative Models workshop @ MICCAI 2024 (DGM4MICCAI). This is the submitted manuscript with added link to github repo, funding acknowledgements and authors' names and affiliations. No further post submission improvements or corrections were integrated. Final version not published yet
☆ Iterative Object Count Optimization for Text-to-image Diffusion Models
We address a persistent challenge in text-to-image models: accurately generating a specified number of objects. Current models, which learn from image-text pairs, inherently struggle with counting, as training data cannot depict every possible number of objects for any given object. To solve this, we propose optimizing the generated image based on a counting loss derived from a counting model that aggregates an object\'s potential. Employing an out-of-the-box counting model is challenging for two reasons: first, the model requires a scaling hyperparameter for the potential aggregation that varies depending on the viewpoint of the objects, and second, classifier guidance techniques require modified models that operate on noisy intermediate diffusion steps. To address these challenges, we propose an iterated online training mode that improves the accuracy of inferred images while altering the text conditioning embedding and dynamically adjusting hyperparameters. Our method offers three key advantages: (i) it can consider non-derivable counting techniques based on detection models, (ii) it is a zero-shot plug-and-play solution facilitating rapid changes to the counting techniques and image generation methods, and (iii) the optimized counting token can be reused to generate accurate images without additional optimization. We evaluate the generation of various objects and show significant improvements in accuracy. The project page is available at https://ozzafar.github.io/count_token.
comment: Pre-print
☆ On Learnable Parameters of Optimal and Suboptimal Deep Learning Models
We scrutinize the structural and operational aspects of deep learning models, particularly focusing on the nuances of learnable parameters (weight) statistics, distribution, node interaction, and visualization. By establishing correlations between variance in weight patterns and overall network performance, we investigate the varying (optimal and suboptimal) performances of various deep-learning models. Our empirical analysis extends across widely recognized datasets such as MNIST, Fashion-MNIST, and CIFAR-10, and various deep learning models such as deep neural networks (DNNs), convolutional neural networks (CNNs), and vision transformer (ViT), enabling us to pinpoint characteristics of learnable parameters that correlate with successful networks. Through extensive experiments on the diverse architectures of deep learning models, we shed light on the critical factors that influence the functionality and efficiency of DNNs. Our findings reveal that successful networks, irrespective of datasets or models, are invariably similar to other successful networks in their converged weights statistics and distribution, while poor-performing networks vary in their weights. In addition, our research shows that the learnable parameters of widely varied deep learning models such as DNN, CNN, and ViT exhibit similar learning characteristics.
ControlCol: Controllability in Automatic Speaker Video Colorization
Adding color to black-and-white speaker videos automatically is a highly desirable technique. It is an artistic process that requires interactivity with humans for the best results. Many existing automatic video colorization systems provide little opportunity for the user to guide the colorization process. In this work, we introduce a novel automatic speaker video colorization system which provides controllability to the user while also maintaining high colorization quality relative to state-of-the-art techniques. We name this system ControlCol. ControlCol performs 3.5% better than the previous state-of-the-art DeOldify on the Grid and Lombard Grid datasets when PSNR, SSIM, FID and FVD are used as metrics. This result is also supported by our human evaluation, where in a head-to-head comparison, ControlCol is preferred 90% of the time to DeOldify. Example videos can be seen in the supplementary material.
☆ FRAP: Faithful and Realistic Text-to-Image Generation with Adaptive Prompt Weighting
Text-to-image (T2I) diffusion models have demonstrated impressive capabilities in generating high-quality images given a text prompt. However, ensuring the prompt-image alignment remains a considerable challenge, i.e., generating images that faithfully align with the prompt's semantics. Recent works attempt to improve the faithfulness by optimizing the latent code, which potentially could cause the latent code to go out-of-distribution and thus produce unrealistic images. In this paper, we propose FRAP, a simple, yet effective approach based on adaptively adjusting the per-token prompt weights to improve prompt-image alignment and authenticity of the generated images. We design an online algorithm to adaptively update each token's weight coefficient, which is achieved by minimizing a unified objective function that encourages object presence and the binding of object-modifier pairs. Through extensive evaluations, we show FRAP generates images with significantly higher prompt-image alignment to prompts from complex datasets, while having a lower average latency compared to recent latent code optimization methods, e.g., 4 seconds faster than D&B on the COCO-Subject dataset. Furthermore, through visual comparisons and evaluation on the CLIP-IQA-Real metric, we show that FRAP not only improves prompt-image alignment but also generates more authentic images with realistic appearances. We also explore combining FRAP with prompt rewriting LLM to recover their degraded prompt-image alignment, where we observe improvements in both prompt-image alignment and image quality.
☆ FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation MICCAI 2024
Federated Learning (FL) in Deep Learning (DL)-automated medical image segmentation helps preserving privacy by enabling collaborative model training without sharing patient data. However, FL faces challenges with data heterogeneity among institutions, leading to suboptimal global models. Integrating Disentangled Representation Learning (DRL) in FL can enhance robustness by separating data into distinct representations. Existing DRL methods assume heterogeneity lies solely in style features, overlooking content-based variability like lesion size and shape. We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets while maintaining overall efficacy. FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets. The code and pre-trained checkpoints are available at the following link: https://github.com/Trustworthy-AI-UU-NKI/Federated-Learning-Disentanglement
comment: 10 pages, 2 figures, 1 table, accepted at MICCAI 2024 Workshop on Distributed, Collaborative, & Federated Learning Workshop (DeCaF). This is the submitted manuscript with added link to github repo, funding acknowledgements and author names and affiliations. No further post submission improvements or corrections were integrated. Final version not published yet
☆ Supervised Representation Learning towards Generalizable Assembly State Recognition
Assembly state recognition facilitates the execution of assembly procedures, offering feedback to enhance efficiency and minimize errors. However, recognizing assembly states poses challenges in scalability, since parts are frequently updated, and the robustness to execution errors remains underexplored. To address these challenges, this paper proposes an approach based on representation learning and the novel intermediate-state informed loss function modification (ISIL). ISIL leverages unlabeled transitions between states and demonstrates significant improvements in clustering and classification performance for all tested architectures and losses. Despite being trained exclusively on images without execution errors, thorough analysis on error states demonstrates that our approach accurately distinguishes between correct states and states with various types of execution errors. The integration of the proposed algorithm can offer meaningful assistance to workers and mitigate unexpected losses due to procedural mishaps in industrial settings. The code is available at: https://timschoonbeek.github.io/state_rec
comment: 8 pages, 8 figures
☆ Robust 3D Gaussian Splatting for Novel View Synthesis in Presence of Distractors
3D Gaussian Splatting has shown impressive novel view synthesis results; nonetheless, it is vulnerable to dynamic objects polluting the input data of an otherwise static scene, so called distractors. Distractors have severe impact on the rendering quality as they get represented as view-dependent effects or result in floating artifacts. Our goal is to identify and ignore such distractors during the 3D Gaussian optimization to obtain a clean reconstruction. To this end, we take a self-supervised approach that looks at the image residuals during the optimization to determine areas that have likely been falsified by a distractor. In addition, we leverage a pretrained segmentation network to provide object awareness, enabling more accurate exclusion of distractors. This way, we obtain segmentation masks of distractors to effectively ignore them in the loss formulation. We demonstrate that our approach is robust to various distractors and strongly improves rendering quality on distractor-polluted scenes, improving PSNR by 1.86dB compared to 3D Gaussian Splatting.
comment: GCPR 2024, Project Page: https://paulungermann.github.io/Robust3DGaussians , Video: https://www.youtube.com/watch?v=P9unyR7yK3E
☆ Interpretable Long-term Action Quality Assessment BMVC
Long-term Action Quality Assessment (AQA) evaluates the execution of activities in videos. However, the length presents challenges in fine-grained interpretability, with current AQA methods typically producing a single score by averaging clip features, lacking detailed semantic meanings of individual clips. Long-term videos pose additional difficulty due to the complexity and diversity of actions, exacerbating interpretability challenges. While query-based transformer networks offer promising long-term modeling capabilities, their interpretability in AQA remains unsatisfactory due to a phenomenon we term Temporal Skipping, where the model skips self-attention layers to prevent output degradation. To address this, we propose an attention loss function and a query initialization method to enhance performance and interpretability. Additionally, we introduce a weight-score regression module designed to approximate the scoring patterns observed in human judgments and replace conventional single-score regression, improving the rationality of interpretability. Our approach achieves state-of-the-art results on three real-world, long-term AQA benchmarks. Our code is available at: https://github.com/dx199771/Interpretability-AQA
comment: Accepted to British Machine Vision Conference (BMVC) 2024
LiFCal: Online Light Field Camera Calibration via Bundle Adjustment
We propose LiFCal, a novel geometric online calibration pipeline for MLA-based light field cameras. LiFCal accurately determines model parameters from a moving camera sequence without precise calibration targets, integrating arbitrary metric scaling constraints. It optimizes intrinsic parameters of the light field camera model, the 3D coordinates of a sparse set of scene points and camera poses in a single bundle adjustment defined directly on micro image points. We show that LiFCal can reliably and repeatably calibrate a focused plenoptic camera using different input sequences, providing intrinsic camera parameters extremely close to state-of-the-art methods, while offering two main advantages: it can be applied in a target-free scene, and it is implemented online in a complete and continuous pipeline. Furthermore, we demonstrate the quality of the obtained camera parameters in downstream tasks like depth estimation and SLAM. Webpage: https://lifcal.github.io/
comment: Accepted to the German Conference on Pattern Recognition (GCPR) 2024
☆ Video-to-Text Pedestrian Monitoring (VTPM): Leveraging Computer Vision and Large Language Models for Privacy-Preserve Pedestrian Activity Monitoring at Intersections
Computer vision has advanced research methodologies, enhancing system services across various fields. It is a core component in traffic monitoring systems for improving road safety; however, these monitoring systems don't preserve the privacy of pedestrians who appear in the videos, potentially revealing their identities. Addressing this issue, our paper introduces Video-to-Text Pedestrian Monitoring (VTPM), which monitors pedestrian movements at intersections and generates real-time textual reports, including traffic signal and weather information. VTPM uses computer vision models for pedestrian detection and tracking, achieving a latency of 0.05 seconds per video frame. Additionally, it detects crossing violations with 90.2% accuracy by incorporating traffic signal data. The proposed framework is equipped with Phi-3 mini-4k to generate real-time textual reports of pedestrian activity while stating safety concerns like crossing violations, conflicts, and the impact of weather on their behavior with latency of 0.33 seconds. To enhance comprehensive analysis of the generated textual reports, Phi-3 medium is fine-tuned for historical analysis of these generated textual reports. This fine-tuning enables more reliable analysis about the pedestrian safety at intersections, effectively detecting patterns and safety critical events. The proposed VTPM offers a more efficient alternative to video footage by using textual reports reducing memory usage, saving up to 253 million percent, eliminating privacy issues, and enabling comprehensive interactive historical analysis.
☆ MCDubber: Multimodal Context-Aware Expressive Video Dubbing
Automatic Video Dubbing (AVD) aims to take the given script and generate speech that aligns with lip motion and prosody expressiveness. Current AVD models mainly utilize visual information of the current sentence to enhance the prosody of synthesized speech. However, it is crucial to consider whether the prosody of the generated dubbing aligns with the multimodal context, as the dubbing will be combined with the original context in the final video. This aspect has been overlooked in previous studies. To address this issue, we propose a Multimodal Context-aware video Dubbing model, termed \textbf{MCDubber}, to convert the modeling object from a single sentence to a longer sequence with context information to ensure the consistency of the global context prosody. MCDubber comprises three main components: (1) A context duration aligner aims to learn the context-aware alignment between the text and lip frames; (2) A context prosody predictor seeks to read the global context visual sequence and predict the context-aware global energy and pitch; (3) A context acoustic decoder ultimately predicts the global context mel-spectrogram with the assistance of adjacent ground-truth mel-spectrograms of the target sentence. Through this process, MCDubber fully considers the influence of multimodal context on the prosody expressiveness of the current sentence when dubbing. The extracted mel-spectrogram belonging to the target sentence from the output context mel-spectrograms is the final required dubbing audio. Extensive experiments on the Chem benchmark dataset demonstrate that our MCDubber significantly improves dubbing expressiveness compared to all advanced baselines. The code and demos are available at https://github.com/XiaoYuanJun-zy/MCDubber.
☆ Toward Enhancing Vehicle Color Recognition in Adverse Conditions: A Dataset and Benchmark
Vehicle information recognition is crucial in various practical domains, particularly in criminal investigations. Vehicle Color Recognition (VCR) has garnered significant research interest because color is a visually distinguishable attribute of vehicles and is less affected by partial occlusion and changes in viewpoint. Despite the success of existing methods for this task, the relatively low complexity of the datasets used in the literature has been largely overlooked. This research addresses this gap by compiling a new dataset representing a more challenging VCR scenario. The images - sourced from six license plate recognition datasets - are categorized into eleven colors, and their annotations were validated using official vehicle registration information. We evaluate the performance of four deep learning models on a widely adopted dataset and our proposed dataset to establish a benchmark. The results demonstrate that our dataset poses greater difficulty for the tested models and highlights scenarios that require further exploration in VCR. Remarkably, nighttime scenes account for a significant portion of the errors made by the best-performing model. This research provides a foundation for future studies on VCR, while also offering valuable insights for the field of fine-grained vehicle classification.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2024
☆ RaNDT SLAM: Radar SLAM Based on Intensity-Augmented Normal Distributions Transform
Rescue robotics sets high requirements to perception algorithms due to the unstructured and potentially vision-denied environments. Pivoting Frequency-Modulated Continuous Wave radars are an emerging sensing modality for SLAM in this kind of environment. However, the complex noise characteristics of radar SLAM makes, particularly indoor, applications computationally demanding and slow. In this work, we introduce a novel radar SLAM framework, RaNDT SLAM, that operates fast and generates accurate robot trajectories. The method is based on the Normal Distributions Transform augmented by radar intensity measures. Motion estimation is based on fusion of motion model, IMU data, and registration of the intensity-augmented Normal Distributions Transform. We evaluate RaNDT SLAM in a new benchmark dataset and the Oxford Radar RobotCar dataset. The new dataset contains indoor and outdoor environments besides multiple sensing modalities (LiDAR, radar, and IMU).
comment: This work was accepted by the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024
☆ Finite element-based space-time total variation-type regularization of the inverse problem in electrocardiographic imaging
Reconstructing cardiac electrical activity from body surface electric potential measurements results in the severely ill-posed inverse problem in electrocardiography. Many different regularization approaches have been proposed to improve numerical results and provide unique results. This work presents a novel approach for reconstructing the epicardial potential from body surface potential maps based on a space-time total variation-type regularization using finite elements, where a first-order primal-dual algorithm solves the underlying convex optimization problem. In several numerical experiments, the superior performance of this method and the benefit of space-time regularization for the reconstruction of epicardial potential on two-dimensional torso data and a three-dimensional rabbit heart compared to state-of-the-art methods are demonstrated.
☆ CHOTA: A Higher Order Accuracy Metric for Cell Tracking
The evaluation of cell tracking results steers the development of tracking methods, significantly impacting biomedical research. This is quantitatively achieved by means of evaluation metrics. Unfortunately, current metrics favor local correctness and weakly reward global coherence, impeding high-level biological analysis. To also foster global coherence, we propose the CHOTA metric (Cell-specific Higher Order Tracking Accuracy) which unifies the evaluation of all relevant aspects of cell tracking: cell detections and local associations, global coherence, and lineage tracking. We achieve this by introducing a new definition of the term 'trajectory' that includes the entire cell lineage and by including this into the well-established HOTA metric from general multiple object tracking. Furthermore, we provide a detailed survey of contemporary cell tracking metrics to compare our novel CHOTA metric and to show its advantages. All metrics are extensively evaluated on state-of-the-art real-data cell tracking results and synthetic results that simulate specific tracking errors. We show that CHOTA is sensitive to all tracking errors and gives a good indication of the biologically relevant capability of a method to reconstruct the full lineage of cells. It introduces a robust and comprehensive alternative to the currently used metrics in cell tracking. Python code is available at https://github.com/CellTrackingChallenge/py-ctcmetrics .
comment: Accepted at BIC Workshop at European Conference on Computer Vision 2024, 14 pages, 4 figures, 2 tables
☆ Positional Prompt Tuning for Efficient 3D Representation Learning
Point cloud analysis has achieved significant development and is well-performed in multiple downstream tasks like point cloud classification and segmentation, etc. Being conscious of the simplicity of the position encoding structure in Transformer-based architectures, we attach importance to the position encoding as a high-dimensional part and the patch encoder to offer multi-scale information. Together with the sequential Transformer, the whole module with position encoding comprehensively constructs a multi-scale feature abstraction module that considers both the local parts from the patch and the global parts from center points as position encoding. With only a few parameters, the position embedding module fits the setting of PEFT (Parameter-Efficient Fine-Tuning) tasks pretty well. Thus we unfreeze these parameters as a fine-tuning part. At the same time, we review the existing prompt and adapter tuning methods, proposing a fresh way of prompts and synthesizing them with adapters as dynamic adjustments. Our Proposed method of PEFT tasks, namely PPT, with only 1.05% of parameters for training, gets state-of-the-art results in several mainstream datasets, such as 95.01% accuracy in the ScanObjectNN OBJ_BG dataset. Codes will be released at https://github.com/zsc000722/PPT.
comment: tech report
☆ AutoDirector: Online Auto-scheduling Agents for Multi-sensory Composition
With the advancement of generative models, the synthesis of different sensory elements such as music, visuals, and speech has achieved significant realism. However, the approach to generate multi-sensory outputs has not been fully explored, limiting the application on high-value scenarios such as of directing a film. Developing a movie director agent faces two major challenges: (1) Lack of parallelism and online scheduling with production steps: In the production of multi-sensory films, there are complex dependencies between different sensory elements, and the production time for each element varies. (2) Diverse needs and clear communication demands with users: Users often cannot clearly express their needs until they see a draft, which requires human-computer interaction and iteration to continually adjust and optimize the film content based on user feedback. To address these issues, we introduce AutoDirector, an interactive multi-sensory composition framework that supports long shots, special effects, music scoring, dubbing, and lip-syncing. This framework improves the efficiency of multi-sensory film production through automatic scheduling and supports the modification and improvement of interactive tasks to meet user needs. AutoDirector not only expands the application scope of human-machine collaboration but also demonstrates the potential of AI in collaborating with humans in the role of a film director to complete multi-sensory films.
☆ Self-Supervised Iterative Refinement for Anomaly Detection in Industrial Quality Control
This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's effectiveness using two benchmark datasets, Kolektor SDD2 (KSDD2) and MVTec AD, covering a wide range of industrial products and defect types. Our experimental results demonstrate that the IRP consistently outperforms traditional anomaly detection models, particularly in environments with high noise levels. This study highlights the IRP's potential to significantly enhance anomaly detection processes in industrial settings, effectively managing the challenges of sparse and noisy data.
☆ Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance
Accurate prediction of 3D semantic occupancy from 2D visual images is vital in enabling autonomous agents to comprehend their surroundings for planning and navigation. State-of-the-art methods typically employ fully supervised approaches, necessitating a huge labeled dataset acquired through expensive LiDAR sensors and meticulous voxel-wise labeling by human annotators. The resource-intensive nature of this annotating process significantly hampers the application and scalability of these methods. We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data. Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues, facilitating a more efficient training process. Our framework exhibits notable properties: (1) Generalizability, applicable to various 3D semantic scene completion approaches, including 2D-3D lifting and 3D-2D transformer methods. (2) Effectiveness, as demonstrated through experiments on SemanticKITTI and NYUv2, wherein our method achieves up to 85% of the fully-supervised performance using only 10% labeled data. This approach not only reduces the cost and labor associated with data annotation but also demonstrates the potential for broader adoption in camera-based systems for 3D semantic occupancy prediction.
☆ GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation ICPR 2024
Learning meaningful local and global information remains a challenge in point cloud segmentation tasks. When utilizing local information, prior studies indiscriminately aggregates neighbor information from different classes to update query points, potentially compromising the distinctive feature of query points. In parallel, inaccurate modeling of long-distance contextual dependencies when utilizing global information can also impact model performance. To address these issues, we propose GSTran, a novel transformer network tailored for the segmentation task. The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer. In the local geometric transformer module, we explicitly calculate the geometric disparity within the local region. This enables amplifying the affinity with geometrically similar neighbor points while suppressing the association with other neighbors. In the global semantic transformer module, we design a multi-head voting strategy. This strategy evaluates semantic similarity across the entire spatial range, facilitating the precise capture of contextual dependencies. Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method, showing its superiority over other algorithms. The code is available at https://github.com/LAB123-tech/GSTran.
comment: ICPR 2024
☆ AnyDesign: Versatile Area Fashion Editing via Mask-Free Diffusion
Fashion image editing aims to modify a person's appearance based on a given instruction. Existing methods require auxiliary tools like segmenters and keypoint extractors, lacking a flexible and unified framework. Moreover, these methods are limited in the variety of clothing types they can handle, as most datasets focus on people in clean backgrounds and only include generic garments such as tops, pants, and dresses. These limitations restrict their applicability in real-world scenarios. In this paper, we first extend an existing dataset for human generation to include a wider range of apparel and more complex backgrounds. This extended dataset features people wearing diverse items such as tops, pants, dresses, skirts, headwear, scarves, shoes, socks, and bags. Additionally, we propose AnyDesign, a diffusion-based method that enables mask-free editing on versatile areas. Users can simply input a human image along with a corresponding prompt in either text or image format. Our approach incorporates Fashion DiT, equipped with a Fashion-Guidance Attention (FGA) module designed to fuse explicit apparel types and CLIP-encoded apparel features. Both Qualitative and quantitative experiments demonstrate that our method delivers high-quality fashion editing and outperforms contemporary text-guided fashion editing methods.
☆ UNetMamba: Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images
The semantic segmentation of high-resolution remote sensing images plays a crucial role in downstream applications such as urban planning and disaster assessment. However, existing Transformer-based methods suffer from the constraint between accuracy and efficiency. To overcome this dilemma, we propose UNetMamba, a novel Mamba-based semantic segmentation model. It incorporates a Mamba Segmentation Decoder (MSD) that can efficiently decode the complex information within high-resolution images, and a Local Supervision Module (LSM), which is train-only but can significantly enhance the perception of local contents. Extensive experiments demonstrate that UNet-Mamba outperforms the state-of-the-art methods with the mIoU increased by 0.87% on LoveDA and 0.36% on ISPRS Vaihingen, while achieving high efficiency through light weight, low memory footprint and low computational cost. The source code will soon be publicly available at https://github.com/EnzeZhu2001/UNetMamba.
☆ Evolution of Detection Performance throughout the Online Lifespan of Synthetic Images
Synthetic images disseminated online significantly differ from those used during the training and evaluation of the state-of-the-art detectors. In this work, we analyze the performance of synthetic image detectors as deceptive synthetic images evolve throughout their online lifespan. Our study reveals that, despite advancements in the field, current state-of-the-art detectors struggle to distinguish between synthetic and real images in the wild. Moreover, we show that the time elapsed since the initial online appearance of a synthetic image negatively affects the performance of most detectors. Ultimately, by employing a retrieval-assisted detection approach, we demonstrate the feasibility to maintain initial detection performance throughout the whole online lifespan of an image and enhance the average detection efficacy across several state-of-the-art detectors by 6.7% and 7.8% for balanced accuracy and AUC metrics, respectively.
☆ A Survey of Embodied Learning for Object-Centric Robotic Manipulation
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
☆ Just Project! Multi-Channel Despeckling, the Easy Way
Reducing speckle fluctuations in multi-channel SAR images is essential in many applications of SAR imaging such as polarimetric classification or interferometric height estimation. While single-channel despeckling has widely benefited from the application of deep learning techniques, extensions to multi-channel SAR images are much more challenging.This paper introduces MuChaPro, a generic framework that exploits existing single-channel despeckling methods. The key idea is to generate numerous single-channel projections, restore these projections, and recombine them into the final multi-channel estimate. This simple approach is shown to be effective in polarimetric and/or interferometric modalities. A special appeal of MuChaPro is the possibility to apply a self-supervised training strategy to learn sensor-specific networks for single-channel despeckling.
☆ EmoFace: Emotion-Content Disentangled Speech-Driven 3D Talking Face with Mesh Attention
The creation of increasingly vivid 3D virtual digital humans has become a hot topic in recent years. Currently, most speech-driven work focuses on training models to learn the relationship between phonemes and visemes to achieve more realistic lips. However, they fail to capture the correlations between emotions and facial expressions effectively. To solve this problem, we propose a new model, termed EmoFace. EmoFace employs a novel Mesh Attention mechanism, which helps to learn potential feature dependencies between mesh vertices in time and space. We also adopt, for the first time to our knowledge, an effective self-growing training scheme that combines teacher-forcing and scheduled sampling in a 3D face animation task. Additionally, since EmoFace is an autoregressive model, there is no requirement that the first frame of the training data must be a silent frame, which greatly reduces the data limitations and contributes to solve the current dilemma of insufficient datasets. Comprehensive quantitative and qualitative evaluations on our proposed high-quality reconstructed 3D emotional facial animation dataset, 3D-RAVDESS ($5.0343\times 10^{-5}$mm for LVE and $1.0196\times 10^{-5}$mm for EVE), and publicly available dataset VOCASET ($2.8669\times 10^{-5}$mm for LVE and $0.4664\times 10^{-5}$mm for EVE), demonstrate that our algorithm achieves state-of-the-art performance.
☆ MSCPT: Few-shot Whole Slide Image Classification with Multi-scale and Context-focused Prompt Tuning
Multiple instance learning (MIL) has become a standard paradigm for weakly supervised classification of whole slide images (WSI). However, this paradigm relies on the use of a large number of labelled WSIs for training. The lack of training data and the presence of rare diseases present significant challenges for these methods. Prompt tuning combined with the pre-trained Vision-Language models (VLMs) is an effective solution to the Few-shot Weakly Supervised WSI classification (FSWC) tasks. Nevertheless, applying prompt tuning methods designed for natural images to WSIs presents three significant challenges: 1) These methods fail to fully leverage the prior knowledge from the VLM's text modality; 2) They overlook the essential multi-scale and contextual information in WSIs, leading to suboptimal results; and 3) They lack exploration of instance aggregation methods. To address these problems, we propose a Multi-Scale and Context-focused Prompt Tuning (MSCPT) method for FSWC tasks. Specifically, MSCPT employs the frozen large language model to generate pathological visual language prior knowledge at multi-scale, guiding hierarchical prompt tuning. Additionally, we design a graph prompt tuning module to learn essential contextual information within WSI, and finally, a non-parametric cross-guided instance aggregation module has been introduced to get the WSI-level features. Based on two VLMs, extensive experiments and visualizations on three datasets demonstrated the powerful performance of our MSCPT.
comment: 11 pages, 5 figures, 5tables
☆ XDT-CXR: Investigating Cross-Disease Transferability in Zero-Shot Binary Classification of Chest X-Rays
This study explores the concept of cross-disease transferability (XDT) in medical imaging, focusing on the potential of binary classifiers trained on one disease to perform zero-shot classification on another disease affecting the same organ. Utilizing chest X-rays (CXR) as the primary modality, we investigate whether a model trained on one pulmonary disease can make predictions about another novel pulmonary disease, a scenario with significant implications for medical settings with limited data on emerging diseases. The XDT framework leverages the embedding space of a vision encoder, which, through kernel transformation, aids in distinguishing between diseased and non-diseased classes in the latent space. This capability is especially beneficial in resource-limited environments or in regions with low prevalence of certain diseases, where conventional diagnostic practices may fail. However, the XDT framework is currently limited to binary classification, determining only the presence or absence of a disease rather than differentiating among multiple diseases. This limitation underscores the supplementary role of XDT to traditional diagnostic tests in clinical settings. Furthermore, results show that XDT-CXR as a framework is able to make better predictions compared to other zero-shot learning (ZSL) baselines.
comment: Accepted in Machine Learning for Healthcare Conference MLHC 2024
☆ E-Bench: Subjective-Aligned Benchmark Suite for Text-Driven Video Editing Quality Assessment
Text-driven video editing has recently experienced rapid development. Despite this, evaluating edited videos remains a considerable challenge. Current metrics tend to fail to align with human perceptions, and effective quantitative metrics for video editing are still notably absent. To address this, we introduce E-Bench, a benchmark suite tailored to the assessment of text-driven video editing. This suite includes E-Bench DB, a video quality assessment (VQA) database for video editing. E-Bench DB encompasses a diverse set of source videos featuring various motions and subjects, along with multiple distinct editing prompts, editing results from 8 different models, and the corresponding Mean Opinion Scores (MOS) from 24 human annotators. Based on E-Bench DB, we further propose E-Bench QA, a quantitative human-aligned measurement for the text-driven video editing task. In addition to the aesthetic, distortion, and other visual quality indicators that traditional VQA methods emphasize, E-Bench QA focuses on the text-video alignment and the relevance modeling between source and edited videos. It proposes a new assessment network for video editing that attains superior performance in alignment with human preferences. To the best of our knowledge, E-Bench introduces the first quality assessment dataset for video editing and an effective subjective-aligned quantitative metric for this domain. All data and code will be publicly available at https://github.com/littlespray/E-Bench.
☆ OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal
Deep learning-based methods have shown remarkable performance in single JPEG artifacts removal task. However, existing methods tend to degrade on double JPEG images, which are prevalent in real-world scenarios. To address this issue, we propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT. We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block and design our model to cluster the similar patterns to remedy the difficulty of restoration. Our OAPT consists of two components: compression offset predictor and image reconstructor. Specifically, the predictor estimates pixel offsets between the first and second compression, which are then utilized to divide different patterns. The reconstructor is mainly based on several Hybrid Partition Attention Blocks (HPAB), combining vanilla window-based self-attention and sparse attention for clustered pattern features. Extensive experiments demonstrate that OAPT outperforms the state-of-the-art method by more than 0.16dB in double JPEG image restoration task. Moreover, without increasing any computation cost, the pattern clustering module in HPAB can serve as a plugin to enhance other transformer-based image restoration methods. The code will be available at https://github.com/QMoQ/OAPT.git .
comment: 14 pages, 9 figures. Codes and models are available at https://github.com/QMoQ/OAPT.git
☆ TrackGo: A Flexible and Efficient Method for Controllable Video Generation
Recent years have seen substantial progress in diffusion-based controllable video generation. However, achieving precise control in complex scenarios, including fine-grained object parts, sophisticated motion trajectories, and coherent background movement, remains a challenge. In this paper, we introduce TrackGo, a novel approach that leverages free-form masks and arrows for conditional video generation. This method offers users with a flexible and precise mechanism for manipulating video content. We also propose the TrackAdapter for control implementation, an efficient and lightweight adapter designed to be seamlessly integrated into the temporal self-attention layers of a pretrained video generation model. This design leverages our observation that the attention map of these layers can accurately activate regions corresponding to motion in videos. Our experimental results demonstrate that our new approach, enhanced by the TrackAdapter, achieves state-of-the-art performance on key metrics such as FVD, FID, and ObjMC scores. The project page of TrackGo can be found at: https://zhtjtcz.github.io/TrackGo-Page/
☆ MeTTA: Single-View to 3D Textured Mesh Reconstruction with Test-Time Adaptation BMVC 2024
Reconstructing 3D from a single view image is a long-standing challenge. One of the popular approaches to tackle this problem is learning-based methods, but dealing with the test cases unfamiliar with training data (Out-of-distribution; OoD) introduces an additional challenge. To adapt for unseen samples in test time, we propose MeTTA, a test-time adaptation (TTA) exploiting generative prior. We design joint optimization of 3D geometry, appearance, and pose to handle OoD cases with only a single view image. However, the alignment between the reference image and the 3D shape via the estimated viewpoint could be erroneous, which leads to ambiguity. To address this ambiguity, we carefully design learnable virtual cameras and their self-calibration. In our experiments, we demonstrate that MeTTA effectively deals with OoD scenarios at failure cases of existing learning-based 3D reconstruction models and enables obtaining a realistic appearance with physically based rendering (PBR) textures.
comment: Accepted at BMVC 2024. [Project page] https://metta3d.github.io/
MambaOcc: Visual State Space Model for BEV-based Occupancy Prediction with Local Adaptive Reordering
Occupancy prediction has attracted intensive attention and shown great superiority in the development of autonomous driving systems. The fine-grained environmental representation brought by occupancy prediction in terms of both geometry and semantic information has facilitated the general perception and safe planning under open scenarios. However, it also brings high computation costs and heavy parameters in existing works that utilize voxel-based 3d dense representation and Transformer-based quadratic attention. To address these challenges, in this paper, we propose a Mamba-based occupancy prediction method (MambaOcc) adopting BEV features to ease the burden of 3D scenario representation, and linear Mamba-style attention to achieve efficient long-range perception. Besides, to address the sensitivity of Mamba to sequence order, we propose a local adaptive reordering (LAR) mechanism with deformable convolution and design a hybrid BEV encoder comprised of convolution layers and Mamba. Extensive experiments on the Occ3D-nuScenes dataset demonstrate that MambaOcc achieves state-of-the-art performance in terms of both accuracy and computational efficiency. For example, compared to FlashOcc, MambaOcc delivers superior results while reducing the number of parameters by 42\% and computational costs by 39\%. Code will be available at https://github.com/Hub-Tian/MambaOcc.
☆ Low-Light Object Tracking: A Benchmark
In recent years, the field of visual tracking has made significant progress with the application of large-scale training datasets. These datasets have supported the development of sophisticated algorithms, enhancing the accuracy and stability of visual object tracking. However, most research has primarily focused on favorable illumination circumstances, neglecting the challenges of tracking in low-ligh environments. In low-light scenes, lighting may change dramatically, targets may lack distinct texture features, and in some scenarios, targets may not be directly observable. These factors can lead to a severe decline in tracking performance. To address this issue, we introduce LLOT, a benchmark specifically designed for Low-Light Object Tracking. LLOT comprises 269 challenging sequences with a total of over 132K frames, each carefully annotated with bounding boxes. This specially designed dataset aims to promote innovation and advancement in object tracking techniques for low-light conditions, addressing challenges not adequately covered by existing benchmarks. To assess the performance of existing methods on LLOT, we conducted extensive tests on 39 state-of-the-art tracking algorithms. The results highlight a considerable gap in low-light tracking performance. In response, we propose H-DCPT, a novel tracker that incorporates historical and darkness clue prompts to set a stronger baseline. H-DCPT outperformed all 39 evaluated methods in our experiments, demonstrating significant improvements. We hope that our benchmark and H-DCPT will stimulate the development of novel and accurate methods for tracking objects in low-light conditions. The LLOT and code are available at https://github.com/OpenCodeGithub/H-DCPT.
☆ Lookism: The overlooked bias in computer vision ECCV 2024
In recent years, there have been significant advancements in computer vision which have led to the widespread deployment of image recognition and generation systems in socially relevant applications, from hiring to security screening. However, the prevalence of biases within these systems has raised significant ethical and social concerns. The most extensively studied biases in this context are related to gender, race and age. Yet, other biases are equally pervasive and harmful, such as lookism, i.e., the preferential treatment of individuals based on their physical appearance. Lookism remains under-explored in computer vision but can have profound implications not only by perpetuating harmful societal stereotypes but also by undermining the fairness and inclusivity of AI technologies. Thus, this paper advocates for the systematic study of lookism as a critical bias in computer vision models. Through a comprehensive review of existing literature, we identify three areas of intersection between lookism and computer vision. We illustrate them by means of examples and a user study. We call for an interdisciplinary approach to address lookism, urging researchers, developers, and policymakers to prioritize the development of equitable computer vision systems that respect and reflect the diversity of human appearances.
comment: Paper accepted at the ECCV 2024 workshop named "Fairness and ethics towards transparent AI: facing the chalLEnge through model Debiasing (FAILED)", https://failed-workshop-eccv-2024.github.io/
☆ GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting
We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering).
comment: Project page: https://ganwanshui.github.io/GaussianOcc/
☆ BAdd: Bias Mitigation through Bias Addition
Computer vision (CV) datasets often exhibit biases that are perpetuated by deep learning models. While recent efforts aim to mitigate these biases and foster fair representations, they fail in complex real-world scenarios. In particular, existing methods excel in controlled experiments involving benchmarks with single-attribute injected biases, but struggle with multi-attribute biases being present in well-established CV datasets. Here, we introduce BAdd, a simple yet effective method that allows for learning fair representations invariant to the attributes introducing bias by incorporating features representing these attributes into the backbone. BAdd is evaluated on seven benchmarks and exhibits competitive performance, surpassing state-of-the-art methods on both single- and multi-attribute benchmarks. Notably, BAdd achieves +27.5% and +5.5% absolute accuracy improvements on the challenging multi-attribute benchmarks, FB-Biased-MNIST and CelebA, respectively.
☆ DABench: A Benchmark Dataset for Data-Driven Weather Data Assimilation
Recent advancements in deep learning (DL) have led to the development of several Large Weather Models (LWMs) that rival state-of-the-art (SOTA) numerical weather prediction (NWP) systems. Up to now, these models still rely on traditional NWP-generated analysis fields as input and are far from being an autonomous system. While researchers are exploring data-driven data assimilation (DA) models to generate accurate initial fields for LWMs, the lack of a standard benchmark impedes the fair evaluation among different data-driven DA algorithms. Here, we introduce DABench, a benchmark dataset utilizing ERA5 data as ground truth to guide the development of end-to-end data-driven weather prediction systems. DABench contributes four standard features: (1) sparse and noisy simulated observations under the guidance of the observing system simulation experiment method; (2) a skillful pre-trained weather prediction model to generate background fields while fairly evaluating the impact of assimilation outcomes on predictions; (3) standardized evaluation metrics for model comparison; (4) a strong baseline called the DA Transformer (DaT). DaT integrates the four-dimensional variational DA prior knowledge into the Transformer model and outperforms the SOTA in physical state reconstruction, named 4DVarNet. Furthermore, we exemplify the development of an end-to-end data-driven weather prediction system by integrating DaT with the prediction model. Researchers can leverage DABench to develop their models and compare performance against established baselines, which will benefit the future advancements of data-driven weather prediction systems. The code is available on this Github repository and the dataset is available at the Baidu Drive.
comment: 37pages, 12 figures, 6 tables
☆ T2VIndexer: A Generative Video Indexer for Efficient Text-Video Retrieval
Current text-video retrieval methods mainly rely on cross-modal matching between queries and videos to calculate their similarity scores, which are then sorted to obtain retrieval results. This method considers the matching between each candidate video and the query, but it incurs a significant time cost and will increase notably with the increase of candidates. Generative models are common in natural language processing and computer vision, and have been successfully applied in document retrieval, but their application in multimodal retrieval remains unexplored. To enhance retrieval efficiency, in this paper, we introduce a model-based video indexer named T2VIndexer, which is a sequence-to-sequence generative model directly generating video identifiers and retrieving candidate videos with constant time complexity. T2VIndexer aims to reduce retrieval time while maintaining high accuracy. To achieve this goal, we propose video identifier encoding and query-identifier augmentation approaches to represent videos as short sequences while preserving their semantic information. Our method consistently enhances the retrieval efficiency of current state-of-the-art models on four standard datasets. It enables baselines with only 30\%-50\% of the original retrieval time to achieve better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%), ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at https://github.com/Lilidamowang/T2VIndexer-generativeSearch.
☆ EMO-LLaMA: Enhancing Facial Emotion Understanding with Instruction Tuning
Facial expression recognition (FER) is an important research topic in emotional artificial intelligence. In recent decades, researchers have made remarkable progress. However, current FER paradigms face challenges in generalization, lack semantic information aligned with natural language, and struggle to process both images and videos within a unified framework, making their application in multimodal emotion understanding and human-computer interaction difficult. Multimodal Large Language Models (MLLMs) have recently achieved success, offering advantages in addressing these issues and potentially overcoming the limitations of current FER paradigms. However, directly applying pre-trained MLLMs to FER still faces several challenges. Our zero-shot evaluations of existing open-source MLLMs on FER indicate a significant performance gap compared to GPT-4V and current supervised state-of-the-art (SOTA) methods. In this paper, we aim to enhance MLLMs' capabilities in understanding facial expressions. We first generate instruction data for five FER datasets with Gemini. We then propose a novel MLLM, named EMO-LLaMA, which incorporates facial priors from a pretrained facial analysis network to enhance human facial information. Specifically, we design a Face Info Mining module to extract both global and local facial information. Additionally, we utilize a handcrafted prompt to introduce age-gender-race attributes, considering the emotional differences across different human groups. Extensive experiments show that EMO-LLaMA achieves SOTA-comparable or competitive results across both static and dynamic FER datasets. The instruction dataset and code are available at https://github.com/xxtars/EMO-LLaMA.
☆ Pano2Room: Novel View Synthesis from a Single Indoor Panorama SIGGRAPH
Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
comment: SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers '24), December 3--6, 2024, Tokyo, Japan
☆ SelfDRSC++: Self-Supervised Learning for Dual Reversed Rolling Shutter Correction SC
Modern consumer cameras commonly employ the rolling shutter (RS) imaging mechanism, via which images are captured by scanning scenes row-by-row, resulting in RS distortion for dynamic scenes. To correct RS distortion, existing methods adopt a fully supervised learning manner that requires high framerate global shutter (GS) images as ground-truth for supervision. In this paper, we propose an enhanced Self-supervised learning framework for Dual reversed RS distortion Correction (SelfDRSC++). Firstly, we introduce a lightweight DRSC network that incorporates a bidirectional correlation matching block to refine the joint optimization of optical flows and corrected RS features, thereby improving correction performance while reducing network parameters. Subsequently, to effectively train the DRSC network, we propose a self-supervised learning strategy that ensures cycle consistency between input and reconstructed dual reversed RS images. The RS reconstruction in SelfDRSC++ can be interestingly formulated as a specialized instance of video frame interpolation, where each row in reconstructed RS images is interpolated from predicted GS images by utilizing RS distortion time maps. By achieving superior performance while simplifying the training process, SelfDRSC++ enables feasible one-stage self-supervised training. Additionally, besides start and end RS scanning time, SelfDRSC++ allows supervision of GS images at arbitrary intermediate scanning times, thus enabling the learned DRSC network to generate high framerate GS videos. The code and trained models are available at \url{https://github.com/shangwei5/SelfDRSC_plusplus}.
comment: 13 pages, 9 figures, and the code is available at \url{https://github.com/shangwei5/SelfDRSC_plusplus}
☆ Latent Feature and Attention Dual Erasure Attack against Multi-View Diffusion Models for 3D Assets Protection
Multi-View Diffusion Models (MVDMs) enable remarkable improvements in the field of 3D geometric reconstruction, but the issue regarding intellectual property has received increasing attention due to unauthorized imitation. Recently, some works have utilized adversarial attacks to protect copyright. However, all these works focus on single-image generation tasks which only need to consider the inner feature of images. Previous methods are inefficient in attacking MVDMs because they lack the consideration of disrupting the geometric and visual consistency among the generated multi-view images. This paper is the first to address the intellectual property infringement issue arising from MVDMs. Accordingly, we propose a novel latent feature and attention dual erasure attack to disrupt the distribution of latent feature and the consistency across the generated images from multi-view and multi-domain simultaneously. The experiments conducted on SOTA MVDMs indicate that our approach achieves superior performances in terms of attack effectiveness, transferability, and robustness against defense methods. Therefore, this paper provides an efficient solution to protect 3D assets from MVDMs-based 3D geometry reconstruction.
☆ Domain-invariant Progressive Knowledge Distillation for UAV-based Object Detection
Knowledge distillation (KD) is an effective method for compressing models in object detection tasks. Due to limited computational capability, UAV-based object detection (UAV-OD) widely adopt the KD technique to obtain lightweight detectors. Existing methods often overlook the significant differences in feature space caused by the large gap in scale between the teacher and student models. This limitation hampers the efficiency of knowledge transfer during the distillation process. Furthermore, the complex backgrounds in UAV images make it challenging for the student model to efficiently learn the object features. In this paper, we propose a novel knowledge distillation framework for UAV-OD. Specifically, a progressive distillation approach is designed to alleviate the feature gap between teacher and student models. Then a new feature alignment method is provided to extract object-related features for enhancing student model's knowledge reception efficiency. Finally, extensive experiments are conducted to validate the effectiveness of our proposed approach. The results demonstrate that our proposed method achieves state-of-the-art (SoTA) performance in two UAV-OD datasets.
☆ Video Diffusion Models are Strong Video Inpainter
Propagation-based video inpainting using optical flow at the pixel or feature level has recently garnered significant attention. However, it has limitations such as the inaccuracy of optical flow prediction and the propagation of noise over time. These issues result in non-uniform noise and time consistency problems throughout the video, which are particularly pronounced when the removed area is large and involves substantial movement. To address these issues, we propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI). We design FFF-VDI inspired by the capabilities of pre-trained image-to-video diffusion models that can transform the first frame image into a highly natural video. To apply this to the video inpainting task, we propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code. Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video. The proposed model addresses the limitations of existing methods that rely on optical flow quality, producing much more natural and temporally consistent videos. This proposed approach is the first to effectively integrate image-to-video diffusion models into video inpainting tasks. Through various comparative experiments, we demonstrate that the proposed model can robustly handle diverse inpainting types with high quality.
☆ Revisiting FunnyBirds evaluation framework for prototypical parts networks
Prototypical parts networks, such as ProtoPNet, became popular due to their potential to produce more genuine explanations than post-hoc methods. However, for a long time, this potential has been strictly theoretical, and no systematic studies have existed to support it. That changed recently with the introduction of the FunnyBirds benchmark, which includes metrics for evaluating different aspects of explanations. However, this benchmark employs attribution maps visualization for all explanation techniques except for the ProtoPNet, for which the bounding boxes are used. This choice significantly influences the metric scores and questions the conclusions stated in FunnyBirds publication. In this study, we comprehensively compare metric scores obtained for two types of ProtoPNet visualizations: bounding boxes and similarity maps. Our analysis indicates that employing similarity maps aligns better with the essence of ProtoPNet, as evidenced by different metric scores obtained from FunnyBirds. Therefore, we advocate using similarity maps as a visualization technique for prototypical parts networks in explainability evaluation benchmarks.
comment: Published at 2nd XAI World Conference
☆ EAGLE: Elevating Geometric Reasoning through LLM-empowered Visual Instruction Tuning
Multi-modal Large Language Models have recently experienced rapid developments and excel in various multi-modal tasks. However, they still struggle with mathematical geometric problem solving, which requires exceptional visual perception proficiency. Existing MLLMs mostly optimize the LLM backbone to acquire geometric reasoning capabilities, while rarely emphasizing improvements in visual comprehension. In this paper, we first investigate the visual perception performance of MLLMs when facing geometric diagrams. Our findings reveal that current MLLMs severely suffer from inaccurate geometric perception and hallucinations. To address these limitations, we propose EAGLE, a novel two-stage end-to-end visual enhancement MLLM framework designed to ElevAte Geometric reasoning through LLM-Empowered visual instruction tuning. Specifically, in the preliminary stage, we feed geometric image-caption pairs into our MLLM that contains a fully fine-tuning CLIP ViT and a frozen LLM, aiming to endow our model with basic geometric knowledge. In the subsequent advanced stage, we incorporate LoRA modules into the vision encoder and unfreeze the LLM backbone. This enables the model to leverage the inherent CoT rationales within question-answer pairs, guiding the MLLM to focus on nuanced visual cues and enhancing its overall perceptual capacity. Moreover, we optimize the cross-modal projector in both stages to foster adaptive visual-linguistic alignments. After the two-stage visual enhancement, we develop the geometry expert model EAGLE-7B. Extensive experiments on popular benchmarks demonstrate the effectiveness of our model. For example, on the GeoQA benchmark, EAGLE-7B not only surpasses the exemplary G-LLaVA 7B model by 2.9%, but also marginally outperforms the larger G-LLaVA 13B model. On the MathVista benchmark, EAGLE-7B achieves remarkable 3.8% improvements compared with the proprietary model GPT-4V.
☆ Fairness measures for biometric quality assessment
Quality assessment algorithms measure the quality of a captured biometric sample. Since the sample quality strongly affects the recognition performance of a biometric system, it is essential to only process samples of sufficient quality and discard samples of low-quality. Even though quality assessment algorithms are not intended to yield very different quality scores across demographic groups, quality score discrepancies are possible, resulting in different discard ratios. To ensure that quality assessment algorithms do not take demographic characteristics into account when assessing sample quality and consequently to ensure that the quality algorithms perform equally for all individuals, it is crucial to develop a fairness measure. In this work we propose and compare multiple fairness measures for evaluating quality components across demographic groups. Proposed measures, could be used as potential candidates for an upcoming standard in this important field.
☆ Current Status and Trends in Image Anti-Forensics Research: A Bibliometric Analysis
Image anti-forensics is a critical topic in the field of image privacy and security research. With the increasing ease of manipulating or generating human faces in images, the potential misuse of such forged images is a growing concern. This study aims to comprehensively review the knowledge structure and research hotspots related to image anti-forensics by analyzing publications in the Web of Science Core Collection (WoSCC) database. The bibliometric analysis conducted using VOSViewer software has revealed the research trends, major research institutions, most influential publications, top publishing venues, and most active contributors in this field. This is the first comprehensive bibliometric study summarizing research trends and developments in image anti-forensics. The information highlights recent and primary research directions, serving as a reference for future research in image anti-forensics.
☆ HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion Model
This paper aims to generate physically-layered 3D humans from text prompts. Existing methods either generate 3D clothed humans as a whole or support only tight and simple clothing generation, which limits their applications to virtual try-on and part-level editing. To achieve physically-layered 3D human generation with reusable and complex clothing, we propose a novel layer-wise dressed human representation based on a physically-decoupled diffusion model. Specifically, to achieve layer-wise clothing generation, we propose a dual-representation decoupling framework for generating clothing decoupled from the human body, in conjunction with an innovative multi-layer fusion volume rendering method. To match the clothing with different body shapes, we propose an SMPL-driven implicit field deformation network that enables the free transfer and reuse of clothing. Extensive experiments demonstrate that our approach not only achieves state-of-the-art layered 3D human generation with complex clothing but also supports virtual try-on and layered human animation.
☆ Image Score: Learning and Evaluating Human Preferences for Mercari Search
Mercari is the largest C2C e-commerce marketplace in Japan, having more than 20 million active monthly users. Search being the fundamental way to discover desired items, we have always had a substantial amount of data with implicit feedback. Although we actively take advantage of that to provide the best service for our users, the correlation of implicit feedback for such tasks as image quality assessment is not trivial. Many traditional lines of research in Machine Learning (ML) are similarly motivated by the insatiable appetite of Deep Learning (DL) models for well-labelled training data. Weak supervision is about leveraging higher-level and/or noisier supervision over unlabeled data. Large Language Models (LLMs) are being actively studied and used for data labelling tasks. We present how we leverage a Chain-of-Thought (CoT) to enable LLM to produce image aesthetics labels that correlate well with human behavior in e-commerce settings. Leveraging LLMs is more cost-effective compared to explicit human judgment, while significantly improving the explainability of deep image quality evaluation which is highly important for customer journey optimization at Mercari. We propose a cost-efficient LLM-driven approach for assessing and predicting image quality in e-commerce settings, which is very convenient for proof-of-concept testing. We show that our LLM-produced labels correlate with user behavior on Mercari. Finally, we show our results from an online experimentation, where we achieved a significant growth in sales on the web platform.
☆ FATE: Focal-modulated Attention Encoder for Temperature Prediction
One of the major challenges of the twenty-first century is climate change, evidenced by rising sea levels, melting glaciers, and increased storm frequency. Accurate temperature forecasting is vital for understanding and mitigating these impacts. Traditional data-driven models often use recurrent neural networks (RNNs) but face limitations in parallelization, especially with longer sequences. To address this, we introduce a novel approach based on the FocalNet Transformer architecture. Our Focal modulation Attention Encoder (FATE) framework operates in a multi-tensor format, utilizing tensorized modulation to capture spatial and temporal nuances in meteorological data. Comparative evaluations against existing transformer encoders, 3D CNNs, LSTM, and ConvLSTM models show that FATE excels at identifying complex patterns in temperature data. Additionally, we present a new labeled dataset, the Climate Change Parameter dataset (CCPD), containing 40 years of data from Jammu and Kashmir on seven climate-related parameters. Experiments with real-world temperature datasets from the USA, Canada, and Europe show accuracy improvements of 12\%, 23\%, and 28\%, respectively, over current state-of-the-art models. Our CCPD dataset also achieved a 24\% improvement in accuracy. To support reproducible research, we have released the source code and pre-trained FATE model at \href{https://github.com/Tajamul21/FATE}{https://github.com/Tajamul21/FATE}.
☆ Optimizing Transmit Field Inhomogeneity of Parallel RF Transmit Design in 7T MRI using Deep Learning
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) provides a higher signal-to-noise ratio and, thereby, higher spatial resolution. However, UHF MRI introduces challenges such as transmit radiofrequency (RF) field (B1+) inhomogeneities, leading to uneven flip angles and image intensity anomalies. These issues can significantly degrade imaging quality and its medical applications. This study addresses B1+ field homogeneity through a novel deep learning-based strategy. Traditional methods like Magnitude Least Squares (MLS) optimization have been effective but are time-consuming and dependent on the patient's presence. Recent machine learning approaches, such as RF Shim Prediction by Iteratively Projected Ridge Regression and deep learning frameworks, have shown promise but face limitations like extensive training times and oversimplified architectures. We propose a two-step deep learning strategy. First, we obtain the desired reference RF shimming weights from multi-channel B1+ fields using random-initialized Adaptive Moment Estimation. Then, we employ Residual Networks (ResNets) to train a model that maps B1+ fields to target RF shimming outputs. Our approach does not rely on pre-calculated reference optimizations for the testing process and efficiently learns residual functions. Comparative studies with traditional MLS optimization demonstrate our method's advantages in terms of speed and accuracy. The proposed strategy achieves a faster and more efficient RF shimming design, significantly improving imaging quality at UHF. This advancement holds potential for broader applications in medical imaging and diagnostics.
☆ TWLV-I: Analysis and Insights from Holistic Evaluation on Video Foundation Models
In this work, we discuss evaluating video foundation models in a fair and robust manner. Unlike language or image foundation models, many video foundation models are evaluated with differing parameters (such as sampling rate, number of frames, pretraining steps, etc.), making fair and robust comparisons challenging. Therefore, we present a carefully designed evaluation framework for measuring two core capabilities of video comprehension: appearance and motion understanding. Our findings reveal that existing video foundation models, whether text-supervised like UMT or InternVideo2, or self-supervised like V-JEPA, exhibit limitations in at least one of these capabilities. As an alternative, we introduce TWLV-I, a new video foundation model that constructs robust visual representations for both motion- and appearance-based videos. Based on the average top-1 accuracy of linear probing on five action recognition benchmarks, pretrained only on publicly accessible datasets, our model shows a 4.6%p improvement compared to V-JEPA (ViT-L) and a 7.7%p improvement compared to UMT (ViT-L). Even when compared to much larger models, our model demonstrates a 7.2%p improvement compared to DFN (ViT-H), a 2.7%p improvement compared to V-JEPA~(ViT-H) and a 2.8%p improvement compared to InternVideo2 (ViT-g). We provide embedding vectors obtained by TWLV-I from videos of several commonly used video benchmarks, along with evaluation source code that can directly utilize these embeddings. The code is available on "https://github.com/twelvelabs-io/video-embeddings-evaluation-framework".
comment: 17 pages; Twelve Labs Technical Report
Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework
Visual geo-localization demands in-depth knowledge and advanced reasoning skills to associate images with real-world geographic locations precisely. In general, traditional methods based on data-matching are hindered by the impracticality of storing adequate visual records of global landmarks. Recently, Large Vision-Language Models (LVLMs) have demonstrated the capability of geo-localization through Visual Question Answering (VQA), enabling a solution that does not require external geo-tagged image records. However, the performance of a single LVLM is still limited by its intrinsic knowledge and reasoning capabilities. Along this line, in this paper, we introduce a novel visual geo-localization framework called \name\ that integrates the inherent knowledge of multiple LVLM agents via inter-agent communication to achieve effective geo-localization of images. Furthermore, our framework employs a dynamic learning strategy to optimize the communication patterns among agents, reducing unnecessary discussions among agents and improving the efficiency of the framework. To validate the effectiveness of the proposed framework, we construct GeoGlobe, a novel dataset for visual geo-localization tasks. Extensive testing on the dataset demonstrates that our approach significantly outperforms state-of-the-art methods.
☆ Improving Out-of-Distribution Data Handling and Corruption Resistance via Modern Hopfield Networks
This study explores the potential of Modern Hopfield Networks (MHN) in improving the ability of computer vision models to handle out-of-distribution data. While current computer vision models can generalize to unseen samples from the same distribution, they are susceptible to minor perturbations such as blurring, which limits their effectiveness in real-world applications. We suggest integrating MHN into the baseline models to enhance their robustness. This integration can be implemented during the test time for any model and combined with any adversarial defense method. Our research shows that the proposed integration consistently improves model performance on the MNIST-C dataset, achieving a state-of-the-art increase of 13.84% in average corruption accuracy, a 57.49% decrease in mean Corruption Error (mCE), and a 60.61% decrease in relative mCE compared to the baseline model. Additionally, we investigate the capability of MHN to converge to the original non-corrupted data. Notably, our method does not require test-time adaptation or augmentation with corruptions, underscoring its practical viability for real-world deployment. (Source code publicly available at: https://github.com/salehsargolzaee/Hopfield-integrated-test)
☆ UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation
The fashion domain encompasses a variety of real-world multimodal tasks, including multimodal retrieval and multimodal generation. The rapid advancements in artificial intelligence generated content, particularly in technologies like large language models for text generation and diffusion models for visual generation, have sparked widespread research interest in applying these multimodal models in the fashion domain. However, tasks involving embeddings, such as image-to-text or text-to-image retrieval, have been largely overlooked from this perspective due to the diverse nature of the multimodal fashion domain. And current research on multi-task single models lack focus on image generation. In this work, we present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain, integrating image generation with retrieval tasks and text generation tasks. UniFashion unifies embedding and generative tasks by integrating a diffusion model and LLM, enabling controllable and high-fidelity generation. Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks, and can be readily adapted to manage complex vision-language tasks. This work demonstrates the potential learning synergy between multimodal generation and retrieval, offering a promising direction for future research in the fashion domain. The source code is available at https://github.com/xiangyu-mm/UniFashion.
☆ Making Large Vision Language Models to be Good Few-shot Learners
Few-shot classification (FSC) is a fundamental yet challenging task in computer vision that involves recognizing novel classes from limited data. While previous methods have focused on enhancing visual features or incorporating additional modalities, Large Vision Language Models (LVLMs) offer a promising alternative due to their rich knowledge and strong visual perception. However, LVLMs risk learning specific response formats rather than effectively extracting useful information from support data in FSC tasks. In this paper, we investigate LVLMs' performance in FSC and identify key issues such as insufficient learning and the presence of severe positional biases. To tackle the above challenges, we adopt the meta-learning strategy to teach models "learn to learn". By constructing a rich set of meta-tasks for instruction fine-tuning, LVLMs enhance the ability to extract information from few-shot support data for classification. Additionally, we further boost LVLM's few-shot learning capabilities through label augmentation and candidate selection in the fine-tuning and inference stage, respectively. Label augmentation is implemented via a character perturbation strategy to ensure the model focuses on support information. Candidate selection leverages attribute descriptions to filter out unreliable candidates and simplify the task. Extensive experiments demonstrate that our approach achieves superior performance on both general and fine-grained datasets. Furthermore, our candidate selection strategy has been proven beneficial for training-free LVLMs.
☆ HMT-UNet: A hybird Mamba-Transformer Vision UNet for Medical Image Segmentation
In the field of medical image segmentation, models based on both CNN and Transformer have been thoroughly investigated. However, CNNs have limited modeling capabilities for long-range dependencies, making it challenging to exploit the semantic information within images fully. On the other hand, the quadratic computational complexity poses a challenge for Transformers. State Space Models (SSMs), such as Mamba, have been recognized as a promising method. They not only demonstrate superior performance in modeling long-range interactions, but also preserve a linear computational complexity. The hybrid mechanism of SSM (State Space Model) and Transformer, after meticulous design, can enhance its capability for efficient modeling of visual features. Extensive experiments have demonstrated that integrating the self-attention mechanism into the hybrid part behind the layers of Mamba's architecture can greatly improve the modeling capacity to capture long-range spatial dependencies. In this paper, leveraging the hybrid mechanism of SSM, we propose a U-shape architecture model for medical image segmentation, named Hybird Transformer vision Mamba UNet (HTM-UNet). We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir, CVC-ColonDB, ETIS-Larib PolypDB public datasets and ZD-LCI-GIM private dataset. The results indicate that HTM-UNet exhibits competitive performance in medical image segmentation tasks. Our code is available at https://github.com/simzhangbest/HMT-Unet.
comment: arXiv admin note: text overlap with arXiv:2403.09157; text overlap with arXiv:2407.08083 by other authors
☆ Taming Generative Diffusion for Universal Blind Image Restoration
Diffusion models have been widely utilized for image restoration. However, previous blind image restoration methods still need to assume the type of degradation model while leaving the parameters to be optimized, limiting their real-world applications. Therefore, we aim to tame generative diffusion prior for universal blind image restoration dubbed BIR-D, which utilizes an optimizable convolutional kernel to simulate the degradation model and dynamically update the parameters of the kernel in the diffusion steps, enabling it to achieve blind image restoration results even in various complex situations. Besides, based on mathematical reasoning, we have provided an empirical formula for the chosen of adaptive guidance scale, eliminating the need for a grid search for the optimal parameter. Experimentally, Our BIR-D has demonstrated superior practicality and versatility than off-the-shelf unsupervised methods across various tasks both on real-world and synthetic datasets, qualitatively and quantitatively. BIR-D is able to fulfill multi-guidance blind image restoration. Moreover, BIR-D can also restore images that undergo multiple and complicated degradations, demonstrating the practical applications.
comment: 14 pages, 9 figures, 8 tables
☆ Exploring Scene Coherence for Semi-Supervised 3D Semantic Segmentation
Semi-supervised semantic segmentation, which efficiently addresses the limitation of acquiring dense annotations, is essential for 3D scene understanding. Most methods leverage the teacher model to generate pseudo labels, and then guide the learning of the student model on unlabeled scenes. However, they focus only on points with pseudo labels while directly overlooking points without pseudo labels, namely intra-scene inconsistency, leading to semantic ambiguity. Moreover, inter-scene correlation between labeled and unlabeled scenes contribute to transferring rich annotation information, yet this has not been explored for the semi-supervised tasks. To address these two problems, we propose to explore scene coherence for semi-supervised 3D semantic segmentation, dubbed CoScene. Inspired by the unstructured and unordered nature of the point clouds, our CoScene adopts the straightforward point erasure strategy to ensure the intra-scene consistency. Moreover, patch-based data augmentation is proposed to enhance the inter-scene information transfer between labeled and unlabeled scenes at both scene and instance levels. Extensive experimental results on SemanticKITTI and nuScenes show that our approach outperforms existing methods.
☆ The Key of Parameter Skew in Federated Learning
Federated Learning (FL) has emerged as an excellent solution for performing deep learning on different data owners without exchanging raw data. However, statistical heterogeneity in FL presents a key challenge, leading to a phenomenon of skewness in local model parameter distributions that researchers have largely overlooked. In this work, we propose the concept of parameter skew to describe the phenomenon that can substantially affect the accuracy of global model parameter estimation. Additionally, we introduce FedSA, an aggregation strategy to obtain a high-quality global model, to address the implication from parameter skew. Specifically, we categorize parameters into high-dispersion and low-dispersion groups based on the coefficient of variation. For high-dispersion parameters, Micro-Classes (MIC) and Macro-Classes (MAC) represent the dispersion at the micro and macro levels, respectively, forming the foundation of FedSA. To evaluate the effectiveness of FedSA, we conduct extensive experiments with different FL algorithms on three computer vision datasets. FedSA outperforms eight state-of-the-art baselines by about 4.7% in test accuracy.
☆ On Missing Scores in Evolving Multibiometric Systems ICPR
The use of multiple modalities (e.g., face and fingerprint) or multiple algorithms (e.g., three face comparators) has shown to improve the recognition accuracy of an operational biometric system. Over time a biometric system may evolve to add new modalities, retire old modalities, or be merged with other biometric systems. This can lead to scenarios where there are missing scores corresponding to the input probe set. Previous work on this topic has focused on either the verification or identification tasks, but not both. Further, the proportion of missing data considered has been less than 50%. In this work, we study the impact of missing score data for both the verification and identification tasks. We show that the application of various score imputation methods along with simple sum fusion can improve recognition accuracy, even when the proportion of missing scores increases to 90%. Experiments show that fusion after score imputation outperforms fusion with no imputation. Specifically, iterative imputation with K nearest neighbors consistently surpasses other imputation methods in both the verification and identification tasks, regardless of the amount of scores missing, and provides imputed values that are consistent with the ground truth complete dataset.
comment: 2022 26th International Conference on Pattern Recognition (ICPR)
☆ Automatic Image Annotation (AIA) of AlmondNet-20 Method for Almond Detection by Improved CNN-based Model
In response to the burgeoning global demand for premium agricultural products, particularly within the competitive nut market, this paper introduces an innovative methodology aimed at enhancing the grading process for almonds and their shells. Leveraging state-of-the-art Deep Convolutional Neural Networks (CNNs), specifically the AlmondNet-20 architecture, our study achieves exceptional accuracy exceeding 99%, facilitated by the utilization of a 20-layer CNN model. To bolster robustness in differentiating between almonds and shells, data augmentation techniques are employed, ensuring the reliability and accuracy of our classification system. Our model, meticulously trained over 1000 epochs, demonstrates remarkable performance, boasting an accuracy rate of 99% alongside a minimal loss function of 0.0567. Rigorous evaluation through test datasets further validates the efficacy of our approach, revealing impeccable precision, recall, and F1-score metrics for almond detection. Beyond its technical prowess, this advanced classification system offers tangible benefits to both industry experts and non-specialists alike, ensuring globally reliable almond classification. The application of deep learning algorithms, as showcased in our study, not only enhances grading accuracy but also presents opportunities for product patents, thereby contributing to the economic value of our nation. Through the adoption of cutting-edge technologies such as the AlmondNet-20 model, we pave the way for future advancements in agricultural product classification, ultimately enriching global trade and economic prosperity.
☆ FUSELOC: Fusing Global and Local Descriptors to Disambiguate 2D-3D Matching in Visual Localization
Hierarchical methods represent state-of-the-art visual localization, optimizing search efficiency by using global descriptors to focus on relevant map regions. However, this state-of-the-art performance comes at the cost of substantial memory requirements, as all database images must be stored for feature matching. In contrast, direct 2D-3D matching algorithms require significantly less memory but suffer from lower accuracy due to the larger and more ambiguous search space. We address this ambiguity by fusing local and global descriptors using a weighted average operator within a 2D-3D search framework. This fusion rearranges the local descriptor space such that geographically nearby local descriptors are closer in the feature space according to the global descriptors. Therefore, the number of irrelevant competing descriptors decreases, specifically if they are geographically distant, thereby increasing the likelihood of correctly matching a query descriptor. We consistently improve the accuracy over local-only systems and achieve performance close to hierarchical methods while halving memory requirements. Extensive experiments using various state-of-the-art local and global descriptors across four different datasets demonstrate the effectiveness of our approach. For the first time, our approach enables direct matching algorithms to benefit from global descriptors while maintaining memory efficiency. The code for this paper will be published at \href{https://github.com/sontung/descriptor-disambiguation}{github.com/sontung/descriptor-disambiguation}.
☆ Limitations in Employing Natural Language Supervision for Sensor-Based Human Activity Recognition -- And Ways to Overcome Them
Cross-modal contrastive pre-training between natural language and other modalities, e.g., vision and audio, has demonstrated astonishing performance and effectiveness across a diverse variety of tasks and domains. In this paper, we investigate whether such natural language supervision can be used for wearable sensor based Human Activity Recognition (HAR), and discover that-surprisingly-it performs substantially worse than standard end-to-end training and self-supervision. We identify the primary causes for this as: sensor heterogeneity and the lack of rich, diverse text descriptions of activities. To mitigate their impact, we also develop strategies and assess their effectiveness through an extensive experimental evaluation. These strategies lead to significant increases in activity recognition, bringing performance closer to supervised and self-supervised training, while also enabling the recognition of unseen activities and cross modal retrieval of videos. Overall, our work paves the way for better sensor-language learning, ultimately leading to the development of foundational models for HAR using wearables.
Detection of Under-represented Samples Using Dynamic Batch Training for Brain Tumor Segmentation from MR Images
Brain tumors in magnetic resonance imaging (MR) are difficult, time-consuming, and prone to human error. These challenges can be resolved by developing automatic brain tumor segmentation methods from MR images. Various deep-learning models based on the U-Net have been proposed for the task. These deep-learning models are trained on a dataset of tumor images and then used for segmenting the masks. Mini-batch training is a widely used method in deep learning for training. However, one of the significant challenges associated with this approach is that if the training dataset has under-represented samples or samples with complex latent representations, the model may not generalize well to these samples. The issue leads to skewed learning of the data, where the model learns to fit towards the majority representations while underestimating the under-represented samples. The proposed dynamic batch training method addresses the challenges posed by under-represented data points, data points with complex latent representation, and imbalances within the class, where some samples may be harder to learn than others. Poor performance of such samples can be identified only after the completion of the training, leading to the wastage of computational resources. Also, training easy samples after each epoch is an inefficient utilization of computation resources. To overcome these challenges, the proposed method identifies hard samples and trains such samples for more iterations compared to easier samples on the BraTS2020 dataset. Additionally, the samples trained multiple times are identified and it provides a way to identify hard samples in the BraTS2020 dataset. The comparison of the proposed training approach with U-Net and other models in the literature highlights the capabilities of the proposed training approach.
☆ CaRDiff: Video Salient Object Ranking Chain of Thought Reasoning for Saliency Prediction with Diffusion
Video saliency prediction aims to identify the regions in a video that attract human attention and gaze, driven by bottom-up features from the video and top-down processes like memory and cognition. Among these top-down influences, language plays a crucial role in guiding attention by shaping how visual information is interpreted. Existing methods primarily focus on modeling perceptual information while neglecting the reasoning process facilitated by language, where ranking cues are crucial outcomes of this process and practical guidance for saliency prediction. In this paper, we propose CaRDiff (Caption, Rank, and generate with Diffusion), a framework that imitates the process by integrating a multimodal large language model (MLLM), a grounding module, and a diffusion model, to enhance video saliency prediction. Specifically, we introduce a novel prompting method VSOR-CoT (Video Salient Object Ranking Chain of Thought), which utilizes an MLLM with a grounding module to caption video content and infer salient objects along with their rankings and positions. This process derives ranking maps that can be sufficiently leveraged by the diffusion model to decode the saliency maps for the given video accurately. Extensive experiments show the effectiveness of VSOR-CoT in improving the performance of video saliency prediction. The proposed CaRDiff performs better than state-of-the-art models on the MVS dataset and demonstrates cross-dataset capabilities on the DHF1k dataset through zero-shot evaluation.
☆ MBSS-T1: Model-Based Self-Supervised Motion Correction for Robust Cardiac T1 Mapping
T1 mapping is a valuable quantitative MRI technique for diagnosing diffuse myocardial diseases. Traditional methods, relying on breath-hold sequences and echo triggering, face challenges with patient compliance and arrhythmias, limiting their effectiveness. Image registration can enable motion-robust T1 mapping, but inherent intensity differences between time points pose a challenge. We introduce MBSS-T1, a self-supervised model for motion correction in cardiac T1 mapping, constrained by physical and anatomical principles. The physical constraints ensure expected signal decay behavior, while the anatomical constraints maintain realistic deformations. The unique combination of these constraints ensures accurate T1 mapping along the longitudinal relaxation axis. MBSS-T1 outperformed baseline deep-learning-based image registration approaches in a 5-fold experiment on a public dataset of 210 patients (STONE sequence) and an internal dataset of 19 patients (MOLLI sequence). MBSS-T1 excelled in model fitting quality (R2: 0.974 vs. 0.941, 0.946), anatomical alignment (Dice score: 0.921 vs. 0.984, 0.988), and expert visual quality assessment for the presence of visible motion artifacts (4.33 vs. 3.34, 3.62). MBSS-T1 has the potential to enable motion-robust T1 mapping for a broader range of patients, overcoming challenges such as arrhythmias, and suboptimal compliance, and allowing for free-breathing T1 mapping without requiring large training datasets.
☆ AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results
Video quality assessment (VQA) is a crucial task in the development of video compression standards, as it directly impacts the viewer experience. This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024. The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H.264, HEVC/H.265, AV1, and VVC/H.266) and containing a comprehensive collection of compression artifacts. To measure the methods performance, we employed traditional correlation coefficients between their predictions and subjective scores, which were collected via large-scale crowdsourced pairwise human comparisons. For training purposes, participants were provided with the Compressed Video Quality Assessment Dataset (CVQAD), a previously developed dataset of 1022 videos. Up to 30 participating teams registered for the challenge, while we report the results of 6 teams, which submitted valid final solutions and code for reproducing the results. Moreover, we calculated and present the performance of state-of-the-art VQA methods on the developed dataset, providing a comprehensive benchmark for future research. The dataset, results, and online leaderboard are publicly available at https://challenges.videoprocessing.ai/challenges/compressed-video-quality-assessment.html.
Visual Localization in 3D Maps: Comparing Point Cloud, Mesh, and NeRF Representations
This paper introduces and assesses a cross-modal global visual localization system that can localize camera images within a color 3D map representation built using both visual and lidar sensing. We present three different state-of-the-art methods for creating the color 3D maps: point clouds, meshes, and neural radiance fields (NeRF). Our system constructs a database of synthetic RGB and depth image pairs from these representations. This database serves as the basis for global localization. We present an automatic approach that builds this database by synthesizing novel images of the scene and exploiting the 3D structure encoded in the different representations. Next, we present a global localization system that relies on the synthetic image database to accurately estimate the 6 DoF camera poses of monocular query images. Our localization approach relies on different learning-based global descriptors and feature detectors which enable robust image retrieval and matching despite the domain gap between (real) query camera images and the synthetic database images. We assess the system's performance through extensive real-world experiments in both indoor and outdoor settings, in order to evaluate the effectiveness of each map representation and the benefits against traditional structure-from-motion localization approaches. Our results show that all three map representations can achieve consistent localization success rates of 55% and higher across various environments. NeRF synthesized images show superior performance, localizing query images at an average success rate of 72%. Furthermore, we demonstrate that our synthesized database enables global localization even when the map creation data and the localization sequence are captured when travelling in opposite directions. Our system, operating in real-time on a mobile laptop equipped with a GPU, achieves a processing rate of 1Hz.
☆ CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
comment: 15 pages, 9 figures, submitted to ISBI 2025
☆ Real-Time Incremental Explanations for Object Detectors
Existing black box explainability tools for object detectors rely on multiple calls to the model, which prevents them from computing explanations in real time. In this paper we introduce IncX, an algorithm for real-time incremental approximations of explanations, based on linear transformations of saliency maps. We implement IncX on top of D-RISE, a state-of-the-art black-box explainability tool for object detectors. We show that IncX's explanations are comparable in quality to those of D-RISE, with insertion curves being within 8%, and are computed two orders of magnitude faster that D-RISE's explanations.
CARLA Drone: Monocular 3D Object Detection from a Different Perspective
Existing techniques for monocular 3D detection have a serious restriction. They tend to perform well only on a limited set of benchmarks, faring well either on ego-centric car views or on traffic camera views, but rarely on both. To encourage progress, this work advocates for an extended evaluation of 3D detection frameworks across different camera perspectives. We make two key contributions. First, we introduce the CARLA Drone dataset, CDrone. Simulating drone views, it substantially expands the diversity of camera perspectives in existing benchmarks. Despite its synthetic nature, CDrone represents a real-world challenge. To show this, we confirm that previous techniques struggle to perform well both on CDrone and a real-world 3D drone dataset. Second, we develop an effective data augmentation pipeline called GroundMix. Its distinguishing element is the use of the ground for creating 3D-consistent augmentation of a training image. GroundMix significantly boosts the detection accuracy of a lightweight one-stage detector. In our expanded evaluation, we achieve the average precision on par with or substantially higher than the previous state of the art across all tested datasets.
☆ Video-Foley: Two-Stage Video-To-Sound Generation via Temporal Event Condition For Foley Sound
Foley sound synthesis is crucial for multimedia production, enhancing user experience by synchronizing audio and video both temporally and semantically. Recent studies on automating this labor-intensive process through video-to-sound generation face significant challenges. Systems lacking explicit temporal features suffer from poor controllability and alignment, while timestamp-based models require costly and subjective human annotation. We propose Video-Foley, a video-to-sound system using Root Mean Square (RMS) as a temporal event condition with semantic timbre prompts (audio or text). RMS, a frame-level intensity envelope feature closely related to audio semantics, ensures high controllability and synchronization. The annotation-free self-supervised learning framework consists of two stages, Video2RMS and RMS2Sound, incorporating novel ideas including RMS discretization and RMS-ControlNet with a pretrained text-to-audio model. Our extensive evaluation shows that Video-Foley achieves state-of-the-art performance in audio-visual alignment and controllability for sound timing, intensity, timbre, and nuance. Code, model weights, and demonstrations are available on the accompanying website. (https://jnwnlee.github.io/video-foley-demo)
♻ ☆ LongVILA: Scaling Long-Context Visual Language Models for Long Videos
Long-context capability is critical for multi-modal foundation models, especially for long video understanding. We introduce LongVILA, a full-stack solution for long-context visual-language models by co-designing the algorithm and system. For model training, we upgrade existing VLMs to support long video understanding by incorporating two additional stages, i.e., long context extension and long supervised fine-tuning. However, training on long video is computationally and memory intensive. We introduce the long-context Multi-Modal Sequence Parallelism (MM-SP) system that efficiently parallelizes long video training and inference, enabling 2M context length training on 256 GPUs without any gradient checkpointing. LongVILA efficiently extends the number of video frames of VILA from 8 to 1024, improving the long video captioning score from 2.00 to 3.26 (out of 5), achieving 99.5% accuracy in 1400-frame (274k context length) video needle-in-a-haystack. LongVILA-8B demonstrates consistent accuracy improvements on long videos in the VideoMME benchmark as the number of frames increases. Besides, MM-SP is 2.1x - 5.7x faster than ring sequence parallelism and 1.1x - 1.4x faster than Megatron with context parallelism + tensor parallelism. Moreover, it seamlessly integrates with Hugging Face Transformers.
comment: Code and models are available at https://github.com/NVlabs/VILA/blob/main/LongVILA.md
♻ ☆ CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network
In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. To facilitate future research, we will release the code for our model upon publication.
♻ ☆ V-RoAst: A New Dataset for Visual Road Assessment
Road traffic crashes cause millions of deaths annually and have a significant economic impact, particularly in low- and middle-income countries (LMICs). This paper presents an approach using Vision Language Models (VLMs) for road safety assessment, overcoming the limitations of traditional Convolutional Neural Networks (CNNs). We introduce a new task ,V-RoAst (Visual question answering for Road Assessment), with a real-world dataset. Our approach optimizes prompt engineering and evaluates advanced VLMs, including Gemini-1.5-flash and GPT-4o-mini. The models effectively examine attributes for road assessment. Using crowdsourced imagery from Mapillary, our scalable solution influentially estimates road safety levels. In addition, this approach is designed for local stakeholders who lack resources, as it does not require training data. It offers a cost-effective and automated methods for global road safety assessments, potentially saving lives and reducing economic burdens.
♻ ☆ Generative AI in Industrial Machine Vision -- A Review
Machine vision enhances automation, quality control, and operational efficiency in industrial applications by enabling machines to interpret and act on visual data. While traditional computer vision algorithms and approaches remain widely utilized, machine learning has become pivotal in current research activities. In particular, generative AI demonstrates promising potential by improving pattern recognition capabilities, through data augmentation, increasing image resolution, and identifying anomalies for quality control. However, the application of generative AI in machine vision is still in its early stages due to challenges in data diversity, computational requirements, and the necessity for robust validation methods. A comprehensive literature review is essential to understand the current state of generative AI in industrial machine vision, focusing on recent advancements, applications, and research trends. Thus, a literature review based on the PRISMA guidelines was conducted, analyzing over 1,200 papers on generative AI in industrial machine vision. Our findings reveal various patterns in current research, with the primary use of generative AI being data augmentation, for machine vision tasks such as classification and object detection. Furthermore, we gather a collection of application challenges together with data requirements to enable a successful application of generative AI in industrial machine vision. This overview aims to provide researchers with insights into the different areas and applications within current research, highlighting significant advancements and identifying opportunities for future work.
comment: 44 pages, 7 figures, This work has been submitted to the Journal of Intelligent Manufacturing
♻ ☆ MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in 3D world. To tackle this limitation, we introduce a generic AI system, namely MUSES, for 3D-controllable image generation from user queries. Specifically, our MUSES addresses this challenging task by developing a progressive workflow with three key components, including (1) Layout Manager for 2D-to-3D layout lifting, (2) Model Engineer for 3D object acquisition and calibration, (3) Image Artist for 3D-to-2D image rendering. By mimicking the collaboration of human professionals, this multi-modal agent pipeline facilitates the effective and automatic creation of images with 3D-controllable objects, through an explainable integration of top-down planning and bottom-up generation. Additionally, we find that existing benchmarks lack detailed descriptions of complex 3D spatial relationships of multiple objects. To fill this gap, we further construct a new benchmark of T2I-3DisBench (3D image scene), which describes diverse 3D image scenes with 50 detailed prompts. Extensive experiments show the state-of-the-art performance of MUSES on both T2I-CompBench and T2I-3DisBench, outperforming recent strong competitors such as DALL-E 3 and Stable Diffusion 3. These results demonstrate a significant step of MUSES forward in bridging natural language, 2D image generation, and 3D world.
♻ ☆ Surgical Workflow Recognition and Blocking Effectiveness Detection in Laparoscopic Liver Resections with Pringle Maneuver
Pringle maneuver (PM) in laparoscopic liver resection aims to reduce blood loss and provide a clear surgical view by intermittently blocking blood inflow of the liver, whereas prolonged PM may cause ischemic injury. To comprehensively monitor this surgical procedure and provide timely warnings of ineffective and prolonged blocking, we suggest two complementary AI-assisted surgical monitoring tasks: workflow recognition and blocking effectiveness detection in liver resections. The former presents challenges in real-time capturing of short-term PM, while the latter involves the intraoperative discrimination of long-term liver ischemia states. To address these challenges, we meticulously collect a novel dataset, called PmLR50, consisting of 25,037 video frames covering various surgical phases from 50 laparoscopic liver resection procedures. Additionally, we develop an online baseline for PmLR50, termed PmNet. This model embraces Masked Temporal Encoding (MTE) and Compressed Sequence Modeling (CSM) for efficient short-term and long-term temporal information modeling, and embeds Contrastive Prototype Separation (CPS) to enhance action discrimination between similar intraoperative operations. Experimental results demonstrate that PmNet outperforms existing state-of-the-art surgical workflow recognition methods on the PmLR50 benchmark. Our research offers potential clinical applications for the laparoscopic liver surgery community. Source code and data will be publicly available.
♻ ☆ FAGStyle: Feature Augmentation on Geodesic Surface for Zero-shot Text-guided Diffusion Image Style Transfer
The goal of image style transfer is to render an image guided by a style reference while maintaining the original content. Existing image-guided methods rely on specific style reference images, restricting their wider application and potentially compromising result quality. As a flexible alternative, text-guided methods allow users to describe the desired style using text prompts. Despite their versatility, these methods often struggle with maintaining style consistency, reflecting the described style accurately, and preserving the content of the target image. To address these challenges, we introduce FAGStyle, a zero-shot text-guided diffusion image style transfer method. Our approach enhances inter-patch information interaction by incorporating the Sliding Window Crop technique and Feature Augmentation on Geodesic Surface into our style control loss. Furthermore, we integrate a Pre-Shape self-correlation consistency loss to ensure content consistency. FAGStyle demonstrates superior performance over existing methods, consistently achieving stylization that retains the semantic content of the source image. Experimental results confirms the efficacy of FAGStyle across a diverse range of source contents and styles, both imagined and common.
♻ ☆ D$^3$FlowSLAM: Self-Supervised Dynamic SLAM with Flow Motion Decomposition and DINO Guidance
In this paper, we introduce a self-supervised deep SLAM method that robustly operates in dynamic scenes while accurately identifying dynamic components. Our method leverages a dual-flow representation for static flow and dynamic flow, facilitating effective scene decomposition in dynamic environments. We propose a dynamic update module based on this representation and develop a dense SLAM system that excels in dynamic scenarios. In addition, we design a self-supervised training scheme using DINO as a prior, enabling label-free training. Our method achieves superior accuracy compared to other self-supervised methods. It also matches or even surpasses the performance of existing supervised methods in some cases. All code and data will be made publicly available upon acceptance.
comment: Homepage: https://zju3dv.github.io/deflowslam
♻ ☆ LSVOS Challenge 3rd Place Report: SAM2 and Cutie based VOS
Video Object Segmentation (VOS) presents several challenges, including object occlusion and fragmentation, the dis-appearance and re-appearance of objects, and tracking specific objects within crowded scenes. In this work, we combine the strengths of the state-of-the-art (SOTA) models SAM2 and Cutie to address these challenges. Additionally, we explore the impact of various hyperparameters on video instance segmentation performance. Our approach achieves a J\&F score of 0.7952 in the testing phase of LSVOS challenge VOS track, ranking third overall.
comment: arXiv admin note: text overlap with arXiv:2406.03668
♻ ☆ A Novel State Space Model with Local Enhancement and State Sharing for Image Fusion
In image fusion tasks, images from different sources possess distinct characteristics. This has driven the development of numerous methods to explore better ways of fusing them while preserving their respective characteristics.Mamba, as a state space model, has emerged in the field of natural language processing. Recently, many studies have attempted to extend Mamba to vision tasks. However, due to the nature of images different from causal language sequences, the limited state capacity of Mamba weakens its ability to model image information. Additionally, the sequence modeling ability of Mamba is only capable of spatial information and cannot effectively capture the rich spectral information in images. Motivated by these challenges, we customize and improve the vision Mamba network designed for the image fusion task. Specifically, we propose the local-enhanced vision Mamba block, dubbed as LEVM. The LEVM block can improve local information perception of the network and simultaneously learn local and global spatial information. Furthermore, we propose the state sharing technique to enhance spatial details and integrate spatial and spectral information. Finally, the overall network is a multi-scale structure based on vision Mamba, called LE-Mamba. Extensive experiments show the proposed methods achieve state-of-the-art results on multispectral pansharpening and multispectral and hyperspectral image fusion datasets, and demonstrate the effectiveness of the proposed approach. Codes can be accessed at \url{https://github.com/294coder/Efficient-MIF}.
♻ ☆ Exploiting Diffusion Prior for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models, especially in areas where security is critical. However, traditional OOD detection methods often fail to capture complex data distributions from large scale date. In this paper, we present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP. By using these features as conditional inputs to a diffusion model, we can reconstruct the images after encoding them with CLIP. The difference between the original and reconstructed images is used as a signal for OOD identification. The practicality and scalability of our method is increased by the fact that it does not require class-specific labeled ID data, as is the case with many other methods. Extensive experiments on several benchmark datasets demonstrates the robustness and effectiveness of our method, which have significantly improved the detection accuracy.
♻ ☆ A Survey for Foundation Models in Autonomous Driving
The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.
♻ ☆ KOSMOS-2.5: A Multimodal Literate Model
The automatic reading of text-intensive images represents a significant advancement toward achieving Artificial General Intelligence (AGI). In this paper we present KOSMOS-2.5, a multimodal literate model for machine reading of text-intensive images. Pre-trained on a large-scale corpus of text-intensive images, KOSMOS-2.5 excels in two distinct yet complementary transcription tasks: (1) generating spatially-aware text blocks, where each block of text is assigned spatial coordinates within the image, and (2) producing structured text output that captures both style and structure in markdown format. This unified multimodal literate capability is achieved through a shared decoder-only autoregressive Transformer architecture and task-specific prompts. Building on this foundation, we fine-tune KOSMOS-2.5 for document understanding tasks, resulting in a document understanding generalist named KOSMOS-2.5-CHAT. Additionally, a large corpus of 357.4 million document pages spanning diverse domains was curated for pre-training. We evaluate KOSMOS-2.5 on two newly proposed benchmarks, OCREval and MarkdownEval, for document-level text recognition and image-to-markdown generation, demonstrating impressive literate capabilities comparable to GPT-4o. KOSMOS-2.5-CHAT achieves performance comparable to other state-of-the-art generalists that are five times larger (1.3B vs. 7B) across nine text-rich visual question answering benchmarks. Models and code have been available at \url{https://aka.ms/kosmos25}.
♻ ☆ Diversity and stylization of the contemporary user-generated visual arts in the complexity-entropy plane
The advent of computational and numerical methods in recent times has provided new avenues for analyzing art historiographical narratives and tracing the evolution of art styles therein. Here, we investigate an evolutionary process underpinning the emergence and stylization of contemporary user-generated visual art styles using the complexity-entropy (C-H) plane, which quantifies local structures in paintings. Informatizing 149,780 images curated in DeviantArt and Behance platforms from 2010 to 2020, we analyze the relationship between local information of the C-H space and multi-level image features generated by a deep neural network and a feature extraction algorithm. The results reveal significant statistical relationships between the C-H information of visual artistic styles and the dissimilarities of the multi-level image features over time within groups of artworks. By disclosing a particular C-H region where the diversity of image representations is noticeably manifested, our analyses reveal an empirical condition of emerging styles that are both novel in the C-H plane and characterized by greater stylistic diversity. Our research shows that visual art analyses combined with physics-inspired methodologies and machine learning, can provide macroscopic insights into quantitatively mapping relevant characteristics of an evolutionary process underpinning the creative stylization of uncharted visual arts of given groups and time.
comment: 18 pages, 3 figures, 1 table, SI(4 figures, 3 tables)
♻ ☆ The Tug-of-War Between Deepfake Generation and Detection
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio that offers exciting possibilities but also serious risks. Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse in spreading misinformation and creating fraudulent content. This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures against potential abuses. We provide a comprehensive overview of current deepfake generation techniques, including face swapping, reenactment, and audio-driven animation, which leverage cutting-edge technologies like GANs and diffusion models to produce highly realistic fake videos. Additionally, we analyze various detection approaches designed to differentiate authentic from altered videos, from detecting visual artifacts to deploying advanced algorithms that pinpoint inconsistencies across video and audio signals. The effectiveness of these detection methods heavily relies on the diversity and quality of datasets used for training and evaluation. We discuss the evolution of deepfake datasets, highlighting the importance of robust, diverse, and frequently updated collections to enhance the detection accuracy and generalizability. As deepfakes become increasingly indistinguishable from authentic content, developing advanced detection techniques that can keep pace with generation technologies is crucial. We advocate for a proactive approach in the "tug-of-war" between deepfake creators and detectors, emphasizing the need for continuous research collaboration, standardization of evaluation metrics, and the creation of comprehensive benchmarks.
♻ ☆ SOAP: Enhancing Spatio-Temporal Relation and Motion Information Capturing for Few-Shot Action Recognition ACM MM 2024
High frame-rate (HFR) videos of action recognition improve fine-grained expression while reducing the spatio-temporal relation and motion information density. Thus, large amounts of video samples are continuously required for traditional data-driven training. However, samples are not always sufficient in real-world scenarios, promoting few-shot action recognition (FSAR) research. We observe that most recent FSAR works build spatio-temporal relation of video samples via temporal alignment after spatial feature extraction, cutting apart spatial and temporal features within samples. They also capture motion information via narrow perspectives between adjacent frames without considering density, leading to insufficient motion information capturing. Therefore, we propose a novel plug-and-play architecture for FSAR called Spatio-tempOral frAme tuPle enhancer (SOAP) in this paper. The model we designed with such architecture refers to SOAP-Net. Temporal connections between different feature channels and spatio-temporal relation of features are considered instead of simple feature extraction. Comprehensive motion information is also captured, using frame tuples with multiple frames containing more motion information than adjacent frames. Combining frame tuples of diverse frame counts further provides a broader perspective. SOAP-Net achieves new state-of-the-art performance across well-known benchmarks such as SthSthV2, Kinetics, UCF101, and HMDB51. Extensive empirical evaluations underscore the competitiveness, pluggability, generalization, and robustness of SOAP. The code is released at https://github.com/wenbohuang1002/SOAP.
comment: Accepted by ACM MM 2024
♻ ☆ Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture
The growing Synthetic Aperture Radar (SAR) data has the potential to build a foundation model through Self-Supervised Learning (SSL) methods, which can achieve various SAR Automatic Target Recognition (ATR) tasks with pre-training in large-scale unlabeled data and fine-tuning in small labeled samples. SSL aims to construct supervision signals directly from the data, which minimizes the need for expensive expert annotation and maximizes the use of the expanding data pool for a foundational model. This study investigates an effective SSL method for SAR ATR, which can pave the way for a foundation model in SAR ATR. The primary obstacles faced in SSL for SAR ATR are the small targets in remote sensing and speckle noise in SAR images, corresponding to the SSL approach and signals. To overcome these challenges, we present a novel Joint-Embedding Predictive Architecture for SAR ATR (SAR-JEPA), which leverages local masked patches to predict the multi-scale SAR gradient representations of unseen context. The key aspect of SAR-JEPA is integrating SAR domain features to ensure high-quality self-supervised signals as target features. Besides, we employ local masks and multi-scale features to accommodate the various small targets in remote sensing. By fine-tuning and evaluating our framework on three target recognition datasets (vehicle, ship, and aircraft) with four other datasets as pre-training, we demonstrate its outperformance over other SSL methods and its effectiveness with increasing SAR data. This study showcases the potential of SSL for SAR target recognition across diverse targets, scenes, and sensors.Our codes and weights are available in \url{https://github.com/waterdisappear/SAR-JEPA.
comment: 15 pages, 7 figures,
♻ ☆ CMAB: A First National-Scale Multi-Attribute Building Dataset in China Derived from Open Source Data and GeoAI
Rapidly acquiring three-dimensional (3D) building data, including geometric attributes like rooftop, height and orientations, as well as indicative attributes like function, quality, and age, is essential for accurate urban analysis, simulations, and policy updates. Current building datasets suffer from incomplete coverage of building multi-attributes. This paper introduces a geospatial artificial intelligence (GeoAI) framework for large-scale building modeling, presenting the first national-scale Multi-Attribute Building dataset (CMAB), covering 3,667 spatial cities, 29 million buildings, and 21.3 billion square meters of rooftops with an F1-Score of 89.93% in OCRNet-based extraction, totaling 337.7 billion cubic meters of building stock. We trained bootstrap aggregated XGBoost models with city administrative classifications, incorporating features such as morphology, location, and function. Using multi-source data, including billions of high-resolution Google Earth images and 60 million street view images (SVIs), we generated rooftop, height, function, age, and quality attributes for each building. Accuracy was validated through model benchmarks, existing similar products, and manual SVI validation, mostly above 80%. Our dataset and results are crucial for global SDGs and urban planning.
comment: 43 pages, 20 figures
♻ ☆ Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning SC
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples while preserving the knowledge of previously learned classes. Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially, prone to overfitting to the current session. Existing dynamic strategies require the expansion of the parameter space continually, leading to increased complexity. In this study, we explore the potential of Selective State Space Models (SSMs) for FSCIL, leveraging its dynamic weights and strong ability in sequence modeling to address these challenges. Concretely, we propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation. The dual design enables the model to maintain the robust features of base classes, while adaptively learning distinctive feature shifts for novel classes. Additionally, we develop a class-sensitive selective scan mechanism to guide dynamic adaptation. It minimizes the disruption to base-class representations caused by training on novel data, and meanwhile, forces the selective scan to perform in distinct patterns between base and novel classes. Experiments on miniImageNet, CUB-200, and CIFAR-100 demonstrate that our framework outperforms the existing state-of-the-art methods. The code is available at \url{https://github.com/xiaojieli0903/Mamba-FSCIL}.
comment: Code: https://github.com/xiaojieli0903/Mamba-FSCIL
♻ ☆ Vessel-Promoted OCT to OCTA Image Translation by Heuristic Contextual Constraints
Optical Coherence Tomography Angiography (OCTA) is a crucial tool in the clinical screening of retinal diseases, allowing for accurate 3D imaging of blood vessels through non-invasive scanning. However, the hardware-based approach for acquiring OCTA images presents challenges due to the need for specialized sensors and expensive devices. In this paper, we introduce a novel method called TransPro, which can translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images without requiring any additional hardware modifications. Our TransPro method is primarily driven by two novel ideas that have been overlooked by prior work. The first idea is derived from a critical observation that the OCTA projection map is generated by averaging pixel values from its corresponding B-scans along the Z-axis. Hence, we introduce a hybrid architecture incorporating a 3D adversarial generative network and a novel Heuristic Contextual Guidance (HCG) module, which effectively maintains the consistency of the generated OCTA images between 3D volumes and projection maps. The second idea is to improve the vessel quality in the translated OCTA projection maps. As a result, we propose a novel Vessel Promoted Guidance (VPG) module to enhance the attention of network on retinal vessels. Experimental results on two datasets demonstrate that our TransPro outperforms state-of-the-art approaches, with relative improvements around 11.4% in MAE, 2.7% in PSNR, 2% in SSIM, 40% in VDE, and 9.1% in VDC compared to the baseline method. The code is available at: https://github.com/ustlsh/TransPro.
comment: Accepted by Medical Image Analysis
♻ ☆ MotionBooth: Motion-Aware Customized Text-to-Video Generation
In this work, we present MotionBooth, an innovative framework designed for animating customized subjects with precise control over both object and camera movements. By leveraging a few images of a specific object, we efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately. Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance, along with a subject token cross-attention loss to integrate the customized subject with motion control signals. Additionally, we propose training-free techniques for managing subject and camera motions during inference. In particular, we utilize cross-attention map manipulation to govern subject motion and introduce a novel latent shift module for camera movement control as well. MotionBooth excels in preserving the appearance of subjects while simultaneously controlling the motions in generated videos. Extensive quantitative and qualitative evaluations demonstrate the superiority and effectiveness of our method. Our project page is at https://jianzongwu.github.io/projects/motionbooth
comment: Project page at https://jianzongwu.github.io/projects/motionbooth
♻ ☆ MIS-ME: A Multi-modal Framework for Soil Moisture Estimation
Soil moisture estimation is an important task to enable precision agriculture in creating optimal plans for irrigation, fertilization, and harvest. It is common to utilize statistical and machine learning models to estimate soil moisture from traditional data sources such as weather forecasts, soil properties, and crop properties. However, there is a growing interest in utilizing aerial and geospatial imagery to estimate soil moisture. Although these images capture high-resolution crop details, they are expensive to curate and challenging to interpret. Imagine, an AI-enhanced software tool that predicts soil moisture using visual cues captured by smartphones and statistical data given by weather forecasts. This work is a first step towards that goal of developing a multi-modal approach for soil moisture estimation. In particular, we curate a dataset consisting of real-world images taken from ground stations and their corresponding weather data. We also propose MIS-ME - Meteorological & Image based Soil Moisture Estimator, a multi-modal framework for soil moisture estimation. Our extensive analysis shows that MIS-ME achieves a MAPE of 10.14%, outperforming traditional unimodal approaches with a reduction of 3.25% in MAPE for meteorological data and 2.15% in MAPE for image data, highlighting the effectiveness of tailored multi-modal approaches. Our code and dataset will be available at https://github.com/OSU-Complex-Systems/MIS-ME.git.
comment: Accepted by DSAA2024
♻ ☆ Unfolded proximal neural networks for robust image Gaussian denoising
A common approach to solve inverse imaging problems relies on finding a maximum a posteriori (MAP) estimate of the original unknown image, by solving a minimization problem. In thiscontext, iterative proximal algorithms are widely used, enabling to handle non-smooth functions and linear operators. Recently, these algorithms have been paired with deep learning strategies, to further improve the estimate quality. In particular, proximal neural networks (PNNs) have been introduced, obtained by unrolling a proximal algorithm as for finding a MAP estimate, but over a fixed number of iterations, with learned linear operators and parameters. As PNNs are based on optimization theory, they are very flexible, and can be adapted to any image restoration task, as soon as a proximal algorithm can solve it. They further have much lighter architectures than traditional networks. In this article we propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms. We further show that accelerated inertial versions of these algorithms enable skip connections in the associated NN layers. We propose different learning strategies for our PNN framework, and investigate their robustness (Lipschitz property) and denoising efficiency. Finally, we assess the robustness of our PNNs when plugged in a forward-backward algorithm for an image deblurring problem.
♻ ☆ ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context
Visual storytelling involves generating a sequence of coherent frames from a textual storyline while maintaining consistency in characters and scenes. Existing autoregressive methods, which rely on previous frame-sentence pairs, struggle with high memory usage, slow generation speeds, and limited context integration. To address these issues, we propose ContextualStory, a novel framework designed to generate coherent story frames and extend frames for story continuation. ContextualStory utilizes Spatially-Enhanced Temporal Attention to capture spatial and temporal dependencies, handling significant character movements effectively. Additionally, we introduces a Storyline Contextualizer to enrich context in storyline embedding and a StoryFlow Adapter to measure scene changes between frames for guiding model. Extensive experiments on PororoSV and FlintstonesSV benchmarks demonstrate that ContextualStory significantly outperforms existing methods in both story visualization and story continuation.
♻ ☆ Hierarchical Salient Patch Identification for Interpretable Fundus Disease Localization
With the widespread application of deep learning technology in medical image analysis, the effective explanation of model predictions and improvement of diagnostic accuracy have become urgent problems that need to be solved. Attribution methods have become key tools to help doctors better understand the diagnostic basis of models, and are used to explain and localize diseases in medical images. However, previous methods suffer from inaccurate and incomplete localization problems for fundus diseases with complex and diverse structures. To solve these problems, we propose a weakly supervised interpretable fundus disease localization method called hierarchical salient patch identification (HSPI) that can achieve interpretable disease localization using only image-level labels and a neural network classifier (NNC). First, we propose salient patch identification (SPI), which divides the image into several patches and optimizes consistency loss to identify which patch in the input image is most important for the network's prediction, in order to locate the disease. Second, we propose a hierarchical identification strategy to force SPI to analyze the importance of different areas to neural network classifier's prediction to comprehensively locate disease areas. Conditional peak focusing is then introduced to ensure that the mask vector can accurately locate the disease area. Finally, we propose patch selection based on multi-sized intersections to filter out incorrectly or additionally identified non-disease regions. We conduct disease localization experiments on fundus image datasets and achieve the best performance on multiple evaluation metrics compared to previous interpretable attribution methods. Additional ablation studies are conducted to verify the effectiveness of each method.
♻ ☆ FALIP: Visual Prompt as Foveal Attention Boosts CLIP Zero-Shot Performance ECCV 2024
CLIP has achieved impressive zero-shot performance after pre-training on a large-scale dataset consisting of paired image-text data. Previous works have utilized CLIP by incorporating manually designed visual prompts like colored circles and blur masks into the images to guide the model's attention, showing enhanced zero-shot performance in downstream tasks. Although these methods have achieved promising results, they inevitably alter the original information of the images, which can lead to failure in specific tasks. We propose a train-free method Foveal-Attention CLIP (FALIP), which adjusts the CLIP's attention by inserting foveal attention masks into the multi-head self-attention module. We demonstrate FALIP effectively boosts CLIP zero-shot performance in tasks such as referring expressions comprehension, image classification, and 3D point cloud recognition. Experimental results further show that FALIP outperforms existing methods on most metrics and can augment current methods to enhance their performance.
comment: Accepted by ECCV 2024, code released
♻ ☆ Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition
Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task, aiming to simultaneously extract entity spans, types, and corresponding visual regions of entities from given sentence-image pairs data. Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task. The former, utilizing human-designed queries, struggles to differentiate ambiguous entities, such as Jordan (Person) and off-White x Jordan (Shoes). The latter, following the one-by-one decoding order, suffers from exposure bias issues. We maintain that these works misunderstand the relationships of multimodal entities. To tackle these, we propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels. Specifically, MQSPN consists of a Multi-grained Query Set (MQS) and a Multimodal Set Prediction Network (MSP). MQS explicitly aligns entity regions with entity spans by employing a set of learnable queries to strengthen intra-entity connections. Based on distinct intra-entity modeling, MSP reformulates GMNER as a set prediction, guiding models to establish appropriate inter-entity relationships from a global matching perspective. Additionally, we incorporate a query-guided Fusion Net (QFNet) to work as a glue network between MQS and MSP. Extensive experiments demonstrate that our approach achieves state-of-the-art performances in widely used benchmarks.
comment: 13 pages, 7 figures
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments
Occupancy prediction reconstructs 3D structures of surrounding environments. It provides detailed information for autonomous driving planning and navigation. However, most existing methods heavily rely on the LiDAR point clouds to generate occupancy ground truth, which is not available in the vision-based system. In this paper, we propose an OccNeRF method for training occupancy networks without 3D supervision. Different from previous works which consider a bounded scene, we parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range. The neural rendering is adopted to convert occupancy fields to multi-camera depth maps, supervised by multi-frame photometric consistency. Moreover, for semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model. Extensive experiments for both self-supervised depth estimation and 3D occupancy prediction tasks on nuScenes and SemanticKITTI datasets demonstrate the effectiveness of our method.
comment: Code: https://github.com/LinShan-Bin/OccNeRF
♻ ☆ Self-Supervised Visual Preference Alignment
This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT-4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code are available in https://github.com/Kevinz-code/SeVa.
comment: MM2024 oral
♻ ☆ DiffuMatting: Synthesizing Arbitrary Objects with Matting-level Annotation ECCV 2024
Due to the difficulty and labor-consuming nature of getting highly accurate or matting annotations, there only exists a limited amount of highly accurate labels available to the public. To tackle this challenge, we propose a DiffuMatting which inherits the strong Everything generation ability of diffusion and endows the power of "matting anything". Our DiffuMatting can 1). act as an anything matting factory with high accurate annotations 2). be well-compatible with community LoRAs or various conditional control approaches to achieve the community-friendly art design and controllable generation. Specifically, inspired by green-screen-matting, we aim to teach the diffusion model to paint on a fixed green screen canvas. To this end, a large-scale greenscreen dataset (Green100K) is collected as a training dataset for DiffuMatting. Secondly, a green background control loss is proposed to keep the drawing board as a pure green color to distinguish the foreground and background. To ensure the synthesized object has more edge details, a detailed-enhancement of transition boundary loss is proposed as a guideline to generate objects with more complicated edge structures. Aiming to simultaneously generate the object and its matting annotation, we build a matting head to make a green color removal in the latent space of the VAE decoder. Our DiffuMatting shows several potential applications (e.g., matting-data generator, community-friendly art design and controllable generation). As a matting-data generator, DiffuMatting synthesizes general object and portrait matting sets, effectively reducing the relative MSE error by 15.4% in General Object Matting and 11.4% in Portrait Matting tasks. The dataset is released in our project page at \url{https://diffumatting.github.io}.
comment: This paper was accepted by ECCV 2024, and the project page is accessible at: \url{https://diffumatting.github.io}
♻ ☆ Source-Free Domain Adaptation Guided by Vision and Vision-Language Pre-Training ICCV
Source-free domain adaptation (SFDA) aims to adapt a source model trained on a fully-labeled source domain to a related but unlabeled target domain. While the source model is a key avenue for acquiring target pseudolabels, the generated pseudolabels may exhibit source bias. In the conventional SFDA pipeline, a large data (e.g. ImageNet) pre-trained feature extractor is used to initialize the source model at the start of source training, and subsequently discarded. Despite having diverse features important for generalization, the pre-trained feature extractor can overfit to the source data distribution during source training and forget relevant target domain knowledge. Rather than discarding this valuable knowledge, we introduce an integrated framework to incorporate pre-trained networks into the target adaptation process. The proposed framework is flexible and allows us to plug modern pre-trained networks into the adaptation process to leverage their stronger representation learning capabilities. For adaptation, we propose the Co-learn algorithm to improve target pseudolabel quality collaboratively through the source model and a pre-trained feature extractor. Building on the recent success of the vision-language model CLIP in zero-shot image recognition, we present an extension Co-learn++ to further incorporate CLIP's zero-shot classification decisions. We evaluate on 4 benchmark datasets and include more challenging scenarios such as open-set, partial-set and open-partial SFDA. Experimental results demonstrate that our proposed strategy improves adaptation performance and can be successfully integrated with existing SFDA methods.
comment: Extension of ICCV paper arXiv:2212.07585, accepted to IJCV
♻ ☆ Structure-preserving Planar Simplification for Indoor Environments
This paper presents a novel approach for structure-preserving planar simplification of indoor scene point clouds for both simulated and real-world environments. Initially, the scene point cloud undergoes preprocessing steps, including noise reduction and Manhattan world alignment, to ensure robustness and coherence in subsequent analyses. We segment each captured scene into structured (walls-ceiling-floor) and non-structured (indoor objects) scenes. Leveraging a RANSAC algorithm, we extract primitive planes from the input point cloud, facilitating the segmentation and simplification of the structured scene. The best-fitting wall meshes are then generated from the primitives, followed by adjacent mesh merging with the vertex-translation algorithm which preserves the mesh layout. To accurately represent ceilings and floors, we employ the mesh clipping algorithm which clips the ceiling and floor meshes with respect to wall normals. In the case of indoor scenes, we apply a surface reconstruction technique to enhance the fidelity. This paper focuses on the intricate steps of the proposed scene simplification methodology, addressing complex scenarios such as multi-story and slanted walls and ceilings. We also conduct qualitative and quantitative performance comparisons against popular surface reconstruction, shape approximation, and floorplan generation approaches.
♻ ☆ Freehand Sketch Generation from Mechanical Components ACM MM
Drawing freehand sketches of mechanical components on multimedia devices for AI-based engineering modeling has become a new trend. However, its development is being impeded because existing works cannot produce suitable sketches for data-driven research. These works either generate sketches lacking a freehand style or utilize generative models not originally designed for this task resulting in poor effectiveness. To address this issue, we design a two-stage generative framework mimicking the human sketching behavior pattern, called MSFormer, which is the first time to produce humanoid freehand sketches tailored for mechanical components. The first stage employs Open CASCADE technology to obtain multi-view contour sketches from mechanical components, filtering perturbing signals for the ensuing generation process. Meanwhile, we design a view selector to simulate viewpoint selection tasks during human sketching for picking out information-rich sketches. The second stage translates contour sketches into freehand sketches by a transformer-based generator. To retain essential modeling features as much as possible and rationalize stroke distribution, we introduce a novel edge-constraint stroke initialization. Furthermore, we utilize a CLIP vision encoder and a new loss function incorporating the Hausdorff distance to enhance the generalizability and robustness of the model. Extensive experiments demonstrate that our approach achieves state-of-the-art performance for generating freehand sketches in the mechanical domain. Project page: https://mcfreeskegen.github.io .
comment: Published at ACM Multimedia (ACM MM) 2024
♻ ☆ The NeRFect Match: Exploring NeRF Features for Visual Localization ECCV24
In this work, we propose the use of Neural Radiance Fields (NeRF) as a scene representation for visual localization. Recently, NeRF has been employed to enhance pose regression and scene coordinate regression models by augmenting the training database, providing auxiliary supervision through rendered images, or serving as an iterative refinement module. We extend its recognized advantages -- its ability to provide a compact scene representation with realistic appearances and accurate geometry -- by exploring the potential of NeRF's internal features in establishing precise 2D-3D matches for localization. To this end, we conduct a comprehensive examination of NeRF's implicit knowledge, acquired through view synthesis, for matching under various conditions. This includes exploring different matching network architectures, extracting encoder features at multiple layers, and varying training configurations. Significantly, we introduce NeRFMatch, an advanced 2D-3D matching function that capitalizes on the internal knowledge of NeRF learned via view synthesis. Our evaluation of NeRFMatch on standard localization benchmarks, within a structure-based pipeline, sets a new state-of-the-art for localization performance on Cambridge Landmarks.
comment: ECCV24 camera ready
♻ ☆ ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention for their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear scalability and fast processing of long sequences. We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning while also trying various visual encoders and Mamba-2 model variants. Our extensive experiments in various multimodal benchmark tests demonstrate the competitive performance of ML-Mamba and highlight the potential of state space models in multimodal tasks. The experimental results show that: (1) we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning. We propose a novel multimodal connector called the Mamba-2 Scan Connector (MSC), which enhances representational capabilities. (2) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling while faster inference speed; (3) Compared to multimodal models utilizing Mamba-1, the Mamba-2-based ML-Mamba exhibits superior inference performance and effectiveness.
♻ ☆ Quantifying the effect of X-ray scattering for data generation in real-time defect detection
Background: X-ray imaging is widely used for the non-destructive detection of defects in industrial products on a conveyor belt. In-line detection requires highly accurate, robust, and fast algorithms. Deep Convolutional Neural Networks (DCNNs) satisfy these requirements when a large amount of labeled data is available. To overcome the challenge of collecting these data, different methods of X-ray image generation are considered. Objective: Depending on the desired degree of similarity to real data, different physical effects should either be simulated or can be ignored. X-ray scattering is known to be computationally expensive to simulate, and this effect can greatly affect the accuracy of a generated X-ray image. We aim to quantitatively evaluate the effect of scattering on defect detection. Methods: Monte-Carlo simulation is used to generate X-ray scattering distribution. DCNNs are trained on the data with and without scattering and applied to the same test datasets. Probability of Detection (POD) curves are computed to compare their performance, characterized by the size of the smallest detectable defect. Results: We apply the methodology to a model problem of defect detection in cylinders. When trained on data without scattering, DCNNs reliably detect defects larger than 1.3 mm, and using data with scattering improves performance by less than 5%. If the analysis is performed on the cases with large scattering-to-primary ratio ($1 < SPR < 5$), the difference in performance could reach 15% (approx. 0.4 mm). Conclusion: Excluding the scattering signal from the training data has the largest effect on the smallest detectable defects, and the difference decreases for larger defects. The scattering-to-primary ratio has a significant effect on detection performance and the required accuracy of data generation.
comment: This paper appears in: Journal of X-Ray Science and Technology, vol. 32, no. 4, pp. 1099-1119, 2024. Print ISSN: 0895-3996 Online ISSN: 1095-9114 Digital Object Identifier: https://doi.org/10.3233/XST-230389
♻ ☆ Rectified Iterative Disparity for Stereo Matching
Both uncertainty-assisted and iteration-based methods have achieved great success in stereo matching. However, existing uncertainty estimation methods take a single image and the corresponding disparity as input, which imposes higher demands on the estimation network. In this paper, we propose Cost volume-based disparity Uncertainty Estimation (UEC). Based on the rich similarity information in the cost volume coming from the image pairs, the proposed UEC can achieve competitive performance with low computational cost. Secondly, we propose two methods of uncertainty-assisted disparity estimation, Uncertainty-based Disparity Rectification (UDR) and Uncertainty-based Disparity update Conditioning (UDC). These two methods optimise the disparity update process of the iterative-based approach without adding extra parameters. In addition, we propose Disparity Rectification loss that significantly improves the accuracy of small amount of disparity updates. We present a high-performance stereo architecture, DR Stereo, which is a combination of the proposed methods. Experimental results from SceneFlow, KITTI, Middlebury 2014, and ETH3D show that DR-Stereo achieves very competitive disparity estimation performance.
♻ ☆ Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery ICPR 2024
Discovering novel concepts in unlabelled datasets and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where novel classes are learned by jointly accessing a related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-trained model (e.g., class-iNCD). In this work we challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly, without needing any related labelled set. In detail, we propose to exploit the richer priors from strong self-supervised pre-trained models (PTM). To this end, we propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines when compared with sophisticated state-of-the-art methods. The code is open source.
comment: Accepted as a conference paper to ICPR 2024
♻ ☆ Towards Robust Federated Image Classification: An Empirical Study of Weight Selection Strategies in Manufacturing
In the realm of Federated Learning (FL), particularly within the manufacturing sector, the strategy for selecting client weights for server aggregation is pivotal for model performance. This study investigates the comparative effectiveness of two weight selection strategies: Final Epoch Weight Selection (FEWS) and Optimal Epoch Weight Selection (OEWS). Designed for manufacturing contexts where collaboration typically involves a limited number of partners (two to four clients), our research focuses on federated image classification tasks. We employ various neural network architectures, including EfficientNet, ResNet, and VGG, to assess the impact of these weight selection strategies on model convergence and robustness. Our research aims to determine whether FEWS or OEWS enhances the global FL model's performance across communication rounds (CRs). Through empirical analysis and rigorous experimentation, we seek to provide valuable insights for optimizing FL implementations in manufacturing, ensuring that collaborative efforts yield the most effective and reliable models with a limited number of participating clients. The findings from this study are expected to refine FL practices significantly in manufacturing, thereby enhancing the efficiency and performance of collaborative machine learning endeavors in this vital sector.
comment: Submitted to The 2nd IEEE International Conference on Federated Learning Technologies and Applications (FLTA24)
♻ ☆ AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors
Deep generative models can create remarkably photorealistic fake images while raising concerns about misinformation and copyright infringement, known as deepfake threats. Deepfake detection technique is developed to distinguish between real and fake images, where the existing methods typically learn classifiers in the image domain or various feature domains. However, the generalizability of deepfake detection against emerging and more advanced generative models remains challenging. In this paper, being inspired by the zero-shot advantages of Vision-Language Models (VLMs), we propose a novel approach called AntifakePrompt, using VLMs (e.g., InstructBLIP) and prompt tuning techniques to improve the deepfake detection accuracy over unseen data. We formulate deepfake detection as a visual question answering problem, and tune soft prompts for InstructBLIP to answer the real/fake information of a query image. We conduct full-spectrum experiments on datasets from a diversity of 3 held-in and 20 held-out generative models, covering modern text-to-image generation, image editing and adversarial image attacks. These testing datasets provide useful benchmarks in the realm of deepfake detection for further research. Moreover, results demonstrate that (1) the deepfake detection accuracy can be significantly and consistently improved (from 71.06% to 92.11%, in average accuracy over unseen domains) using pretrained vision-language models with prompt tuning; (2) our superior performance is at less cost of training data and trainable parameters, resulting in an effective and efficient solution for deepfake detection. Code and models can be found at https://github.com/nctu-eva-lab/AntifakePrompt.
♻ ☆ Decoupling Dynamic Monocular Videos for Dynamic View Synthesis
The challenge of dynamic view synthesis from dynamic monocular videos, i.e., synthesizing novel views for free viewpoints given a monocular video of a dynamic scene captured by a moving camera, mainly lies in accurately modeling the \textbf{dynamic objects} of a scene using limited 2D frames, each with a varying timestamp and viewpoint. Existing methods usually require pre-processed 2D optical flow and depth maps by off-the-shelf methods to supervise the network, making them suffer from the inaccuracy of the pre-processed supervision and the ambiguity when lifting the 2D information to 3D. In this paper, we tackle this challenge in an unsupervised fashion. Specifically, we decouple the motion of the dynamic objects into object motion and camera motion, respectively regularized by proposed unsupervised surface consistency and patch-based multi-view constraints. The former enforces the 3D geometric surfaces of moving objects to be consistent over time, while the latter regularizes their appearances to be consistent across different viewpoints. Such a fine-grained motion formulation can alleviate the learning difficulty for the network, thus enabling it to produce not only novel views with higher quality but also more accurate scene flows and depth than existing methods requiring extra supervision.
comment: Accepted to TVCG
♻ ☆ PhD: A Prompted Visual Hallucination Evaluation Dataset
Multimodal Large Language Models (MLLMs) hallucinate, resulting in an emerging topic of visual hallucination evaluation (VHE). We introduce in this paper PhD, a large-scale benchmark for VHE. The essence of VHE is to ask an MLLM the right questions concerning a specific image. Depending on what to ask (objects, attributes, sentiment, etc.) and how the questions are asked, we structure PhD along two dimensions, i.e. task and mode. Five visual recognition tasks, ranging from low-level (object / attribute recognition) to middle-level (sentiment / position recognition and counting), are considered. Besides a normal visual QA mode, which we term VHE-base, PhD also asks questions with inaccurate context (VHE-iac) or with incorrect context (VHE-icc), or with AI-generated counter common sense images (VHE-ccs). We construct PhD by a ChatGPT-assisted semi-automated pipeline, encompassing four pivotal modules: task-specific hallucinatory element (hitem) selection, hitem-embedded question generation, inaccurate / incorrect context generation, and CCS image generation. With over 102k VQA triplets in total, PhD reveals considerable variability in MLLMs' performance across various modes, offering valuable insights into the nature of hallucination issues. As such, PhD stands as a potent tool not only for VHE but may also play a significant role in the refinement of MLLMs.
♻ ☆ UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models
Teaching Visual Question Answering (VQA) models to refrain from answering unanswerable questions is necessary for building a trustworthy AI system. Existing studies, though have explored various aspects of VQA but somewhat ignored this particular attribute. This paper aims to bridge the research gap by contributing a comprehensive dataset, called UNK-VQA. The dataset is specifically designed to address the challenge of questions that models do not know. To this end, we first augment the existing data via deliberate perturbations on either the image or question. In specific, we carefully ensure that the question-image semantics remain close to the original unperturbed distribution. By this means, the identification of unanswerable questions becomes challenging, setting our dataset apart from others that involve mere image replacement. We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models and discover their significant limitations when applied to our dataset. Additionally, we also propose a straightforward method to tackle these unanswerable questions. This dataset, we believe, will serve as a valuable benchmark for enhancing the abstention capability of VQA models, thereby leading to increased trustworthiness of AI systems. We have made the dataset (https://github.com/guoyang9/UNK-VQA) available to facilitate further exploration in this area.
comment: Accepted by TPAMI
♻ ☆ Semi-Supervised Learning with Multi-Head Co-Training AAAI
Co-training, extended from self-training, is one of the frameworks for semi-supervised learning. Without natural split of features, single-view co-training works at the cost of training extra classifiers, where the algorithm should be delicately designed to prevent individual classifiers from collapsing into each other. To remove these obstacles which deter the adoption of single-view co-training, we present a simple and efficient algorithm Multi-Head Co-Training. By integrating base learners into a multi-head structure, the model is in a minimal amount of extra parameters. Every classification head in the unified model interacts with its peers through a "Weak and Strong Augmentation" strategy, in which the diversity is naturally brought by the strong data augmentation. Therefore, the proposed method facilitates single-view co-training by 1). promoting diversity implicitly and 2). only requiring a small extra computational overhead. The effectiveness of Multi-Head Co-Training is demonstrated in an empirical study on standard semi-supervised learning benchmarks.
comment: The 36th AAAI Conference on Artificial Intelligence (AAAI-22)
♻ ☆ RGBD-Glue: General Feature Combination for Robust RGB-D Point Cloud Registration
Point cloud registration is a fundamental task for estimating rigid transformations between point clouds. Previous studies have used geometric information for extracting features, matching and estimating transformation. Recently, owing to the advancement of RGB-D sensors, researchers have attempted to combine visual and geometric information to improve registration performance. However, these studies focused on extracting distinctive features by deep feature fusion, which cannot effectively solve the negative effects of each feature's weakness, and cannot sufficiently leverage the valid information. In this paper, we propose a new feature combination framework, which applies a looser but more effective combination. An explicit filter based on transformation consistency is designed for the combination framework, which can overcome each feature's weakness. And an adaptive threshold determined by the error distribution is proposed to extract more valid information from the two types of features. Owing to the distinctive design, our proposed framework can estimate more accurate correspondences and is applicable to both hand-crafted and learning-based feature descriptors. Experiments on ScanNet and 3DMatch show that our method achieves a state-of-the-art performance.
♻ ☆ Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities since their data association usually relies on feature correspondences. Additionally, learning-based SLAM systems often fall short in terms of real-time performance and accuracy. Balancing real-time performance with dense 3D reconstruction capabilities is a challenging problem. In this paper, we propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting, for 3D scene representation and pose estimation. This technique leverages the real-time rendering performance of 3D Gaussian Splatting with rasterization and allows for differentiable optimization in real time through CUDA implementation. We also enable mesh reconstruction from 3D Gaussians for explicit dense 3D reconstruction. To estimate accurate camera poses, we utilize a rotation-translation decoupled strategy with inverse optimization. This involves iteratively updating both in several iterations through gradient-based optimization. This process includes differentiably rendering RGB, depth, and silhouette maps and updating the camera parameters to minimize a combined loss of photometric loss, depth geometry loss, and visibility loss, given the existing 3D Gaussian map. However, 3D Gaussian Splatting (3DGS) struggles to accurately represent surfaces due to the multi-view inconsistency of 3D Gaussians, which can lead to reduced accuracy in both camera pose estimation and scene reconstruction. To address this, we utilize depth priors as additional regularization to enforce geometric constraints, thereby improving the accuracy of both pose estimation and 3D reconstruction. We also provide extensive experimental results on public benchmark datasets to demonstrate the effectiveness of our proposed methods in terms of pose accuracy, geometric accuracy, and rendering performance.
♻ ☆ MMFakeBench: A Mixed-Source Multimodal Misinformation Detection Benchmark for LVLMs
Current multimodal misinformation detection (MMD) methods often assume a single source and type of forgery for each sample, which is insufficient for real-world scenarios where multiple forgery sources coexist. The lack of a benchmark for mixed-source misinformation has hindered progress in this field. To address this, we introduce MMFakeBench, the first comprehensive benchmark for mixed-source MMD. MMFakeBench includes 3 critical sources: textual veracity distortion, visual veracity distortion, and cross-modal consistency distortion, along with 12 sub-categories of misinformation forgery types. We further conduct an extensive evaluation of 6 prevalent detection methods and 15 large vision-language models (LVLMs) on MMFakeBench under a zero-shot setting. The results indicate that current methods struggle under this challenging and realistic mixed-source MMD setting. Additionally, we propose an innovative unified framework, which integrates rationales, actions, and tool-use capabilities of LVLM agents, significantly enhancing accuracy and generalization. We believe this study will catalyze future research into more realistic mixed-source multimodal misinformation and provide a fair evaluation of misinformation detection methods.
comment: Project page: https://liuxuannan.github.io/MMFakeBench.github.io/
♻ ☆ Region Guided Attention Network for Retinal Vessel Segmentation
Retinal imaging has emerged as a promising method of addressing this challenge, taking advantage of the unique structure of the retina. The retina is an embryonic extension of the central nervous system, providing a direct in vivo window into neurological health. Recent studies have shown that specific structural changes in retinal vessels can not only serve as early indicators of various diseases but also help to understand disease progression. In this work, we present a lightweight retinal vessel segmentation network based on the encoder-decoder mechanism with region-guided attention. We introduce inverse addition attention blocks with region guided attention to focus on the foreground regions and improve the segmentation of regions of interest. To further boost the model's performance on retinal vessel segmentation, we employ a weighted dice loss. This choice is particularly effective in addressing the class imbalance issues frequently encountered in retinal vessel segmentation tasks. Dice loss penalises false positives and false negatives equally, encouraging the model to generate more accurate segmentation with improved object boundary delineation and reduced fragmentation. Extensive experiments on a benchmark dataset show better performance (0.8285, 0.8098, 0.9677, and 0.8166 recall, precision, accuracy and F1 score respectively) compared to state-of-the-art methods.
♻ ☆ Predicting the Next Action by Modeling the Abstract Goal ICPR
The problem of anticipating human actions is an inherently uncertain one. However, we can reduce this uncertainty if we have a sense of the goal that the actor is trying to achieve. Here, we present an action anticipation model that leverages goal information for the purpose of reducing the uncertainty in future predictions. Since we do not possess goal information or the observed actions during inference, we resort to visual representation to encapsulate information about both actions and goals. Through this, we derive a novel concept called abstract goal which is conditioned on observed sequences of visual features for action anticipation. We design the abstract goal as a distribution whose parameters are estimated using a variational recurrent network. We sample multiple candidates for the next action and introduce a goal consistency measure to determine the best candidate that follows from the abstract goal. Our method obtains impressive results on the very challenging Epic-Kitchens55 (EK55), EK100, and EGTEA Gaze+ datasets. We obtain absolute improvements of +13.69, +11.24, and +5.19 for Top-1 verb, Top-1 noun, and Top-1 action anticipation accuracy respectively over prior state-of-the-art methods for seen kitchens (S1) of EK55. Similarly, we also obtain significant improvements in the unseen kitchens (S2) set for Top-1 verb (+10.75), noun (+5.84) and action (+2.87) anticipation. Similar trend is observed for EGTEA Gaze+ dataset, where absolute improvement of +9.9, +13.1 and +6.8 is obtained for noun, verb, and action anticipation. It is through the submission of this paper that our method is currently the new state-of-the-art for action anticipation in EK55 and EGTEA Gaze+ https://competitions.codalab.org/competitions/20071#results Code available at https://github.com/debadityaroy/Abstract_Goal
comment: Accepted at the 27th International Conference on Pattern Recognition (ICPR)
♻ ☆ Generalization Gap in Data Augmentation: Insights from Illumination ICPR 2024
In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study introduces the concept of "visual representation variables" to define the possible visual variations in a task as a joint distribution of these variables. We focus on the visual representation variable "illumination", by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after applying various data augmentation methods, model performance has significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
comment: Accepted in ICPR 2024
♻ ☆ OV-DQUO: Open-Vocabulary DETR with Denoising Text Query Training and Open-World Unknown Objects Supervision
Open-vocabulary detection aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on base category data tend to assign higher confidence to trained categories and confuse novel categories with the background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method. This method enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy. It synthesizes foreground and background query-box pairs from open-world unknown objects to train the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at \url{https://github.com/xiaomoguhz/OV-DQUO}
♻ ☆ Addressing a fundamental limitation in deep vision models: lack of spatial attention
The primary aim of this manuscript is to underscore a significant limitation in current deep learning models, particularly vision models. Unlike human vision, which efficiently selects only the essential visual areas for further processing, leading to high speed and low energy consumption, deep vision models process the entire image. In this work, we examine this issue from a broader perspective and propose a solution that could pave the way for the next generation of more efficient vision models. Basically, convolution and pooling operations are selectively applied to altered regions, with a change map sent to subsequent layers. This map indicates which computations need to be repeated. The code is available at https://github.com/aliborji/spatial_attention.
♻ ☆ TrAME: Trajectory-Anchored Multi-View Editing for Text-Guided 3D Gaussian Splatting Manipulation
Despite significant strides in the field of 3D scene editing, current methods encounter substantial challenge, particularly in preserving 3D consistency in multi-view editing process. To tackle this challenge, we propose a progressive 3D editing strategy that ensures multi-view consistency via a Trajectory-Anchored Scheme (TAS) with a dual-branch editing mechanism. Specifically, TAS facilitates a tightly coupled iterative process between 2D view editing and 3D updating, preventing error accumulation yielded from text-to-image process. Additionally, we explore the relationship between optimization-based methods and reconstruction-based methods, offering a unified perspective for selecting superior design choice, supporting the rationale behind the designed TAS. We further present a tuning-free View-Consistent Attention Control (VCAC) module that leverages cross-view semantic and geometric reference from the source branch to yield aligned views from the target branch during the editing of 2D views. To validate the effectiveness of our method, we analyze 2D examples to demonstrate the improved consistency with the VCAC module. Further extensive quantitative and qualitative results in text-guided 3D scene editing indicate that our method achieves superior editing quality compared to state-of-the-art methods. We will make the complete codebase publicly available following the conclusion of the review process.
♻ ☆ Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement. In scenarios where CT imaging is not an option, reconstructing CT scans from X-rays can offer a viable alternative. In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays. Distinct from previous research that relies on conventional image generation techniques, our approach leverages a conditional diffusion process to tackle the task of reconstruction. More precisely, we employ a diffusion-based probabilistic model trained to produce 3D CT images based on orthogonal biplanar X-rays. To improve the structural integrity of the reconstructed images, we incorporate a novel projection loss function. Experimental results validate that our proposed method surpasses existing state-of-the-art benchmarks in both visual image quality and multiple evaluative metrics. Specifically, our technique achieves a higher Structural Similarity Index (SSIM) of 0.83, a relative increase of 10\%, and a lower Fr\'echet Inception Distance (FID) of 83.43, which represents a relative decrease of 25\%.
♻ ☆ ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model
Contrastive Language-Image Pre-training (CLIP) models excel in integrating semantic information between images and text through contrastive learning techniques. It has achieved remarkable performance in various multimodal tasks. However, the deployment of large CLIP models is hindered in resource-limited environments, while smaller models frequently fail to meet the performance benchmarks required for practical applications. In this paper, we propose a novel approach, ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model, which aims to comprehensively distill the knowledge from a large teacher CLIP model into a smaller student model, ensuring comparable performance with significantly reduced parameters. ComKD-CLIP is composed of two key mechanisms: Image Feature Alignment (IFAlign) and Educational Attention (EduAttention). IFAlign makes the image features extracted by the student model closely match those extracted by the teacher model, enabling the student to learn teacher's knowledge of extracting image features. EduAttention explores the cross-relationships between text features extracted by the teacher model and image features extracted by the student model, enabling the student model to learn how the teacher model integrates text-image features. In addition, ComKD-CLIP can refine the knowledge distilled from IFAlign and EduAttention by leveraging the text-image feature fusion results of the teacher model, ensuring the student model accurately absorbs the teacher's knowledge. Extensive experiments conducted on 11 datasets have demonstrated the superiority of the proposed method.
comment: update
♻ ☆ S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection
Recently, transformer-based methods have shown exceptional performance in monocular 3D object detection, which can predict 3D attributes from a single 2D image. These methods typically use visual and depth representations to generate query points on objects, whose quality plays a decisive role in the detection accuracy. However, current unsupervised attention mechanisms without any geometry appearance awareness in transformers are susceptible to producing noisy features for query points, which severely limits the network performance and also makes the model have a poor ability to detect multi-category objects in a single training process. To tackle this problem, this paper proposes a novel ``Supervised Shape&Scale-perceptive Deformable Attention'' (S$^3$-DA) module for monocular 3D object detection. Concretely, S$^3$-DA utilizes visual and depth features to generate diverse local features with various shapes and scales and predict the corresponding matching distribution simultaneously to impose valuable shape&scale perception for each query. Benefiting from this, S$^3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features. Besides, we propose a Multi-classification-based Shape&Scale Matching (MSM) loss to supervise the above process. Extensive experiments on KITTI and Waymo Open datasets demonstrate that S$^3$-DA significantly improves the detection accuracy, yielding state-of-the-art performance of single-category and multi-category 3D object detection in a single training process compared to the existing approaches. The source code will be made publicly available at https://github.com/mikasa3lili/S3-MonoDETR.
comment: The source code will be made publicly available at https://github.com/mikasa3lili/S3-MonoDETR
♻ ☆ Empowering LLMs with Pseudo-Untrimmed Videos for Audio-Visual Temporal Understanding
Large language models (LLMs) have demonstrated remarkable capabilities in natural language and multimodal domains. By fine-tuning multimodal LLMs with temporal annotations from well-annotated datasets, e.g., dense video captioning datasets, their temporal understanding capacity in video-language tasks can be obtained. However, there is a notable lack of untrimmed audio-visual video datasets with precise temporal annotations for events. This deficiency hinders LLMs from learning the alignment between time, audio-visual events, and text tokens, thus impairing their ability to temporally localize audio-visual events in videos. To address this gap, we introduce PU-VALOR, a comprehensive audio-visual dataset comprising over 114,000 pseudo-untrimmed videos with detailed temporal annotations. PU-VALOR is derived from the large-scale but coarse-annotated audio-visual dataset VALOR, through a subtle method involving event-based video clustering, random temporal scaling, and permutation. By fine-tuning a multimodal LLM on PU-VALOR, we developed AVicuna, a model capable of aligning audio-visual events with temporal intervals and corresponding text tokens. AVicuna excels in temporal localization and time-aware dialogue capabilities. Our experiments demonstrate that AVicuna effectively handles temporal understanding in audio-visual videos and achieves state-of-the-art performance on open-ended video QA, audio-visual QA, and audio-visual event dense localization tasks.
♻ ☆ NeRF-US: Removing Ultrasound Imaging Artifacts from Neural Radiance Fields in the Wild
Current methods for performing 3D reconstruction and novel view synthesis (NVS) in ultrasound imaging data often face severe artifacts when training NeRF-based approaches. The artifacts produced by current approaches differ from NeRF floaters in general scenes because of the unique nature of ultrasound capture. Furthermore, existing models fail to produce reasonable 3D reconstructions when ultrasound data is captured or obtained casually in uncontrolled environments, which is common in clinical settings. Consequently, existing reconstruction and NVS methods struggle to handle ultrasound motion, fail to capture intricate details, and cannot model transparent and reflective surfaces. In this work, we introduced NeRF-US, which incorporates 3D-geometry guidance for border probability and scattering density into NeRF training, while also utilizing ultrasound-specific rendering over traditional volume rendering. These 3D priors are learned through a diffusion model. Through experiments conducted on our new "Ultrasound in the Wild" dataset, we observed accurate, clinically plausible, artifact-free reconstructions.
♻ ☆ Enhancing Ship Classification in Optical Satellite Imagery: Integrating Convolutional Block Attention Module with ResNet for Improved Performance
In this study, we present an advanced convolutional neural network (CNN) architecture for ship classification based on optical satellite imagery, which significantly enhances performance through the integration of a convolutional block attention module (CBAM) and additional architectural innovations. Building upon the foundational ResNet50 model, we first incorporated a standard CBAM to direct the model's focus toward more informative features, achieving an accuracy of 87% compared to 85% of the baseline ResNet50. Further augmentations involved multiscale feature integration, depthwise separable convolutions, and dilated convolutions, culminating in an enhanced ResNet model with improved CBAM. This model demonstrated a remarkable accuracy of 95%, with precision, recall, and F1 scores all witnessing substantial improvements across various ship classes. In particular, the bulk carrier and oil tanker classes exhibited nearly perfect precision and recall rates, underscoring the enhanced capability of the model to accurately identify and classify ships. Attention heatmap analyses further validated the efficacy of the improved model, revealing more focused attention on relevant ship features regardless of background complexities. These findings underscore the potential of integrating attention mechanisms and architectural innovations into CNNs for high-resolution satellite imagery classification. This study navigates through the class imbalance and computational costs and proposes future directions for scalability and adaptability in new or rare ship-type recognition. This study lays the groundwork for applying advanced deep learning techniques in remote sensing, offering insights into scalable and efficient satellite image classification.
comment: Submitted to IEEE Access on August 16, 2024
♻ ☆ JPEG-LM: LLMs as Image Generators with Canonical Codec Representations
Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.
♻ ☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
♻ ☆ BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
Individuals who are blind or have low vision (BLV) are at a heightened risk of sharing private information if they share photographs they have taken. To facilitate developing technologies that can help preserve privacy, we introduce BIV-Priv-Seg, the first localization dataset originating from people with visual impairments that shows private content. It contains 1,028 images with segmentation annotations for 16 private object categories. We first characterize BIV-Priv-Seg and then evaluate modern models' performance for locating private content in the dataset. We find modern models struggle most with locating private objects that are not salient, small, and lack text as well as recognizing when private content is absent from an image. We facilitate future extensions by sharing our new dataset with the evaluation server at https://vizwiz.org/tasks-and-datasets/object-localization.
♻ ☆ ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report]
We propose ProtoArgNet, a novel interpretable deep neural architecture for image classification in the spirit of prototypical-part-learning as found, e.g., in ProtoPNet. While earlier approaches associate every class with multiple prototypical-parts, ProtoArgNet uses super-prototypes that combine prototypical-parts into a unified class representation. This is done by combining local activations of prototypes in an MLP-like manner, enabling the localization of prototypes and learning (non-linear) spatial relationships among them. By leveraging a form of argumentation, ProtoArgNet is capable of providing both supporting (i.e. `this looks like that') and attacking (i.e. `this differs from that') explanations. We demonstrate on several datasets that ProtoArgNet outperforms state-of-the-art prototypical-part-learning approaches. Moreover, the argumentation component in ProtoArgNet is customisable to the user's cognitive requirements by a process of sparsification, which leads to more compact explanations compared to state-of-the-art approaches.
♻ ☆ Polyp SAM 2: Advancing Zero shot Polyp Segmentation in Colorectal Cancer Detection
Polyp segmentation plays a crucial role in the early detection and diagnosis of colorectal cancer. However, obtaining accurate segmentations often requires labor-intensive annotations and specialized models. Recently, Meta AI Research released a general Segment Anything Model 2 (SAM 2), which has demonstrated promising performance in several segmentation tasks. In this work, we evaluate the performance of SAM 2 in segmenting polyps under various prompted settings. We hope this report will provide insights to advance the field of polyp segmentation and promote more interesting work in the future. This project is publicly available at https://github.com/ sajjad-sh33/Polyp-SAM-2.
♻ ☆ Zero-shot Prompt-based Video Encoder for Surgical Gesture Recognition
Purpose: In order to produce a surgical gesture recognition system that can support a wide variety of procedures, either a very large annotated dataset must be acquired, or fitted models must generalize to new labels (so called "zero-shot" capability). In this paper we investigate the feasibility of latter option. Methods: Leveraging the Bridge-Prompt framework, we prompt-tune a pre-trained vision-text model (CLIP) for gesture recognition in surgical videos. This can utilize extensive outside video data such as text, but also make use of label meta-data and weakly supervised contrastive losses. Results: Our experiments show that prompt-based video encoder outperforms standard encoders in surgical gesture recognition tasks. Notably, it displays strong performance in zero-shot scenarios, where gestures/tasks that were not provided during the encoder training phase are included in the prediction phase. Additionally, we measure the benefit of inclusion text descriptions in the feature extractor training schema. Conclusion Bridge-Prompt and similar pre-trained+prompt-tuned video encoder models present significant visual representation for surgical robotics, especially in gesture recognition tasks. Given the diverse range of surgical tasks (gestures), the ability of these models to zero-shot transfer without the need for any task (gesture) specific retraining makes them invaluable.
comment: 17 pages,4 figures, 7 tables, IPCAI 2024 & IJCARS
♻ ☆ MegaScenes: Scene-Level View Synthesis at Scale ECCV 2024
Scene-level novel view synthesis (NVS) is fundamental to many vision and graphics applications. Recently, pose-conditioned diffusion models have led to significant progress by extracting 3D information from 2D foundation models, but these methods are limited by the lack of scene-level training data. Common dataset choices either consist of isolated objects (Objaverse), or of object-centric scenes with limited pose distributions (DTU, CO3D). In this paper, we create a large-scale scene-level dataset from Internet photo collections, called MegaScenes, which contains over 100K structure from motion (SfM) reconstructions from around the world. Internet photos represent a scalable data source but come with challenges such as lighting and transient objects. We address these issues to further create a subset suitable for the task of NVS. Additionally, we analyze failure cases of state-of-the-art NVS methods and significantly improve generation consistency. Through extensive experiments, we validate the effectiveness of both our dataset and method on generating in-the-wild scenes. For details on the dataset and code, see our project page at https://megascenes.github.io.
comment: Accepted at ECCV 2024. Our project page is at https://megascenes.github.io
♻ ☆ SZTU-CMU at MER2024: Improving Emotion-LLaMA with Conv-Attention for Multimodal Emotion Recognition IJCAI
This paper presents our winning approach for the MER-NOISE and MER-OV tracks of the MER2024 Challenge on multimodal emotion recognition. Our system leverages the advanced emotional understanding capabilities of Emotion-LLaMA to generate high-quality annotations for unlabeled samples, addressing the challenge of limited labeled data. To enhance multimodal fusion while mitigating modality-specific noise, we introduce Conv-Attention, a lightweight and efficient hybrid framework. Extensive experimentation vali-dates the effectiveness of our approach. In the MER-NOISE track, our system achieves a state-of-the-art weighted average F-score of 85.30%, surpassing the second and third-place teams by 1.47% and 1.65%, respectively. For the MER-OV track, our utilization of Emotion-LLaMA for open-vocabulary annotation yields an 8.52% improvement in average accuracy and recall compared to GPT-4V, securing the highest score among all participating large multimodal models. The code and model for Emotion-LLaMA are available at https://github.com/ZebangCheng/Emotion-LLaMA.
comment: Ranked 1st in MER24@IJCAI and MRAC24@ACM MM (MER-NOISE & MER-OV (self-evaluated))
Artificial Intelligence 177
☆ Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction
In the face of difficult exploration problems in reinforcement learning, we study whether giving an agent an object-centric mapping (describing a set of items and their attributes) allow for more efficient learning. We found this problem is best solved hierarchically by modelling items at a higher level of state abstraction to pixels, and attribute change at a higher level of temporal abstraction to primitive actions. This abstraction simplifies the transition dynamic by making specific future states easier to predict. We make use of this to propose a fully model-based algorithm that learns a discriminative world model, plans to explore efficiently with only a count-based intrinsic reward, and can subsequently plan to reach any discovered (abstract) states. We demonstrate the model's ability to (i) efficiently solve single tasks, (ii) transfer zero-shot and few-shot across item types and environments, and (iii) plan across long horizons. Across a suite of 2D crafting and MiniHack environments, we empirically show our model significantly out-performs state-of-the-art low-level methods (without abstraction), as well as performant model-free and model-based methods using the same abstraction. Finally, we show how to reinforce learn low level object-perturbing policies, as well as supervise learn the object mapping itself.
comment: Preprint
☆ Great Memory, Shallow Reasoning: Limits of $k$NN-LMs
$K$-nearest neighbor language models ($k$NN-LMs), which integrate retrieval with next-word prediction, have demonstrated strong performance in language modeling as well as downstream NLP benchmarks. These results have led researchers to argue that models trained on poor quality or outdated data could perform well by employing a $k$NN extension that has access to a higher-quality datastore. In this work, we ask whether this improved ability to recall information really translates into downstream abilities. We extensively evaluate $k$NN-LMs on a diverse set of tasks, ranging from sentiment classification and commonsense reasoning to multi-hop reasoning. Results show that $k$NN-LMs excel at memory-intensive tasks, where utilizing the patterns in the input is sufficient for determining the output, but struggle with reasoning tasks that require integrating multiple pieces of information to derive new knowledge. We further demonstrate through oracle experiments and qualitative analysis that even with perfect retrieval, $k$NN-LMs still fail to determine the correct answers, placing an upper bound on their reasoning performance. Code and datastores are released at https://github.com/GSYfate/knnlm-limits/.
☆ Approaching Deep Learning through the Spectral Dynamics of Weights
We propose an empirical approach centered on the spectral dynamics of weights -- the behavior of singular values and vectors during optimization -- to unify and clarify several phenomena in deep learning. We identify a consistent bias in optimization across various experiments, from small-scale ``grokking'' to large-scale tasks like image classification with ConvNets, image generation with UNets, speech recognition with LSTMs, and language modeling with Transformers. We also demonstrate that weight decay enhances this bias beyond its role as a norm regularizer, even in practical systems. Moreover, we show that these spectral dynamics distinguish memorizing networks from generalizing ones, offering a novel perspective on this longstanding conundrum. Additionally, we leverage spectral dynamics to explore the emergence of well-performing sparse subnetworks (lottery tickets) and the structure of the loss surface through linear mode connectivity. Our findings suggest that spectral dynamics provide a coherent framework to better understand the behavior of neural networks across diverse settings.
☆ LLM Pruning and Distillation in Practice: The Minitron Approach
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
☆ Leveraging Chemistry Foundation Models to Facilitate Structure Focused Retrieval Augmented Generation in Multi-Agent Workflows for Catalyst and Materials Design
Molecular property prediction and generative design via deep learning models has been the subject of intense research given its potential to accelerate development of new, high-performance materials. More recently, these workflows have been significantly augmented with the advent of large language models (LLMs) and systems of LLM-driven agents capable of utilizing pre-trained models to make predictions in the context of more complex research tasks. While effective, there is still room for substantial improvement within the agentic systems on the retrieval of salient information for material design tasks. Moreover, alternative uses of predictive deep learning models, such as leveraging their latent representations to facilitate cross-modal retrieval augmented generation within agentic systems to enable task-specific materials design, has remained unexplored. Herein, we demonstrate that large, pre-trained chemistry foundation models can serve as a basis for enabling semantic chemistry information retrieval for both small-molecules, complex polymeric materials, and reactions. Additionally, we show the use of chemistry foundation models in conjunction with image models such as OpenCLIP facilitate unprecedented queries and information retrieval across multiple characterization data domains. Finally, we demonstrate the integration of these systems within multi-agent systems to facilitate structure and topological-based natural language queries and information retrieval for complex research tasks.
☆ DreamFactory: Pioneering Multi-Scene Long Video Generation with a Multi-Agent Framework
Current video generation models excel at creating short, realistic clips, but struggle with longer, multi-scene videos. We introduce \texttt{DreamFactory}, an LLM-based framework that tackles this challenge. \texttt{DreamFactory} leverages multi-agent collaboration principles and a Key Frames Iteration Design Method to ensure consistency and style across long videos. It utilizes Chain of Thought (COT) to address uncertainties inherent in large language models. \texttt{DreamFactory} generates long, stylistically coherent, and complex videos. Evaluating these long-form videos presents a challenge. We propose novel metrics such as Cross-Scene Face Distance Score and Cross-Scene Style Consistency Score. To further research in this area, we contribute the Multi-Scene Videos Dataset containing over 150 human-rated videos.
comment: 13 pages, 8 figures
☆ Timeline and Boundary Guided Diffusion Network for Video Shadow Detection ACM MM2024
Video Shadow Detection (VSD) aims to detect the shadow masks with frame sequence. Existing works suffer from inefficient temporal learning. Moreover, few works address the VSD problem by considering the characteristic (i.e., boundary) of shadow. Motivated by this, we propose a Timeline and Boundary Guided Diffusion (TBGDiff) network for VSD where we take account of the past-future temporal guidance and boundary information jointly. In detail, we design a Dual Scale Aggregation (DSA) module for better temporal understanding by rethinking the affinity of the long-term and short-term frames for the clipped video. Next, we introduce Shadow Boundary Aware Attention (SBAA) to utilize the edge contexts for capturing the characteristics of shadows. Moreover, we are the first to introduce the Diffusion model for VSD in which we explore a Space-Time Encoded Embedding (STEE) to inject the temporal guidance for Diffusion to conduct shadow detection. Benefiting from these designs, our model can not only capture the temporal information but also the shadow property. Extensive experiments show that the performance of our approach overtakes the state-of-the-art methods, verifying the effectiveness of our components. We release the codes, weights, and results at \url{https://github.com/haipengzhou856/TBGDiff}.
comment: ACM MM2024
☆ Sum of Squares Circuits
Designing expressive generative models that support exact and efficient inference is a core question in probabilistic ML. Probabilistic circuits (PCs) offer a framework where this tractability-vs-expressiveness trade-off can be analyzed theoretically. Recently, squared PCs encoding subtractive mixtures via negative parameters have emerged as tractable models that can be exponentially more expressive than monotonic PCs, i.e., PCs with positive parameters only. In this paper, we provide a more precise theoretical characterization of the expressiveness relationships among these models. First, we prove that squared PCs can be less expressive than monotonic ones. Second, we formalize a novel class of PCs -- sum of squares PCs -- that can be exponentially more expressive than both squared and monotonic PCs. Around sum of squares PCs, we build an expressiveness hierarchy that allows us to precisely unify and separate different tractable model classes such as Born Machines and PSD models, and other recently introduced tractable probabilistic models by using complex parameters. Finally, we empirically show the effectiveness of sum of squares circuits in performing distribution estimation.
☆ D-RMGPT: Robot-assisted collaborative tasks driven by large multimodal models
Collaborative robots are increasingly popular for assisting humans at work and daily tasks. However, designing and setting up interfaces for human-robot collaboration is challenging, requiring the integration of multiple components, from perception and robot task control to the hardware itself. Frequently, this leads to highly customized solutions that rely on large amounts of costly training data, diverging from the ideal of flexible and general interfaces that empower robots to perceive and adapt to unstructured environments where they can naturally collaborate with humans. To overcome these challenges, this paper presents the Detection-Robot Management GPT (D-RMGPT), a robot-assisted assembly planner based on Large Multimodal Models (LMM). This system can assist inexperienced operators in assembly tasks without requiring any markers or previous training. D-RMGPT is composed of DetGPT-V and R-ManGPT. DetGPT-V, based on GPT-4V(vision), perceives the surrounding environment through one-shot analysis of prompted images of the current assembly stage and the list of components to be assembled. It identifies which components have already been assembled by analysing their features and assembly requirements. R-ManGPT, based on GPT-4, plans the next component to be assembled and generates the robot's discrete actions to deliver it to the human co-worker. Experimental tests on assembling a toy aircraft demonstrated that D-RMGPT is flexible and intuitive to use, achieving an assembly success rate of 83% while reducing the assembly time for inexperienced operators by 33% compared to the manual process. http://robotics-and-ai.github.io/LMMmodels/
☆ SBDet: A Symmetry-Breaking Object Detector via Relaxed Rotation-Equivariance
Introducing Group Equivariant Convolution (GConv) empowers models to explore symmetries hidden in visual data, improving their performance. However, in real-world scenarios, objects or scenes often exhibit perturbations of a symmetric system, specifically a deviation from a symmetric architecture, which can be characterized by a non-trivial action of a symmetry group, known as Symmetry-Breaking. Traditional GConv methods are limited by the strict operation rules in the group space, only ensuring features remain strictly equivariant under limited group transformations, making it difficult to adapt to Symmetry-Breaking or non-rigid transformations. Motivated by this, we introduce a novel Relaxed Rotation GConv (R2GConv) with our defined Relaxed Rotation-Equivariant group $\mathbf{R}_4$. Furthermore, we propose a Relaxed Rotation-Equivariant Network (R2Net) as the backbone and further develop the Symmetry-Breaking Object Detector (SBDet) for 2D object detection built upon it. Experiments demonstrate the effectiveness of our proposed R2GConv in natural image classification tasks, and SBDet achieves excellent performance in object detection tasks with improved generalization capabilities and robustness.
☆ Improving the Scan-rescan Precision of AI-based CMR Biomarker Estimation MICCAI
Quantification of cardiac biomarkers from cine cardiovascular magnetic resonance (CMR) data using deep learning (DL) methods offers many advantages, such as increased accuracy and faster analysis. However, only a few studies have focused on the scan-rescan precision of the biomarker estimates, which is important for reproducibility and longitudinal analysis. Here, we propose a cardiac biomarker estimation pipeline that not only focuses on achieving high segmentation accuracy but also on improving the scan-rescan precision of the computed biomarkers, namely left and right ventricular ejection fraction, and left ventricular myocardial mass. We evaluate two approaches to improve the apical-basal resolution of the segmentations used for estimating the biomarkers: one based on image interpolation and one based on segmentation interpolation. Using a database comprising scan-rescan cine CMR data acquired from 92 subjects, we compare the performance of these two methods against ground truth (GT) segmentations and DL segmentations obtained before interpolation (baseline). The results demonstrate that both the image-based and segmentation-based interpolation methods were able to narrow Bland-Altman scan-rescan confidence intervals for all biomarkers compared to the GT and baseline performances. Our findings highlight the importance of focusing not only on segmentation accuracy but also on the consistency of biomarkers across repeated scans, which is crucial for longitudinal analysis of cardiac function.
comment: 11 pages, 3 figures, MICCAI STACOM 2024
☆ Open-Ended 3D Point Cloud Instance Segmentation
Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
☆ FocusLLM: Scaling LLM's Context by Parallel Decoding
Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
☆ JieHua Paintings Style Feature Extracting Model using Stable Diffusion with ControlNet CCS
This study proposes a novel approach to extract stylistic features of Jiehua: the utilization of the Fine-tuned Stable Diffusion Model with ControlNet (FSDMC) to refine depiction techniques from artists' Jiehua. The training data for FSDMC is based on the opensource Jiehua artist's work collected from the Internet, which were subsequently manually constructed in the format of (Original Image, Canny Edge Features, Text Prompt). By employing the optimal hyperparameters identified in this paper, it was observed FSDMC outperforms CycleGAN, another mainstream style transfer model. FSDMC achieves FID of 3.27 on the dataset and also surpasses CycleGAN in terms of expert evaluation. This not only demonstrates the model's high effectiveness in extracting Jiehua's style features, but also preserves the original pre-trained semantic information. The findings of this study suggest that the application of FSDMC with appropriate hyperparameters can enhance the efficacy of the Stable Diffusion Model in the field of traditional art style migration tasks, particularly within the context of Jiehua.
comment: accepted by ICCSMT 2024
☆ CluMo: Cluster-based Modality Fusion Prompt for Continual Learning in Visual Question Answering
Large vision-language models (VLMs) have shown significant performance boost in various application domains. However, adopting them to deal with several sequentially encountered tasks has been challenging because finetuning a VLM on a task normally leads to reducing its generalization power and the capacity of learning new tasks as well as causing catastrophic forgetting on previously learned tasks. Enabling using VLMs in multimodal continual learning (CL) settings can help to address such scenarios. To improve generalization capacity and prevent catastrophic forgetting, we propose a novel prompt-based CL method for VLMs, namely $\textbf{Clu}$ster-based $\textbf{Mo}$dality Fusion Prompt (\textbf{CluMo}). We design a novel \textbf{Key-Key-Prompt} pair, where each prompt is associated with a visual prompt key and a textual prompt key. We adopt a two-stage training strategy. During the first stage, the single-modal keys are trained via $K$-means clustering algorithm to help select the best semantically matched prompt. During the second stage, the prompt keys are frozen, the selected prompt is attached to the input for training the VLM in the CL scenario. Experiments on two benchmarks demonstrate that our method achieves SOTA performance.
☆ Clinical Insights: A Comprehensive Review of Language Models in Medicine
This paper provides a detailed examination of the advancements and applications of large language models in the healthcare sector, with a particular emphasis on clinical applications. The study traces the evolution of LLMs from their foundational technologies to the latest developments in domain-specific models and multimodal integration. It explores the technical progression from encoder-based models requiring fine-tuning to sophisticated approaches that integrate textual, visual, and auditory data, thereby facilitating comprehensive AI solutions in healthcare. The paper discusses both the opportunities these technologies present for enhancing clinical efficiency and the challenges they pose in terms of ethics, data privacy, and implementation. Additionally, it critically evaluates the deployment strategies of LLMs, emphasizing the necessity of open-source models to ensure data privacy and adaptability within healthcare environments. Future research directions are proposed, focusing on empirical studies to evaluate the real-world efficacy of LLMs in healthcare and the development of open datasets for further research. This review aims to provide a comprehensive resource for both newcomers and multidisciplinary researchers interested in the intersection of AI and healthcare.
comment: Submitted to PLOS Digital Health
☆ Efficient Detection of Toxic Prompts in Large Language Models
Large language models (LLMs) like ChatGPT and Gemini have significantly advanced natural language processing, enabling various applications such as chatbots and automated content generation. However, these models can be exploited by malicious individuals who craft toxic prompts to elicit harmful or unethical responses. These individuals often employ jailbreaking techniques to bypass safety mechanisms, highlighting the need for robust toxic prompt detection methods. Existing detection techniques, both blackbox and whitebox, face challenges related to the diversity of toxic prompts, scalability, and computational efficiency. In response, we propose ToxicDetector, a lightweight greybox method designed to efficiently detect toxic prompts in LLMs. ToxicDetector leverages LLMs to create toxic concept prompts, uses embedding vectors to form feature vectors, and employs a Multi-Layer Perceptron (MLP) classifier for prompt classification. Our evaluation on various versions of the LLama models, Gemma-2, and multiple datasets demonstrates that ToxicDetector achieves a high accuracy of 96.39\% and a low false positive rate of 2.00\%, outperforming state-of-the-art methods. Additionally, ToxicDetector's processing time of 0.0780 seconds per prompt makes it highly suitable for real-time applications. ToxicDetector achieves high accuracy, efficiency, and scalability, making it a practical method for toxic prompt detection in LLMs.
comment: Accepted by the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)
☆ Iterative Object Count Optimization for Text-to-image Diffusion Models
We address a persistent challenge in text-to-image models: accurately generating a specified number of objects. Current models, which learn from image-text pairs, inherently struggle with counting, as training data cannot depict every possible number of objects for any given object. To solve this, we propose optimizing the generated image based on a counting loss derived from a counting model that aggregates an object\'s potential. Employing an out-of-the-box counting model is challenging for two reasons: first, the model requires a scaling hyperparameter for the potential aggregation that varies depending on the viewpoint of the objects, and second, classifier guidance techniques require modified models that operate on noisy intermediate diffusion steps. To address these challenges, we propose an iterated online training mode that improves the accuracy of inferred images while altering the text conditioning embedding and dynamically adjusting hyperparameters. Our method offers three key advantages: (i) it can consider non-derivable counting techniques based on detection models, (ii) it is a zero-shot plug-and-play solution facilitating rapid changes to the counting techniques and image generation methods, and (iii) the optimized counting token can be reused to generate accurate images without additional optimization. We evaluate the generation of various objects and show significant improvements in accuracy. The project page is available at https://ozzafar.github.io/count_token.
comment: Pre-print
☆ Leveraging Large Language Models for Enhancing the Understandability of Generated Unit Tests ICSE 2025
Automated unit test generators, particularly search-based software testing tools like EvoSuite, are capable of generating tests with high coverage. Although these generators alleviate the burden of writing unit tests, they often pose challenges for software engineers in terms of understanding the generated tests. To address this, we introduce UTGen, which combines search-based software testing and large language models to enhance the understandability of automatically generated test cases. We achieve this enhancement through contextualizing test data, improving identifier naming, and adding descriptive comments. Through a controlled experiment with 32 participants from both academia and industry, we investigate how the understandability of unit tests affects a software engineer's ability to perform bug-fixing tasks. We selected bug-fixing to simulate a real-world scenario that emphasizes the importance of understandable test cases. We observe that participants working on assignments with UTGen test cases fix up to 33% more bugs and use up to 20% less time when compared to baseline test cases. From the post-test questionnaire, we gathered that participants found that enhanced test names, test data, and variable names improved their bug-fixing process.
comment: **Note:** This paper has been accepted for presentation at the 47th International Conference on Software Engineering (ICSE 2025) - Research Track
☆ Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems
The modeling of dynamical systems is a pervasive concern for not only describing but also predicting and controlling natural phenomena and engineered systems. Current data-driven approaches often assume prior knowledge of the relevant state variables or result in overparameterized state spaces. Boyuan Chen and his co-authors proposed a neural network model that estimates the degrees of freedom and attempts to discover the state variables of a dynamical system. Despite its innovative approach, this baseline model lacks a connection to the physical principles governing the systems it analyzes, leading to unreliable state variables. This research proposes a method that leverages the physical characteristics of second-order Hamiltonian systems to constrain the baseline model. The proposed model outperforms the baseline model in identifying a minimal set of non-redundant and interpretable state variables.
☆ 5G NR PRACH Detection with Convolutional Neural Networks (CNN): Overcoming Cell Interference Challenges
In this paper, we present a novel approach to interference detection in 5G New Radio (5G-NR) networks using Convolutional Neural Networks (CNN). Interference in 5G networks challenges high-quality service due to dense user equipment deployment and increased wireless environment complexity. Our CNN-based model is designed to detect Physical Random Access Channel (PRACH) sequences amidst various interference scenarios, leveraging the spatial and temporal characteristics of PRACH signals to enhance detection accuracy and robustness. Comprehensive datasets of simulated PRACH signals under controlled interference conditions were generated to train and validate the model. Experimental results show that our CNN-based approach outperforms traditional PRACH detection methods in accuracy, precision, recall and F1-score. This study demonstrates the potential of AI/ML techniques in advancing interference management in 5G networks, providing a foundation for future research and practical applications in optimizing network performance and reliability.
☆ CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher
Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at https://github.com/ibndias/CIPHER.
comment: 28 pages, github available
☆ Video-to-Text Pedestrian Monitoring (VTPM): Leveraging Computer Vision and Large Language Models for Privacy-Preserve Pedestrian Activity Monitoring at Intersections
Computer vision has advanced research methodologies, enhancing system services across various fields. It is a core component in traffic monitoring systems for improving road safety; however, these monitoring systems don't preserve the privacy of pedestrians who appear in the videos, potentially revealing their identities. Addressing this issue, our paper introduces Video-to-Text Pedestrian Monitoring (VTPM), which monitors pedestrian movements at intersections and generates real-time textual reports, including traffic signal and weather information. VTPM uses computer vision models for pedestrian detection and tracking, achieving a latency of 0.05 seconds per video frame. Additionally, it detects crossing violations with 90.2% accuracy by incorporating traffic signal data. The proposed framework is equipped with Phi-3 mini-4k to generate real-time textual reports of pedestrian activity while stating safety concerns like crossing violations, conflicts, and the impact of weather on their behavior with latency of 0.33 seconds. To enhance comprehensive analysis of the generated textual reports, Phi-3 medium is fine-tuned for historical analysis of these generated textual reports. This fine-tuning enables more reliable analysis about the pedestrian safety at intersections, effectively detecting patterns and safety critical events. The proposed VTPM offers a more efficient alternative to video footage by using textual reports reducing memory usage, saving up to 253 million percent, eliminating privacy issues, and enabling comprehensive interactive historical analysis.
☆ Data-driven Modeling of Combined Sewer Systems for Urban Sustainability: An Empirical Evaluation
Climate change poses complex challenges, with extreme weather events becoming increasingly frequent and difficult to model. Examples include the dynamics of Combined Sewer Systems (CSS). Overburdened CSS during heavy rainfall will overflow untreated wastewater into surface water bodies. Classical approaches to modeling the impact of extreme rainfall events rely on physical simulations, which are particularly challenging to create for large urban infrastructures. Deep Learning (DL) models offer a cost-effective alternative for modeling the complex dynamics of sewer systems. In this study, we present a comprehensive empirical evaluation of several state-of-the-art DL time series models for predicting sewer system dynamics in a large urban infrastructure, utilizing three years of measurement data. We especially investigate the potential of DL models to maintain predictive precision during network outages by comparing global models, which have access to all variables within the sewer system, and local models, which are limited to data from a restricted set of local sensors. Our findings demonstrate that DL models can accurately predict the dynamics of sewer system load, even under network outage conditions. These results suggest that DL models can effectively aid in balancing the load redistribution in CSS, thereby enhancing the sustainability and resilience of urban infrastructures.
comment: 12 pages, 4 figures, accepted at 47th German Conference on Artificial Intelligence, Wuerzburg 2024
☆ Xinyu: An Efficient LLM-based System for Commentary Generation
Commentary provides readers with a deep understanding of events by presenting diverse arguments and evidence. However, creating commentary is a time-consuming task, even for skilled commentators. Large language models (LLMs) have simplified the process of natural language generation, but their direct application in commentary creation still faces challenges due to unique task requirements. These requirements can be categorized into two levels: 1) fundamental requirements, which include creating well-structured and logically consistent narratives, and 2) advanced requirements, which involve generating quality arguments and providing convincing evidence. In this paper, we introduce Xinyu, an efficient LLM-based system designed to assist commentators in generating Chinese commentaries. To meet the fundamental requirements, we deconstruct the generation process into sequential steps, proposing targeted strategies and supervised fine-tuning (SFT) for each step. To address the advanced requirements, we present an argument ranking model for arguments and establish a comprehensive evidence database that includes up-to-date events and classic books, thereby strengthening the substantiation of the evidence with retrieval augmented generation (RAG) technology. To evaluate the generated commentaries more fairly, corresponding to the two-level requirements, we introduce a comprehensive evaluation metric that considers five distinct perspectives in commentary generation. Our experiments confirm the effectiveness of our proposed system. We also observe a significant increase in the efficiency of commentators in real-world scenarios, with the average time spent on creating a commentary dropping from 4 hours to 20 minutes. Importantly, such an increase in efficiency does not compromise the quality of the commentaries.
☆ Don't Kill the Baby: The Case for AI in Arbitration
Since the introduction of Generative AI (GenAI) in 2022, its ability to simulate human intelligence and generate content has sparked both enthusiasm and concern. While much criticism focuses on AI's potential to perpetuate bias, create emotional dissonance, displace jobs, and raise ethical questions, these concerns often overlook the practical benefits of AI, particularly in legal contexts. This article examines the integration of AI into arbitration, arguing that the Federal Arbitration Act (FAA) allows parties to contractually choose AI-driven arbitration, despite traditional reservations. The article makes three key contributions: (1) It shifts the focus from debates over AI's personhood to the practical aspects of incorporating AI into arbitration, asserting that AI can effectively serve as an arbitrator if both parties agree; (2) It positions arbitration as an ideal starting point for broader AI adoption in the legal field, given its flexibility and the autonomy it grants parties to define their standards of fairness; and (3) It outlines future research directions, emphasizing the importance of empirically comparing AI and human arbitration, which could lead to the development of distinct systems. By advocating for the use of AI in arbitration, this article underscores the importance of respecting contractual autonomy and creating an environment that allows AI's potential to be fully realized. Drawing on the insights of Judge Richard Posner, the article argues that the ethical obligations of AI in arbitration should be understood within the context of its technological strengths and the voluntary nature of arbitration agreements. Ultimately, it calls for a balanced, open-minded approach to AI in arbitration, recognizing its potential to enhance the efficiency, fairness, and flexibility of dispute resolution
☆ Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation
Recent works have provided algorithms by which decentralised agents, which may be connected via a communication network, can learn equilibria in Mean-Field Games from a single, non-episodic run of the empirical system. However, these algorithms are given for tabular settings: this computationally limits the size of players' observation space, meaning that the algorithms are not able to handle anything but small state spaces, nor to generalise beyond policies depending on the ego player's state to so-called 'population-dependent' policies. We address this limitation by introducing function approximation to the existing setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed only in finite-horizon, episodic, centralised settings. While this permits us to include the population's mean-field distribution in the observation for each player's policy, it is arguably unrealistic to assume that decentralised agents would have access to this global information: we therefore additionally provide new algorithms that allow agents to estimate the global empirical distribution based on a local neighbourhood, and to improve this estimate via communication over a given network. Our experiments showcase how the communication network allows decentralised agents to estimate the mean-field distribution for population-dependent policies, and that exchanging policy information helps networked agents to outperform both independent and even centralised agents in function-approximation settings, by an even greater margin than in tabular settings.
☆ Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning
Empathetic response generation endows agents with the capability to comprehend dialogue contexts and react to expressed emotions. Previous works predominantly focus on leveraging the speaker's emotional labels, but ignore the importance of emotion cause reasoning in empathetic response generation, which hinders the model's capacity for further affective understanding and cognitive inference. In this paper, we propose a cause-aware empathetic generation approach by integrating emotions and causes through a well-designed Chain-of-Thought (CoT) prompt on Large Language Models (LLMs). Our approach can greatly promote LLMs' performance of empathy by instruction tuning and enhancing the role awareness of an empathetic listener in the prompt. Additionally, we propose to incorporate cause-oriented external knowledge from COMET into the prompt, which improves the diversity of generation and alleviates conflicts between internal and external knowledge at the same time. Experimental results on the benchmark dataset demonstrate that our approach on LLaMA-7b achieves state-of-the-art performance in both automatic and human evaluations.
☆ Active learning for efficient data selection in radio-signal based positioning via deep learning
We consider the problem of user equipment (UE) positioning based on radio signals via deep learning. As in most supervised-learning tasks, a critical aspect is the availability of a relevant dataset to train a model. However, in a cellular network, the data-collection step may induce a high communication overhead. As a result, to reduce the required size of the dataset, it may be interesting to carefully choose the positions to be labelled and to be used in the training. We therefore propose an active learning approach for efficient data collection. We first show that significant gains (both in terms of positioning accuracy and size of the required dataset) can be obtained for the considered positioning problem using a genie. This validates the interest of active learning for positioning. We then propose a \textcolor{blue}{practical} method to approximate this genie.
comment: Submitted to Electronics Letters
☆ Drama Engine: A Framework for Narrative Agents
This technical report presents the Drama Engine, a novel framework for agentic interaction with large language models designed for narrative purposes. The framework adapts multi-agent system principles to create dynamic, context-aware companions that can develop over time and interact with users and each other. Key features include multi-agent workflows with delegation, dynamic prompt assembly, and model-agnostic design. The Drama Engine introduces unique elements such as companion development, mood systems, and automatic context summarising. It is implemented in TypeScript. The framework's applications include multi-agent chats and virtual co-workers for creative writing. The paper discusses the system's architecture, prompt assembly process, delegation mechanisms, and moderation techniques, as well as potential ethical considerations and future extensions.
comment: 10 pages, 2 figures, 2 tables
☆ Differentiating Choices via Commonality for Multiple-Choice Question Answering
Multiple-choice question answering (MCQA) becomes particularly challenging when all choices are relevant to the question and are semantically similar. Yet this setting of MCQA can potentially provide valuable clues for choosing the right answer. Existing models often rank each choice separately, overlooking the context provided by other choices. Specifically, they fail to leverage the semantic commonalities and nuances among the choices for reasoning. In this paper, we propose a novel MCQA model by differentiating choices through identifying and eliminating their commonality, called DCQA. Our model captures token-level attention of each choice to the question, and separates tokens of the question attended to by all the choices (i.e., commonalities) from those by individual choices (i.e., nuances). Using the nuances as refined contexts for the choices, our model can effectively differentiate choices with subtle differences and provide justifications for choosing the correct answer. We conduct comprehensive experiments across five commonly used MCQA benchmarks, demonstrating that DCQA consistently outperforms baseline models. Furthermore, our case study illustrates the effectiveness of the approach in directing the attention of the model to more differentiating features.
comment: 9 pages, accepted to ECAI 2024
☆ Explainable Deep Learning Framework for Human Activity Recognition
In the realm of human activity recognition (HAR), the integration of explainable Artificial Intelligence (XAI) emerges as a critical necessity to elucidate the decision-making processes of complex models, fostering transparency and trust. Traditional explanatory methods like Class Activation Mapping (CAM) and attention mechanisms, although effective in highlighting regions vital for decisions in various contexts, prove inadequate for HAR. This inadequacy stems from the inherently abstract nature of HAR data, rendering these explanations obscure. In contrast, state-of-th-art post-hoc interpretation techniques for time series can explain the model from other perspectives. However, this requires extra effort. It usually takes 10 to 20 seconds to generate an explanation. To overcome these challenges, we proposes a novel, model-agnostic framework that enhances both the interpretability and efficacy of HAR models through the strategic use of competitive data augmentation. This innovative approach does not rely on any particular model architecture, thereby broadening its applicability across various HAR models. By implementing competitive data augmentation, our framework provides intuitive and accessible explanations of model decisions, thereby significantly advancing the interpretability of HAR systems without compromising on performance.
☆ Memorization In In-Context Learning
In-context learning (ICL) has proven to be an effective strategy for improving the performance of large language models (LLMs) with no additional training. However, the exact mechanism behind these performance improvements remains unclear. This study is the first to show how ICL surfaces memorized training data and to explore the correlation between this memorization and performance across various ICL regimes: zero-shot, few-shot, and many-shot. Our most notable findings include: (1) ICL significantly surfaces memorization compared to zero-shot learning in most cases; (2) demonstrations, without their labels, are the most effective element in surfacing memorization; (3) ICL improves performance when the surfaced memorization in few-shot regimes reaches a high level (about 40%); and (4) there is a very strong correlation between performance and memorization in ICL when it outperforms zero-shot learning. Overall, our study uncovers a hidden phenomenon -- memorization -- at the core of ICL, raising an important question: to what extent do LLMs truly generalize from demonstrations in ICL, and how much of their success is due to memorization?
comment: v1
☆ A Survey of Embodied Learning for Object-Centric Robotic Manipulation
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
☆ Scalable Knowledge Refactoring using Constrained Optimisation
Knowledge refactoring compresses a logic program by introducing new rules. Current approaches struggle to scale to large programs. To overcome this limitation, we introduce a constrained optimisation refactoring approach. Our first key idea is to encode the problem with decision variables based on literals rather than rules. Our second key idea is to focus on linear invented rules. Our empirical results on multiple domains show that our approach can refactor programs quicker and with more compression than the previous state-of-the-art approach, sometimes by 60%.
☆ The Vizier Gaussian Process Bandit Algorithm
Google Vizier has performed millions of optimizations and accelerated numerous research and production systems at Google, demonstrating the success of Bayesian optimization as a large-scale service. Over multiple years, its algorithm has been improved considerably, through the collective experiences of numerous research efforts and user feedback. In this technical report, we discuss the implementation details and design choices of the current default algorithm provided by Open Source Vizier. Our experiments on standardized benchmarks reveal its robustness and versatility against well-established industry baselines on multiple practical modes.
comment: Google DeepMind Technical Report. Code can be found in https://github.com/google/vizier
☆ RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
☆ LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding
Click-Through Rate (CTR) prediction is crucial for Recommendation System(RS), aiming to provide personalized recommendation services for users in many aspects such as food delivery, e-commerce and so on. However, traditional RS relies on collaborative signals, which lacks semantic understanding to real-time scenes. We also noticed that a major challenge in utilizing Large Language Models (LLMs) for practical recommendation purposes is their efficiency in dealing with long text input. To break through the problems above, we propose Large Language Model Aided Real-time Scene Recommendation(LARR), adopt LLMs for semantic understanding, utilizing real-time scene information in RS without requiring LLM to process the entire real-time scene text directly, thereby enhancing the efficiency of LLM-based CTR modeling. Specifically, recommendation domain-specific knowledge is injected into LLM and then RS employs an aggregation encoder to build real-time scene information from separate LLM's outputs. Firstly, a LLM is continual pretrained on corpus built from recommendation data with the aid of special tokens. Subsequently, the LLM is fine-tuned via contrastive learning on three kinds of sample construction strategies. Through this step, LLM is transformed into a text embedding model. Finally, LLM's separate outputs for different scene features are aggregated by an encoder, aligning to collaborative signals in RS, enhancing the performance of recommendation model.
☆ Quantifying Behavioural Distance Between Mathematical Expressions
Existing symbolic regression methods organize the space of candidate mathematical expressions primarily based on their syntactic, structural similarity. However, this approach overlooks crucial equivalences between expressions that arise from mathematical symmetries, such as commutativity, associativity, and distribution laws for arithmetic operations. Consequently, expressions with similar errors on a given data set are apart from each other in the search space. This leads to a rough error landscape in the search space that efficient local, gradient-based methods cannot explore. This paper proposes and implements a measure of a behavioral distance, BED, that clusters together expressions with similar errors. The experimental results show that the stochastic method for calculating BED achieves consistency with a modest number of sampled values for evaluating the expressions. This leads to computational efficiency comparable to the tree-based syntactic distance. Our findings also reveal that BED significantly improves the smoothness of the error landscape in the search space for symbolic regression.
comment: 15 pages, 10 figures, 1 table, 2 appendices
☆ Last-Iterate Convergence of General Parameterized Policies in Constrained MDPs
We consider the problem of learning a Constrained Markov Decision Process (CMDP) via general parameterization. Our proposed Primal-Dual based Regularized Accelerated Natural Policy Gradient (PDR-ANPG) algorithm uses entropy and quadratic regularizers to reach this goal. For a parameterized policy class with transferred compatibility approximation error, $\epsilon_{\mathrm{bias}}$, PDR-ANPG achieves a last-iterate $\epsilon$ optimality gap and $\epsilon$ constraint violation (up to some additive factor of $\epsilon_{\mathrm{bias}}$) with a sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-2}\min\{\epsilon^{-2},\epsilon_{\mathrm{bias}}^{-\frac{1}{3}}\})$. If the class is incomplete ($\epsilon_{\mathrm{bias}}>0$), then the sample complexity reduces to $\tilde{\mathcal{O}}(\epsilon^{-2})$ for $\epsilon<(\epsilon_{\mathrm{bias}})^{\frac{1}{6}}$. Moreover, for complete policies with $\epsilon_{\mathrm{bias}}=0$, our algorithm achieves a last-iterate $\epsilon$ optimality gap and $\epsilon$ constraint violation with $\tilde{\mathcal{O}}(\epsilon^{-4})$ sample complexity. It is a significant improvement of the state-of-the-art last-iterate guarantees of general parameterized CMDPs.
☆ Mutagenesis screen to map the functionals of parameters of Large Language Models
Large Language Models (LLMs) have significantly advanced artificial intelligence, excelling in numerous tasks. Although the functionality of a model is inherently tied to its parameters, a systematic method for exploring the connections between the parameters and the functionality are lacking. Models sharing similar structure and parameter counts exhibit significant performance disparities across various tasks, prompting investigations into the varying patterns that govern their performance. We adopted a mutagenesis screen approach inspired by the methods used in biological studies, to investigate Llama2-7b and Zephyr. This technique involved mutating elements within the models' matrices to their maximum or minimum values to examine the relationship between model parameters and their functionalities. Our research uncovered multiple levels of fine structures within both models. Many matrices showed a mixture of maximum and minimum mutations following mutagenesis, but others were predominantly sensitive to one type. Notably, mutations that produced phenotypes, especially those with severe outcomes, tended to cluster along axes. Additionally, the location of maximum and minimum mutations often displayed a complementary pattern on matrix in both models, with the Gate matrix showing a unique two-dimensional asymmetry after rearrangement. In Zephyr, certain mutations consistently resulted in poetic or conversational rather than descriptive outputs. These "writer" mutations grouped according to the high-frequency initial word of the output, with a marked tendency to share the row coordinate even when they are in different matrices. Our findings affirm that the mutagenesis screen is an effective tool for deciphering the complexities of large language models and identifying unexpected ways to expand their potential, providing deeper insights into the foundational aspects of AI systems.
comment: 10 pages, 6 figures, supplementary material available online
☆ Estimating Peer Direct and Indirect Effects in Observational Network Data AAAI
Estimating causal effects is crucial for decision-makers in many applications, but it is particularly challenging with observational network data due to peer interactions. Many algorithms have been proposed to estimate causal effects involving network data, particularly peer effects, but they often overlook the variety of peer effects. To address this issue, we propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment, and provide identification conditions of these causal effects and proofs. To estimate these causal effects, we utilize attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through multi-layer graph neural networks (GNNs). Additionally, to control the dependency between node features and representations, we incorporate the Hilbert-Schmidt Independence Criterion (HSIC) into the GNN, fully utilizing the structural information of the graph, to enhance the robustness and accuracy of the model. Extensive experiments on two semi-synthetic datasets confirm the effectiveness of our approach. Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
comment: AAAI
☆ Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions. However, recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue, limiting their helpfulness. In this paper, we propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns in aligned LLMs. First, SCANS extracts the refusal steering vectors within the activation space and utilizes vocabulary projection to anchor some specific safety-critical layers which influence model refusal behavior. Second, by tracking the hidden state transition, SCANS identifies the steering direction and steers the model behavior accordingly, achieving a balance between exaggerated safety and adequate safety. Experiments show that SCANS achieves new state-of-the-art performance on XSTest and OKTest benchmarks, without impairing their defense capability against harmful queries and maintaining almost unchanged model capability.
☆ Bidirectional Gated Mamba for Sequential Recommendation
In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named \textbf{\underline{S}}elect\textbf{\underline{I}}ve \textbf{\underline{G}}ated \textbf{\underline{MA}}mba (SIGMA). This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at \url{https://github.com/ziwliu-cityu/SIMGA} to ease reproducibility.
☆ Enabling Small Models for Zero-Shot Classification through Model Label Learning
Vision-language models (VLMs) like CLIP have demonstrated impressive zero-shot ability in image classification tasks by aligning text and images but suffer inferior performance compared with task-specific expert models. On the contrary, expert models excel in their specialized domains but lack zero-shot ability for new tasks. How to obtain both the high performance of expert models and zero-shot ability is an important research direction. In this paper, we attempt to demonstrate that by constructing a model hub and aligning models with their functionalities using model labels, new tasks can be solved in a zero-shot manner by effectively selecting and reusing models in the hub. We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities through a Semantic Directed Acyclic Graph (SDAG) and leverages an algorithm, Classification Head Combination Optimization (CHCO), to select capable models for new tasks. Compared with the foundation model paradigm, it is less costly and more scalable, i.e., the zero-shot ability grows with the sizes of the model hub. Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL, demonstrating that expert models can be effectively reused for zero-shot tasks. Our code will be released publicly.
☆ Lookism: The overlooked bias in computer vision ECCV 2024
In recent years, there have been significant advancements in computer vision which have led to the widespread deployment of image recognition and generation systems in socially relevant applications, from hiring to security screening. However, the prevalence of biases within these systems has raised significant ethical and social concerns. The most extensively studied biases in this context are related to gender, race and age. Yet, other biases are equally pervasive and harmful, such as lookism, i.e., the preferential treatment of individuals based on their physical appearance. Lookism remains under-explored in computer vision but can have profound implications not only by perpetuating harmful societal stereotypes but also by undermining the fairness and inclusivity of AI technologies. Thus, this paper advocates for the systematic study of lookism as a critical bias in computer vision models. Through a comprehensive review of existing literature, we identify three areas of intersection between lookism and computer vision. We illustrate them by means of examples and a user study. We call for an interdisciplinary approach to address lookism, urging researchers, developers, and policymakers to prioritize the development of equitable computer vision systems that respect and reflect the diversity of human appearances.
comment: Paper accepted at the ECCV 2024 workshop named "Fairness and ethics towards transparent AI: facing the chalLEnge through model Debiasing (FAILED)", https://failed-workshop-eccv-2024.github.io/
☆ Epistemic Injustice in Generative AI
This paper investigates how generative AI can potentially undermine the integrity of collective knowledge and the processes we rely on to acquire, assess, and trust information, posing a significant threat to our knowledge ecosystem and democratic discourse. Grounded in social and political philosophy, we introduce the concept of \emph{generative algorithmic epistemic injustice}. We identify four key dimensions of this phenomenon: amplified and manipulative testimonial injustice, along with hermeneutical ignorance and access injustice. We illustrate each dimension with real-world examples that reveal how generative AI can produce or amplify misinformation, perpetuate representational harm, and create epistemic inequities, particularly in multilingual contexts. By highlighting these injustices, we aim to inform the development of epistemically just generative AI systems, proposing strategies for resistance, system design principles, and two approaches that leverage generative AI to foster a more equitable information ecosystem, thereby safeguarding democratic values and the integrity of knowledge production.
☆ Towards Aligned Data Removal via Twin Machine Unlearning
Modern privacy regulations have spurred the evolution of machine unlearning, a technique that enables the removal of data from an already trained ML model without requiring retraining from scratch. Previous unlearning methods tend to induce the model to achieve lowest classification accuracy on the removal data. Nonetheless, the authentic objective of machine unlearning is to align the unlearned model with the gold model, i.e., achieving the same classification accuracy as the gold model. For this purpose, we present a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. As a results, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data removal. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model. Meanwhile, our method allows data removal without compromising the model accuracy.
☆ Diagnosing and Remedying Knowledge Deficiencies in LLMs via Label-free Curricular Meaningful Learning
Large Language Models (LLMs) are versatile and demonstrate impressive generalization ability by mining and learning information from extensive unlabeled text. However, they still exhibit reasoning mistakes, often stemming from knowledge deficiencies, which can affect their trustworthiness and reliability. Although users can provide diverse and comprehensive queries, obtaining sufficient and effective feedback is demanding. Furthermore, evaluating LLMs comprehensively with limited labeled samples is difficult. This makes it a challenge to diagnose and remedy the deficiencies of LLMs through rich label-free user queries. To tackle this challenge, we propose a label-free curricular meaningful learning framework (LaMer). LaMer first employs relative entropy to automatically diagnose and quantify the knowledge deficiencies of LLMs in a label-free setting. Next, to remedy the diagnosed knowledge deficiencies, we apply curricular meaningful learning: first, we adopt meaningful learning to adaptively synthesize augmentation data according to the severity of the deficiencies, and then design a curricular deficiency remedy strategy to remedy the knowledge deficiencies of LLMs progressively. Experiments show that LaMer efficiently and effectively diagnoses and remedies knowledge deficiencies in LLMs, improving various LLMs across seven out-of-distribution (OOD) reasoning and language understanding benchmarks, achieving comparable results to baselines with just 40\% training data. LaMer even surpasses methods that rely on labeled datasets for deficiency diagnosis. In application, our label-free method can offer an effective knowledge deficiency diagnostic tool for efficient LLM development.
comment: Under Review
☆ Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles
The global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments. However, GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks. Thus, an alternative navigation system is required when the use of GPS is restricted or prohibited. To this end, we present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in GNSS-restricted marine environments. In our approach, the UAV flies along the shoreline at a consistent altitude, continuously tracking and detecting the USV using a deep learning-based approach on camera images. Subsequently, triangulation techniques are applied to estimate the USV's position relative to the UAV, utilizing geometric information and datalink range from the UAV. We propose adjusting the UAV's camera angle based on the pixel error between the USV and the image center throughout the localization process to enhance accuracy. Additionally, visual measurements are integrated into an Extended Kalman Filter (EKF) for robust state estimation. To validate our proposed method, we utilize a USV equipped with onboard sensors and a UAV equipped with a camera. A heterogeneous robotic interface is established to facilitate communication between the USV and UAV. We demonstrate the efficacy of our approach through a series of experiments conducted during the ``Muhammad Bin Zayed International Robotic Challenge (MBZIRC-2024)'' in real marine environments, incorporating noisy measurements and ocean disturbances. The successful outcomes indicate the potential of our method to complement GPS for USV navigation.
☆ Towards "Differential AI Psychology" and in-context Value-driven Statement Alignment with Moral Foundations Theory
Contemporary research in social sciences is increasingly utilizing state-of-the-art statistical language models to annotate or generate content. While these models perform benchmark-leading on common language tasks and show exemplary task-independent emergent abilities, transferring them to novel out-of-domain tasks is only insufficiently explored. The implications of the statistical black-box approach - stochastic parrots - are prominently criticized in the language model research community; however, the significance for novel generative tasks is not. This work investigates the alignment between personalized language models and survey participants on a Moral Foundation Theory questionnaire. We adapt text-to-text models to different political personas and survey the questionnaire repetitively to generate a synthetic population of persona and model combinations. Analyzing the intra-group variance and cross-alignment shows significant differences across models and personas. Our findings indicate that adapted models struggle to represent the survey-captured assessment of political ideologies. Thus, using language models to mimic social interactions requires measurable improvements in in-context optimization or parameter manipulation to align with psychological and sociological stereotypes. Without quantifiable alignment, generating politically nuanced content remains unfeasible. To enhance these representations, we propose a testable framework to generate agents based on moral value statements for future research.
comment: 8 pages, 6 tables
☆ Revisiting FunnyBirds evaluation framework for prototypical parts networks
Prototypical parts networks, such as ProtoPNet, became popular due to their potential to produce more genuine explanations than post-hoc methods. However, for a long time, this potential has been strictly theoretical, and no systematic studies have existed to support it. That changed recently with the introduction of the FunnyBirds benchmark, which includes metrics for evaluating different aspects of explanations. However, this benchmark employs attribution maps visualization for all explanation techniques except for the ProtoPNet, for which the bounding boxes are used. This choice significantly influences the metric scores and questions the conclusions stated in FunnyBirds publication. In this study, we comprehensively compare metric scores obtained for two types of ProtoPNet visualizations: bounding boxes and similarity maps. Our analysis indicates that employing similarity maps aligns better with the essence of ProtoPNet, as evidenced by different metric scores obtained from FunnyBirds. Therefore, we advocate using similarity maps as a visualization technique for prototypical parts networks in explainability evaluation benchmarks.
comment: Published at 2nd XAI World Conference
☆ Data-Centric Machine Learning for Earth Observation: Necessary and Sufficient Features ACL
The availability of temporal geospatial data in multiple modalities has been extensively leveraged to enhance the performance of machine learning models. While efforts on the design of adequate model architectures are approaching a level of saturation, focusing on a data-centric perspective can complement these efforts to achieve further enhancements in data usage efficiency and model generalization capacities. This work contributes to this direction. We leverage model explanation methods to identify the features crucial for the model to reach optimal performance and the smallest set of features sufficient to achieve this performance. We evaluate our approach on three temporal multimodal geospatial datasets and compare multiple model explanation techniques. Our results reveal that some datasets can reach their optimal accuracy with less than 20% of the temporal instances, while in other datasets, the time series of a single band from a single modality is sufficient.
comment: Accepted at MACLEAN workshop, ECML/PKDD 2024
☆ Reflex-Based Open-Vocabulary Navigation without Prior Knowledge Using Omnidirectional Camera and Multiple Vision-Language Models
Various robot navigation methods have been developed, but they are mainly based on Simultaneous Localization and Mapping (SLAM), reinforcement learning, etc., which require prior map construction or learning. In this study, we consider the simplest method that does not require any map construction or learning, and execute open-vocabulary navigation of robots without any prior knowledge to do this. We applied an omnidirectional camera and pre-trained vision-language models to the robot. The omnidirectional camera provides a uniform view of the surroundings, thus eliminating the need for complicated exploratory behaviors including trajectory generation. By applying multiple pre-trained vision-language models to this omnidirectional image and incorporating reflective behaviors, we show that navigation becomes simple and does not require any prior setup. Interesting properties and limitations of our method are discussed based on experiments with the mobile robot Fetch.
comment: Accepted at Advanced Robotics, website - https://haraduka.github.io/omnidirectional-vlm/
☆ Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation
In the realm of recommendation systems, users exhibit a diverse array of behaviors when interacting with items. This phenomenon has spurred research into learning the implicit semantic relationships between these behaviors to enhance recommendation performance. However, these methods often entail high computational complexity. To address concerns regarding efficiency, pre-training presents a viable solution. Its objective is to extract knowledge from extensive pre-training data and fine-tune the model for downstream tasks. Nevertheless, previous pre-training methods have primarily focused on single-behavior data, while multi-behavior data contains significant noise. Additionally, the fully fine-tuning strategy adopted by these methods still imposes a considerable computational burden. In response to this challenge, we propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation. Specifically, in the pre-training stage, we commence by proposing a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales, thereby facilitating the comprehension of the contextual semantics of multi-behavior sequences. Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module, which generates personalized, progressive, and diverse prompts to fully exploit the potential of the pre-trained model effectively. Extensive experiments on three real-world datasets have unequivocally demonstrated that DPCPL not only exhibits high efficiency and effectiveness, requiring minimal parameter adjustments but also surpasses the state-of-the-art performance across a diverse range of downstream tasks.
☆ Solving Decision Theory Problems with Probabilistic Answer Set Programming
Solving a decision theory problem usually involves finding the actions, among a set of possible ones, which optimize the expected reward, possibly accounting for the uncertainty of the environment. In this paper, we introduce the possibility to encode decision theory problems with Probabilistic Answer Set Programming under the credal semantics via decision atoms and utility attributes. To solve the task we propose an algorithm based on three layers of Algebraic Model Counting, that we test on several synthetic datasets against an algorithm that adopts answer set enumeration. Empirical results show that our algorithm can manage non trivial instances of programs in a reasonable amount of time. Under consideration in Theory and Practice of Logic Programming (TPLP).
comment: Under consideration in Theory and Practice of Logic Programming (TPLP)
Graph Classification via Reference Distribution Learning: Theory and Practice
Graph classification is a challenging problem owing to the difficulty in quantifying the similarity between graphs or representing graphs as vectors, though there have been a few methods using graph kernels or graph neural networks (GNNs). Graph kernels often suffer from computational costs and manual feature engineering, while GNNs commonly utilize global pooling operations, risking the loss of structural or semantic information. This work introduces Graph Reference Distribution Learning (GRDL), an efficient and accurate graph classification method. GRDL treats each graph's latent node embeddings given by GNN layers as a discrete distribution, enabling direct classification without global pooling, based on maximum mean discrepancy to adaptively learned reference distributions. To fully understand this new model (the existing theories do not apply) and guide its configuration (e.g., network architecture, references' sizes, number, and regularization) for practical use, we derive generalization error bounds for GRDL and verify them numerically. More importantly, our theoretical and numerical results both show that GRDL has a stronger generalization ability than GNNs with global pooling operations. Experiments on moderate-scale and large-scale graph datasets show the superiority of GRDL over the state-of-the-art, emphasizing its remarkable efficiency, being at least 10 times faster than leading competitors in both training and inference stages.
☆ Towards Probabilistic Inductive Logic Programming with Neurosymbolic Inference and Relaxation
Many inductive logic programming (ILP) methods are incapable of learning programs from probabilistic background knowledge, e.g. coming from sensory data or neural networks with probabilities. We propose Propper, which handles flawed and probabilistic background knowledge by extending ILP with a combination of neurosymbolic inference, a continuous criterion for hypothesis selection (BCE) and a relaxation of the hypothesis constrainer (NoisyCombo). For relational patterns in noisy images, Propper can learn programs from as few as 8 examples. It outperforms binary ILP and statistical models such as a Graph Neural Network.
comment: 15 pages
☆ ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Understanding biological processes, drug development, and biotechnological advancements requires detailed analysis of protein structures and sequences, a task in protein research that is inherently complex and time-consuming when performed manually. To streamline this process, we introduce ProteinGPT, a state-of-the-art multi-modal protein chat system, that allows users to upload protein sequences and/or structures for comprehensive protein analysis and responsive inquiries. ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation, coupled with a large language model (LLM) to generate accurate and contextually relevant responses. To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o. This innovative system ensures accurate alignment between the user-uploaded data and prompts, simplifying protein analysis. Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
comment: 19 pages, 9 figures, 5 tables
☆ Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization
Anomaly detection is fundamental yet, challenging problem with practical applications in industry. The current approaches neglect the higher-order dependencies within the networks of interconnected sensors in the high-dimensional time series(multisensor data) for anomaly detection. To this end, we present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors using the hierarchical encoder-decoder architecture to overcome the challenges. The hypergraph representation learning-based framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts through the self-supervised autoregressive task and predicts the anomalies based on the forecast error. Furthermore, our framework incentivizes learning the anomaly-diagnosis ontology through a differentiable approach. It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy to remedy an anomaly. We conduct extensive experiments to evaluate the proposed method on the benchmark datasets for fair and rigorous comparison with the popular baselines. The proposed method outperforms the baseline models and achieves SOTA performance. We report the ablation studies to support the efficacy of the framework.
comment: 16 pages, 10 figure, Accepted at IEEE International Conference on Big Data 2022, Osaka, Japan
☆ One-step Structure Prediction and Screening for Protein-Ligand Complexes using Multi-Task Geometric Deep Learning
Understanding the structure of the protein-ligand complex is crucial to drug development. Existing virtual structure measurement and screening methods are dominated by docking and its derived methods combined with deep learning. However, the sampling and scoring methodology have largely restricted the accuracy and efficiency. Here, we show that these two fundamental tasks can be accurately tackled with a single model, namely LigPose, based on multi-task geometric deep learning. By representing the ligand and the protein pair as a graph, LigPose directly optimizes the three-dimensional structure of the complex, with the learning of binding strength and atomic interactions as auxiliary tasks, enabling its one-step prediction ability without docking tools. Extensive experiments show LigPose achieved state-of-the-art performance on major tasks in drug research. Its considerable improvements indicate a promising paradigm of AI-based pipeline for drug development.
☆ Vision HgNN: An Electron-Micrograph is Worth Hypergraph of Hypernodes ICLR
Material characterization using electron micrographs is a crucial but challenging task with applications in various fields, such as semiconductors, quantum materials, batteries, etc. The challenges in categorizing electron micrographs include but are not limited to the complexity of patterns, high level of detail, and imbalanced data distribution(long-tail distribution). Existing methods have difficulty in modeling the complex relational structure in electron micrographs, hindering their ability to effectively capture the complex relationships between different spatial regions of micrographs. We propose a hypergraph neural network(HgNN) backbone architecture, a conceptually alternative approach, to better model the complex relationships in electron micrographs and improve material characterization accuracy. By utilizing cost-effective GPU hardware, our proposed framework outperforms popular baselines. The results of the ablation studies demonstrate that the proposed framework is effective in achieving state-of-the-art performance on benchmark datasets and efficient in terms of computational and memory requirements for handling large-scale electron micrograph-based datasets.
comment: 21 pages, Accepted in PML4DC Workshop at International Conference on Learning Representations (ICLR) 2023
☆ Multimodal Datasets and Benchmarks for Reasoning about Dynamic Spatio-Temporality in Everyday Environments
We used a 3D simulator to create artificial video data with standardized annotations, aiming to aid in the development of Embodied AI. Our question answering (QA) dataset measures the extent to which a robot can understand human behavior and the environment in a home setting. Preliminary experiments suggest our dataset is useful in measuring AI's comprehension of daily life. \end{abstract}
comment: 5 pages, 1 figure, 1 table
☆ EHL*: Memory-Budgeted Indexing for Ultrafast Optimal Euclidean Pathfinding
The Euclidean Shortest Path Problem (ESPP), which involves finding the shortest path in a Euclidean plane with polygonal obstacles, is a classic problem with numerous real-world applications. The current state-of-the-art solution, Euclidean Hub Labeling (EHL), offers ultra-fast query performance, outperforming existing techniques by 1-2 orders of magnitude in runtime efficiency. However, this performance comes at the cost of significant memory overhead, requiring up to tens of gigabytes of storage on large maps, which can limit its applicability in memory-constrained environments like mobile phones or smaller devices. Additionally, EHL's memory usage can only be determined after index construction, and while it provides a memory-runtime tradeoff, it does not fully optimize memory utilization. In this work, we introduce an improved version of EHL, called EHL*, which overcomes these limitations. A key contribution of EHL* is its ability to create an index that adheres to a specified memory budget while optimizing query runtime performance. Moreover, EHL* can leverage preknown query distributions, a common scenario in many real-world applications to further enhance runtime efficiency. Our results show that EHL* can reduce memory usage by up to 10-20 times without much impact on query runtime performance compared to EHL, making it a highly effective solution for optimal pathfinding in memory-constrained environments.
☆ Automatic Dataset Construction (ADC): Sample Collection, Data Curation, and Beyond
Large-scale data collection is essential for developing personalized training data, mitigating the shortage of training data, and fine-tuning specialized models. However, creating high-quality datasets quickly and accurately remains a challenge due to annotation errors, the substantial time and costs associated with human labor. To address these issues, we propose Automatic Dataset Construction (ADC), an innovative methodology that automates dataset creation with negligible cost and high efficiency. Taking the image classification task as a starting point, ADC leverages LLMs for the detailed class design and code generation to collect relevant samples via search engines, significantly reducing the need for manual annotation and speeding up the data generation process. Despite these advantages, ADC also encounters real-world challenges such as label errors (label noise) and imbalanced data distributions (label bias). We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data, ensuring a higher-quality training data and more robust model training procedure. Furthermore, we design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning. These datasets are vital because there are few existing datasets specifically for label noise detection, despite its importance. Finally, we evaluate the performance of existing popular methods on these datasets, thereby facilitating further research in the field.
☆ BURExtract-Llama: An LLM for Clinical Concept Extraction in Breast Ultrasound Reports
Breast ultrasound is essential for detecting and diagnosing abnormalities, with radiology reports summarizing key findings like lesion characteristics and malignancy assessments. Extracting this critical information is challenging due to the unstructured nature of these reports, with varied linguistic styles and inconsistent formatting. While proprietary LLMs like GPT-4 are effective, they are costly and raise privacy concerns when handling protected health information. This study presents a pipeline for developing an in-house LLM to extract clinical information from radiology reports. We first use GPT-4 to create a small labeled dataset, then fine-tune a Llama3-8B model on it. Evaluated on clinician-annotated reports, our model achieves an average F1 score of 84.6%, which is on par with GPT-4. Our findings demonstrate the feasibility of developing an in-house LLM that not only matches GPT-4's performance but also offers cost reductions and enhanced data privacy.
comment: This paper has been accepted as the oral paper for the HCHM workshop, ACM Multimedia 2024
☆ Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking Across Diverse Vocabularies
Recent advancements in NLP have resulted in models with specialized strengths, such as processing multimodal inputs or excelling in specific domains. However, real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing. While individual translation and vision models are powerful, they typically lack the ability to perform both tasks in a single system. Combining these models poses challenges, particularly due to differences in their vocabularies, which limit the effectiveness of traditional ensemble methods to post-generation techniques like N-best list re-ranking. In this work, we propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training. Our approach re-ranks beams during decoding by combining scores at the word level, using heuristics to predict when a word is completed. We demonstrate the effectiveness of this method in machine translation scenarios, showing that it enables the generation of translations that are both speech- and image-aware while also improving overall translation quality\footnote{We will release the code upon paper acceptance.}.
comment: Under Review
☆ Automating Thought of Search: A Journey Towards Soundness and Completeness
Planning remains one of the last standing bastions for large language models (LLMs), which now turn their attention to search. Most of the literature uses the language models as world models to define the search space, forgoing soundness for the sake of flexibility. A recent work, Thought of Search (ToS), proposed defining the search space with code, having the language models produce that code. ToS requires a human in the loop, collaboratively producing a sound successor function and goal test. The result, however, is worth the effort: all the tested datasets were solved with 100% accuracy. At the same time LLMs have demonstrated significant progress in code generation and refinement for complex reasoning tasks. In this work, we automate ToS (AutoToS), completely taking the human out of the loop of solving planning problems. AutoToS guides the language model step by step towards the generation of sound and complete search components, through feedback from both generic and domain specific unit tests. We achieve 100% accuracy, with minimal feedback iterations, using LLMs of various sizes on all evaluated domains.
☆ Towards Evaluating Large Language Models on Sarcasm Understanding
In the era of large language models (LLMs), the task of ``System I''~-~the fast, unconscious, and intuitive tasks, e.g., sentiment analysis, text classification, etc., have been argued to be successfully solved. However, sarcasm, as a subtle linguistic phenomenon, often employs rhetorical devices like hyperbole and figuration to convey true sentiments and intentions, involving a higher level of abstraction than sentiment analysis. There is growing concern that the argument about LLMs' success may not be fully tenable when considering sarcasm understanding. To address this question, we select eleven SOTA LLMs and eight SOTA pre-trained language models (PLMs) and present comprehensive evaluations on six widely used benchmark datasets through different prompting approaches, i.e., zero-shot input/output (IO) prompting, few-shot IO prompting, chain of thought (CoT) prompting. Our results highlight three key findings: (1) current LLMs underperform supervised PLMs based sarcasm detection baselines across six sarcasm benchmarks. This suggests that significant efforts are still required to improve LLMs' understanding of human sarcasm. (2) GPT-4 consistently and significantly outperforms other LLMs across various prompting methods, with an average improvement of 14.0\%$\uparrow$. Claude 3 and ChatGPT demonstrate the next best performance after GPT-4. (3) Few-shot IO prompting method outperforms the other two methods: zero-shot IO and few-shot CoT. The reason is that sarcasm detection, being a holistic, intuitive, and non-rational cognitive process, is argued not to adhere to step-by-step logical reasoning, making CoT less effective in understanding sarcasm compared to its effectiveness in mathematical reasoning tasks.
☆ Probabilistic Medical Predictions of Large Language Models
Large Language Models (LLMs) have demonstrated significant potential in clinical applications through prompt engineering, which enables the generation of flexible and diverse clinical predictions. However, they pose challenges in producing prediction probabilities, which are essential for transparency and allowing clinicians to apply flexible probability thresholds in decision-making. While explicit prompt instructions can lead LLMs to provide prediction probability numbers through text generation, LLMs' limitations in numerical reasoning raise concerns about the reliability of these text-generated probabilities. To assess this reliability, we compared explicit probabilities derived from text generation to implicit probabilities calculated based on the likelihood of predicting the correct label token. Experimenting with six advanced open-source LLMs across five medical datasets, we found that the performance of explicit probabilities was consistently lower than implicit probabilities with respect to discrimination, precision, and recall. Moreover, these differences were enlarged on small LLMs and imbalanced datasets, emphasizing the need for cautious interpretation and applications, as well as further research into robust probability estimation methods for LLMs in clinical contexts.
comment: 58 pages, 3 figures, 3 tables, Submitted to Nature Communication
☆ Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer
Despite prior safety alignment efforts, mainstream LLMs can still generate harmful and unethical content when subjected to jailbreaking attacks. Existing jailbreaking methods fall into two main categories: template-based and optimization-based methods. The former requires significant manual effort and domain knowledge, while the latter, exemplified by Greedy Coordinate Gradient (GCG), which seeks to maximize the likelihood of harmful LLM outputs through token-level optimization, also encounters several limitations: requiring white-box access, necessitating pre-constructed affirmative phrase, and suffering from low efficiency. In this paper, we present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes. Drawing inspiration from LLMs' powerful generation and optimization capabilities, we employ task prompts to translate jailbreaking goals into natural language instructions. This guides the LLM to generate adversarial suffixes for malicious queries. In particular, a harmfulness scorer provides continuous feedback, enabling LLM self-reflection and iterative optimization to autonomously and efficiently produce effective suffixes. Experimental results demonstrate that ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times. Moreover, ECLIPSE is on par with template-based methods in ASR while offering superior attack efficiency, reducing the average attack overhead by 83%.
Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework
Visual geo-localization demands in-depth knowledge and advanced reasoning skills to associate images with real-world geographic locations precisely. In general, traditional methods based on data-matching are hindered by the impracticality of storing adequate visual records of global landmarks. Recently, Large Vision-Language Models (LVLMs) have demonstrated the capability of geo-localization through Visual Question Answering (VQA), enabling a solution that does not require external geo-tagged image records. However, the performance of a single LVLM is still limited by its intrinsic knowledge and reasoning capabilities. Along this line, in this paper, we introduce a novel visual geo-localization framework called \name\ that integrates the inherent knowledge of multiple LVLM agents via inter-agent communication to achieve effective geo-localization of images. Furthermore, our framework employs a dynamic learning strategy to optimize the communication patterns among agents, reducing unnecessary discussions among agents and improving the efficiency of the framework. To validate the effectiveness of the proposed framework, we construct GeoGlobe, a novel dataset for visual geo-localization tasks. Extensive testing on the dataset demonstrates that our approach significantly outperforms state-of-the-art methods.
☆ EEG-Defender: Defending against Jailbreak through Early Exit Generation of Large Language Models
Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation. In an effort to mitigate such risks, the concept of "Alignment" technology has been developed. However, recent studies indicate that this alignment can be undermined using sophisticated prompt engineering or adversarial suffixes, a technique known as "Jailbreak." Our research takes cues from the human-like generate process of LLMs. We identify that while jailbreaking prompts may yield output logits similar to benign prompts, their initial embeddings within the model's latent space tend to be more analogous to those of malicious prompts. Leveraging this finding, we propose utilizing the early transformer outputs of LLMs as a means to detect malicious inputs, and terminate the generation immediately. Built upon this idea, we introduce a simple yet significant defense approach called EEG-Defender for LLMs. We conduct comprehensive experiments on ten jailbreak methods across three models. Our results demonstrate that EEG-Defender is capable of reducing the Attack Success Rate (ASR) by a significant margin, roughly 85\% in comparison with 50\% for the present SOTAs, with minimal impact on the utility and effectiveness of LLMs.
comment: 19 pages, 7 figures
☆ KAN4TSF: Are KAN and KAN-based models Effective for Time Series Forecasting?
Time series forecasting is a crucial task that predicts the future values of variables based on historical data. Time series forecasting techniques have been developing in parallel with the machine learning community, from early statistical learning methods to current deep learning methods. Although existing methods have made significant progress, they still suffer from two challenges. The mathematical theory of mainstream deep learning-based methods does not establish a clear relation between network sizes and fitting capabilities, and these methods often lack interpretability. To this end, we introduce the Kolmogorov-Arnold Network (KAN) into time series forecasting research, which has better mathematical properties and interpretability. First, we propose the Reversible Mixture of KAN experts (RMoK) model, which is a KAN-based model for time series forecasting. RMoK uses a mixture-of-experts structure to assign variables to KAN experts. Then, we compare performance, integration, and speed between RMoK and various baselines on real-world datasets, and the experimental results show that RMoK achieves the best performance in most cases. And we find the relationship between temporal feature weights and data periodicity through visualization, which roughly explains RMoK's mechanism. Thus, we conclude that KAN and KAN-based models (RMoK) are effective in time series forecasting. Code is available at KAN4TSF: https://github.com/2448845600/KAN4TSF.
☆ UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation
The fashion domain encompasses a variety of real-world multimodal tasks, including multimodal retrieval and multimodal generation. The rapid advancements in artificial intelligence generated content, particularly in technologies like large language models for text generation and diffusion models for visual generation, have sparked widespread research interest in applying these multimodal models in the fashion domain. However, tasks involving embeddings, such as image-to-text or text-to-image retrieval, have been largely overlooked from this perspective due to the diverse nature of the multimodal fashion domain. And current research on multi-task single models lack focus on image generation. In this work, we present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain, integrating image generation with retrieval tasks and text generation tasks. UniFashion unifies embedding and generative tasks by integrating a diffusion model and LLM, enabling controllable and high-fidelity generation. Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks, and can be readily adapted to manage complex vision-language tasks. This work demonstrates the potential learning synergy between multimodal generation and retrieval, offering a promising direction for future research in the fashion domain. The source code is available at https://github.com/xiangyu-mm/UniFashion.
☆ Offline Policy Learning via Skill-step Abstraction for Long-horizon Goal-Conditioned Tasks
Goal-conditioned (GC) policy learning often faces a challenge arising from the sparsity of rewards, when confronting long-horizon goals. To address the challenge, we explore skill-based GC policy learning in offline settings, where skills are acquired from existing data and long-horizon goals are decomposed into sequences of near-term goals that align with these skills. Specifically, we present an `offline GC policy learning via skill-step abstraction' framework (GLvSA) tailored for tackling long-horizon GC tasks affected by goal distribution shifts. In the framework, a GC policy is progressively learned offline in conjunction with the incremental modeling of skill-step abstractions on the data. We also devise a GC policy hierarchy that not only accelerates GC policy learning within the framework but also allows for parameter-efficient fine-tuning of the policy. Through experiments with the maze and Franka kitchen environments, we demonstrate the superiority and efficiency of our GLvSA framework in adapting GC policies to a wide range of long-horizon goals. The framework achieves competitive zero-shot and few-shot adaptation performance, outperforming existing GC policy learning and skill-based methods.
comment: 9 pages, 4 figures, International Joint Conference on Artificial Intelligence 2024, Published version
☆ Applying and Evaluating Large Language Models in Mental Health Care: A Scoping Review of Human-Assessed Generative Tasks
Large language models (LLMs) are emerging as promising tools for mental health care, offering scalable support through their ability to generate human-like responses. However, the effectiveness of these models in clinical settings remains unclear. This scoping review aimed to assess the current generative applications of LLMs in mental health care, focusing on studies where these models were tested with human participants in real-world scenarios. A systematic search across APA PsycNet, Scopus, PubMed, and Web of Science identified 726 unique articles, of which 17 met the inclusion criteria. These studies encompassed applications such as clinical assistance, counseling, therapy, and emotional support. However, the evaluation methods were often non-standardized, with most studies relying on ad hoc scales that limit comparability and robustness. Privacy, safety, and fairness were also frequently underexplored. Moreover, reliance on proprietary models, such as OpenAI's GPT series, raises concerns about transparency and reproducibility. While LLMs show potential in expanding mental health care access, especially in underserved areas, the current evidence does not fully support their use as standalone interventions. More rigorous, standardized evaluations and ethical oversight are needed to ensure these tools can be safely and effectively integrated into clinical practice.
☆ Inference Plans for Hybrid Particle Filtering
Advanced probabilistic programming languages (PPLs) use hybrid inference systems to combine symbolic exact inference and Monte Carlo methods to improve inference performance. These systems use heuristics to partition random variables within the program into variables that are encoded symbolically and variables that are encoded with sampled values, and the heuristics are not necessarily aligned with the performance evaluation metrics used by the developer. In this work, we present inference plans, a programming interface that enables developers to control the partitioning of random variables during hybrid particle filtering. We further present Siren, a new PPL that enables developers to use annotations to specify inference plans the inference system must implement. To assist developers with statically reasoning about whether an inference plan can be implemented, we present an abstract-interpretation-based static analysis for Siren for determining inference plan satisfiability. We prove the analysis is sound with respect to Siren's semantics. Our evaluation applies inference plans to three different hybrid particle filtering algorithms on a suite of benchmarks and shows that the control provided by inference plans enables speed ups of 1.76x on average and up to 206x to reach target accuracy, compared to the inference plans implemented by default heuristics; the results also show that inference plans improve accuracy by 1.83x on average and up to 595x with less or equal runtime, compared to the default inference plans. We further show that the static analysis is precise in practice, identifying all satisfiable inference plans in 27 out of the 33 benchmark-algorithm combinations.
☆ BearLLM: A Prior Knowledge-Enhanced Bearing Health Management Framework with Unified Vibration Signal Representation
We propose a bearing health management framework leveraging large language models (BearLLM), a novel multimodal model that unifies multiple bearing-related tasks by processing user prompts and vibration signals. Specifically, we introduce a prior knowledge-enhanced unified vibration signal representation to handle various working conditions across multiple datasets. This involves adaptively sampling the vibration signals based on the sampling rate of the sensor, incorporating the frequency domain to unify input dimensions, and using a fault-free reference signal as an auxiliary input. To extract features from vibration signals, we first train a fault classification network, then convert and align the extracted features into word embedding, and finally concatenate these with text embedding as input to an LLM. To evaluate the performance of the proposed method, we constructed the first large-scale multimodal bearing health management (MBHM) dataset, including paired vibration signals and textual descriptions. With our unified vibration signal representation, BearLLM using one set of pre-trained weights achieves state-of-the-art performance on nine publicly available fault diagnosis benchmarks, outperforming specific methods designed for individual datasets. We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models (https://github.com/hatton613/BearLLM).
☆ Towards Analyzing and Mitigating Sycophancy in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have shown significant capability in vision-language understanding. However, one critical issue that persists in these models is sycophancy, which means models are unduly influenced by leading or deceptive prompts, resulting in biased outputs and hallucinations. Despite the progress in LVLMs, evaluating and mitigating sycophancy is yet much under-explored. In this work, we fill this gap by systematically analyzing sycophancy on various VL benchmarks with curated leading queries and further proposing a text contrastive decoding method for mitigation. While the specific sycophantic behavior varies significantly among models, our analysis reveals the severe deficiency of all LVLMs in resilience of sycophancy across various tasks. For improvement, we propose Leading Query Contrastive Decoding (LQCD), a model-agnostic method focusing on calibrating the LVLMs' over-reliance on leading cues by identifying and suppressing the probabilities of sycophancy tokens at the decoding stage. Extensive experiments show that LQCD effectively mitigate sycophancy, outperforming both prompt engineering methods and common methods for hallucination mitigation. We further demonstrate that LQCD does not hurt but even slightly improves LVLMs' responses to neutral queries, suggesting it being a more effective strategy for general-purpose decoding but not limited to sycophancy.
☆ Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers
Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix.
☆ Automatic Image Annotation (AIA) of AlmondNet-20 Method for Almond Detection by Improved CNN-based Model
In response to the burgeoning global demand for premium agricultural products, particularly within the competitive nut market, this paper introduces an innovative methodology aimed at enhancing the grading process for almonds and their shells. Leveraging state-of-the-art Deep Convolutional Neural Networks (CNNs), specifically the AlmondNet-20 architecture, our study achieves exceptional accuracy exceeding 99%, facilitated by the utilization of a 20-layer CNN model. To bolster robustness in differentiating between almonds and shells, data augmentation techniques are employed, ensuring the reliability and accuracy of our classification system. Our model, meticulously trained over 1000 epochs, demonstrates remarkable performance, boasting an accuracy rate of 99% alongside a minimal loss function of 0.0567. Rigorous evaluation through test datasets further validates the efficacy of our approach, revealing impeccable precision, recall, and F1-score metrics for almond detection. Beyond its technical prowess, this advanced classification system offers tangible benefits to both industry experts and non-specialists alike, ensuring globally reliable almond classification. The application of deep learning algorithms, as showcased in our study, not only enhances grading accuracy but also presents opportunities for product patents, thereby contributing to the economic value of our nation. Through the adoption of cutting-edge technologies such as the AlmondNet-20 model, we pave the way for future advancements in agricultural product classification, ultimately enriching global trade and economic prosperity.
☆ Reasoning and Tools for Human-Level Forecasting
Language models (LMs) trained on web-scale datasets are largely successful due to their ability to memorize large amounts of training data, even if only present in a few examples. These capabilities are often desirable in evaluation on tasks such as question answering but raise questions about whether these models can exhibit genuine reasoning or succeed only at mimicking patterns from the training data. This distinction is particularly salient in forecasting tasks, where the answer is not present in the training data, and the model must reason to make logical deductions. We present Reasoning and Tools for Forecasting (RTF), a framework of reasoning-and-acting (ReAct) agents that can dynamically retrieve updated information and run numerical simulation with equipped tools. We evaluate our model with questions from competitive forecasting platforms and demonstrate that our method is competitive with and can outperform human predictions. This suggests that LMs, with the right tools, can indeed think and adapt like humans, offering valuable insights for real-world decision-making.
☆ A Constraint Programming Approach to Fair High School Course Scheduling
Issues of inequity in U.S. high schools' course scheduling did not previously exist. However, in recent years, with the increase in student population and course variety, students perceive that the course scheduling method is unfair. Current integer programming (IP) methods to the high school scheduling problem (HSSP) fall short in addressing these fairness concerns. The purpose of this research is to develop a solution methodology that generates feasible and fair course schedules using student preferences. Utilizing principles of fairness, which have been well studied in market design, we define the fair high school scheduling problem (FHSSP), a novel extension to the HSSP, and devise a corresponding algorithm based on integer programming to solve the FHSSP. We test our approach on a real course request dataset from a high school in California, USA. Results show that our algorithm can generate schedules that are both feasible and fair. In this paper, we demonstrate that our IP algorithm not only solves the HSSP and FHSSP in the United States but has the potential to be applied to various real-world scheduling problems. Additionally, we show the feasibility of integrating human emotions into mathematical modeling.
☆ Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data
Integrating Electronic Health Records (EHR) and the application of machine learning present opportunities for enhancing the accuracy and accessibility of data-driven diabetes prediction. In particular, developing data-driven machine learning models can provide early identification of patients with high risk for diabetes, potentially leading to more effective therapeutic strategies and reduced healthcare costs. However, regulation restrictions create barriers to developing centralized predictive models. This paper addresses the challenges by introducing a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues. This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without crossprovince patient data sharing. We address class-imbalance issues through downsampling techniques and compare federated learning performance against province-based and centralized models. Experimental results show that the federated MLP model presents a similar or higher performance compared to the model trained with the centralized approach. However, the federated logistic regression model showed inferior performance compared to its centralized peer.
comment: 10 pages
☆ Exploring Large Language Models for Feature Selection: A Data-centric Perspective
The rapid advancement of Large Language Models (LLMs) has significantly influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities. In this work, we aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective. We begin by categorizing existing feature selection methods with LLMs into two groups: data-driven feature selection which requires samples values to do statistical inference and text-based feature selection which utilizes prior knowledge of LLMs to do semantical associations using descriptive context. We conduct extensive experiments in both classification and regression tasks with LLMs in various sizes (e.g., GPT-4, ChatGPT and LLaMA-2). Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application. We also discuss the challenges and future opportunities in employing LLMs for feature selection, offering insights for further research and development in this emerging field.
comment: Preprint, under review
☆ Understanding Epistemic Language with a Bayesian Theory of Mind
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'', then evaluating these translations against the inferences produced by inverting a probabilistic generative model of rational action and perception, LaBToM captures graded plausibility judgments about epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 21 pages
☆ Does It Look Sequential? An Analysis of Datasets for Evaluation of Sequential Recommendations
Sequential recommender systems are an important and demanded area of research. Such systems aim to use the order of interactions in a user's history to predict future interactions. The premise is that the order of interactions and sequential patterns play an essential role. Therefore, it is crucial to use datasets that exhibit a sequential structure to evaluate sequential recommenders properly. We apply several methods based on the random shuffling of the user's sequence of interactions to assess the strength of sequential structure across 15 datasets, frequently used for sequential recommender systems evaluation in recent research papers presented at top-tier conferences. As shuffling explicitly breaks sequential dependencies inherent in datasets, we estimate the strength of sequential patterns by comparing metrics for shuffled and original versions of the dataset. Our findings show that several popular datasets have a rather weak sequential structure.
☆ QuaCK-TSF: Quantum-Classical Kernelized Time Series Forecasting
Forecasting in probabilistic time series is a complex endeavor that extends beyond predicting future values to also quantifying the uncertainty inherent in these predictions. Gaussian process regression stands out as a Bayesian machine learning technique adept at addressing this multifaceted challenge. This paper introduces a novel approach that blends the robustness of this Bayesian technique with the nuanced insights provided by the kernel perspective on quantum models, aimed at advancing quantum kernelized probabilistic forecasting. We incorporate a quantum feature map inspired by Ising interactions and demonstrate its effectiveness in capturing the temporal dependencies critical for precise forecasting. The optimization of our model's hyperparameters circumvents the need for computationally intensive gradient descent by employing gradient-free Bayesian optimization. Comparative benchmarks against established classical kernel models are provided, affirming that our quantum-enhanced approach achieves competitive performance.
comment: 12 pages, 15 figures, to be published in IEEE Quantum Week 2024's conference proceeding
☆ SimBench: A Rule-Based Multi-Turn Interaction Benchmark for Evaluating an LLM's Ability to Generate Digital Twins
We introduce SimBench, a benchmark designed to evaluate the proficiency of student large language models (S-LLMs) in generating digital twins (DTs) that can be used in simulators for virtual testing. Given a collection of S-LLMs, this benchmark enables the ranking of the S-LLMs based on their ability to produce high-quality DTs. We demonstrate this by comparing over 20 open- and closed-source S-LLMs. Using multi-turn interactions, SimBench employs a rule-based judge LLM (J-LLM) that leverages both predefined rules and human-in-the-loop guidance to assign scores for the DTs generated by the S-LLM, thus providing a consistent and expert-inspired evaluation protocol. The J-LLM is specific to a simulator, and herein the proposed benchmarking approach is demonstrated in conjunction with the Chrono multi-physics simulator. Chrono provided the backdrop used to assess an S-LLM in relation to the latter's ability to create digital twins for multibody dynamics, finite element analysis, vehicle dynamics, robotic dynamics, and sensor simulations. The proposed benchmarking principle is broadly applicable and enables the assessment of an S-LLM's ability to generate digital twins for other simulation packages. All code and data are available at https://github.com/uwsbel/SimBench.
☆ Chemical Reaction Neural Networks for Fitting Accelerated Rate Calorimetry Data
As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially fires, which is a major safety concern. Typically, when modelling the chemical kinetics of thermal runaway calorimetry data ( e.g. Accelerated Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to Accelerated Rate Calorimetry (ARC) data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.
☆ Only Strict Saddles in the Energy Landscape of Predictive Coding Networks?
Predictive coding (PC) is an energy-based learning algorithm that performs iterative inference over network activities before weight updates. Recent work suggests that PC can converge in fewer learning steps than backpropagation thanks to its inference procedure. However, these advantages are not always observed, and the impact of PC inference on learning is theoretically not well understood. Here, we study the geometry of the PC energy landscape at the (inference) equilibrium of the network activities. For deep linear networks, we first show that the equilibrated energy is simply a rescaled mean squared error loss with a weight-dependent rescaling. We then prove that many highly degenerate (non-strict) saddles of the loss including the origin become much easier to escape (strict) in the equilibrated energy. Our theory is validated by experiments on both linear and non-linear networks. Based on these results, we conjecture that all the saddles of the equilibrated energy are strict. Overall, this work suggests that PC inference makes the loss landscape more benign and robust to vanishing gradients, while also highlighting the challenge of speeding up PC inference on large-scale models.
comment: 26 pages, 12 figures
☆ Sentiment and Emotion-aware Multi-criteria Fuzzy Group Decision Making System SDM 2024
In today's world, making decisions as a group is common, whether choosing a restaurant or deciding on a holiday destination. Group decision-making (GDM) systems play a crucial role by facilitating consensus among participants with diverse preferences. Discussions are one of the main tools people use to make decisions. When people discuss alternatives, they use natural language to express their opinions. Traditional GDM systems generally require participants to provide explicit opinion values to the system. However, in real-life scenarios, participants often express their opinions through some text (e.g., in comments, social media, messengers, etc.). This paper introduces a sentiment and emotion-aware multi-criteria fuzzy GDM system designed to enhance consensus-reaching effectiveness in group settings. This system incorporates natural language processing to analyze sentiments and emotions expressed in textual data, enabling an understanding of participant opinions besides the explicit numerical preference inputs. Once all the experts have provided their preferences for the alternatives, the individual preferences are aggregated into a single collective preference matrix. This matrix represents the collective expert opinion regarding the other options. Then, sentiments, emotions, and preference scores are inputted into a fuzzy inference system to get the overall score. The proposed system was used for a small decision-making process - choosing the hotel for a vacation by a group of friends. Our findings demonstrate that integrating sentiment and emotion analysis into GDM systems allows everyone's feelings and opinions to be considered during discussions and significantly improves consensus among participants.
comment: Submitted to FSDM 2024 - The 10th International Conference on Fuzzy Systems and Data Mining
☆ Real-Time Incremental Explanations for Object Detectors
Existing black box explainability tools for object detectors rely on multiple calls to the model, which prevents them from computing explanations in real time. In this paper we introduce IncX, an algorithm for real-time incremental approximations of explanations, based on linear transformations of saliency maps. We implement IncX on top of D-RISE, a state-of-the-art black-box explainability tool for object detectors. We show that IncX's explanations are comparable in quality to those of D-RISE, with insertion curves being within 8%, and are computed two orders of magnitude faster that D-RISE's explanations.
☆ Advances in Preference-based Reinforcement Learning: A Review
Reinforcement Learning (RL) algorithms suffer from the dependency on accurately engineered reward functions to properly guide the learning agents to do the required tasks. Preference-based reinforcement learning (PbRL) addresses that by utilizing human preferences as feedback from the experts instead of numeric rewards. Due to its promising advantage over traditional RL, PbRL has gained more focus in recent years with many significant advances. In this survey, we present a unified PbRL framework to include the newly emerging approaches that improve the scalability and efficiency of PbRL. In addition, we give a detailed overview of the theoretical guarantees and benchmarking work done in the field, while presenting its recent applications in complex real-world tasks. Lastly, we go over the limitations of the current approaches and the proposed future research directions.
☆ Matmul or No Matmal in the Era of 1-bit LLMs
The advent of 1-bit large language models (LLMs) has attracted considerable attention and opened up new research opportunities. However, 1-bit LLMs only improve a fraction of models by applying extreme quantization to the projection layers while leaving attention heads unchanged. Therefore, to avoid fundamentally wrong choices of goals in future research, it is crucial to understand the actual improvements in computation and memory usage that 1-bit LLMs can deliver. In this work, we present an adaptation of Amdahl's Law tailored for the 1-bit LLM context, which illustrates how partial improvements in 1-bit LLMs impact overall model performance. Through extensive experiments, we uncover key nuances across different model architectures and hardware configurations, offering a roadmap for future research in the era of 1-bit LLMs.
comment: 13 pages, 12 figures
☆ Estimating Contribution Quality in Online Deliberations Using a Large Language Model
Deliberation involves participants exchanging knowledge, arguments, and perspectives and has been shown to be effective at addressing polarization. The Stanford Online Deliberation Platform facilitates large-scale deliberations. It enables video-based online discussions on a structured agenda for small groups without requiring human moderators. This paper's data comes from various deliberation events, including one conducted in collaboration with Meta in 32 countries, and another with 38 post-secondary institutions in the US. Estimating the quality of contributions in a conversation is crucial for assessing feature and intervention impacts. Traditionally, this is done by human annotators, which is time-consuming and costly. We use a large language model (LLM) alongside eight human annotators to rate contributions based on justification, novelty, expansion of the conversation, and potential for further expansion, with scores ranging from 1 to 5. Annotators also provide brief justifications for their ratings. Using the average rating from other human annotators as the ground truth, we find the model outperforms individual human annotators. While pairs of human annotators outperform the model in rating justification and groups of three outperform it on all four metrics, the model remains competitive. We illustrate the usefulness of the automated quality rating by assessing the effect of nudges on the quality of deliberation. We first observe that individual nudges after prolonged inactivity are highly effective, increasing the likelihood of the individual requesting to speak in the next 30 seconds by 65%. Using our automated quality estimation, we show that the quality ratings for statements prompted by nudging are similar to those made without nudging, signifying that nudging leads to more ideas being generated in the conversation without losing overall quality.
☆ Explainable Anomaly Detection: Counterfactual driven What-If Analysis
There exists three main areas of study inside of the field of predictive maintenance: anomaly detection, fault diagnosis, and remaining useful life prediction. Notably, anomaly detection alerts the stakeholder that an anomaly is occurring. This raises two fundamental questions: what is causing the fault and how can we fix it? Inside of the field of explainable artificial intelligence, counterfactual explanations can give that information in the form of what changes to make to put the data point into the opposing class, in this case "healthy". The suggestions are not always actionable which may raise the interest in asking "what if we do this instead?" In this work, we provide a proof of concept for utilizing counterfactual explanations as what-if analysis. We perform this on the PRONOSTIA dataset with a temporal convolutional network as the anomaly detector. Our method presents the counterfactuals in the form of a what-if analysis for this base problem to inspire future work for more complex systems and scenarios.
comment: 8 pages, 6 figures, 3 tables
☆ An Open Knowledge Graph-Based Approach for Mapping Concepts and Requirements between the EU AI Act and International Standards
The many initiatives on trustworthy AI result in a confusing and multipolar landscape that organizations operating within the fluid and complex international value chains must navigate in pursuing trustworthy AI. The EU's AI Act will now shift the focus of such organizations toward conformance with the technical requirements for regulatory compliance, for which the Act relies on Harmonized Standards. Though a high-level mapping to the Act's requirements will be part of such harmonization, determining the degree to which standards conformity delivers regulatory compliance with the AI Act remains a complex challenge. Variance and gaps in the definitions of concepts and how they are used in requirements between the Act and harmonized standards may impact the consistency of compliance claims across organizations, sectors, and applications. This may present regulatory uncertainty, especially for SMEs and public sector bodies relying on standards conformance rather than proprietary equivalents for developing and deploying compliant high-risk AI systems. To address this challenge, this paper offers a simple and repeatable mechanism for mapping the terms and requirements relevant to normative statements in regulations and standards, e.g., AI Act and ISO management system standards, texts into open knowledge graphs. This representation is used to assess the adequacy of standards conformance to regulatory compliance and thereby provide a basis for identifying areas where further technical consensus development in trustworthy AI value chains is required to achieve regulatory compliance.
comment: This work was presented at the 9th International Symposium on Language & Knowledge Engineering (LKE 2024) Dublin, Ireland, 4 - 6 June, 2024
☆ Neural Symbolic Logical Rule Learner for Interpretable Learning
Rule-based neural networks stand out for enabling interpretable classification by learning logical rules for both prediction and interpretation. However, existing models often lack flexibility due to the fixed model structure. Addressing this, we introduce the Normal Form Rule Learner (NFRL) algorithm, leveraging a selective discrete neural network, that treat weight parameters as hard selectors, to learn rules in both Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF) for enhanced accuracy and interpretability. Instead of adopting a deep, complex structure, the NFRL incorporates two specialized Normal Form Layers (NFLs) with adaptable AND/OR neurons, a Negation Layer for input negations, and a Normal Form Constraint (NFC) to streamline neuron connections. We also show the novel network architecture can be optimized using adaptive gradient update together with Straight-Through Estimator to overcome the gradient vanishing challenge. Through extensive experiments on 11 datasets, NFRL demonstrates superior classification performance, quality of learned rules, efficiency and interpretability compared to 12 state-of-the-art alternatives. Code and data are available at \url{https://anonymous.4open.science/r/NFRL-27B4/}.
comment: 19 pages, 62 figures
☆ Why am I Still Seeing This: Measuring the Effectiveness Of Ad Controls and Explanations in AI-Mediated Ad Targeting Systems AAAI
Recently, Meta has shifted towards AI-mediated ad targeting mechanisms that do not require advertisers to provide detailed targeting criteria, likely driven by excitement over AI capabilities as well as new data privacy policies and targeting changes agreed upon in civil rights settlements. At the same time, Meta has touted their ad preference controls as an effective mechanism for users to control the ads they see. Furthermore, Meta markets their targeting explanations as a transparency tool that allows users to understand why they saw certain ads and inform actions to control future ads. Our study evaluates the effectiveness of Meta's "See less" ad control and the actionability of ad targeting explanations following the shift to AI-mediated targeting. We conduct a large-scale study, randomly assigning participants to mark "See less" to Body Weight Control or Parenting topics, and collecting the ads and targeting explanations Meta shows to participants before and after the intervention. We find that utilizing the "See less" ad control for the topics we study does not significantly reduce the number of ads shown by Meta on these topics, and that the control is less effective for some users whose demographics are correlated with the topic. Furthermore, we find that the majority of ad targeting explanations for local ads made no reference to location-specific targeting criteria, and did not inform users why ads related to the topics they marked to "See less" of continued to be delivered. We hypothesize that the poor effectiveness of controls and lack of actionability in explanations are the result of the shift to AI-mediated targeting, for which explainability and transparency tools have not yet been developed. Our work thus provides evidence for the need of new methods for transparency and user control, suitable and reflective of increasingly complex AI-mediated ad delivery systems.
comment: Accepted to the 7th AAAI Conference on AI, Ethics, and Society (AIES, 2024)
♻ ☆ LBC: Language-Based-Classifier for Out-Of-Variable Generalization
Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/ASDASDanonymous/Language-Based-Classifier-forOOVtasks.
comment: 16 pages, 7 figures, 4 tables
♻ ☆ CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network
In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. To facilitate future research, we will release the code for our model upon publication.
♻ ☆ V-RoAst: A New Dataset for Visual Road Assessment
Road traffic crashes cause millions of deaths annually and have a significant economic impact, particularly in low- and middle-income countries (LMICs). This paper presents an approach using Vision Language Models (VLMs) for road safety assessment, overcoming the limitations of traditional Convolutional Neural Networks (CNNs). We introduce a new task ,V-RoAst (Visual question answering for Road Assessment), with a real-world dataset. Our approach optimizes prompt engineering and evaluates advanced VLMs, including Gemini-1.5-flash and GPT-4o-mini. The models effectively examine attributes for road assessment. Using crowdsourced imagery from Mapillary, our scalable solution influentially estimates road safety levels. In addition, this approach is designed for local stakeholders who lack resources, as it does not require training data. It offers a cost-effective and automated methods for global road safety assessments, potentially saving lives and reducing economic burdens.
♻ ☆ Flexora: Flexible Low Rank Adaptation for Large Language Models
Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora.
comment: 29 pages, 13 figures
♻ ☆ FairX: A comprehensive benchmarking tool for model analysis using fairness, utility, and explainability
We present FairX, an open-source Python-based benchmarking tool designed for the comprehensive analysis of models under the umbrella of fairness, utility, and eXplainability (XAI). FairX enables users to train benchmarking bias-removal models and evaluate their fairness using a wide array of fairness metrics, data utility metrics, and generate explanations for model predictions, all within a unified framework. Existing benchmarking tools do not have the way to evaluate synthetic data generated from fair generative models, also they do not have the support for training fair generative models either. In FairX, we add fair generative models in the collection of our fair-model library (pre-processing, in-processing, post-processing) and evaluation metrics for evaluating the quality of synthetic fair data. This version of FairX supports both tabular and image datasets. It also allows users to provide their own custom datasets. The open-source FairX benchmarking package is publicly available at https://github.com/fahim-sikder/FairX.
♻ ☆ Probing the Safety Response Boundary of Large Language Models via Unsafe Decoding Path Generation
Large Language Models (LLMs) are implicit troublemakers. While they provide valuable insights and assist in problem-solving, they can also potentially serve as a resource for malicious activities. Implementing safety alignment could mitigate the risk of LLMs generating harmful responses. We argue that: even when an LLM appears to successfully block harmful queries, there may still be hidden vulnerabilities that could act as ticking time bombs. To identify these underlying weaknesses, we propose to use a cost value model as both a detector and an attacker. Trained on external or self-generated harmful datasets, the cost value model could successfully influence the original safe LLM to output toxic content in decoding process. For instance, LLaMA-2-chat 7B outputs 39.18% concrete toxic content, along with only 22.16% refusals without any harmful suffixes. These potential weaknesses can then be exploited via prompt optimization such as soft prompts on images. We name this decoding strategy: Jailbreak Value Decoding (JVD), emphasizing that seemingly secure LLMs may not be as safe as we initially believe. They could be used to gather harmful data or launch covert attacks.
♻ ☆ MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in 3D world. To tackle this limitation, we introduce a generic AI system, namely MUSES, for 3D-controllable image generation from user queries. Specifically, our MUSES addresses this challenging task by developing a progressive workflow with three key components, including (1) Layout Manager for 2D-to-3D layout lifting, (2) Model Engineer for 3D object acquisition and calibration, (3) Image Artist for 3D-to-2D image rendering. By mimicking the collaboration of human professionals, this multi-modal agent pipeline facilitates the effective and automatic creation of images with 3D-controllable objects, through an explainable integration of top-down planning and bottom-up generation. Additionally, we find that existing benchmarks lack detailed descriptions of complex 3D spatial relationships of multiple objects. To fill this gap, we further construct a new benchmark of T2I-3DisBench (3D image scene), which describes diverse 3D image scenes with 50 detailed prompts. Extensive experiments show the state-of-the-art performance of MUSES on both T2I-CompBench and T2I-3DisBench, outperforming recent strong competitors such as DALL-E 3 and Stable Diffusion 3. These results demonstrate a significant step of MUSES forward in bridging natural language, 2D image generation, and 3D world.
TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks
Time series forecasting has become an increasingly popular research area due to its critical applications in various real-world domains such as traffic management, weather prediction, and financial analysis. Despite significant advancements, existing models face notable challenges, including the necessity of manual hyperparameter tuning for different datasets, and difficulty in effectively distinguishing signal from redundant features in data characterized by strong seasonality. These issues hinder the generalization and practical application of time series forecasting models. To solve this issues, we propose an innovative time series forecasting model TimeSieve designed to address these challenges. Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features without the need for additional parameters or manual hyperparameter tuning. Additionally, we introduce the information bottleneck theory that filters out redundant features from both detail and approximation coefficients, retaining only the most predictive information. This combination reduces significantly improves the model's accuracy. Extensive experiments demonstrate that our model outperforms existing state-of-the-art methods on 70% of the datasets, achieving higher predictive accuracy and better generalization across diverse datasets. Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting, paving the way for more reliable and efficient predictive models in practical applications. The code for our model is available at https://github.com/xll0328/TimeSieve.
♻ ☆ Query languages for neural networks ICDT 2025
We lay the foundations for a database-inspired approach to interpreting and understanding neural network models by querying them using declarative languages. Towards this end we study different query languages, based on first-order logic, that mainly differ in their access to the neural network model. First-order logic over the reals naturally yields a language which views the network as a black box; only the input--output function defined by the network can be queried. This is essentially the approach of constraint query languages. On the other hand, a white-box language can be obtained by viewing the network as a weighted graph, and extending first-order logic with summation over weight terms. The latter approach is essentially an abstraction of SQL. In general, the two approaches are incomparable in expressive power, as we will show. Under natural circumstances, however, the white-box approach can subsume the black-box approach; this is our main result. We prove the result concretely for linear constraint queries over real functions definable by feedforward neural networks with a fixed number of hidden layers and piecewise linear activation functions.
comment: To appear at ICDT 2025
♻ ☆ Edge AI as a Service with Coordinated Deep Neural Networks
As artificial intelligence (AI) applications continue to expand in next-generation networks, there is a growing need for deep neural network (DNN) models. Although DNN models deployed at the edge are promising for providing AI as a service with low latency, their cooperation is yet to be explored. In this paper, we consider that DNN service providers share their computing resources as well as their models' parameters and allow other DNNs to offload their computations without mirroring. We propose a novel algorithm called coordinated DNNs on edge (\textbf{CoDE}) that facilitates coordination among DNN services by establishing new inference paths. CoDE aims to find the optimal path, which is the path with the highest possible reward, by creating multi-task DNNs from individual models. The reward reflects the inference throughput and model accuracy. With CoDE, DNN models can make new paths for inference by using their own or other models' parameters. We then evaluate the performance of CoDE through numerical experiments. The results demonstrate a $40\%$ increase in the inference throughput while degrading the average accuracy by only $2.3\%$. Experiments show that CoDE enhances the inference throughput and, achieves higher precision compared to a state-of-the-art existing method.
♻ ☆ NYU CTF Dataset: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized dataset, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our dataset open source to public https://github.com/NYU-LLM-CTF/LLM_CTF_Database along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.
♻ ☆ Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era KDD 2024
With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.
comment: KDD 2024 Tutorial&Survey; Tutorial Website: https://llm-ir-bias-fairness.github.io/
♻ ☆ Exploiting Diffusion Prior for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models, especially in areas where security is critical. However, traditional OOD detection methods often fail to capture complex data distributions from large scale date. In this paper, we present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP. By using these features as conditional inputs to a diffusion model, we can reconstruct the images after encoding them with CLIP. The difference between the original and reconstructed images is used as a signal for OOD identification. The practicality and scalability of our method is increased by the fact that it does not require class-specific labeled ID data, as is the case with many other methods. Extensive experiments on several benchmark datasets demonstrates the robustness and effectiveness of our method, which have significantly improved the detection accuracy.
♻ ☆ SOAP: Enhancing Spatio-Temporal Relation and Motion Information Capturing for Few-Shot Action Recognition ACM MM 2024
High frame-rate (HFR) videos of action recognition improve fine-grained expression while reducing the spatio-temporal relation and motion information density. Thus, large amounts of video samples are continuously required for traditional data-driven training. However, samples are not always sufficient in real-world scenarios, promoting few-shot action recognition (FSAR) research. We observe that most recent FSAR works build spatio-temporal relation of video samples via temporal alignment after spatial feature extraction, cutting apart spatial and temporal features within samples. They also capture motion information via narrow perspectives between adjacent frames without considering density, leading to insufficient motion information capturing. Therefore, we propose a novel plug-and-play architecture for FSAR called Spatio-tempOral frAme tuPle enhancer (SOAP) in this paper. The model we designed with such architecture refers to SOAP-Net. Temporal connections between different feature channels and spatio-temporal relation of features are considered instead of simple feature extraction. Comprehensive motion information is also captured, using frame tuples with multiple frames containing more motion information than adjacent frames. Combining frame tuples of diverse frame counts further provides a broader perspective. SOAP-Net achieves new state-of-the-art performance across well-known benchmarks such as SthSthV2, Kinetics, UCF101, and HMDB51. Extensive empirical evaluations underscore the competitiveness, pluggability, generalization, and robustness of SOAP. The code is released at https://github.com/wenbohuang1002/SOAP.
comment: Accepted by ACM MM 2024
♻ ☆ LBC: Language-Based-Classifier for Out-Of-Variable Generalization
Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/sksmssh/LBCforOOVGen
comment: 16 pages, 7 figures, 4 tables
♻ ☆ Copilot-in-the-Loop: Fixing Code Smells in Copilot-Generated Python Code using Copilot
As one of the most popular dynamic languages, Python experiences a decrease in readability and maintainability when code smells are present. Recent advancements in Large Language Models have sparked growing interest in AI-enabled tools for both code generation and refactoring. GitHub Copilot is one such tool that has gained widespread usage. Copilot Chat, released in September 2023, functions as an interactive tool aimed at facilitating natural language-powered coding. However, limited attention has been given to understanding code smells in Copilot-generated Python code and Copilot Chat's ability to fix the code smells. To this end, we built a dataset comprising 102 code smells in Copilot-generated Python code. Our aim is to first explore the occurrence of code smells in Copilot-generated Python code and then evaluate the effectiveness of Copilot Chat in fixing these code smells employing different prompts. The results show that 8 out of 10 types of code smells can be detected in Copilot-generated Python code, among which Multiply-Nested Container is the most common one. For these code smells, Copilot Chat achieves a highest fixing rate of 87.1%, showing promise in fixing Python code smells generated by Copilot itself. In addition, the effectiveness of Copilot Chat in fixing these smells can be improved by providing more detailed prompts.
comment: The 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), NIER Track
♻ ☆ VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
Large Language Models (LLMs) have training corpora containing large amounts of program code, greatly improving the model's code comprehension and generation capabilities. However, sound comprehensive research on detecting program vulnerabilities, a more specific task related to code, and evaluating the performance of LLMs in this more specialized scenario is still lacking. To address common challenges in vulnerability analysis, our study introduces a new benchmark, VulDetectBench, specifically designed to assess the vulnerability detection capabilities of LLMs. The benchmark comprehensively evaluates LLM's ability to identify, classify, and locate vulnerabilities through five tasks of increasing difficulty. We evaluate the performance of 17 models (both open- and closed-source) and find that while existing models can achieve over 80% accuracy on tasks related to vulnerability identification and classification, they still fall short on specific, more detailed vulnerability analysis tasks, with less than 30% accuracy, making it difficult to provide valuable auxiliary information for professional vulnerability mining. Our benchmark effectively evaluates the capabilities of various LLMs at different levels in the specific task of vulnerability detection, providing a foundation for future research and improvements in this critical area of code security. VulDetectBench is publicly available at https://github.com/Sweetaroo/VulDetectBench.
♻ ☆ Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow
Optimal Power Flow (OPF) is a very traditional research area within the power systems field that seeks for the optimal operation point of electric power plants, and which needs to be solved every few minutes in real-world scenarios. However, due to the nonconvexities that arise in power generation systems, there is not yet a fast, robust solution technique for the full Alternating Current Optimal Power Flow (ACOPF). In the last decades, power grids have evolved into a typical dynamic, non-linear and large-scale control system, known as the power system, so searching for better and faster ACOPF solutions is becoming crucial. Appearance of Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on graph data, such as power networks. On the other hand, Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems. Although solutions that use these two methods separately are beginning to appear in the literature, none has yet combined the advantages of both. We propose a novel architecture based on the Proximal Policy Optimization algorithm with Graph Neural Networks to solve the Optimal Power Flow. The objective is to design an architecture that learns how to solve the optimization problem and that is at the same time able to generalize to unseen scenarios. We compare our solution with the DCOPF in terms of cost after having trained our DRL agent on IEEE 30 bus system and then computing the OPF on that base network with topology changes
♻ ☆ Interpretable Deep Learning for Forecasting Online Advertising Costs: Insights from the Competitive Bidding Landscape
As advertisers increasingly shift their budgets toward digital advertising, accurately forecasting advertising costs becomes essential for optimizing marketing campaign returns. This paper presents a comprehensive study that employs various time-series forecasting methods to predict daily average CPC in the online advertising market. We evaluate the performance of statistical models, machine learning techniques, and deep learning approaches, including the Temporal Fusion Transformer (TFT). Our findings reveal that incorporating multivariate models, enriched with covariates derived from competitors' CPC patterns through time-series clustering, significantly improves forecasting accuracy. We interpret the results by analyzing feature importance and temporal attention, demonstrating how the models leverage both the advertiser's data and insights from the competitive landscape. Additionally, our method proves robust during major market shifts, such as the COVID-19 pandemic, consistently outperforming models that rely solely on individual advertisers' data. This study introduces a scalable technique for selecting relevant covariates from a broad pool of advertisers, offering more accurate long-term forecasts and strategic insights into budget allocation and competitive dynamics in digital advertising.
comment: Acceptd at IEEE DSAA 2024, 10 pages, 8 figures, 3 tables
♻ ☆ ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context
Visual storytelling involves generating a sequence of coherent frames from a textual storyline while maintaining consistency in characters and scenes. Existing autoregressive methods, which rely on previous frame-sentence pairs, struggle with high memory usage, slow generation speeds, and limited context integration. To address these issues, we propose ContextualStory, a novel framework designed to generate coherent story frames and extend frames for story continuation. ContextualStory utilizes Spatially-Enhanced Temporal Attention to capture spatial and temporal dependencies, handling significant character movements effectively. Additionally, we introduces a Storyline Contextualizer to enrich context in storyline embedding and a StoryFlow Adapter to measure scene changes between frames for guiding model. Extensive experiments on PororoSV and FlintstonesSV benchmarks demonstrate that ContextualStory significantly outperforms existing methods in both story visualization and story continuation.
♻ ☆ Large Language Models in Mental Health Care: a Scoping Review
The integration of large language models (LLMs) in mental health care is an emerging field. There is a need to systematically review the application outcomes and delineate the advantages and limitations in clinical settings. This review aims to provide a comprehensive overview of the use of LLMs in mental health care, assessing their efficacy, challenges, and potential for future applications. A systematic search was conducted across multiple databases including PubMed, Web of Science, Google Scholar, arXiv, medRxiv, and PsyArXiv in November 2023. All forms of original research, peer-reviewed or not, published or disseminated between October 1, 2019, and December 2, 2023, are included without language restrictions if they used LLMs developed after T5 and directly addressed research questions in mental health care settings. From an initial pool of 313 articles, 34 met the inclusion criteria based on their relevance to LLM application in mental health care and the robustness of reported outcomes. Diverse applications of LLMs in mental health care are identified, including diagnosis, therapy, patient engagement enhancement, etc. Key challenges include data availability and reliability, nuanced handling of mental states, and effective evaluation methods. Despite successes in accuracy and accessibility improvement, gaps in clinical applicability and ethical considerations were evident, pointing to the need for robust data, standardized evaluations, and interdisciplinary collaboration. LLMs hold substantial promise for enhancing mental health care. For their full potential to be realized, emphasis must be placed on developing robust datasets, development and evaluation frameworks, ethical guidelines, and interdisciplinary collaborations to address current limitations.
♻ ☆ ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code
Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e.g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions. Also, recently, people have developed LLM agents that attempt to interact with repository code (e.g., compiling and evaluating its execution), prompting the need to evaluate their performance. These gaps have motivated our development of ML-Bench, a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks. Addressing the need for LLMs to interpret long code contexts and translate instructions into precise, executable scripts, ML-Bench encompasses annotated 9,641 examples across 18 GitHub repositories, challenging LLMs to accommodate user-specified arguments and documentation intricacies effectively. To evaluate both LLMs and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment. Our findings indicate that while GPT-4o leads with a Pass@5 rate surpassing 50%, there remains significant scope for improvement, highlighted by issues such as hallucinated outputs and difficulties with bash script generation. Notably, in the more demanding ML-Agent-Bench, GPT-4o achieves a 76.47% success rate, reflecting the efficacy of iterative action and feedback in complex task resolution. Our code, dataset, and models are available at https://github.com/gersteinlab/ML-bench.
♻ ☆ Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition
Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task, aiming to simultaneously extract entity spans, types, and corresponding visual regions of entities from given sentence-image pairs data. Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task. The former, utilizing human-designed queries, struggles to differentiate ambiguous entities, such as Jordan (Person) and off-White x Jordan (Shoes). The latter, following the one-by-one decoding order, suffers from exposure bias issues. We maintain that these works misunderstand the relationships of multimodal entities. To tackle these, we propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels. Specifically, MQSPN consists of a Multi-grained Query Set (MQS) and a Multimodal Set Prediction Network (MSP). MQS explicitly aligns entity regions with entity spans by employing a set of learnable queries to strengthen intra-entity connections. Based on distinct intra-entity modeling, MSP reformulates GMNER as a set prediction, guiding models to establish appropriate inter-entity relationships from a global matching perspective. Additionally, we incorporate a query-guided Fusion Net (QFNet) to work as a glue network between MQS and MSP. Extensive experiments demonstrate that our approach achieves state-of-the-art performances in widely used benchmarks.
comment: 13 pages, 7 figures
♻ ☆ PowerPM: Foundation Model for Power Systems
The emergence of abundant electricity time series (ETS) data provides ample opportunities for various applications in the power systems, including demand-side management, grid stability, and consumer behavior analysis. Deep learning models have advanced ETS modeling by effectively capturing sequence dependence. Nevertheless, learning a generic representation of ETS data for various applications remains challenging due to the inherently complex hierarchical structure of ETS data. Moreover, ETS data exhibits intricate temporal dependencies and is suscepti ble to the influence of exogenous variables. Furthermore, different instances exhibit diverse electricity consumption behavior. In this paper, we propose a foundation model PowerPM to model ETS data, providing a large-scale, off-the-shelf model for power systems. PowerPM consists of a temporal encoder and a hierarchical encoder. The temporal encoder captures both temporal dependencies in ETS data, considering exogenous variables. The hierarchical encoder models the correlation between hierarchy. Furthermore, PowerPM leverages a novel self-supervised pretraining framework consisting of masked ETS modeling and dual-view contrastive learning, which enable PowerPM to capture temporal dependency within ETS windows and aware the discrepancy across ETS windows, providing two different perspectives to learn generic representation. Our experiments involve five real world scenario datasets, comprising private and public data. Through pre-training on massive ETS data, PowerPM achieves SOTA performance on diverse downstream tasks within the private dataset. Impressively, when transferred to the public datasets, PowerPM maintains its superiority, showcasing its remarkable generalization ability across various tasks and domains. Moreover, ablation studies, few-shot experiments provide additional evidence of the effectiveness of our model.
comment: 23 pages, 5 figures, 8 tables
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ TAGIFY: LLM-powered Tagging Interface for Improved Data Findability on OGD portals
Efforts directed towards promoting Open Government Data (OGD) have gained significant traction across various governmental tiers since the mid-2000s. As more datasets are published on OGD portals, finding specific data becomes harder, leading to information overload. Complete and accurate documentation of datasets, including association of proper tags with datasets is key to improving dataset findability and accessibility. Analysis conducted on the Estonian Open Data Portal, revealed that 11% datasets have no associated tags, while 26% had only one tag assigned to them, which underscores challenges in data findability and accessibility within the portal, which, according to the recent Open Data Maturity Report, is considered trend-setter. The aim of this study is to propose an automated solution to tagging datasets to improve data findability on OGD portals. This paper presents Tagify - a prototype of tagging interface that employs large language models (LLM) such as GPT-3.5-turbo and GPT-4 to automate dataset tagging, generating tags for datasets in English and Estonian, thereby augmenting metadata preparation by data publishers and improving data findability on OGD portals by data users. The developed solution was evaluated by users and their feedback was collected to define an agenda for future prototype improvements.
♻ ☆ Inference-Time Selective Debiasing
We propose selective debiasing -- an inference-time safety mechanism that aims to increase the overall quality of models in terms of prediction performance and fairness in the situation when re-training a model is prohibitive. The method is inspired by selective prediction, where some predictions that are considered low quality are discarded at inference time. In our approach, we identify the potentially biased model predictions and, instead of discarding them, we debias them using LEACE -- a post-processing debiasing method. To select problematic predictions, we propose a bias quantification approach based on KL divergence, which achieves better results than standard UQ methods. Experiments with text classification datasets demonstrate that selective debiasing helps to close the performance gap between post-processing methods and at-training and pre-processing debiasing techniques.
♻ ☆ 2-Level Reinforcement Learning for Ships on Inland Waterways: Path Planning and Following
This paper proposes a realistic modularized framework for controlling autonomous surface vehicles (ASVs) on inland waterways (IWs) based on deep reinforcement learning (DRL). The framework improves operational safety and comprises two levels: a high-level local path planning (LPP) unit and a low-level path following (PF) unit, each consisting of a DRL agent. The LPP agent is responsible for planning a path under consideration of dynamic vessels, closing a gap in the current research landscape. In addition, the LPP agent adequately considers traffic rules and the geometry of the waterway. We thereby introduce a novel application of a spatial-temporal recurrent neural network architecture to continuous action spaces. The LPP agent outperforms a state-of-the-art artificial potential field (APF) method by increasing the minimum distance to other vessels by 65% on average. The PF agent performs low-level actuator control while accounting for shallow water influences and the environmental forces winds, waves, and currents. Compared with a proportional-integral-derivative (PID) controller, the PF agent yields only 61% of the mean cross-track error (MCTE) while significantly reducing control effort (CE) in terms of the required absolute rudder angle. Lastly, both agents are jointly validated in simulation, employing the lower Elbe in northern Germany as an example case and using real automatic identification system (AIS) trajectories to model the behavior of other ships.
♻ ☆ SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defense targeted against the generation of copyrighted text. To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose lightweight, real-time defense to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism significantly reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests. Code is publicly available at https://github.com/xz-liu/SHIELD
comment: Work in progress
♻ ☆ An Analysis under a Unified Fomulation of Learning Algorithms with Output Constraints
Neural networks (NN) perform well in diverse tasks, but sometimes produce nonsensical results to humans. Most NN models "solely" learn from (input, output) pairs, occasionally conflicting with human knowledge. Many studies indicate injecting human knowledge by reducing output constraints during training can improve model performance and reduce constraint violations. While there have been several attempts to compare different existing algorithms under the same programming framework, nonetheless, there has been no previous work that categorizes learning algorithms with output constraints in a unified manner. Our contributions are as follows: (1) We categorize the previous studies based on three axes: type of constraint loss used (e.g. probabilistic soft logic, REINFORCE), exploration strategy of constraint-violating examples, and integration mechanism of learning signals from main task and constraint. (2) We propose new algorithms to integrate the information of main task and constraint injection, inspired by continual-learning algorithms. (3) Furthermore, we propose the $H\beta$-score as a metric for considering the main task metric and constraint violation simultaneously. To provide a thorough analysis, we examine all the algorithms on three NLP tasks: natural language inference (NLI), synthetic transduction examples (STE), and semantic role labeling (SRL). We explore and reveal the key factors of various algorithms associated with achieving high $H\beta$-scores.
♻ ☆ Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting ICML 2024
Relationships among time series can be exploited as inductive biases in learning effective forecasting models. In hierarchical time series, relationships among subsets of sequences induce hard constraints (hierarchical inductive biases) on the predicted values. In this paper, we propose a graph-based methodology to unify relational and hierarchical inductive biases in the context of deep learning for time series forecasting. In particular, we model both types of relationships as dependencies in a pyramidal graph structure, with each pyramidal layer corresponding to a level of the hierarchy. By exploiting modern - trainable - graph pooling operators we show that the hierarchical structure, if not available as a prior, can be learned directly from data, thus obtaining cluster assignments aligned with the forecasting objective. A differentiable reconciliation stage is incorporated into the processing architecture, allowing hierarchical constraints to act both as an architectural bias as well as a regularization element for predictions. Simulation results on representative datasets show that the proposed method compares favorably against the state of the art.
comment: Published at ICML 2024
♻ ☆ Self-Supervised Visual Preference Alignment
This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT-4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code are available in https://github.com/Kevinz-code/SeVa.
comment: MM2024 oral
♻ ☆ DiffuMatting: Synthesizing Arbitrary Objects with Matting-level Annotation ECCV 2024
Due to the difficulty and labor-consuming nature of getting highly accurate or matting annotations, there only exists a limited amount of highly accurate labels available to the public. To tackle this challenge, we propose a DiffuMatting which inherits the strong Everything generation ability of diffusion and endows the power of "matting anything". Our DiffuMatting can 1). act as an anything matting factory with high accurate annotations 2). be well-compatible with community LoRAs or various conditional control approaches to achieve the community-friendly art design and controllable generation. Specifically, inspired by green-screen-matting, we aim to teach the diffusion model to paint on a fixed green screen canvas. To this end, a large-scale greenscreen dataset (Green100K) is collected as a training dataset for DiffuMatting. Secondly, a green background control loss is proposed to keep the drawing board as a pure green color to distinguish the foreground and background. To ensure the synthesized object has more edge details, a detailed-enhancement of transition boundary loss is proposed as a guideline to generate objects with more complicated edge structures. Aiming to simultaneously generate the object and its matting annotation, we build a matting head to make a green color removal in the latent space of the VAE decoder. Our DiffuMatting shows several potential applications (e.g., matting-data generator, community-friendly art design and controllable generation). As a matting-data generator, DiffuMatting synthesizes general object and portrait matting sets, effectively reducing the relative MSE error by 15.4% in General Object Matting and 11.4% in Portrait Matting tasks. The dataset is released in our project page at \url{https://diffumatting.github.io}.
comment: This paper was accepted by ECCV 2024, and the project page is accessible at: \url{https://diffumatting.github.io}
♻ ☆ Architectural Foundations for the Large Language Model Infrastructures
The development of a large language model (LLM) infrastructure is a pivotal undertaking in artificial intelligence. This paper explores the intricate landscape of LLM infrastructure, software, and data management. By analyzing these core components, we emphasize the pivotal considerations and safeguards crucial for successful LLM development. This work presents a concise synthesis of the challenges and strategies inherent in constructing a robust and effective LLM infrastructure, offering valuable insights for researchers and practitioners alike.
♻ ☆ Challenges and Responses in the Practice of Large Language Models
This paper carefully summarizes extensive and profound questions from all walks of life, focusing on the current high-profile AI field, covering multiple dimensions such as industry trends, academic research, technological innovation and business applications. This paper meticulously curates questions that are both thought-provoking and practically relevant, providing nuanced and insightful answers to each. To facilitate readers' understanding and reference, this paper specifically classifies and organizes these questions systematically and meticulously from the five core dimensions of computing power infrastructure, software architecture, data resources, application scenarios, and brain science. This work aims to provide readers with a comprehensive, in-depth and cutting-edge AI knowledge framework to help people from all walks of life grasp the pulse of AI development, stimulate innovative thinking, and promote industrial progress.
♻ ☆ One Law, Many Languages: Benchmarking Multilingual Legal Reasoning for Judicial Support
Recent strides in Large Language Models (LLMs) have saturated many Natural Language Processing (NLP) benchmarks, emphasizing the need for more challenging ones to properly assess LLM capabilities. However, domain-specific and multilingual benchmarks are rare because they require in-depth expertise to develop. Still, most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. In this work, we introduce a novel NLP benchmark for the legal domain that challenges LLMs in five key dimensions: processing \emph{long documents} (up to 50K tokens), using \emph{domain-specific knowledge} (embodied in legal texts), \emph{multilingual} understanding (covering five languages), \emph{multitasking} (comprising legal document-to-document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks) and \emph{reasoning} (comprising especially Court View Generation, but also the Text Classification tasks). Our benchmark contains diverse datasets from the Swiss legal system, allowing for a comprehensive study of the underlying non-English, inherently multilingual legal system. Despite the large size of our datasets (some with hundreds of thousands of examples), existing publicly available multilingual models struggle with most tasks, even after extensive in-domain pre-training and fine-tuning. We publish all resources (benchmark suite, pre-trained models, code) under permissive open CC BY-SA licenses.
♻ ☆ Freehand Sketch Generation from Mechanical Components ACM MM
Drawing freehand sketches of mechanical components on multimedia devices for AI-based engineering modeling has become a new trend. However, its development is being impeded because existing works cannot produce suitable sketches for data-driven research. These works either generate sketches lacking a freehand style or utilize generative models not originally designed for this task resulting in poor effectiveness. To address this issue, we design a two-stage generative framework mimicking the human sketching behavior pattern, called MSFormer, which is the first time to produce humanoid freehand sketches tailored for mechanical components. The first stage employs Open CASCADE technology to obtain multi-view contour sketches from mechanical components, filtering perturbing signals for the ensuing generation process. Meanwhile, we design a view selector to simulate viewpoint selection tasks during human sketching for picking out information-rich sketches. The second stage translates contour sketches into freehand sketches by a transformer-based generator. To retain essential modeling features as much as possible and rationalize stroke distribution, we introduce a novel edge-constraint stroke initialization. Furthermore, we utilize a CLIP vision encoder and a new loss function incorporating the Hausdorff distance to enhance the generalizability and robustness of the model. Extensive experiments demonstrate that our approach achieves state-of-the-art performance for generating freehand sketches in the mechanical domain. Project page: https://mcfreeskegen.github.io .
comment: Published at ACM Multimedia (ACM MM) 2024
♻ ☆ Universal Time-Series Representation Learning: A Survey
Time-series data exists in every corner of real-world systems and services, ranging from satellites in the sky to wearable devices on human bodies. Learning representations by extracting and inferring valuable information from these time series is crucial for understanding the complex dynamics of particular phenomena and enabling informed decisions. With the learned representations, we can perform numerous downstream analyses more effectively. Among several approaches, deep learning has demonstrated remarkable performance in extracting hidden patterns and features from time-series data without manual feature engineering. This survey first presents a novel taxonomy based on three fundamental elements in designing state-of-the-art universal representation learning methods for time series. According to the proposed taxonomy, we comprehensively review existing studies and discuss their intuitions and insights into how these methods enhance the quality of learned representations. Finally, as a guideline for future studies, we summarize commonly used experimental setups and datasets and discuss several promising research directions. An up-to-date corresponding resource is available at https://github.com/itouchz/awesome-deep-time-series-representations.
comment: 43 pages, 7 figures, reference updates
♻ ☆ ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention for their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear scalability and fast processing of long sequences. We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning while also trying various visual encoders and Mamba-2 model variants. Our extensive experiments in various multimodal benchmark tests demonstrate the competitive performance of ML-Mamba and highlight the potential of state space models in multimodal tasks. The experimental results show that: (1) we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning. We propose a novel multimodal connector called the Mamba-2 Scan Connector (MSC), which enhances representational capabilities. (2) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling while faster inference speed; (3) Compared to multimodal models utilizing Mamba-1, the Mamba-2-based ML-Mamba exhibits superior inference performance and effectiveness.
♻ ☆ LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning IROS 2024
Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation. These domain-specific and labor-intensive modules are limited in addressing emerging tasks in real-world settings. Here, we present LLM^3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface. Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning. Crucially, LLM^3 incorporates motion planning feedback through prompting, allowing the LLM to iteratively refine its proposals by reasoning about motion failure. Consequently, LLM^3 interfaces between task planning and motion planning, alleviating the intricate design process of handling domain-specific messages between them. Through a series of simulations in a box-packing domain, we quantitatively demonstrate the effectiveness of LLM^3 in solving TAMP problems and the efficiency in selecting action parameters. Ablation studies underscore the significant contribution of motion failure reasoning to the success of LLM^3. Furthermore, we conduct qualitative experiments on a physical manipulator, demonstrating the practical applicability of our approach in real-world settings.
comment: IROS 2024. Codes available: https://github.com/AssassinWS/LLM-TAMP
♻ ☆ Logical Distillation of Graph Neural Networks KR 2024
We present a logic based interpretable model for learning on graphs and an algorithm to distill this model from a Graph Neural Network (GNN). Recent results have shown connections between the expressivity of GNNs and the two-variable fragment of first-order logic with counting quantifiers (C2). We introduce a decision-tree based model which leverages an extension of C2 to distill interpretable logical classifiers from GNNs. We test our approach on multiple GNN architectures. The distilled models are interpretable, succinct, and attain similar accuracy to the underlying GNN. Furthermore, when the ground truth is expressible in C2, our approach outperforms the GNN.
comment: To Appear in the Proceedings of KR 2024
♻ ☆ Training With "Paraphrasing the Original Text" Improves Long-Context Performance
As Large Language Models (LLMs) continue to evolve, more are being designed to handle long-context inputs. Despite this advancement, most of them still face challenges in accurately handling long-context tasks, often showing the "lost in the middle" issue. We identify that insufficient retrieval capability is one of the important reasons for this issue. To tackle this challenge, we propose a novel approach to design training data for long-context tasks, aiming at augmenting LLMs' proficiency in extracting key information from long context. Specially, we incorporate an additional part named "paraphrasing the original text" when constructing the answer of training samples and then fine-tuning the model. Experimenting on LongBench and NaturalQuestions Multi-document-QA dataset with models of Llama and Qwen series, our method achieves an improvement of up to 8.48% and 4.48% in average scores, respectively, showing effectiveness in improving the model' s performance on long-context tasks. The model and training data have been made available on HuggingFace(https://huggingface.co/yuyijiong/Qwen-14b-chat-yarn-32k).
♻ ☆ Federated Learning for Collaborative Inference Systems: The Case of Early Exit Networks
As Internet of Things (IoT) technology advances, end devices like sensors and smartphones are progressively equipped with AI models tailored to their local memory and computational constraints. Local inference reduces communication costs and latency; however, these smaller models typically underperform compared to more sophisticated models deployed on edge servers or in the cloud. Cooperative Inference Systems (CISs) address this performance trade-off by enabling smaller devices to offload part of their inference tasks to more capable devices. These systems often deploy hierarchical models that share numerous parameters, exemplified by Deep Neural Networks (DNNs) that utilize strategies like early exits or ordered dropout. In such instances, Federated Learning (FL) may be employed to jointly train the models within a CIS. Yet, traditional training methods have overlooked the operational dynamics of CISs during inference, particularly the potential high heterogeneity in serving rates across clients. To address this gap, we propose a novel FL approach designed explicitly for use in CISs that accounts for these variations in serving rates. Our framework not only offers rigorous theoretical guarantees, but also surpasses state-of-the-art (SOTA) training algorithms for CISs, especially in scenarios where inference request rates or data availability are uneven among clients.
♻ ☆ A Human Word Association based model for topic detection in social networks
With the widespread use of social networks, detecting the topics discussed on these platforms has become a significant challenge. Current approaches primarily rely on frequent pattern mining or semantic relations, often neglecting the structure of the language. Language structural methods aim to discover the relationships between words and how humans understand them. Therefore, this paper introduces a topic detection framework for social networks based on the concept of imitating the mental ability of word association. This framework employs the Human Word Association method and includes a specially designed extraction algorithm. The performance of this method is evaluated using the FA-CUP dataset, a benchmark in the field of topic detection. The results indicate that the proposed method significantly improves topic detection compared to other methods, as evidenced by Topic-recall and the keyword F1 measure. Additionally, to assess the applicability and generalizability of the proposed method, a dataset of Telegram posts in the Persian language is used. The results demonstrate that this method outperforms other topic detection methods.
comment: This is a preprint of an article published in "Annals of Data Science". The final authenticated version is available online at: https://link.springer.com/article/10.1007/s40745-024-00561-0
♻ ☆ PrivCirNet: Efficient Private Inference via Block Circulant Transformation
Homomorphic encryption (HE)-based deep neural network (DNN) inference protects data and model privacy but suffers from significant computation overhead. We observe transforming the DNN weights into circulant matrices converts general matrix-vector multiplications into HE-friendly 1-dimensional convolutions, drastically reducing the HE computation cost. Hence, in this paper, we propose \method, a protocol/network co-optimization framework based on block circulant transformation. At the protocol level, PrivCirNet customizes the HE encoding algorithm that is fully compatible with the block circulant transformation and reduces the computation latency in proportion to the block size. At the network level, we propose a latency-aware formulation to search for the layer-wise block size assignment based on second-order information. PrivCirNet also leverages layer fusion to further reduce the inference cost. We compare PrivCirNet with the state-of-the-art HE-based framework Bolt (IEEE S\&P 2024) and the HE-friendly pruning method SpENCNN (ICML 2023). For ResNet-18 and Vision Transformer (ViT) on Tiny ImageNet, PrivCirNet reduces latency by $5.0\times$ and $1.3\times$ with iso-accuracy over Bolt, respectively, and improves accuracy by $4.1\%$ and $12\%$ over SpENCNN, respectively. For MobileNetV2 on ImageNet, PrivCirNet achieves $1.7\times$ lower latency and $4.2\%$ better accuracy over Bolt and SpENCNN, respectively. Our code and checkpoints are available on Git Hub.
♻ ☆ Leveraging Large Language Models for Enhanced Process Model Comprehension
In Business Process Management (BPM), effectively comprehending process models is crucial yet poses significant challenges, particularly as organizations scale and processes become more complex. This paper introduces a novel framework utilizing the advanced capabilities of Large Language Models (LLMs) to enhance the interpretability of complex process models. We present different methods for abstracting business process models into a format accessible to LLMs, and we implement advanced prompting strategies specifically designed to optimize LLM performance within our framework. Additionally, we present a tool, AIPA, that implements our proposed framework and allows for conversational process querying. We evaluate our framework and tool by i) an automatic evaluation comparing different LLMs, model abstractions, and prompting strategies and ii) a user study designed to assess AIPA's effectiveness comprehensively. Results demonstrate our framework's ability to improve the accessibility and interpretability of process models, pioneering new pathways for integrating AI technologies into the BPM field.
♻ ☆ Learning Partially Aligned Item Representation for Cross-Domain Sequential Recommendation
Cross-domain sequential recommendation (CDSR) aims to uncover and transfer users' sequential preferences across multiple recommendation domains. While significant endeavors have been made, they primarily concentrated on developing advanced transfer modules and aligning user representations using self-supervised learning techniques. However, the problem of aligning item representations has received limited attention, and misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment. To this end, we propose a model-agnostic framework called \textbf{C}ross-domain item representation \textbf{A}lignment for \textbf{C}ross-\textbf{D}omain \textbf{S}equential \textbf{R}ecommendation (\textbf{CA-CDSR}), which achieves sequence-aware generation and adaptively partial alignment for item representations. Specifically, we first develop a sequence-aware feature augmentation strategy, which captures both collaborative and sequential item correlations, thus facilitating holistic item representation generation. Next, we conduct an empirical study to investigate the partial representation alignment problem from a spectrum perspective. It motivates us to devise an adaptive spectrum filter, achieving partial alignment adaptively. Furthermore, the aligned item representations can be fed into different sequential encoders to obtain user representations. The entire framework is optimized in a multi-task learning paradigm with an annealing strategy. Extensive experiments have demonstrated that CA-CDSR can surpass state-of-the-art baselines by a significant margin and can effectively align items in representation spaces to enhance performance.
♻ ☆ PhD: A Prompted Visual Hallucination Evaluation Dataset
Multimodal Large Language Models (MLLMs) hallucinate, resulting in an emerging topic of visual hallucination evaluation (VHE). We introduce in this paper PhD, a large-scale benchmark for VHE. The essence of VHE is to ask an MLLM the right questions concerning a specific image. Depending on what to ask (objects, attributes, sentiment, etc.) and how the questions are asked, we structure PhD along two dimensions, i.e. task and mode. Five visual recognition tasks, ranging from low-level (object / attribute recognition) to middle-level (sentiment / position recognition and counting), are considered. Besides a normal visual QA mode, which we term VHE-base, PhD also asks questions with inaccurate context (VHE-iac) or with incorrect context (VHE-icc), or with AI-generated counter common sense images (VHE-ccs). We construct PhD by a ChatGPT-assisted semi-automated pipeline, encompassing four pivotal modules: task-specific hallucinatory element (hitem) selection, hitem-embedded question generation, inaccurate / incorrect context generation, and CCS image generation. With over 102k VQA triplets in total, PhD reveals considerable variability in MLLMs' performance across various modes, offering valuable insights into the nature of hallucination issues. As such, PhD stands as a potent tool not only for VHE but may also play a significant role in the refinement of MLLMs.
♻ ☆ Towards End-to-End GPS Localization with Neural Pseudorange Correction
The pseudorange error is one of the root causes of localization inaccuracy in GPS. Previous data-driven methods regress and eliminate pseudorange errors using handcrafted intermediate labels. Unlike them, we propose an end-to-end GPS localization framework, E2E-PrNet, to train a neural network for pseudorange correction (PrNet) directly using the final task loss calculated with the ground truth of GPS receiver states. The gradients of the loss with respect to learnable parameters are backpropagated through a Differentiable Nonlinear Least Squares (DNLS) optimizer to PrNet. The feasibility of fusing the data-driven neural network and the model-based DNLS module is verified with GPS data collected by Android phones, showing that E2E-PrNet outperforms the baseline weighted least squares method and the state-of-the-art end-to-end data-driven approach. Finally, we discuss the explainability of E2E-PrNet.
♻ ☆ Selective Prompt Anchoring for Code Generation
Recent advances in large language models (LLMs) such as Copilot and ChatGPT have transformed software development by automating coding tasks. Despite these advancements, challenges remain in reducing error rates and fully meeting user expectations. Our empirical study reveals LLMs tend to dilute their self-attention on the initial prompt as more code tokens are generated. We hypothesize this self-attention dilution issue is one of the root causes of inaccuracies in LLM-generated code. To mitigate this issue, we propose Selective Prompt Anchoring (SPA). SPA amplifies the influence of the selected parts in the initial prompt, which we refer to as ``anchored text'', during code generation. Specifically, SPA calculates the logit distribution difference with and without the anchored text. We prove this difference approximates the anchored text's contextual contribution to the output logits. SPA creates an augmented logit distribution by linearly combining the original logit distribution and the logit difference. We evaluate SPA with five LLMs on four benchmarks. Our results demonstrate that using SPA can consistently improve Pass@1 rates by up to 9.7% in all settings. Notably, with selective text anchoring, a small version of DeepSeek-Coder (6.7B) can achieve better performance than an original much larger version (33B). Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
♻ ☆ Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning
Textual graphs are ubiquitous in real-world applications, featuring rich text information with complex relationships, which enables advanced research across various fields. Textual graph representation learning aims to generate low-dimensional feature embeddings from textual graphs that can improve the performance of downstream tasks. A high-quality feature embedding should effectively capture both the structural and the textual information in a textual graph. However, most textual graph dataset benchmarks rely on word2vec techniques to generate feature embeddings, which inherently limits their capabilities. Recent works on textual graph representation learning can be categorized into two folds: supervised and unsupervised methods. Supervised methods finetune a language model on labeled nodes, which have limited capabilities when labeled data is scarce. Unsupervised methods, on the other hand, extract feature embeddings by developing complex training pipelines. To address these limitations, we propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE). We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction. Additionally, we add an auxiliary loss term to make the feature embeddings aware of the local graph structure. Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks. We evaluate our method on two core graph representation learning downstream tasks: node classification and link prediction. Comprehensive experiments demonstrate that our approach substantially enhances the performance of diverse graph neural networks (GNNs) across multiple textual graph datasets.
♻ ☆ Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration ICLR 2024
Large Language Models (LLMs) are evolving at an unprecedented pace and have exhibited considerable capability in the realm of natural language processing (NLP) with world knowledge. Benefiting from ultra-large-scale training corpora, a single LLM can manage typical NLP tasks competently. However, its performance in executing reasoning tasks is still confined by the limitations of its internal representations. To push this boundary further, we introduce Corex in this paper, a suite of novel general-purpose strategies that transform LLMs into autonomous agents pioneering multi-model collaborations for complex task-solving. Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes, which collectively work towards enhancing the factuality, faithfulness, and reliability of the reasoning process. These paradigms foster task-agnostic approaches that enable LLMs to ''think outside the box,'' thereby overcoming hallucinations and providing better solutions. Through extensive experiments across four different types of reasoning tasks, we demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods. Further results and in-depth analysis demonstrate the cost-effectiveness of our method, facilitating collaboration among different LLMs and promoting annotation efficiency.
comment: COLM 2024 / ICLR 2024 Workshop on LLM Agents
♻ ☆ AdapTable: Test-Time Adaptation for Tabular Data via Shift-Aware Uncertainty Calibrator and Label Distribution Handler AAAI 2025
In real-world applications, tabular data often suffer from distribution shifts due to their widespread and abundant nature, leading to erroneous predictions of pre-trained machine learning models. However, addressing such distribution shifts in the tabular domain has been relatively underexplored due to unique challenges such as varying attributes and dataset sizes, as well as the limited representation learning capabilities of deep learning models for tabular data. Particularly, with the recent promising paradigm of test-time adaptation (TTA), where we adapt the off-the-shelf model to the unlabeled target domain during the inference phase without accessing the source domain, we observe that directly adopting commonly used TTA methods from other domains often leads to model collapse. We systematically explore challenges in tabular data test-time adaptation, including skewed entropy, complex latent space decision boundaries, confidence calibration issues with both overconfident and under-confident, and model bias towards source label distributions along with class imbalances. Based on these insights, we introduce AdapTable, a novel tabular test-time adaptation method that directly modifies output probabilities by estimating target label distributions and adjusting initial probabilities based on calibrated uncertainty. Extensive experiments on both natural distribution shifts and synthetic corruptions demonstrate the adaptation efficacy of the proposed method.
comment: Under Review at AAAI 2025
♻ ☆ Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis
Adversarial attacks are a potential threat to machine learning models by causing incorrect predictions through imperceptible perturbations to the input data. While these attacks have been extensively studied in unstructured data like images, applying them to tabular data, poses new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ from the image data. To account for this distinction, it is necessary to establish tailored imperceptibility criteria specific to tabular data. However, there is currently a lack of standardised metrics for assessing the imperceptibility of adversarial attacks on tabular data. To address this gap, we propose a set of key properties and corresponding metrics designed to comprehensively characterise imperceptible adversarial attacks on tabular data. These are: proximity to the original input, sparsity of altered features, deviation from the original data distribution, sensitivity in perturbing features with narrow distribution, immutability of certain features that should remain unchanged, feasibility of specific feature values that should not go beyond valid practical ranges, and feature interdependencies capturing complex relationships between data attributes. We evaluate the imperceptibility of five adversarial attacks, including both bounded attacks and unbounded attacks, on tabular data using the proposed imperceptibility metrics. The results reveal a trade-off between the imperceptibility and effectiveness of these attacks. The study also identifies limitations in current attack algorithms, offering insights that can guide future research in the area. The findings gained from this empirical analysis provide valuable direction for enhancing the design of adversarial attack algorithms, thereby advancing adversarial machine learning on tabular data.
comment: 33 pages
♻ ☆ Medical MLLM is Vulnerable: Cross-Modality Jailbreak and Mismatched Attacks on Medical Multimodal Large Language Models
Security concerns related to Large Language Models (LLMs) have been extensively explored, yet the safety implications for Multimodal Large Language Models (MLLMs), particularly in medical contexts (MedMLLMs), remain insufficiently studied. This paper delves into the underexplored security vulnerabilities of MedMLLMs, especially when deployed in clinical environments where the accuracy and relevance of question-and-answer interactions are critically tested against complex medical challenges. By combining existing clinical medical data with atypical natural phenomena, we define the mismatched malicious attack (2M-attack) and introduce its optimized version, known as the optimized mismatched malicious attack (O2M-attack or 2M-optimization). Using the voluminous 3MAD dataset that we construct, which covers a wide range of medical image modalities and harmful medical scenarios, we conduct a comprehensive analysis and propose the MCM optimization method, which significantly enhances the attack success rate on MedMLLMs. Evaluations with this dataset and attack methods, including white-box attacks on LLaVA-Med and transfer attacks (black-box) on four other SOTA models, indicate that even MedMLLMs designed with enhanced security features remain vulnerable to security breaches. Our work underscores the urgent need for a concerted effort to implement robust security measures and enhance the safety and efficacy of open-source MedMLLMs, particularly given the potential severity of jailbreak attacks and other malicious or clinically significant exploits in medical settings. Our code is available at https://github.com/dirtycomputer/O2M_attack.
♻ ☆ Predicting the Next Action by Modeling the Abstract Goal ICPR
The problem of anticipating human actions is an inherently uncertain one. However, we can reduce this uncertainty if we have a sense of the goal that the actor is trying to achieve. Here, we present an action anticipation model that leverages goal information for the purpose of reducing the uncertainty in future predictions. Since we do not possess goal information or the observed actions during inference, we resort to visual representation to encapsulate information about both actions and goals. Through this, we derive a novel concept called abstract goal which is conditioned on observed sequences of visual features for action anticipation. We design the abstract goal as a distribution whose parameters are estimated using a variational recurrent network. We sample multiple candidates for the next action and introduce a goal consistency measure to determine the best candidate that follows from the abstract goal. Our method obtains impressive results on the very challenging Epic-Kitchens55 (EK55), EK100, and EGTEA Gaze+ datasets. We obtain absolute improvements of +13.69, +11.24, and +5.19 for Top-1 verb, Top-1 noun, and Top-1 action anticipation accuracy respectively over prior state-of-the-art methods for seen kitchens (S1) of EK55. Similarly, we also obtain significant improvements in the unseen kitchens (S2) set for Top-1 verb (+10.75), noun (+5.84) and action (+2.87) anticipation. Similar trend is observed for EGTEA Gaze+ dataset, where absolute improvement of +9.9, +13.1 and +6.8 is obtained for noun, verb, and action anticipation. It is through the submission of this paper that our method is currently the new state-of-the-art for action anticipation in EK55 and EGTEA Gaze+ https://competitions.codalab.org/competitions/20071#results Code available at https://github.com/debadityaroy/Abstract_Goal
comment: Accepted at the 27th International Conference on Pattern Recognition (ICPR)
♻ ☆ Understanding is Compression
Modern data compression methods are slowly reaching their limits after 80 years of research, millions of papers, and wide range of applications. Yet, the extravagant 6G communication speed requirement raises a major open question for revolutionary new ideas of data compression. We have previously shown all understanding or learning are compression, under reasonable assumptions. Large language models (LLMs) understand data better than ever before. Can they help us to compress data? The LLMs may be seen to approximate the uncomputable Solomonoff induction. Therefore, under this new uncomputable paradigm, we present LMCompress. LMCompress shatters all previous lossless compression algorithms, doubling the lossless compression ratios of JPEG-XL for images, FLAC for audios, and H.264 for videos, and quadrupling the compression ratio of bz2 for texts. The better a large model understands the data, the better LMCompress compresses.
♻ ☆ OV-DQUO: Open-Vocabulary DETR with Denoising Text Query Training and Open-World Unknown Objects Supervision
Open-vocabulary detection aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on base category data tend to assign higher confidence to trained categories and confuse novel categories with the background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method. This method enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy. It synthesizes foreground and background query-box pairs from open-world unknown objects to train the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at \url{https://github.com/xiaomoguhz/OV-DQUO}
♻ ☆ Addressing a fundamental limitation in deep vision models: lack of spatial attention
The primary aim of this manuscript is to underscore a significant limitation in current deep learning models, particularly vision models. Unlike human vision, which efficiently selects only the essential visual areas for further processing, leading to high speed and low energy consumption, deep vision models process the entire image. In this work, we examine this issue from a broader perspective and propose a solution that could pave the way for the next generation of more efficient vision models. Basically, convolution and pooling operations are selectively applied to altered regions, with a change map sent to subsequent layers. This map indicates which computations need to be repeated. The code is available at https://github.com/aliborji/spatial_attention.
♻ ☆ TabSketchFM: Sketch-based Tabular Representation Learning for Data Discovery over Data Lakes
Enterprises have a growing need to identify relevant tables in data lakes; e.g. tables that are unionable, joinable, or subsets of each other. Tabular neural models can be helpful for such data discovery tasks. In this paper, we present TabSketchFM, a neural tabular model for data discovery over data lakes. First, we propose novel pre-training: a sketch-based approach to enhance the effectiveness of data discovery in neural tabular models. Second, we finetune the pretrained model for identifying unionable, joinable, and subset table pairs and show significant improvement over previous tabular neural models. Third, we present a detailed ablation study to highlight which sketches are crucial for which tasks. Fourth, we use these finetuned models to perform table search; i.e., given a query table, find other tables in a corpus that are unionable, joinable, or that are subsets of the query. Our results demonstrate significant improvements in F1 scores for search compared to state-of-the-art techniques. Finally, we show significant transfer across datasets and tasks establishing that our model can generalize across different tasks and over different data lakes.
♻ ☆ Articulatory Encodec: Coding Speech through Vocal Tract Kinematics
Vocal tract articulation is a natural, grounded control space of speech production. The spatiotemporal coordination of articulators combined with the vocal source shapes intelligible speech sounds to enable effective spoken communication. Based on this physiological grounding of speech, we propose a new framework of neural encoding-decoding of speech -- Articulatory Encodec. Articulatory Encodec comprises an articulatory analysis model that infers articulatory features from speech audio, and an articulatory synthesis model that synthesizes speech audio from articulatory features. The articulatory features are kinematic traces of vocal tract articulators and source features, which are intuitively interpretable and controllable, being the actual physical interface of speech production. An additional speaker identity encoder is jointly trained with the articulatory synthesizer to inform the voice texture of individual speakers. By training on large-scale speech data, we achieve a fully intelligible, high-quality articulatory synthesizer that generalizes to unseen speakers. Furthermore, the speaker embedding is effectively disentangled from articulations, which enables accent-perserving zero-shot voice conversion. To the best of our knowledge, this is the first demonstration of universal, high-performance articulatory inference and synthesis, suggesting the proposed framework as a powerful coding system of speech.
♻ ☆ UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models CIKM 2024
Multimodal Entity Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to the referent entities in a multimodal knowledge base, such as Wikipedia. Existing methods focus heavily on using complex mechanisms and extensive model tuning methods to model the multimodal interaction on specific datasets. However, these methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale. Moreover, these methods can not solve the issues like textual ambiguity, redundancy, and noisy images, which severely degrade their performance. Fortunately, the advent of Large Language Models (LLMs) with robust capabilities in text understanding and reasoning, particularly Multimodal Large Language Models (MLLMs) that can process multimodal inputs, provides new insights into addressing this challenge. However, how to design a universally applicable LLMs-based MEL approach remains a pressing challenge. To this end, we propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using LLMs. In this framework, we employ LLMs to augment the representation of mentions and entities individually by integrating textual and visual information and refining textual information. Subsequently, we employ the embedding-based method for retrieving and re-ranking candidate entities. Then, with only ~0.26% of the model parameters fine-tuned, LLMs can make the final selection from the candidate entities. Extensive experiments on three public benchmark datasets demonstrate that our solution achieves state-of-the-art performance, and ablation studies verify the effectiveness of all modules. Our code is available at https://github.com/Javkonline/UniMEL.
comment: CIKM 2024. The first two authors contributed equally to this work
♻ ☆ Semantic Skill Grounding for Embodied Instruction-Following in Cross-Domain Environments ACL-2024
In embodied instruction-following (EIF), the integration of pretrained language models (LMs) as task planners emerges as a significant branch, where tasks are planned at the skill level by prompting LMs with pretrained skills and user instructions. However, grounding these pretrained skills in different domains remains challenging due to their intricate entanglement with the domain-specific knowledge. To address this challenge, we present a semantic skill grounding (SemGro) framework that leverages the hierarchical nature of semantic skills. SemGro recognizes the broad spectrum of these skills, ranging from short-horizon low-semantic skills that are universally applicable across domains to long-horizon rich-semantic skills that are highly specialized and tailored for particular domains. The framework employs an iterative skill decomposition approach, starting from the higher levels of semantic skill hierarchy and then moving downwards, so as to ground each planned skill to an executable level within the target domain. To do so, we use the reasoning capabilities of LMs for composing and decomposing semantic skills, as well as their multi-modal extension for assessing the skill feasibility in the target domain. Our experiments in the VirtualHome benchmark show the efficacy of SemGro in 300 cross-domain EIF scenarios.
comment: Findings of ACL-2024 Camera Ready Version
♻ ☆ Empowering LLMs with Pseudo-Untrimmed Videos for Audio-Visual Temporal Understanding
Large language models (LLMs) have demonstrated remarkable capabilities in natural language and multimodal domains. By fine-tuning multimodal LLMs with temporal annotations from well-annotated datasets, e.g., dense video captioning datasets, their temporal understanding capacity in video-language tasks can be obtained. However, there is a notable lack of untrimmed audio-visual video datasets with precise temporal annotations for events. This deficiency hinders LLMs from learning the alignment between time, audio-visual events, and text tokens, thus impairing their ability to temporally localize audio-visual events in videos. To address this gap, we introduce PU-VALOR, a comprehensive audio-visual dataset comprising over 114,000 pseudo-untrimmed videos with detailed temporal annotations. PU-VALOR is derived from the large-scale but coarse-annotated audio-visual dataset VALOR, through a subtle method involving event-based video clustering, random temporal scaling, and permutation. By fine-tuning a multimodal LLM on PU-VALOR, we developed AVicuna, a model capable of aligning audio-visual events with temporal intervals and corresponding text tokens. AVicuna excels in temporal localization and time-aware dialogue capabilities. Our experiments demonstrate that AVicuna effectively handles temporal understanding in audio-visual videos and achieves state-of-the-art performance on open-ended video QA, audio-visual QA, and audio-visual event dense localization tasks.
♻ ☆ Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement
The increasing demand for personalized interactions with large language models (LLMs) calls for methodologies capable of accurately and efficiently identifying user opinions and preferences. Retrieval augmentation emerges as an effective strategy, as it can accommodate a vast number of users without the costs from fine-tuning. Existing research, however, has largely focused on enhancing the retrieval stage and devoted limited exploration toward optimizing the representation of the database, a crucial aspect for tasks such as personalization. In this work, we examine the problem from a novel angle, focusing on how data can be better represented for more data-efficient retrieval in the context of LLM customization. To tackle this challenge, we introduce Persona-DB, a simple yet effective framework consisting of a hierarchical construction process to improve generalization across task contexts and collaborative refinement to effectively bridge knowledge gaps among users. In the evaluation of response prediction, Persona-DB demonstrates superior context efficiency in maintaining accuracy with a significantly reduced retrieval size, a critical advantage in scenarios with extensive histories or limited context windows. Our experiments also indicate a marked improvement of over 10% under cold-start scenarios, when users have extremely sparse data. Furthermore, our analysis reveals the increasing importance of collaborative knowledge as the retrieval capacity expands.
♻ ☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
♻ ☆ Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
♻ ☆ A Study of Backdoors in Instruction Fine-tuned Language Models
Backdoor data poisoning, inserted within instruction examples used to fine-tune a foundation Large Language Model (LLM) for downstream tasks (\textit{e.g.,} sentiment prediction), is a serious security concern due to the evasive nature of such attacks. The poisoning is usually in the form of a (seemingly innocuous) trigger word or phrase inserted into a very small fraction of the fine-tuning samples from a target class. Such backdoor attacks can: alter response sentiment, violate censorship, over-refuse (invoke censorship for legitimate queries), inject false content, or trigger nonsense responses (hallucinations). In this work we investigate the efficacy of instruction fine-tuning backdoor attacks as attack "hyperparameters" are varied under a variety of scenarios, considering: the trigger location in the poisoned examples; robustness to change in the trigger location, partial triggers, and synonym substitutions at test time; attack transfer from one (fine-tuning) domain to a related test domain; and clean-label vs. dirty-label poisoning. Based on our observations, we propose and evaluate two defenses against these attacks: i) a \textit{during-fine-tuning defense} based on word-frequency counts that assumes the (possibly poisoned) fine-tuning dataset is available and identifies the backdoor trigger tokens; and ii) a \textit{post-fine-tuning defense} based on downstream clean fine-tuning of the backdoored LLM with a small defense dataset. Finally, we provide a brief survey of related work on backdoor attacks and defenses.
comment: Under review
♻ ☆ Larimar: Large Language Models with Episodic Memory Control ICML 2024
Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar's memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed - yielding speed-ups of 8-10x depending on the base LLM - as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting, information leakage prevention, and input context length generalization with Larimar and show their effectiveness. Our code is available at https://github.com/IBM/larimar
comment: ICML 2024
♻ ☆ LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 4 popular LLMs ranging from 1.3B to 8B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data (as of May 24, 2024). Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.
comment: Accepted to COLM 2024
♻ ☆ ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report]
We propose ProtoArgNet, a novel interpretable deep neural architecture for image classification in the spirit of prototypical-part-learning as found, e.g., in ProtoPNet. While earlier approaches associate every class with multiple prototypical-parts, ProtoArgNet uses super-prototypes that combine prototypical-parts into a unified class representation. This is done by combining local activations of prototypes in an MLP-like manner, enabling the localization of prototypes and learning (non-linear) spatial relationships among them. By leveraging a form of argumentation, ProtoArgNet is capable of providing both supporting (i.e. `this looks like that') and attacking (i.e. `this differs from that') explanations. We demonstrate on several datasets that ProtoArgNet outperforms state-of-the-art prototypical-part-learning approaches. Moreover, the argumentation component in ProtoArgNet is customisable to the user's cognitive requirements by a process of sparsification, which leads to more compact explanations compared to state-of-the-art approaches.
♻ ☆ SymbolicAI: A framework for logic-based approaches combining generative models and solvers
We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for multi-modal data that connects multi-step generative processes and aligns their outputs with user objectives in complex workflows. As a result, we can transition between the capabilities of various foundation models with in-context learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. Through these operations based on in-context learning our framework enables the creation and evaluation of explainable computational graphs. Finally, we introduce a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.
comment: 46 pages, 13 figures, external resources: framework is available at https://github.com/ExtensityAI/symbolicai and benchmark at https://github.com/ExtensityAI/benchmark
♻ ☆ Slot State Space Models
Recent State Space Models (SSMs) such as S4, S5, and Mamba have shown remarkable computational benefits in long-range temporal dependency modeling. However, in many sequence modeling problems, the underlying process is inherently modular and it is of interest to have inductive biases that mimic this modular structure. In this paper, we introduce SlotSSMs, a novel framework for incorporating independent mechanisms into SSMs to preserve or encourage separation of information. Unlike conventional SSMs that maintain a monolithic state vector, SlotSSMs maintains the state as a collection of multiple vectors called slots. Crucially, the state transitions are performed independently per slot with sparse interactions across slots implemented via the bottleneck of self-attention. In experiments, we evaluate our model in object-centric video understanding, 3D visual reasoning, and video prediction tasks, which involve modeling multiple objects and their long-range temporal dependencies. We find that our proposed design offers substantial performance gains over existing sequence modeling methods. Project page is available at https://slotssms.github.io/
♻ ☆ An agent design with goal reaching guarantees for enhancement of learning
Reinforcement learning is commonly concerned with problems of maximizing accumulated rewards in Markov decision processes. Oftentimes, a certain goal state or a subset of the state space attain maximal reward. In such a case, the environment may be considered solved when the goal is reached. Whereas numerous techniques, learning or non-learning based, exist for solving environments, doing so optimally is the biggest challenge. Say, one may choose a reward rate which penalizes the action effort. Reinforcement learning is currently among the most actively developed frameworks for solving environments optimally by virtue of maximizing accumulated reward, in other words, returns. Yet, tuning agents is a notoriously hard task as reported in a series of works. Our aim here is to help the agent learn a near-optimal policy efficiently while ensuring a goal reaching property of some basis policy that merely solves the environment. We suggest an algorithm, which is fairly flexible, and can be used to augment practically any agent as long as it comprises of a critic. A formal proof of a goal reaching property is provided. Comparative experiments on several problems under popular baseline agents provided an empirical evidence that the learning can indeed be boosted while ensuring goal reaching property.
♻ ☆ TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators
Compute-in-memory (CIM) accelerators using non-volatile memory (NVM) devices offer promising solutions for energy-efficient and low-latency Deep Neural Network (DNN) inference execution. However, practical deployment is often hindered by the challenge of dealing with the massive amount of model weight parameters impacted by the inherent device variations within non-volatile computing-in-memory (NVCIM) accelerators. This issue significantly offsets their advantages by increasing training overhead, the time and energy needed for mapping weights to device states, and diminishing inference accuracy. To mitigate these challenges, we propose the "Tiny Shared Block (TSB)" method, which integrates a small shared 1x1 convolution block into the DNN architecture. This block is designed to stabilize feature processing across the network, effectively reducing the impact of device variation. Extensive experimental results show that TSB achieves over 20x inference accuracy gap improvement, over 5x training speedup, and weights-to-device mapping cost reduction while requiring less than 0.4% of the original weights to be write-verified during programming, when compared with state-of-the-art baseline solutions. Our approach provides a practical and efficient solution for deploying robust DNN models on NVCIM accelerators, making it a valuable contribution to the field of energy-efficient AI hardware.
comment: 9 pages, accepted to IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2024)
♻ ☆ Fight Back Against Jailbreaking via Prompt Adversarial Tuning
While Large Language Models (LLMs) have achieved tremendous success in various applications, they are also susceptible to jailbreak attacks. Several primary defense strategies have been proposed to protect LLMs from producing harmful information, mostly with a particular focus on harmful content filtering or heuristical defensive prompt designs. However, how to achieve intrinsic robustness through the prompts remains an open problem. In this paper, motivated by adversarial training paradigms for achieving reliable robustness, we propose an approach named Prompt Adversarial Tuning (PAT) that trains a prompt control attached to the user prompt as a guard prefix. To achieve our defense goal whilst maintaining natural performance, we optimize the control prompt with both adversarial and benign prompts. Comprehensive experiments show that our method is effective against both grey-box and black-box attacks, reducing the success rate of advanced attacks to nearly 0 while maintaining the model's utility on the benign task. The proposed defense strategy incurs only negligible computational overhead, charting a new perspective for future explorations in LLM security. Our code is available at https://github.com/rain152/PAT.
Graphics 6
☆ Iterative Object Count Optimization for Text-to-image Diffusion Models
We address a persistent challenge in text-to-image models: accurately generating a specified number of objects. Current models, which learn from image-text pairs, inherently struggle with counting, as training data cannot depict every possible number of objects for any given object. To solve this, we propose optimizing the generated image based on a counting loss derived from a counting model that aggregates an object\'s potential. Employing an out-of-the-box counting model is challenging for two reasons: first, the model requires a scaling hyperparameter for the potential aggregation that varies depending on the viewpoint of the objects, and second, classifier guidance techniques require modified models that operate on noisy intermediate diffusion steps. To address these challenges, we propose an iterated online training mode that improves the accuracy of inferred images while altering the text conditioning embedding and dynamically adjusting hyperparameters. Our method offers three key advantages: (i) it can consider non-derivable counting techniques based on detection models, (ii) it is a zero-shot plug-and-play solution facilitating rapid changes to the counting techniques and image generation methods, and (iii) the optimized counting token can be reused to generate accurate images without additional optimization. We evaluate the generation of various objects and show significant improvements in accuracy. The project page is available at https://ozzafar.github.io/count_token.
comment: Pre-print
☆ Pano2Room: Novel View Synthesis from a Single Indoor Panorama SIGGRAPH
Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
comment: SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers '24), December 3--6, 2024, Tokyo, Japan
☆ Bimodal Visualization of Industrial X-Ray and Neutron Computed Tomography Data
Advanced manufacturing creates increasingly complex objects with material compositions that are often difficult to characterize by a single modality. Our collaborating domain scientists are going beyond traditional methods by employing both X-ray and neutron computed tomography to obtain complementary representations expected to better resolve material boundaries. However, the use of two modalities creates its own challenges for visualization, requiring either complex adjustments of bimodal transfer functions or the need for multiple views. Together with experts in nondestructive evaluation, we designed a novel interactive bimodal visualization approach to create a combined view of the co-registered X-ray and neutron acquisitions of industrial objects. Using an automatic topological segmentation of the bivariate histogram of X-ray and neutron values as a starting point, the system provides a simple yet effective interface to easily create, explore, and adjust a bimodal visualization. We propose a widget with simple brushing interactions that enables the user to quickly correct the segmented histogram results. Our semiautomated system enables domain experts to intuitively explore large bimodal datasets without the need for either advanced segmentation algorithms or knowledge of visualization techniques. We demonstrate our approach using synthetic examp
☆ Identifying Locally Turbulent Vortices within Instabilities
This work presents an approach for the automatic detection of locally turbulent vortices within turbulent 2D flows such as instabilites. First, given a time step of the flow, methods from Topological Data Analysis (TDA) are leveraged to extract the geometry of the vortices. Specifically, the enstrophy of the flow is simplified by topological persistence, and the vortices are extracted by collecting the basins of the simplified enstrophy's Morse complex. Next, the local kinetic energy power spectrum is computed for each vortex. We introduce a set of indicators based on the kinetic energy power spectrum to estimate the correlation between the vortex's behavior and that of an idealized turbulent vortex. Our preliminary experiments show the relevance of these indicators for distinguishing vortices which are turbulent from those which have not yet reached a turbulent state and thus known as laminar.
comment: IEEE LDAV 2024 poster
♻ ☆ Freehand Sketch Generation from Mechanical Components ACM MM
Drawing freehand sketches of mechanical components on multimedia devices for AI-based engineering modeling has become a new trend. However, its development is being impeded because existing works cannot produce suitable sketches for data-driven research. These works either generate sketches lacking a freehand style or utilize generative models not originally designed for this task resulting in poor effectiveness. To address this issue, we design a two-stage generative framework mimicking the human sketching behavior pattern, called MSFormer, which is the first time to produce humanoid freehand sketches tailored for mechanical components. The first stage employs Open CASCADE technology to obtain multi-view contour sketches from mechanical components, filtering perturbing signals for the ensuing generation process. Meanwhile, we design a view selector to simulate viewpoint selection tasks during human sketching for picking out information-rich sketches. The second stage translates contour sketches into freehand sketches by a transformer-based generator. To retain essential modeling features as much as possible and rationalize stroke distribution, we introduce a novel edge-constraint stroke initialization. Furthermore, we utilize a CLIP vision encoder and a new loss function incorporating the Hausdorff distance to enhance the generalizability and robustness of the model. Extensive experiments demonstrate that our approach achieves state-of-the-art performance for generating freehand sketches in the mechanical domain. Project page: https://mcfreeskegen.github.io .
comment: Published at ACM Multimedia (ACM MM) 2024
♻ ☆ HYVE: Hybrid Vertex Encoder for Neural Distance Fields
Neural shape representation generally refers to representing 3D geometry using neural networks, e.g., computing a signed distance or occupancy value at a specific spatial position. In this paper we present a neural-network architecture suitable for accurate encoding of 3D shapes in a single forward pass. Our architecture is based on a multi-scale hybrid system incorporating graph-based and voxel-based components, as well as a continuously differentiable decoder. The hybrid system includes a novel way of voxelizing point-based features in neural networks, which we show can be used in combination with oriented point-clouds to obtain smoother and more detailed reconstructions. Furthermore, our network is trained to solve the eikonal equation and only requires knowledge of the zero-level set for training and inference. This means that in contrast to most previous shape encoder architectures, our network is able to output valid signed distance fields without explicit prior knowledge of non-zero distance values or shape occupancy. It also requires only a single forward-pass, instead of the latent-code optimization used in auto-decoder methods. We further propose a modification to the loss function in case that surface normals are not well defined, e.g., in the context of non-watertight surfaces and non-manifold geometry, resulting in an unsigned distance field. Overall, our system can help to reduce the computational overhead of training and evaluating neural distance fields, as well as enabling the application to difficult geometry.
Robotics 38
FLAME: Learning to Navigate with Multimodal LLM in Urban Environments
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for trajectory summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion rate on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards practical applications of MLLMs in embodied AI. Project page: https://flame-sjtu.github.io
comment: 10 pages, 5 figures
☆ RP1M: A Large-Scale Motion Dataset for Piano Playing with Bi-Manual Dexterous Robot Hands
It has been a long-standing research goal to endow robot hands with human-level dexterity. Bi-manual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bi-manual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs. Benchmarking existing imitation learning approaches shows that such approaches reach state-of-the-art robot piano playing performance by leveraging RP1M.
comment: Project Website: https://rp1m.github.io/
☆ Evaluating Assistive Technologies on a Trade Fair: Methodological Overview and Lessons Learned
User-centered evaluations are a core requirement in the development of new user related technologies. However, it is often difficult to recruit sufficient participants, especially if the target population is small, particularly busy, or in some way restricted in their mobility. We bypassed these problems by conducting studies on trade fairs that were specifically designed for our target population (potentially care-receiving individuals in wheelchairs) and therefore provided our users with external incentive to attend our study. This paper presents our gathered experiences, including methodological specifications and lessons learned, and is aimed to guide other researchers with conducting similar studies. In addition, we also discuss chances generated by this unconventional study environment as well as its limitations.
☆ Enhancing End-to-End Autonomous Driving Systems Through Synchronized Human Behavior Data
This paper presents a pioneering exploration into the integration of fine-grained human supervision within the autonomous driving domain to enhance system performance. The current advances in End-to-End autonomous driving normally are data-driven and rely on given expert trials. However, this reliance limits the systems' generalizability and their ability to earn human trust. Addressing this gap, our research introduces a novel approach by synchronously collecting data from human and machine drivers under identical driving scenarios, focusing on eye-tracking and brainwave data to guide machine perception and decision-making processes. This paper utilizes the Carla simulation to evaluate the impact brought by human behavior guidance. Experimental results show that using human attention to guide machine attention could bring a significant improvement in driving performance. However, guidance by human intention still remains a challenge. This paper pioneers a promising direction and potential for utilizing human behavior guidance to enhance autonomous systems.
☆ All Robots in One: A New Standard and Unified Dataset for Versatile, General-Purpose Embodied Agents
Embodied AI is transforming how AI systems interact with the physical world, yet existing datasets are inadequate for developing versatile, general-purpose agents. These limitations include a lack of standardized formats, insufficient data diversity, and inadequate data volume. To address these issues, we introduce ARIO (All Robots In One), a new data standard that enhances existing datasets by offering a unified data format, comprehensive sensory modalities, and a combination of real-world and simulated data. ARIO aims to improve the training of embodied AI agents, increasing their robustness and adaptability across various tasks and environments. Building upon the proposed new standard, we present a large-scale unified ARIO dataset, comprising approximately 3 million episodes collected from 258 series and 321,064 tasks. The ARIO standard and dataset represent a significant step towards bridging the gaps of existing data resources. By providing a cohesive framework for data collection and representation, ARIO paves the way for the development of more powerful and versatile embodied AI agents, capable of navigating and interacting with the physical world in increasingly complex and diverse ways. The project is available on https://imaei.github.io/project_pages/ario/
comment: Project website: https://imaei.github.io/project_pages/ario/
☆ A Mini-Review on Mobile Manipulators with Variable Autonomy
This paper presents a mini-review of the current state of research in mobile manipulators with variable levels of autonomy, emphasizing their associated challenges and application environments. The need for mobile manipulators in different environments is evident due to the unique challenges and risks each presents. Many systems deployed in these environments are not fully autonomous, requiring human-robot teaming to ensure safe and reliable operations under uncertainties. Through this analysis, we identify gaps and challenges in the literature on Variable Autonomy, including cognitive workload and communication delays, and propose future directions, including whole-body Variable Autonomy for mobile manipulators, virtual reality frameworks, and large language models to reduce operators' complexity and cognitive load in some challenging and uncertain scenarios.
comment: Presented at Variable Autonomy for Human-Robot Teaming (VAT) at IEEE RO-MAN 2024 Workshop
☆ DVRP-MHSI: Dynamic Visualization Research Platform for Multimodal Human-Swarm Interaction
In recent years, there has been a significant amount of research on algorithms and control methods for distributed collaborative robots. However, the emergence of collective behavior in a swarm is still difficult to predict and control. Nevertheless, human interaction with the swarm helps render the swarm more predictable and controllable, as human operators can utilize intuition or knowledge that is not always available to the swarm. Therefore, this paper designs the Dynamic Visualization Research Platform for Multimodal Human-Swarm Interaction (DVRP-MHSI), which is an innovative open system that can perform real-time dynamic visualization and is specifically designed to accommodate a multitude of interaction modalities (such as brain-computer, eye-tracking, electromyographic, and touch-based interfaces), thereby expediting progress in human-swarm interaction research. Specifically, the platform consists of custom-made low-cost omnidirectional wheeled mobile robots, multitouch screens and two workstations. In particular, the mutitouch screens can recognize human gestures and the shapes of objects placed on them, and they can also dynamically render diverse scenes. One of the workstations processes communication information within robots and the other one implements human-robot interaction methods. The development of DVRP-MHSI frees researchers from hardware or software details and allows them to focus on versatile swarm algorithms and human-swarm interaction methods without being limited to fixed scenarios, tasks, and interfaces. The effectiveness and potential of the platform for human-swarm interaction studies are validated by several demonstrative experiments.
☆ ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data
Synthetic data is increasingly being used to address the lack of labeled images in uncommon domains for deep learning tasks. A prominent example is 2D pose estimation of animals, particularly wild species like zebras, for which collecting real-world data is complex and impractical. However, many approaches still require real images, consistency and style constraints, sophisticated animal models, and/or powerful pre-trained networks to bridge the syn-to-real gap. Moreover, they often assume that the animal can be reliably detected in images or videos, a hypothesis that often does not hold, e.g. in wildlife scenarios or aerial images. To solve this, we use synthetic data generated with a 3D photorealistic simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras without applying any of the aforementioned bridging strategies. Unlike previous works, we extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets using both pre-trained and non-pre-trained backbones. These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras in both tasks. Moreover, we show it is possible to easily generalize those same models to 2D pose estimation of horses with a minimal amount of real-world images to account for the domain transfer. Code, results, trained models; and the synthetic, training, and validation data, including 104K manually labeled frames, are provided as open-source at https://zebrapose.is.tue.mpg.de/
comment: 8 pages, 5 tables, 7 figures
☆ Towards reliable real-time trajectory optimization
Motion planning is a key aspect of robotics. A common approach to address motion planning problems is trajectory optimization. Trajectory optimization can represent the high-level behaviors of robots through mathematical formulations. However, current trajectory optimization approaches have two main challenges. Firstly, their solution heavily depends on the initial guess, and they are prone to get stuck in local minima. Secondly, they face scalability limitations by increasing the number of constraints. This thesis endeavors to tackle these challenges by introducing four innovative trajectory optimization algorithms to improve reliability, scalability, and computational efficiency. There are two novel aspects of the proposed algorithms. The first key innovation is remodeling the kinematic constraints and collision avoidance constraints. Another key innovation lies in the design of algorithms that effectively utilize parallel computation on GPU accelerators. By using reformulated constraints and leveraging the computational power of GPUs, the proposed algorithms of this thesis demonstrate significant improvements in efficiency and scalability compared to the existing methods. Parallelization enables faster computation times, allowing for real-time decision-making in dynamic environments. Moreover, the algorithms are designed to adapt to changes in the environment, ensuring robust performance. Extensive benchmarking for each proposed optimizer validates their efficacy. Overall, this thesis makes a significant contribution to the field of trajectory optimization algorithms. It introduces innovative solutions that specifically address the challenges faced by existing methods. The proposed algorithms pave the way for more efficient and robust motion planning solutions in robotics by leveraging parallel computation and specific mathematical structures.
comment: PhD Thesis, University of Tartu, 2024. The thesis was defended on 21st of June. https://dspace.ut.ee/items/a65d36c9-afe7-44ab-b544-20236177ed79
☆ Learning Instruction-Guided Manipulation Affordance via Large Models for Embodied Robotic Tasks
We study the task of language instruction-guided robotic manipulation, in which an embodied robot is supposed to manipulate the target objects based on the language instructions. In previous studies, the predicted manipulation regions of the target object typically do not change with specification from the language instructions, which means that the language perception and manipulation prediction are separate. However, in human behavioral patterns, the manipulation regions of the same object will change for different language instructions. In this paper, we propose Instruction-Guided Affordance Net (IGANet) for predicting affordance maps of instruction-guided robotic manipulation tasks by utilizing powerful priors from vision and language encoders pre-trained on large-scale datasets. We develop a Vison-Language-Models(VLMs)-based data augmentation pipeline, which can generate a large amount of data automatically for model training. Besides, with the help of Large-Language-Models(LLMs), actions can be effectively executed to finish the tasks defined by instructions. A series of real-world experiments revealed that our method can achieve better performance with generated data. Moreover, our model can generalize better to scenarios with unseen objects and language instructions.
comment: Accepted to ICARM 2024
☆ Safety Metric Aware Trajectory Repairing for Automated Driving
Recent analyses highlight challenges in autonomous vehicle technologies, particularly failures in decision-making under dynamic or emergency conditions. Traditional automated driving systems recalculate the entire trajectory in a changing environment. Instead, a novel approach retains valid trajectory segments, minimizing the need for complete replanning and reducing changes to the original plan. This work introduces a trajectory repairing framework that calculates a feasible evasive trajectory while computing the Feasible Time-to-React (F-TTR), balancing the maintenance of the original plan with safety assurance. The framework employs a binary search algorithm to iteratively create repaired trajectories, guaranteeing both the safety and feasibility of the trajectory repairing result. In contrast to earlier approaches that separated the calculation of safety metrics from trajectory repairing, which resulted in unsuccessful plans for evasive maneuvers, our work has the anytime capability to provide both a Feasible Time-to-React and an evasive trajectory for further execution.
OMEGA: Efficient Occlusion-Aware Navigation for Air-Ground Robot in Dynamic Environments via State Space Model
Air-ground robots (AGRs) are widely used in surveillance and disaster response due to their exceptional mobility and versatility (i.e., flying and driving). Current AGR navigation systems perform well in static occlusion-prone environments (e.g., indoors) by using 3D semantic occupancy networks to predict occlusions for complete local mapping and then computing Euclidean Signed Distance Field (ESDF) for path planning. However, these systems face challenges in dynamic, severe occlusion scenes (e.g., crowds) due to limitations in perception networks' low prediction accuracy and path planners' high computation overhead. In this paper, we propose OMEGA, which contains OccMamba with an Efficient AGR-Planner to address the above-mentioned problems. OccMamba adopts a novel architecture that separates semantic and occupancy prediction into independent branches, incorporating two mamba blocks within these branches. These blocks efficiently extract semantic and geometric features in 3D environments with linear complexity, ensuring that the network can learn long-distance dependencies to improve prediction accuracy. Semantic and geometric features are combined within the Bird's Eye View (BEV) space to minimise computational overhead during feature fusion. The resulting semantic occupancy map is then seamlessly integrated into the local map, providing occlusion awareness of the dynamic environment. Our AGR-Planner utilizes this local map and employs kinodynamic A* search and gradient-based trajectory optimization to guarantee planning is ESDF-free and energy-efficient. Extensive experiments demonstrate that OccMamba outperforms the state-of-the-art 3D semantic occupancy network with 25.0% mIoU. End-to-end navigation experiments in dynamic scenes verify OMEGA's efficiency, achieving a 96% average planning success rate. Code and video are available at https://jmwang0117.github.io/OMEGA/.
comment: OccMamba is Coming!
☆ Fast Collective Evasion in Self-Localized Swarms of Unmanned Aerial Vehicles
A novel approach for achieving fast evasion in self-localized swarms of Unmanned Aerial Vehicles (UAVs) threatened by an intruding moving object is presented in this paper. Motivated by natural self-organizing systems, the presented approach of fast and collective evasion enables the UAV swarm to avoid dynamic objects (interferers) that are actively approaching the group. The main objective of the proposed technique is the fast and safe escape of the swarm from an interferer ~discovered in proximity. This method is inspired by the collective behavior of groups of certain animals, such as schools of fish or flocks of birds. These animals use the limited information of their sensing organs and decentralized control to achieve reliable and effective group motion. The system presented in this paper is intended to execute the safe coordination of UAV swarms with a large number of agents. Similar to natural swarms, this system propagates a fast shock of information about detected interferers throughout the group to achieve dynamic and collective evasion. The proposed system is fully decentralized using only onboard sensors to mutually localize swarm agents and interferers, similar to how animals accomplish this behavior. As a result, the communication structure between swarm agents is not overwhelmed by information about the state (position and velocity) of each individual and it is reliable to communication dropouts. The proposed system and theory were numerically evaluated and verified in real-world experiments.
☆ Bidirectional Intent Communication: A Role for Large Foundation Models
Integrating multimodal foundation models has significantly enhanced autonomous agents' language comprehension, perception, and planning capabilities. However, while existing works adopt a \emph{task-centric} approach with minimal human interaction, applying these models to developing assistive \emph{user-centric} robots that can interact and cooperate with humans remains underexplored. This paper introduces ``Bident'', a framework designed to integrate robots seamlessly into shared spaces with humans. Bident enhances the interactive experience by incorporating multimodal inputs like speech and user gaze dynamics. Furthermore, Bident supports verbal utterances and physical actions like gestures, making it versatile for bidirectional human-robot interactions. Potential applications include personalized education, where robots can adapt to individual learning styles and paces, and healthcare, where robots can offer personalized support, companionship, and everyday assistance in the home and workplace environments.
comment: 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Workshop: Large Language Models in the RoMan Age
☆ A Passivity-Based Variable Impedance Controller for Incremental Learning of Periodic Interactive Tasks
In intelligent manufacturing, robots are asked to dynamically adapt their behaviours without reducing productivity. Human teaching, where an operator physically interacts with the robot to demonstrate a new task, is a promising strategy to quickly and intuitively reconfigure the production line. However, physical guidance during task execution poses challenges in terms of both operator safety and system usability. In this paper, we solve this issue by designing a variable impedance control strategy that regulates the interaction with the environment and the physical demonstrations, explicitly preventing at the same time passivity violations. We derive constraints to limit not only the exchanged energy with the environment but also the exchanged power, resulting in smoother interactions. By monitoring the energy flow between the robot and the environment, we are able to distinguish between disturbances (to be rejected) and physical guidance (to be accomplished), enabling smooth and controlled transitions from teaching to execution and vice versa. The effectiveness of the proposed approach is validated in wiping tasks with a real robotic manipulator.
comment: Accepted at the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)
☆ Where to Fetch: Extracting Visual Scene Representation from Large Pre-Trained Models for Robotic Goal Navigation
To complete a complex task where a robot navigates to a goal object and fetches it, the robot needs to have a good understanding of the instructions and the surrounding environment. Large pre-trained models have shown capabilities to interpret tasks defined via language descriptions. However, previous methods attempting to integrate large pre-trained models with daily tasks are not competent in many robotic goal navigation tasks due to poor understanding of the environment. In this work, we present a visual scene representation built with large-scale visual language models to form a feature representation of the environment capable of handling natural language queries. Combined with large language models, this method can parse language instructions into action sequences for a robot to follow, and accomplish goal navigation with querying the scene representation. Experiments demonstrate that our method enables the robot to follow a wide range of instructions and complete complex goal navigation tasks.
☆ Navigating Dimensionality through State Machines in Automotive System Validation
The increasing automation of vehicles is resulting in the integration of more extensive in-vehicle sensor systems, electronic control units, and software. Additionally, vehicle-to-everything communication is seen as an opportunity to extend automated driving capabilities through information from a source outside the ego vehicle. However, the validation and verification of automated driving functions already pose a challenge due to the number of possible scenarios that can occur for a driving function, which makes it difficult to achieve comprehensive test coverage. Currently, the establishment of Safety Of The Intended Functionality ( SOTIF ) mandates the implementation of scenario-based testing. The introduction of additional external systems through vehicle-to-everything further complicates the problem and increases the scenario space. In this paper, a methodology based on state charts is proposed for modeling the interaction with external systems, which may remain as black boxes. This approach leverages the testability and coverage analysis inherent in state charts by combining them with scenario-based testing. The overall objective is to reduce the space of scenarios necessary for testing a networked driving function and to streamline validation and verification. The utilization of this approach is demonstrated using a simulated signalized intersection with a roadside unit that detects vulnerable road users.
comment: 10 pages, 5 figures, 2 figures in Appendix
☆ Constrained Behavior Cloning for Robotic Learning
Behavior cloning (BC) is a popular supervised imitation learning method in the societies of robotics, autonomous driving, etc., wherein complex skills can be learned by direct imitation from expert demonstrations. Despite its rapid development, it is still affected by limited field of view where accumulation of sensors and joint noise bring compounding errors. In this paper, we introduced geometrically and historically constrained behavior cloning (GHCBC) to dominantly consider high-level state information inspired by neuroscientists, wherein the geometrically constrained behavior cloning were used to geometrically constrain predicting poses, and the historically constrained behavior cloning were utilized to temporally constrain action sequences. The synergy between these two types of constrains enhanced the BC performance in terms of robustness and stability. Comprehensive experimental results showed that success rates were improved by 29.73% in simulation and 39.4% in real robot experiments in average, respectively, compared to state-of-the-art BC method, especially in long-term operational scenes, indicating great potential of using the GHCBC for robotic learning.
☆ Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking
Hand-eye calibration involves estimating the transformation between the camera and the robot. Traditional methods rely on fiducial markers, involving much manual labor and careful setup. Recent advancements in deep learning offer markerless techniques, but they present challenges, including the need for retraining networks for each robot, the requirement of accurate mesh models for data generation, and the need to address the sim-to-real gap. In this letter, we propose Kalib, an automatic and universal markerless hand-eye calibration pipeline that leverages the generalizability of visual foundation models to eliminate these barriers. In each calibration process, Kalib uses keypoint tracking and proprioceptive sensors to estimate the transformation between a robot's coordinate space and its corresponding points in camera space. Our method does not require training new networks or access to mesh models. Through evaluations in simulation environments and the real-world dataset DROID, Kalib demonstrates superior accuracy compared to recent baseline methods. This approach provides an effective and flexible calibration process for various robot systems by simplifying setup and removing dependency on precise physical markers.
comment: The code and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
☆ Leveraging Temporal Contexts to Enhance Vehicle-Infrastructure Cooperative Perception SC 2024
Infrastructure sensors installed at elevated positions offer a broader perception range and encounter fewer occlusions. Integrating both infrastructure and ego-vehicle data through V2X communication, known as vehicle-infrastructure cooperation, has shown considerable advantages in enhancing perception capabilities and addressing corner cases encountered in single-vehicle autonomous driving. However, cooperative perception still faces numerous challenges, including limited communication bandwidth and practical communication interruptions. In this paper, we propose CTCE, a novel framework for cooperative 3D object detection. This framework transmits queries with temporal contexts enhancement, effectively balancing transmission efficiency and performance to accommodate real-world communication conditions. Additionally, we propose a temporal-guided fusion module to further improve performance. The roadside temporal enhancement and vehicle-side spatial-temporal fusion together constitute a multi-level temporal contexts integration mechanism, fully leveraging temporal information to enhance performance. Furthermore, a motion-aware reconstruction module is introduced to recover lost roadside queries due to communication interruptions. Experimental results on V2X-Seq and V2X-Sim datasets demonstrate that CTCE outperforms the baseline QUEST, achieving improvements of 3.8% and 1.3% in mAP, respectively. Experiments under communication interruption conditions validate CTCE's robustness to communication interruptions.
comment: Accepted by IEEE ITSC 2024
☆ MPGNet: Learning Move-Push-Grasping Synergy for Target-Oriented Grasping in Occluded Scenes IROS 2024
This paper focuses on target-oriented grasping in occluded scenes, where the target object is specified by a binary mask and the goal is to grasp the target object with as few robotic manipulations as possible. Most existing methods rely on a push-grasping synergy to complete this task. To deliver a more powerful target-oriented grasping pipeline, we present MPGNet, a three-branch network for learning a synergy between moving, pushing, and grasping actions. We also propose a multi-stage training strategy to train the MPGNet which contains three policy networks corresponding to the three actions. The effectiveness of our method is demonstrated via both simulated and real-world experiments.
comment: Accepted to IROS 2024
☆ Inverse Design of Snap-Actuated Jumping Robots Powered by Mechanics-Aided Machine Learning
Exploring the design and control strategies of soft robots through simulation is highly attractive due to its cost-effectiveness. Although many existing models (e.g., finite element analysis) are effective for simulating soft robotic dynamics, there remains a need for a general and efficient numerical simulation approach in the soft robotics community. In this paper, we develop a discrete differential geometry-based numerical framework to achieve the model-based inverse design of a novel snap-actuated jumping robot. It is found that the dynamic process of a snapping beam can be either symmetric or asymmetric, such that the trajectory of the jumping robot can be tunable (e.g., horizontal or vertical). By employing this novel mechanism of the bistable beam as the robotic actuator, we next propose a physics-data hybrid inverse design strategy for the snap-jump robot with a broad spectrum of jumping capabilities. We first use the physical engine to study the influences of the robot's design parameters on the jumping capabilities, then generate extensive simulation data to formulate a data-driven inverse design solution. The inverse design solution can rapidly explore the combination of design parameters for achieving a target jump, which provides valuable guidance for the fabrication and control of the jumping robot. The proposed methodology paves the way for exploring the design and control insights of soft robots with the help of simulations.
comment: 8 pages, 6 figures
☆ Newton-Raphson Flow for Aggressive Quadrotor Tracking Control
We apply the Newton-Raphson flow tracking controller to aggressive quadrotor flight and demonstrate that it achieves good tracking performance over a suite of benchmark trajectories, beating the native trajectory tracking controller in the popular PX4 Autopilot. The Newton-Raphson flow tracking controller is a recently proposed integrator-type controller that aims to drive to zero the error between a future predicted system output and the reference trajectory. This controller is computationally lightweight, requiring only an imprecise predictor, and achieves guaranteed asymptotic error bounds under certain conditions. We show that these theoretical advantages are realizable on a quadrotor hardware platform. Our experiments are conducted on a Holybrox x500v2 quadrotor using a Pixhawk 6x flight controller and a Rasbperry Pi 4 companion computer which receives location information from an OptiTrack motion capture system and sends input commands through the ROS2 API for the PX4 software stack.
comment: Expanded version of our submission to the American Control Conference 2024
Optimization of Multi-Agent Flying Sidekick Traveling Salesman Problem over Road Networks
The mixed truck-drone delivery systems have attracted increasing attention for last-mile logistics, but real-world complexities demand a shift from single-agent, fully connected graph models to multi-agent systems operating on actual road networks. We introduce the multi-agent flying sidekick traveling salesman problem (MA-FSTSP) on road networks, extending the single truck-drone model to multiple trucks, each carrying multiple drones while considering full road networks for truck restrictions and flexible drone routes. We propose a mixed-integer linear programming model and an efficient three-phase heuristic algorithm for this NP-hard problem. Our approach decomposes MA-FSTSP into manageable subproblems of one truck with multiple drones. Then, it computes the routes for trucks without drones in subproblems, which are used in the final phase as heuristics to help optimize drone and truck routes simultaneously. Extensive numerical experiments on Manhattan and Boston road networks demonstrate our algorithm's superior effectiveness and efficiency, significantly outperforming both column generation and variable neighborhood search baselines in solution quality and computation time. Notably, our approach scales to more than 300 customers within a 5-minute time limit, showcasing its potential for large-scale, real-world logistics applications.
☆ Range-based Multi-Robot Integrity Monitoring Against Cyberattacks and Faults: An Anchor-Free Approach
Coordination of multi-robot systems (MRSs) relies on efficient sensing and reliable communication among the robots. However, the sensors and communication channels of these robots are often vulnerable to cyberattacks and faults, which can disrupt their individual behavior and the overall objective of the MRS. In this work, we present a multi-robot integrity monitoring framework that utilizes inter-robot range measurements to (i) detect the presence of cyberattacks or faults affecting the MRS, (ii) identify the affected robot(s), and (iii) reconstruct the resulting localization error of these robot(s). The proposed iterative algorithm leverages sequential convex programming and alternating direction of multipliers method to enable real-time and distributed implementation. Our approach is validated using numerical simulations and demonstrated using PX4-SiTL in Gazebo on an MRS, where certain agents deviate from their desired position due to a GNSS spoofing attack. Furthermore, we demonstrate the scalability and interoperability of our algorithm through mixed-reality experiments by forming a heterogeneous MRS comprising real Crazyflie UAVs and virtual PX4-SiTL UAVs working in tandem.
comment: 8 pages, 7 figures
☆ Target-Oriented Object Grasping via Multimodal Human Guidance ECCV 2024
In the context of human-robot interaction and collaboration scenarios, robotic grasping still encounters numerous challenges. Traditional grasp detection methods generally analyze the entire scene to predict grasps, leading to redundancy and inefficiency. In this work, we reconsider 6-DoF grasp detection from a target-referenced perspective and propose a Target-Oriented Grasp Network (TOGNet). TOGNet specifically targets local, object-agnostic region patches to predict grasps more efficiently. It integrates seamlessly with multimodal human guidance, including language instructions, pointing gestures, and interactive clicks. Thus our system comprises two primary functional modules: a guidance module that identifies the target object in 3D space and TOGNet, which detects region-focal 6-DoF grasps around the target, facilitating subsequent motion planning. Through 50 target-grasping simulation experiments in cluttered scenes, our system achieves a success rate improvement of about 13.7%. In real-world experiments, we demonstrate that our method excels in various target-oriented grasping scenarios.
comment: Accepted by ECCV 2024 Workshop on Assistive Computer Vision and Robotics (ACVR 2024)
♻ ☆ LoopSplat: Loop Closure by Registering 3D Gaussian Splats
Simultaneous Localization and Mapping (SLAM) based on 3D Gaussian Splats (3DGS) has recently shown promise towards more accurate, dense 3D scene maps. However, existing 3DGS-based methods fail to address the global consistency of the scene via loop closure and/or global bundle adjustment. To this end, we propose LoopSplat, which takes RGB-D images as input and performs dense mapping with 3DGS submaps and frame-to-model tracking. LoopSplat triggers loop closure online and computes relative loop edge constraints between submaps directly via 3DGS registration, leading to improvements in efficiency and accuracy over traditional global-to-local point cloud registration. It uses a robust pose graph optimization formulation and rigidly aligns the submaps to achieve global consistency. Evaluation on the synthetic Replica and real-world TUM-RGBD, ScanNet, and ScanNet++ datasets demonstrates competitive or superior tracking, mapping, and rendering compared to existing methods for dense RGB-D SLAM. Code is available at loopsplat.github.io.
comment: Project page: https://loopsplat.github.io/
♻ ☆ Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations TRO
Learning from Demonstrations, the field that proposes to learn robot behavior models from data, is gaining popularity with the emergence of deep generative models. Although the problem has been studied for years under names such as Imitation Learning, Behavioral Cloning, or Inverse Reinforcement Learning, classical methods have relied on models that don't capture complex data distributions well or don't scale well to large numbers of demonstrations. In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets. In this survey, we aim to provide a unified and comprehensive review of the last year's progress in the use of deep generative models in robotics. We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks. We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning. One of the most important elements of generative models is the generalization out of distributions. In our survey, we review the different decisions the community has made to improve the generalization of the learned models. Finally, we highlight the research challenges and propose a number of future directions for learning deep generative models in robotics.
comment: 20 pages, 11 figures, submitted to TRO
♻ ☆ Recursive Model-agnostic Inverse Dynamics of Serial Soft-Rigid Robots
Robotics is shifting from rigid, articulated systems to more sophisticated and heterogeneous mechanical structures. Soft robots, for example, have continuously deformable elements capable of large deformations. The flourishing of control techniques developed for this class of systems is fueling the need of efficient procedures for evaluating their inverse dynamics (ID), which is challenging due to the complex and mixed nature of these systems. As of today, no single ID algorithm can describe the behavior of generic (combinations of) models of soft robots. We address this challenge for generic series-like interconnections of possibly soft structures that may require heterogeneous modeling techniques. Our proposed algorithm requires as input a purely geometric description (forward-kinematics-like) of the mapping from configuration space to deformation space. With this information only, the complete equations of motion can be given an exact recursive structure which is essentially independent from (or `agnostic' to) the underlying reduced-order kinematic modeling techniques. We achieve this goal by exploiting Kane's method to manipulate the equations of motion, showing then their recursive structure. The resulting ID algorithms have optimal computational complexity within the proposed setting, i.e., linear in the number of distinct modules. Further, a variation of the algorithm is introduced that can evaluate the generalized mass matrix without increasing computation costs. We showcase the applicability of this method to robot models involving a mixture of rigid and soft elements, described via possibly heterogeneous reduced order models (ROMs), such as Volumetric FEM, Cosserat strain-based, and volume-preserving deformation primitives. None of these systems can be handled using existing ID techniques.
♻ ☆ Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients.
♻ ☆ Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation
LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.
♻ ☆ Enabling the Deployment of Any-Scale Robotic Applications in Microservice Architectures through Automated Containerization ICRA
In an increasingly automated world -- from warehouse robots to self-driving cars -- streamlining the development and deployment process and operations of robotic applications becomes ever more important. Automated DevOps processes and microservice architectures have already proven successful in other domains such as large-scale customer-oriented web services (e.g., Netflix). We recommend to employ similar microservice architectures for the deployment of small- to large-scale robotic applications in order to accelerate development cycles, loosen functional dependence, and improve resiliency and elasticity. In order to facilitate involved DevOps processes, we present and release a tooling suite for automating the development of microservices for robotic applications based on the Robot Operating System (ROS). Our tooling suite covers the automated minimal containerization of ROS applications, a collection of useful machine learning-enabled base container images, as well as a CLI tool for simplified interaction with container images during the development phase. Within the scope of this paper, we embed our tooling suite into the overall context of streamlined robotics deployment and compare it to alternative solutions. We release our tools as open-source software at https://github.com/ika-rwth-aachen/dorotos.
comment: 6 pages; Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ Topology-Guided ORCA: Smooth Multi-Agent Motion Planning in Constrained Environments RSS 2024
We present Topology-Guided ORCA as an alternative simulator to replace ORCA for planning smooth multi-agent motions in environments with static obstacles. Despite the impressive performance in simulating multi-agent crowd motion in free space, ORCA encounters a significant challenge in navigating the agents with the presence of static obstacles. ORCA ignores static obstacles until an agent gets too close to an obstacle, and the agent will get stuck if the obstacle intercepts an agent's path toward the goal. To address this challenge, Topology-Guided ORCA constructs a graph to represent the topology of the traversable region of the environment. We use a path planner to plan a path of waypoints that connects each agent's start and goal positions. The waypoints are used as a sequence of goals to guide ORCA. The experiments of crowd simulation in constrained environments show that our method outperforms ORCA in terms of generating smooth and natural motions of multiple agents in constrained environments, which indicates great potential of Topology-Guided ORCA for serving as an effective simulator for training constrained social navigation policies.
comment: Accepted by Unsolved Problems in Social Robot Navigation workshop in conjunction with RSS 2024
♻ ☆ DynaPix SLAM: A Pixel-Based Dynamic Visual SLAM Approach
Visual Simultaneous Localization and Mapping (V-SLAM) methods achieve remarkable performance in static environments, but face challenges in dynamic scenes where moving objects severely affect their core modules. To avoid this, dynamic V-SLAM approaches often leverage semantic information, geometric constraints, or optical flow. However, these methods are limited by imprecise estimations and their reliance on the accuracy of deep-learning models. Moreover, predefined thresholds for static/dynamic classification, the a-priori selection of dynamic object classes, and the inability to recognize unknown or unexpected moving objects, often degrade their performance. To address these limitations, we introduce DynaPix, a novel semantic-free V-SLAM system based on per-pixel motion probability estimation and an improved pose optimization process. The per-pixel motion probability is estimated using a static background differencing method on image data and optical flows computed on splatted frames. With DynaPix, we fully integrate these probabilities into map point selection and apply them through weighted bundle adjustment within the tracking and optimization modules of ORB-SLAM2. We thoroughly evaluate our method using the GRADE and TUM RGB-D datasets, showing significantly lower trajectory errors and longer tracking times in both static and dynamic sequences. The source code, datasets, and results are available at https://dynapix.is.tue.mpg.de/.
comment: Chenghao Xu and Elia Bonetto contributed equally to this work as first authors. 19 pages, 4 tables, 6 figures. Includes supplementary material
♻ ☆ S3E: A Mulit-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. For access to the dataset and the latest information, please visit our repository at https://pengyu-team.github.io/S3E.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ ATI-CTLO:Adaptive Temporal Interval-based Continuous-Time LiDAR-Only Odometry
The motion distortion in LiDAR scans caused by aggressive robot motion and varying terrain features significantly impacts the positioning and mapping performance of 3D LiDAR odometry. Existing distortion correction solutions often struggle to balance computational complexity and accuracy. In this work, we propose an Adaptive Temporal Interval-based Continuous-Time LiDAR-only Odometry, utilizing straightforward and efficient linear interpolation. Our method flexibly adjusts the temporal intervals between control nodes according to the dynamics of motion and environmental characteristics. This adaptability enhances performance across various motion states and improves robustness in challenging, feature-sparse environments. We validate the effectiveness of our method on multiple datasets across different platforms, achieving accuracy comparable to state-of-the-art LiDAR-only odometry methods. Notably, in scenarios involving aggressive motion and sparse features, our method outperforms existing solutions.
♻ ☆ Multi-Robot Object SLAM Using Distributed Variational Inference
Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks by relying on a common map of the environment. Constructing a map by centralized processing of the robot observations is undesirable because it creates a single point of failure and requires pre-existing infrastructure and significant communication throughput. This paper formulates multi-robot object SLAM as a variational inference problem over a communication graph subject to consensus constraints on the object estimates maintained by different robots. To solve the problem, we develop a distributed mirror descent algorithm with regularization enforcing consensus among the communicating robots. Using Gaussian distributions in the algorithm, we also derive a distributed multi-state constraint Kalman filter (MSCKF) for multi-robot object SLAM. Experiments on real and simulated data show that our method improves the trajectory and object estimates, compared to individual-robot SLAM, while achieving better scaling to large robot teams, compared to centralized multi-robot SLAM.
♻ ☆ ComTraQ-MPC: Meta-Trained DQN-MPC Integration for Trajectory Tracking with Limited Active Localization Updates
Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.
comment: * Equal contribution
Computer Vision 137
☆ Prompt-Guided Image-Adaptive Neural Implicit Lookup Tables for Interpretable Image Enhancement
In this paper, we delve into the concept of interpretable image enhancement, a technique that enhances image quality by adjusting filter parameters with easily understandable names such as "Exposure" and "Contrast". Unlike using predefined image editing filters, our framework utilizes learnable filters that acquire interpretable names through training. Our contribution is two-fold. Firstly, we introduce a novel filter architecture called an image-adaptive neural implicit lookup table, which uses a multilayer perceptron to implicitly define the transformation from input feature space to output color space. By incorporating image-adaptive parameters directly into the input features, we achieve highly expressive filters. Secondly, we introduce a prompt guidance loss to assign interpretable names to each filter. We evaluate visual impressions of enhancement results, such as exposure and contrast, using a vision and language model along with guiding prompts. We define a constraint to ensure that each filter affects only the targeted visual impression without influencing other attributes, which allows us to obtain the desired filter effects. Experimental results show that our method outperforms existing predefined filter-based methods, thanks to the filters optimized to predict target results. Our source code is available at https://github.com/satoshi-kosugi/PG-IA-NILUT.
comment: Accepted to ACM Multimedia 2024
☆ NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency
We propose sorting patch representations across views as a novel self-supervised learning signal to improve pretrained representations. To this end, we introduce NeCo: Patch Neighbor Consistency, a novel training loss that enforces patch-level nearest neighbor consistency across a student and teacher model, relative to reference batches. Our method leverages a differentiable sorting method applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. We demonstrate that this method generates high-quality dense feature encoders and establish several new state-of-the-art results: +5.5% and + 6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, and +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff.
comment: Preprint. The webpage is accessible at: https://vpariza.github.io/NeCo/
FLAME: Learning to Navigate with Multimodal LLM in Urban Environments
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for trajectory summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion rate on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards practical applications of MLLMs in embodied AI. Project page: https://flame-sjtu.github.io
comment: 10 pages, 5 figures
☆ Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model
We introduce Transfusion, a recipe for training a multi-modal model over discrete and continuous data. Transfusion combines the language modeling loss function (next token prediction) with diffusion to train a single transformer over mixed-modality sequences. We pretrain multiple Transfusion models up to 7B parameters from scratch on a mixture of text and image data, establishing scaling laws with respect to a variety of uni- and cross-modal benchmarks. Our experiments show that Transfusion scales significantly better than quantizing images and training a language model over discrete image tokens. By introducing modality-specific encoding and decoding layers, we can further improve the performance of Transfusion models, and even compress each image to just 16 patches. We further demonstrate that scaling our Transfusion recipe to 7B parameters and 2T multi-modal tokens produces a model that can generate images and text on a par with similar scale diffusion models and language models, reaping the benefits of both worlds.
comment: 23 pages
☆ Atmospheric Transport Modeling of CO$_2$ with Neural Networks
Accurately describing the distribution of CO$_2$ in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO$_2$. More specifically, we center CO$_2$ input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day $R^2 > 0.99$), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.
comment: Code: https://github.com/vitusbenson/carbonbench
☆ OpenScan: A Benchmark for Generalized Open-Vocabulary 3D Scene Understanding
Open-vocabulary 3D scene understanding (OV-3D) aims to localize and classify novel objects beyond the closed object classes. However, existing approaches and benchmarks primarily focus on the open vocabulary problem within the context of object classes, which is insufficient to provide a holistic evaluation to what extent a model understands the 3D scene. In this paper, we introduce a more challenging task called Generalized Open-Vocabulary 3D Scene Understanding (GOV-3D) to explore the open vocabulary problem beyond object classes. It encompasses an open and diverse set of generalized knowledge, expressed as linguistic queries of fine-grained and object-specific attributes. To this end, we contribute a new benchmark named OpenScan, which consists of 3D object attributes across eight representative linguistic aspects, including affordance, property, material, and more. We further evaluate state-of-the-art OV-3D methods on our OpenScan benchmark, and discover that these methods struggle to comprehend the abstract vocabularies of the GOV-3D task, a challenge that cannot be addressed by simply scaling up object classes during training. We highlight the limitations of existing methodologies and explore a promising direction to overcome the identified shortcomings. Data and code are available at https://github.com/YoujunZhao/OpenScan
☆ MegaFusion: Extend Diffusion Models towards Higher-resolution Image Generation without Further Tuning
Diffusion models have emerged as frontrunners in text-to-image generation for their impressive capabilities. Nonetheless, their fixed image resolution during training often leads to challenges in high-resolution image generation, such as semantic inaccuracies and object replication. This paper introduces MegaFusion, a novel approach that extends existing diffusion-based text-to-image generation models towards efficient higher-resolution generation without additional fine-tuning or extra adaptation. Specifically, we employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions, allowing for high-resolution image generation in a coarse-to-fine manner. Moreover, by integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution. The versatility and efficacy of MegaFusion make it universally applicable to both latent-space and pixel-space diffusion models, along with other derivative models. Extensive experiments confirm that MegaFusion significantly boosts the capability of existing models to produce images of megapixels and various aspect ratios, while only requiring about 40% of the original computational cost.
comment: Technical Report. Project Page: https://haoningwu3639.github.io/MegaFusion/
☆ SenPa-MAE: Sensor Parameter Aware Masked Autoencoder for Multi-Satellite Self-Supervised Pretraining
This paper introduces SenPa-MAE, a transformer architecture that encodes the sensor parameters of an observed multispectral signal into the image embeddings. SenPa-MAE can be pre-trained on imagery of different satellites with non-matching spectral or geometrical sensor characteristics. To incorporate sensor parameters, we propose a versatile sensor parameter encoding module as well as a data augmentation strategy for the diversification of the pre-training dataset. This enables the model to effectively differentiate between various sensors and gain an understanding of sensor parameters and the correlation to the observed signal. Given the rising number of Earth observation satellite missions and the diversity in their sensor specifications, our approach paves the way towards a sensor-independent Earth observation foundation model. This opens up possibilities such as cross-sensor training and sensor-independent inference.
comment: GCPR 2024
☆ Facial Demorphing via Identity Preserving Image Decomposition
A face morph is created by combining the face images usually pertaining to two distinct identities. The goal is to generate an image that can be matched with two identities thereby undermining the security of a face recognition system. To deal with this problem, several morph attack detection techniques have been developed. But these methods do not extract any information about the underlying bonafides used to create them. Demorphing addresses this limitation. However, current demorphing techniques are mostly reference-based, i.e, they need an image of one of the identities to recover the other. In this work, we treat demorphing as an ill-posed decomposition problem. We propose a novel method that is reference-free and recovers the bonafides with high accuracy. Our method decomposes the morph into several identity-preserving feature components. A merger network then weighs and combines these components to recover the bonafides. Our method is observed to reconstruct high-quality bonafides in terms of definition and fidelity. Experiments on the CASIA-WebFace, SMDD and AMSL datasets demonstrate the effectiveness of our method.
☆ Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models
Ultrasound plane wave imaging is a cutting-edge technique that enables high frame-rate imaging. However, one challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption. Therefore, the development of a denoising method becomes imperative to augment the quality of plane wave images. Drawing inspiration from Denoising Diffusion Probabilistic Models (DDPMs), our proposed solution aims to enhance plane wave image quality. Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise and effectively eliminates it by adapting a DDPM to beamformed radiofrequency (RF) data. The method underwent training using only 400 simulated images. In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes. The proposed method was assessed across simulation, phantom, and in vivo images. The results of the evaluations indicate that our approach not only enhances image quality on simulated data but also demonstrates effectiveness on phantom and in vivo data in terms of image quality. Comparative analysis with other methods underscores the superiority of our proposed method across various evaluation metrics. The source code and trained model will be released along with the dataset at: http://code.sonography.ai
☆ ISLES'24: Improving final infarct prediction in ischemic stroke using multimodal imaging and clinical data
Accurate estimation of core (irreversibly damaged tissue) and penumbra (salvageable tissue) volumes is essential for ischemic stroke treatment decisions. Perfusion CT, the clinical standard, estimates these volumes but is affected by variations in deconvolution algorithms, implementations, and thresholds. Core tissue expands over time, with growth rates influenced by thrombus location, collateral circulation, and inherent patient-specific factors. Understanding this tissue growth is crucial for determining the need to transfer patients to comprehensive stroke centers, predicting the benefits of additional reperfusion attempts during mechanical thrombectomy, and forecasting final clinical outcomes. This work presents the ISLES'24 challenge, which addresses final post-treatment stroke infarct prediction from pre-interventional acute stroke imaging and clinical data. ISLES'24 establishes a unique 360-degree setting where all feasibly accessible clinical data are available for participants, including full CT acute stroke imaging, sub-acute follow-up MRI, and clinical tabular data. The contributions of this work are two-fold: first, we introduce a standardized benchmarking of final stroke infarct segmentation algorithms through the ISLES'24 challenge; second, we provide insights into infarct segmentation using multimodal imaging and clinical data strategies by identifying outperforming methods on a finely curated dataset. The outputs of this challenge are anticipated to enhance clinical decision-making and improve patient outcome predictions. All ISLES'24 materials, including data, performance evaluation scripts, and leading algorithmic strategies, are available to the research community following \url{https://isles-24.grand-challenge.org/}.
☆ Multichannel Attention Networks with Ensembled Transfer Learning to Recognize Bangla Handwritten Charecter
The Bengali language is the 5th most spoken native and 7th most spoken language in the world, and Bengali handwritten character recognition has attracted researchers for decades. However, other languages such as English, Arabic, Turkey, and Chinese character recognition have contributed significantly to developing handwriting recognition systems. Still, little research has been done on Bengali character recognition because of the similarity of the character, curvature and other complexities. However, many researchers have used traditional machine learning and deep learning models to conduct Bengali hand-written recognition. The study employed a convolutional neural network (CNN) with ensemble transfer learning and a multichannel attention network. We generated the feature from the two branches of the CNN, including Inception Net and ResNet and then produced an ensemble feature fusion by concatenating them. After that, we applied the attention module to produce the contextual information from the ensemble features. Finally, we applied a classification module to refine the features and classification. We evaluated the proposed model using the CAMTERdb 3.1.2 data set and achieved 92\% accuracy for the raw dataset and 98.00\% for the preprocessed dataset. We believe that our contribution to the Bengali handwritten character recognition domain will be considered a great development.
☆ HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments
High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.
comment: Preprint
☆ A Closer Look at Data Augmentation Strategies for Finetuning-Based Low/Few-Shot Object Detection
Current methods for low- and few-shot object detection have primarily focused on enhancing model performance for detecting objects. One common approach to achieve this is by combining model finetuning with data augmentation strategies. However, little attention has been given to the energy efficiency of these approaches in data-scarce regimes. This paper seeks to conduct a comprehensive empirical study that examines both model performance and energy efficiency of custom data augmentations and automated data augmentation selection strategies when combined with a lightweight object detector. The methods are evaluated in three different benchmark datasets in terms of their performance and energy consumption, and the Efficiency Factor is employed to gain insights into their effectiveness considering both performance and efficiency. Consequently, it is shown that in many cases, the performance gains of data augmentation strategies are overshadowed by their increased energy usage, necessitating the development of more energy efficient data augmentation strategies to address data scarcity.
☆ Large Point-to-Gaussian Model for Image-to-3D Generation ACM MM 2024
Recently, image-to-3D approaches have significantly advanced the generation quality and speed of 3D assets based on large reconstruction models, particularly 3D Gaussian reconstruction models. Existing large 3D Gaussian models directly map 2D image to 3D Gaussian parameters, while regressing 2D image to 3D Gaussian representations is challenging without 3D priors. In this paper, we propose a large Point-to-Gaussian model, that inputs the initial point cloud produced from large 3D diffusion model conditional on 2D image to generate the Gaussian parameters, for image-to-3D generation. The point cloud provides initial 3D geometry prior for Gaussian generation, thus significantly facilitating image-to-3D Generation. Moreover, we present the \textbf{A}ttention mechanism, \textbf{P}rojection mechanism, and \textbf{P}oint feature extractor, dubbed as \textbf{APP} block, for fusing the image features with point cloud features. The qualitative and quantitative experiments extensively demonstrate the effectiveness of the proposed approach on GSO and Objaverse datasets, and show the proposed method achieves state-of-the-art performance.
comment: 10 pages, 9 figures, ACM MM 2024
☆ SDI-Net: Toward Sufficient Dual-View Interaction for Low-light Stereo Image Enhancement
Currently, most low-light image enhancement methods only consider information from a single view, neglecting the correlation between cross-view information. Therefore, the enhancement results produced by these methods are often unsatisfactory. In this context, there have been efforts to develop methods specifically for low-light stereo image enhancement. These methods take into account the cross-view disparities and enable interaction between the left and right views, leading to improved performance. However, these methods still do not fully exploit the interaction between left and right view information. To address this issue, we propose a model called Toward Sufficient Dual-View Interaction for Low-light Stereo Image Enhancement (SDI-Net). The backbone structure of SDI-Net is two encoder-decoder pairs, which are used to learn the mapping function from low-light images to normal-light images. Among the encoders and the decoders, we design a module named Cross-View Sufficient Interaction Module (CSIM), aiming to fully exploit the correlations between the binocular views via the attention mechanism. The quantitative and visual results on public datasets validate the superiority of our method over other related methods. Ablation studies also demonstrate the effectiveness of the key elements in our model.
☆ ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining
3D Gaussian Splatting (3DGS) has become the de facto method of 3D representation in many vision tasks. This calls for the 3D understanding directly in this representation space. To facilitate the research in this direction, we first build a large-scale dataset of 3DGS using the commonly used ShapeNet and ModelNet datasets. Our dataset ShapeSplat consists of 65K objects from 87 unique categories, whose labels are in accordance with the respective datasets. The creation of this dataset utilized the compute equivalent of 2 GPU years on a TITAN XP GPU. We utilize our dataset for unsupervised pretraining and supervised finetuning for classification and segmentation tasks. To this end, we introduce \textbf{\textit{Gaussian-MAE}}, which highlights the unique benefits of representation learning from Gaussian parameters. Through exhaustive experiments, we provide several valuable insights. In particular, we show that (1) the distribution of the optimized GS centroids significantly differs from the uniformly sampled point cloud (used for initialization) counterpart; (2) this change in distribution results in degradation in classification but improvement in segmentation tasks when using only the centroids; (3) to leverage additional Gaussian parameters, we propose Gaussian feature grouping in a normalized feature space, along with splats pooling layer, offering a tailored solution to effectively group and embed similar Gaussians, which leads to notable improvement in finetuning tasks.
☆ A Grey-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in generative AI, particularly Latent Diffusion Models (LDMs), have revolutionized image synthesis and manipulation. However, these generative techniques raises concerns about data misappropriation and intellectual property infringement. Adversarial attacks on machine learning models have been extensively studied, and a well-established body of research has extended these techniques as a benign metric to prevent the underlying misuse of generative AI. Current approaches to safeguarding images from manipulation by LDMs are limited by their reliance on model-specific knowledge and their inability to significantly degrade semantic quality of generated images. In response to these shortcomings, we propose the Posterior Collapse Attack (PCA) based on the observation that VAEs suffer from posterior collapse during training. Our method minimizes dependence on the white-box information of target models to get rid of the implicit reliance on model-specific knowledge. By accessing merely a small amount of LDM parameters, in specific merely the VAE encoder of LDMs, our method causes a substantial semantic collapse in generation quality, particularly in perceptual consistency, and demonstrates strong transferability across various model architectures. Experimental results show that PCA achieves superior perturbation effects on image generation of LDMs with lower runtime and VRAM. Our method outperforms existing techniques, offering a more robust and generalizable solution that is helpful in alleviating the socio-technical challenges posed by the rapidly evolving landscape of generative AI.
comment: 21 pages, 7 figures, 10 tables
☆ ViLReF: A Chinese Vision-Language Retinal Foundation Model
Subtle semantic differences in retinal image and text data present great challenges for pre-training visual-language models. Moreover, false negative samples, i.e., image-text pairs having the same semantics but incorrectly regarded as negatives, disrupt the visual-language pre-training process and affect the model's learning ability. This work aims to develop a retinal foundation model, called ViLReF, by pre-training on a paired dataset comprising 451,956 retinal images and corresponding diagnostic text reports. In our vision-language pre-training strategy, we leverage expert knowledge to facilitate the extraction of labels and propose a novel constraint, the Weighted Similarity Coupling Loss, to adjust the speed of pushing sample pairs further apart dynamically within the feature space. Furthermore, we employ a batch expansion module with dynamic memory queues, maintained by momentum encoders, to supply extra samples and compensate for the vacancies caused by eliminating false negatives. Extensive experiments are conducted on multiple datasets for downstream classification and segmentation tasks. The experimental results demonstrate the powerful zero-shot and transfer learning capabilities of ViLReF, verifying the effectiveness of our pre-training strategy. Our ViLReF model is available at: https://github.com/T6Yang/ViLReF.
☆ Low-Quality Image Detection by Hierarchical VAE ICCV 2023
To make an employee roster, photo album, or training dataset of generative models, one needs to collect high-quality images while dismissing low-quality ones. This study addresses a new task of unsupervised detection of low-quality images. We propose a method that not only detects low-quality images with various types of degradation but also provides visual clues of them based on an observation that partial reconstruction by hierarchical variational autoencoders fails for low-quality images. The experiments show that our method outperforms several unsupervised out-of-distribution detection methods and also gives visual clues for low-quality images that help humans recognize them even in thumbnail view.
comment: ICCV 2023, Workshop on Uncertainty Estimation for Computer Vision
☆ DAAD: Dynamic Analysis and Adaptive Discriminator for Fake News Detection
In current web environment, fake news spreads rapidly across online social networks, posing serious threats to society. Existing multimodal fake news detection (MFND) methods can be classified into knowledge-based and semantic-based approaches. However, these methods are overly dependent on human expertise and feedback, lacking flexibility. To address this challenge, we propose a Dynamic Analysis and Adaptive Discriminator (DAAD) approach for fake news detection. For knowledge-based methods, we introduce the Monte Carlo Tree Search (MCTS) algorithm to leverage the self-reflective capabilities of large language models (LLMs) for prompt optimization, providing richer, domain-specific details and guidance to the LLMs, while enabling more flexible integration of LLM comment on news content. For semantic-based methods, we define four typical deceit patterns: emotional exaggeration, logical inconsistency, image manipulation, and semantic inconsistency, to reveal the mechanisms behind fake news creation. To detect these patterns, we carefully design four discriminators and expand them in depth and breadth, using the soft-routing mechanism to explore optimal detection models. Experimental results on three real-world datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/SuXinqi/DAAD.
☆ Open 3D World in Autonomous Driving
The capability for open vocabulary perception represents a significant advancement in autonomous driving systems, facilitating the comprehension and interpretation of a wide array of textual inputs in real-time. Despite extensive research in open vocabulary tasks within 2D computer vision, the application of such methodologies to 3D environments, particularly within large-scale outdoor contexts, remains relatively underdeveloped. This paper presents a novel approach that integrates 3D point cloud data, acquired from LIDAR sensors, with textual information. The primary focus is on the utilization of textual data to directly localize and identify objects within the autonomous driving context. We introduce an efficient framework for the fusion of bird's-eye view (BEV) region features with textual features, thereby enabling the system to seamlessly adapt to novel textual inputs and enhancing the robustness of open vocabulary detection tasks. The effectiveness of the proposed methodology is rigorously evaluated through extensive experimentation on the newly introduced NuScenes-T dataset, with additional validation of its zero-shot performance on the Lyft Level 5 dataset. This research makes a substantive contribution to the advancement of autonomous driving technologies by leveraging multimodal data to enhance open vocabulary perception in 3D environments, thereby pushing the boundaries of what is achievable in autonomous navigation and perception.
☆ Radio U-Net: a convolutional neural network to detect diffuse radio sources in galaxy clusters and beyond RAS
The forthcoming generation of radio telescope arrays promises significant advancements in sensitivity and resolution, enabling the identification and characterization of many new faint and diffuse radio sources. Conventional manual cataloging methodologies are anticipated to be insufficient to exploit the capabilities of new radio surveys. Radio interferometric images of diffuse sources present a challenge for image segmentation tasks due to noise, artifacts, and embedded radio sources. In response to these challenges, we introduce Radio U-Net, a fully convolutional neural network based on the U-Net architecture. Radio U-Net is designed to detect faint and extended sources in radio surveys, such as radio halos, relics, and cosmic web filaments. Radio U-Net was trained on synthetic radio observations built upon cosmological simulations and then tested on a sample of galaxy clusters, where the detection of cluster diffuse radio sources relied on customized data reduction and visual inspection of LOFAR Two Metre Sky Survey (LoTSS) data. The 83% of clusters exhibiting diffuse radio emission were accurately identified, and the segmentation successfully recovered the morphology of the sources even in low-quality images. In a test sample comprising 246 galaxy clusters, we achieved a 73% accuracy rate in distinguishing between clusters with and without diffuse radio emission. Our results establish the applicability of Radio U-Net to extensive radio survey datasets, probing its efficiency on cutting-edge high-performance computing systems. This approach represents an advancement in optimizing the exploitation of forthcoming large radio surveys for scientific exploration.
comment: Accepted by MNRAS, 16 pages, 9 figures, 2 tables
☆ MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling
In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CNN and Transformer-based super-resolution models, lacked tailored designs for meteorology and encountered structural limitations. Notably, they failed to efficiently integrate topography, a crucial prior in the downscaling process. In this paper, we address these limitations by pioneering the selective state space model into the meteorological field downscaling and propose a novel model called MambaDS. This model enhances the utilization of multivariable correlations and topography information, unique challenges in the downscaling process while retaining the advantages of Mamba in long-range dependency modeling and linear computational complexity. Through extensive experiments in both China mainland and the continental United States (CONUS), we validated that our proposed MambaDS achieves state-of-the-art results in three different types of meteorological field downscaling settings. We will release the code subsequently.
☆ Perception-guided Jailbreak against Text-to-Image Models
In recent years, Text-to-Image (T2I) models have garnered significant attention due to their remarkable advancements. However, security concerns have emerged due to their potential to generate inappropriate or Not-Safe-For-Work (NSFW) images. In this paper, inspired by the observation that texts with different semantics can lead to similar human perceptions, we propose an LLM-driven perception-guided jailbreak method, termed PGJ. It is a black-box jailbreak method that requires no specific T2I model (model-free) and generates highly natural attack prompts. Specifically, we propose identifying a safe phrase that is similar in human perception yet inconsistent in text semantics with the target unsafe word and using it as a substitution. The experiments conducted on six open-source models and commercial online services with thousands of prompts have verified the effectiveness of PGJ.
comment: 8 pages
☆ Aligning Object Detector Bounding Boxes with Human Preference ECCV 2024
Previous work shows that humans tend to prefer large bounding boxes over small bounding boxes with the same IoU. However, we show here that commonly used object detectors predict large and small boxes equally often. In this work, we investigate how to align automatically detected object boxes with human preference and study whether this improves human quality perception. We evaluate the performance of three commonly used object detectors through a user study (N = 123). We find that humans prefer object detections that are upscaled with factors of 1.5 or 2, even if the corresponding AP is close to 0. Motivated by this result, we propose an asymmetric bounding box regression loss that encourages large over small predicted bounding boxes. Our evaluation study shows that object detectors fine-tuned with the asymmetric loss are better aligned with human preference and are preferred over fixed scaling factors. A qualitative evaluation shows that human preference might be influenced by some object characteristics, like object shape.
comment: Accepted paper at the ECCV 2024 workshop on Assistive Computer Vision and Robotics (ACVR)
☆ ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data
Synthetic data is increasingly being used to address the lack of labeled images in uncommon domains for deep learning tasks. A prominent example is 2D pose estimation of animals, particularly wild species like zebras, for which collecting real-world data is complex and impractical. However, many approaches still require real images, consistency and style constraints, sophisticated animal models, and/or powerful pre-trained networks to bridge the syn-to-real gap. Moreover, they often assume that the animal can be reliably detected in images or videos, a hypothesis that often does not hold, e.g. in wildlife scenarios or aerial images. To solve this, we use synthetic data generated with a 3D photorealistic simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras without applying any of the aforementioned bridging strategies. Unlike previous works, we extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets using both pre-trained and non-pre-trained backbones. These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras in both tasks. Moreover, we show it is possible to easily generalize those same models to 2D pose estimation of horses with a minimal amount of real-world images to account for the domain transfer. Code, results, trained models; and the synthetic, training, and validation data, including 104K manually labeled frames, are provided as open-source at https://zebrapose.is.tue.mpg.de/
comment: 8 pages, 5 tables, 7 figures
☆ CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients ICIP 2024
Chronic wounds pose an ongoing health concern globally, largely due to the prevalence of conditions such as diabetes and leprosy's disease. The standard method of monitoring these wounds involves visual inspection by healthcare professionals, a practice that could present challenges for patients in remote areas with inadequate transportation and healthcare infrastructure. This has led to the development of algorithms designed for the analysis and follow-up of wound images, which perform image-processing tasks such as classification, detection, and segmentation. However, the effectiveness of these algorithms heavily depends on the availability of comprehensive and varied wound image data, which is usually scarce. This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients with their corresponding semantic segmentation annotations, aiming to enhance the development and testing of image-processing algorithms in the medical field.
comment: 2024 IEEE International Conference on Image Processing (ICIP 2024)
☆ Trustworthy Compression? Impact of AI-based Codecs on Biometrics for Law Enforcement
Image-based biometrics can aid law enforcement in various aspects, for example in iris, fingerprint and soft-biometric recognition. A critical precondition for recognition is the availability of sufficient biometric information in images. It is visually apparent that strong JPEG compression removes such details. However, latest AI-based image compression seemingly preserves many image details even for very strong compression factors. Yet, these perceived details are not necessarily grounded in measurements, which raises the question whether these images can still be used for biometric recognition. In this work, we investigate how AI compression impacts iris, fingerprint and soft-biometric (fabrics and tattoo) images. We also investigate the recognition performance for iris and fingerprint images after AI compression. It turns out that iris recognition can be strongly affected, while fingerprint recognition is quite robust. The loss of detail is qualitatively best seen in fabrics and tattoos images. Overall, our results show that AI-compression still permits many biometric tasks, but attention to strong compression factors in sensitive tasks is advisable.
☆ Constructing a High Temporal Resolution Global Lakes Dataset via Swin-Unet with Applications to Area Prediction
Lakes provide a wide range of valuable ecosystem services, such as water supply, biodiversity habitats, and carbon sequestration. However, lakes are increasingly threatened by climate change and human activities. Therefore, continuous global monitoring of lake dynamics is crucial, but remains challenging on a large scale. The recently developed Global Lakes Area Database (GLAKES) has mapped over 3.4 million lakes worldwide, but it only provides data at decadal intervals, which may be insufficient to capture rapid or short-term changes.This paper introduces an expanded lake database, GLAKES-Additional, which offers biennial delineations and area measurements for 152,567 lakes globally from 1990 to 2021. We employed the Swin-Unet model, replacing traditional convolution operations, to effectively address the challenges posed by the receptive field requirements of high spatial resolution satellite imagery. The increased biennial time resolution helps to quantitatively attribute lake area changes to climatic and hydrological drivers, such as precipitation and temperature changes.For predicting lake area changes, we used a Long Short-Term Memory (LSTM) neural network and an extended time series dataset for preliminary modeling. Under climate and land use scenarios, our model achieved an RMSE of 0.317 km^2 in predicting future lake area changes.
☆ MPL: Lifting 3D Human Pose from Multi-view 2D Poses ECCV
Estimating 3D human poses from 2D images is challenging due to occlusions and projective acquisition. Learning-based approaches have been largely studied to address this challenge, both in single and multi-view setups. These solutions however fail to generalize to real-world cases due to the lack of (multi-view) 'in-the-wild' images paired with 3D poses for training. For this reason, we propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network that can be trained from synthetic 2D-3D pose pairs. Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses. The framework's source code is available at https://github.com/aghasemzadeh/OpenMPL .
comment: 14 pages, accepted in ECCV T-CAP 2024, code: https://github.com/aghasemzadeh/OpenMPL
☆ Tapping in a Remote Vehicle's onboard LLM to Complement the Ego Vehicle's Field-of-View
Today's advanced automotive systems are turning into intelligent Cyber-Physical Systems (CPS), bringing computational intelligence to their cyber-physical context. Such systems power advanced driver assistance systems (ADAS) that observe a vehicle's surroundings for their functionality. However, such ADAS have clear limitations in scenarios when the direct line-of-sight to surrounding objects is occluded, like in urban areas. Imagine now automated driving (AD) systems that ideally could benefit from other vehicles' field-of-view in such occluded situations to increase traffic safety if, for example, locations about pedestrians can be shared across vehicles. Current literature suggests vehicle-to-infrastructure (V2I) via roadside units (RSUs) or vehicle-to-vehicle (V2V) communication to address such issues that stream sensor or object data between vehicles. When considering the ongoing revolution in vehicle system architectures towards powerful, centralized processing units with hardware accelerators, foreseeing the onboard presence of large language models (LLMs) to improve the passengers' comfort when using voice assistants becomes a reality. We are suggesting and evaluating a concept to complement the ego vehicle's field-of-view (FOV) with another vehicle's FOV by tapping into their onboard LLM to let the machines have a dialogue about what the other vehicle ``sees''. Our results show that very recent versions of LLMs, such as GPT-4V and GPT-4o, understand a traffic situation to an impressive level of detail, and hence, they can be used even to spot traffic participants. However, better prompts are needed to improve the detection quality and future work is needed towards a standardised message interchange format between vehicles.
comment: 50th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA) 2024 - WiP
☆ Learning Part-aware 3D Representations by Fusing 2D Gaussians and Superquadrics
Low-level 3D representations, such as point clouds, meshes, NeRFs, and 3D Gaussians, are commonly used to represent 3D objects or scenes. However, humans usually perceive 3D objects or scenes at a higher level as a composition of parts or structures rather than points or voxels. Representing 3D as semantic parts can benefit further understanding and applications. We aim to solve part-aware 3D reconstruction, which parses objects or scenes into semantic parts. In this paper, we introduce a hybrid representation of superquadrics and 2D Gaussians, trying to dig 3D structural clues from multi-view image inputs. Accurate structured geometry reconstruction and high-quality rendering are achieved at the same time. We incorporate parametric superquadrics in mesh forms into 2D Gaussians by attaching Gaussian centers to faces in meshes. During the training, superquadrics parameters are iteratively optimized, and Gaussians are deformed accordingly, resulting in an efficient hybrid representation. On the one hand, this hybrid representation inherits the advantage of superquadrics to represent different shape primitives, supporting flexible part decomposition of scenes. On the other hand, 2D Gaussians are incorporated to model the complex texture and geometry details, ensuring high-quality rendering and geometry reconstruction. The reconstruction is fully unsupervised. We conduct extensive experiments on data from DTU and ShapeNet datasets, in which the method decomposes scenes into reasonable parts, outperforming existing state-of-the-art approaches.
☆ LightMDETR: A Lightweight Approach for Low-Cost Open-Vocabulary Object Detection Training
Object detection in computer vision traditionally involves identifying objects in images. By integrating textual descriptions, we enhance this process, providing better context and accuracy. The MDETR model significantly advances this by combining image and text data for more versatile object detection and classification. However, MDETR's complexity and high computational demands hinder its practical use. In this paper, we introduce Lightweight MDETR (LightMDETR), an optimized MDETR variant designed for improved computational efficiency while maintaining robust multimodal capabilities. Our approach involves freezing the MDETR backbone and training a sole component, the Deep Fusion Encoder (DFE), to represent image and text modalities. A learnable context vector enables the DFE to switch between these modalities. Evaluation on datasets like RefCOCO, RefCOCO+, and RefCOCOg demonstrates that LightMDETR achieves superior precision and accuracy.
☆ Just a Hint: Point-Supervised Camouflaged Object Detection ECCV2024
Camouflaged Object Detection (COD) demands models to expeditiously and accurately distinguish objects which conceal themselves seamlessly in the environment. Owing to the subtle differences and ambiguous boundaries, COD is not only a remarkably challenging task for models but also for human annotators, requiring huge efforts to provide pixel-wise annotations. To alleviate the heavy annotation burden, we propose to fulfill this task with the help of only one point supervision. Specifically, by swiftly clicking on each object, we first adaptively expand the original point-based annotation to a reasonable hint area. Then, to avoid partial localization around discriminative parts, we propose an attention regulator to scatter model attention to the whole object through partially masking labeled regions. Moreover, to solve the unstable feature representation of camouflaged objects under only point-based annotation, we perform unsupervised contrastive learning based on differently augmented image pairs (e.g. changing color or doing translation). On three mainstream COD benchmarks, experimental results show that our model outperforms several weakly-supervised methods by a large margin across various metrics.
comment: Accepted by ECCV2024
Detection of Intracranial Hemorrhage for Trauma Patients
Whole-body CT is used for multi-trauma patients in the search of any and all injuries. Since an initial assessment needs to be rapid and the search for lesions is done for the whole body, very little time can be allocated for the inspection of a specific anatomy. In particular, intracranial hemorrhages are still missed, especially by clinical students. In this work, we present a Deep Learning approach for highlighting such lesions to improve the diagnostic accuracy. While most works on intracranial hemorrhages perform segmentation, detection only requires bounding boxes for the localization of the bleeding. In this paper, we propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios of bounding boxes and leads to more precise detections. We extensively experiment on brain bleeding detection using a publicly available dataset, and validate it on a private cohort, where we achieve 0.877 AR30, 0.728 AP30, and 0.653 AR30, 0.514 AP30 respectively. These results constitute a relative +5% improvement in Average Recall for both datasets compared to other loss functions. Finally, as there is little data currently publicly available for 3D object detection and as annotation resources are limited in the clinical setting, we evaluate the cost of different annotation methods, as well as the impact of imprecise bounding boxes in the training data on the detection performance.
☆ SAM-COD: SAM-guided Unified Framework for Weakly-Supervised Camouflaged Object Detection ECCV2024
Most Camouflaged Object Detection (COD) methods heavily rely on mask annotations, which are time-consuming and labor-intensive to acquire. Existing weakly-supervised COD approaches exhibit significantly inferior performance compared to fully-supervised methods and struggle to simultaneously support all the existing types of camouflaged object labels, including scribbles, bounding boxes, and points. Even for Segment Anything Model (SAM), it is still problematic to handle the weakly-supervised COD and it typically encounters challenges of prompt compatibility of the scribble labels, extreme response, semantically erroneous response, and unstable feature representations, producing unsatisfactory results in camouflaged scenes. To mitigate these issues, we propose a unified COD framework in this paper, termed SAM-COD, which is capable of supporting arbitrary weakly-supervised labels. Our SAM-COD employs a prompt adapter to handle scribbles as prompts based on SAM. Meanwhile, we introduce response filter and semantic matcher modules to improve the quality of the masks obtained by SAM under COD prompts. To alleviate the negative impacts of inaccurate mask predictions, a new strategy of prompt-adaptive knowledge distillation is utilized to ensure a reliable feature representation. To validate the effectiveness of our approach, we have conducted extensive empirical experiments on three mainstream COD benchmarks. The results demonstrate the superiority of our method against state-of-the-art weakly-supervised and even fully-supervised methods.
comment: Accepted by ECCV2024
☆ TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks ECCV 2024
Neural radiance fields (NeRFs) generally require many images with accurate poses for accurate novel view synthesis, which does not reflect realistic setups where views can be sparse and poses can be noisy. Previous solutions for learning NeRFs with sparse views and noisy poses only consider local geometry consistency with pairs of views. Closely following \textit{bundle adjustment} in Structure-from-Motion (SfM), we introduce TrackNeRF for more globally consistent geometry reconstruction and more accurate pose optimization. TrackNeRF introduces \textit{feature tracks}, \ie connected pixel trajectories across \textit{all} visible views that correspond to the \textit{same} 3D points. By enforcing reprojection consistency among feature tracks, TrackNeRF encourages holistic 3D consistency explicitly. Through extensive experiments, TrackNeRF sets a new benchmark in noisy and sparse view reconstruction. In particular, TrackNeRF shows significant improvements over the state-of-the-art BARF and SPARF by $\sim8$ and $\sim1$ in terms of PSNR on DTU under various sparse and noisy view setups. The code is available at \href{https://tracknerf.github.io/}.
comment: ECCV 2024 (supplemental pages included)
☆ Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model
Gastrointestinal cancer is a leading cause of cancer-related incidence and death, making it crucial to develop novel computer-aided diagnosis systems for early detection and enhanced treatment. Traditional approaches rely on the expertise of gastroenterologists to identify diseases; however, this process is subjective, and interpretation can vary even among expert clinicians. Considering recent advancements in classifying gastrointestinal anomalies and landmarks in endoscopic and video capsule endoscopy images, this study proposes a hybrid model that combines the advantages of Transformers and Convolutional Neural Networks (CNNs) to enhance classification performance. Our model utilizes DenseNet201 as a CNN branch to extract local features and integrates a Swin Transformer branch for global feature understanding, combining both to perform the classification task. For the GastroVision dataset, our proposed model demonstrates excellent performance with Precision, Recall, F1 score, Accuracy, and Matthews Correlation Coefficient (MCC) of 0.8320, 0.8386, 0.8324, 0.8386, and 0.8191, respectively, showcasing its robustness against class imbalance and surpassing other CNNs as well as the Swin Transformer model. Similarly, for the Kvasir-Capsule, a large video capsule endoscopy dataset, our model outperforms all others, achieving overall Precision, Recall, F1 score, Accuracy, and MCC of 0.7007, 0.7239, 0.6900, 0.7239, and 0.3871. Moreover, we generated saliency maps to explain our model's focus areas, demonstrating its reliable decision-making process. The results underscore the potential of our hybrid CNN-Transformer model in aiding the early and accurate detection of gastrointestinal (GI) anomalies.
☆ Coarse-to-Fine Detection of Multiple Seams for Robotic Welding
Efficiently detecting target weld seams while ensuring sub-millimeter accuracy has always been an important challenge in autonomous welding, which has significant application in industrial practice. Previous works mostly focused on recognizing and localizing welding seams one by one, leading to inferior efficiency in modeling the workpiece. This paper proposes a novel framework capable of multiple weld seams extraction using both RGB images and 3D point clouds. The RGB image is used to obtain the region of interest by approximately localizing the weld seams, and the point cloud is used to achieve the fine-edge extraction of the weld seams within the region of interest using region growth. Our method is further accelerated by using a pre-trained deep learning model to ensure both efficiency and generalization ability. The performance of the proposed method has been comprehensively tested on various workpieces featuring both linear and curved weld seams and in physical experiment systems. The results showcase considerable potential for real-world industrial applications, emphasizing the method's efficiency and effectiveness. Videos of the real-world experiments can be found at https://youtu.be/pq162HSP2D4.
☆ Large Language Models for Multimodal Deformable Image Registration
The challenge of Multimodal Deformable Image Registration (MDIR) lies in the conversion and alignment of features between images of different modalities. Generative models (GMs) cannot retain the necessary information enough from the source modality to the target one, while non-GMs struggle to align features across these two modalities. In this paper, we propose a novel coarse-to-fine MDIR framework,LLM-Morph, which is applicable to various pre-trained Large Language Models (LLMs) to solve these concerns by aligning the deep features from different modal medical images. Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights, both aimed at eliminating the domain gap between the pre-trained LLMs and the MDIR task. Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task. Extensive experiments in MR-CT Abdomen and SR-Reg Brain datasets demonstrate the effectiveness of our framework and the potential of pre-trained LLMs for MDIR task. Our code is availabel at: https://github.com/ninjannn/LLM-Morph.
☆ MsMemoryGAN: A Multi-scale Memory GAN for Palm-vein Adversarial Purification
Deep neural networks have recently achieved promising performance in the vein recognition task and have shown an increasing application trend, however, they are prone to adversarial perturbation attacks by adding imperceptible perturbations to the input, resulting in making incorrect recognition. To address this issue, we propose a novel defense model named MsMemoryGAN, which aims to filter the perturbations from adversarial samples before recognition. First, we design a multi-scale autoencoder to achieve high-quality reconstruction and two memory modules to learn the detailed patterns of normal samples at different scales. Second, we investigate a learnable metric in the memory module to retrieve the most relevant memory items to reconstruct the input image. Finally, the perceptional loss is combined with the pixel loss to further enhance the quality of the reconstructed image. During the training phase, the MsMemoryGAN learns to reconstruct the input by merely using fewer prototypical elements of the normal patterns recorded in the memory. At the testing stage, given an adversarial sample, the MsMemoryGAN retrieves its most relevant normal patterns in memory for the reconstruction. Perturbations in the adversarial sample are usually not reconstructed well, resulting in purifying the input from adversarial perturbations. We have conducted extensive experiments on two public vein datasets under different adversarial attack methods to evaluate the performance of the proposed approach. The experimental results show that our approach removes a wide variety of adversarial perturbations, allowing vein classifiers to achieve the highest recognition accuracy.
☆ TDS-CLIP: Temporal Difference Side Network for Image-to-Video Transfer Learning
Recently, large-scale pre-trained vision-language models (e.g., CLIP), have garnered significant attention thanks to their powerful representative capabilities. This inspires researchers in transferring the knowledge from these large pre-trained models to other task-specific models, e.g., Video Action Recognition (VAR) models, via particularly leveraging side networks to enhance the efficiency of parameter-efficient fine-tuning (PEFT). However, current transferring approaches in VAR tend to directly transfer the frozen knowledge from large pre-trained models to action recognition networks with minimal cost, instead of exploiting the temporal modeling capabilities of the action recognition models themselves. Therefore, in this paper, we propose a memory-efficient Temporal Difference Side Network (TDS-CLIP) to balance knowledge transferring and temporal modeling, avoiding backpropagation in frozen parameter models. Specifically, we introduce a Temporal Difference Adapter (TD-Adapter), which can effectively capture local temporal differences in motion features to strengthen the model's global temporal modeling capabilities. Furthermore, we designed a Side Motion Enhancement Adapter (SME-Adapter) to guide the proposed side network in efficiently learning the rich motion information in videos, thereby improving the side network's ability to capture and learn motion information. Extensive experiments are conducted on three benchmark datasets, including Something-Something V1\&V2, and Kinetics-400. Experimental results demonstrate that our approach achieves competitive performance.
☆ DemMamba: Alignment-free Raw Video Demoireing with Frequency-assisted Spatio-Temporal Mamba
Moire patterns arise when two similar repetitive patterns interfere, a phenomenon frequently observed during the capture of images or videos on screens. The color, shape, and location of moire patterns may differ across video frames, posing a challenge in learning information from adjacent frames and preserving temporal consistency. Previous video demoireing methods heavily rely on well-designed alignment modules, resulting in substantial computational burdens. Recently, Mamba, an improved version of the State Space Model (SSM), has demonstrated significant potential for modeling long-range dependencies with linear complexity, enabling efficient temporal modeling in video demoireing without requiring a specific alignment module. In this paper, we propose a novel alignment-free Raw video demoireing network with frequency-assisted spatio-temporal Mamba (DemMamba). The Spatial Mamba Block (SMB) and Temporal Mamba Block (TMB) are sequentially arranged to facilitate effective intra- and inter-relationship modeling in Raw videos with moire patterns. Within SMB, an Adaptive Frequency Block (AFB) is introduced to aid demoireing in the frequency domain. For TMB, a Channel Attention Block (CAB) is embedded to further enhance temporal information interactions by exploiting the inter-channel relationships among features. Extensive experiments demonstrate that our proposed DemMamba surpasses state-of-the-art approaches by 1.3 dB and delivers a superior visual experience.
☆ A Noncontact Technique for Wave Measurement Based on Thermal Stereography and Deep Learning
The accurate measurement of the wave field and its spatiotemporal evolution is essential in many hydrodynamic experiments and engineering applications. The binocular stereo imaging technique has been widely used to measure waves. However, the optical properties of indoor water surfaces, including transparency, specular reflection, and texture absence, pose challenges for image processing and stereo reconstruction. This study proposed a novel technique that combined thermal stereography and deep learning to achieve fully noncontact wave measurements. The optical imaging properties of water in the long-wave infrared spectrum were found to be suitable for stereo matching, effectively avoiding the issues in the visible-light spectrum. After capturing wave images using thermal stereo cameras, a reconstruction strategy involving deep learning techniques was proposed to improve stereo matching performance. A generative approach was employed to synthesize a dataset with ground-truth disparity from unannotated infrared images. This dataset was then fed to a pretrained stereo neural network for fine-tuning to achieve domain adaptation. Wave flume experiments were conducted to validate the feasibility and accuracy of the proposed technique. The final reconstruction results indicated great agreement and high accuracy with a mean bias of less than 2.1% compared with the measurements obtained using wave probes, suggesting that the novel technique effectively measures the spatiotemporal distribution of wave surface in hydrodynamic experiments.
☆ deepmriprep: Voxel-based Morphometry (VBM) Preprocessing via Deep Neural Networks
Voxel-based Morphometry (VBM) has emerged as a powerful approach in neuroimaging research, utilized in over 7,000 studies since the year 2000. Using Magnetic Resonance Imaging (MRI) data, VBM assesses variations in the local density of brain tissue and examines its associations with biological and psychometric variables. Here, we present deepmriprep, a neural network-based pipeline that performs all necessary preprocessing steps for VBM analysis of T1-weighted MR images using deep neural networks. Utilizing the Graphics Processing Unit (GPU), deepmriprep is 37 times faster than CAT12, the leading VBM preprocessing toolbox. The proposed method matches CAT12 in accuracy for tissue segmentation and image registration across more than 100 datasets and shows strong correlations in VBM results. Tissue segmentation maps from deepmriprep have over 95% agreement with ground truth maps, and its non-linear registration, using supervised SYMNet, predicts smooth deformation fields comparable to CAT12. The high processing speed of deepmriprep enables rapid preprocessing of extensive datasets and thereby fosters the application of VBM analysis to large-scale neuroimaging studies and opens the door to real-time applications. Finally, deepmripreps straightforward, modular design enables researchers to easily understand, reuse, and advance the underlying methods, fostering further advancements in neuroimaging research. deepmriprep can be conveniently installed as a Python package and is publicly accessible at https://github.com/wwu-mmll/deepmriprep.
☆ UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement
Underwater image enhancement (UIE) plays a crucial role in various marine applications, but it remains challenging due to the complex underwater environment. Current learning-based approaches frequently lack explicit incorporation of prior knowledge about the physical processes involved in underwater image formation, resulting in limited optimization despite their impressive enhancement results. This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature transformation to improve enhancement performance. The proposed DUN model combines the iterative optimization and reliability of model-based methods with the flexibility and representational power of deep learning, offering a more explainable and stable solution compared to existing learning-based UIE approaches. The proposed model consists of three key components: a Color Prior Guidance Block (CPGB) that establishes a mapping between color channels of degraded and original images, a Nonlinear Activation Gradient Descent Module (NAGDM) that simulates the underwater image degradation process, and an Inter Stage Feature Transformer (ISF-Former) that facilitates feature exchange between different network stages. By explicitly incorporating color priors and modeling the physical characteristics of underwater image formation, the proposed DUN model achieves more accurate and reliable enhancement results. Extensive experiments on multiple underwater image datasets demonstrate the superiority of the proposed model over state-of-the-art methods in both quantitative and qualitative evaluations. The proposed DUN-based approach offers a promising solution for UIE, enabling more accurate and reliable scientific analysis in marine research. The code is available at https://github.com/CXH-Research/UIE-UnFold.
comment: Accepted by DSAA CIVIL 2024
☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering ``List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available.
☆ A Review of Human-Object Interaction Detection
Human-object interaction (HOI) detection plays a key role in high-level visual understanding, facilitating a deep comprehension of human activities. Specifically, HOI detection aims to locate the humans and objects involved in interactions within images or videos and classify the specific interactions between them. The success of this task is influenced by several key factors, including the accurate localization of human and object instances, as well as the correct classification of object categories and interaction relationships. This paper systematically summarizes and discusses the recent work in image-based HOI detection. First, the mainstream datasets involved in HOI relationship detection are introduced. Furthermore, starting with two-stage methods and end-to-end one-stage detection approaches, this paper comprehensively discusses the current developments in image-based HOI detection, analyzing the strengths and weaknesses of these two methods. Additionally, the advancements of zero-shot learning, weakly supervised learning, and the application of large-scale language models in HOI detection are discussed. Finally, the current challenges in HOI detection are outlined, and potential research directions and future trends are explored.
☆ Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Color Imaging Improves Diabetic Retinopathy Stratification
Ultrawide-field fluorescein angiography (UWF-FA) facilitates diabetic retinopathy (DR) detection by providing a clear visualization of peripheral retinal lesions. However, the intravenous dye injection with potential risks hamper its application. We aim to acquire dye-free UWF-FA images from noninvasive UWF color fundus (UWF-CF) images using generative artificial intelligence (GenAI) and evaluate its effectiveness in DR screening. A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-CF images and fed into a generative adversarial networks (GAN)-based model for training. The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation. The DeepDRiD dataset was used to externally assess the contribution of generated UWF-FA images to DR classification, using area under the receiver operating characteristic curve (AUROC) as outcome metrics. The generated early, mid, and late phase UWF-FA images achieved high authenticity, with multi-scale similarity scores ranging from 0.70 to 0.91 and qualitative visual scores ranging from 1.64 to 1.98 (1=real UWF-FA quality). In fifty randomly selected images, 56% to 76% of the generated images were difficult to distinguish from real images in the Turing test. Moreover, adding these generated UWF-FA images for DR classification significantly increased the AUROC from 0.869 to 0.904 compared to the baseline model using UWF-CF images (P < .001). The model successfully generates realistic multi-frame UWF-FA images without intravenous dye injection. The generated UWF-FA enhanced DR stratification.
comment: 27 pages, 2 figures
☆ Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended?
Video segmentation aims at partitioning video sequences into meaningful segments based on objects or regions of interest within frames. Current video segmentation models are often derived from image segmentation techniques, which struggle to cope with small-scale or class-imbalanced video datasets. This leads to inconsistent segmentation results across frames. To address these issues, we propose a training strategy Masked Video Consistency, which enhances spatial and temporal feature aggregation. MVC introduces a training strategy that randomly masks image patches, compelling the network to predict the entire semantic segmentation, thus improving contextual information integration. Additionally, we introduce Object Masked Attention (OMA) to optimize the cross-attention mechanism by reducing the impact of irrelevant queries, thereby enhancing temporal modeling capabilities. Our approach, integrated into the latest decoupled universal video segmentation framework, achieves state-of-the-art performance across five datasets for three video segmentation tasks, demonstrating significant improvements over previous methods without increasing model parameters.
☆ WRIM-Net: Wide-Ranging Information Mining Network for Visible-Infrared Person Re-Identification
For the visible-infrared person re-identification (VI-ReID) task, one of the primary challenges lies in significant cross-modality discrepancy. Existing methods struggle to conduct modality-invariant information mining. They often focus solely on mining singular dimensions like spatial or channel, and overlook the extraction of specific-modality multi-dimension information. To fully mine modality-invariant information across a wide range, we introduce the Wide-Ranging Information Mining Network (WRIM-Net), which mainly comprises a Multi-dimension Interactive Information Mining (MIIM) module and an Auxiliary-Information-based Contrastive Learning (AICL) approach. Empowered by the proposed Global Region Interaction (GRI), MIIM comprehensively mines non-local spatial and channel information through intra-dimension interaction. Moreover, Thanks to the low computational complexity design, separate MIIM can be positioned in shallow layers, enabling the network to better mine specific-modality multi-dimension information. AICL, by introducing the novel Cross-Modality Key-Instance Contrastive (CMKIC) loss, effectively guides the network in extracting modality-invariant information. We conduct extensive experiments not only on the well-known SYSU-MM01 and RegDB datasets but also on the latest large-scale cross-modality LLCM dataset. The results demonstrate WRIM-Net's superiority over state-of-the-art methods.
comment: 18 pages, 5 figures
☆ TextMastero: Mastering High-Quality Scene Text Editing in Diverse Languages and Styles
Scene text editing aims to modify texts on images while maintaining the style of newly generated text similar to the original. Given an image, a target area, and target text, the task produces an output image with the target text in the selected area, replacing the original. This task has been studied extensively, with initial success using Generative Adversarial Networks (GANs) to balance text fidelity and style similarity. However, GAN-based methods struggled with complex backgrounds or text styles. Recent works leverage diffusion models, showing improved results, yet still face challenges, especially with non-Latin languages like CJK characters (Chinese, Japanese, Korean) that have complex glyphs, often producing inaccurate or unrecognizable characters. To address these issues, we present \emph{TextMastero} - a carefully designed multilingual scene text editing architecture based on latent diffusion models (LDMs). TextMastero introduces two key modules: a glyph conditioning module for fine-grained content control in generating accurate texts, and a latent guidance module for providing comprehensive style information to ensure similarity before and after editing. Both qualitative and quantitative experiments demonstrate that our method surpasses all known existing works in text fidelity and style similarity.
☆ Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM)
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact. Conventional change detection techniques, such as image differencing and ratioing, often struggle with noise and fail to capture complex variations in imagery. Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy. In this paper, we propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps. Our approach, named Diffusion Based Change Detector, is evaluated on both synthetic and real-world remote sensing datasets and compared with state-of-the-art methods. The results demonstrate that our method significantly outperforms traditional differencing techniques and recent deep learning-based methods, particularly in scenarios with complex changes and noise.
OMEGA: Efficient Occlusion-Aware Navigation for Air-Ground Robot in Dynamic Environments via State Space Model
Air-ground robots (AGRs) are widely used in surveillance and disaster response due to their exceptional mobility and versatility (i.e., flying and driving). Current AGR navigation systems perform well in static occlusion-prone environments (e.g., indoors) by using 3D semantic occupancy networks to predict occlusions for complete local mapping and then computing Euclidean Signed Distance Field (ESDF) for path planning. However, these systems face challenges in dynamic, severe occlusion scenes (e.g., crowds) due to limitations in perception networks' low prediction accuracy and path planners' high computation overhead. In this paper, we propose OMEGA, which contains OccMamba with an Efficient AGR-Planner to address the above-mentioned problems. OccMamba adopts a novel architecture that separates semantic and occupancy prediction into independent branches, incorporating two mamba blocks within these branches. These blocks efficiently extract semantic and geometric features in 3D environments with linear complexity, ensuring that the network can learn long-distance dependencies to improve prediction accuracy. Semantic and geometric features are combined within the Bird's Eye View (BEV) space to minimise computational overhead during feature fusion. The resulting semantic occupancy map is then seamlessly integrated into the local map, providing occlusion awareness of the dynamic environment. Our AGR-Planner utilizes this local map and employs kinodynamic A* search and gradient-based trajectory optimization to guarantee planning is ESDF-free and energy-efficient. Extensive experiments demonstrate that OccMamba outperforms the state-of-the-art 3D semantic occupancy network with 25.0% mIoU. End-to-end navigation experiments in dynamic scenes verify OMEGA's efficiency, achieving a 96% average planning success rate. Code and video are available at https://jmwang0117.github.io/OMEGA/.
comment: OccMamba is Coming!
☆ A toolbox for calculating objective image properties in aesthetics research
Over the past two decades, researchers in the field of visual aesthetics have studied numerous quantitative (objective) image properties and how they relate to visual aesthetic appreciation. However, results are difficult to compare between research groups. One reason is that researchers use different sets of image properties in their studies. But even if the same properties are used, the image pre-processing techniques may differ and often researchers use their own customized scripts to calculate the image properties. To provide greater accessibility and comparability of research results in visual experimental aesthetics, we developed an open-access and easy-to-use toolbox (called the 'Aesthetics Toolbox'). The Toolbox allows users to calculate a well-defined set of quantitative image properties popular in contemporary research. The properties include lightness and color statistics, Fourier spectral properties, fractality, self-similarity, symmetry, as well as different entropy measures and CNN-based variances. Compatible with most devices, the Toolbox provides an intuitive click-and-drop web interface. In the Toolbox, we integrated the original scripts of four different research groups and translated them into Python 3. To ensure that results were consistent across analyses, we took care that results from the Python versions of the scripts were the same as those from the original scripts. The toolbox, detailed documentation, and a link to the cloud version are available via Github: https://github.com/RBartho/Aesthetics-Toolbox. In summary, we developed a toolbox that helps to standardize and simplify the calculation of quantitative image properties for visual aesthetics research.
comment: 41 pages, 6 figure
☆ Generalizable Facial Expression Recognition ECCV2024
SOTA facial expression recognition (FER) methods fail on test sets that have domain gaps with the train set. Recent domain adaptation FER methods need to acquire labeled or unlabeled samples of target domains to fine-tune the FER model, which might be infeasible in real-world deployment. In this paper, we aim to improve the zero-shot generalization ability of FER methods on different unseen test sets using only one train set. Inspired by how humans first detect faces and then select expression features, we propose a novel FER pipeline to extract expression-related features from any given face images. Our method is based on the generalizable face features extracted by large models like CLIP. However, it is non-trivial to adapt the general features of CLIP for specific tasks like FER. To preserve the generalization ability of CLIP and the high precision of the FER model, we design a novel approach that learns sigmoid masks based on the fixed CLIP face features to extract expression features. To further improve the generalization ability on unseen test sets, we separate the channels of the learned masked features according to the expression classes to directly generate logits and avoid using the FC layer to reduce overfitting. We also introduce a channel-diverse loss to make the learned masks separated. Extensive experiments on five different FER datasets verify that our method outperforms SOTA FER methods by large margins. Code is available in https://github.com/zyh-uaiaaaa/Generalizable-FER.
comment: Accepted by ECCV2024
MV-MOS: Multi-View Feature Fusion for 3D Moving Object Segmentation
Effectively summarizing dense 3D point cloud data and extracting motion information of moving objects (moving object segmentation, MOS) is crucial to autonomous driving and robotics applications. How to effectively utilize motion and semantic features and avoid information loss during 3D-to-2D projection is still a key challenge. In this paper, we propose a novel multi-view MOS model (MV-MOS) by fusing motion-semantic features from different 2D representations of point clouds. To effectively exploit complementary information, the motion branches of the proposed model combines motion features from both bird's eye view (BEV) and range view (RV) representations. In addition, a semantic branch is introduced to provide supplementary semantic features of moving objects. Finally, a Mamba module is utilized to fuse the semantic features with motion features and provide effective guidance for the motion branches. We validated the effectiveness of the proposed multi-branch fusion MOS framework via comprehensive experiments, and our proposed model outperforms existing state-of-the-art models on the SemanticKITTI benchmark.
comment: 7 pages, 4 figures
☆ Breast tumor classification based on self-supervised contrastive learning from ultrasound videos
Background: Breast ultrasound is prominently used in diagnosing breast tumors. At present, many automatic systems based on deep learning have been developed to help radiologists in diagnosis. However, training such systems remains challenging because they are usually data-hungry and demand amounts of labeled data, which need professional knowledge and are expensive. Methods: We adopted a triplet network and a self-supervised contrastive learning technique to learn representations from unlabeled breast ultrasound video clips. We further designed a new hard triplet loss to to learn representations that particularly discriminate positive and negative image pairs that are hard to recognize. We also constructed a pretraining dataset from breast ultrasound videos (1,360 videos from 200 patients), which includes an anchor sample dataset with 11,805 images, a positive sample dataset with 188,880 images, and a negative sample dataset dynamically generated from video clips. Further, we constructed a finetuning dataset, including 400 images from 66 patients. We transferred the pretrained network to a downstream benign/malignant classification task and compared the performance with other state-of-the-art models, including three models pretrained on ImageNet and a previous contrastive learning model retrained on our datasets. Results and conclusion: Experiments revealed that our model achieved an area under the receiver operating characteristic curve (AUC) of 0.952, which is significantly higher than the others. Further, we assessed the dependence of our pretrained model on the number of labeled data and revealed that <100 samples were required to achieve an AUC of 0.901. The proposed framework greatly reduces the demand for labeled data and holds potential for use in automatic breast ultrasound image diagnosis.
☆ Vision Calorimeter for Anti-neutron Reconstruction: A Baseline
In high-energy physics, anti-neutrons ($\bar{n}$) are fundamental particles that frequently appear as final-state particles, and the reconstruction of their kinematic properties provides an important probe for understanding the governing principles. However, this confronts significant challenges instrumentally with the electromagnetic calorimeter (EMC), a typical experimental sensor but recovering the information of incident $\bar{n}$ insufficiently. In this study, we introduce Vision Calorimeter (ViC), a baseline method for anti-neutron reconstruction that leverages deep learning detectors to analyze the implicit relationships between EMC responses and incident $\bar{n}$ characteristics. Our motivation lies in that energy distributions of $\bar{n}$ samples deposited in the EMC cell arrays embody rich contextual information. Converted to 2-D images, such contextual energy distributions can be used to predict the status of $\bar{n}$ ($i.e.$, incident position and momentum) through a deep learning detector along with pseudo bounding boxes and a specified training objective. Experimental results demonstrate that ViC substantially outperforms the conventional reconstruction approach, reducing the prediction error of incident position by 42.81% (from 17.31$^{\circ}$ to 9.90$^{\circ}$). More importantly, this study for the first time realizes the measurement of incident $\bar{n}$ momentum, underscoring the potential of deep learning detectors for particle reconstruction. Code is available at https://github.com/yuhongtian17/ViC.
☆ An Efficient Sign Language Translation Using Spatial Configuration and Motion Dynamics with LLMs
Gloss-free Sign Language Translation (SLT) converts sign videos directly into spoken language sentences without relying on glosses. Recently, Large Language Models (LLMs) have shown remarkable translation performance in gloss-free methods by harnessing their powerful natural language generation capabilities. However, these methods often rely on domain-specific fine-tuning of visual encoders to achieve optimal results. By contrast, this paper emphasizes the importance of capturing the spatial configurations and motion dynamics inherent in sign language. With this in mind, we introduce Spatial and Motion-based Sign Language Translation (SpaMo), a novel LLM-based SLT framework. The core idea of SpaMo is simple yet effective. We first extract spatial and motion features using off-the-shelf visual encoders and then input these features into an LLM with a language prompt. Additionally, we employ a visual-text alignment process as a warm-up before the SLT supervision. Our experiments demonstrate that SpaMo achieves state-of-the-art performance on two popular datasets, PHOENIX14T and How2Sign.
comment: Under Review
☆ DEGAS: Detailed Expressions on Full-Body Gaussian Avatars
Although neural rendering has made significant advancements in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities to interactive AI agents.
☆ Multi-view Hand Reconstruction with a Point-Embedded Transformer CVPR2023
This work introduces a novel and generalizable multi-view Hand Mesh Reconstruction (HMR) model, named POEM, designed for practical use in real-world hand motion capture scenarios. The advances of the POEM model consist of two main aspects. First, concerning the modeling of the problem, we propose embedding a static basis point within the multi-view stereo space. A point represents a natural form of 3D information and serves as an ideal medium for fusing features across different views, given its varied projections across these views. Consequently, our method harnesses a simple yet effective idea: a complex 3D hand mesh can be represented by a set of 3D basis points that 1) are embedded in the multi-view stereo, 2) carry features from the multi-view images, and 3) encompass the hand in it. The second advance lies in the training strategy. We utilize a combination of five large-scale multi-view datasets and employ randomization in the number, order, and poses of the cameras. By processing such a vast amount of data and a diverse array of camera configurations, our model demonstrates notable generalizability in the real-world applications. As a result, POEM presents a highly practical, plug-and-play solution that enables user-friendly, cost-effective multi-view motion capture for both left and right hands. The model and source codes are available at https://github.com/JubSteven/POEM-v2.
comment: Generalizable multi-view Hand Mesh Reconstruction (HMR) model. Extension of the original work at CVPR2023
☆ MUSE: Mamba is Efficient Multi-scale Learner for Text-video Retrieval
Text-Video Retrieval (TVR) aims to align and associate relevant video content with corresponding natural language queries. Most existing TVR methods are based on large-scale pre-trained vision-language models (e.g., CLIP). However, due to the inherent plain structure of CLIP, few TVR methods explore the multi-scale representations which offer richer contextual information for a more thorough understanding. To this end, we propose MUSE, a multi-scale mamba with linear computational complexity for efficient cross-resolution modeling. Specifically, the multi-scale representations are generated by applying a feature pyramid on the last single-scale feature map. Then, we employ the Mamba structure as an efficient multi-scale learner to jointly learn scale-wise representations. Furthermore, we conduct comprehensive studies to investigate different model structures and designs. Extensive results on three popular benchmarks have validated the superiority of MUSE.
comment: 8 pages
☆ A Tutorial on Explainable Image Classification for Dementia Stages Using Convolutional Neural Network and Gradient-weighted Class Activation Mapping
This paper presents a tutorial of an explainable approach using Convolutional Neural Network (CNN) and Gradient-weighted Class Activation Mapping (Grad-CAM) to classify four progressive dementia stages based on open MRI brain images. The detailed implementation steps are demonstrated with an explanation. Whilst the proposed CNN architecture is demonstrated to achieve more than 99% accuracy for the test dataset, the computational procedure of CNN remains a black box. The visualisation based on Grad-CAM is attempted to explain such very high accuracy and may provide useful information for physicians. Future motivation based on this work is discussed.
comment: 15 pages, 11 figures, 3 tables
☆ Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models
Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using prompt-specific methods to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of our method in comparison to existing techniques.
comment: 33 pages, 14 figures, under review
☆ Prompt Your Brain: Scaffold Prompt Tuning for Efficient Adaptation of fMRI Pre-trained Model MICCAI 2024
We introduce Scaffold Prompt Tuning (ScaPT), a novel prompt-based framework for adapting large-scale functional magnetic resonance imaging (fMRI) pre-trained models to downstream tasks, with high parameter efficiency and improved performance compared to fine-tuning and baselines for prompt tuning. The full fine-tuning updates all pre-trained parameters, which may distort the learned feature space and lead to overfitting with limited training data which is common in fMRI fields. In contrast, we design a hierarchical prompt structure that transfers the knowledge learned from high-resource tasks to low-resource ones. This structure, equipped with a Deeply-conditioned Input-Prompt (DIP) mapping module, allows for efficient adaptation by updating only 2% of the trainable parameters. The framework enhances semantic interpretability through attention mechanisms between inputs and prompts, and it clusters prompts in the latent space in alignment with prior knowledge. Experiments on public resting state fMRI datasets reveal ScaPT outperforms fine-tuning and multitask-based prompt tuning in neurodegenerative diseases diagnosis/prognosis and personality trait prediction, even with fewer than 20 participants. It highlights ScaPT's efficiency in adapting pre-trained fMRI models to low-resource tasks.
comment: MICCAI 2024
☆ Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking
Hand-eye calibration involves estimating the transformation between the camera and the robot. Traditional methods rely on fiducial markers, involving much manual labor and careful setup. Recent advancements in deep learning offer markerless techniques, but they present challenges, including the need for retraining networks for each robot, the requirement of accurate mesh models for data generation, and the need to address the sim-to-real gap. In this letter, we propose Kalib, an automatic and universal markerless hand-eye calibration pipeline that leverages the generalizability of visual foundation models to eliminate these barriers. In each calibration process, Kalib uses keypoint tracking and proprioceptive sensors to estimate the transformation between a robot's coordinate space and its corresponding points in camera space. Our method does not require training new networks or access to mesh models. Through evaluations in simulation environments and the real-world dataset DROID, Kalib demonstrates superior accuracy compared to recent baseline methods. This approach provides an effective and flexible calibration process for various robot systems by simplifying setup and removing dependency on precise physical markers.
comment: The code and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
☆ Diff-PCC: Diffusion-based Neural Compression for 3D Point Clouds
Stable diffusion networks have emerged as a groundbreaking development for their ability to produce realistic and detailed visual content. This characteristic renders them ideal decoders, capable of producing high-quality and aesthetically pleasing reconstructions. In this paper, we introduce the first diffusion-based point cloud compression method, dubbed Diff-PCC, to leverage the expressive power of the diffusion model for generative and aesthetically superior decoding. Different from the conventional autoencoder fashion, a dual-space latent representation is devised in this paper, in which a compressor composed of two independent encoding backbones is considered to extract expressive shape latents from distinct latent spaces. At the decoding side, a diffusion-based generator is devised to produce high-quality reconstructions by considering the shape latents as guidance to stochastically denoise the noisy point clouds. Experiments demonstrate that the proposed Diff-PCC achieves state-of-the-art compression performance (e.g., 7.711 dB BD-PSNR gains against the latest G-PCC standard at ultra-low bitrate) while attaining superior subjective quality. Source code will be made publicly available.
☆ The Instance-centric Transformer for the RVOS Track of LSVOS Challenge: 3rd Place Solution
Referring Video Object Segmentation is an emerging multi-modal task that aims to segment objects in the video given a natural language expression. In this work, we build two instance-centric models and fuse predicted results from frame-level and instance-level. First, we introduce instance mask into the DETR-based model for query initialization to achieve temporal enhancement and employ SAM for spatial refinement. Secondly, we build an instance retrieval model conducting binary instance mask classification whether the instance is referred. Finally, we fuse predicted results and our method achieved a score of 52.67 J&F in the validation phase and 60.36 J&F in the test phase, securing the final ranking of 3rd place in the 6-th LSVOS Challenge RVOS Track.
comment: arXiv admin note: substantial text overlap with arXiv:2406.13939
☆ Training Matting Models without Alpha Labels
The labelling difficulty has been a longstanding problem in deep image matting. To escape from fine labels, this work explores using rough annotations such as trimaps coarsely indicating the foreground/background as supervision. We present that the cooperation between learned semantics from indicated known regions and proper assumed matting rules can help infer alpha values at transition areas. Inspired by the nonlocal principle in traditional image matting, we build a directional distance consistency loss (DDC loss) at each pixel neighborhood to constrain the alpha values conditioned on the input image. DDC loss forces the distance of similar pairs on the alpha matte and on its corresponding image to be consistent. In this way, the alpha values can be propagated from learned known regions to unknown transition areas. With only images and trimaps, a matting model can be trained under the supervision of a known loss and the proposed DDC loss. Experiments on AM-2K and P3M-10K dataset show that our paradigm achieves comparable performance with the fine-label-supervised baseline, while sometimes offers even more satisfying results than human-labelled ground truth. Code is available at \url{https://github.com/poppuppy/alpha-free-matting}.
comment: 12 pages, 12 figures
☆ Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
Point cloud semantic segmentation can significantly enhance the perception of an intelligent agent. Nevertheless, the discriminative capability of the segmentation network is influenced by the quantity of samples available for different categories. To mitigate the cognitive bias induced by class imbalance, this paper introduces a novel method, namely subspace prototype guidance (\textbf{SPG}), to guide the training of segmentation network. Specifically, the point cloud is initially separated into independent point sets by category to provide initial conditions for the generation of feature subspaces. The auxiliary branch which consists of an encoder and a projection head maps these point sets into separate feature subspaces. Subsequently, the feature prototypes which are extracted from the current separate subspaces and then combined with prototypes of historical subspaces guide the feature space of main branch to enhance the discriminability of features of minority categories. The prototypes derived from the feature space of main branch are also employed to guide the training of the auxiliary branch, forming a supervisory loop to maintain consistent convergence of the entire network. The experiments conducted on the large public benchmarks (i.e. S3DIS, ScanNet v2, ScanNet200, Toronto-3D) and collected real-world data illustrate that the proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method. The code is available at \url{https://github.com/Javion11/PointLiBR.git}.
☆ NutrifyAI: An AI-Powered System for Real-Time Food Detection, Nutritional Analysis, and Personalized Meal Recommendations
With diet and nutrition apps reaching 1.4 billion users in 2022 [1], it's no surprise that health apps like MyFitnessPal, Noom, and Calorie Counter, are surging in popularity. However, one major setback [2] of nearly all nutrition applications is that users must enter food data manually, which is time-consuming and tedious. Thus, there has been an increasing demand for applications that can accurately identify food items, analyze their nutritional content, and offer dietary recommendations in real-time. This paper introduces a comprehensive system that combines advanced computer vision techniques with nutrition analysis, implemented in a versatile mobile and web application. The system is divided into three key components: 1) food detection using the YOLOv8 model, 2) nutrient analysis via the Edamam Nutrition Analysis API, and 3) personalized meal recommendations using the Edamam Meal Planning and Recipe Search APIs. Designed for both mobile and web platforms, the application ensures fast processing times with an intuitive user interface, with features such as data visualizations using Chart.js, a login system, and personalized settings for dietary preferences, allergies, and cuisine choices. Preliminary results showcase the system's effectiveness, making it a valuable tool for users to make informed dietary decisions.
comment: 7 pages, 12 figures
☆ EdgeNAT: Transformer for Efficient Edge Detection
Transformers, renowned for their powerful feature extraction capabilities, have played an increasingly prominent role in various vision tasks. Especially, recent advancements present transformer with hierarchical structures such as Dilated Neighborhood Attention Transformer (DiNAT), demonstrating outstanding ability to efficiently capture both global and local features. However, transformers' application in edge detection has not been fully exploited. In this paper, we propose EdgeNAT, a one-stage transformer-based edge detector with DiNAT as the encoder, capable of extracting object boundaries and meaningful edges both accurately and efficiently. On the one hand, EdgeNAT captures global contextual information and detailed local cues with DiNAT, on the other hand, it enhances feature representation with a novel SCAF-MLA decoder by utilizing both inter-spatial and inter-channel relationships of feature maps. Extensive experiments on multiple datasets show that our method achieves state-of-the-art performance on both RGB and depth images. Notably, on the widely used BSDS500 dataset, our L model achieves impressive performances, with ODS F-measure and OIS F-measure of 86.0%, 87.6% for multi-scale input,and 84.9%, and 86.3% for single-scale input, surpassing the current state-of-the-art EDTER by 1.2%, 1.1%, 1.7%, and 1.6%, respectively. Moreover, as for throughput, our approach runs at 20.87 FPS on RTX 4090 GPU with single-scale input. The code for our method will be released soon.
☆ BAUST Lipi: A BdSL Dataset with Deep Learning Based Bangla Sign Language Recognition
People commonly communicate in English, Arabic, and Bengali spoken languages through various mediums. However, deaf and hard-of-hearing individuals primarily use body language and sign language to express their needs and achieve independence. Sign language research is burgeoning to enhance communication with the deaf community. While many researchers have made strides in recognizing sign languages such as French, British, Arabic, Turkish, and American, there has been limited research on Bangla sign language (BdSL) with less-than-satisfactory results. One significant barrier has been the lack of a comprehensive Bangla sign language dataset. In our work, we introduced a new BdSL dataset comprising alphabets totaling 18,000 images, with each image being 224x224 pixels in size. Our dataset encompasses 36 Bengali symbols, of which 30 are consonants and the remaining six are vowels. Despite our dataset contribution, many existing systems continue to grapple with achieving high-performance accuracy for BdSL. To address this, we devised a hybrid Convolutional Neural Network (CNN) model, integrating multiple convolutional layers, activation functions, dropout techniques, and LSTM layers. Upon evaluating our hybrid-CNN model with the newly created BdSL dataset, we achieved an accuracy rate of 97.92\%. We are confident that both our BdSL dataset and hybrid CNN model will be recognized as significant milestones in BdSL research.
☆ Adaptive Knowledge Distillation for Classification of Hand Images using Explainable Vision Transformers ECML
Assessing the forensic value of hand images involves the use of unique features and patterns present in an individual's hand. The human hand has distinct characteristics, such as the pattern of veins, fingerprints, and the geometry of the hand itself. This paper investigates the use of vision transformers (ViTs) for classification of hand images. We use explainability tools to explore the internal representations of ViTs and assess their impact on the model outputs. Utilizing the internal understanding of ViTs, we introduce distillation methods that allow a student model to adaptively extract knowledge from a teacher model while learning on data of a different domain to prevent catastrophic forgetting. Two publicly available hand image datasets are used to conduct a series of experiments to evaluate performance of the ViTs and our proposed adaptive distillation methods. The experimental results demonstrate that ViT models significantly outperform traditional machine learning methods and the internal states of ViTs are useful for explaining the model outputs in the classification task. By averting catastrophic forgetting, our distillation methods achieve excellent performance on data from both source and target domains, particularly when these two domains exhibit significant dissimilarity. The proposed approaches therefore can be developed and implemented effectively for real-world applications such as access control, identity verification, and authentication systems.
comment: Accepted at the ECML PKDD 2024 (Research Track)
☆ SZTU-CMU at MER2024: Improving Emotion-LLaMA with Conv-Attention for Multimodal Emotion Recognition
This paper presents our winning approach for the MER-NOISE and MER-OV tracks of the MER2024 Challenge on multimodal emotion recognition. Our system leverages the advanced emotional understanding capabilities of Emotion-LLaMA to generate high-quality annotations for unlabeled samples, addressing the challenge of limited labeled data. To enhance multimodal fusion while mitigating modality-specific noise, we introduce Conv-Attention, a lightweight and efficient hybrid framework. Extensive experimentation vali-dates the effectiveness of our approach. In the MER-NOISE track, our system achieves a state-of-the-art weighted average F-score of 85.30%, surpassing the second and third-place teams by 1.47% and 1.65%, respectively. For the MER-OV track, our utilization of Emotion-LLaMA for open-vocabulary annotation yields an 8.52% improvement in average accuracy and recall compared to GPT-4V, securing the highest score among all participating large multimodal models. The code and model for Emotion-LLaMA are available at https://github.com/ZebangCheng/Emotion-LLaMA.
☆ Cervical Cancer Detection Using Multi-Branch Deep Learning Model
Cervical cancer is a crucial global health concern for women, and the persistent infection of High-risk HPV mainly triggers this remains a global health challenge, with young women diagnosis rates soaring from 10\% to 40\% over three decades. While Pap smear screening is a prevalent diagnostic method, visual image analysis can be lengthy and often leads to mistakes. Early detection of the disease can contribute significantly to improving patient outcomes. In recent decades, many researchers have employed machine learning techniques that achieved promise in cervical cancer detection processes based on medical images. In recent years, many researchers have employed various deep-learning techniques to achieve high-performance accuracy in detecting cervical cancer but are still facing various challenges. This research proposes an innovative and novel approach to automate cervical cancer image classification using Multi-Head Self-Attention (MHSA) and convolutional neural networks (CNNs). The proposed method leverages the strengths of both MHSA mechanisms and CNN to effectively capture both local and global features within cervical images in two streams. MHSA facilitates the model's ability to focus on relevant regions of interest, while CNN extracts hierarchical features that contribute to accurate classification. Finally, we combined the two stream features and fed them into the classification module to refine the feature and the classification. To evaluate the performance of the proposed approach, we used the SIPaKMeD dataset, which classifies cervical cells into five categories. Our model achieved a remarkable accuracy of 98.522\%. This performance has high recognition accuracy of medical image classification and holds promise for its applicability in other medical image recognition tasks.
☆ GPT-based Textile Pilling Classification Using 3D Point Cloud Data
Textile pilling assessment is critical for textile quality control. We collect thousands of 3D point cloud images in the actual test environment of textiles and organize and label them as TextileNet8 dataset. To the best of our knowledge, it is the first publicly available eight-categories 3D point cloud dataset in the field of textile pilling assessment. Based on PointGPT, the GPT-like big model of point cloud analysis, we incorporate the global features of the input point cloud extracted from the non-parametric network into it, thus proposing the PointGPT+NN model. Using TextileNet8 as a benchmark, the experimental results show that the proposed PointGPT+NN model achieves an overall accuracy (OA) of 91.8% and a mean per-class accuracy (mAcc) of 92.2%. Test results on other publicly available datasets also validate the competitive performance of the proposed PointGPT+NN model. The proposed TextileNet8 dataset will be publicly available.
comment: 8 pages, 2 figures
☆ Event Stream based Sign Language Translation: A High-Definition Benchmark Dataset and A New Algorithm
Sign Language Translation (SLT) is a core task in the field of AI-assisted disability. Unlike traditional SLT based on visible light videos, which is easily affected by factors such as lighting, rapid hand movements, and privacy breaches, this paper proposes the use of high-definition Event streams for SLT, effectively mitigating the aforementioned issues. This is primarily because Event streams have a high dynamic range and dense temporal signals, which can withstand low illumination and motion blur well. Additionally, due to their sparsity in space, they effectively protect the privacy of the target person. More specifically, we propose a new high-resolution Event stream sign language dataset, termed Event-CSL, which effectively fills the data gap in this area of research. It contains 14,827 videos, 14,821 glosses, and 2,544 Chinese words in the text vocabulary. These samples are collected in a variety of indoor and outdoor scenes, encompassing multiple angles, light intensities, and camera movements. We have benchmarked existing mainstream SLT works to enable fair comparison for future efforts. Based on this dataset and several other large-scale datasets, we propose a novel baseline method that fully leverages the Mamba model's ability to integrate temporal information of CNN features, resulting in improved sign language translation outcomes. Both the benchmark dataset and source code will be released on https://github.com/Event-AHU/OpenESL
comment: First Large-scale and High-Definition Benchmark Dataset for Event-based Sign Language Translation
☆ MambaEVT: Event Stream based Visual Object Tracking using State Space Model
Event camera-based visual tracking has drawn more and more attention in recent years due to the unique imaging principle and advantages of low energy consumption, high dynamic range, and dense temporal resolution. Current event-based tracking algorithms are gradually hitting their performance bottlenecks, due to the utilization of vision Transformer and the static template for target object localization. In this paper, we propose a novel Mamba-based visual tracking framework that adopts the state space model with linear complexity as a backbone network. The search regions and target template are fed into the vision Mamba network for simultaneous feature extraction and interaction. The output tokens of search regions will be fed into the tracking head for target localization. More importantly, we consider introducing a dynamic template update strategy into the tracking framework using the Memory Mamba network. By considering the diversity of samples in the target template library and making appropriate adjustments to the template memory module, a more effective dynamic template can be integrated. The effective combination of dynamic and static templates allows our Mamba-based tracking algorithm to achieve a good balance between accuracy and computational cost on multiple large-scale datasets, including EventVOT, VisEvent, and FE240hz. The source code will be released on https://github.com/Event-AHU/MambaEVT
comment: In Peer Review
☆ Learning Multimodal Latent Space with EBM Prior and MCMC Inference
Multimodal generative models are crucial for various applications. We propose an approach that combines an expressive energy-based model (EBM) prior with Markov Chain Monte Carlo (MCMC) inference in the latent space for multimodal generation. The EBM prior acts as an informative guide, while MCMC inference, specifically through short-run Langevin dynamics, brings the posterior distribution closer to its true form. This method not only provides an expressive prior to better capture the complexity of multimodality but also improves the learning of shared latent variables for more coherent generation across modalities. Our proposed method is supported by empirical experiments, underscoring the effectiveness of our EBM prior with MCMC inference in enhancing cross-modal and joint generative tasks in multimodal contexts.
♻ ☆ LongVILA: Scaling Long-Context Visual Language Models for Long Videos
Long-context capability is critical for multi-modal foundation models. We introduce LongVILA, a full-stack solution for long-context vision-language models, including system, model training, and dataset development. On the system side, we introduce the first long-context Multi-Modal Sequence Parallelism (MM-SP) system that enables long training and inference, enabling 2M context length training on 256 GPUs without any gradient checkpointing. MM-SP is 2.1x - 5.7x faster than ring sequence parallelism and 1.1x - 1.4x faster than Megatron context parallelism + tensor parallelism in text-only settings. Moreover, it seamlessly integrates with Hugging Face Transformers. For model training, we propose a five-stage pipeline comprising alignment, pre-training, short supervised fine-tuning, context extension, and long supervised fine-tuning. On datasets, we construct large-scale visual language pre-training datasets and long video instruction-following datasets to support our multi-stage training process. LongVILA extends the number of frames of VILA from 8 to 1024, and improves the long video captioning score from 2.00 to 3.26 (1.6x), achieving 99.5% accuracy in 1400-frames video (274k context length) needle-in-a-haystack. LongVILA-8B demonstrates consistent accuracy improvements on long videos in the VideoMME benchmark as the number of frames increases.
comment: Code and models are available at https://github.com/NVlabs/VILA/blob/main/LongVILA.md
♻ ☆ LoopSplat: Loop Closure by Registering 3D Gaussian Splats
Simultaneous Localization and Mapping (SLAM) based on 3D Gaussian Splats (3DGS) has recently shown promise towards more accurate, dense 3D scene maps. However, existing 3DGS-based methods fail to address the global consistency of the scene via loop closure and/or global bundle adjustment. To this end, we propose LoopSplat, which takes RGB-D images as input and performs dense mapping with 3DGS submaps and frame-to-model tracking. LoopSplat triggers loop closure online and computes relative loop edge constraints between submaps directly via 3DGS registration, leading to improvements in efficiency and accuracy over traditional global-to-local point cloud registration. It uses a robust pose graph optimization formulation and rigidly aligns the submaps to achieve global consistency. Evaluation on the synthetic Replica and real-world TUM-RGBD, ScanNet, and ScanNet++ datasets demonstrates competitive or superior tracking, mapping, and rendering compared to existing methods for dense RGB-D SLAM. Code is available at loopsplat.github.io.
comment: Project page: https://loopsplat.github.io/
♻ ☆ HYDEN: Hyperbolic Density Representations for Medical Images and Reports
In light of the inherent entailment relations between images and text, hyperbolic point vector embeddings, leveraging the hierarchical modeling advantages of hyperbolic space, have been utilized for visual semantic representation learning. However, point vector embedding approaches fail to address the issue of semantic uncertainty, where an image may have multiple interpretations, and text may refer to different images, a phenomenon particularly prevalent in the medical domain. Therefor, we propose \textbf{HYDEN}, a novel hyperbolic density embedding based image-text representation learning approach tailored for specific medical domain data. This method integrates text-aware local features alongside global features from images, mapping image-text features to density features in hyperbolic space via using hyperbolic pseudo-Gaussian distributions. An encapsulation loss function is employed to model the partial order relations between image-text density distributions. Experimental results demonstrate the interpretability of our approach and its superior performance compared to the baseline methods across various zero-shot tasks and different datasets.
♻ ☆ MambaLoc: Efficient Camera Localisation via State Space Model
Location information is pivotal for the automation and intelligence of terminal devices and edge-cloud IoT systems, such as autonomous vehicles and augmented reality. However, achieving reliable positioning across diverse IoT applications remains challenging due to significant training costs and the necessity of densely collected data. To tackle these issues, we have innovatively applied the selective state space (SSM) model to visual localization, introducing a new model named MambaLoc. The proposed model demonstrates exceptional training efficiency by capitalizing on the SSM model's strengths in efficient feature extraction, rapid computation, and memory optimization, and it further ensures robustness in sparse data environments due to its parameter sparsity. Additionally, we propose the Global Information Selector (GIS), which leverages selective SSM to implicitly achieve the efficient global feature extraction capabilities of Non-local Neural Networks. This design leverages the computational efficiency of the SSM model alongside the Non-local Neural Networks' capacity to capture long-range dependencies with minimal layers. Consequently, the GIS enables effective global information capture while significantly accelerating convergence. Our extensive experimental validation using public indoor and outdoor datasets first demonstrates our model's effectiveness, followed by evidence of its versatility with various existing localization models. Our code and models are publicly available to support further research and development in this area.
♻ ☆ CHASE: 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning
Recent advancements in human avatar synthesis have utilized radiance fields to reconstruct photo-realistic animatable human avatars. However, both NeRFs-based and 3DGS-based methods struggle with maintaining 3D consistency and exhibit suboptimal detail reconstruction, especially with sparse inputs. To address this challenge, we propose CHASE, which introduces supervision from intrinsic 3D consistency across poses and 3D geometry contrastive learning, achieving performance comparable with sparse inputs to that with full inputs. Following previous work, we first integrate a skeleton-driven rigid deformation and a non-rigid cloth dynamics deformation to coordinate the movements of individual Gaussians during animation, reconstructing basic avatar with coarse 3D consistency. To improve 3D consistency under sparse inputs, we design Dynamic Avatar Adjustment(DAA) to adjust deformed Gaussians based on a selected similar pose/image from the dataset. Minimizing the difference between the image rendered by adjusted Gaussians and the image with the similar pose serves as an additional form of supervision for avatar. Furthermore, we propose a 3D geometry contrastive learning strategy to maintain the 3D global consistency of generated avatars. Though CHASE is designed for sparse inputs, it surprisingly outperforms current SOTA methods \textbf{in both full and sparse settings} on the ZJU-MoCap and H36M datasets, demonstrating that our CHASE successfully maintains avatar's 3D consistency, hence improving rendering quality.
comment: 13 pages, 6 figures
♻ ☆ Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images
Many molecular alterations serve as clinically prognostic or therapy-predictive biomarkers, typically detected using single or multi-gene molecular assays. However, these assays are expensive, tissue destructive and often take weeks to complete. Using AI on routine H&E WSIs offers a fast and economical approach to screen for multiple molecular biomarkers. We present a high-throughput AI-based system leveraging Virchow2, a foundation model pre-trained on 3 million slides, to interrogate genomic features previously determined by an next-generation sequencing (NGS) assay, using 47,960 scanned hematoxylin and eosin (H&E) whole slide images (WSIs) from 38,984 cancer patients. Unlike traditional methods that train individual models for each biomarker or cancer type, our system employs a unified model to simultaneously predict a wide range of clinically relevant molecular biomarkers across cancer types. By training the network to replicate the MSK-IMPACT targeted biomarker panel of 505 genes, it identified 80 high performing biomarkers with a mean AU-ROC of 0.89 in 15 most common cancer types. In addition, 40 biomarkers demonstrated strong associations with specific cancer histologic subtypes. Furthermore, 58 biomarkers were associated with targets frequently assayed clinically for therapy selection and response prediction. The model can also predict the activity of five canonical signaling pathways, identify defects in DNA repair mechanisms, and predict genomic instability measured by tumor mutation burden, microsatellite instability (MSI), and chromosomal instability (CIN). The proposed model can offer potential to guide therapy selection, improve treatment efficacy, accelerate patient screening for clinical trials and provoke the interrogation of new therapeutic targets.
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at \url{https://github.com/ZHE-SAPI/UDASS}.
comment: 18 pages,10 figures, 11 tables
♻ ☆ Self-supervised Photographic Image Layout Representation Learning
In the domain of image layout representation learning, the critical process of translating image layouts into succinct vector forms is increasingly significant across diverse applications, such as image retrieval, manipulation, and generation. Most approaches in this area heavily rely on costly labeled datasets and notably lack in adapting their modeling and learning methods to the specific nuances of photographic image layouts. This shortfall makes the learning process for photographic image layouts suboptimal. In our research, we directly address these challenges. We innovate by defining basic layout primitives that encapsulate various levels of layout information and by mapping these, along with their interconnections, onto a heterogeneous graph structure. This graph is meticulously engineered to capture the intricate layout information within the pixel domain explicitly. Advancing further, we introduce novel pretext tasks coupled with customized loss functions, strategically designed for effective self-supervised learning of these layout graphs. Building on this foundation, we develop an autoencoder-based network architecture skilled in compressing these heterogeneous layout graphs into precise, dimensionally-reduced layout representations. Additionally, we introduce the LODB dataset, which features a broader range of layout categories and richer semantics, serving as a comprehensive benchmark for evaluating the effectiveness of layout representation learning methods. Our extensive experimentation on this dataset demonstrates the superior performance of our approach in the realm of photographic image layout representation learning.
comment: The authors of the paper believe that there is an error in the measurement of the F1 curve in the metrics description
♻ ☆ Efficient and Robust Quantization-aware Training via Adaptive Coreset Selection
Quantization-aware training (QAT) is a representative model compression method to reduce redundancy in weights and activations. However, most existing QAT methods require end-to-end training on the entire dataset, which suffers from long training time and high energy costs. In addition, the potential label noise in the training data undermines the robustness of QAT. We propose two metrics based on analysis of loss and gradient of quantized weights: error vector score and disagreement score, to quantify the importance of each sample during training. Guided by these two metrics, we proposed a quantization-aware Adaptive Coreset Selection (ACS) method to select the data for the current training epoch. We evaluate our method on various networks (ResNet-18, MobileNetV2, RetinaNet), datasets(CIFAR-10, CIFAR-100, ImageNet-1K, COCO), and under different quantization settings. Specifically, our method can achieve an accuracy of 68.39\% of 4-bit quantized ResNet-18 on the ImageNet-1K dataset with only a 10\% subset, which has an absolute gain of 4.24\% compared to the baseline. Our method can also improve the robustness of QAT by removing noisy samples in the training set.
comment: Accepted by TMLR, Code: https://github.com/HuangOwen/QAT-ACS
♻ ☆ SR+Codec: a Benchmark of Super-Resolution for Video Compression Bitrate Reduction
In recent years, there has been significant interest in Super-Resolution (SR), which focuses on generating a high-resolution image from a low-resolution input. Deep learning-based methods for super-resolution have been particularly popular and have shown impressive results on various benchmarks. However, research indicates that these methods may not perform as well on strongly compressed videos. We developed a super-resolution benchmark to analyze SR's capacity to upscale compressed videos. Our dataset employed video codecs based on five widely-used compression standards: H.264, H.265, H.266, AV1, and AVS3. We assessed 19 popular SR models using our benchmark and evaluated their ability to restore details and their susceptibility to compression artifacts. To get an accurate perceptual ranking of SR models, we conducted a crowd-sourced side-by-side comparison of their outputs. We found that some SR models, combined with compression, allow us to reduce the video bitrate without significant loss of quality. We also compared a range of image and video quality metrics with subjective scores to evaluate their accuracy on super-resolved compressed videos. The benchmark is publicly available at https://videoprocessing.ai/benchmarks/super-resolution-for-video-compression.html
♻ ☆ Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Self-supervised representation learning often uses data augmentations to induce some invariance to "style" attributes of the data. However, with downstream tasks generally unknown at training time, it is difficult to deduce a priori which attributes of the data are indeed "style" and can be safely discarded. To deal with this, current approaches try to retain some style information by tuning the degree of invariance to some particular task, such as ImageNet object classification. However, prior work has shown that such task-specific tuning can lead to significant performance degradation on other tasks that rely on the discarded style. To address this, we introduce a more principled approach that seeks to disentangle style features rather than discard them. The key idea is to add multiple style embedding spaces where: (i) each is invariant to all-but-one augmentation; and (ii) joint entropy is maximized. We formalize our structured data-augmentation procedure from a causal latent-variable-model perspective, and prove identifiability of both content and individual style variables. We empirically demonstrate the benefits of our approach on both synthetic and real-world data.
♻ ☆ Vision-Language Dataset Distillation
Dataset distillation methods reduce large-scale datasets to smaller sets of synthetic data, preserving sufficient information to quickly train a new model from scratch. However, prior work on dataset distillation has focused exclusively on image classification datasets, whereas modern large-scale datasets are primarily vision-language datasets. In this work, we design the first vision-language dataset distillation method, building on the idea of trajectory matching. A key challenge is that vision-language datasets do not have a set of discrete classes. To overcome this, our proposed method jointly distills image-text pairs in a contrastive formulation. Further, we leverage Low-Rank Adaptation (LoRA) matching to enable more efficient and effective trajectory matching in complex modern vision-language models. Since there are no existing baselines, we compare our distillation approach with three adapted vision-language coreset selection methods. We demonstrate significant improvements on the challenging Flickr30K and COCO retrieval benchmarks: for example, on Flickr30K, the best coreset selection method selecting 1000 image-text pairs for training achieves only 5.6% image-to-text retrieval accuracy (i.e., recall@1); in contrast, our dataset distillation almost doubles that to 9.9% with just 100 training pairs, an order of magnitude fewer.
comment: 31 pages, 13 figures
♻ ☆ MagicID: Flexible ID Fidelity Generation System
Portrait Fidelity Generation is a prominent research area in generative models, with a primary focus on enhancing both controllability and fidelity. Current methods face challenges in generating high-fidelity portrait results when faces occupy a small portion of the image with a low resolution, especially in multi-person group photo settings. To tackle these issues, we propose a systematic solution called MagicID, based on a self-constructed million-level multi-modal dataset named IDZoom. MagicID consists of Multi-Mode Fusion training strategy (MMF) and DDIM Inversion based ID Restoration inference framework (DIIR). During training, MMF iteratively uses the skeleton and landmark modalities from IDZoom as conditional guidance. By introducing the Clone Face Tuning in training stage and Mask Guided Multi-ID Cross Attention (MGMICA) in inference stage, explicit constraints on face positional features are achieved for multi-ID group photo generation. The DIIR aims to address the issue of artifacts. The DDIM Inversion is used in conjunction with face landmarks, global and local face features to achieve face restoration while keeping the background unchanged. Additionally, DIIR is plug-and-play and can be applied to any diffusion-based portrait generation method. To validate the effectiveness of MagicID, we conducted extensive comparative and ablation experiments. The experimental results demonstrate that MagicID has significant advantages in both subjective and objective metrics, and achieves controllable generation in multi-person scenarios.
♻ ☆ Using Unreliable Pseudo-Labels for Label-Efficient Semantic Segmentation
The crux of label-efficient semantic segmentation is to produce high-quality pseudo-labels to leverage a large amount of unlabeled or weakly labeled data. A common practice is to select the highly confident predictions as the pseudo-ground-truths for each pixel, but it leads to a problem that most pixels may be left unused due to their unreliability. However, we argue that every pixel matters to the model training, even those unreliable and ambiguous pixels. Intuitively, an unreliable prediction may get confused among the top classes, however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative key to those most unlikely categories. Therefore, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative keys, and manage to train the model with all candidate pixels. Considering the training evolution, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.
comment: Accepted by IJCV. arXiv admin note: text overlap with arXiv:2203.03884
♻ ☆ Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video
Current video summarization methods rely heavily on supervised computer vision techniques, which demands time-consuming and subjective manual annotations. To overcome these limitations, we investigated self-supervised video summarization. Inspired by the success of Large Language Models (LLMs), we explored the feasibility in transforming the video summarization task into a Natural Language Processing (NLP) task. By leveraging the advantages of LLMs in context understanding, we aim to enhance the effectiveness of self-supervised video summarization. Our method begins by generating captions for individual video frames, which are then synthesized into text summaries by LLMs. Subsequently, we measure semantic distance between the captions and the text summary. Notably, we propose a novel loss function to optimize our model according to the diversity of the video. Finally, the summarized video can be generated by selecting the frames with captions similar to the text summary. Our method achieves state-of-the-art performance on the SumMe dataset in rank correlation coefficients. In addition, our method has a novel feature of being able to achieve personalized summarization.
♻ ☆ BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction
Analyzing and reconstructing visual stimuli from brain signals effectively advances the understanding of human visual system. However, the EEG signals are complex and contain significant noise. This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG, such as difficulties in aligning EEG embeddings with the fine-grained semantic information and a heavy reliance on additional large self-collected dataset for training. To address these challenges, we propose a novel approach called BrainVis. Firstly, we divide the EEG signals into various units and apply a self-supervised approach on them to obtain EEG time-domain features, in an attempt to ease the training difficulty. Additionally, we also propose to utilize the frequency-domain features to enhance the EEG representations. Then, we simultaneously align EEG time-frequency embeddings with the interpolation of the coarse and fine-grained semantics in the CLIP space, to highlight the primary visual components and reduce the cross-modal alignment difficulty. Finally, we adopt the cascaded diffusion models to reconstruct images. Using only 10\% training data of the previous work, our proposed BrainVis outperforms state of the arts in both semantic fidelity reconstruction and generation quality. The code is available at https://github.com/RomGai/BrainVis.
♻ ☆ Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models
Generating 3D scenes from human motion sequences supports numerous applications, including virtual reality and architectural design. However, previous auto-regression-based human-aware 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans, often resulting in overlapping object generation in the same space. To address this limitation, we explore the potential of diffusion models that simultaneously consider all input humans and the floor plan to generate plausible 3D scenes. Our approach not only satisfies all input human interactions but also adheres to spatial constraints with the floor plan. Furthermore, we introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints. These mechanisms help avoid generating scenes that conflict with human motions while respecting layout constraints. To enhance the diversity and accuracy of human-guided scene generation, we have developed an automated pipeline that improves the variety and plausibility of human-object interactions in the existing 3D FRONT HUMAN dataset. Extensive experiments on both synthetic and real-world datasets demonstrate that our framework can generate more natural and plausible 3D scenes with precise human-scene interactions, while significantly reducing human-object collisions compared to previous state-of-the-art methods. Our code and data will be made publicly available upon publication of this work.
♻ ☆ Compression-Realized Deep Structural Network for Video Quality Enhancement
This paper focuses on the task of quality enhancement for compressed videos. Although deep network-based video restorers achieve impressive progress, most of the existing methods lack a structured design to optimally leverage the priors within compression codecs. Since the quality degradation of the video is primarily induced by the compression algorithm, a new paradigm is urgently needed for a more ``conscious'' process of quality enhancement. As a result, we propose the Compression-Realized Deep Structural Network (CRDS), introducing three inductive biases aligned with the three primary processes in the classic compression codec, merging the strengths of classical encoder architecture with deep network capabilities. Inspired by the residual extraction and domain transformation process in the codec, a pre-trained Latent Degradation Residual Auto-Encoder is proposed to transform video frames into a latent feature space, and the mutual neighborhood attention mechanism is integrated for precise motion estimation and residual extraction. Furthermore, drawing inspiration from the quantization noise distribution of the codec, CRDS proposes a novel Progressive Denoising framework with intermediate supervision that decomposes the quality enhancement into a series of simpler denoising sub-tasks. Experimental results on datasets like LDV 2.0 and MFQE 2.0 indicate our approach surpasses state-of-the-art models.
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ Gaussian in the Dark: Real-Time View Synthesis From Inconsistent Dark Images Using Gaussian Splatting
3D Gaussian Splatting has recently emerged as a powerful representation that can synthesize remarkable novel views using consistent multi-view images as input. However, we notice that images captured in dark environments where the scenes are not fully illuminated can exhibit considerable brightness variations and multi-view inconsistency, which poses great challenges to 3D Gaussian Splatting and severely degrades its performance. To tackle this problem, we propose Gaussian-DK. Observing that inconsistencies are mainly caused by camera imaging, we represent a consistent radiance field of the physical world using a set of anisotropic 3D Gaussians, and design a camera response module to compensate for multi-view inconsistencies. We also introduce a step-based gradient scaling strategy to constrain Gaussians near the camera, which turn out to be floaters, from splitting and cloning. Experiments on our proposed benchmark dataset demonstrate that Gaussian-DK produces high-quality renderings without ghosting and floater artifacts and significantly outperforms existing methods. Furthermore, we can also synthesize light-up images by controlling exposure levels that clearly show details in shadow areas.
comment: accepted by PG 2024
♻ ☆ PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors
Online vectorized High-Definition (HD) map construction is crucial for subsequent prediction and planning tasks in autonomous driving. Following MapTR paradigm, recent works have made noteworthy achievements. However, reference points are randomly initialized in mainstream methods, leading to unstable matching between predictions and ground truth. To address this issue, we introduce PriorMapNet to enhance online vectorized HD map construction with priors. We propose the PPS-Decoder, which provides reference points with position and structure priors. Fitted from the map elements in the dataset, prior reference points lower the learning difficulty and achieve stable matching. Furthermore, we propose the PF-Encoder to enhance the image-to-BEV transformation with BEV feature priors. Besides, we propose the DMD cross-attention, which decouples cross-attention along multi-scale and multi-sample respectively to achieve efficiency. Our proposed PriorMapNet achieves state-of-the-art performance in the online vectorized HD map construction task on nuScenes and Argoverse2 datasets. The code will be released publicly soon.
♻ ☆ SAM Meets UAP: Attacking Segment Anything Model With Universal Adversarial Perturbation
As Segment Anything Model (SAM) becomes a popular foundation model in computer vision, its adversarial robustness has become a concern that cannot be ignored. This works investigates whether it is possible to attack SAM with image-agnostic Universal Adversarial Perturbation (UAP). In other words, we seek a single perturbation that can fool the SAM to predict invalid masks for most (if not all) images. We demonstrate convetional image-centric attack framework is effective for image-independent attacks but fails for universal adversarial attack. To this end, we propose a novel perturbation-centric framework that results in a UAP generation method based on self-supervised contrastive learning (CL), where the UAP is set to the anchor sample and the positive sample is augmented from the UAP. The representations of negative samples are obtained from the image encoder in advance and saved in a memory bank. The effectiveness of our proposed CL-based UAP generation method is validated by both quantitative and qualitative results. On top of the ablation study to understand various components in our proposed method, we shed light on the roles of positive and negative samples in making the generated UAP effective for attacking SAM.
♻ ☆ A study on the adequacy of common IQA measures for medical images
Image quality assessment (IQA) is standard practice in the development stage of novel machine learning algorithms that operate on images. The most commonly used IQA measures have been developed and tested for natural images, but not in the medical setting. Reported inconsistencies arising in medical images are not surprising, as they have different properties than natural images. In this study, we test the applicability of common IQA measures for medical image data by comparing their assessment to manually rated chest X-ray (5 experts) and photoacoustic image data (2 experts). Moreover, we include supplementary studies on grayscale natural images and accelerated brain MRI data. The results of all experiments show a similar outcome in line with previous findings for medical imaging: PSNR and SSIM in the default setting are in the lower range of the result list and HaarPSI outperforms the other tested measures in the overall performance. Also among the top performers in our medical experiments are the full reference measures FSIM, GMSD, LPIPS and MS-SSIM. Generally, the results on natural images yield considerably higher correlations, suggesting that the additional employment of tailored IQA measures for medical imaging algorithms is needed.
♻ ☆ Human-inspired Explanations for Vision Transformers and Convolutional Neural Networks ECCV 2024
We introduce Foveation-based Explanations (FovEx), a novel human-inspired visual explainability (XAI) method for Deep Neural Networks. Our method achieves state-of-the-art performance on both transformer (on 4 out of 5 metrics) and convolutional models (on 3 out of 5 metrics), demonstrating its versatility. Furthermore, we show the alignment between the explanation map produced by FovEx and human gaze patterns (+14\% in NSS compared to RISE, +203\% in NSS compared to gradCAM), enhancing our confidence in FovEx's ability to close the interpretation gap between humans and machines.
comment: Accepted at the Human-inspired Computer Vision (HCV) ECCV 2024 Workshop as an extended abstract. A long version of the work can be found at arXiv:2408.02123v1
♻ ☆ PersonViT: Large-scale Self-supervised Vision Transformer for Person Re-Identification
Person Re-Identification (ReID) aims to retrieve relevant individuals in non-overlapping camera images and has a wide range of applications in the field of public safety. In recent years, with the development of Vision Transformer (ViT) and self-supervised learning techniques, the performance of person ReID based on self-supervised pre-training has been greatly improved. Person ReID requires extracting highly discriminative local fine-grained features of the human body, while traditional ViT is good at extracting context-related global features, making it difficult to focus on local human body features. To this end, this article introduces the recently emerged Masked Image Modeling (MIM) self-supervised learning method into person ReID, and effectively extracts high-quality global and local features through large-scale unsupervised pre-training by combining masked image modeling and discriminative contrastive learning, and then conducts supervised fine-tuning training in the person ReID task. This person feature extraction method based on ViT with masked image modeling (PersonViT) has the good characteristics of unsupervised, scalable, and strong generalization capabilities, overcoming the problem of difficult annotation in supervised person ReID, and achieves state-of-the-art results on publicly available benchmark datasets, including MSMT17, Market1501, DukeMTMC-reID, and Occluded-Duke. The code and pre-trained models of the PersonViT method are released at \url{https://github.com/hustvl/PersonViT} to promote further research in the person ReID field.
♻ ☆ Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging
Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU-Net latent space is severely sparse and heavily under-utilized. To address this, we introduce mutual information maximization and entropy-regularized Sinkhorn Divergence in the latent space to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and latent space informativeness. Our results show that by applying this on public datasets of various clinical segmentation problems, our proposed methodology receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched Intersection over Union. The results indicate that encouraging a homogeneous latent space significantly improves latent density modeling for medical image segmentation.
♻ ☆ PetFace: A Large-Scale Dataset and Benchmark for Animal Identification ECCV 2024
Automated animal face identification plays a crucial role in the monitoring of behaviors, conducting of surveys, and finding of lost animals. Despite the advancements in human face identification, the lack of datasets and benchmarks in the animal domain has impeded progress. In this paper, we introduce the PetFace dataset, a comprehensive resource for animal face identification encompassing 257,484 unique individuals across 13 animal families and 319 breed categories, including both experimental and pet animals. This large-scale collection of individuals facilitates the investigation of unseen animal face verification, an area that has not been sufficiently explored in existing datasets due to the limited number of individuals. Moreover, PetFace also has fine-grained annotations such as sex, breed, color, and pattern. We provide multiple benchmarks including re-identification for seen individuals and verification for unseen individuals. The models trained on our dataset outperform those trained on prior datasets, even for detailed breed variations and unseen animal families. Our result also indicates that there is some room to improve the performance of integrated identification on multiple animal families. We hope the PetFace dataset will facilitate animal face identification and encourage the development of non-invasive animal automatic identification methods.
comment: ECCV 2024. Dataset and code: https://dahlian00.github.io/PetFacePage/
♻ ☆ Hibou: A Family of Foundational Vision Transformers for Pathology
Pathology, the microscopic examination of diseased tissue, is critical for diagnosing various medical conditions, particularly cancers. Traditional methods are labor-intensive and prone to human error. Digital pathology, which converts glass slides into high-resolution digital images for analysis by computer algorithms, revolutionizes the field by enhancing diagnostic accuracy, consistency, and efficiency through automated image analysis and large-scale data processing. Foundational transformer pretraining is crucial for developing robust, generalizable models as it enables learning from vast amounts of unannotated data. This paper introduces the Hibou family of foundational vision transformers for pathology, leveraging the DINOv2 framework to pretrain two model variants, Hibou-B and Hibou-L, on a proprietary dataset of over 1 million whole slide images (WSIs) representing diverse tissue types and staining techniques. Our pretrained models demonstrate superior performance on both patch-level and slide-level benchmarks, surpassing existing state-of-the-art methods. Notably, Hibou-L achieves the highest average accuracy across multiple benchmark datasets. To support further research and application in the field, we have open-sourced the Hibou models, which can be accessed at https://github.com/HistAI/hibou.
♻ ☆ Segment, Select, Correct: A Framework for Weakly-Supervised Referring Segmentation ECCV'24
Referring Image Segmentation (RIS) - the problem of identifying objects in images through natural language sentences - is a challenging task currently mostly solved through supervised learning. However, while collecting referred annotation masks is a time-consuming process, the few existing weakly-supervised and zero-shot approaches fall significantly short in performance compared to fully-supervised learning ones. To bridge the performance gap without mask annotations, we propose a novel weakly-supervised framework that tackles RIS by decomposing it into three steps: obtaining instance masks for the object mentioned in the referencing instruction (segment), using zero-shot learning to select a potentially correct mask for the given instruction (select), and bootstrapping a model which allows for fixing the mistakes of zero-shot selection (correct). In our experiments, using only the first two steps (zero-shot segment and select) outperforms other zero-shot baselines by as much as 16.5%, while our full method improves upon this much stronger baseline and sets the new state-of-the-art for weakly-supervised RIS, reducing the gap between the weakly-supervised and fully-supervised methods in some cases from around 33% to as little as 7%. Code is available at https://github.com/fgirbal/segment-select-correct.
comment: Accepted to ECCV'24 Workshop Proceedings (Instance-Level Recognition Workshop)
♻ ☆ Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE
As Artificial Intelligence Generated Content (AIGC) advances, a variety of methods have been developed to generate text, images, videos, and 3D objects from single or multimodal inputs, contributing efforts to emulate human-like cognitive content creation. However, generating realistic large-scale scenes from a single input presents a challenge due to the complexities involved in ensuring consistency across extrapolated views generated by models. Benefiting from recent video generation models and implicit neural representations, we propose Scene123, a 3D scene generation model, that not only ensures realism and diversity through the video generation framework but also uses implicit neural fields combined with Masked Autoencoders (MAE) to effectively ensures the consistency of unseen areas across views. Specifically, we initially warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model. However, these filled images usually fail to maintain view consistency, thus we utilize the produced views to optimize a neural radiance field, enhancing geometric consistency. Moreover, to further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model. Extensive experiments demonstrate that our method can generate realistic and consistent scenes from a single prompt. Both qualitative and quantitative results indicate that our approach surpasses existing state-of-the-art methods. We show encourage video examples at https://yiyingyang12.github.io/Scene123.github.io/.
comment: arXiv admin note: text overlap with arXiv:2305.11588 by other authors
♻ ☆ Novel class discovery meets foundation models for 3D semantic segmentation
The task of Novel Class Discovery (NCD) in semantic segmentation entails training a model able to accurately segment unlabelled (novel) classes, relying on the available supervision from annotated (base) classes. Although extensively investigated in 2D image data, the extension of the NCD task to the domain of 3D point clouds represents a pioneering effort, characterized by assumptions and challenges that are not present in the 2D case. This paper represents an advancement in the analysis of point cloud data in four directions. Firstly, it introduces the novel task of NCD for point cloud semantic segmentation. Secondly, it demonstrates that directly transposing the only existing NCD method for 2D image semantic segmentation to 3D data yields suboptimal results. Thirdly, a new NCD approach based on online clustering, uncertainty estimation, and semantic distillation is presented. Lastly, a novel evaluation protocol is proposed to rigorously assess the performance of NCD in point cloud semantic segmentation. Through comprehensive evaluations on the SemanticKITTI, SemanticPOSS, and S3DIS datasets, the paper demonstrates substantial superiority of the proposed method over the considered baselines.
comment: arXiv admin note: substantial text overlap with arXiv:2303.11610
♻ ☆ SearchLVLMs: A Plug-and-Play Framework for Augmenting Large Vision-Language Models by Searching Up-to-Date Internet Knowledge
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the singer of the theme song for the new Detective Conan movie, which wasn't released until April 2024. To solve the problem, a promising solution motivated by retrieval-augmented generation (RAG) is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed SearchLVLMs. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
comment: 13 pages, 6 figures, a plug-and-play framework to augment large vision-language models with up-to-date internet knowledge
♻ ☆ Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
Age prediction is an important part of medical assessments and research. It can aid in detecting diseases as well as abnormal ageing by highlighting potential discrepancies between chronological and biological age. To improve understanding of age-related changes in various body parts, we investigate the ageing of the human body on a large scale by using whole-body 3D images. We utilise the Grad-CAM method to determine the body areas most predictive of a person's age. In order to expand our analysis beyond individual subjects, we employ registration techniques to generate population-wide importance maps that show the most predictive areas in the body for a whole cohort of subjects. We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age. Our findings reveal three primary areas of interest: the spine, the autochthonous back muscles, and the cardiac region, which exhibits the highest importance. Finally, we investigate differences between subjects that show accelerated and decelerated ageing.
♻ ☆ A Fast and Computationally Inexpensive Method For Image Translation of 3D Volume Patient Data
CycleGAN was trained on SynthRAD Grand Challenge Dataset using the single-epoch modification (SEM) method proposed in this paper which is referred to as (CycleGAN-single) compared to the usual method of training CycleGAN on around 200 epochs (CycleGAN-multi). Model performance were evaluated qualitatively and quantitatively with quantitative performance metrics like PSNR, SSIM, MAE and MSE. The consideration of both quantitative and qualitative performance when evaluating a model is unique to certain image-translation tasks like medical imaging as detailed in this paper. Also, this paper shows that good quantitative performance does not always imply good qualitative performance and the converse is also not always True (i.e. good qualitative performance does not always imply good quantitative performance). This paper also proposes FQGA (Fast Paired Image-to-Image Translation Quarter-Generator Adversary) Model which has 1/4 the number of parameters compared to CycleGAN (when comparing their Generator Models). FQGA outperforms CycleGAN qualitatively and quantitatively even only after training on 20 epochs. Finally, using SEM method on FQGA allowed it to again outperform CycleGAN both quantitatively and qualitatively. These performance gains with fewer model parameters and time savings from running fewer epochs may also be applicable to other image-to-image translation tasks in Machine Learning apart from the Medical image-translation task discussed in this paper between Cone Beam Computed Tomography (CBCT) and Computed Tomography (CT) images.
♻ ☆ Snuffy: Efficient Whole Slide Image Classifier ECCV 2024
Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requiring long training periods and considerable computational resources. At the same time, no pre-training affects performance due to domain shifts from natural images to WSIs. We introduce Snuffy architecture, a novel MIL-pooling method based on sparse transformers that mitigates performance loss with limited pre-training and enables continual few-shot pre-training as a competitive option. Our sparsity pattern is tailored for pathology and is theoretically proven to be a universal approximator with the tightest probabilistic sharp bound on the number of layers for sparse transformers, to date. We demonstrate Snuffy's effectiveness on CAMELYON16 and TCGA Lung cancer datasets, achieving superior WSI and patch-level accuracies. The code is available on https://github.com/jafarinia/snuffy.
comment: Accepted for ECCV 2024
♻ ☆ S3E: A Mulit-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. For access to the dataset and the latest information, please visit our repository at https://pengyu-team.github.io/S3E.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Contrastive Learning for Lane Detection via cross-similarity
Detecting lane markings in road scenes poses a challenge due to their intricate nature, which is susceptible to unfavorable conditions. While lane markings have strong shape priors, their visibility is easily compromised by lighting conditions, occlusions by other vehicles or pedestrians, and fading of colors over time. The detection process is further complicated by the presence of several lane shapes and natural variations, necessitating large amounts of data to train a robust lane detection model capable of handling various scenarios. In this paper, we present a novel self-supervised learning method termed Contrastive Learning for Lane Detection via cross-similarity (CLLD) to enhance the resilience of lane detection models in real-world scenarios, particularly when the visibility of lanes is compromised. CLLD introduces a contrastive learning (CL) method that assesses the similarity of local features within the global context of the input image. It uses the surrounding information to predict lane markings. This is achieved by integrating local feature contrastive learning with our proposed cross-similar operation. The local feature CL concentrates on extracting features from small patches, a necessity for accurately localizing lane segments. Meanwhile, cross-similarity captures global features, enabling the detection of obscured lane segments based on their surroundings. We enhance cross-similarity by randomly masking portions of input images in the process of augmentation. Extensive experiments on TuSimple and CuLane benchmarks demonstrate that CLLD outperforms SOTA contrastive learning methods, particularly in visibility-impairing conditions like shadows, while it also delivers comparable results under normal conditions. Compared to supervised learning, CLLD still excels in challenging scenarios such as shadows and crowded scenes, which are common in real-world driving.
comment: 11 pages
♻ ☆ IIDM: Image-to-Image Diffusion Model for Semantic Image Synthesis
Semantic image synthesis aims to generate high-quality images given semantic conditions, i.e. segmentation masks and style reference images. Existing methods widely adopt generative adversarial networks (GANs). GANs take all conditional inputs and directly synthesize images in a single forward step. In this paper, semantic image synthesis is treated as an image denoising task and is handled with a novel image-to-image diffusion model (IIDM). Specifically, the style reference is first contaminated with random noise and then progressively denoised by IIDM, guided by segmentation masks. Moreover, three techniques, refinement, color-transfer and model ensembles, are proposed to further boost the generation quality. They are plug-in inference modules and do not require additional training. Extensive experiments show that our IIDM outperforms existing state-of-the-art methods by clear margins. Further analysis is provided via detailed demonstrations. We have implemented IIDM based on the Jittor framework; code is available at https://github.com/ader47/jittor-jieke-semantic_images_synthesis.
comment: 6 pages, 7 figures, accepted by CVMJ 2024
♻ ☆ ECAFormer: Low-light Image Enhancement using Cross Attention
Low-light image enhancement (LLIE) is critical in computer vision. Existing LLIE methods often fail to discover the underlying relationships between different sub-components, causing the loss of complementary information between multiple modules and network layers, ultimately resulting in the loss of image details. To beat this shortage, we design a hierarchical mutual Enhancement via a Cross Attention transformer (ECAFormer), which introduces an architecture that enables concurrent propagation and interaction of multiple features. The model preserves detailed information by introducing a Dual Multi-head self-attention (DMSA), which leverages visual and semantic features across different scales, allowing them to guide and complement each other. Besides, a Cross-Scale DMSA block is introduced to capture the residual connection, integrating cross-layer information to further enhance image detail. Experimental results show that ECAFormer reaches competitive performance across multiple benchmarks, yielding nearly a 3% improvement in PSNR over the suboptimal method, demonstrating the effectiveness of information interaction in LLIE.
♻ ☆ Conditional Prototype Rectification Prompt Learning
Pre-trained large-scale vision-language models (VLMs) have acquired profound understanding of general visual concepts. Recent advancements in efficient transfer learning (ETL) have shown remarkable success in fine-tuning VLMs within the scenario of limited data, introducing only a few parameters to harness task-specific insights from VLMs. Despite significant progress, current leading ETL methods tend to overfit the narrow distributions of base classes seen during training and encounter two primary challenges: (i) only utilizing uni-modal information to modeling task-specific knowledge; and (ii) using costly and time-consuming methods to supplement knowledge. To address these issues, we propose a Conditional Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way. Specifically, we alleviate overfitting on base classes from two aspects. First, each input image acquires knowledge from both textual and visual prototypes, and then generates sample-conditional text tokens. Second, we extract utilizable knowledge from unlabeled data to further refine the prototypes. These two strategies mitigate biases stemming from base classes, yielding a more effective classifier. Extensive experiments on 11 benchmark datasets show that our CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks. Our code is avaliable at \url{https://github.com/chenhaoxing/CPR}.
♻ ☆ AvatarPose: Avatar-guided 3D Pose Estimation of Close Human Interaction from Sparse Multi-view Videos
Despite progress in human motion capture, existing multi-view methods often face challenges in estimating the 3D pose and shape of multiple closely interacting people. This difficulty arises from reliance on accurate 2D joint estimations, which are hard to obtain due to occlusions and body contact when people are in close interaction. To address this, we propose a novel method leveraging the personalized implicit neural avatar of each individual as a prior, which significantly improves the robustness and precision of this challenging pose estimation task. Concretely, the avatars are efficiently reconstructed via layered volume rendering from sparse multi-view videos. The reconstructed avatar prior allows for the direct optimization of 3D poses based on color and silhouette rendering loss, bypassing the issues associated with noisy 2D detections. To handle interpenetration, we propose a collision loss on the overlapping shape regions of avatars to add penetration constraints. Moreover, both 3D poses and avatars are optimized in an alternating manner. Our experimental results demonstrate state-of-the-art performance on several public datasets.
comment: Project Page: https://eth-ait.github.io/AvatarPose/
♻ ☆ DeCoF: Generated Video Detection via Frame Consistency: The First Benchmark Dataset
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models. Our code and dataset will be released at \url{https://github.com/wuwuwuyue/DeCoF}.
♻ ☆ Panorama Tomosynthesis from Head CBCT with Simulated Projection Geometry
Cone Beam Computed Tomography (CBCT) and Panoramic X-rays are the most commonly used imaging modalities in dental health care. CBCT can produce three-dimensional views of a patient's head, providing clinicians with better diagnostic capability, whereas Panoramic X-ray can capture the entire maxillofacial region in a single image. If the CBCT is already available, it can be beneficial to synthesize a Panoramic X-ray, thereby avoiding an immediate additional scan and extra radiation exposure. Existing methods focus on delineating an approximate dental arch and creating orthogonal projections along this arch. However, no golden standard is available for such dental arch extractions, and this choice can affect the quality of synthesized X-rays. To avoid such issues, we propose a novel method for synthesizing Panoramic X-rays from diverse head CBCTs, employing a simulated projection geometry and dynamic rotation centers. Our method effectively synthesized panoramic views from CBCT, even for patients with missing or nonexistent teeth and in the presence of severe metal implants. Our results demonstrate that this method can generate high-quality panoramic images irrespective of the CBCT scanner geometry.
comment: 12 pages, 6 figures, 1 table, Journal submission planned
♻ ☆ Box-Free Model Watermarks Are Prone to Black-Box Removal Attacks
Box-free model watermarking is an emerging technique to safeguard the intellectual property of deep learning models, particularly those for low-level image processing tasks. Existing works have verified and improved its effectiveness in several aspects. However, in this paper, we reveal that box-free model watermarking is prone to removal attacks, even under the real-world threat model such that the protected model and the watermark extractor are in black boxes. Under this setting, we carry out three studies. 1) We develop an extractor-gradient-guided (EGG) remover and show its effectiveness when the extractor uses ReLU activation only. 2) More generally, for an unknown extractor, we leverage adversarial attacks and design the EGG remover based on the estimated gradients. 3) Under the most stringent condition that the extractor is inaccessible, we design a transferable remover based on a set of private proxy models. In all cases, the proposed removers can successfully remove embedded watermarks while preserving the quality of the processed images, and we also demonstrate that the EGG remover can even replace the watermarks. Extensive experimental results verify the effectiveness and generalizability of the proposed attacks, revealing the vulnerabilities of the existing box-free methods and calling for further research.
♻ ☆ Quantum Visual Feature Encoding Revisited
Although quantum machine learning has been introduced for a while, its applications in computer vision are still limited. This paper, therefore, revisits the quantum visual encoding strategies, the initial step in quantum machine learning. Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process, thus complicating the learning process of the quantum machine learning models. In particular, the problem, termed "Quantum Information Gap" (QIG), leads to a gap of information between classical and corresponding quantum features. We provide theoretical proof and practical demonstrations of that found and underscore the significance of QIG, as it directly impacts the performance of quantum machine learning algorithms. To tackle this challenge, we introduce a simple but efficient new loss function named Quantum Information Preserving (QIP) to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms. Extensive experiments validate the effectiveness of our approach, showcasing superior performance compared to current methodologies and consistently achieving state-of-the-art results in quantum modeling.
comment: Accepted to Quantum Machine Intelligence
♻ ☆ PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering
Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.
comment: Accepted by ACMMM2024. Code: https://github.com/CodeGoat24/PrimeComposer
♻ ☆ New Job, New Gender? Measuring the Social Bias in Image Generation Models ACM MM 2024
Image generation models can generate or edit images from a given text. Recent advancements in image generation technology, exemplified by DALL-E and Midjourney, have been groundbreaking. These advanced models, despite their impressive capabilities, are often trained on massive Internet datasets, making them susceptible to generating content that perpetuates social stereotypes and biases, which can lead to severe consequences. Prior research on assessing bias within image generation models suffers from several shortcomings, including limited accuracy, reliance on extensive human labor, and lack of comprehensive analysis. In this paper, we propose BiasPainter, a novel evaluation framework that can accurately, automatically and comprehensively trigger social bias in image generation models. BiasPainter uses a diverse range of seed images of individuals and prompts the image generation models to edit these images using gender, race, and age-neutral queries. These queries span 62 professions, 39 activities, 57 types of objects, and 70 personality traits. The framework then compares the edited images to the original seed images, focusing on the significant changes related to gender, race, and age. BiasPainter adopts a key insight that these characteristics should not be modified when subjected to neutral prompts. Built upon this design, BiasPainter can trigger the social bias and evaluate the fairness of image generation models. We use BiasPainter to evaluate six widely-used image generation models, such as stable diffusion and Midjourney. Experimental results show that BiasPainter can successfully trigger social bias in image generation models. According to our human evaluation, BiasPainter can achieve 90.8% accuracy on automatic bias detection, which is significantly higher than the results reported in previous work.
comment: ACM MM 2024 Oral
♻ ☆ MMBench: Is Your Multi-modal Model an All-around Player? ECCV2024
Large vision-language models (VLMs) have recently achieved remarkable progress, exhibiting impressive multimodal perception and reasoning abilities. However, effectively evaluating these large VLMs remains a major challenge, hindering future development in this domain. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but lack fine-grained ability assessment and robust evaluation metrics. Meanwhile, subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, which is not scalable and may display significant bias. In response to these challenges, we propose MMBench, a bilingual benchmark for assessing the multi-modal capabilities of VLMs. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of the following key features: 1. MMBench is meticulously curated with well-designed quality control schemes, surpassing existing similar benchmarks in terms of the number and variety of evaluation questions and abilities; 2. MMBench introduces a rigorous CircularEval strategy and incorporates large language models to convert free-form predictions into pre-defined choices, which helps to yield accurate evaluation results for models with limited instruction-following capabilities. 3. MMBench incorporates multiple-choice questions in both English and Chinese versions, enabling an apples-to-apples comparison of VLMs' performance under a bilingual context. To summarize, MMBench is a systematically designed objective benchmark for a robust and holistic evaluation of vision-language models. We hope MMBench will assist the research community in better evaluating their models and facilitate future progress in this area. The evalutation code of MMBench has been integrated into VLMEvalKit: https://github.com/open-compass/VLMEvalKit.
comment: Accepted in ECCV2024 as Oral Presentation
♻ ☆ GECO: Generative Image-to-3D within a SECOnd
Recent years have seen significant advancements in 3D generation. While methods like score distillation achieve impressive results, they often require extensive per-scene optimization, which limits their time efficiency. On the other hand, reconstruction-based approaches are more efficient but tend to compromise quality due to their limited ability to handle uncertainty. We introduce GECO, a novel method for high-quality 3D generative modeling that operates within a second. Our approach addresses the prevalent issues of uncertainty and inefficiency in existing methods through a two-stage approach. In the first stage, we train a single-step multi-view generative model with score distillation. Then, a second-stage distillation is applied to address the challenge of view inconsistency in the multi-view generation. This two-stage process ensures a balanced approach to 3D generation, optimizing both quality and efficiency. Our comprehensive experiments demonstrate that GECO achieves high-quality image-to-3D mesh generation with an unprecedented level of efficiency. We will make the code and model publicly available.
comment: Project Page: https://cwchenwang.github.io/geco
♻ ☆ Multimodal self-supervised learning for lesion localization
Multimodal deep learning utilizing imaging and diagnostic reports has made impressive progress in the field of medical imaging diagnostics, demonstrating a particularly strong capability for auxiliary diagnosis in cases where sufficient annotation information is lacking. Nonetheless, localizing diseases accurately without detailed positional annotations remains a challenge. Although existing methods have attempted to utilize local information to achieve fine-grained semantic alignment, their capability in extracting the fine-grained semantics of the comprehensive context within reports is limited. To address this problem, a new method is introduced that takes full sentences from textual reports as the basic units for local semantic alignment. This approach combines chest X-ray images with their corresponding textual reports, performing contrastive learning at both global and local levels. The leading results obtained by this method on multiple datasets confirm its efficacy in the task of lesion localization.
♻ ☆ Rethinking the Zigzag Flattening for Image Reading
Sequence ordering of word vector matters a lot to text reading, which has been proven in natural language processing (NLP). However, the rule of different sequence ordering in computer vision (CV) was not well explored, e.g., why the ``zigzag" flattening (ZF) is commonly utilized as a default option to get the image patches ordering in vision networks. Notably, when decomposing multi-scale images, the ZF could not maintain the invariance of feature point positions. To this end, we investigate the Hilbert fractal flattening (HF) as another method for sequence ordering in CV and contrast it against ZF. The HF has proven to be superior to other curves in maintaining spatial locality, when performing multi-scale transformations of dimensional space. And it can be easily plugged into most deep neural networks (DNNs). Extensive experiments demonstrate that it can yield consistent and significant performance boosts for a variety of architectures. Finally, we hope that our studies spark further research about the flattening strategy of image reading.
comment: Modify the title, and introduce more innovative content
♻ ☆ High-Quality Mesh Blendshape Generation from Face Videos via Neural Inverse Rendering
Readily editable mesh blendshapes have been widely used in animation pipelines, while recent advancements in neural geometry and appearance representations have enabled high-quality inverse rendering. Building upon these observations, we introduce a novel technique that reconstructs mesh-based blendshape rigs from single or sparse multi-view videos, leveraging state-of-the-art neural inverse rendering. We begin by constructing a deformation representation that parameterizes vertex displacements into differential coordinates with tetrahedral connections, allowing for high-quality vertex deformation on high-resolution meshes. By constructing a set of semantic regulations in this representation, we achieve joint optimization of blendshapes and expression coefficients. Furthermore, to enable a user-friendly multi-view setup with unsynchronized cameras, we propose a neural regressor to model time-varying motion parameters. This approach implicitly considers the time difference across multiple cameras, enhancing the accuracy of motion modeling. Experiments demonstrate that, with the flexible input of single or sparse multi-view videos, we reconstruct personalized high-fidelity blendshapes. These blendshapes are both geometrically and semantically accurate, and they are compatible with industrial animation pipelines. Code and data are available at https://github.com/grignarder/high-quality-blendshape-generation.
♻ ☆ Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Few-shot anomaly detection (FSAD) plays a crucial role in industrial manufacturing. However, existing FSAD methods encounter difficulties leveraging a limited number of normal samples, frequently failing to detect and locate inconspicuous anomalies in the spatial domain. We have further discovered that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. The original spatial images are transformed into multi-frequency images, making them more conducive to the tailored discriminators in detecting anomalies. Additionally, the discriminators learn a joint representation with forms of pseudo-anomalies. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. Source code will be available.
comment: Accepted by KBS
♻ ☆ SVIPTR: Fast and Efficient Scene Text Recognition with Vision Permutable Extractor
Scene Text Recognition (STR) is an important and challenging upstream task for building structured information databases, that involves recognizing text within images of natural scenes. Although current state-of-the-art (SOTA) models for STR exhibit high performance, they typically suffer from low inference efficiency due to their reliance on hybrid architectures comprised of visual encoders and sequence decoders. In this work, we propose a VIsion Permutable extractor for fast and efficient Scene Text Recognition (SVIPTR), which achieves an impressive balance between high performance and rapid inference speeds in the domain of STR. Specifically, SVIPTR leverages a visual-semantic extractor with a pyramid structure, characterized by the Permutation and combination of local and global self-attention layers. This design results in a lightweight and efficient model and its inference is insensitive to input length. Extensive experimental results on various standard datasets for both Chinese and English scene text recognition validate the superiority of SVIPTR. Notably, the SVIPTR-T (Tiny) variant delivers highly competitive accuracy on par with other lightweight models and achieves SOTA inference speeds. Meanwhile, the SVIPTR-L (Large) attains SOTA accuracy in single-encoder-type models, while maintaining a low parameter count and favorable inference speed. Our proposed method provides a compelling solution for the STR challenge, which greatly benefits real-world applications requiring fast and efficient STR. The code is publicly available at https://github.com/cxfyxl/VIPTR.
comment: 10 pages, 4 figures, 6 tables
♻ ☆ GaussianStyle: Gaussian Head Avatar via StyleGAN
Existing methods like Neural Radiation Fields (NeRF) and 3D Gaussian Splatting (3DGS) have made significant strides in facial attribute control such as facial animation and components editing, yet they struggle with fine-grained representation and scalability in dynamic head modeling. To address these limitations, we propose GaussianStyle, a novel framework that integrates the volumetric strengths of 3DGS with the powerful implicit representation of StyleGAN. The GaussianStyle preserves structural information, such as expressions and poses, using Gaussian points, while projecting the implicit volumetric representation into StyleGAN to capture high-frequency details and mitigate the over-smoothing commonly observed in neural texture rendering. Experimental outcomes indicate that our method achieves state-of-the-art performance in reenactment, novel view synthesis, and animation.
comment: demo page and code to be updated soon
Artificial Intelligence 199
☆ NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency
We propose sorting patch representations across views as a novel self-supervised learning signal to improve pretrained representations. To this end, we introduce NeCo: Patch Neighbor Consistency, a novel training loss that enforces patch-level nearest neighbor consistency across a student and teacher model, relative to reference batches. Our method leverages a differentiable sorting method applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. We demonstrate that this method generates high-quality dense feature encoders and establish several new state-of-the-art results: +5.5% and + 6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, and +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff.
comment: Preprint. The webpage is accessible at: https://vpariza.github.io/NeCo/
☆ Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks
The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.
comment: This paper revisits and improves the benchmark first presented in arXiv:2309.07544. Seven pages, three figures
☆ Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environments as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark JaxGCRL for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. The key to this performance is a combination of GPU-accelerated environments and a stable, batched version of the contrastive reinforcement learning algorithm, based on an infoNCE objective, that effectively makes use of this increased data throughput. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in a diverse set of challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
FLAME: Learning to Navigate with Multimodal LLM in Urban Environments
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for trajectory summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion rate on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards practical applications of MLLMs in embodied AI. Project page: https://flame-sjtu.github.io
comment: 10 pages, 5 figures
☆ RP1M: A Large-Scale Motion Dataset for Piano Playing with Bi-Manual Dexterous Robot Hands
It has been a long-standing research goal to endow robot hands with human-level dexterity. Bi-manual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bi-manual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs. Benchmarking existing imitation learning approaches shows that such approaches reach state-of-the-art robot piano playing performance by leveraging RP1M.
comment: Project Website: https://rp1m.github.io/
☆ Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research KDD '24
Qualitative data collection and analysis approaches, such as those employing interviews and focus groups, provide rich insights into customer attitudes, sentiment, and behavior. However, manually analyzing qualitative data requires extensive time and effort to identify relevant topics and thematic insights. This study proposes a novel approach to address this challenge by leveraging Retrieval Augmented Generation (RAG) based Large Language Models (LLMs) for analyzing interview transcripts. The novelty of this work lies in strategizing the research inquiry as one that is augmented by an LLM that serves as a novice research assistant. This research explores the mental model of LLMs to serve as novice qualitative research assistants for researchers in the talent management space. A RAG-based LLM approach is extended to enable topic modeling of semi-structured interview data, showcasing the versatility of these models beyond their traditional use in information retrieval and search. Our findings demonstrate that the LLM-augmented RAG approach can successfully extract topics of interest, with significant coverage compared to manually generated topics from the same dataset. This establishes the viability of employing LLMs as novice qualitative research assistants. Additionally, the study recommends that researchers leveraging such models lean heavily on quality criteria used in traditional qualitative research to ensure rigor and trustworthiness of their approach. Finally, the paper presents key recommendations for industry practitioners seeking to reconcile the use of LLMs with established qualitative research paradigms, providing a roadmap for the effective integration of these powerful, albeit novice, AI tools in the analysis of qualitative datasets within talent
comment: Accepted to KDD '24 workshop on Talent Management and Computing (TMC 2024). 9 pages
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
Many graph algorithms can be viewed as sets of rules that are iteratively applied, with the number of iterations dependent on the size and complexity of the input graph. Existing machine learning architectures often struggle to represent these algorithmic decisions as discrete state transitions. Therefore, we propose a novel framework: GraphFSA (Graph Finite State Automaton). GraphFSA is designed to learn a finite state automaton that runs on each node of a given graph. We test GraphFSA on cellular automata problems, showcasing its abilities in a straightforward algorithmic setting. For a comprehensive empirical evaluation of our framework, we create a diverse range of synthetic problems. As our main application, we then focus on learning more elaborate graph algorithms. Our findings suggest that GraphFSA exhibits strong generalization and extrapolation abilities, presenting an alternative approach to represent these algorithms.
comment: Published as a conference paper at ECAI 2024
☆ Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model
We introduce Transfusion, a recipe for training a multi-modal model over discrete and continuous data. Transfusion combines the language modeling loss function (next token prediction) with diffusion to train a single transformer over mixed-modality sequences. We pretrain multiple Transfusion models up to 7B parameters from scratch on a mixture of text and image data, establishing scaling laws with respect to a variety of uni- and cross-modal benchmarks. Our experiments show that Transfusion scales significantly better than quantizing images and training a language model over discrete image tokens. By introducing modality-specific encoding and decoding layers, we can further improve the performance of Transfusion models, and even compress each image to just 16 patches. We further demonstrate that scaling our Transfusion recipe to 7B parameters and 2T multi-modal tokens produces a model that can generate images and text on a par with similar scale diffusion models and language models, reaping the benefits of both worlds.
comment: 23 pages
☆ Athena: Safe Autonomous Agents with Verbal Contrastive Learning
Due to emergent capabilities, large language models (LLMs) have been utilized as language-based agents to perform a variety of tasks and make decisions with an increasing degree of autonomy. These autonomous agents can understand high-level instructions, interact with their environments, and execute complex tasks using a selection of tools available to them. As the capabilities of the agents expand, ensuring their safety and trustworthiness becomes more imperative. In this study, we introduce the Athena framework which leverages the concept of verbal contrastive learning where past safe and unsafe trajectories are used as in-context (contrastive) examples to guide the agent towards safety while fulfilling a given task. The framework also incorporates a critiquing mechanism to guide the agent to prevent risky actions at every step. Furthermore, due to the lack of existing benchmarks on the safety reasoning ability of LLM-based agents, we curate a set of 80 toolkits across 8 categories with 180 scenarios to provide a safety evaluation benchmark. Our experimental evaluation, with both closed- and open-source LLMs, indicates verbal contrastive learning and interaction-level critiquing improve the safety rate significantly.
comment: 9 pages, 2 figures, 4 tables
☆ An Overlooked Role of Context-Sensitive Dendrites
To date, most dendritic studies have predominantly focused on the apical zone of pyramidal two-point neurons (TPNs) receiving only feedback (FB) connections from higher perceptual layers and using them for learning. Recent cellular neurophysiology and computational neuroscience studies suggests that the apical input (context), coming from feedback and lateral connections, is multifaceted and far more diverse, with greater implications for ongoing learning and processing in the brain than previously realized. In addition to the FB, the apical tuft receives signals from neighboring cells of the same network as proximal (P) context, other parts of the brain as distal (D) context, and overall coherent information across the network as universal (U) context. The integrated context (C) amplifies and suppresses the transmission of coherent and conflicting feedforward (FF) signals, respectively. Specifically, we show that complex context-sensitive (CS)-TPNs flexibly integrate C moment-by-moment with the FF somatic current at the soma such that the somatic current is amplified when both feedforward (FF) and C are coherent; otherwise, it is attenuated. This generates the event only when the FF and C currents are coherent, which is then translated into a singlet or a burst based on the FB information. Spiking simulation results show that this flexible integration of somatic and contextual currents enables the propagation of more coherent signals (bursts), making learning faster with fewer neurons. Similar behavior is observed when this functioning is used in conventional artificial networks, where orders of magnitude fewer neurons are required to process vast amounts of heterogeneous real-world audio-visual (AV) data trained using backpropagation (BP). The computational findings presented here demonstrate the universality of CS-TPNs, suggesting a dendritic narrative that was previously overlooked.
☆ Multiwinner Temporal Voting with Aversion to Change
We study two-stage committee elections where voters have dynamic preferences over candidates; at each stage, a committee is chosen under a given voting rule. We are interested in identifying a winning committee for the second stage that overlaps as much as possible with the first-stage committee. We show a full complexity dichotomy for the class of Thiele rules: this problem is tractable for Approval Voting (AV) and hard for all other Thiele rules (including, in particular, Proportional Approval Voting and the Chamberlin-Courant rule). We extend this dichotomy to the greedy variants of Thiele rules. We also explore this problem from a parameterized complexity perspective for several natural parameters. We complement the theory with experimental analysis: e.g., we investigate the average number of changes in the committee as a function of changes in voters' preferences and the role of ties.
comment: Appears in the 27th European Conference on Artificial Intelligence (ECAI), 2024
☆ Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models
Ultrasound plane wave imaging is a cutting-edge technique that enables high frame-rate imaging. However, one challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption. Therefore, the development of a denoising method becomes imperative to augment the quality of plane wave images. Drawing inspiration from Denoising Diffusion Probabilistic Models (DDPMs), our proposed solution aims to enhance plane wave image quality. Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise and effectively eliminates it by adapting a DDPM to beamformed radiofrequency (RF) data. The method underwent training using only 400 simulated images. In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes. The proposed method was assessed across simulation, phantom, and in vivo images. The results of the evaluations indicate that our approach not only enhances image quality on simulated data but also demonstrates effectiveness on phantom and in vivo data in terms of image quality. Comparative analysis with other methods underscores the superiority of our proposed method across various evaluation metrics. The source code and trained model will be released along with the dataset at: http://code.sonography.ai
☆ Hybrid Recurrent Models Support Emergent Descriptions for Hierarchical Planning and Control
An open problem in artificial intelligence is how systems can flexibly learn discrete abstractions that are useful for solving inherently continuous problems. Previous work has demonstrated that a class of hybrid state-space model known as recurrent switching linear dynamical systems (rSLDS) discover meaningful behavioural units via the piecewise linear decomposition of complex continuous dynamics (Linderman et al., 2016). Furthermore, they model how the underlying continuous states drive these discrete mode switches. We propose that the rich representations formed by an rSLDS can provide useful abstractions for planning and control. We present a novel hierarchical model-based algorithm inspired by Active Inference in which a discrete MDP sits above a low-level linear-quadratic controller. The recurrent transition dynamics learned by the rSLDS allow us to (1) specify temporally-abstracted sub-goals in a method reminiscent of the options framework, (2) lift the exploration into discrete space allowing us to exploit information-theoretic exploration bonuses and (3) `cache' the approximate solutions to low-level problems in the discrete planner. We successfully apply our model to the sparse Continuous Mountain Car task, demonstrating fast system identification via enhanced exploration and non-trivial planning through the delineation of abstract sub-goals.
comment: 4 pages, 3 figures
☆ Wave-Mask/Mix: Exploring Wavelet-Based Augmentations for Time Series Forecasting
Data augmentation is important for improving machine learning model performance when faced with limited real-world data. In time series forecasting (TSF), where accurate predictions are crucial in fields like finance, healthcare, and manufacturing, traditional augmentation methods for classification tasks are insufficient to maintain temporal coherence. This research introduces two augmentation approaches using the discrete wavelet transform (DWT) to adjust frequency elements while preserving temporal dependencies in time series data. Our methods, Wavelet Masking (WaveMask) and Wavelet Mixing (WaveMix), are evaluated against established baselines across various forecasting horizons. To the best of our knowledge, this is the first study to conduct extensive experiments on multivariate time series using Discrete Wavelet Transform as an augmentation technique. Experimental results demonstrate that our techniques achieve competitive results with previous methods. We also explore cold-start forecasting using downsampled training datasets, comparing outcomes to baseline methods.
☆ GAIM: Attacking Graph Neural Networks via Adversarial Influence Maximization
Recent studies show that well-devised perturbations on graph structures or node features can mislead trained Graph Neural Network (GNN) models. However, these methods often overlook practical assumptions, over-rely on heuristics, or separate vital attack components. In response, we present GAIM, an integrated adversarial attack method conducted on a node feature basis while considering the strict black-box setting. Specifically, we define an adversarial influence function to theoretically assess the adversarial impact of node perturbations, thereby reframing the GNN attack problem into the adversarial influence maximization problem. In our approach, we unify the selection of the target node and the construction of feature perturbations into a single optimization problem, ensuring a unique and consistent feature perturbation for each target node. We leverage a surrogate model to transform this problem into a solvable linear programming task, streamlining the optimization process. Moreover, we extend our method to accommodate label-oriented attacks, broadening its applicability. Thorough evaluations on five benchmark datasets across three popular models underscore the effectiveness of our method in both untargeted and label-oriented targeted attacks. Through comprehensive analysis and ablation studies, we demonstrate the practical value and efficacy inherent to our design choices.
☆ Dr.Academy: A Benchmark for Evaluating Questioning Capability in Education for Large Language Models ACL 2024
Teachers are important to imparting knowledge and guiding learners, and the role of large language models (LLMs) as potential educators is emerging as an important area of study. Recognizing LLMs' capability to generate educational content can lead to advances in automated and personalized learning. While LLMs have been tested for their comprehension and problem-solving skills, their capability in teaching remains largely unexplored. In teaching, questioning is a key skill that guides students to analyze, evaluate, and synthesize core concepts and principles. Therefore, our research introduces a benchmark to evaluate the questioning capability in education as a teacher of LLMs through evaluating their generated educational questions, utilizing Anderson and Krathwohl's taxonomy across general, monodisciplinary, and interdisciplinary domains. We shift the focus from LLMs as learners to LLMs as educators, assessing their teaching capability through guiding them to generate questions. We apply four metrics, including relevance, coverage, representativeness, and consistency, to evaluate the educational quality of LLMs' outputs. Our results indicate that GPT-4 demonstrates significant potential in teaching general, humanities, and science courses; Claude2 appears more apt as an interdisciplinary teacher. Furthermore, the automatic scores align with human perspectives.
comment: Accepted to ACL 2024
☆ Large Language Model Driven Recommendation
While previous chapters focused on recommendation systems (RSs) based on standardized, non-verbal user feedback such as purchases, views, and clicks -- the advent of LLMs has unlocked the use of natural language (NL) interactions for recommendation. This chapter discusses how LLMs' abilities for general NL reasoning present novel opportunities to build highly personalized RSs -- which can effectively connect nuanced and diverse user preferences to items, potentially via interactive dialogues. To begin this discussion, we first present a taxonomy of the key data sources for language-driven recommendation, covering item descriptions, user-system interactions, and user profiles. We then proceed to fundamental techniques for LLM recommendation, reviewing the use of encoder-only and autoregressive LLM recommendation in both tuned and untuned settings. Afterwards, we move to multi-module recommendation architectures in which LLMs interact with components such as retrievers and RSs in multi-stage pipelines. This brings us to architectures for conversational recommender systems (CRSs), in which LLMs facilitate multi-turn dialogues where each turn presents an opportunity not only to make recommendations, but also to engage with the user in interactive preference elicitation, critiquing, and question-answering.
☆ HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments
High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.
comment: Preprint
☆ A Closer Look at Data Augmentation Strategies for Finetuning-Based Low/Few-Shot Object Detection
Current methods for low- and few-shot object detection have primarily focused on enhancing model performance for detecting objects. One common approach to achieve this is by combining model finetuning with data augmentation strategies. However, little attention has been given to the energy efficiency of these approaches in data-scarce regimes. This paper seeks to conduct a comprehensive empirical study that examines both model performance and energy efficiency of custom data augmentations and automated data augmentation selection strategies when combined with a lightweight object detector. The methods are evaluated in three different benchmark datasets in terms of their performance and energy consumption, and the Efficiency Factor is employed to gain insights into their effectiveness considering both performance and efficiency. Consequently, it is shown that in many cases, the performance gains of data augmentation strategies are overshadowed by their increased energy usage, necessitating the development of more energy efficient data augmentation strategies to address data scarcity.
☆ SDI-Net: Toward Sufficient Dual-View Interaction for Low-light Stereo Image Enhancement
Currently, most low-light image enhancement methods only consider information from a single view, neglecting the correlation between cross-view information. Therefore, the enhancement results produced by these methods are often unsatisfactory. In this context, there have been efforts to develop methods specifically for low-light stereo image enhancement. These methods take into account the cross-view disparities and enable interaction between the left and right views, leading to improved performance. However, these methods still do not fully exploit the interaction between left and right view information. To address this issue, we propose a model called Toward Sufficient Dual-View Interaction for Low-light Stereo Image Enhancement (SDI-Net). The backbone structure of SDI-Net is two encoder-decoder pairs, which are used to learn the mapping function from low-light images to normal-light images. Among the encoders and the decoders, we design a module named Cross-View Sufficient Interaction Module (CSIM), aiming to fully exploit the correlations between the binocular views via the attention mechanism. The quantitative and visual results on public datasets validate the superiority of our method over other related methods. Ablation studies also demonstrate the effectiveness of the key elements in our model.
☆ The Evolution of Reinforcement Learning in Quantitative Finance
Reinforcement Learning (RL) has experienced significant advancement over the past decade, prompting a growing interest in applications within finance. This survey critically evaluates 167 publications, exploring diverse RL applications and frameworks in finance. Financial markets, marked by their complexity, multi-agent nature, information asymmetry, and inherent randomness, serve as an intriguing test-bed for RL. Traditional finance offers certain solutions, and RL advances these with a more dynamic approach, incorporating machine learning methods, including transfer learning, meta-learning, and multi-agent solutions. This survey dissects key RL components through the lens of Quantitative Finance. We uncover emerging themes, propose areas for future research, and critique the strengths and weaknesses of existing methods.
comment: This work is currently submitted to and under-review for ACM Computing Surveys. This copy is an unedited, pre-print version and it is the author's version of the work. I
☆ MTFinEval:A Multi-domain Chinese Financial Benchmark with Eurypalynous questions
With the emergence of more and more economy-specific LLMS, how to measure whether they can be safely invested in production becomes a problem. Previous research has primarily focused on evaluating the performance of LLMs within specific application scenarios. However, these benchmarks cannot reflect the theoretical level and generalization ability, and the backward datasets are increasingly unsuitable for problems in real scenarios. In this paper, we have compiled a new benchmark, MTFinEval, focusing on the LLMs' basic knowledge of economics, which can always be used as a basis for judgment. To examine only theoretical knowledge as much as possible, MTFinEval is build with foundational questions from university textbooks,and exam papers in economics and management major. Aware of the overall performance of LLMs do not depend solely on one subdiscipline of economics, MTFinEval comprise 360 questions refined from six major disciplines of economics, and reflect capabilities more comprehensively. Experiment result shows all LLMs perform poorly on MTFinEval, which proves that our benchmark built on basic knowledge is very successful. Our research not only offers guidance for selecting the appropriate LLM for specific use cases, but also put forward increase the rigor reliability of LLMs from the basics.
☆ Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations
The Linear Representation Hypothesis (LRH) states that neural networks learn to encode concepts as directions in activation space, and a strong version of the LRH states that models learn only such encodings. In this paper, we present a counterexample to this strong LRH: when trained to repeat an input token sequence, gated recurrent neural networks (RNNs) learn to represent the token at each position with a particular order of magnitude, rather than a direction. These representations have layered features that are impossible to locate in distinct linear subspaces. To show this, we train interventions to predict and manipulate tokens by learning the scaling factor corresponding to each sequence position. These interventions indicate that the smallest RNNs find only this magnitude-based solution, while larger RNNs have linear representations. These findings strongly indicate that interpretability research should not be confined by the LRH.
☆ The impact of labeling automotive AI as "trustworthy" or "reliable" on user evaluation and technology acceptance
This study explores whether labeling AI as "trustworthy" or "reliable" influences user perceptions and acceptance of automotive AI technologies. Using a one-way between-subjects design, the research involved 478 online participants who were presented with guidelines for either trustworthy or reliable AI. Participants then evaluated three vignette scenarios and completed a modified version of the Technology Acceptance Model, which included variables such as perceived ease of use, human-like trust, and overall attitude. Although labeling AI as "trustworthy" did not significantly influence judgments on specific scenarios, it increased perceived ease of use and human-like trust, particularly benevolence. This suggests a positive impact on usability and an anthropomorphic effect on user perceptions. The study provides insights into how specific labels can influence attitudes toward AI technology.
comment: 36 pages, 12 figures
☆ A Grey-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in generative AI, particularly Latent Diffusion Models (LDMs), have revolutionized image synthesis and manipulation. However, these generative techniques raises concerns about data misappropriation and intellectual property infringement. Adversarial attacks on machine learning models have been extensively studied, and a well-established body of research has extended these techniques as a benign metric to prevent the underlying misuse of generative AI. Current approaches to safeguarding images from manipulation by LDMs are limited by their reliance on model-specific knowledge and their inability to significantly degrade semantic quality of generated images. In response to these shortcomings, we propose the Posterior Collapse Attack (PCA) based on the observation that VAEs suffer from posterior collapse during training. Our method minimizes dependence on the white-box information of target models to get rid of the implicit reliance on model-specific knowledge. By accessing merely a small amount of LDM parameters, in specific merely the VAE encoder of LDMs, our method causes a substantial semantic collapse in generation quality, particularly in perceptual consistency, and demonstrates strong transferability across various model architectures. Experimental results show that PCA achieves superior perturbation effects on image generation of LDMs with lower runtime and VRAM. Our method outperforms existing techniques, offering a more robust and generalizable solution that is helpful in alleviating the socio-technical challenges posed by the rapidly evolving landscape of generative AI.
comment: 21 pages, 7 figures, 10 tables
☆ Towards Efficient Formal Verification of Spiking Neural Network
Recently, AI research has primarily focused on large language models (LLMs), and increasing accuracy often involves scaling up and consuming more power. The power consumption of AI has become a significant societal issue; in this context, spiking neural networks (SNNs) offer a promising solution. SNNs operate event-driven, like the human brain, and compress information temporally. These characteristics allow SNNs to significantly reduce power consumption compared to perceptron-based artificial neural networks (ANNs), highlighting them as a next-generation neural network technology. However, societal concerns regarding AI go beyond power consumption, with the reliability of AI models being a global issue. For instance, adversarial attacks on AI models are a well-studied problem in the context of traditional neural networks. Despite their importance, the stability and property verification of SNNs remains in the early stages of research. Most SNN verification methods are time-consuming and barely scalable, making practical applications challenging. In this paper, we introduce temporal encoding to achieve practical performance in verifying the adversarial robustness of SNNs. We conduct a theoretical analysis of this approach and demonstrate its success in verifying SNNs at previously unmanageable scales. Our contribution advances SNN verification to a practical level, facilitating the safer application of SNNs.
☆ Analytical and Empirical Study of Herding Effects in Recommendation Systems
Online rating systems are often used in numerous web or mobile applications, e.g., Amazon and TripAdvisor, to assess the ground-truth quality of products. Due to herding effects, the aggregation of historical ratings (or historical collective opinion) can significantly influence subsequent ratings, leading to misleading and erroneous assessments. We study how to manage product ratings via rating aggregation rules and shortlisted representative reviews, for the purpose of correcting the assessment error. We first develop a mathematical model to characterize important factors of herding effects in product ratings. We then identify sufficient conditions (via the stochastic approximation theory), under which the historical collective opinion converges to the ground-truth collective opinion of the whole user population. These conditions identify a class of rating aggregation rules and review selection mechanisms that can reveal the ground-truth product quality. We also quantify the speed of convergence (via the martingale theory), which reflects the efficiency of rating aggregation rules and review selection mechanisms. We prove that the herding effects slow down the speed of convergence while an accurate review selection mechanism can speed it up. We also study the speed of convergence numerically and reveal trade-offs in selecting rating aggregation rules and review selection mechanisms. To show the utility of our framework, we design a maximum likelihood algorithm to infer model parameters from ratings, and conduct experiments on rating datasets from Amazon and TripAdvisor. We show that proper recency aware rating aggregation rules can improve the speed of convergence in Amazon and TripAdvisor by 41% and 62% respectively.
comment: 29 pages
☆ On Learning Action Costs from Input Plans
Most of the work on learning action models focus on learning the actions' dynamics from input plans. This allows us to specify the valid plans of a planning task. However, very little work focuses on learning action costs, which in turn allows us to rank the different plans. In this paper we introduce a new problem: that of learning the costs of a set of actions such that a set of input plans are optimal under the resulting planning model. To solve this problem we present $LACFIP^k$, an algorithm to learn action's costs from unlabeled input plans. We provide theoretical and empirical results showing how $LACFIP^k$ can successfully solve this task.
☆ DAAD: Dynamic Analysis and Adaptive Discriminator for Fake News Detection
In current web environment, fake news spreads rapidly across online social networks, posing serious threats to society. Existing multimodal fake news detection (MFND) methods can be classified into knowledge-based and semantic-based approaches. However, these methods are overly dependent on human expertise and feedback, lacking flexibility. To address this challenge, we propose a Dynamic Analysis and Adaptive Discriminator (DAAD) approach for fake news detection. For knowledge-based methods, we introduce the Monte Carlo Tree Search (MCTS) algorithm to leverage the self-reflective capabilities of large language models (LLMs) for prompt optimization, providing richer, domain-specific details and guidance to the LLMs, while enabling more flexible integration of LLM comment on news content. For semantic-based methods, we define four typical deceit patterns: emotional exaggeration, logical inconsistency, image manipulation, and semantic inconsistency, to reveal the mechanisms behind fake news creation. To detect these patterns, we carefully design four discriminators and expand them in depth and breadth, using the soft-routing mechanism to explore optimal detection models. Experimental results on three real-world datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/SuXinqi/DAAD.
☆ DBHP: Trajectory Imputation in Multi-Agent Sports Using Derivative-Based Hybrid Prediction
Many spatiotemporal domains handle multi-agent trajectory data, but in real-world scenarios, collected trajectory data are often partially missing due to various reasons. While existing approaches demonstrate good performance in trajectory imputation, they face challenges in capturing the complex dynamics and interactions between agents due to a lack of physical constraints that govern realistic trajectories, leading to suboptimal results. To address this issue, the paper proposes a Derivative-Based Hybrid Prediction (DBHP) framework that can effectively impute multiple agents' missing trajectories. First, a neural network equipped with Set Transformers produces a naive prediction of missing trajectories while satisfying the permutation-equivariance in terms of the order of input agents. Then, the framework makes alternative predictions leveraging velocity and acceleration information and combines all the predictions with properly determined weights to provide final imputed trajectories. In this way, our proposed framework not only accurately predicts position, velocity, and acceleration values but also enforces the physical relationship between them, eventually improving both the accuracy and naturalness of the predicted trajectories. Accordingly, the experiment results about imputing player trajectories in team sports show that our framework significantly outperforms existing imputation baselines.
☆ Radio U-Net: a convolutional neural network to detect diffuse radio sources in galaxy clusters and beyond RAS
The forthcoming generation of radio telescope arrays promises significant advancements in sensitivity and resolution, enabling the identification and characterization of many new faint and diffuse radio sources. Conventional manual cataloging methodologies are anticipated to be insufficient to exploit the capabilities of new radio surveys. Radio interferometric images of diffuse sources present a challenge for image segmentation tasks due to noise, artifacts, and embedded radio sources. In response to these challenges, we introduce Radio U-Net, a fully convolutional neural network based on the U-Net architecture. Radio U-Net is designed to detect faint and extended sources in radio surveys, such as radio halos, relics, and cosmic web filaments. Radio U-Net was trained on synthetic radio observations built upon cosmological simulations and then tested on a sample of galaxy clusters, where the detection of cluster diffuse radio sources relied on customized data reduction and visual inspection of LOFAR Two Metre Sky Survey (LoTSS) data. The 83% of clusters exhibiting diffuse radio emission were accurately identified, and the segmentation successfully recovered the morphology of the sources even in low-quality images. In a test sample comprising 246 galaxy clusters, we achieved a 73% accuracy rate in distinguishing between clusters with and without diffuse radio emission. Our results establish the applicability of Radio U-Net to extensive radio survey datasets, probing its efficiency on cutting-edge high-performance computing systems. This approach represents an advancement in optimizing the exploitation of forthcoming large radio surveys for scientific exploration.
comment: Accepted by MNRAS, 16 pages, 9 figures, 2 tables
☆ Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities
Motivated by distributed selection problems, we formulate a new variant of multi-player multi-armed bandit (MAB) model, which captures stochastic arrival of requests to each arm, as well as the policy of allocating requests to players. The challenge is how to design a distributed learning algorithm such that players select arms according to the optimal arm pulling profile (an arm pulling profile prescribes the number of players at each arm) without communicating to each other. We first design a greedy algorithm, which locates one of the optimal arm pulling profiles with a polynomial computational complexity. We also design an iterative distributed algorithm for players to commit to an optimal arm pulling profile with a constant number of rounds in expectation. We apply the explore then commit (ETC) framework to address the online setting when model parameters are unknown. We design an exploration strategy for players to estimate the optimal arm pulling profile. Since such estimates can be different across different players, it is challenging for players to commit. We then design an iterative distributed algorithm, which guarantees that players can arrive at a consensus on the optimal arm pulling profile in only M rounds. We conduct experiments to validate our algorithm.
comment: 28 pages
☆ Knowledge Sharing and Transfer via Centralized Reward Agent for Multi-Task Reinforcement Learning
Reward shaping is effective in addressing the sparse-reward challenge in reinforcement learning by providing immediate feedback through auxiliary informative rewards. Based on the reward shaping strategy, we propose a novel multi-task reinforcement learning framework, that integrates a centralized reward agent (CRA) and multiple distributed policy agents. The CRA functions as a knowledge pool, which aims to distill knowledge from various tasks and distribute it to individual policy agents to improve learning efficiency. Specifically, the shaped rewards serve as a straightforward metric to encode knowledge. This framework not only enhances knowledge sharing across established tasks but also adapts to new tasks by transferring valuable reward signals. We validate the proposed method on both discrete and continuous domains, demonstrating its robustness in multi-task sparse-reward settings and its effective transferability to unseen tasks.
☆ MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling
In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CNN and Transformer-based super-resolution models, lacked tailored designs for meteorology and encountered structural limitations. Notably, they failed to efficiently integrate topography, a crucial prior in the downscaling process. In this paper, we address these limitations by pioneering the selective state space model into the meteorological field downscaling and propose a novel model called MambaDS. This model enhances the utilization of multivariable correlations and topography information, unique challenges in the downscaling process while retaining the advantages of Mamba in long-range dependency modeling and linear computational complexity. Through extensive experiments in both China mainland and the continental United States (CONUS), we validated that our proposed MambaDS achieves state-of-the-art results in three different types of meteorological field downscaling settings. We will release the code subsequently.
☆ Does Current Deepfake Audio Detection Model Effectively Detect ALM-based Deepfake Audio?
Currently, Audio Language Models (ALMs) are rapidly advancing due to the developments in large language models and audio neural codecs. These ALMs have significantly lowered the barrier to creating deepfake audio, generating highly realistic and diverse types of deepfake audio, which pose severe threats to society. Consequently, effective audio deepfake detection technologies to detect ALM-based audio have become increasingly critical. This paper investigate the effectiveness of current countermeasure (CM) against ALM-based audio. Specifically, we collect 12 types of the latest ALM-based deepfake audio and utilizing the latest CMs to evaluate. Our findings reveal that the latest codec-trained CM can effectively detect ALM-based audio, achieving 0% equal error rate under most ALM test conditions, which exceeded our expectations. This indicates promising directions for future research in ALM-based deepfake audio detection.
☆ ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data
Synthetic data is increasingly being used to address the lack of labeled images in uncommon domains for deep learning tasks. A prominent example is 2D pose estimation of animals, particularly wild species like zebras, for which collecting real-world data is complex and impractical. However, many approaches still require real images, consistency and style constraints, sophisticated animal models, and/or powerful pre-trained networks to bridge the syn-to-real gap. Moreover, they often assume that the animal can be reliably detected in images or videos, a hypothesis that often does not hold, e.g. in wildlife scenarios or aerial images. To solve this, we use synthetic data generated with a 3D photorealistic simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras without applying any of the aforementioned bridging strategies. Unlike previous works, we extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets using both pre-trained and non-pre-trained backbones. These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras in both tasks. Moreover, we show it is possible to easily generalize those same models to 2D pose estimation of horses with a minimal amount of real-world images to account for the domain transfer. Code, results, trained models; and the synthetic, training, and validation data, including 104K manually labeled frames, are provided as open-source at https://zebrapose.is.tue.mpg.de/
comment: 8 pages, 5 tables, 7 figures
☆ Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains
Knowledge graph completion (KGC) aims to identify missing triples in a knowledge graph (KG). This is typically achieved through tasks such as link prediction and instance completion. However, these methods often focus on either static knowledge graphs (SKGs) or temporal knowledge graphs (TKGs), addressing only within-scope triples. This paper introduces a new generative completion framework called Generative Subgraph-based KGC (GS-KGC). GS-KGC employs a question-answering format to directly generate target entities, addressing the challenge of questions having multiple possible answers. We propose a strategy that extracts subgraphs centered on entities and relationships within the KG, from which negative samples and neighborhood information are separately obtained to address the one-to-many problem. Our method generates negative samples using known facts to facilitate the discovery of new information. Furthermore, we collect and refine neighborhood path data of known entities, providing contextual information to enhance reasoning in large language models (LLMs). Our experiments evaluated the proposed method on four SKGs and two TKGs, achieving state-of-the-art Hits@1 metrics on five datasets. Analysis of the results shows that GS-KGC can discover new triples within existing KGs and generate new facts beyond the closed KG, effectively bridging the gap between closed-world and open-world KGC.
☆ Beyond English-Centric LLMs: What Language Do Multilingual Language Models Think in?
In this study, we investigate whether non-English-centric LLMs, despite their strong performance, `think' in their respective dominant language: more precisely, `think' refers to how the representations of intermediate layers, when un-embedded into the vocabulary space, exhibit higher probabilities for certain dominant languages during generation. We term such languages as internal $\textbf{latent languages}$. We examine the latent language of three typical categories of models for Japanese processing: Llama2, an English-centric model; Swallow, an English-centric model with continued pre-training in Japanese; and LLM-jp, a model pre-trained on balanced English and Japanese corpora. Our empirical findings reveal that, unlike Llama2 which relies exclusively on English as the internal latent language, Japanese-specific Swallow and LLM-jp employ both Japanese and English, exhibiting dual internal latent languages. For any given target language, the model preferentially activates the latent language most closely related to it. In addition, we explore how intermediate layers respond to questions involving cultural conflicts between latent internal and target output languages. We further explore how the language identity shifts across layers while keeping consistent semantic meaning reflected in the intermediate layer representations. This study deepens the understanding of non-English-centric large language models, highlighting the intricate dynamics of language representation within their intermediate layers.
comment: work in progress
☆ DisMix: Disentangling Mixtures of Musical Instruments for Source-level Pitch and Timbre Manipulation
Existing work on pitch and timbre disentanglement has been mostly focused on single-instrument music audio, excluding the cases where multiple instruments are presented. To fill the gap, we propose DisMix, a generative framework in which the pitch and timbre representations act as modular building blocks for constructing the melody and instrument of a source, and the collection of which forms a set of per-instrument latent representations underlying the observed mixture. By manipulating the representations, our model samples mixtures with novel combinations of pitch and timbre of the constituent instruments. We can jointly learn the disentangled pitch-timbre representations and a latent diffusion transformer that reconstructs the mixture conditioned on the set of source-level representations. We evaluate the model using both a simple dataset of isolated chords and a realistic four-part chorales in the style of J.S. Bach, identify the key components for the success of disentanglement, and demonstrate the application of mixture transformation based on source-level attribute manipulation.
☆ Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction
Concentrating Solar Power (CSP) plants play a crucial role in the global transition towards sustainable energy. A key factor in ensuring the safe and efficient operation of CSP plants is the distribution of concentrated flux density on the receiver. However, the non-ideal flux density generated by individual heliostats can undermine the safety and efficiency of the power plant. The flux density from each heliostat is influenced by its precise surface profile, which includes factors such as canting and mirror errors. Accurately measuring these surface profiles for a large number of heliostats in operation is a formidable challenge. Consequently, control systems often rely on the assumption of ideal surface conditions, which compromises both safety and operational efficiency. In this study, we introduce inverse Deep Learning Ray Tracing (iDLR), an innovative method designed to predict heliostat surfaces based solely on target images obtained during heliostat calibration. Our simulation-based investigation demonstrates that sufficient information regarding the heliostat surface is retained in the flux density distribution of a single heliostat, enabling deep learning models to accurately predict the underlying surface with deflectometry-like precision for the majority of heliostats. Additionally, we assess the limitations of this method, particularly in relation to surface accuracy and resultant flux density predictions. Furthermore, we are presenting a new comprehensive heliostat model using Non-Uniform Rational B-Spline (NURBS) that has the potential to become the new State of the Art for heliostat surface parameterization. Our findings reveal that iDLR has significant potential to enhance CSP plant operations, potentially increasing the overall efficiency and energy output of the power plants.
☆ Understanding the Skills Gap between Higher Education and Industry in the UK in Artificial Intelligence Sector
As Artificial Intelligence (AI) changes how businesses work, there is a growing need for people who can work in this sector. This paper investigates how well universities in United Kingdom offering courses in AI, prepare students for jobs in the real world. To gain insight into the differences between university curricula and industry demands we review the contents of taught courses and job advertisement portals. By using custom data scraping tools to gather information from job advertisements and university curricula, and frequency and Naive Bayes classifier analysis, this study will show exactly what skills industry is looking for. In this study we identified 12 skill categories that were used for mapping. The study showed that the university curriculum in the AI domain is well balanced in most technical skills, including Programming and Machine learning subjects, but have a gap in Data Science and Maths and Statistics skill categories.
comment: Accepted to the journal "Industry and Higher Education"
☆ Just a Hint: Point-Supervised Camouflaged Object Detection ECCV2024
Camouflaged Object Detection (COD) demands models to expeditiously and accurately distinguish objects which conceal themselves seamlessly in the environment. Owing to the subtle differences and ambiguous boundaries, COD is not only a remarkably challenging task for models but also for human annotators, requiring huge efforts to provide pixel-wise annotations. To alleviate the heavy annotation burden, we propose to fulfill this task with the help of only one point supervision. Specifically, by swiftly clicking on each object, we first adaptively expand the original point-based annotation to a reasonable hint area. Then, to avoid partial localization around discriminative parts, we propose an attention regulator to scatter model attention to the whole object through partially masking labeled regions. Moreover, to solve the unstable feature representation of camouflaged objects under only point-based annotation, we perform unsupervised contrastive learning based on differently augmented image pairs (e.g. changing color or doing translation). On three mainstream COD benchmarks, experimental results show that our model outperforms several weakly-supervised methods by a large margin across various metrics.
comment: Accepted by ECCV2024
☆ SSL-TTS: Leveraging Self-Supervised Embeddings and kNN Retrieval for Zero-Shot Multi-speaker TTS
While recent zero-shot multispeaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. It was also observed that SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity, which enables straight-forward and robust voice cloning. In this study, we introduce SSL-TTS, a lightweight and efficient zero-shot TTS framework trained on transcribed speech from a single speaker. SSL-TTS leverages SSL features and retrieval methods for simple and robust zero-shot multi-speaker synthesis. Objective and subjective evaluations show that our approach achieves performance comparable to state-of-the-art models that require significantly larger training datasets. The low training data requirements mean that SSL-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine control over the output speech by blending voices. Demo samples are available at https://idiap.github.io/ssl-tts
comment: Submitted to IEEE Signal Processing Letters
☆ SAM-COD: SAM-guided Unified Framework for Weakly-Supervised Camouflaged Object Detection ECCV2024
Most Camouflaged Object Detection (COD) methods heavily rely on mask annotations, which are time-consuming and labor-intensive to acquire. Existing weakly-supervised COD approaches exhibit significantly inferior performance compared to fully-supervised methods and struggle to simultaneously support all the existing types of camouflaged object labels, including scribbles, bounding boxes, and points. Even for Segment Anything Model (SAM), it is still problematic to handle the weakly-supervised COD and it typically encounters challenges of prompt compatibility of the scribble labels, extreme response, semantically erroneous response, and unstable feature representations, producing unsatisfactory results in camouflaged scenes. To mitigate these issues, we propose a unified COD framework in this paper, termed SAM-COD, which is capable of supporting arbitrary weakly-supervised labels. Our SAM-COD employs a prompt adapter to handle scribbles as prompts based on SAM. Meanwhile, we introduce response filter and semantic matcher modules to improve the quality of the masks obtained by SAM under COD prompts. To alleviate the negative impacts of inaccurate mask predictions, a new strategy of prompt-adaptive knowledge distillation is utilized to ensure a reliable feature representation. To validate the effectiveness of our approach, we have conducted extensive empirical experiments on three mainstream COD benchmarks. The results demonstrate the superiority of our method against state-of-the-art weakly-supervised and even fully-supervised methods.
comment: Accepted by ECCV2024
☆ Generating Synthetic Fair Syntax-agnostic Data by Learning and Distilling Fair Representation
Data Fairness is a crucial topic due to the recent wide usage of AI powered applications. Most of the real-world data is filled with human or machine biases and when those data are being used to train AI models, there is a chance that the model will reflect the bias in the training data. Existing bias-mitigating generative methods based on GANs, Diffusion models need in-processing fairness objectives and fail to consider computational overhead while choosing computationally-heavy architectures, which may lead to high computational demands, instability and poor optimization performance. To mitigate this issue, in this work, we present a fair data generation technique based on knowledge distillation, where we use a small architecture to distill the fair representation in the latent space. The idea of fair latent space distillation enables more flexible and stable training of Fair Generative Models (FGMs). We first learn a syntax-agnostic (for any data type) fair representation of the data, followed by distillation in the latent space into a smaller model. After distillation, we use the distilled fair latent space to generate high-fidelity fair synthetic data. While distilling, we employ quality loss (for fair distillation) and utility loss (for data utility) to ensure that the fairness and data utility characteristics remain in the distilled latent space. Our approaches show a 5%, 5% and 10% rise in performance in fairness, synthetic sample quality and data utility, respectively, than the state-of-the-art fair generative model.
☆ Security Assessment of Hierarchical Federated Deep Learning
Hierarchical federated learning (HFL) is a promising distributed deep learning model training paradigm, but it has crucial security concerns arising from adversarial attacks. This research investigates and assesses the security of HFL using a novel methodology by focusing on its resilience against adversarial attacks inference-time and training-time. Through a series of extensive experiments across diverse datasets and attack scenarios, we uncover that HFL demonstrates robustness against untargeted training-time attacks due to its hierarchical structure. However, targeted attacks, particularly backdoor attacks, exploit this architecture, especially when malicious clients are positioned in the overlapping coverage areas of edge servers. Consequently, HFL shows a dual nature in its resilience, showcasing its capability to recover from attacks thanks to its hierarchical aggregation that strengthens its suitability for adversarial training, thereby reinforcing its resistance against inference-time attacks. These insights underscore the necessity for balanced security strategies in HFL systems, leveraging their inherent strengths while effectively mitigating vulnerabilities.
☆ Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning
Large language models (LLMs) have unlocked a plethora of powerful applications at the network edge, such as intelligent personal assistants. Data privacy and security concerns have prompted a shift towards edge-based fine-tuning of personal LLMs, away from cloud reliance. However, this raises issues of computational intensity and resource scarcity, hindering training efficiency and feasibility. While current studies investigate parameter-efficient fine-tuning (PEFT) techniques to mitigate resource constraints, our analysis indicates that these techniques are not sufficiently resource-efficient for edge devices. To tackle these challenges, we propose Pluto and Charon (PAC), a time and memory efficient collaborative edge AI framework for personal LLMs fine-tuning. PAC breaks the resource wall of personal LLMs fine-tuning with a sophisticated algorithm-system co-design. (1) Algorithmically, PAC implements a personal LLMs fine-tuning technique that is efficient in terms of parameters, time, and memory. It utilizes Parallel Adapters to circumvent the need for a full backward pass through the LLM backbone. Additionally, an activation cache mechanism further streamlining the process by negating the necessity for repeated forward passes across multiple epochs. (2) Systematically, PAC leverages edge devices in close proximity, pooling them as a collective resource for in-situ personal LLMs fine-tuning, utilizing a hybrid data and pipeline parallelism to orchestrate distributed training. The use of the activation cache eliminates the need for forward pass through the LLM backbone,enabling exclusive fine-tuning of the Parallel Adapters using data parallelism. Extensive evaluation based on prototype implementation demonstrates that PAC remarkably outperforms state-of-the-art approaches, achieving up to 8.64x end-to-end speedup and up to 88.16% reduction in memory footprint.
comment: Accepted by The 53rd International Conference on Parallel Processing (ICPP'24)
Towards Efficient Large Language Models for Scientific Text: A Review
Large language models (LLMs) have ushered in a new era for processing complex information in various fields, including science. The increasing amount of scientific literature allows these models to acquire and understand scientific knowledge effectively, thus improving their performance in a wide range of tasks. Due to the power of LLMs, they require extremely expensive computational resources, intense amounts of data, and training time. Therefore, in recent years, researchers have proposed various methodologies to make scientific LLMs more affordable. The most well-known approaches align in two directions. It can be either focusing on the size of the models or enhancing the quality of data. To date, a comprehensive review of these two families of methods has not yet been undertaken. In this paper, we (I) summarize the current advances in the emerging abilities of LLMs into more accessible AI solutions for science, and (II) investigate the challenges and opportunities of developing affordable solutions for scientific domains using LLMs.
☆ Quantum Artificial Intelligence: A Brief Survey
Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI, a technological synergy with expected significant benefits for both. In this paper, we provide a brief overview of what has been achieved in QAI so far and point to some open questions for future research. In particular, we summarize some major key findings on the feasability and the potential of using quantum computing for solving computationally hard problems in various subfields of AI, and vice versa, the leveraging of AI methods for building and operating quantum computing devices.
comment: 21 pages, 5 figures
☆ MEGen: Generative Backdoor in Large Language Models via Model Editing
Large language models (LLMs) have demonstrated remarkable capabilities. Their powerful generative abilities enable flexible responses based on various queries or instructions. Emerging as widely adopted generalists for diverse tasks, LLMs are still vulnerable to backdoors. This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects. In our approach, we first leverage a language model to insert a trigger selected on fixed metrics into the input, then design a pipeline of model editing to directly embed a backdoor into an LLM. By adjusting a small set of local parameters with a mini-batch of samples, MEGen significantly enhances time efficiency and achieves high robustness. Experimental results indicate that our backdoor attack strategy achieves a high attack success rate on poison data while maintaining the model's performance on clean data. Notably, the backdoored model, when triggered, can freely output pre-set dangerous information while successfully completing downstream tasks. This suggests that future LLM applications could be guided to deliver certain dangerous information, thus altering the LLM's generative style. We believe this approach provides insights for future LLM applications and the execution of backdoor attacks on conversational AI systems.
comment: Working in progress
☆ Towards Foundation Models for the Industrial Forecasting of Chemical Kinetics
Scientific Machine Learning is transforming traditional engineering industries by enhancing the efficiency of existing technologies and accelerating innovation, particularly in modeling chemical reactions. Despite recent advancements, the issue of solving stiff chemically reacting problems within computational fluid dynamics remains a significant issue. In this study we propose a novel approach utilizing a multi-layer-perceptron mixer architecture (MLP-Mixer) to model the time-series of stiff chemical kinetics. We evaluate this method using the ROBER system, a benchmark model in chemical kinetics, to compare its performance with traditional numerical techniques. This study provides insight into the industrial utility of the recently developed MLP-Mixer architecture to model chemical kinetics and provides motivation for such neural architecture to be used as a base for time-series foundation models.
comment: Accepted into the IEEE CAI 2024 Workshop on Scientific Machine Learning and Its Industrial Applications (SMLIA2024)
☆ Fine-Tuning a Local LLaMA-3 Large Language Model for Automated Privacy-Preserving Physician Letter Generation in Radiation Oncology
Generating physician letters is a time-consuming task in daily clinical practice. This study investigates local fine-tuning of large language models (LLMs), specifically LLaMA models, for physician letter generation in a privacy-preserving manner within the field of radiation oncology. Our findings demonstrate that base LLaMA models, without fine-tuning, are inadequate for effectively generating physician letters. The QLoRA algorithm provides an efficient method for local intra-institutional fine-tuning of LLMs with limited computational resources (i.e., a single 48 GB GPU workstation within the hospital). The fine-tuned LLM successfully learns radiation oncology-specific information and generates physician letters in an institution-specific style. ROUGE scores of the generated summary reports highlight the superiority of the 8B LLaMA-3 model over the 13B LLaMA-2 model. Further multidimensional physician evaluations of 10 cases reveal that, although the fine-tuned LLaMA-3 model has limited capacity to generate content beyond the provided input data, it successfully generates salutations, diagnoses and treatment histories, recommendations for further treatment, and planned schedules. Overall, clinical benefit was rated highly by the clinical experts (average score of 3.44 on a 4-point scale). With careful physician review and correction, automated LLM-based physician letter generation has significant practical value.
☆ Offline Model-Based Reinforcement Learning with Anti-Exploration
Model-based reinforcement learning (MBRL) algorithms learn a dynamics model from collected data and apply it to generate synthetic trajectories to enable faster learning. This is an especially promising paradigm in offline reinforcement learning (RL) where data may be limited in quantity, in addition to being deficient in coverage and quality. Practical approaches to offline MBRL usually rely on ensembles of dynamics models to prevent exploitation of any individual model and to extract uncertainty estimates that penalize values in states far from the dataset support. Uncertainty estimates from ensembles can vary greatly in scale, making it challenging to generalize hyperparameters well across even similar tasks. In this paper, we present Morse Model-based offline RL (MoMo), which extends the anti-exploration paradigm found in offline model-free RL to the model-based space. We develop model-free and model-based variants of MoMo and show how the model-free version can be extended to detect and deal with out-of-distribution (OOD) states using explicit uncertainty estimation without the need for large ensembles. MoMo performs offline MBRL using an anti-exploration bonus to counteract value overestimation in combination with a policy constraint, as well as a truncation function to terminate synthetic rollouts that are excessively OOD. Experimentally, we find that both model-free and model-based MoMo perform well, and the latter outperforms prior model-based and model-free baselines on the majority of D4RL datasets tested.
Investigating Context Effects in Similarity Judgements in Large Language Models KDD 2024
Large Language Models (LLMs) have revolutionised the capability of AI models in comprehending and generating natural language text. They are increasingly being used to empower and deploy agents in real-world scenarios, which make decisions and take actions based on their understanding of the context. Therefore researchers, policy makers and enterprises alike are working towards ensuring that the decisions made by these agents align with human values and user expectations. That being said, human values and decisions are not always straightforward to measure and are subject to different cognitive biases. There is a vast section of literature in Behavioural Science which studies biases in human judgements. In this work we report an ongoing investigation on alignment of LLMs with human judgements affected by order bias. Specifically, we focus on a famous human study which showed evidence of order effects in similarity judgements, and replicate it with various popular LLMs. We report the different settings where LLMs exhibit human-like order effect bias and discuss the implications of these findings to inform the design and development of LLM based applications.
comment: Accepted at The First Workshop on AI Behavioral Science (AIBS 2024), held in conjunction with KDD 2024
☆ Coarse-to-Fine Detection of Multiple Seams for Robotic Welding
Efficiently detecting target weld seams while ensuring sub-millimeter accuracy has always been an important challenge in autonomous welding, which has significant application in industrial practice. Previous works mostly focused on recognizing and localizing welding seams one by one, leading to inferior efficiency in modeling the workpiece. This paper proposes a novel framework capable of multiple weld seams extraction using both RGB images and 3D point clouds. The RGB image is used to obtain the region of interest by approximately localizing the weld seams, and the point cloud is used to achieve the fine-edge extraction of the weld seams within the region of interest using region growth. Our method is further accelerated by using a pre-trained deep learning model to ensure both efficiency and generalization ability. The performance of the proposed method has been comprehensively tested on various workpieces featuring both linear and curved weld seams and in physical experiment systems. The results showcase considerable potential for real-world industrial applications, emphasizing the method's efficiency and effectiveness. Videos of the real-world experiments can be found at https://youtu.be/pq162HSP2D4.
☆ Variable Assignment Invariant Neural Networks for Learning Logic Programs
Learning from interpretation transition (LFIT) is a framework for learning rules from observed state transitions. LFIT has been implemented in purely symbolic algorithms, but they are unable to deal with noise or generalize to unobserved transitions. Rule extraction based neural network methods suffer from overfitting, while more general implementation that categorize rules suffer from combinatorial explosion. In this paper, we introduce a technique to leverage variable permutation invariance inherent in symbolic domains. Our technique ensures that the permutation and the naming of the variables would not affect the results. We demonstrate the effectiveness and the scalability of this method with various experiments. Our code is publicly available at https://github.com/phuayj/delta-lfit-2
☆ AnyGraph: Graph Foundation Model in the Wild
The growing ubiquity of relational data structured as graphs has underscored the need for graph learning models with exceptional generalization capabilities. However, current approaches often struggle to effectively extract generalizable insights, frequently requiring extensive fine-tuning and limiting their versatility. Graph foundation models offer a transformative solution, with the potential to learn robust, generalizable representations from graph data. This enables more effective and adaptable applications across a wide spectrum of tasks and domains. In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges: i) Structure Heterogenity. Addressing distribution shift in graph structural information; ii) Feature Heterogenity. Handling diverse feature representation spaces across graph datasets; iii) Fast Adaptation. Efficiently adapting the model to new graph domains; iv) Scaling Law Emergence. Enabling the model to exhibit scaling law behavior, where its performance scales favorably with the amount of data and parameter sizes. To tackle these critical challenges, we build the AnyGraph upon a Graph Mixture-of-Experts (MoE) architecture. This approach empowers the model to effectively manage both the in-domain and cross-domain distribution shift concerning structure-level and feature-level heterogeneity. Furthermore, a lightweight graph expert routing mechanism is proposed to facilitate AnyGraph's fast adaptability to new data and domains. Our extensive experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph across diverse graph domains with significant distribution shift. Furthermore, we have validated the model's fast adaptation ability and scaling law emergence, showcasing its versatility.
☆ Fine-Tuning and Deploying Large Language Models Over Edges: Issues and Approaches
Since the invention of GPT2--1.5B in 2019, large language models (LLMs) have transitioned from specialized models to versatile foundation models. The LLMs exhibit impressive zero-shot ability, however, require fine-tuning on local datasets and significant resources for deployment. Traditional fine-tuning techniques with the first-order optimizers require substantial GPU memory that exceeds mainstream hardware capability. Therefore, memory-efficient methods are motivated to be investigated. Model compression techniques can reduce energy consumption, operational costs, and environmental impact so that to support sustainable artificial intelligence advancements. Additionally, large-scale foundation models have expanded to create images, audio, videos, and multi-modal contents, further emphasizing the need for efficient deployment. Therefore, we are motivated to present a comprehensive overview of the prevalent memory-efficient fine-tuning methods over the network edge. We also review the state-of-the-art literatures on model compression to provide a vision on deploying LLMs over the network edge.
☆ Genesis: Towards the Automation of Systems Biology Research
The cutting edge of applying AI to science is the closed-loop automation of scientific research: robot scientists. We have previously developed two robot scientists: `Adam' (for yeast functional biology), and `Eve' (for early-stage drug design)). We are now developing a next generation robot scientist Genesis. With Genesis we aim to demonstrate that an area of science can be investigated using robot scientists unambiguously faster, and at lower cost, than with human scientists. Here we report progress on the Genesis project. Genesis is designed to automatically improve system biology models with thousands of interacting causal components. When complete Genesis will be able to initiate and execute in parallel one thousand hypothesis-led closed-loop cycles of experiment per-day. Here we describe the core Genesis hardware: the one thousand computer-controlled $\mu$-bioreactors. For the integrated Mass Spectrometry platform we have developed AutonoMS, a system to automatically run, process, and analyse high-throughput experiments. We have also developed Genesis-DB, a database system designed to enable software agents access to large quantities of structured domain information. We have developed RIMBO (Revisions for Improvements of Models in Biology Ontology) to describe the planned hundreds of thousands of changes to the models. We have demonstrated the utility of this infrastructure by developed two relational learning bioinformatic projects. Finally, we describe LGEM+ a relational learning system for the automated abductive improvement of genome-scale metabolic models.
☆ Rejection in Abstract Argumentation: Harder Than Acceptance?
Abstract argumentation is a popular toolkit for modeling, evaluating, and comparing arguments. Relationships between arguments are specified in argumentation frameworks (AFs), and conditions are placed on sets (extensions) of arguments that allow AFs to be evaluated. For more expressiveness, AFs are augmented with \emph{acceptance conditions} on directly interacting arguments or a constraint on the admissible sets of arguments, resulting in dialectic frameworks or constrained argumentation frameworks. In this paper, we consider flexible conditions for \emph{rejecting} an argument from an extension, which we call rejection conditions (RCs). On the technical level, we associate each argument with a specific logic program. We analyze the resulting complexity, including the structural parameter treewidth. Rejection AFs are highly expressive, giving rise to natural problems on higher levels of the polynomial hierarchy.
comment: accepted version as ECAI24
☆ Towards Robust Knowledge Unlearning: An Adversarial Framework for Assessing and Improving Unlearning Robustness in Large Language Models
LLM have achieved success in many fields but still troubled by problematic content in the training corpora. LLM unlearning aims at reducing their influence and avoid undesirable behaviours. However, existing unlearning methods remain vulnerable to adversarial queries and the unlearned knowledge resurfaces after the manually designed attack queries. As part of a red-team effort to proactively assess the vulnerabilities of unlearned models, we design Dynamic Unlearning Attack (DUA), a dynamic and automated framework to attack these models and evaluate their robustness. It optimizes adversarial suffixes to reintroduce the unlearned knowledge in various scenarios. We find that unlearned knowledge can be recovered in $55.2\%$ of the questions, even without revealing the unlearned model's parameters. In response to this vulnerability, we propose Latent Adversarial Unlearning (LAU), a universal framework that effectively enhances the robustness of the unlearned process. It formulates the unlearning process as a min-max optimization problem and resolves it through two stages: an attack stage, where perturbation vectors are trained and added to the latent space of LLMs to recover the unlearned knowledge, and a defense stage, where previously trained perturbation vectors are used to enhance unlearned model's robustness. With our LAU framework, we obtain two robust unlearning methods, AdvGA and AdvNPO. We conduct extensive experiments across multiple unlearning benchmarks and various models, and demonstrate that they improve the unlearning effectiveness by over $53.5\%$, cause only less than a $11.6\%$ reduction in neighboring knowledge, and have almost no impact on the model's general capabilities.
comment: 13 pages
☆ Tensor tree learns hidden relational structures in data to construct generative models
Based on the tensor tree network with the Born machine framework, we propose a general method for constructing a generative model by expressing the target distribution function as the quantum wave function amplitude represented by a tensor tree. The key idea is dynamically optimizing the tree structure that minimizes the bond mutual information. The proposed method offers enhanced performance and uncovers hidden relational structures in the target data. We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST hand-written digits, (iii) Bayesian networks, and (iv) the stock price fluctuation pattern in S&P500. In (i) and (ii), strongly correlated variables were concentrated near the center of the network; in (iii), the causality pattern was identified; and, in (iv), a structure corresponding to the eleven sectors emerged.
comment: 9 pages, 3 figures
☆ ETGuard: Malicious Encrypted Traffic Detection in Blockchain-based Power Grid Systems
The escalating prevalence of encryption protocols has led to a concomitant surge in the number of malicious attacks that hide in encrypted traffic. Power grid systems, as fundamental infrastructure, are becoming prime targets for such attacks. Conventional methods for detecting malicious encrypted packets typically use a static pre-trained model. We observe that these methods are not well-suited for blockchain-based power grid systems. More critically, they fall short in dynamic environments where new types of encrypted attacks continuously emerge. Motivated by this, in this paper we try to tackle these challenges from two aspects: (1) We present a novel framework that is able to automatically detect malicious encrypted traffic in blockchain-based power grid systems and incrementally learn from new malicious traffic. (2) We mathematically derive incremental learning losses to resist the forgetting of old attack patterns while ensuring the model is capable of handling new encrypted attack patterns. Empirically, our method achieves state-of-the-art performance on three different benchmark datasets. We also constructed the first malicious encrypted traffic dataset for blockchain-based power grid scenario. Our code and dataset are available at https://github.com/PPPmzt/ETGuard, hoping to inspire future research.
☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering ``List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available.
☆ Inferring Underwater Topography with FINN
Spatiotemporal partial differential equations (PDEs) find extensive application across various scientific and engineering fields. While numerous models have emerged from both physics and machine learning (ML) communities, there is a growing trend towards integrating these approaches to develop hybrid architectures known as physics-aware machine learning models. Among these, the finite volume neural network (FINN) has emerged as a recent addition. FINN has proven to be particularly efficient in uncovering latent structures in data. In this study, we explore the capabilities of FINN in tackling the shallow-water equations, which simulates wave dynamics in coastal regions. Specifically, we investigate FINN's efficacy to reconstruct underwater topography based on these particular wave equations. Our findings reveal that FINN exhibits a remarkable capacity to infer topography solely from wave dynamics, distinguishing itself from both conventional ML and physics-aware ML models. Our results underscore the potential of FINN in advancing our understanding of spatiotemporal phenomena and enhancing parametrization capabilities in related domains.
☆ Privacy-preserving Universal Adversarial Defense for Black-box Models
Deep neural networks (DNNs) are increasingly used in critical applications such as identity authentication and autonomous driving, where robustness against adversarial attacks is crucial. These attacks can exploit minor perturbations to cause significant prediction errors, making it essential to enhance the resilience of DNNs. Traditional defense methods often rely on access to detailed model information, which raises privacy concerns, as model owners may be reluctant to share such data. In contrast, existing black-box defense methods fail to offer a universal defense against various types of adversarial attacks. To address these challenges, we introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture. Our approach involves distilling the target model by querying it with data, creating a white-box surrogate while preserving data privacy. We further enhance this surrogate model using a certified defense based on randomized smoothing and optimized noise selection, enabling robust defense against a broad range of adversarial attacks. Comparative evaluations between the certified defenses of the surrogate and target models demonstrate the effectiveness of our approach. Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses, all while enhancing data privacy and reducing the success rate of membership inference attacks.
comment: 12 pages, 9 figures
☆ Beneath the Surface of Consistency: Exploring Cross-lingual Knowledge Representation Sharing in LLMs
The veracity of a factoid is largely independent of the language it is written in. However, language models are inconsistent in their ability to answer the same factual question across languages. This raises questions about how LLMs represent a given fact across languages. We explore multilingual factual knowledge through two aspects: the model's ability to answer a query consistently across languages, and the ability to ''store'' answers in a shared representation for several languages. We propose a methodology to measure the extent of representation sharing across languages by repurposing knowledge editing methods. We examine LLMs with various multilingual configurations using a new multilingual dataset. We reveal that high consistency does not necessarily imply shared representation, particularly for languages with different scripts. Moreover, we find that script similarity is a dominant factor in representation sharing. Finally, we observe that if LLMs could fully share knowledge across languages, their accuracy in their best-performing language could benefit an increase of up to 150\% on average. These findings highlight the need for improved multilingual knowledge representation in LLMs and suggest a path for the development of more robust and consistent multilingual LLMs.
☆ Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation
Instruct LLM provide a paradigm used in large scale language model to align LLM to human preference. The paradigm contains supervised fine tuning and reinforce learning from human feedback. This paradigm is also used in downstream scenarios to adapt LLM to specific corpora and applications. Comparing to SFT, there are many efforts focused on RLHF and several algorithms being proposed, such as PPO, DPO, IPO, KTO, MinorDPO and etc. Meanwhile most efforts for SFT are focused on how to collect, filter and mix high quality data. In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness, and reduce the discrepancy between the optimized LLM and original LLM.
comment: 8 pages, 5 figures
☆ A Review of Human-Object Interaction Detection
Human-object interaction (HOI) detection plays a key role in high-level visual understanding, facilitating a deep comprehension of human activities. Specifically, HOI detection aims to locate the humans and objects involved in interactions within images or videos and classify the specific interactions between them. The success of this task is influenced by several key factors, including the accurate localization of human and object instances, as well as the correct classification of object categories and interaction relationships. This paper systematically summarizes and discusses the recent work in image-based HOI detection. First, the mainstream datasets involved in HOI relationship detection are introduced. Furthermore, starting with two-stage methods and end-to-end one-stage detection approaches, this paper comprehensively discusses the current developments in image-based HOI detection, analyzing the strengths and weaknesses of these two methods. Additionally, the advancements of zero-shot learning, weakly supervised learning, and the application of large-scale language models in HOI detection are discussed. Finally, the current challenges in HOI detection are outlined, and potential research directions and future trends are explored.
☆ Strategist: Learning Strategic Skills by LLMs via Bi-Level Tree Search
In this paper, we propose a new method Strategist that utilizes LLMs to acquire new skills for playing multi-agent games through a self-improvement process. Our method gathers quality feedback through self-play simulations with Monte Carlo tree search and LLM-based reflection, which can then be used to learn high-level strategic skills such as how to evaluate states that guide the low-level execution.We showcase how our method can be used in both action planning and dialogue generation in the context of games, achieving good performance on both tasks. Specifically, we demonstrate that our method can help train agents with better performance than both traditional reinforcement learning-based approaches and other LLM-based skill learning approaches in games including the Game of Pure Strategy (GOPS) and The Resistance: Avalon.
comment: website: https://llm-strategist.github.io
☆ LLM-Barber: Block-Aware Rebuilder for Sparsity Mask in One-Shot for Large Language Models
Large language models (LLMs) have grown significantly in scale, leading to a critical need for efficient model pruning techniques. Existing post-training pruning techniques primarily focus on measuring weight importance on converged dense models to determine salient weights to retain. However, they often overlook the changes in weight importance during the pruning process, which can lead to performance degradation in the pruned models. To address this issue, we present LLM-Barber (Block-Aware Rebuilder for Sparsity Mask in One-Shot), a novel one-shot pruning framework that rebuilds the sparsity mask of pruned models without any retraining or weight reconstruction. LLM-Barber incorporates block-aware error optimization across Self-Attention and MLP blocks, ensuring global performance optimization. Inspired by the recent discovery of prominent outliers in LLMs, LLM-Barber introduces an innovative pruning metric that identifies weight importance using weights multiplied by gradients. Our experiments show that LLM-Barber can efficiently prune models like LLaMA and OPT families with 7B to 13B parameters on a single A100 GPU in just 30 minutes, achieving state-of-the-art results in both perplexity and zero-shot performance across various language benchmarks. Code is available at https://github.com/YupengSu/LLM-Barber.
☆ Finding the DeepDream for Time Series: Activation Maximization for Univariate Time Series ECML-PKDD
Understanding how models process and interpret time series data remains a significant challenge in deep learning to enable applicability in safety-critical areas such as healthcare. In this paper, we introduce Sequence Dreaming, a technique that adapts Activation Maximization to analyze sequential information, aiming to enhance the interpretability of neural networks operating on univariate time series. By leveraging this method, we visualize the temporal dynamics and patterns most influential in model decision-making processes. To counteract the generation of unrealistic or excessively noisy sequences, we enhance Sequence Dreaming with a range of regularization techniques, including exponential smoothing. This approach ensures the production of sequences that more accurately reflect the critical features identified by the neural network. Our approach is tested on a time series classification dataset encompassing applications in predictive maintenance. The results show that our proposed Sequence Dreaming approach demonstrates targeted activation maximization for different use cases so that either centered class or border activation maximization can be generated. The results underscore the versatility of Sequence Dreaming in uncovering salient temporal features learned by neural networks, thereby advancing model transparency and trustworthiness in decision-critical domains.
comment: 16 pages, 4 figures, accepted at TempXAI @ ECML-PKDD
☆ WRIM-Net: Wide-Ranging Information Mining Network for Visible-Infrared Person Re-Identification
For the visible-infrared person re-identification (VI-ReID) task, one of the primary challenges lies in significant cross-modality discrepancy. Existing methods struggle to conduct modality-invariant information mining. They often focus solely on mining singular dimensions like spatial or channel, and overlook the extraction of specific-modality multi-dimension information. To fully mine modality-invariant information across a wide range, we introduce the Wide-Ranging Information Mining Network (WRIM-Net), which mainly comprises a Multi-dimension Interactive Information Mining (MIIM) module and an Auxiliary-Information-based Contrastive Learning (AICL) approach. Empowered by the proposed Global Region Interaction (GRI), MIIM comprehensively mines non-local spatial and channel information through intra-dimension interaction. Moreover, Thanks to the low computational complexity design, separate MIIM can be positioned in shallow layers, enabling the network to better mine specific-modality multi-dimension information. AICL, by introducing the novel Cross-Modality Key-Instance Contrastive (CMKIC) loss, effectively guides the network in extracting modality-invariant information. We conduct extensive experiments not only on the well-known SYSU-MM01 and RegDB datasets but also on the latest large-scale cross-modality LLCM dataset. The results demonstrate WRIM-Net's superiority over state-of-the-art methods.
comment: 18 pages, 5 figures
☆ Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM)
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact. Conventional change detection techniques, such as image differencing and ratioing, often struggle with noise and fail to capture complex variations in imagery. Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy. In this paper, we propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps. Our approach, named Diffusion Based Change Detector, is evaluated on both synthetic and real-world remote sensing datasets and compared with state-of-the-art methods. The results demonstrate that our method significantly outperforms traditional differencing techniques and recent deep learning-based methods, particularly in scenarios with complex changes and noise.
OMEGA: Efficient Occlusion-Aware Navigation for Air-Ground Robot in Dynamic Environments via State Space Model
Air-ground robots (AGRs) are widely used in surveillance and disaster response due to their exceptional mobility and versatility (i.e., flying and driving). Current AGR navigation systems perform well in static occlusion-prone environments (e.g., indoors) by using 3D semantic occupancy networks to predict occlusions for complete local mapping and then computing Euclidean Signed Distance Field (ESDF) for path planning. However, these systems face challenges in dynamic, severe occlusion scenes (e.g., crowds) due to limitations in perception networks' low prediction accuracy and path planners' high computation overhead. In this paper, we propose OMEGA, which contains OccMamba with an Efficient AGR-Planner to address the above-mentioned problems. OccMamba adopts a novel architecture that separates semantic and occupancy prediction into independent branches, incorporating two mamba blocks within these branches. These blocks efficiently extract semantic and geometric features in 3D environments with linear complexity, ensuring that the network can learn long-distance dependencies to improve prediction accuracy. Semantic and geometric features are combined within the Bird's Eye View (BEV) space to minimise computational overhead during feature fusion. The resulting semantic occupancy map is then seamlessly integrated into the local map, providing occlusion awareness of the dynamic environment. Our AGR-Planner utilizes this local map and employs kinodynamic A* search and gradient-based trajectory optimization to guarantee planning is ESDF-free and energy-efficient. Extensive experiments demonstrate that OccMamba outperforms the state-of-the-art 3D semantic occupancy network with 25.0% mIoU. End-to-end navigation experiments in dynamic scenes verify OMEGA's efficiency, achieving a 96% average planning success rate. Code and video are available at https://jmwang0117.github.io/OMEGA/.
comment: OccMamba is Coming!
☆ Generalizable Facial Expression Recognition ECCV2024
SOTA facial expression recognition (FER) methods fail on test sets that have domain gaps with the train set. Recent domain adaptation FER methods need to acquire labeled or unlabeled samples of target domains to fine-tune the FER model, which might be infeasible in real-world deployment. In this paper, we aim to improve the zero-shot generalization ability of FER methods on different unseen test sets using only one train set. Inspired by how humans first detect faces and then select expression features, we propose a novel FER pipeline to extract expression-related features from any given face images. Our method is based on the generalizable face features extracted by large models like CLIP. However, it is non-trivial to adapt the general features of CLIP for specific tasks like FER. To preserve the generalization ability of CLIP and the high precision of the FER model, we design a novel approach that learns sigmoid masks based on the fixed CLIP face features to extract expression features. To further improve the generalization ability on unseen test sets, we separate the channels of the learned masked features according to the expression classes to directly generate logits and avoid using the FC layer to reduce overfitting. We also introduce a channel-diverse loss to make the learned masks separated. Extensive experiments on five different FER datasets verify that our method outperforms SOTA FER methods by large margins. Code is available in https://github.com/zyh-uaiaaaa/Generalizable-FER.
comment: Accepted by ECCV2024
☆ Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory
Large language models (LLMs) are trained on extensive text corpora, which inevitably include biased information. Although techniques such as Affective Alignment can mitigate some negative impacts of these biases, existing prompt-based attack methods can still extract these biases from the model's weights. Moreover, these biases frequently appear subtly when LLMs are prompted to perform identical tasks across different demographic groups, thereby camouflaging their presence. To address this issue, we have formally defined the implicit bias problem and developed an innovative framework for bias removal based on Bayesian theory, Bayesian-Theory based Bias Removal (BTBR). BTBR employs likelihood ratio screening to pinpoint data entries within publicly accessible biased datasets that represent biases inadvertently incorporated during the LLM training phase. It then automatically constructs relevant knowledge triples and expunges bias information from LLMs using model editing techniques. Through extensive experimentation, we have confirmed the presence of the implicit bias problem in LLMs and demonstrated the effectiveness of our BTBR approach.
☆ Multilingual Non-Factoid Question Answering with Silver Answers
Most existing Question Answering Datasets (QuADs) primarily focus on factoid-based short-context Question Answering (QA) in high-resource languages. However, the scope of such datasets for low-resource languages remains limited, with only a few works centered on factoid-based QuADs and none on non-factoid QuADs. Therefore, this work presents MuNfQuAD, a multilingual QuAD with non-factoid questions. It utilizes interrogative sub-headings from BBC news articles as questions and the corresponding paragraphs as silver answers. The dataset comprises over 370K QA pairs across 38 languages, encompassing several low-resource languages, and stands as the largest multilingual QA dataset to date. Based on the manual annotations of 790 QA-pairs from MuNfQuAD (golden set), we observe that 98\% of questions can be answered using their corresponding silver answer. Our fine-tuned Answer Paragraph Selection (APS) model outperforms the baselines. The APS model attained an accuracy of 80\% and 72\%, as well as a macro F1 of 72\% and 66\%, on the MuNfQuAD testset and the golden set, respectively. Furthermore, the APS model effectively generalizes certain a language within the golden set, even after being fine-tuned on silver labels.
MV-MOS: Multi-View Feature Fusion for 3D Moving Object Segmentation
Effectively summarizing dense 3D point cloud data and extracting motion information of moving objects (moving object segmentation, MOS) is crucial to autonomous driving and robotics applications. How to effectively utilize motion and semantic features and avoid information loss during 3D-to-2D projection is still a key challenge. In this paper, we propose a novel multi-view MOS model (MV-MOS) by fusing motion-semantic features from different 2D representations of point clouds. To effectively exploit complementary information, the motion branches of the proposed model combines motion features from both bird's eye view (BEV) and range view (RV) representations. In addition, a semantic branch is introduced to provide supplementary semantic features of moving objects. Finally, a Mamba module is utilized to fuse the semantic features with motion features and provide effective guidance for the motion branches. We validated the effectiveness of the proposed multi-branch fusion MOS framework via comprehensive experiments, and our proposed model outperforms existing state-of-the-art models on the SemanticKITTI benchmark.
comment: 7 pages, 4 figures
☆ Breast tumor classification based on self-supervised contrastive learning from ultrasound videos
Background: Breast ultrasound is prominently used in diagnosing breast tumors. At present, many automatic systems based on deep learning have been developed to help radiologists in diagnosis. However, training such systems remains challenging because they are usually data-hungry and demand amounts of labeled data, which need professional knowledge and are expensive. Methods: We adopted a triplet network and a self-supervised contrastive learning technique to learn representations from unlabeled breast ultrasound video clips. We further designed a new hard triplet loss to to learn representations that particularly discriminate positive and negative image pairs that are hard to recognize. We also constructed a pretraining dataset from breast ultrasound videos (1,360 videos from 200 patients), which includes an anchor sample dataset with 11,805 images, a positive sample dataset with 188,880 images, and a negative sample dataset dynamically generated from video clips. Further, we constructed a finetuning dataset, including 400 images from 66 patients. We transferred the pretrained network to a downstream benign/malignant classification task and compared the performance with other state-of-the-art models, including three models pretrained on ImageNet and a previous contrastive learning model retrained on our datasets. Results and conclusion: Experiments revealed that our model achieved an area under the receiver operating characteristic curve (AUC) of 0.952, which is significantly higher than the others. Further, we assessed the dependence of our pretrained model on the number of labeled data and revealed that <100 samples were required to achieve an AUC of 0.901. The proposed framework greatly reduces the demand for labeled data and holds potential for use in automatic breast ultrasound image diagnosis.
☆ Hologram Reasoning for Solving Algebra Problems with Geometry Diagrams
Solving Algebra Problems with Geometry Diagrams (APGDs) is still a challenging problem because diagram processing is not studied as intensively as language processing. To work against this challenge, this paper proposes a hologram reasoning scheme and develops a high-performance method for solving APGDs by using this scheme. To reach this goal, it first defines a hologram, being a kind of graph, and proposes a hologram generator to convert a given APGD into a hologram, which represents the entire information of APGD and the relations for solving the problem can be acquired from it by a uniform way. Then HGR, a hologram reasoning method employs a pool of prepared graph models to derive algebraic equations, which is consistent with the geometric theorems. This method is able to be updated by adding new graph models into the pool. Lastly, it employs deep reinforcement learning to enhance the efficiency of model selection from the pool. The entire HGR not only ensures high solution accuracy with fewer reasoning steps but also significantly enhances the interpretability of the solution process by providing descriptions of all reasoning steps. Experimental results demonstrate the effectiveness of HGR in improving both accuracy and interpretability in solving APGDs.
☆ Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at \url{https://github.com/3244we/Question-Rewriter}.
comment: 7 pages, 4 figures, 5 tables
☆ A Tutorial on Explainable Image Classification for Dementia Stages Using Convolutional Neural Network and Gradient-weighted Class Activation Mapping
This paper presents a tutorial of an explainable approach using Convolutional Neural Network (CNN) and Gradient-weighted Class Activation Mapping (Grad-CAM) to classify four progressive dementia stages based on open MRI brain images. The detailed implementation steps are demonstrated with an explanation. Whilst the proposed CNN architecture is demonstrated to achieve more than 99% accuracy for the test dataset, the computational procedure of CNN remains a black box. The visualisation based on Grad-CAM is attempted to explain such very high accuracy and may provide useful information for physicians. Future motivation based on this work is discussed.
comment: 15 pages, 11 figures, 3 tables
☆ Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models
Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using prompt-specific methods to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of our method in comparison to existing techniques.
comment: 33 pages, 14 figures, under review
☆ Prompt Your Brain: Scaffold Prompt Tuning for Efficient Adaptation of fMRI Pre-trained Model MICCAI 2024
We introduce Scaffold Prompt Tuning (ScaPT), a novel prompt-based framework for adapting large-scale functional magnetic resonance imaging (fMRI) pre-trained models to downstream tasks, with high parameter efficiency and improved performance compared to fine-tuning and baselines for prompt tuning. The full fine-tuning updates all pre-trained parameters, which may distort the learned feature space and lead to overfitting with limited training data which is common in fMRI fields. In contrast, we design a hierarchical prompt structure that transfers the knowledge learned from high-resource tasks to low-resource ones. This structure, equipped with a Deeply-conditioned Input-Prompt (DIP) mapping module, allows for efficient adaptation by updating only 2% of the trainable parameters. The framework enhances semantic interpretability through attention mechanisms between inputs and prompts, and it clusters prompts in the latent space in alignment with prior knowledge. Experiments on public resting state fMRI datasets reveal ScaPT outperforms fine-tuning and multitask-based prompt tuning in neurodegenerative diseases diagnosis/prognosis and personality trait prediction, even with fewer than 20 participants. It highlights ScaPT's efficiency in adapting pre-trained fMRI models to low-resource tasks.
comment: MICCAI 2024
☆ SparseGrow: Addressing Growth-Induced Forgetting in Task-Agnostic Continual Learning AAAI
In continual learning (CL), model growth enhances adaptability over new data, improving knowledge retention for more tasks. However, improper model growth can lead to severe degradation of previously learned knowledge, an issue we name as growth-induced forgetting (GIFt), especially in task-agnostic CL using entire grown model for inference. Existing works, despite adopting model growth and random initialization for better adaptability, often fail to recognize the presence of GIFt caused by improper model growth. This oversight limits comprehensive control of forgetting and hinders full utilization of model growth. We are the first in CL to identify this issue and conduct an in-depth study on root cause of GIFt, where layer expansion stands out among model growth strategies, widening layers without affecting model functionality. Yet, direct adoption of layer expansion presents challenges. It lacks data-driven control and initialization of expanded parameters to balance adaptability and knowledge retention. This paper presents a novel SparseGrow approach to overcome the issue of GIFt while enhancing adaptability over new data. SparseGrow employs data-driven sparse layer expansion to control efficient parameter usage during growth, reducing GIFt from excessive growth and functionality changes. It also combines sparse growth with on-data initialization at training late-stage to create partially 0-valued expansions that fit learned distribution, enhancing retention and adaptability. To further minimize forgetting, freezing is applied by calculating the sparse mask, allowing data-driven preservation of important parameters. Through experiments across datasets with various settings, cases and task numbers, we demonstrate the necessity of layer expansion and showcase the effectiveness of SparseGrow in overcoming GIFt, highlighting its adaptability and knowledge retention for incremental tasks.
comment: This paper has been submitted to the AAAI conference. If accepted, the final version will be updated to reflect the conference proceedings
☆ The Stable Model Semantics for Higher-Order Logic Programming
We propose a stable model semantics for higher-order logic programs. Our semantics is developed using Approximation Fixpoint Theory (AFT), a powerful formalism that has successfully been used to give meaning to diverse non-monotonic formalisms. The proposed semantics generalizes the classical two-valued stable model semantics of (Gelfond and Lifschitz 1988) as-well-as the three-valued one of (Przymusinski 1990), retaining their desirable properties. Due to the use of AFT, we also get for free alternative semantics for higher-order logic programs, namely supported model, Kripke-Kleene, and well-founded. Additionally, we define a broad class of stratified higher-order logic programs and demonstrate that they have a unique two-valued higher-order stable model which coincides with the well-founded semantics of such programs. We provide a number of examples in different application domains, which demonstrate that higher-order logic programming under the stable model semantics is a powerful and versatile formalism, which can potentially form the basis of novel ASP systems.
☆ Hokoff: Real Game Dataset from Honor of Kings and its Offline Reinforcement Learning Benchmarks
The advancement of Offline Reinforcement Learning (RL) and Offline Multi-Agent Reinforcement Learning (MARL) critically depends on the availability of high-quality, pre-collected offline datasets that represent real-world complexities and practical applications. However, existing datasets often fall short in their simplicity and lack of realism. To address this gap, we propose Hokoff, a comprehensive set of pre-collected datasets that covers both offline RL and offline MARL, accompanied by a robust framework, to facilitate further research. This data is derived from Honor of Kings, a recognized Multiplayer Online Battle Arena (MOBA) game known for its intricate nature, closely resembling real-life situations. Utilizing this framework, we benchmark a variety of offline RL and offline MARL algorithms. We also introduce a novel baseline algorithm tailored for the inherent hierarchical action space of the game. We reveal the incompetency of current offline RL approaches in handling task complexity, generalization and multi-task learning.
☆ AI-Based IVR
The use of traditional IVR (Interactive Voice Response) methods often proves insufficient to meet customer needs. This article examines the application of artificial intelligence (AI) technologies to enhance the efficiency of IVR systems in call centers. A proposed approach is based on the integration of speech-to-text conversion solutions, text query classification using large language models (LLM), and speech synthesis. Special attention is given to adapting these technologies to work with the Kazakh language, including fine-tuning models on specialized datasets. The practical aspects of implementing the developed system in a real call center for query classification are described. The research results demonstrate that the application of AI technologies in call center IVR systems reduces operator workload, improves customer service quality, and increases the efficiency of query processing. The proposed approach can be adapted for use in call centers operating with various languages.
comment: in Russian language
☆ Diff-PCC: Diffusion-based Neural Compression for 3D Point Clouds
Stable diffusion networks have emerged as a groundbreaking development for their ability to produce realistic and detailed visual content. This characteristic renders them ideal decoders, capable of producing high-quality and aesthetically pleasing reconstructions. In this paper, we introduce the first diffusion-based point cloud compression method, dubbed Diff-PCC, to leverage the expressive power of the diffusion model for generative and aesthetically superior decoding. Different from the conventional autoencoder fashion, a dual-space latent representation is devised in this paper, in which a compressor composed of two independent encoding backbones is considered to extract expressive shape latents from distinct latent spaces. At the decoding side, a diffusion-based generator is devised to produce high-quality reconstructions by considering the shape latents as guidance to stochastically denoise the noisy point clouds. Experiments demonstrate that the proposed Diff-PCC achieves state-of-the-art compression performance (e.g., 7.711 dB BD-PSNR gains against the latest G-PCC standard at ultra-low bitrate) while attaining superior subjective quality. Source code will be made publicly available.
☆ NutrifyAI: An AI-Powered System for Real-Time Food Detection, Nutritional Analysis, and Personalized Meal Recommendations
With diet and nutrition apps reaching 1.4 billion users in 2022 [1], it's no surprise that health apps like MyFitnessPal, Noom, and Calorie Counter, are surging in popularity. However, one major setback [2] of nearly all nutrition applications is that users must enter food data manually, which is time-consuming and tedious. Thus, there has been an increasing demand for applications that can accurately identify food items, analyze their nutritional content, and offer dietary recommendations in real-time. This paper introduces a comprehensive system that combines advanced computer vision techniques with nutrition analysis, implemented in a versatile mobile and web application. The system is divided into three key components: 1) food detection using the YOLOv8 model, 2) nutrient analysis via the Edamam Nutrition Analysis API, and 3) personalized meal recommendations using the Edamam Meal Planning and Recipe Search APIs. Designed for both mobile and web platforms, the application ensures fast processing times with an intuitive user interface, with features such as data visualizations using Chart.js, a login system, and personalized settings for dietary preferences, allergies, and cuisine choices. Preliminary results showcase the system's effectiveness, making it a valuable tool for users to make informed dietary decisions.
comment: 7 pages, 12 figures
☆ EdgeNAT: Transformer for Efficient Edge Detection
Transformers, renowned for their powerful feature extraction capabilities, have played an increasingly prominent role in various vision tasks. Especially, recent advancements present transformer with hierarchical structures such as Dilated Neighborhood Attention Transformer (DiNAT), demonstrating outstanding ability to efficiently capture both global and local features. However, transformers' application in edge detection has not been fully exploited. In this paper, we propose EdgeNAT, a one-stage transformer-based edge detector with DiNAT as the encoder, capable of extracting object boundaries and meaningful edges both accurately and efficiently. On the one hand, EdgeNAT captures global contextual information and detailed local cues with DiNAT, on the other hand, it enhances feature representation with a novel SCAF-MLA decoder by utilizing both inter-spatial and inter-channel relationships of feature maps. Extensive experiments on multiple datasets show that our method achieves state-of-the-art performance on both RGB and depth images. Notably, on the widely used BSDS500 dataset, our L model achieves impressive performances, with ODS F-measure and OIS F-measure of 86.0%, 87.6% for multi-scale input,and 84.9%, and 86.3% for single-scale input, surpassing the current state-of-the-art EDTER by 1.2%, 1.1%, 1.7%, and 1.6%, respectively. Moreover, as for throughput, our approach runs at 20.87 FPS on RTX 4090 GPU with single-scale input. The code for our method will be released soon.
☆ XCB: an effective contextual biasing approach to bias cross-lingual phrases in speech recognition SC 2024
Contextualized ASR models have been demonstrated to effectively improve the recognition accuracy of uncommon phrases when a predefined phrase list is available. However, these models often struggle with bilingual settings, which are prevalent in code-switching speech recognition. In this study, we make the initial attempt to address this challenge by introducing a Cross-lingual Contextual Biasing(XCB) module. Specifically, we augment a pre-trained ASR model for the dominant language by integrating an auxiliary language biasing module and a supplementary language-specific loss, aimed at enhancing the recognition of phrases in the secondary language. Experimental results conducted on our in-house code-switching dataset have validated the efficacy of our approach, demonstrating significant improvements in the recognition of biasing phrases in the secondary language, even without any additional inference overhead. Additionally, our proposed system exhibits both efficiency and generalization when is applied by the unseen ASRU-2019 test set.
comment: accepted to NCMMSC 2024
☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Return-Conditioned Transformer Decision Models (RCTDM) have demonstrated the potential to enhance transformer performance in offline reinforcement learning by replacing rewards in the input sequence with returns-to-go. However, to achieve the goal of learning an optimal policy from offline datasets composed of limited suboptimal trajectories, RCTDM required alternative methods. One prominent approach, trajectory stitching, was designed to enable the network to combine multiple trajectories to find the optimal path. To implement this using only transformers without auxiliary networks, it was necessary to shorten the input sequence length to better capture the Markov property in reinforcement learnings. This, however, introduced a trade-off, as it reduced the accuracy of action inference. Our study introduces a model named Decision MetaMamba to resolve these challenges. DMM employs an input token mixer to extract patterns from short sequences and uses a State Space Model (SSM) to selectively combine information from relatively distant sequences. Inspired by Metaformer, this structure was developed by transforming Mamba's input layer into various multi-modal layers. Fortunately, with the advent of Mamba, implemented using parallel selective scanning, we achieved a high-performance sequence model capable of replacing transformers. Based on these innovations, DMM demonstrated excellent performance across various datasets in offline RL, confirming that models using SSM can improve performance by domain-specific alterations of the input layer. Additionally, it maintained its performance even in lightweight models with fewer parameters. These results suggest that decision models based on SSM can pave the way for improved outcomes in future developments.
☆ Data Augmentation Integrating Dialogue Flow and Style to Adapt Spoken Dialogue Systems to Low-Resource User Groups SIGDIAL 2024
This study addresses the interaction challenges encountered by spoken dialogue systems (SDSs) when engaging with users who exhibit distinct conversational behaviors, particularly minors, in scenarios where data are scarce. We propose a novel data augmentation framework to enhance SDS performance for user groups with limited resources. Our approach leverages a large language model (LLM) to extract speaker styles and a pre-trained language model (PLM) to simulate dialogue act history. This method generates enriched and personalized dialogue data, facilitating improved interactions with unique user demographics. Extensive experiments validate the efficacy of our methodology, highlighting its potential to foster the development of more adaptive and inclusive dialogue systems.
comment: Accepted to SIGDIAL 2024
☆ Approximate Estimation of High-dimension Execution Skill for Dynamic Agents in Continuous Domains
In many real-world continuous action domains, human agents must decide which actions to attempt and then execute those actions to the best of their ability. However, humans cannot execute actions without error. Human performance in these domains can potentially be improved by the use of AI to aid in decision-making. One requirement for an AI to correctly reason about what actions a human agent should attempt is a correct model of that human's execution error, or skill. Recent work has demonstrated successful techniques for estimating this execution error with various types of agents across different domains. However, this previous work made several assumptions that limit the application of these ideas to real-world settings. First, previous work assumed that the error distributions were symmetric normal, which meant that only a single parameter had to be estimated. In reality, agent error distributions might exhibit arbitrary shapes and should be modeled more flexibly. Second, it was assumed that the execution error of the agent remained constant across all observations. Especially for human agents, execution error changes over time, and this must be taken into account to obtain effective estimates. To overcome both of these shortcomings, we propose a novel particle-filter-based estimator for this problem. After describing the details of this approximate estimator, we experimentally explore various design decisions and compare performance with previous skill estimators in a variety of settings to showcase the improvements. The outcome is an estimator capable of generating more realistic, time-varying execution skill estimates of agents, which can then be used to assist agents in making better decisions and improve their overall performance.
☆ Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods.
☆ QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning
Prompt engineering has demonstrated remarkable success in enhancing the performance of large language models (LLMs) across diverse tasks. However, most existing prompt optimization methods only focus on the task-level performance, overlooking the importance of query-preferred prompts, which leads to suboptimal performances. Additionally, these methods rely heavily on frequent interactions with LLMs to obtain feedback for guiding the optimization process, incurring substantial redundant interaction costs. In this paper, we introduce Query-dependent Prompt Optimization (QPO), which leverages multi-loop offline reinforcement learning to iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries, thus significantly improving the prompting effect on the large target LLM. We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks, thereby circumventing the expenses of online interactions. Furthermore, we continuously augment the offline dataset with the generated prompts in each loop, as the prompts from the fine-tuned model are supposed to outperform the source prompts in the original dataset. These iterative loops bootstrap the model towards generating optimal prompts. Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
☆ Adaptive Knowledge Distillation for Classification of Hand Images using Explainable Vision Transformers ECML
Assessing the forensic value of hand images involves the use of unique features and patterns present in an individual's hand. The human hand has distinct characteristics, such as the pattern of veins, fingerprints, and the geometry of the hand itself. This paper investigates the use of vision transformers (ViTs) for classification of hand images. We use explainability tools to explore the internal representations of ViTs and assess their impact on the model outputs. Utilizing the internal understanding of ViTs, we introduce distillation methods that allow a student model to adaptively extract knowledge from a teacher model while learning on data of a different domain to prevent catastrophic forgetting. Two publicly available hand image datasets are used to conduct a series of experiments to evaluate performance of the ViTs and our proposed adaptive distillation methods. The experimental results demonstrate that ViT models significantly outperform traditional machine learning methods and the internal states of ViTs are useful for explaining the model outputs in the classification task. By averting catastrophic forgetting, our distillation methods achieve excellent performance on data from both source and target domains, particularly when these two domains exhibit significant dissimilarity. The proposed approaches therefore can be developed and implemented effectively for real-world applications such as access control, identity verification, and authentication systems.
comment: Accepted at the ECML PKDD 2024 (Research Track)
☆ ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming
Existing visual assistive technologies are built for simple and common use cases, and have few avenues for blind people to customize their functionalities. Drawing from prior work on DIY assistive technology, this paper investigates end-user programming as a means for users to create and customize visual access programs to meet their unique needs. We introduce ProgramAlly, a system for creating custom filters for visual information, e.g., 'find NUMBER on BUS', leveraging three end-user programming approaches: block programming, natural language, and programming by example. To implement ProgramAlly, we designed a representation of visual filtering tasks based on scenarios encountered by blind people, and integrated a set of on-device and cloud models for generating and running these programs. In user studies with 12 blind adults, we found that participants preferred different programming modalities depending on the task, and envisioned using visual access programs to address unique accessibility challenges that are otherwise difficult with existing applications. Through ProgramAlly, we present an exploration of how blind end-users can create visual access programs to customize and control their experiences.
comment: UIST 2024
☆ QUITO-X: An Information Bottleneck-based Compression Algorithm with Cross-Attention
Generative LLM have achieved significant success in various industrial tasks and can effectively adapt to vertical domains and downstream tasks through ICL. However, with tasks becoming increasingly complex, the context length required by ICL is also getting longer, and two significant issues arise: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the "lost in the middle" problem. Recently, compressing prompts by removing tokens according to some metric obtained from some causal language models, such as llama-7b, has emerged as an effective approach to mitigate these issues. However, the metric used by prior method such as self-information or PPL do not fully align with the objective of distinuishing the most important tokens when conditioning on query. In this work, we introduce information bottleneck theory to carefully examine the properties required by the metric. Inspired by this, we use cross-attention in encoder-decoder architecture as a new metric. Our simple method leads to significantly better performance in smaller models with lower latency. We evaluate our method on four datasets: DROP, CoQA, SQuAD, and Quoref. The experimental results show that, while maintaining the same performance, our compression rate can improve by nearly 25% over previous SOTA. Remarkably, in experiments where 25% of the tokens are removed, our model's EM score for answers sometimes even exceeds that of the control group using uncompressed text as context.
☆ How Well Do Large Language Models Serve as End-to-End Secure Code Producers?
The rapid advancement of large language models (LLMs) such as GPT-4 has revolutionized the landscape of software engineering, positioning these models at the core of modern development practices. As we anticipate these models to evolve into the primary and trustworthy tools used in software development, ensuring the security of the code they produce becomes paramount. How well can LLMs serve as end-to-end secure code producers? This paper presents a systematic investigation into LLMs' inherent potential to generate code with fewer vulnerabilities. Specifically, We studied GPT-3.5 and GPT-4's capability to identify and repair vulnerabilities in the code generated by four popular LLMs including themselves (GPT-3.5, GPT-4, Code Llama, and CodeGeeX2). By manually or automatically reviewing 4,900 pieces of code, our study reveals that: (1) large language models lack awareness of scenario-relevant security risks, which leads to the generation of over 75% vulnerable code on the SecurityEval benchmark; (2) LLMs such as GPT-3.5 and GPT-4 are unable to precisely identify vulnerabilities in the code they generated; (3) GPT-3.5 and GPT-4 can achieve 33.2%~59.6% success rates in repairing the insecure code produced by the 4 LLMs, but they both perform poorly when repairing self-produced code, indicating self-repair "blind spots". To address the limitation of a single round of repair, we developed a lightweight tool that prompts LLMs to construct safer source code through an iterative repair procedure based on the insights gained from our study. Experiments show that assisted by semantic analysis engines, our tool significantly improves the success rates of repair to 65.9%~85.5%.
☆ Achieving the Tightest Relaxation of Sigmoids for Formal Verification
In the field of formal verification, Neural Networks (NNs) are typically reformulated into equivalent mathematical programs which are optimized over. To overcome the inherent non-convexity of these reformulations, convex relaxations of nonlinear activation functions are typically utilized. Common relaxations (i.e., static linear cuts) of ``S-shaped" activation functions, however, can be overly loose, slowing down the overall verification process. In this paper, we derive tuneable hyperplanes which upper and lower bound the sigmoid activation function. When tuned in the dual space, these affine bounds smoothly rotate around the nonlinear manifold of the sigmoid activation function. This approach, termed $\alpha$-sig, allows us to tractably incorporate the tightest possible, element-wise convex relaxation of the sigmoid activation function into a formal verification framework. We embed these relaxations inside of large verification tasks and compare their performance to LiRPA and $\alpha$-CROWN, a state-of-the-art verification duo.
☆ Is the Lecture Engaging for Learning? Lecture Voice Sentiment Analysis for Knowledge Graph-Supported Intelligent Lecturing Assistant (ILA) System
This paper introduces an intelligent lecturing assistant (ILA) system that utilizes a knowledge graph to represent course content and optimal pedagogical strategies. The system is designed to support instructors in enhancing student learning through real-time analysis of voice, content, and teaching methods. As an initial investigation, we present a case study on lecture voice sentiment analysis, in which we developed a training set comprising over 3,000 one-minute lecture voice clips. Each clip was manually labeled as either engaging or non-engaging. Utilizing this dataset, we constructed and evaluated several classification models based on a variety of features extracted from the voice clips. The results demonstrate promising performance, achieving an F1-score of 90% for boring lectures on an independent set of over 800 test voice clips. This case study lays the groundwork for the development of a more sophisticated model that will integrate content analysis and pedagogical practices. Our ultimate goal is to aid instructors in teaching more engagingly and effectively by leveraging modern artificial intelligence techniques.
☆ Event Stream based Sign Language Translation: A High-Definition Benchmark Dataset and A New Algorithm
Sign Language Translation (SLT) is a core task in the field of AI-assisted disability. Unlike traditional SLT based on visible light videos, which is easily affected by factors such as lighting, rapid hand movements, and privacy breaches, this paper proposes the use of high-definition Event streams for SLT, effectively mitigating the aforementioned issues. This is primarily because Event streams have a high dynamic range and dense temporal signals, which can withstand low illumination and motion blur well. Additionally, due to their sparsity in space, they effectively protect the privacy of the target person. More specifically, we propose a new high-resolution Event stream sign language dataset, termed Event-CSL, which effectively fills the data gap in this area of research. It contains 14,827 videos, 14,821 glosses, and 2,544 Chinese words in the text vocabulary. These samples are collected in a variety of indoor and outdoor scenes, encompassing multiple angles, light intensities, and camera movements. We have benchmarked existing mainstream SLT works to enable fair comparison for future efforts. Based on this dataset and several other large-scale datasets, we propose a novel baseline method that fully leverages the Mamba model's ability to integrate temporal information of CNN features, resulting in improved sign language translation outcomes. Both the benchmark dataset and source code will be released on https://github.com/Event-AHU/OpenESL
comment: First Large-scale and High-Definition Benchmark Dataset for Event-based Sign Language Translation
☆ MambaEVT: Event Stream based Visual Object Tracking using State Space Model
Event camera-based visual tracking has drawn more and more attention in recent years due to the unique imaging principle and advantages of low energy consumption, high dynamic range, and dense temporal resolution. Current event-based tracking algorithms are gradually hitting their performance bottlenecks, due to the utilization of vision Transformer and the static template for target object localization. In this paper, we propose a novel Mamba-based visual tracking framework that adopts the state space model with linear complexity as a backbone network. The search regions and target template are fed into the vision Mamba network for simultaneous feature extraction and interaction. The output tokens of search regions will be fed into the tracking head for target localization. More importantly, we consider introducing a dynamic template update strategy into the tracking framework using the Memory Mamba network. By considering the diversity of samples in the target template library and making appropriate adjustments to the template memory module, a more effective dynamic template can be integrated. The effective combination of dynamic and static templates allows our Mamba-based tracking algorithm to achieve a good balance between accuracy and computational cost on multiple large-scale datasets, including EventVOT, VisEvent, and FE240hz. The source code will be released on https://github.com/Event-AHU/MambaEVT
comment: In Peer Review
☆ Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study
The widespread application of Artificial Intelligence (AI) techniques has significantly influenced the development of new therapeutic agents. These computational methods can be used to design and predict the properties of generated molecules. Multi-target Drug Discovery (MTDD) is an emerging paradigm for discovering drugs against complex disorders that do not respond well to more traditional target-specific treatments, such as central nervous system, immune system, and cardiovascular diseases. Still, there is yet to be an established benchmark suite for assessing the effectiveness of AI tools for designing multi-target compounds. Standardized benchmarks allow for comparing existing techniques and promote rapid research progress. Hence, this work proposes an evaluation framework for molecule generation techniques in MTDD scenarios, considering brain diseases as a case study. Our methodology involves using large language models to select the appropriate molecular targets, gathering and preprocessing the bioassay datasets, training quantitative structure-activity relationship models to predict target modulation, and assessing other essential drug-likeness properties for implementing the benchmarks. Additionally, this work will assess the performance of four deep generative models and evolutionary algorithms over our benchmark suite. In our findings, both evolutionary algorithms and generative models can achieve competitive results across the proposed benchmarks.
comment: 8 pages, 1 figure, published in 2024 IEEE Congress on Evolutionary Computation (CEC)
☆ An End-to-End Reinforcement Learning Based Approach for Micro-View Order-Dispatching in Ride-Hailing
Assigning orders to drivers under localized spatiotemporal context (micro-view order-dispatching) is a major task in Didi, as it influences ride-hailing service experience. Existing industrial solutions mainly follow a two-stage pattern that incorporate heuristic or learning-based algorithms with naive combinatorial methods, tackling the uncertainty of both sides' behaviors, including emerging timings, spatial relationships, and travel duration, etc. In this paper, we propose a one-stage end-to-end reinforcement learning based order-dispatching approach that solves behavior prediction and combinatorial optimization uniformly in a sequential decision-making manner. Specifically, we employ a two-layer Markov Decision Process framework to model this problem, and present \underline{D}eep \underline{D}ouble \underline{S}calable \underline{N}etwork (D2SN), an encoder-decoder structure network to generate order-driver assignments directly and stop assignments accordingly. Besides, by leveraging contextual dynamics, our approach can adapt to the behavioral patterns for better performance. Extensive experiments on Didi's real-world benchmarks justify that the proposed approach significantly outperforms competitive baselines in optimizing matching efficiency and user experience tasks. In addition, we evaluate the deployment outline and discuss the gains and experiences obtained during the deployment tests from the view of large-scale engineering implementation.
comment: 8 pages, 4 figures
☆ LeCov: Multi-level Testing Criteria for Large Language Models
Large Language Models (LLMs) are widely used in many different domains, but because of their limited interpretability, there are questions about how trustworthy they are in various perspectives, e.g., truthfulness and toxicity. Recent research has started developing testing methods for LLMs, aiming to uncover untrustworthy issues, i.e., defects, before deployment. However, systematic and formalized testing criteria are lacking, which hinders a comprehensive assessment of the extent and adequacy of testing exploration. To mitigate this threat, we propose a set of multi-level testing criteria, LeCov, for LLMs. The criteria consider three crucial LLM internal components, i.e., the attention mechanism, feed-forward neurons, and uncertainty, and contain nine types of testing criteria in total. We apply the criteria in two scenarios: test prioritization and coverage-guided testing. The experiment evaluation, on three models and four datasets, demonstrates the usefulness and effectiveness of LeCov.
☆ The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act ICML 2024
The AI act is the European Union-wide regulation of AI systems. It includes specific provisions for general-purpose AI models which however need to be further interpreted in terms of technical standards and state-of-art studies to ensure practical compliance solutions. This paper examines the AI act requirements for providers and deployers of general-purpose AI and further proposes uncertainty estimation as a suitable measure for legal compliance and quality assurance in training of such models. We argue that uncertainty estimation should be a required component for deploying models in the real world, and under the EU AI Act, it could fulfill several requirements for transparency, accuracy, and trustworthiness. However, generally using uncertainty estimation methods increases the amount of computation, producing a dilemma, as computation might go over the threshold ($10^{25}$ FLOPS) to classify the model as a systemic risk system which bears more regulatory burden.
comment: 7 pages, 2nd GenLaw Workshop @ ICML 2024
☆ Do Neural Scaling Laws Exist on Graph Self-Supervised Learning?
Self-supervised learning~(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility on https://github.com/GraphSSLScaling/GraphSSLScaling.
☆ A Little Confidence Goes a Long Way
We introduce a group of related methods for binary classification tasks using probes of the hidden state activations in large language models (LLMs). Performance is on par with the largest and most advanced LLMs currently available, but requiring orders of magnitude fewer computational resources and not requiring labeled data. This approach involves translating class labels into a semantically rich description, spontaneous symmetry breaking of multilayer perceptron probes for unsupervised learning and inference, training probes to generate confidence scores (prior probabilities) from hidden state activations subject to known constraints via entropy maximization, and selecting the most confident probe model from an ensemble for prediction. These techniques are evaluated on four datasets using five base LLMs.
comment: 13 pages, 2 figures
☆ Out-of-Distribution Detection with Attention Head Masking for Multimodal Document Classification
Detecting out-of-distribution (OOD) data is crucial in machine learning applications to mitigate the risk of model overconfidence, thereby enhancing the reliability and safety of deployed systems. The majority of existing OOD detection methods predominantly address uni-modal inputs, such as images or texts. In the context of multi-modal documents, there is a notable lack of extensive research on the performance of these methods, which have primarily been developed with a focus on computer vision tasks. We propose a novel methodology termed as attention head masking (AHM) for multi-modal OOD tasks in document classification systems. Our empirical results demonstrate that the proposed AHM method outperforms all state-of-the-art approaches and significantly decreases the false positive rate (FPR) compared to existing solutions up to 7.5\%. This methodology generalizes well to multi-modal data, such as documents, where visual and textual information are modeled under the same Transformer architecture. To address the scarcity of high-quality publicly available document datasets and encourage further research on OOD detection for documents, we introduce FinanceDocs, a new document AI dataset. Our code and dataset are publicly available.
☆ Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery
Regular measurement of carbon stock in the world's forests is critical for carbon accounting and reporting under national and international climate initiatives, and for scientific research, but has been largely limited in scalability and temporal resolution due to a lack of ground based assessments. Increasing efforts have been made to address these challenges by incorporating remotely sensed data. We present a new methodology which uses multi-sensor, multi-spectral imagery at a resolution of 10 meters and a deep learning based model which unifies the prediction of above ground biomass density (AGBD), canopy height (CH), canopy cover (CC) as well as uncertainty estimations for all three quantities. The model is trained on millions of globally sampled GEDI-L2/L4 measurements. We validate the capability of our model by deploying it over the entire globe for the year 2023 as well as annually from 2016 to 2023 over selected areas. The model achieves a mean absolute error for AGBD (CH, CC) of 26.1 Mg/ha (3.7 m, 9.9 %) and a root mean squared error of 50.6 Mg/ha (5.4 m, 15.8 %) on a globally sampled test dataset, demonstrating a significant improvement over previously published results. We also report the model performance against independently collected ground measurements published in the literature, which show a high degree of correlation across varying conditions. We further show that our pre-trained model facilitates seamless transferability to other GEDI variables due to its multi-head architecture.
☆ OCTCube: A 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis
Optical coherence tomography (OCT) has become critical for diagnosing retinal diseases as it enables 3D images of the retina and optic nerve. OCT acquisition is fast, non-invasive, affordable, and scalable. Due to its broad applicability, massive numbers of OCT images have been accumulated in routine exams, making it possible to train large-scale foundation models that can generalize to various diagnostic tasks using OCT images. Nevertheless, existing foundation models for OCT only consider 2D image slices, overlooking the rich 3D structure. Here, we present OCTCube, a 3D foundation model pre-trained on 26,605 3D OCT volumes encompassing 1.62 million 2D OCT images. OCTCube is developed based on 3D masked autoencoders and exploits FlashAttention to reduce the larger GPU memory usage caused by modeling 3D volumes. OCTCube outperforms 2D models when predicting 8 retinal diseases in both inductive and cross-dataset settings, indicating that utilizing the 3D structure in the model instead of 2D data results in significant improvement. OCTCube further shows superior performance on cross-device prediction and when predicting systemic diseases, such as diabetes and hypertension, further demonstrating its strong generalizability. Finally, we propose a contrastive-self-supervised-learning-based OCT-IR pre-training framework (COIP) for cross-modality analysis on OCT and infrared retinal (IR) images, where the OCT volumes are embedded using OCTCube. We demonstrate that COIP enables accurate alignment between OCT and IR en face images. Collectively, OCTCube, a 3D OCT foundation model, demonstrates significantly better performance against 2D models on 27 out of 29 tasks and comparable performance on the other two tasks, paving the way for AI-based retinal disease diagnosis.
☆ CoDi: Conversational Distillation for Grounded Question Answering
Distilling conversational skills into Small Language Models (SLMs) with approximately 1 billion parameters presents significant challenges. Firstly, SLMs have limited capacity in their model parameters to learn extensive knowledge compared to larger models. Secondly, high-quality conversational datasets are often scarce, small, and domain-specific. Addressing these challenges, we introduce a novel data distillation framework named CoDi (short for Conversational Distillation, pronounced "Cody"), allowing us to synthesize large-scale, assistant-style datasets in a steerable and diverse manner. Specifically, while our framework is task agnostic at its core, we explore and evaluate the potential of CoDi on the task of conversational grounded reasoning for question answering. This is a typical on-device scenario for specialist SLMs, allowing for open-domain model responses, without requiring the model to "memorize" world knowledge in its limited weights. Our evaluations show that SLMs trained with CoDi-synthesized data achieve performance comparable to models trained on human-annotated data in standard metrics. Additionally, when using our framework to generate larger datasets from web data, our models surpass larger, instruction-tuned models in zero-shot conversational grounded reasoning tasks.
comment: 13 pages
☆ Quantum Inverse Contextual Vision Transformers (Q-ICVT): A New Frontier in 3D Object Detection for AVs CIKM '24
The field of autonomous vehicles (AVs) predominantly leverages multi-modal integration of LiDAR and camera data to achieve better performance compared to using a single modality. However, the fusion process encounters challenges in detecting distant objects due to the disparity between the high resolution of cameras and the sparse data from LiDAR. Insufficient integration of global perspectives with local-level details results in sub-optimal fusion performance.To address this issue, we have developed an innovative two-stage fusion process called Quantum Inverse Contextual Vision Transformers (Q-ICVT). This approach leverages adiabatic computing in quantum concepts to create a novel reversible vision transformer known as the Global Adiabatic Transformer (GAT). GAT aggregates sparse LiDAR features with semantic features in dense images for cross-modal integration in a global form. Additionally, the Sparse Expert of Local Fusion (SELF) module maps the sparse LiDAR 3D proposals and encodes position information of the raw point cloud onto the dense camera feature space using a gating point fusion approach. Our experiments show that Q-ICVT achieves an mAPH of 82.54 for L2 difficulties on the Waymo dataset, improving by 1.88% over current state-of-the-art fusion methods. We also analyze GAT and SELF in ablation studies to highlight the impact of Q-ICVT. Our code is available at https://github.com/sanjay-810/Qicvt Q-ICVT
comment: The paper has been accepted as a short paper at CIKM '24
☆ Effective Off-Policy Evaluation and Learning in Contextual Combinatorial Bandits RecSys2024
We explore off-policy evaluation and learning (OPE/L) in contextual combinatorial bandits (CCB), where a policy selects a subset in the action space. For example, it might choose a set of furniture pieces (a bed and a drawer) from available items (bed, drawer, chair, etc.) for interior design sales. This setting is widespread in fields such as recommender systems and healthcare, yet OPE/L of CCB remains unexplored in the relevant literature. Typical OPE/L methods such as regression and importance sampling can be applied to the CCB problem, however, they face significant challenges due to high bias or variance, exacerbated by the exponential growth in the number of available subsets. To address these challenges, we introduce a concept of factored action space, which allows us to decompose each subset into binary indicators. This formulation allows us to distinguish between the ''main effect'' derived from the main actions, and the ''residual effect'', originating from the supplemental actions, facilitating more effective OPE. Specifically, our estimator, called OPCB, leverages an importance sampling-based approach to unbiasedly estimate the main effect, while employing regression-based approach to deal with the residual effect with low variance. OPCB achieves substantial variance reduction compared to conventional importance sampling methods and bias reduction relative to regression methods under certain conditions, as illustrated in our theoretical analysis. Experiments demonstrate OPCB's superior performance over typical methods in both OPE and OPL.
comment: accepted at RecSys2024
☆ EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation
Large Language Models (LLMs) have seen increasing use in various software development tasks, especially in code generation. The most advanced recent methods attempt to incorporate feedback from code execution into prompts to help guide LLMs in generating correct code, in an iterative process. While effective, these methods could be costly and time-consuming due to numerous interactions with the LLM and the extensive token usage. To address this issue, we propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC), which leverages a lightweight evolutionary algorithm to evolve the original prompts toward better ones that produce high-quality code, with minimal interactions with LLM. Our evaluation against state-of-the-art (SOTA) LLM-based code generation models shows that EPiC outperforms all the baselines in terms of cost-effectiveness.
comment: Submitted to TSE
☆ Reading with Intent
Retrieval augmented generation (RAG) systems augment how knowledge language models are by integrating external information sources such as Wikipedia, internal documents, scientific papers, or the open internet. RAG systems that rely on the open internet as their knowledge source have to contend with the complexities of human-generated content. Human communication extends much deeper than just the words rendered as text. Intent, tonality, and connotation can all change the meaning of what is being conveyed. Recent real-world deployments of RAG systems have shown some difficulty in understanding these nuances of human communication. One significant challenge for these systems lies in processing sarcasm. Though the Large Language Models (LLMs) that make up the backbone of these RAG systems are able to detect sarcasm, they currently do not always use these detections for the subsequent processing of text. To address these issues, in this paper, we synthetically generate sarcastic passages from Natural Question's Wikipedia retrieval corpus. We then test the impact of these passages on the performance of both the retriever and reader portion of the RAG pipeline. We introduce a prompting system designed to enhance the model's ability to interpret and generate responses in the presence of sarcasm, thus improving overall system performance. Finally, we conduct ablation studies to validate the effectiveness of our approach, demonstrating improvements in handling sarcastic content within RAG systems.
Optimization of Multi-Agent Flying Sidekick Traveling Salesman Problem over Road Networks
The mixed truck-drone delivery systems have attracted increasing attention for last-mile logistics, but real-world complexities demand a shift from single-agent, fully connected graph models to multi-agent systems operating on actual road networks. We introduce the multi-agent flying sidekick traveling salesman problem (MA-FSTSP) on road networks, extending the single truck-drone model to multiple trucks, each carrying multiple drones while considering full road networks for truck restrictions and flexible drone routes. We propose a mixed-integer linear programming model and an efficient three-phase heuristic algorithm for this NP-hard problem. Our approach decomposes MA-FSTSP into manageable subproblems of one truck with multiple drones. Then, it computes the routes for trucks without drones in subproblems, which are used in the final phase as heuristics to help optimize drone and truck routes simultaneously. Extensive numerical experiments on Manhattan and Boston road networks demonstrate our algorithm's superior effectiveness and efficiency, significantly outperforming both column generation and variable neighborhood search baselines in solution quality and computation time. Notably, our approach scales to more than 300 customers within a 5-minute time limit, showcasing its potential for large-scale, real-world logistics applications.
☆ Autonomous Negotiation Using Comparison-Based Gradient Estimation
Negotiation is useful for resolving conflicts in multi-agent systems. We explore autonomous negotiation in a setting where two self-interested rational agents sequentially trade items from a finite set of categories. Each agent has a utility function that depends on the amount of items it possesses in each category. The offering agent makes trade offers to improve its utility without knowing the responding agent's utility function, and the responding agent accepts offers that improve its utility. We present a comparison-based algorithm for the offering agent that generates offers through previous acceptance or rejection responses without extensive information sharing. The algorithm estimates the responding agent's gradient by leveraging the rationality assumption and rejected offers to prune the space of potential gradients. After the algorithm makes a finite number of consecutively rejected offers, the responding agent is at a near-optimal state, or the agents' preferences are closely aligned. Additionally, we facilitate negotiations with humans by representing natural language feedback as comparisons that can be integrated into the proposed algorithm. We compare the proposed algorithm against random search baselines in integer and fractional trading scenarios and show that it improves the societal benefit with fewer offers.
☆ Hide Your Malicious Goal Into Benign Narratives: Jailbreak Large Language Models through Neural Carrier Articles
Jailbreak attacks on Language Model Models (LLMs) entail crafting prompts aimed at exploiting the models to generate malicious content. This paper proposes a new type of jailbreak attacks which shift the attention of the LLM by inserting a prohibited query into a carrier article. The proposed attack leverage the knowledge graph and a composer LLM to automatically generating a carrier article that is similar to the topic of the prohibited query but does not violate LLM's safeguards. By inserting the malicious query to the carrier article, the assembled attack payload can successfully jailbreak LLM. To evaluate the effectiveness of our method, we leverage 4 popular categories of ``harmful behaviors'' adopted by related researches to attack 6 popular LLMs. Our experiment results show that the proposed attacking method can successfully jailbreak all the target LLMs which high success rate, except for Claude-3.
☆ A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders
Causal Bayesian networks (CBN) are popular graphical probabilistic models that encode causal relations among variables. Learning their graphical structure from observational data has received a lot of attention in the literature. When there exists no latent (unobserved) confounder, i.e., no unobserved direct common cause of some observed variables, learning algorithms can be divided essentially into two classes: constraint-based and score-based approaches. The latter are often thought to be more robust than the former and to produce better results. However, to the best of our knowledge, when variables are discrete, no score-based algorithm is capable of dealing with latent confounders. This paper introduces the first fully score-based structure learning algorithm searching the space of DAGs (directed acyclic graphs) that is capable of identifying the presence of some latent confounders. It is justified mathematically and experiments highlight its effectiveness.
comment: 17 pages, extended version with supplementary material of paper accepted at the 27th European Conference on Artificial Intelligence (ECAI'24)
☆ SubgoalXL: Subgoal-based Expert Learning for Theorem Proving
Formal theorem proving, a field at the intersection of mathematics and computer science, has seen renewed interest with advancements in large language models (LLMs). This paper introduces SubgoalXL, a novel approach that synergizes subgoal-based proofs with expert learning to enhance LLMs' capabilities in formal theorem proving within the Isabelle environment. SubgoalXL addresses two critical challenges: the scarcity of specialized mathematics and theorem-proving data, and the need for improved multi-step reasoning abilities in LLMs. By optimizing data efficiency and employing subgoal-level supervision, SubgoalXL extracts richer information from limited human-generated proofs. The framework integrates subgoal-oriented proof strategies with an expert learning system, iteratively refining formal statement, proof, and subgoal generators. Leveraging the Isabelle environment's advantages in subgoal-based proofs, SubgoalXL achieves a new state-of-the-art performance of 56.1\% in Isabelle on the standard miniF2F dataset, marking an absolute improvement of 4.9\%. Notably, SubgoalXL successfully solves 41 AMC12, 9 AIME, and 3 IMO problems from miniF2F. These results underscore the effectiveness of maximizing limited data utility and employing targeted guidance for complex reasoning in formal theorem proving, contributing to the ongoing advancement of AI reasoning capabilities. The implementation is available at \url{https://github.com/zhaoxlpku/SubgoalXL}.
☆ MS$^3$D: A RG Flow-Based Regularization for GAN Training with Limited Data
Generative adversarial networks (GANs) have made impressive advances in image generation, but they often require large-scale training data to avoid degradation caused by discriminator overfitting. To tackle this issue, we investigate the challenge of training GANs with limited data, and propose a novel regularization method based on the idea of renormalization group (RG) in physics.We observe that in the limited data setting, the gradient pattern that the generator obtains from the discriminator becomes more aggregated over time. In RG context, this aggregated pattern exhibits a high discrepancy from its coarse-grained versions, which implies a high-capacity and sensitive system, prone to overfitting and collapse. To address this problem, we introduce a \textbf{m}ulti-\textbf{s}cale \textbf{s}tructural \textbf{s}elf-\textbf{d}issimilarity (MS$^3$D) regularization, which constrains the gradient field to have a consistent pattern across different scales, thereby fostering a more redundant and robust system. We show that our method can effectively enhance the performance and stability of GANs under limited data scenarios, and even allow them to generate high-quality images with very few data.
☆ DOMBA: Double Model Balancing for Access-Controlled Language Models via Minimum-Bounded Aggregation
The utility of large language models (LLMs) depends heavily on the quality and quantity of their training data. Many organizations possess large data corpora that could be leveraged to train or fine-tune LLMs tailored to their specific needs. However, these datasets often come with access restrictions that are based on user privileges and enforced by access control mechanisms. Training LLMs on such datasets could result in exposure of sensitive information to unauthorized users. A straightforward approach for preventing such exposure is to train a separate model for each access level. This, however, may result in low utility models due to the limited amount of training data per model compared to the amount in the entire organizational corpus. Another approach is to train a single LLM on all the data while limiting the exposure of unauthorized information. However, current exposure-limiting methods for LLMs are ineffective for access-controlled data, where sensitive information appears frequently across many training examples. We propose DOMBA - double model balancing - a simple approach for training and deploying LLMs that provides high utility and access-control functionality with security guarantees. DOMBA aggregates the probability distributions of two models, each trained on documents with (potentially many) different access levels, using a "min-bounded" average function (a function that is bounded by the smaller value, e.g., harmonic mean). A detailed mathematical analysis and extensive evaluation show that DOMBA safeguards restricted information while offering utility comparable to non-secure models.
comment: 11 pages, 3 figures
☆ What can Large Language Models Capture about Code Functional Equivalence?
Code-LLMs, LLMs pre-trained on large code corpora, have shown great progress in learning rich representations of the structure and syntax of code, successfully using it to generate or classify code fragments. At the same time, understanding if they are able to do so because they capture code semantics, and how well, is still an open question. In this paper, we tackle this problem by introducing SeqCoBench, a benchmark for systematically assessing how Code-LLMs can capture code functional equivalence. SeqCoBench contains over 20 code transformations that either preserve or alter the semantics of Python programs. We conduct extensive evaluations in different settings, including zero-shot and parameter-efficient finetuning methods on state-of-the-art (Code-)LLMs to see if they can discern semantically equivalent or different pairs of programs in SeqCoBench. We find that the performance gap between these LLMs and classical match-based retrieval scores is minimal, with both approaches showing a concerning lack of depth in understanding code semantics.
comment: 37 pages
♻ ☆ Constructing Domain-Specific Evaluation Sets for LLM-as-a-judge
Large Language Models (LLMs) have revolutionized the landscape of machine learning, yet current benchmarks often fall short in capturing the diverse behavior of these models in real-world applications. A benchmark's usefulness is determined by its ability to clearly differentiate between models of varying capabilities (separability) and closely align with human preferences. Existing frameworks like Alpaca-Eval 2.0 LC \cite{dubois2024lengthcontrolledalpacaevalsimpleway} and Arena-Hard v0.1 \cite{li2024crowdsourced} are limited by their focus on general-purpose queries and lack of diversity across domains such as law, medicine, and multilingual contexts. In this paper, we address these limitations by introducing a novel data pipeline that curates diverse, domain-specific evaluation sets tailored for LLM-as-a-Judge frameworks. Our approach leverages a combination of manual curation, semi-supervised learning to generate clusters, and stratified sampling to ensure balanced representation across a wide range of domains and languages. The resulting evaluation set, which includes 1573 samples across 14 categories, demonstrates high separability (84\%) across ten top-ranked models, and agreement (84\%) with Chatbot Arena and (0.915) Spearman correlation. The agreement values are 9\% better than Arena Hard and 20\% better than AlpacaEval 2.0 LC, while the Spearman coefficient is 0.7 more than the next best benchmark, showcasing a significant improvement in the usefulness of the benchmark. We further provide an open-source evaluation tool that enables fine-grained analysis of model performance across user-defined categories, offering valuable insights for practitioners. This work contributes to the ongoing effort to enhance the transparency, diversity, and effectiveness of LLM evaluation methodologies.
comment: 14 pages, 8 figures, Under review
♻ ☆ PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil Financial Time Series Regularities
Financial time series modeling is crucial for understanding and predicting market behaviors but faces challenges such as non-linearity, non-stationarity, and high noise levels. Traditional models struggle to capture complex patterns due to these issues, compounded by limitations in computational resources and model capacity. Inspired by the success of large language models in NLP, we introduce $\textbf{PLUTUS}$, a $\textbf{P}$re-trained $\textbf{L}$arge $\textbf{U}$nified $\textbf{T}$ransformer-based model that $\textbf{U}$nveils regularities in financial time $\textbf{S}$eries. PLUTUS uses an invertible embedding module with contrastive learning and autoencoder techniques to create an approximate one-to-one mapping between raw data and patch embeddings. TimeFormer, an attention based architecture, forms the core of PLUTUS, effectively modeling high-noise time series. We incorporate a novel attention mechanisms to capture features across both variable and temporal dimensions. PLUTUS is pre-trained on an unprecedented dataset of 100 billion observations, designed to thrive in noisy financial environments. To our knowledge, PLUTUS is the first open-source, large-scale, pre-trained financial time series model with over one billion parameters. It achieves state-of-the-art performance in various tasks, demonstrating strong transferability and establishing a robust foundational model for finance. Our research provides technical guidance for pre-training financial time series data, setting a new standard in the field.
♻ ☆ World Models Increase Autonomy in Reinforcement Learning
Reinforcement learning (RL) is an appealing paradigm for training intelligent agents, enabling policy acquisition from the agent's own autonomously acquired experience. However, the training process of RL is far from automatic, requiring extensive human effort to reset the agent and environments. To tackle the challenging reset-free setting, we first demonstrate the superiority of model-based (MB) RL methods in such setting, showing that a straightforward adaptation of MBRL can outperform all the prior state-of-the-art methods while requiring less supervision. We then identify limitations inherent to this direct extension and propose a solution called model-based reset-free (MoReFree) agent, which further enhances the performance. MoReFree adapts two key mechanisms, exploration and policy learning, to handle reset-free tasks by prioritizing task-relevant states. It exhibits superior data-efficiency across various reset-free tasks without access to environmental reward or demonstrations while significantly outperforming privileged baselines that require supervision. Our findings suggest model-based methods hold significant promise for reducing human effort in RL. Website: https://sites.google.com/view/morefree
♻ ☆ MalLight: Influence-Aware Coordinated Traffic Signal Control for Traffic Signal Malfunctions CIKM24
Urban traffic is subject to disruptions that cause extended waiting time and safety issues at signalized intersections. While numerous studies have addressed the issue of intelligent traffic systems in the context of various disturbances, traffic signal malfunction, a common real-world occurrence with significant repercussions, has received comparatively limited attention. The primary objective of this research is to mitigate the adverse effects of traffic signal malfunction, such as traffic congestion and collision, by optimizing the control of neighboring functioning signals. To achieve this goal, this paper presents a novel traffic signal control framework (MalLight), which leverages an Influence-aware State Aggregation Module (ISAM) and an Influence-aware Reward Aggregation Module (IRAM) to achieve coordinated control of surrounding traffic signals. To the best of our knowledge, this study pioneers the application of a Reinforcement Learning(RL)-based approach to address the challenges posed by traffic signal malfunction. Empirical investigations conducted on real-world datasets substantiate the superior performance of our proposed methodology over conventional and deep learning-based alternatives in the presence of signal malfunction, with reduction of throughput alleviated by as much as 48.6$\%$.
comment: Paper accepted to CIKM24 Full Research track
♻ ☆ HYDEN: Hyperbolic Density Representations for Medical Images and Reports
In light of the inherent entailment relations between images and text, hyperbolic point vector embeddings, leveraging the hierarchical modeling advantages of hyperbolic space, have been utilized for visual semantic representation learning. However, point vector embedding approaches fail to address the issue of semantic uncertainty, where an image may have multiple interpretations, and text may refer to different images, a phenomenon particularly prevalent in the medical domain. Therefor, we propose \textbf{HYDEN}, a novel hyperbolic density embedding based image-text representation learning approach tailored for specific medical domain data. This method integrates text-aware local features alongside global features from images, mapping image-text features to density features in hyperbolic space via using hyperbolic pseudo-Gaussian distributions. An encapsulation loss function is employed to model the partial order relations between image-text density distributions. Experimental results demonstrate the interpretability of our approach and its superior performance compared to the baseline methods across various zero-shot tasks and different datasets.
♻ ☆ Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.
♻ ☆ MambaLoc: Efficient Camera Localisation via State Space Model
Location information is pivotal for the automation and intelligence of terminal devices and edge-cloud IoT systems, such as autonomous vehicles and augmented reality. However, achieving reliable positioning across diverse IoT applications remains challenging due to significant training costs and the necessity of densely collected data. To tackle these issues, we have innovatively applied the selective state space (SSM) model to visual localization, introducing a new model named MambaLoc. The proposed model demonstrates exceptional training efficiency by capitalizing on the SSM model's strengths in efficient feature extraction, rapid computation, and memory optimization, and it further ensures robustness in sparse data environments due to its parameter sparsity. Additionally, we propose the Global Information Selector (GIS), which leverages selective SSM to implicitly achieve the efficient global feature extraction capabilities of Non-local Neural Networks. This design leverages the computational efficiency of the SSM model alongside the Non-local Neural Networks' capacity to capture long-range dependencies with minimal layers. Consequently, the GIS enables effective global information capture while significantly accelerating convergence. Our extensive experimental validation using public indoor and outdoor datasets first demonstrates our model's effectiveness, followed by evidence of its versatility with various existing localization models. Our code and models are publicly available to support further research and development in this area.
♻ ☆ A Comparison of Large Language Model and Human Performance on Random Number Generation Tasks
Random Number Generation Tasks (RNGTs) are used in psychology for examining how humans generate sequences devoid of predictable patterns. By adapting an existing human RNGT for an LLM-compatible environment, this preliminary study tests whether ChatGPT-3.5, a large language model (LLM) trained on human-generated text, exhibits human-like cognitive biases when generating random number sequences. Initial findings indicate that ChatGPT-3.5 more effectively avoids repetitive and sequential patterns compared to humans, with notably lower repeat frequencies and adjacent number frequencies. Continued research into different models, parameters, and prompting methodologies will deepen our understanding of how LLMs can more closely mimic human random generation behaviors, while also broadening their applications in cognitive and behavioral science research.
♻ ☆ ELASTIC: Efficient Linear Attention for Sequential Interest Compression
State-of-the-art sequential recommendation models heavily rely on transformer's attention mechanism. However, the quadratic computational and memory complexities of self attention have limited its scalability for modeling users' long range behaviour sequences. To address this problem, we propose ELASTIC, an Efficient Linear Attention for SequenTial Interest Compression, requiring only linear time complexity and decoupling model capacity from computational cost. Specifically, ELASTIC introduces a fixed length interest experts with linear dispatcher attention mechanism which compresses the long-term behaviour sequences to a significantly more compact representation which reduces up to 90% GPU memory usage with x2.7 inference speed up. The proposed linear dispatcher attention mechanism significantly reduces the quadratic complexity and makes the model feasible for adequately modeling extremely long sequences. Moreover, in order to retain the capacity for modeling various user interests, ELASTIC initializes a vast learnable interest memory bank and sparsely retrieves compressed user's interests from the memory with a negligible computational overhead. The proposed interest memory retrieval technique significantly expands the cardinality of available interest space while keeping the same computational cost, thereby striking a trade-off between recommendation accuracy and efficiency. To validate the effectiveness of our proposed ELASTIC, we conduct extensive experiments on various public datasets and compare it with several strong sequential recommenders. Experimental results demonstrate that ELASTIC consistently outperforms baselines by a significant margin and also highlight the computational efficiency of ELASTIC when modeling long sequences. We will make our implementation code publicly available.
comment: We hereby withdraw this paper from arXiv due to incomplete experiments. Upon further review, we have determined that additional experimental work is necessary to fully validate our findings and conclusions
♻ ☆ Panorama Tomosynthesis from Head CBCT with Simulated Projection Geometry
Cone Beam Computed Tomography (CBCT) and Panoramic X-rays are the most commonly used imaging modalities in dental health care. CBCT can produce three-dimensional views of a patient's head, providing clinicians with better diagnostic capability, whereas Panoramic X-ray can capture the entire maxillofacial region in a single image. If the CBCT is already available, it can be beneficial to synthesize a Panoramic X-ray, thereby avoiding an immediate additional scan and extra radiation exposure. Existing methods focus on delineating an approximate dental arch and creating orthogonal projections along this arch. However, no golden standard is available for such dental arch extractions, and this choice can affect the quality of synthesized X-rays. To avoid such issues, we propose a novel method for synthesizing Panoramic X-rays from diverse head CBCTs, employing a simulated projection geometry and dynamic rotation centers. Our method effectively synthesized panoramic views from CBCT, even for patients with missing or nonexistent teeth and in the presence of severe metal implants. Our results demonstrate that this method can generate high-quality panoramic images irrespective of the CBCT scanner geometry.
comment: 12 pages, 6 figures, 1 table, Journal submission planned
♻ ☆ Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
♻ ☆ Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text
The emergence of Large Language Models (LLMs) as chat assistants capable of generating human-like conversations has amplified the need for robust evaluation methods, particularly for open-ended tasks. Conventional metrics like BLEU and ROUGE, while useful, are increasingly inadequate for capturing the subtle semantics and contextual richness of such generative outputs. We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges. Through experiments on three open-ended question-answering tasks, we demonstrate that combining multiple LLMs-as-judges significantly improves the reliability and accuracy of evaluations, particularly in complex tasks where a single model might struggle. Our findings reveal a strong correlation with human evaluations, establishing our method as a viable and effective alternative to traditional metrics and human judgments, particularly in the context of LLM-based chat assistants where the complexity and diversity of responses challenge existing benchmarks.
♻ ☆ Unc-TTP: A Method for Classifying LLM Uncertainty to Improve In-Context Example Selection
Nowadays, Large Language Models (LLMs) have demonstrated exceptional performance across various downstream tasks. However, it is challenging for users to discern whether the responses are generated with certainty or are fabricated to meet user expectations. Estimating the uncertainty of LLMs is particularly challenging due to their vast scale and the lack of white-box access. In this work, we propose a novel Uncertainty Tripartite Testing Paradigm (Unc-TTP) to classify LLM uncertainty, via evaluating the consistency of LLM outputs when incorporating label interference into the sampling-based approach. Based on Unc-TTP outputs, we aggregate instances into certain and uncertain categories. Further, we conduct a detailed analysis of the uncertainty properties of LLMs and show Unc-TTP's superiority over the existing sampling-based methods. In addition, we leverage the obtained uncertainty information to guide in-context example selection, demonstrating that Unc-TTP obviously outperforms retrieval-based and sampling-based approaches in selecting more informative examples. Our work paves a new way to classify the uncertainty of both open- and closed-source LLMs, and introduces a practical approach to exploit this uncertainty to improve LLMs performance.
comment: 9 pages, long paper
♻ ☆ Online SLA Decomposition: Enabling Real-Time Adaptation to Evolving Systems
When a network slice spans multiple domains, each domain must uphold the End-to-End (E2E) Service Level Agreement (SLA) associated with the slice. This requires decomposing the E2E SLA into partial SLAs for each domain. In a two-level network slicing management system with an E2E orchestrator and local controllers, we propose an online learning-decomposition framework that dynamically updates risk models using recent feedback. This approach utilizes online gradient descent and FIFO memory buffers to enhance stability and robustness. Our empirical study shows the proposed framework outperforms state-of-the-art static methods, offering more accurate and resilient SLA decomposition under varying conditions and sparse data.
comment: The paper has been submitted to IEEE Networking Letters
♻ ☆ What is in Your Safe Data? Identifying Benign Data that Breaks Safety
Current Large Language Models (LLMs), even those tuned for safety and alignment, are susceptible to jailbreaking. Some have found that just further fine-tuning an aligned model with benign data (i.e., data without harmful content) surprisingly leads to substantial degradation in safety. We delve into the data-centric aspects of why benign fine-tuning inadvertently contributes to jailbreaking. First, we represent fine-tuning data through two lenses: representation and gradient spaces. Additionally, we propose a bi-directional anchoring method that, during the selection process, prioritizes data points that are close to harmful examples and far from benign ones. Our approach effectively identifies subsets of benign data that are more likely to degrade the model's safety after fine-tuning. Training on just 100 of these seemingly benign datapoints surprisingly leads to the fine-tuned model affirmatively responding to >70% of tested harmful requests, compared to <20% after fine-tuning on randomly selected data. We also observe that the selected data frequently appear as lists, bullet points, or math questions, indicating a systematic pattern in fine-tuning data that contributes to jailbreaking.
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at \url{https://github.com/ZHE-SAPI/UDASS}.
comment: 18 pages,10 figures, 11 tables
♻ ☆ Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
The causal capabilities of large language models (LLMs) are a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We conduct a "behavorial" study of LLMs to benchmark their capability in generating causal arguments. Across a wide range of tasks, we find that LLMs can generate text corresponding to correct causal arguments with high probability, surpassing the best-performing existing methods. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain) and event causality (86% accuracy in determining necessary and sufficient causes in vignettes). We perform robustness checks across tasks and show that the capabilities cannot be explained by dataset memorization alone, especially since LLMs generalize to novel datasets that were created after the training cutoff date. That said, LLMs exhibit unpredictable failure modes, and we discuss the kinds of errors that may be improved and what are the fundamental limits of LLM-based answers. Overall, by operating on the text metadata, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. As a result, LLMs may be used by human domain experts to save effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. Given that LLMs ignore the actual data, our results also point to a fruitful research direction of developing algorithms that combine LLMs with existing causal techniques. Code and datasets are available at https://github.com/py-why/pywhy-llm.
comment: Added three novel datasets. To be published in TMLR. Authors listed alphabetically
♻ ☆ Does GPT Really Get It? A Hierarchical Scale to Quantify Human vs AI's Understanding of Algorithms
As Large Language Models (LLMs) perform (and sometimes excel at) more and more complex cognitive tasks, a natural question is whether AI really understands. The study of understanding in LLMs is in its infancy, and the community has yet to incorporate well-trodden research in philosophy, psychology, and education. We initiate this, specifically focusing on understanding algorithms, and propose a hierarchy of levels of understanding. We use the hierarchy to design and conduct a study with human subjects (undergraduate and graduate students) as well as large language models (generations of GPT), revealing interesting similarities and differences. We expect that our rigorous criteria will be useful to keep track of AI's progress in such cognitive domains.
comment: 13 pages, 8 figures
♻ ☆ Representation Matters for Mastering Chess: Improved Feature Representation in AlphaZero Outperforms Switching to Transformers
While transformers have gained recognition as a versatile tool for artificial intelligence (AI), an unexplored challenge arises in the context of chess - a classical AI benchmark. Here, incorporating Vision Transformers (ViTs) into AlphaZero is insufficient for chess mastery, mainly due to ViTs' computational limitations. The attempt to optimize their efficiency by combining MobileNet and NextViT outperformed AlphaZero by about 30 Elo. However, we propose a practical improvement that involves a simple change in the input representation and value loss functions. As a result, we achieve a significant performance boost of up to 180 Elo points beyond what is currently achievable with AlphaZero in chess. In addition to these improvements, our experimental results using the Integrated Gradient technique confirm the effectiveness of the newly introduced features.
comment: 18 pages, 8 figures, 12 tables
♻ ☆ Efficient and Robust Quantization-aware Training via Adaptive Coreset Selection
Quantization-aware training (QAT) is a representative model compression method to reduce redundancy in weights and activations. However, most existing QAT methods require end-to-end training on the entire dataset, which suffers from long training time and high energy costs. In addition, the potential label noise in the training data undermines the robustness of QAT. We propose two metrics based on analysis of loss and gradient of quantized weights: error vector score and disagreement score, to quantify the importance of each sample during training. Guided by these two metrics, we proposed a quantization-aware Adaptive Coreset Selection (ACS) method to select the data for the current training epoch. We evaluate our method on various networks (ResNet-18, MobileNetV2, RetinaNet), datasets(CIFAR-10, CIFAR-100, ImageNet-1K, COCO), and under different quantization settings. Specifically, our method can achieve an accuracy of 68.39\% of 4-bit quantized ResNet-18 on the ImageNet-1K dataset with only a 10\% subset, which has an absolute gain of 4.24\% compared to the baseline. Our method can also improve the robustness of QAT by removing noisy samples in the training set.
comment: Accepted by TMLR, Code: https://github.com/HuangOwen/QAT-ACS
♻ ☆ Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Self-supervised representation learning often uses data augmentations to induce some invariance to "style" attributes of the data. However, with downstream tasks generally unknown at training time, it is difficult to deduce a priori which attributes of the data are indeed "style" and can be safely discarded. To deal with this, current approaches try to retain some style information by tuning the degree of invariance to some particular task, such as ImageNet object classification. However, prior work has shown that such task-specific tuning can lead to significant performance degradation on other tasks that rely on the discarded style. To address this, we introduce a more principled approach that seeks to disentangle style features rather than discard them. The key idea is to add multiple style embedding spaces where: (i) each is invariant to all-but-one augmentation; and (ii) joint entropy is maximized. We formalize our structured data-augmentation procedure from a causal latent-variable-model perspective, and prove identifiability of both content and individual style variables. We empirically demonstrate the benefits of our approach on both synthetic and real-world data.
♻ ☆ Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models
While many have shown how Large Language Models (LLMs) can be applied to a diverse set of tasks, the critical issues of data contamination and memorization are often glossed over. In this work, we address this concern for tabular data. Specifically, we introduce a variety of different techniques to assess whether a language model has seen a tabular dataset during training. This investigation reveals that LLMs have memorized many popular tabular datasets verbatim. We then compare the few-shot learning performance of LLMs on datasets that were seen during training to the performance on datasets released after training. We find that LLMs perform better on datasets seen during training, indicating that memorization leads to overfitting. At the same time, LLMs show non-trivial performance on novel datasets and are surprisingly robust to data transformations. We then investigate the in-context statistical learning abilities of LLMs. While LLMs are significantly better than random at solving statistical classification problems, the sample efficiency of few-shot learning lags behind traditional statistical learning algorithms, especially as the dimension of the problem increases. This suggests that much of the observed few-shot performance on novel real-world datasets is due to the LLM's world knowledge. Overall, our results highlight the importance of testing whether an LLM has seen an evaluation dataset during pre-training. We release the https://github.com/interpretml/LLM-Tabular-Memorization-Checker Python package to test LLMs for memorization of tabular datasets.
comment: COLM camera ready
♻ ☆ BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction
Analyzing and reconstructing visual stimuli from brain signals effectively advances the understanding of human visual system. However, the EEG signals are complex and contain significant noise. This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG, such as difficulties in aligning EEG embeddings with the fine-grained semantic information and a heavy reliance on additional large self-collected dataset for training. To address these challenges, we propose a novel approach called BrainVis. Firstly, we divide the EEG signals into various units and apply a self-supervised approach on them to obtain EEG time-domain features, in an attempt to ease the training difficulty. Additionally, we also propose to utilize the frequency-domain features to enhance the EEG representations. Then, we simultaneously align EEG time-frequency embeddings with the interpolation of the coarse and fine-grained semantics in the CLIP space, to highlight the primary visual components and reduce the cross-modal alignment difficulty. Finally, we adopt the cascaded diffusion models to reconstruct images. Using only 10\% training data of the previous work, our proposed BrainVis outperforms state of the arts in both semantic fidelity reconstruction and generation quality. The code is available at https://github.com/RomGai/BrainVis.
♻ ☆ CELLM: An Efficient Communication in Large Language Models Training for Federated Learning
Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.
comment: arXiv admin note: This submission has been withdrawn by arXiv administrators due to inappropriate text overlap with external sources
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ Projectivity revisited
The behaviour of statistical relational representations across differently sized domains has become a focal area of research from both a modelling and a complexity viewpoint.Recently, projectivity of a family of distributions emerged as a key property, ensuring that marginal probabilities are independent of the domain size. However, the formalisation used currently assumes that the domain is characterised only by its size. This contribution extends the notion of projectivity from families of distributions indexed by domain size to functors taking extensional data from a database. This makes projectivity available for the large range of applications taking structured input. We transfer key known results on projective families of distributions to the new setting. This includes a characterisation of projective fragments in different statistical relational formalisms as well as a general representation theorem for projective families of distributions. Furthermore, we prove a correspondence between projectivity and distributions on countably infinite domains, which we use to unify and generalise earlier work on statistical relational representations in infinite domains. Finally, we use the extended notion of projectivity to define a further strengthening, which we call $\sigma$-projectivity, and which allows the use of the same representation in different modes while retaining projectivity.
comment: 30 pages
♻ ☆ Probabilities of the Third Type: Statistical Relational Learning and Reasoning with Relative Frequencies
Dependencies on the relative frequency of a state in the domain are common when modelling probabilistic dependencies on relational data. For instance, the likelihood of a school closure during an epidemic might depend on the proportion of infected pupils exceeding a threshold. Often, rather than depending on discrete thresholds, dependencies are continuous: for instance, the likelihood of any one mosquito bite transmitting an illness depends on the proportion of carrier mosquitoes. Current approaches usually only consider probabilities over possible worlds rather than over domain elements themselves. An exception are the recently introduced lifted Bayesian networks for conditional probability logic, which express discrete dependencies on probabilistic data. We introduce functional lifted Bayesian networks, a formalism that explicitly incorporates continuous dependencies on relative frequencies into statistical relational artificial intelligence, and compare and contrast them with lifted Bayesian networks for conditional probability logic. Incorporating relative frequencies is not only beneficial to modelling; it also provides a more rigorous approach to learning problems where training and test or application domains have different sizes. To this end, we provide a representation of the asymptotic probability distributions induced by functional lifted Bayesian networks on domains of increasing sizes. Since that representation has well-understood scaling behaviour across domain sizes, it can be used to estimate parameters for a large domain consistently from randomly sampled subpopulations. Furthermore, we show that in parametric families of FLBN, convergence is uniform in the parameters, which ensures a meaningful dependence of the asymptotic probabilities on the parameters of the model.
comment: 30 pages
♻ ☆ Abstract Weighted Based Gradual Semantics in Argumentation Theory
Weighted gradual semantics provide an acceptability degree to each argument representing the strength of the argument, computed based on factors including background evidence for the argument, and taking into account interactions between this argument and others. We introduce four important problems linking gradual semantics and acceptability degrees. First, we reexamine the inverse problem, seeking to identify the argument weights of the argumentation framework which lead to a specific final acceptability degree. Second, we ask whether the function mapping between argument weights and acceptability degrees is injective or a homeomorphism onto its image. Third, we ask whether argument weights can be found when preferences, rather than acceptability degrees for arguments are considered. Fourth, we consider the topology of the space of valid acceptability degrees, asking whether "gaps" exist in this space. While different gradual semantics have been proposed in the literature, in this paper, we identify a large family of weighted gradual semantics, called abstract weighted based gradual semantics. These generalise many of the existing semantics while maintaining desirable properties such as convergence to a unique fixed point. We also show that a sub-family of the weighted gradual semantics, called abstract weighted (L^p,\lambda,\mu)-based gradual semantics and which include well-known semantics, solve all four of the aforementioned problems.
♻ ☆ Cloud Kitchen: Using Planning-based Composite AI to Optimize Food Delivery Processes
The global food delivery market provides many opportunities for AI-based services that can improve the efficiency of feeding the world. This paper presents the Cloud Kitchen platform as a decision-making tool for restaurants with food delivery and a simulator to evaluate the impact of the decisions. The platform contains a Technology-Specific Bridge (TSB) that provides an interface for communicating with restaurants or the simulator. TSB uses a planning domain model to represent decisions embedded in the Unified Planning Framework (UPF). Decision-making, which concerns allocating customers' orders to vehicles and deciding in which order the customers will be served (for each vehicle), is done via a Vehicle Routing Problem with Time Windows (VRPTW), an efficient tool for this problem. We show that decisions made by our platform can improve customer satisfaction by reducing the number of delayed deliveries using a real-world historical dataset.
♻ ☆ SoftTiger: A Clinical Foundation Model for Healthcare Workflows AAAI 2024
We introduce SoftTiger, a clinical large language model (CLaM) designed as a foundation model for healthcare workflows. The narrative and unstructured nature of clinical notes is a major obstacle for healthcare intelligentization. We address a critical problem of structuring clinical notes into clinical data, according to international interoperability standards. We collect and annotate data for three subtasks, namely, international patient summary, clinical impression and medical encounter. We then supervised fine-tuned a state-of-the-art LLM using public and credentialed clinical data. The training is orchestrated in a way that the target model can first support basic clinical tasks such as abbreviation expansion and temporal information extraction, and then learn to perform more complex downstream clinical tasks. Moreover, we address several modeling challenges in the healthcare context, e.g., extra long context window. Our blind pairwise evaluation shows that SoftTiger outperforms other popular open-source models and GPT-3.5, comparable to Gemini-pro, with a mild gap from GPT-4. We believe that LLMs may become a step-stone towards healthcare digitalization and democratization. Therefore, we publicly release SoftTiger models at scales of 13 billion and 70 billion parameters, as well as datasets and code for our innovative scalable evaluation, hopefully, making a significant contribution to the healthcare industry.
comment: Accepted to AAAI 2024 Spring Symposium on Clinical Foundation Models, Stanford University, Stanford, California
♻ ☆ Planning Domain Model Acquisition from State Traces without Action Parameters
Previous STRIPS domain model acquisition approaches that learn from state traces start with the names and parameters of the actions to be learned. Therefore their only task is to deduce the preconditions and effects of the given actions. In this work, we explore learning in situations when the parameters of learned actions are not provided. We define two levels of trace quality based on which information is provided and present an algorithm for each. In one level (L1), the states in the traces are labeled with action names, so we can deduce the number and names of the actions, but we still need to work out the number and types of parameters. In the other level (L2), the states are additionally labeled with objects that constitute the parameters of the corresponding grounded actions. Here we still need to deduce the types of the parameters in the learned actions. We experimentally evaluate the proposed algorithms and compare them with the state-of-the-art learning tool FAMA on a large collection of IPC benchmarks. The evaluation shows that our new algorithms are faster, can handle larger inputs and provide better results in terms of learning action models more similar to reference models.
♻ ☆ DropKAN: Regularizing KANs by masking post-activations
We propose DropKAN (Dropout Kolmogorov-Arnold Networks) a regularization method that prevents co-adaptation of activation function weights in Kolmogorov-Arnold Networks (KANs). DropKAN functions by embedding the drop mask directly within the KAN layer, randomly masking the outputs of some activations within the KANs' computation graph. We show that this simple procedure that require minimal coding effort has a regularizing effect and consistently lead to better generalization of KANs. We analyze the adaptation of the standard Dropout with KANs and demonstrate that Dropout applied to KANs' neurons can lead to unpredictable behavior in the feedforward pass. We carry an empirical study with real world Machine Learning datasets to validate our findings. Our results suggest that DropKAN is consistently a better alternative to using standard Dropout with KANs, and improves the generalization performance of KANs. Our implementation of DropKAN is available at: \url{https://github.com/Ghaith81/dropkan}.
♻ ☆ Side-Channel Analysis of OpenVINO-based Neural Network Models
Embedded devices with neural network accelerators offer great versatility for their users, reducing the need to use cloud-based services. At the same time, they introduce new security challenges in the area of hardware attacks, the most prominent being side-channel analysis (SCA). It was shown that SCA can recover model parameters with a high accuracy, posing a threat to entities that wish to keep their models confidential. In this paper, we explore the susceptibility of quantized models implemented in OpenVINO, an embedded framework for deploying neural networks on embedded and Edge devices. We show that it is possible to recover model parameters with high precision, allowing the recovered model to perform very close to the original one. Our experiments on GoogleNet v1 show only a 1% difference in the Top 1 and a 0.64% difference in the Top 5 accuracies.
♻ ☆ NeuralMatrix: Compute the Entire Neural Networks with Linear Matrix Operations for Efficient Inference AAAI
The inherent diversity of computation types within the deep neural network (DNN) models often requires a variety of specialized units in hardware processors, which limits computational efficiency, increasing both inference latency and power consumption, especially when the hardware processor needs to support and execute different neural networks. In this study, we introduce NeuralMatrix, which elastically transforms the computations of entire DNNs into linear matrix operations. This transformation allows seamless execution of various DNN models all with matrix operations and paves the way for running versatile DNN models with a single General Matrix Multiplication (GEMM) accelerator.Extensive experiments with both CNN and transformer-based models demonstrate the potential of NeuralMatrix to accurately and efficiently execute a wide range of DNN models, achieving 2.17-38.72 times computation efficiency (i.e., throughput per power) compared to CPUs, GPUs, and SoC platforms. This level of efficiency is usually only attainable with the accelerator designed for a specific neural network.
comment: 9 pages, 8figures, Submitted to The 39th Annual AAAI Conference on Artificial Intelligence
♻ ☆ Non-autoregressive Generative Models for Reranking Recommendation KDD 2024
Contemporary recommendation systems are designed to meet users' needs by delivering tailored lists of items that align with their specific demands or interests. In a multi-stage recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items. The key challenge of reranking lies in the exploration of optimal sequences within the combinatorial space of permutations. Recent research proposes a generator-evaluator learning paradigm, where the generator generates multiple feasible sequences and the evaluator picks out the best sequence based on the estimated listwise score. The generator is of vital importance, and generative models are well-suited for the generator function. Current generative models employ an autoregressive strategy for sequence generation. However, deploying autoregressive models in real-time industrial systems is challenging. To address these issues, we propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness. To tackle challenges such as sparse training samples and dynamic candidates, we introduce a matching model. Considering the diverse nature of user feedback, we employ a sequence-level unlikelihood training objective to differentiate feasible sequences from unfeasible ones. Additionally, to overcome the lack of dependency modeling in non-autoregressive models regarding target items, we introduce contrastive decoding to capture correlations among these items. Extensive offline experiments validate the superior performance of NAR4Rec over state-of-the-art reranking methods. Online A/B tests reveal that NAR4Rec significantly enhances the user experience. Furthermore, NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
comment: Accepted by KDD 2024
♻ ☆ Graph Reinforcement Learning for Combinatorial Optimization: A Survey and Unifying Perspective
Graphs are a natural representation for systems based on relations between connected entities. Combinatorial optimization problems, which arise when considering an objective function related to a process of interest on discrete structures, are often challenging due to the rapid growth of the solution space. The trial-and-error paradigm of Reinforcement Learning has recently emerged as a promising alternative to traditional methods, such as exact algorithms and (meta)heuristics, for discovering better decision-making strategies in a variety of disciplines including chemistry, computer science, and statistics. Despite the fact that they arose in markedly different fields, these techniques share significant commonalities. Therefore, we set out to synthesize this work in a unifying perspective that we term Graph Reinforcement Learning, interpreting it as a constructive decision-making method for graph problems. After covering the relevant technical background, we review works along the dividing line of whether the goal is to optimize graph structure given a process of interest, or to optimize the outcome of the process itself under fixed graph structure. Finally, we discuss the common challenges facing the field and open research questions. In contrast with other surveys, the present work focuses on non-canonical graph problems for which performant algorithms are typically not known and Reinforcement Learning is able to provide efficient and effective solutions.
comment: To appear in Transactions on Machine Learning Research (TMLR)
♻ ☆ Tailoring Graph Neural Network-based Flow-guided Localization to Individual Bloodstreams and Activities
Flow-guided localization using in-body nanodevices in the bloodstream is expected to be beneficial for early disease detection, continuous monitoring of biological conditions, and targeted treatment. The nanodevices face size and power constraints that produce erroneous raw data for localization purposes. On-body anchors receive this data, and use it to derive the locations of diagnostic events of interest. Different Machine Learning (ML) approaches have been recently proposed for this task, yet they are currently restricted to a reference bloodstream of a resting patient. As such, they are unable to deal with the physical diversity of patients' bloodstreams and cannot provide continuous monitoring due to changes in individual patient's activities. Toward addressing these issues for the current State-of-the-Art (SotA) flow-guided localization approach based on Graph Neural Networks (GNNs), we propose a pipeline for GNN adaptation based on individual physiological indicators including height, weight, and heart rate. Our results indicate that the proposed adaptions are beneficial in reconciling the individual differences between bloodstreams and activities.
comment: 7 pages, 9 figures, 2 tables, 16 references, accepted at ACM NanoCom'25
♻ ☆ LLaMEA: A Large Language Model Evolutionary Algorithm for Automatically Generating Metaheuristics
Large Language Models (LLMs) such as GPT-4 have demonstrated their ability to understand natural language and generate complex code snippets. This paper introduces a novel Large Language Model Evolutionary Algorithm (LLaMEA) framework, leveraging GPT models for the automated generation and refinement of algorithms. Given a set of criteria and a task definition (the search space), LLaMEA iteratively generates, mutates and selects algorithms based on performance metrics and feedback from runtime evaluations. This framework offers a unique approach to generating optimized algorithms without requiring extensive prior expertise. We show how this framework can be used to generate novel black-box metaheuristic optimization algorithms automatically. LLaMEA generates multiple algorithms that outperform state-of-the-art optimization algorithms (Covariance Matrix Adaptation Evolution Strategy and Differential Evolution) on the five dimensional black box optimization benchmark (BBOB). The algorithms also show competitive performance on the 10- and 20-dimensional instances of the test functions, although they have not seen such instances during the automated generation process. The results demonstrate the feasibility of the framework and identify future directions for automated generation and optimization of algorithms via LLMs.
comment: Submitted to IEEE TEVC
♻ ☆ Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13
Integrating renewable energy sources into the power grid is becoming increasingly important as the world moves towards a more sustainable energy future in line with SDG 7. However, the intermittent nature of renewable energy sources can make it challenging to manage the power grid and ensure a stable supply of electricity, which is crucial for achieving SDG 9. In this paper, we propose a deep learning model for predicting energy demand in a smart power grid, which can improve the integration of renewable energy sources by providing accurate predictions of energy demand. Our approach aligns with SDG 13 on climate action, enabling more efficient management of renewable energy resources. We use long short-term memory networks, well-suited for time series data, to capture complex patterns and dependencies in energy demand data. The proposed approach is evaluated using four historical short-term energy demand data datasets from different energy distribution companies, including American Electric Power, Commonwealth Edison, Dayton Power and Light, and Pennsylvania-New Jersey-Maryland Interconnection. The proposed model is compared with three other state-of-the-art forecasting algorithms: Facebook Prophet, Support Vector Regression, and Random Forest Regression. The experimental results show that the proposed REDf model can accurately predict energy demand with a mean absolute error of 1.4%, indicating its potential to enhance the stability and efficiency of the power grid and contribute to achieving SDGs 7, 9, and 13. The proposed model also has the potential to manage the integration of renewable energy sources effectively.
♻ ☆ SearchLVLMs: A Plug-and-Play Framework for Augmenting Large Vision-Language Models by Searching Up-to-Date Internet Knowledge
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the singer of the theme song for the new Detective Conan movie, which wasn't released until April 2024. To solve the problem, a promising solution motivated by retrieval-augmented generation (RAG) is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed SearchLVLMs. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
comment: 13 pages, 6 figures, a plug-and-play framework to augment large vision-language models with up-to-date internet knowledge
♻ ☆ Snuffy: Efficient Whole Slide Image Classifier ECCV 2024
Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requiring long training periods and considerable computational resources. At the same time, no pre-training affects performance due to domain shifts from natural images to WSIs. We introduce Snuffy architecture, a novel MIL-pooling method based on sparse transformers that mitigates performance loss with limited pre-training and enables continual few-shot pre-training as a competitive option. Our sparsity pattern is tailored for pathology and is theoretically proven to be a universal approximator with the tightest probabilistic sharp bound on the number of layers for sparse transformers, to date. We demonstrate Snuffy's effectiveness on CAMELYON16 and TCGA Lung cancer datasets, achieving superior WSI and patch-level accuracies. The code is available on https://github.com/jafarinia/snuffy.
comment: Accepted for ECCV 2024
♻ ☆ Strong hallucinations from negation and how to fix them
Despite great performance on many tasks, language models (LMs) still struggle with reasoning, sometimes providing responses that cannot possibly be true because they stem from logical incoherence. We call such responses \textit{strong hallucinations} and prove that they follow from an LM's computation of its internal representations for logical operators and outputs from those representations. Focusing on negation, we provide a novel solution in which negation is treated not as another element of a latent representation, but as \textit{an operation over an LM's latent representations that constrains how they may evolve}. We show that our approach improves model performance in cloze prompting and natural language inference tasks with negation without requiring training on sparse negative data.
comment: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Findings)
♻ ☆ Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think
Multiple choice questions (MCQs) are commonly used to evaluate the capabilities of large language models (LLMs). One common way to evaluate the model response is to rank the candidate answers based on the log probability of the first token prediction. An alternative way is to examine the text output. Prior work has shown that first token probabilities lack robustness to changes in MCQ phrasing, and that first token probabilities do not match text answers for instruction-tuned models. Therefore, in this paper, we investigate the robustness of text answers. We show that the text answers are more robust to question perturbations than the first token probabilities, when the first token answers mismatch the text answers. The difference in robustness increases as the mismatch rate becomes greater. As the mismatch reaches over 50\%, the text answer is more robust to option order changes than the debiased first token probabilities using state-of-the-art debiasing methods such as PriDe. Our findings provide further evidence for the benefits of text answer evaluation over first token probability evaluation.
comment: COLM 2024
♻ ☆ Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection SP
Deep learning-based sequence models are extensively employed in Time Series Anomaly Detection (TSAD) tasks due to their effective sequential modeling capabilities. However, the ability of TSAD is limited by two key challenges: (i) the ability to model long-range dependency and (ii) the generalization issue in the presence of non-stationary data. To tackle these challenges, an anomaly detector that leverages the selective state space model known for its proficiency in capturing long-term dependencies across various domains is proposed. Additionally, a multi-stage detrending mechanism is introduced to mitigate the prominent trend component in non-stationary data to address the generalization issue. Extensive experiments conducted on realworld public datasets demonstrate that the proposed methods surpass all 12 compared baseline methods.
comment: Accepted by IEEE Signal Processing Letters. DOI:10.1109/LSP.2024.3438078
♻ ☆ Recent Advances in End-to-End Simultaneous Speech Translation IJCAI 2024
Simultaneous speech translation (SimulST) is a demanding task that involves generating translations in real-time while continuously processing speech input. This paper offers a comprehensive overview of the recent developments in SimulST research, focusing on four major challenges. Firstly, the complexities associated with processing lengthy and continuous speech streams pose significant hurdles. Secondly, satisfying real-time requirements presents inherent difficulties due to the need for immediate translation output. Thirdly, striking a balance between translation quality and latency constraints remains a critical challenge. Finally, the scarcity of annotated data adds another layer of complexity to the task. Through our exploration of these challenges and the proposed solutions, we aim to provide valuable insights into the current landscape of SimulST research and suggest promising directions for future exploration.
comment: Accepted by IJCAI 2024
♻ ☆ DeCoF: Generated Video Detection via Frame Consistency: The First Benchmark Dataset
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models. Our code and dataset will be released at \url{https://github.com/wuwuwuyue/DeCoF}.
♻ ☆ CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting
As the utilization of large language models (LLMs) has proliferated world-wide, it is crucial for them to have adequate knowledge and fair representation for diverse global cultures. In this work, we uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations, and extract symbols from these generations that are associated to each culture by the LLM. We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures. We also discover that LLMs have an uneven degree of diversity in the culture symbols, and that cultures from different geographic regions have different presence in LLMs' culture-agnostic generation. Our findings promote further research in studying the knowledge and fairness of global culture perception in LLMs. Code and Data can be found here: https://github.com/huihanlhh/Culture-Gen/
♻ ☆ PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety ACL 2024
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence. However, the potential misuse of this intelligence for malicious purposes presents significant risks. To date, comprehensive research on the safety issues associated with multi-agent systems remains limited. In this paper, we explore these concerns through the innovative lens of agent psychology, revealing that the dark psychological states of agents constitute a significant threat to safety. To tackle these concerns, we propose a comprehensive framework (PsySafe) grounded in agent psychology, focusing on three key areas: firstly, identifying how dark personality traits in agents can lead to risky behaviors; secondly, evaluating the safety of multi-agent systems from the psychological and behavioral perspectives, and thirdly, devising effective strategies to mitigate these risks. Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors. We anticipate that our framework and observations will provide valuable insights for further research into the safety of multi-agent systems. We will make our data and code publicly accessible at https://github.com/AI4Good24/PsySafe.
comment: ACL 2024
♻ ☆ Box-Free Model Watermarks Are Prone to Black-Box Removal Attacks
Box-free model watermarking is an emerging technique to safeguard the intellectual property of deep learning models, particularly those for low-level image processing tasks. Existing works have verified and improved its effectiveness in several aspects. However, in this paper, we reveal that box-free model watermarking is prone to removal attacks, even under the real-world threat model such that the protected model and the watermark extractor are in black boxes. Under this setting, we carry out three studies. 1) We develop an extractor-gradient-guided (EGG) remover and show its effectiveness when the extractor uses ReLU activation only. 2) More generally, for an unknown extractor, we leverage adversarial attacks and design the EGG remover based on the estimated gradients. 3) Under the most stringent condition that the extractor is inaccessible, we design a transferable remover based on a set of private proxy models. In all cases, the proposed removers can successfully remove embedded watermarks while preserving the quality of the processed images, and we also demonstrate that the EGG remover can even replace the watermarks. Extensive experimental results verify the effectiveness and generalizability of the proposed attacks, revealing the vulnerabilities of the existing box-free methods and calling for further research.
♻ ☆ Auto-ICL: In-Context Learning without Human Supervision
With in-context learning ability, the performance of large language models can be significantly boosted when provided with appropriate context. However, existing in-context learning methods mainly rely on human-provided contexts, such as labeled examples and explicit instructions. Writing context by humans is labor-intensive on various tasks and limits the model to tasks manageable by humans. To overcome these limitations, we propose Automatic In-Context Learning framework that enables the model to autonomously generate examples and instructions for problem-solving. With experiments across various models and datasets, results show that model-generated contexts outperform human-annotated contexts, including Few-Shot and Few-Shot-CoT methods, and surpass existing self-generated context methods like Zero-CoT and Auto-CoT.
comment: Under review
♻ ☆ Learning Rule-Induced Subgraph Representations for Inductive Relation Prediction
Inductive relation prediction (IRP) -- where entities can be different during training and inference -- has shown great power for completing evolving knowledge graphs. Existing works mainly focus on using graph neural networks (GNNs) to learn the representation of the subgraph induced from the target link, which can be seen as an implicit rule-mining process to measure the plausibility of the target link. However, these methods cannot differentiate the target link and other links during message passing, hence the final subgraph representation will contain irrelevant rule information to the target link, which reduces the reasoning performance and severely hinders the applications for real-world scenarios. To tackle this problem, we propose a novel \textit{single-source edge-wise} GNN model to learn the \textbf{R}ule-induc\textbf{E}d \textbf{S}ubgraph represen\textbf{T}ations (\textbf{REST}), which encodes relevant rules and eliminates irrelevant rules within the subgraph. Specifically, we propose a \textit{single-source} initialization approach to initialize edge features only for the target link, which guarantees the relevance of mined rules and target link. Then we propose several RNN-based functions for \textit{edge-wise} message passing to model the sequential property of mined rules. REST is a simple and effective approach with theoretical support to learn the \textit{rule-induced subgraph representation}. Moreover, REST does not need node labeling, which significantly accelerates the subgraph preprocessing time by up to \textbf{11.66$\times$}. Experiments on inductive relation prediction benchmarks demonstrate the effectiveness of our REST. Our code is available at https://github.com/smart-lty/REST.
♻ ☆ Information-Theoretic Foundations for Machine Learning
The staggering progress of machine learning in the past decade has been a sight to behold. In retrospect, it is both remarkable and unsettling that these milestones were achievable with little to no rigorous theory to guide experimentation. Despite this fact, practitioners have been able to guide their future experimentation via observations from previous large-scale empirical investigations. However, alluding to Plato's Allegory of the cave, it is likely that the observations which form the field's notion of reality are but shadows representing fragments of that reality. In this work, we propose a theoretical framework which attempts to answer what exists outside of the cave. To the theorist, we provide a framework which is mathematically rigorous and leaves open many interesting ideas for future exploration. To the practitioner, we provide a framework whose results are very intuitive, general, and which will help form principles to guide future investigations. Concretely, we provide a theoretical framework rooted in Bayesian statistics and Shannon's information theory which is general enough to unify the analysis of many phenomena in machine learning. Our framework characterizes the performance of an optimal Bayesian learner, which considers the fundamental limits of information. Throughout this work, we derive very general theoretical results and apply them to derive insights specific to settings ranging from data which is independently and identically distributed under an unknown distribution, to data which is sequential, to data which exhibits hierarchical structure amenable to meta-learning. We conclude with a section dedicated to characterizing the performance of misspecified algorithms. These results are exciting and particularly relevant as we strive to overcome increasingly difficult machine learning challenges in this endlessly complex world.
♻ ☆ PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering
Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.
comment: Accepted by ACMMM2024. Code: https://github.com/CodeGoat24/PrimeComposer
♻ ☆ QA-MDT: Quality-aware Masked Diffusion Transformer for Enhanced Music Generation
In recent years, diffusion-based text-to-music (TTM) generation has gained prominence, offering an innovative approach to synthesizing musical content from textual descriptions. Achieving high accuracy and diversity in this generation process requires extensive, high-quality data, including both high-fidelity audio waveforms and detailed text descriptions, which often constitute only a small portion of available datasets. In open-source datasets, issues such as low-quality music waveforms, mislabeling, weak labeling, and unlabeled data significantly hinder the development of music generation models. To address these challenges, we propose a novel paradigm for high-quality music generation that incorporates a quality-aware training strategy, enabling generative models to discern the quality of input music waveforms during training. Leveraging the unique properties of musical signals, we first adapted and implemented a masked diffusion transformer (MDT) model for the TTM task, demonstrating its distinct capacity for quality control and enhanced musicality. Additionally, we address the issue of low-quality captions in TTM with a caption refinement data processing approach. Experiments demonstrate our state-of-the-art (SOTA) performance on MusicCaps and the Song-Describer Dataset. Our demo page can be accessed at https://qa-mdt.github.io/.
♻ ☆ New Job, New Gender? Measuring the Social Bias in Image Generation Models ACM MM 2024
Image generation models can generate or edit images from a given text. Recent advancements in image generation technology, exemplified by DALL-E and Midjourney, have been groundbreaking. These advanced models, despite their impressive capabilities, are often trained on massive Internet datasets, making them susceptible to generating content that perpetuates social stereotypes and biases, which can lead to severe consequences. Prior research on assessing bias within image generation models suffers from several shortcomings, including limited accuracy, reliance on extensive human labor, and lack of comprehensive analysis. In this paper, we propose BiasPainter, a novel evaluation framework that can accurately, automatically and comprehensively trigger social bias in image generation models. BiasPainter uses a diverse range of seed images of individuals and prompts the image generation models to edit these images using gender, race, and age-neutral queries. These queries span 62 professions, 39 activities, 57 types of objects, and 70 personality traits. The framework then compares the edited images to the original seed images, focusing on the significant changes related to gender, race, and age. BiasPainter adopts a key insight that these characteristics should not be modified when subjected to neutral prompts. Built upon this design, BiasPainter can trigger the social bias and evaluate the fairness of image generation models. We use BiasPainter to evaluate six widely-used image generation models, such as stable diffusion and Midjourney. Experimental results show that BiasPainter can successfully trigger social bias in image generation models. According to our human evaluation, BiasPainter can achieve 90.8% accuracy on automatic bias detection, which is significantly higher than the results reported in previous work.
comment: ACM MM 2024 Oral
♻ ☆ Response Style Characterization for Repeated Measures Using the Visual Analogue Scale
Self-report measures (e.g., Likert scales) are widely used to evaluate subjective health perceptions. Recently, the visual analog scale (VAS), a slider-based scale, has become popular owing to its ability to precisely and easily assess how people feel. These data can be influenced by the response style (RS), a user-dependent systematic tendency that occurs regardless of questionnaire instructions. Despite its importance, especially in between-individual analysis, little attention has been paid to handling the RS in the VAS (denoted as response profile (RP)), as it is mainly used for within-individual monitoring and is less affected by RP. However, VAS measurements often require repeated self-reports of the same questionnaire items, making it difficult to apply conventional methods on a Likert scale. In this study, we developed a novel RP characterization method for various types of repeatedly measured VAS data. This approach involves the modeling of RP as distributional parameters ${\theta}$ through a mixture of RS-like distributions, and addressing the issue of unbalanced data through bootstrap sampling for treating repeated measures. We assessed the effectiveness of the proposed method using simulated pseudo-data and an actual dataset from an empirical study. The assessment of parameter recovery showed that our method accurately estimated the RP parameter ${\theta}$, demonstrating its robustness. Moreover, applying our method to an actual VAS dataset revealed the presence of individual RP heterogeneity, even in repeated VAS measurements, similar to the findings of the Likert scale. Our proposed method enables RP heterogeneity-aware VAS data analysis, similar to Likert-scale data analysis.
comment: Accepted to IEEE Access. Accessible at https://ieeexplore.ieee.org/document/10638535
♻ ☆ Bayesian Optimization with LLM-Based Acquisition Functions for Natural Language Preference Elicitation
Designing preference elicitation (PE) methodologies that can quickly ascertain a user's top item preferences in a cold-start setting is a key challenge for building effective and personalized conversational recommendation (ConvRec) systems. While large language models (LLMs) enable fully natural language (NL) PE dialogues, we hypothesize that monolithic LLM NL-PE approaches lack the multi-turn, decision-theoretic reasoning required to effectively balance the exploration and exploitation of user preferences towards an arbitrary item set. In contrast, traditional Bayesian optimization PE methods define theoretically optimal PE strategies, but cannot generate arbitrary NL queries or reason over content in NL item descriptions -- requiring users to express preferences via ratings or comparisons of unfamiliar items. To overcome the limitations of both approaches, we formulate NL-PE in a Bayesian Optimization (BO) framework that seeks to actively elicit NL feedback to identify the best recommendation. Key challenges in generalizing BO to deal with natural language feedback include determining: (a) how to leverage LLMs to model the likelihood of NL preference feedback as a function of item utilities, and (b) how to design an acquisition function for NL BO that can elicit preferences in the infinite space of language. We demonstrate our framework in a novel NL-PE algorithm, PEBOL, which uses: 1) Natural Language Inference (NLI) between user preference utterances and NL item descriptions to maintain Bayesian preference beliefs, and 2) BO strategies such as Thompson Sampling (TS) and Upper Confidence Bound (UCB) to steer LLM query generation. We numerically evaluate our methods in controlled simulations, finding that after 10 turns of dialogue, PEBOL can achieve an MRR@10 of up to 0.27 compared to the best monolithic LLM baseline's MRR@10 of 0.17, despite relying on earlier and smaller LLMs.
♻ ☆ Impact of Guidance and Interaction Strategies for LLM Use on Learner Performance and Perception SC
Personalized chatbot-based teaching assistants can be crucial in addressing increasing classroom sizes, especially where direct teacher presence is limited. Large language models (LLMs) offer a promising avenue, with increasing research exploring their educational utility. However, the challenge lies not only in establishing the efficacy of LLMs but also in discerning the nuances of interaction between learners and these models, which impact learners' engagement and results. We conducted a formative study in an undergraduate computer science classroom (N=145) and a controlled experiment on Prolific (N=356) to explore the impact of four pedagogically informed guidance strategies on the learners' performance, confidence and trust in LLMs. Direct LLM answers marginally improved performance, while refining student solutions fostered trust. Structured guidance reduced random queries as well as instances of students copy-pasting assignment questions to the LLM. Our work highlights the role that teachers can play in shaping LLM-supported learning environments.
comment: To appear in CSCW 2024
♻ ☆ SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature NeurIPS
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.
comment: Submitted to NeurIPS Datasets and Benchmarks 2024
♻ ☆ Large Visual-Language Models Are Also Good Classifiers: A Study of In-Context Multimodal Fake News Detection
Large visual-language models (LVLMs) exhibit exceptional performance in visual-language reasoning across diverse cross-modal benchmarks. Despite these advances, recent research indicates that Large Language Models (LLMs), like GPT-3.5-turbo, underachieve compared to well-trained smaller models, such as BERT, in Fake News Detection (FND), prompting inquiries into LVLMs' efficacy in FND tasks. Although performance could improve through fine-tuning LVLMs, the substantial parameters and requisite pre-trained weights render it a resource-heavy endeavor for FND applications. This paper initially assesses the FND capabilities of two notable LVLMs, CogVLM and GPT4V, in comparison to a smaller yet adeptly trained CLIP model in a zero-shot context. The findings demonstrate that LVLMs can attain performance competitive with that of the smaller model. Next, we integrate standard in-context learning (ICL) with LVLMs, noting improvements in FND performance, though limited in scope and consistency. To address this, we introduce the \textbf{I}n-context \textbf{M}ultimodal \textbf{F}ake \textbf{N}ews \textbf{D}etection (IMFND) framework, enriching in-context examples and test inputs with predictions and corresponding probabilities from a well-trained smaller model. This strategic integration directs the LVLMs' focus towards news segments associated with higher probabilities, thereby improving their analytical accuracy. The experimental results suggest that the IMFND framework significantly boosts the FND efficiency of LVLMs, achieving enhanced accuracy over the standard ICL approach across three publicly available FND datasets.
♻ ☆ PromptBench: A Unified Library for Evaluation of Large Language Models
The evaluation of large language models (LLMs) is crucial to assess their performance and mitigate potential security risks. In this paper, we introduce PromptBench, a unified library to evaluate LLMs. It consists of several key components that are easily used and extended by researchers: prompt construction, prompt engineering, dataset and model loading, adversarial prompt attack, dynamic evaluation protocols, and analysis tools. PromptBench is designed to be an open, general, and flexible codebase for research purposes that can facilitate original study in creating new benchmarks, deploying downstream applications, and designing new evaluation protocols. The code is available at: https://github.com/microsoft/promptbench and will be continuously supported.
comment: Accepted by Journal of Machine Learning Research (JMLR); code: https://github.com/microsoft/promptbench
♻ ☆ V2Xum-LLM: Cross-Modal Video Summarization with Temporal Prompt Instruction Tuning
Video summarization aims to create short, accurate, and cohesive summaries of longer videos. Despite the existence of various video summarization datasets, a notable limitation is their limited amount of source videos, which hampers the effective training of advanced large vision-language models (VLMs). Additionally, most existing datasets are created for video-to-video summarization, overlooking the contemporary need for multimodal video content summarization. Recent efforts have been made to expand from unimodal to multimodal video summarization, categorizing the task into three sub-tasks based on the summary's modality: video-to-video (V2V), video-to-text (V2T), and a combination of video and text summarization (V2VT). However, the textual summaries in previous multimodal datasets are inadequate. To address these issues, we introduce Instruct-V2Xum, a cross-modal video summarization dataset featuring 30,000 diverse videos sourced from YouTube, with lengths ranging from 40 to 940 seconds and an average summarization ratio of 16.39%. Each video summary in Instruct-V2Xum is paired with a textual summary that references specific frame indexes, facilitating the generation of aligned video and textual summaries. In addition, we propose a new video summarization framework named V2Xum-LLM. V2Xum-LLM, specifically V2Xum-LLaMA in this study, is the first framework that unifies different video summarization tasks into one large language model's (LLM) text decoder and achieves task-controllable video summarization with temporal prompts and task instructions. Experiments show that V2Xum-LLaMA outperforms strong baseline models on multiple video summarization tasks. Furthermore, we propose an enhanced evaluation metric for V2V and V2VT summarization tasks.
♻ ☆ ComTraQ-MPC: Meta-Trained DQN-MPC Integration for Trajectory Tracking with Limited Active Localization Updates
Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.
comment: * Equal contribution
♻ ☆ Gender, Race, and Intersectional Bias in Resume Screening via Language Model Retrieval AAAI
Artificial intelligence (AI) hiring tools have revolutionized resume screening, and large language models (LLMs) have the potential to do the same. However, given the biases which are embedded within LLMs, it is unclear whether they can be used in this scenario without disadvantaging groups based on their protected attributes. In this work, we investigate the possibilities of using LLMs in a resume screening setting via a document retrieval framework that simulates job candidate selection. Using that framework, we then perform a resume audit study to determine whether a selection of Massive Text Embedding (MTE) models are biased in resume screening scenarios. We simulate this for nine occupations, using a collection of over 500 publicly available resumes and 500 job descriptions. We find that the MTEs are biased, significantly favoring White-associated names in 85.1\% of cases and female-associated names in only 11.1\% of cases, with a minority of cases showing no statistically significant differences. Further analyses show that Black males are disadvantaged in up to 100\% of cases, replicating real-world patterns of bias in employment settings, and validate three hypotheses of intersectionality. We also find an impact of document length as well as the corpus frequency of names in the selection of resumes. These findings have implications for widely used AI tools that are automating employment, fairness, and tech policy.
comment: To be published in Proceedings of the 2024 AAAI/ACM Conference on AI, Ethics, and Society; code available at https://github.com/kyrawilson/Resume-Screening-Bias
♻ ☆ SelectLLM: Can LLMs Select Important Instructions to Annotate?
Instruction tuning benefits from large and diverse datasets; however, creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to select unlabeled instructions more effectively. Specifically, SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for enlarging diversity and prompting of LLM to identify the most beneficial instructions within each cluster. We evaluate SelectLLM on AlpacaEval2 and MT-Bench, demonstrating its ability to outperform state-of-the-art methods like Alpagasus. In addition, we compare the performance and compatibility of SelectLLM with various LLMs, such as ChatGPT, LLaMA-3.1-70B, and Gemma-2-27b. SelectLLM's adaptability and robustness are further evidenced by its ability to maintain high performance across both human and synthetic datasets. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).
comment: First Authors: Ritik Sachin Parkar and Jaehyung Kim | Second Author: Jong Inn Park | PI: Dongyeop Kang
♻ ☆ Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
In this paper, we discuss approaches for integrating Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation through augmented prompting. With this work, we hope to foster discussions of Computational Creativity in the context of ML algorithms for creative problem solving in LLVMs. Our code is at: https://github.com/lnairGT/creative-problem-solving-LLMs
comment: 17 pages, 7 figures, 2 tables
♻ ☆ Evaluating the Efficacy of Foundational Models: Advancing Benchmarking Practices to Enhance Fine-Tuning Decision-Making
Recently, large language models (LLMs) have expanded into various domains. However, there remains a need to evaluate how these models perform when prompted with commonplace queries compared to domain-specific queries, which may be useful for benchmarking prior to fine-tuning for domain-specific downstream tasks. This study evaluates LLMs, specifically Gemma-2B and Gemma-7B, across diverse domains, including cybersecurity, medicine, and finance, compared to common knowledge queries. This study utilizes a comprehensive methodology to assess foundational models, which includes problem formulation, data analysis, and the development of ThroughCut, a novel outlier detection technique that automatically identifies response throughput outliers based on their conciseness. This methodological rigor enhances the credibility of the presented evaluation frameworks. This study focused on assessing inference time, response length, throughput, quality, and resource utilization and investigated the correlations between these factors. The results indicate that model size and types of prompts used for inference significantly influenced response length and quality. In addition, common prompts, which include various types of queries, generate diverse and inconsistent responses at irregular intervals. In contrast, domain-specific prompts consistently generate concise responses within a reasonable time. Overall, this study underscores the need for comprehensive evaluation frameworks to enhance the reliability of benchmarking procedures in multidomain AI research.
comment: 10 pages, 5 figures, 2 tables, and algorithms
♻ ☆ A Roadmap to Pluralistic Alignment ICML 2024
With increased power and prevalence of AI systems, it is ever more critical that AI systems are designed to serve all, i.e., people with diverse values and perspectives. However, aligning models to serve pluralistic human values remains an open research question. In this piece, we propose a roadmap to pluralistic alignment, specifically using language models as a test bed. We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution. We also formalize and discuss three possible classes of pluralistic benchmarks: 1) Multi-objective benchmarks, 2) Trade-off steerable benchmarks, which incentivize models to steer to arbitrary trade-offs, and 3) Jury-pluralistic benchmarks which explicitly model diverse human ratings. We use this framework to argue that current alignment techniques may be fundamentally limited for pluralistic AI; indeed, we highlight empirical evidence, both from our own experiments and from other work, that standard alignment procedures might reduce distributional pluralism in models, motivating the need for further research on pluralistic alignment.
comment: ICML 2024
♻ ☆ Large Model Strategic Thinking, Small Model Efficiency: Transferring Theory of Mind in Large Language Models
As the performance of larger, newer Large Language Models continues to improve for strategic Theory of Mind (ToM) tasks, the demand for these state-of-the-art models increases commensurately. However, their deployment is costly both in terms of processing power and time. In this paper, we investigate the feasibility of creating smaller, highly-performing specialized algorithms by way of fine-tuning. To do this, we first present a large pre-trained model with 20 unique scenarios that combine different social contexts with games of varying social dilemmas, record its answers, and use them for Q&A fine-tuning on a smaller model of the same family. Our focus is on in-context game-theoretic decision-making, the same domain within which human interaction occurs and that requires both a theory of mind (or a semblance thereof) and an understanding of social dynamics. The smaller model is therefore trained not just on the answers provided, but also on the motivations provided by the larger model, which should contain advice and guidelines to navigate both strategic dilemmas and social cues. We find that the fine-tuned smaller language model consistently bridged the gap in performance between the smaller pre-trained version of the model and its larger relative and that its improvements extended in areas and contexts beyond the ones provided in the training examples, including on out-of-sample scenarios that include completely different game structures. On average for all games, through fine-tuning, the smaller model showed a 46% improvement measured as alignment towards the behavior of the larger model, with 100% representing indistinguishable behavior. When presented with out-of-sample social contexts and games, the fine-tuned model still displays remarkable levels of alignment, reaching an improvement of 18% and 28% respectively.
comment: 18 pages, 6 figures
♻ ☆ Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction
Inductive link prediction -- where entities during training and inference stages can be different -- has shown great potential for completing evolving knowledge graphs in an entity-independent manner. Many popular methods mainly focus on modeling graph-level features, while the edge-level interactions -- especially the semantic correlations between relations -- have been less explored. However, we notice a desirable property of semantic correlations between relations is that they are inherently edge-level and entity-independent. This implies the great potential of the semantic correlations for the entity-independent inductive link prediction task. Inspired by this observation, we propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations that are highly correlated to their topological structures within subgraphs. Specifically, we prove that semantic correlations between any two relations can be categorized into seven topological patterns, and then proposes Relational Correlation Network (RCN) to learn the importance of each pattern. To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph that can effectively preserve complete topological patterns within the subgraph. Extensive experiments demonstrate that TACO effectively unifies the graph-level information and edge-level interactions to jointly perform reasoning, leading to a superior performance over existing state-of-the-art methods for the inductive link prediction task.
comment: arXiv admin note: text overlap with arXiv:2103.03642
♻ ☆ CELLM: An Efficient Communication in Large Language Models Training for Federated Learning
Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.
comment: arXiv admin note: This version has been removed by arXiv administrators due to copyright infringement
Graphics 4
☆ DEGAS: Detailed Expressions on Full-Body Gaussian Avatars
Although neural rendering has made significant advancements in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities to interactive AI agents.
♻ ☆ Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models
Generating 3D scenes from human motion sequences supports numerous applications, including virtual reality and architectural design. However, previous auto-regression-based human-aware 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans, often resulting in overlapping object generation in the same space. To address this limitation, we explore the potential of diffusion models that simultaneously consider all input humans and the floor plan to generate plausible 3D scenes. Our approach not only satisfies all input human interactions but also adheres to spatial constraints with the floor plan. Furthermore, we introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints. These mechanisms help avoid generating scenes that conflict with human motions while respecting layout constraints. To enhance the diversity and accuracy of human-guided scene generation, we have developed an automated pipeline that improves the variety and plausibility of human-object interactions in the existing 3D FRONT HUMAN dataset. Extensive experiments on both synthetic and real-world datasets demonstrate that our framework can generate more natural and plausible 3D scenes with precise human-scene interactions, while significantly reducing human-object collisions compared to previous state-of-the-art methods. Our code and data will be made publicly available upon publication of this work.
♻ ☆ High-Quality Mesh Blendshape Generation from Face Videos via Neural Inverse Rendering
Readily editable mesh blendshapes have been widely used in animation pipelines, while recent advancements in neural geometry and appearance representations have enabled high-quality inverse rendering. Building upon these observations, we introduce a novel technique that reconstructs mesh-based blendshape rigs from single or sparse multi-view videos, leveraging state-of-the-art neural inverse rendering. We begin by constructing a deformation representation that parameterizes vertex displacements into differential coordinates with tetrahedral connections, allowing for high-quality vertex deformation on high-resolution meshes. By constructing a set of semantic regulations in this representation, we achieve joint optimization of blendshapes and expression coefficients. Furthermore, to enable a user-friendly multi-view setup with unsynchronized cameras, we propose a neural regressor to model time-varying motion parameters. This approach implicitly considers the time difference across multiple cameras, enhancing the accuracy of motion modeling. Experiments demonstrate that, with the flexible input of single or sparse multi-view videos, we reconstruct personalized high-fidelity blendshapes. These blendshapes are both geometrically and semantically accurate, and they are compatible with industrial animation pipelines. Code and data are available at https://github.com/grignarder/high-quality-blendshape-generation.
♻ ☆ A Practical Solver for Scalar Data Topological Simplification IEEE VIS 2024
This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field f and a set of "signal" persistence pairs to maintain, our approach produces an output field g that is close to f and which optimizes (i) the cancellation of "non-signal" pairs, while (ii) preserving the "signal" pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.
comment: 13 pages, 10 figures, IEEE VIS 2024
Computer Vision 121
☆ Criticality Leveraged Adversarial Training (CLAT) for Boosted Performance via Parameter Efficiency
Adversarial training enhances neural network robustness but suffers from a tendency to overfit and increased generalization errors on clean data. This work introduces CLAT, an innovative approach that mitigates adversarial overfitting by introducing parameter efficiency into the adversarial training process, improving both clean accuracy and adversarial robustness. Instead of tuning the entire model, CLAT identifies and fine-tunes robustness-critical layers - those predominantly learning non-robust features - while freezing the remaining model to enhance robustness. It employs dynamic critical layer selection to adapt to changes in layer criticality throughout the fine-tuning process. Empirically, CLAT can be applied on top of existing adversarial training methods, significantly reduces the number of trainable parameters by approximately 95%, and achieves more than a 2% improvement in adversarial robustness compared to baseline methods.
comment: 9 pages + appendix/ additional experiments
☆ SANER: Annotation-free Societal Attribute Neutralizer for Debiasing CLIP
Large-scale vision-language models, such as CLIP, are known to contain harmful societal bias regarding protected attributes (e.g., gender and age). In this paper, we aim to address the problems of societal bias in CLIP. Although previous studies have proposed to debias societal bias through adversarial learning or test-time projecting, our comprehensive study of these works identifies two critical limitations: 1) loss of attribute information when it is explicitly disclosed in the input and 2) use of the attribute annotations during debiasing process. To mitigate societal bias in CLIP and overcome these limitations simultaneously, we introduce a simple-yet-effective debiasing method called SANER (societal attribute neutralizer) that eliminates attribute information from CLIP text features only of attribute-neutral descriptions. Experimental results show that SANER, which does not require attribute annotations and preserves original information for attribute-specific descriptions, demonstrates superior debiasing ability than the existing methods.
☆ MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model
Open-world 3D reconstruction models have recently garnered significant attention. However, without sufficient 3D inductive bias, existing methods typically entail expensive training costs and struggle to extract high-quality 3D meshes. In this work, we introduce MeshFormer, a sparse-view reconstruction model that explicitly leverages 3D native structure, input guidance, and training supervision. Specifically, instead of using a triplane representation, we store features in 3D sparse voxels and combine transformers with 3D convolutions to leverage an explicit 3D structure and projective bias. In addition to sparse-view RGB input, we require the network to take input and generate corresponding normal maps. The input normal maps can be predicted by 2D diffusion models, significantly aiding in the guidance and refinement of the geometry's learning. Moreover, by combining Signed Distance Function (SDF) supervision with surface rendering, we directly learn to generate high-quality meshes without the need for complex multi-stage training processes. By incorporating these explicit 3D biases, MeshFormer can be trained efficiently and deliver high-quality textured meshes with fine-grained geometric details. It can also be integrated with 2D diffusion models to enable fast single-image-to-3D and text-to-3D tasks. Project page: https://meshformer3d.github.io
comment: 20 pages, 9 figures
☆ SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views ECCV 2024
Open-world 3D generation has recently attracted considerable attention. While many single-image-to-3D methods have yielded visually appealing outcomes, they often lack sufficient controllability and tend to produce hallucinated regions that may not align with users' expectations. In this paper, we explore an important scenario in which the input consists of one or a few unposed 2D images of a single object, with little or no overlap. We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for these sparse-view images. SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views. The diffusion model is trained to jointly predict surrogate representations for camera poses and multi-view images of the object under known poses, integrating all information from the input sparse views. These predictions are then leveraged to accomplish 3D reconstruction and pose estimation, and the reconstructed 3D model can be used to further refine the camera poses of input views. Through extensive experiments on three datasets, we demonstrate that our method not only significantly outperforms baseline methods in terms of 3D reconstruction quality and pose prediction accuracy but also exhibits strong efficiency. It requires only about 20 seconds to produce a textured mesh and camera poses for the input views. Project page: https://chaoxu.xyz/sparp.
comment: ECCV 2024
☆ Assessment of Spectral based Solutions for the Detection of Floating Marine Debris
Typically, the detection of marine debris relies on in-situ campaigns that are characterized by huge human effort and limited spatial coverage. Following the need of a rapid solution for the detection of floating plastic, methods based on remote sensing data have been proposed recently. Their main limitation is represented by the lack of a general reference for evaluating performance. Recently, the Marine Debris Archive (MARIDA) has been released as a standard dataset to develop and evaluate Machine Learning (ML) algorithms for detection of Marine Plastic Debris. The MARIDA dataset has been created for simplifying the comparison between detection solutions with the aim of stimulating the research in the field of marine environment preservation. In this work, an assessment of spectral based solutions is proposed by evaluating performance on MARIDA dataset. The outcome highlights the need of precise reference for fair evaluation.
comment: 5 pages, 3 figures, submitted and accepted for 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON)
☆ Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network
Imbalanced datasets are a significant challenge in real-world scenarios. They lead to models that underperform on underrepresented classes, which is a critical issue in infrastructure inspection. This paper introduces the Enhanced Feature Pyramid Network (E-FPN), a deep learning model for the semantic segmentation of culverts and sewer pipes within imbalanced datasets. The E-FPN incorporates architectural innovations like sparsely connected blocks and depth-wise separable convolutions to improve feature extraction and handle object variations. To address dataset imbalance, the model employs strategies like class decomposition and data augmentation. Experimental results on the culvert-sewer defects dataset and a benchmark aerial semantic segmentation drone dataset show that the E-FPN outperforms state-of-the-art methods, achieving an average Intersection over Union (IoU) improvement of 13.8% and 27.2%, respectively. Additionally, class decomposition and data augmentation together boost the model's performance by approximately 6.9% IoU. The proposed E-FPN presents a promising solution for enhancing object segmentation in challenging, multi-class real-world datasets, with potential applications extending beyond culvert-sewer defect detection.
☆ NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction
Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction. Although promising, SDF-based methods often fail to capture detailed geometric structures, resulting in visible defects. By comparing SDF-based volume rendering to density-based volume rendering, we identify two main factors within the SDF-based approach that degrade surface quality: SDF-to-density representation and geometric regularization. These factors introduce challenges that hinder the optimization of the SDF field. To address these issues, we introduce NeuRodin, a novel two-stage neural surface reconstruction framework that not only achieves high-fidelity surface reconstruction but also retains the flexible optimization characteristics of density-based methods. NeuRodin incorporates innovative strategies that facilitate transformation of arbitrary topologies and reduce artifacts associated with density bias. Extensive evaluations on the Tanks and Temples and ScanNet++ datasets demonstrate the superiority of NeuRodin, showing strong reconstruction capabilities for both indoor and outdoor environments using solely posed RGB captures. Project website: https://open3dvlab.github.io/NeuRodin/
☆ Fairness Under Cover: Evaluating the Impact of Occlusions on Demographic Bias in Facial Recognition ECCV
This study investigates the effects of occlusions on the fairness of face recognition systems, particularly focusing on demographic biases. Using the Racial Faces in the Wild (RFW) dataset and synthetically added realistic occlusions, we evaluate their effect on the performance of face recognition models trained on the BUPT-Balanced and BUPT-GlobalFace datasets. We note increases in the dispersion of FMR, FNMR, and accuracy alongside decreases in fairness according to Equilized Odds, Demographic Parity, STD of Accuracy, and Fairness Discrepancy Rate. Additionally, we utilize a pixel attribution method to understand the importance of occlusions in model predictions, proposing a new metric, Face Occlusion Impact Ratio (FOIR), that quantifies the extent to which occlusions affect model performance across different demographic groups. Our results indicate that occlusions exacerbate existing demographic biases, with models placing higher importance on occlusions in an unequal fashion, particularly affecting African individuals more severely.
comment: Accepted at ECCV Workshop FAILED
☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
☆ Structure-preserving Image Translation for Depth Estimation in Colonoscopy Video MICCAI 2024
Monocular depth estimation in colonoscopy video aims to overcome the unusual lighting properties of the colonoscopic environment. One of the major challenges in this area is the domain gap between annotated but unrealistic synthetic data and unannotated but realistic clinical data. Previous attempts to bridge this domain gap directly target the depth estimation task itself. We propose a general pipeline of structure-preserving synthetic-to-real (sim2real) image translation (producing a modified version of the input image) to retain depth geometry through the translation process. This allows us to generate large quantities of realistic-looking synthetic images for supervised depth estimation with improved generalization to the clinical domain. We also propose a dataset of hand-picked sequences from clinical colonoscopies to improve the image translation process. We demonstrate the simultaneous realism of the translated images and preservation of depth maps via the performance of downstream depth estimation on various datasets.
comment: 12 pages, 7 figures, accepted at MICCAI 2024
☆ Multi-Scale Representation Learning for Image Restoration with State-Space Model
Image restoration endeavors to reconstruct a high-quality, detail-rich image from a degraded counterpart, which is a pivotal process in photography and various computer vision systems. In real-world scenarios, different types of degradation can cause the loss of image details at various scales and degrade image contrast. Existing methods predominantly rely on CNN and Transformer to capture multi-scale representations. However, these methods are often limited by the high computational complexity of Transformers and the constrained receptive field of CNN, which hinder them from achieving superior performance and efficiency in image restoration. To address these challenges, we propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration that enhances the capacity for multi-scale representation learning through our proposed global and regional SSM modules. Additionally, an Adaptive Gradient Block (AGB) and a Residual Fourier Block (RFB) are proposed to improve the network's detail extraction capabilities by capturing gradients in various directions and facilitating learning details in the frequency domain. Extensive experiments on nine public benchmarks across four classic image restoration tasks, image deraining, dehazing, denoising, and low-light enhancement, demonstrate that our proposed method achieves new state-of-the-art performance while maintaining low computational complexity. The source code will be publicly available.
$R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging due to its efficiency in handling complex geometric structures and facilitating real-time rendering. However, existing works often fail to capture fine geometric details accurately and struggle with optimizing rendering quality. To address these challenges, we propose a novel algorithm that progressively generates and optimizes meshes from multi-view images. Our approach initiates with the training of a NeRF model to establish an initial Signed Distance Field (SDF) and a view-dependent appearance field. Subsequently, we iteratively refine the SDF through a differentiable mesh extraction method, continuously updating both the vertex positions and their connectivity based on the loss from mesh differentiable rasterization, while also optimizing the appearance representation. To further leverage high-fidelity and detail-rich representations from NeRF, we propose an online-learning strategy based on Upper Confidence Bound (UCB) to enhance viewpoints by adaptively incorporating images rendered by the initial NeRF model into the training dataset. Through extensive experiments, we demonstrate that our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
☆ Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images
Depth perception plays an essential role in the viewer experience for immersive virtual reality (VR) visual environments. However, previous research investigations in the depth quality of 3D/stereoscopic images are rather limited, and in particular, are largely lacking for 3D viewing of 360-degree omnidirectional content. In this work, we make one of the first attempts to develop an objective quality assessment model named depth quality index (DQI) for efficient no-reference (NR) depth quality assessment of stereoscopic omnidirectional images. Motivated by the perceptual characteristics of the human visual system (HVS), the proposed DQI is built upon multi-color-channel, adaptive viewport selection, and interocular discrepancy features. Experimental results demonstrate that the proposed method outperforms state-of-the-art image quality assessment (IQA) and depth quality assessment (DQA) approaches in predicting the perceptual depth quality when tested using both single-viewport and omnidirectional stereoscopic image databases. Furthermore, we demonstrate that combining the proposed depth quality model with existing IQA methods significantly boosts the performance in predicting the overall quality of 3D omnidirectional images.
comment: Accepted by IEEE TCSVT
☆ UNINEXT-Cutie: The 1st Solution for LSVOS Challenge RVOS Track
Referring video object segmentation (RVOS) relies on natural language expressions to segment target objects in video. In this year, LSVOS Challenge RVOS Track replaced the origin YouTube-RVOS benchmark with MeViS. MeViS focuses on referring the target object in a video through its motion descriptions instead of static attributes, posing a greater challenge to RVOS task. In this work, we integrate strengths of that leading RVOS and VOS models to build up a simple and effective pipeline for RVOS. Firstly, We finetune the state-of-the-art RVOS model to obtain mask sequences that are correlated with language descriptions. Secondly, based on a reliable and high-quality key frames, we leverage VOS model to enhance the quality and temporal consistency of the mask results. Finally, we further improve the performance of the RVOS model using semi-supervised learning. Our solution achieved 62.57 J&F on the MeViS test set and ranked 1st place for 6th LSVOS Challenge RVOS Track.
☆ Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track
Video Object Segmentation (VOS) task aims to segmenting a particular object instance throughout the entire video sequence given only the object mask of the first frame. Recently, Segment Anything Model 2 (SAM 2) is proposed, which is a foundation model towards solving promptable visual segmentation in images and videos. SAM 2 builds a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date. SAM 2 is a simple transformer architecture with streaming memory for real-time video processing, which trained on the date provides strong performance across a wide range of tasks. In this work, we evaluate the zero-shot performance of SAM 2 on the more challenging VOS datasets MOSE and LVOS. Without fine-tuning on the training set, SAM 2 achieved 75.79 J&F on the test set and ranked 4th place for 6th LSVOS Challenge VOS Track.
comment: arXiv admin note: substantial text overlap with arXiv:2408.00714
☆ Learning Precise Affordances from Egocentric Videos for Robotic Manipulation
Affordance, defined as the potential actions that an object offers, is crucial for robotic manipulation tasks. A deep understanding of affordance can lead to more intelligent AI systems. For example, such knowledge directs an agent to grasp a knife by the handle for cutting and by the blade when passing it to someone. In this paper, we present a streamlined affordance learning system that encompasses data collection, effective model training, and robot deployment. First, we collect training data from egocentric videos in an automatic manner. Different from previous methods that focus only on the object graspable affordance and represent it as coarse heatmaps, we cover both graspable (e.g., object handles) and functional affordances (e.g., knife blades, hammer heads) and extract data with precise segmentation masks. We then propose an effective model, termed Geometry-guided Affordance Transformer (GKT), to train on the collected data. GKT integrates an innovative Depth Feature Injector (DFI) to incorporate 3D shape and geometric priors, enhancing the model's understanding of affordances. To enable affordance-oriented manipulation, we further introduce Aff-Grasp, a framework that combines GKT with a grasp generation model. For comprehensive evaluation, we create an affordance evaluation dataset with pixel-wise annotations, and design real-world tasks for robot experiments. The results show that GKT surpasses the state-of-the-art by 15.9% in mIoU, and Aff-Grasp achieves high success rates of 95.5% in affordance prediction and 77.1% in successful grasping among 179 trials, including evaluations with seen, unseen objects, and cluttered scenes.
comment: Project page: https://reagan1311.github.io/affgrasp
☆ Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data
Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present \emph{Factorized-Dreamer}, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at \url{https://github.com/yangxy/Factorized-Dreamer/}.
☆ Modelling the Distribution of Human Motion for Sign Language Assessment ECCV 2024
Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.
comment: Accepted to Twelfth International Workshop on Assistive Computer Vision and Robotics at ECCV 2024
☆ FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant
The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptions of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods do not yield user-friendly and explainable results, complicating the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and the corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Base on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing the model's robustness. Extensive experiments demonstrate that our method not only provides user-friendly explainable results but also significantly boosts accuracy and robustness compared to previous methods.
comment: 17 pages, 18 figures; project page: https://ffaa-vl.github.io
☆ LNQ 2023 challenge: Benchmark of weakly-supervised techniques for mediastinal lymph node quantification
Accurate assessment of lymph node size in 3D CT scans is crucial for cancer staging, therapeutic management, and monitoring treatment response. Existing state-of-the-art segmentation frameworks in medical imaging often rely on fully annotated datasets. However, for lymph node segmentation, these datasets are typically small due to the extensive time and expertise required to annotate the numerous lymph nodes in 3D CT scans. Weakly-supervised learning, which leverages incomplete or noisy annotations, has recently gained interest in the medical imaging community as a potential solution. Despite the variety of weakly-supervised techniques proposed, most have been validated only on private datasets or small publicly available datasets. To address this limitation, the Mediastinal Lymph Node Quantification (LNQ) challenge was organized in conjunction with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). This challenge aimed to advance weakly-supervised segmentation methods by providing a new, partially annotated dataset and a robust evaluation framework. A total of 16 teams from 5 countries submitted predictions to the validation leaderboard, and 6 teams from 3 countries participated in the evaluation phase. The results highlighted both the potential and the current limitations of weakly-supervised approaches. On one hand, weakly-supervised approaches obtained relatively good performance with a median Dice score of $61.0\%$. On the other hand, top-ranked teams, with a median Dice score exceeding $70\%$, boosted their performance by leveraging smaller but fully annotated datasets to combine weak supervision and full supervision. This highlights both the promise of weakly-supervised methods and the ongoing need for high-quality, fully annotated data to achieve higher segmentation performance.
comment: Submitted to MELBA
☆ Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development
Endorectal ultrasound (ERUS) is an important imaging modality that provides high reliability for diagnosing the depth and boundary of invasion in colorectal cancer. However, the lack of a large-scale ERUS dataset with high-quality annotations hinders the development of automatic ultrasound diagnostics. In this paper, we collected and annotated the first benchmark dataset that covers diverse ERUS scenarios, i.e. colorectal cancer segmentation, detection, and infiltration depth staging. Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames. Based on this dataset, we further introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR). ASTR is designed based on three considerations: scanning mode discrepancy, temporal information, and low computational complexity. For generalizing to different scanning modes, the adaptive scanning-mode augmentation is proposed to convert between raw sector images and linear scan ones. For mining temporal information, the sparse-context transformer is incorporated to integrate inter-frame local and global features. For reducing computational complexity, the sparse-context block is introduced to extract contextual features from auxiliary frames. Finally, on the benchmark dataset, the proposed ASTR model achieves a 77.6% Dice score in rectal cancer segmentation, largely outperforming previous state-of-the-art methods.
☆ Facial Wrinkle Segmentation for Cosmetic Dermatology: Pretraining with Texture Map-Based Weak Supervision
Facial wrinkle detection plays a crucial role in cosmetic dermatology. Precise manual segmentation of facial wrinkles is challenging and time-consuming, with inherent subjectivity leading to inconsistent results among graders. To address this issue, we propose two solutions. First, we build and release the first public facial wrinkle dataset, `FFHQ-Wrinkle', an extension of the NVIDIA FFHQ dataset. This dataset includes 1,000 images with human labels and 50,000 images with automatically generated weak labels. This dataset can foster the research community to develop advanced wrinkle detection algorithms. Second, we introduce a training strategy for U-Net-like encoder-decoder models to detect wrinkles across the face automatically. Our method employs a two-stage training strategy: texture map pretraining and finetuning on human-labeled data. Initially, we pretrain models on a large dataset with weak labels (N=50k) or masked texture maps generated through computer vision techniques, without human intervention. Subsequently, we finetune the models using human-labeled data (N=1k), which consists of manually labeled wrinkle masks. During finetuning, the network inputs a combination of RGB and masked texture maps, comprising four channels. We effectively combine labels from multiple annotators to minimize subjectivity in manual labeling. Our strategies demonstrate improved segmentation performance in facial wrinkle segmentation both quantitatively and visually compared to existing pretraining methods.
Exploiting Fine-Grained Prototype Distribution for Boosting Unsupervised Class Incremental Learning
The dynamic nature of open-world scenarios has attracted more attention to class incremental learning (CIL). However, existing CIL methods typically presume the availability of complete ground-truth labels throughout the training process, an assumption rarely met in practical applications. Consequently, this paper explores a more challenging problem of unsupervised class incremental learning (UCIL). The essence of addressing this problem lies in effectively capturing comprehensive feature representations and discovering unknown novel classes. To achieve this, we first model the knowledge of class distribution by exploiting fine-grained prototypes. Subsequently, a granularity alignment technique is introduced to enhance the unsupervised class discovery. Additionally, we proposed a strategy to minimize overlap between novel and existing classes, thereby preserving historical knowledge and mitigating the phenomenon of catastrophic forgetting. Extensive experiments on the five datasets demonstrate that our approach significantly outperforms current state-of-the-art methods, indicating the effectiveness of the proposed method.
☆ Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation
Recent advancements in photo-realistic novel view synthesis have been significantly driven by Gaussian Splatting (3DGS). Nevertheless, the explicit nature of 3DGS data entails considerable storage requirements, highlighting a pressing need for more efficient data representations. To address this, we present Implicit Gaussian Splatting (IGS), an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings through a multi-level tri-plane architecture. This architecture features 2D feature grids at various resolutions across different levels, facilitating continuous spatial domain representation and enhancing spatial correlations among Gaussian primitives. Building upon this foundation, we introduce a level-based progressive training scheme, which incorporates explicit spatial regularization. This method capitalizes on spatial correlations to enhance both the rendering quality and the compactness of the IGS representation. Furthermore, we propose a novel compression pipeline tailored for both point clouds and 2D feature grids, considering the entropy variations across different levels. Extensive experimental evaluations demonstrate that our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity, and yielding results that are competitive with the state-of-the-art.
☆ SHARP: Segmentation of Hands and Arms by Range using Pseudo-Depth for Enhanced Egocentric 3D Hand Pose Estimation and Action Recognition ICPR
Hand pose represents key information for action recognition in the egocentric perspective, where the user is interacting with objects. We propose to improve egocentric 3D hand pose estimation based on RGB frames only by using pseudo-depth images. Incorporating state-of-the-art single RGB image depth estimation techniques, we generate pseudo-depth representations of the frames and use distance knowledge to segment irrelevant parts of the scene. The resulting depth maps are then used as segmentation masks for the RGB frames. Experimental results on H2O Dataset confirm the high accuracy of the estimated pose with our method in an action recognition task. The 3D hand pose, together with information from object detection, is processed by a transformer-based action recognition network, resulting in an accuracy of 91.73%, outperforming all state-of-the-art methods. Estimations of 3D hand pose result in competitive performance with existing methods with a mean pose error of 28.66 mm. This method opens up new possibilities for employing distance information in egocentric 3D hand pose estimation without relying on depth sensors.
comment: Accepted at 27th International Conference on Pattern Recognition (ICPR)
Dynamic Label Injection for Imbalanced Industrial Defect Segmentation ECCV 2024
In this work, we propose a simple yet effective method to tackle the problem of imbalanced multi-class semantic segmentation in deep learning systems. One of the key properties for a good training set is the balancing among the classes. When the input distribution is heavily imbalanced in the number of instances, the learning process could be hindered or difficult to carry on. To this end, we propose a Dynamic Label Injection (DLI) algorithm to impose a uniform distribution in the input batch. Our algorithm computes the current batch defect distribution and re-balances it by transferring defects using a combination of Poisson-based seamless image cloning and cut-paste techniques. A thorough experimental section on the Magnetic Tiles dataset shows better results of DLI compared to other balancing loss approaches also in the challenging weakly-supervised setup. The code is available at https://github.com/covisionlab/dynamic-label-injection.git
comment: ECCV 2024 VISION Workshop
☆ Towards Robust Federated Image Classification: An Empirical Study of Weight Selection Strategies in Manufacturing
In the realm of Federated Learning (FL), particularly within the manufacturing sector, the strategy for selecting client weights for server aggregation is pivotal for model performance. This study investigates the comparative effectiveness of two weight selection strategies: Final Epoch Weight Selection (FEWS) and Optimal Epoch Weight Selection (OEWS). Designed for manufacturing contexts where collaboration typically involves a limited number of partners (two to four clients), our research focuses on federated image classification tasks. We employ various neural network architectures, including EfficientNet, ResNet, and VGG, to assess the impact of these weight selection strategies on model convergence and robustness. Our research aims to determine whether FEWS or OEWS enhances the global FL model's performance across communication rounds (CRs). Through empirical analysis and rigorous experimentation, we seek to provide valuable insights for optimizing FL implementations in manufacturing, ensuring that collaborative efforts yield the most effective and reliable models with a limited number of participating clients. The findings from this study are expected to refine FL practices significantly in manufacturing, thereby enhancing the efficiency and performance of collaborative machine learning endeavors in this vital sector.
comment: Submitted to The 2nd IEEE International Conference on Federated Learning Technologies and Applications (FLTA24)
Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
Deep neural networks have demonstrated remarkable effectiveness across a wide range of tasks such as semantic segmentation. Nevertheless, these networks are vulnerable to adversarial attacks that add imperceptible perturbations to the input image, leading to false predictions. This vulnerability is particularly dangerous in safety-critical applications like automated driving. While adversarial examples and defense strategies are well-researched in the context of image classification, there is comparatively less research focused on semantic segmentation. Recently, we have proposed an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation. We observed that uncertainty, as measured by the entropy of the output distribution, behaves differently on clean versus adversely perturbed images, and we utilize this property to differentiate between the two. In this extended version of our work, we conduct a detailed analysis of uncertainty-based detection of adversarial attacks including a diverse set of adversarial attacks and various state-of-the-art neural networks. Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method, which is lightweight and operates as a post-processing step, i.e., no model modifications or knowledge of the adversarial example generation process are required.
☆ CLIPCleaner: Cleaning Noisy Labels with CLIP
Learning with Noisy labels (LNL) poses a significant challenge for the Machine Learning community. Some of the most widely used approaches that select as clean samples for which the model itself (the in-training model) has high confidence, e.g., `small loss', can suffer from the so called `self-confirmation' bias. This bias arises because the in-training model, is at least partially trained on the noisy labels. Furthermore, in the classification case, an additional challenge arises because some of the label noise is between classes that are visually very similar (`hard noise'). This paper addresses these challenges by proposing a method (\textit{CLIPCleaner}) that leverages CLIP, a powerful Vision-Language (VL) model for constructing a zero-shot classifier for efficient, offline, clean sample selection. This has the advantage that the sample selection is decoupled from the in-training model and that the sample selection is aware of the semantic and visual similarities between the classes due to the way that CLIP is trained. We provide theoretical justifications and empirical evidence to demonstrate the advantages of CLIP for LNL compared to conventional pre-trained models. Compared to current methods that combine iterative sample selection with various techniques, \textit{CLIPCleaner} offers a simple, single-step approach that achieves competitive or superior performance on benchmark datasets. To the best of our knowledge, this is the first time a VL model has been used for sample selection to address the problem of Learning with Noisy Labels (LNL), highlighting their potential in the domain.
comment: Accepted to ACMMM2024
☆ P3P: Pseudo-3D Pre-training for Scaling 3D Masked Autoencoders
3D pre-training is crucial to 3D perception tasks. However, limited by the difficulties in collecting clean 3D data, 3D pre-training consistently faced data scaling challenges. Inspired by semi-supervised learning leveraging limited labeled data and a large amount of unlabeled data, in this work, we propose a novel self-supervised pre-training framework utilizing the real 3D data and the pseudo-3D data lifted from images by a large depth estimation model. Another challenge lies in the efficiency. Previous methods such as Point-BERT and Point-MAE, employ k nearest neighbors to embed 3D tokens, requiring quadratic time complexity. To efficiently pre-train on such a large amount of data, we propose a linear-time-complexity token embedding strategy and a training-efficient 2D reconstruction target. Our method achieves state-of-the-art performance in 3D classification and few-shot learning while maintaining high pre-training and downstream fine-tuning efficiency.
comment: Under review. Pre-print
☆ Boosting Open-Domain Continual Learning via Leveraging Intra-domain Category-aware Prototype
Despite recent progress in enhancing the efficacy of Open-Domain Continual Learning (ODCL) in Vision-Language Models (VLM), failing to (1) correctly identify the Task-ID of a test image and (2) use only the category set corresponding to the Task-ID, while preserving the knowledge related to each domain, cannot address the two primary challenges of ODCL: forgetting old knowledge and maintaining zero-shot capabilities, as well as the confusions caused by category-relatedness between domains. In this paper, we propose a simple yet effective solution: leveraging intra-domain category-aware prototypes for ODCL in CLIP (DPeCLIP), where the prototype is the key to bridging the above two processes. Concretely, we propose a training-free Task-ID discriminator method, by utilizing prototypes as classifiers for identifying Task-IDs. Furthermore, to maintain the knowledge corresponding to each domain, we incorporate intra-domain category-aware prototypes as domain prior prompts into the training process. Extensive experiments conducted on 11 different datasets demonstrate the effectiveness of our approach, achieving 2.37% and 1.14% average improvement in class-incremental and task-incremental settings, respectively.
☆ Weakly Supervised Pretraining and Multi-Annotator Supervised Finetuning for Facial Wrinkle Detection
1. Research question: With the growing interest in skin diseases and skin aesthetics, the ability to predict facial wrinkles is becoming increasingly important. This study aims to evaluate whether a computational model, convolutional neural networks (CNN), can be trained for automated facial wrinkle segmentation. 2. Findings: Our study presents an effective technique for integrating data from multiple annotators and illustrates that transfer learning can enhance performance, resulting in dependable segmentation of facial wrinkles. 3. Meaning: This approach automates intricate and time-consuming tasks of wrinkle analysis with a deep learning framework. It could be used to facilitate skin treatments and diagnostics.
☆ C${^2}$RL: Content and Context Representation Learning for Gloss-free Sign Language Translation and Retrieval
Sign Language Representation Learning (SLRL) is crucial for a range of sign language-related downstream tasks such as Sign Language Translation (SLT) and Sign Language Retrieval (SLRet). Recently, many gloss-based and gloss-free SLRL methods have been proposed, showing promising performance. Among them, the gloss-free approach shows promise for strong scalability without relying on gloss annotations. However, it currently faces suboptimal solutions due to challenges in encoding the intricate, context-sensitive characteristics of sign language videos, mainly struggling to discern essential sign features using a non-monotonic video-text alignment strategy. Therefore, we introduce an innovative pretraining paradigm for gloss-free SLRL, called C${^2}$RL, in this paper. Specifically, rather than merely incorporating a non-monotonic semantic alignment of video and text to learn language-oriented sign features, we emphasize two pivotal aspects of SLRL: Implicit Content Learning (ICL) and Explicit Context Learning (ECL). ICL delves into the content of communication, capturing the nuances, emphasis, timing, and rhythm of the signs. In contrast, ECL focuses on understanding the contextual meaning of signs and converting them into equivalent sentences. Despite its simplicity, extensive experiments confirm that the joint optimization of ICL and ECL results in robust sign language representation and significant performance gains in gloss-free SLT and SLRet tasks. Notably, C${^2}$RL improves the BLEU-4 score by +5.3 on P14T, +10.6 on CSL-daily, +6.2 on OpenASL, and +1.3 on How2Sign. It also boosts the R@1 score by +8.3 on P14T, +14.4 on CSL-daily, and +5.9 on How2Sign. Additionally, we set a new baseline for the OpenASL dataset in the SLRet task.
☆ Caption-Driven Explorations: Aligning Image and Text Embeddings through Human-Inspired Foveated Vision
Understanding human attention is crucial for vision science and AI. While many models exist for free-viewing, less is known about task-driven image exploration. To address this, we introduce CapMIT1003, a dataset with captions and click-contingent image explorations, to study human attention during the captioning task. We also present NevaClip, a zero-shot method for predicting visual scanpaths by combining CLIP models with NeVA algorithms. NevaClip generates fixations to align the representations of foveated visual stimuli and captions. The simulated scanpaths outperform existing human attention models in plausibility for captioning and free-viewing tasks. This research enhances the understanding of human attention and advances scanpath prediction models.
comment: arXiv admin note: substantial text overlap with arXiv:2305.12380
☆ ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
Recently, transformers have captured significant interest in the area of single-image super-resolution tasks, demonstrating substantial gains in performance. Current models heavily depend on the network's extensive ability to extract high-level semantic details from images while overlooking the effective utilization of multi-scale image details and intermediate information within the network. Furthermore, it has been observed that high-frequency areas in images present significant complexity for super-resolution compared to low-frequency areas. This work proposes a transformer-based super-resolution architecture called ML-CrAIST that addresses this gap by utilizing low-high frequency information in multiple scales. Unlike most of the previous work (either spatial or channel), we operate spatial and channel self-attention, which concurrently model pixel interaction from both spatial and channel dimensions, exploiting the inherent correlations across spatial and channel axis. Further, we devise a cross-attention block for super-resolution, which explores the correlations between low and high-frequency information. Quantitative and qualitative assessments indicate that our proposed ML-CrAIST surpasses state-of-the-art super-resolution methods (e.g., 0.15 dB gain @Manga109 $\times$4). Code is available on: https://github.com/Alik033/ML-CrAIST.
☆ Pose-GuideNet: Automatic Scanning Guidance for Fetal Head Ultrasound from Pose Estimation MICCAI2024
3D pose estimation from a 2D cross-sectional view enables healthcare professionals to navigate through the 3D space, and such techniques initiate automatic guidance in many image-guided radiology applications. In this work, we investigate how estimating 3D fetal pose from freehand 2D ultrasound scanning can guide a sonographer to locate a head standard plane. Fetal head pose is estimated by the proposed Pose-GuideNet, a novel 2D/3D registration approach to align freehand 2D ultrasound to a 3D anatomical atlas without the acquisition of 3D ultrasound. To facilitate the 2D to 3D cross-dimensional projection, we exploit the prior knowledge in the atlas to align the standard plane frame in a freehand scan. A semantic-aware contrastive-based approach is further proposed to align the frames that are off standard planes based on their anatomical similarity. In the experiment, we enhance the existing assessment of freehand image localization by comparing the transformation of its estimated pose towards standard plane with the corresponding probe motion, which reflects the actual view change in 3D anatomy. Extensive results on two clinical head biometry tasks show that Pose-GuideNet not only accurately predicts pose but also successfully predicts the direction of the fetal head. Evaluations with probe motions further demonstrate the feasibility of adopting Pose-GuideNet for freehand ultrasound-assisted navigation in a sensor-free environment.
comment: Accepted by MICCAI2024
☆ Data Augmentation of Contrastive Learning is Estimating Positive-incentive Noise
Inspired by the idea of Positive-incentive Noise (Pi-Noise or $\pi$-Noise) that aims at learning the reliable noise beneficial to tasks, we scientifically investigate the connection between contrastive learning and $\pi$-noise in this paper. By converting the contrastive loss to an auxiliary Gaussian distribution to quantitatively measure the difficulty of the specific contrastive model under the information theory framework, we properly define the task entropy, the core concept of $\pi$-noise, of contrastive learning. It is further proved that the predefined data augmentation in the standard contrastive learning paradigm can be regarded as a kind of point estimation of $\pi$-noise. Inspired by the theoretical study, a framework that develops a $\pi$-noise generator to learn the beneficial noise (instead of estimation) as data augmentations for contrast is proposed. The designed framework can be applied to diverse types of data and is also completely compatible with the existing contrastive models. From the visualization, we surprisingly find that the proposed method successfully learns effective augmentations.
☆ DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.
☆ Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement ICME2024
Full-reference image quality assessment (FR-IQA) models generally operate by measuring the visual differences between a degraded image and its reference. However, existing FR-IQA models including both the classical ones (eg, PSNR and SSIM) and deep-learning based measures (eg, LPIPS and DISTS) still exhibit limitations in capturing the full perception characteristics of the human visual system (HVS). In this paper, instead of designing a new FR-IQA measure, we aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating and enhance existing IQA models. In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image. The dependency is captured in a training-free manner by our proposed sliced maximal information coefficient and exhibits surprising generalization in different IQA measures. Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated. The source code is available at https://github.com/KANGX99/SMIC.
comment: 6 pages, 5 figures, accepted by ICME2024
☆ Long-Tail Temporal Action Segmentation with Group-wise Temporal Logit Adjustment ECCV 2024
Procedural activity videos often exhibit a long-tailed action distribution due to varying action frequencies and durations. However, state-of-the-art temporal action segmentation methods overlook the long tail and fail to recognize tail actions. Existing long-tail methods make class-independent assumptions and struggle to identify tail classes when applied to temporal segmentation frameworks. This work proposes a novel group-wise temporal logit adjustment~(G-TLA) framework that combines a group-wise softmax formulation while leveraging activity information and action ordering for logit adjustment. The proposed framework significantly improves in segmenting tail actions without any performance loss on head actions.
comment: Accepted by ECCV 2024
☆ Attribution Analysis Meets Model Editing: Advancing Knowledge Correction in Vision Language Models with VisEdit
Model editing aims to correct outdated or erroneous knowledge in large models without costly retraining. Recent research discovered that the mid-layer representation of the subject's final token in a prompt has a strong influence on factual predictions, and developed Large Language Model (LLM) editing techniques based on this observation. However, for Vision-LLMs (VLLMs), how visual representations impact the predictions from a decoder-only language model remains largely unexplored. To the best of our knowledge, model editing for VLLMs has not been extensively studied in the literature. In this work, we employ the contribution allocation and noise perturbation methods to measure the contributions of visual representations for token predictions. Our attribution analysis shows that visual representations in mid-to-later layers that are highly relevant to the prompt contribute significantly to predictions. Based on these insights, we propose VisEdit, a novel model editor for VLLMs that effectively corrects knowledge by editing intermediate visual representations in regions important to the edit prompt. We evaluated VisEdit using multiple VLLM backbones and public VLLM editing benchmark datasets. The results show the superiority of VisEdit over the strong baselines adapted from existing state-of-the-art editors for LLMs.
☆ Harnessing Multi-resolution and Multi-scale Attention for Underwater Image Restoration
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration (UIR) methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel $1\times1$ convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific $l_1$ loss ($cl_1$) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as $29.477$ dB PSNR ($1.92\%$ improvement) and $0.851$ SSIM ($2.87\%$ improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
☆ LCE: A Framework for Explainability of DNNs for Ultrasound Image Based on Concept Discovery
Explaining the decisions of Deep Neural Networks (DNNs) for medical images has become increasingly important. Existing attribution methods have difficulty explaining the meaning of pixels while existing concept-based methods are limited by additional annotations or specific model structures that are difficult to apply to ultrasound images. In this paper, we propose the Lesion Concept Explainer (LCE) framework, which combines attribution methods with concept-based methods. We introduce the Segment Anything Model (SAM), fine-tuned on a large number of medical images, for concept discovery to enable a meaningful explanation of ultrasound image DNNs. The proposed framework is evaluated in terms of both faithfulness and understandability. We point out deficiencies in the popular faithfulness evaluation metrics and propose a new evaluation metric. Our evaluation of public and private breast ultrasound datasets (BUSI and FG-US-B) shows that LCE performs well compared to commonly-used explainability methods. Finally, we also validate that LCE can consistently provide reliable explanations for more meaningful fine-grained diagnostic tasks in breast ultrasound.
☆ Preoperative Rotator Cuff Tear Prediction from Shoulder Radiographs using a Convolutional Block Attention Module-Integrated Neural Network
Research question: We test whether a plane shoulder radiograph can be used together with deep learning methods to identify patients with rotator cuff tears as opposed to using an MRI in standard of care. Findings: By integrating convolutional block attention modules into a deep neural network, our model demonstrates high accuracy in detecting patients with rotator cuff tears, achieving an average AUC of 0.889 and an accuracy of 0.831. Meaning: This study validates the efficacy of our deep learning model to accurately detect rotation cuff tears from radiographs, offering a viable pre-assessment or alternative to more expensive imaging techniques such as MRI.
☆ SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images
Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks. However, its performance significantly deteriorates when directly applied to medical domain, due to the remarkable differences between natural images and medical images. Some researchers have attempted to train SAM on large scale medical datasets. However, poor zero-shot performance is observed from the experimental results. In this context, inspired by the superior performance of U-Net-like models in medical image segmentation, we propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions. To be specific, we parallel a convolutional branch in the image encoder, which is trained independently with the vision Transformer branch frozen. Additionally, we employ multi-scale fusion in the mask decoder, to facilitate accurate segmentation of objects with different scales. We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images. Extensive experiments are conducted to evaluate the performance of the model, and state-of-the-art result is achieved, with a dice similarity coefficient score of 0.883 on SA-Med2D-16M dataset. Specifically, in zero-shot segmentation experiments, our model not only significantly outperforms previous large medical SAM models across all modalities, but also substantially mitigates the performance degradation seen on unseen modalities. It should be highlighted that SAM-UNet is an efficient and extensible foundation model, which can be further fine-tuned for other downstream tasks in medical community. The code is available at https://github.com/Hhankyangg/sam-unet.
☆ New spectral imaging biomarkers for sepsis and mortality in intensive care
With sepsis remaining a leading cause of mortality, early identification of septic patients and those at high risk of death is a challenge of high socioeconomic importance. The driving hypothesis of this study was that hyperspectral imaging (HSI) could provide novel biomarkers for sepsis diagnosis and treatment management due to its potential to monitor microcirculatory alterations. We conducted a comprehensive study involving HSI data of the palm and fingers from more than 480 patients on the day of their intensive care unit (ICU) admission. The findings demonstrate that HSI measurements can predict sepsis with an area under the receiver operating characteristic curve (AUROC) of 0.80 (95 % confidence interval (CI) [0.76; 0.84]) and mortality with an AUROC of 0.72 (95 % CI [0.65; 0.79]). The predictive performance improves substantially when additional clinical data is incorporated, leading to an AUROC of up to 0.94 (95 % CI [0.92; 0.96]) for sepsis and 0.84 (95 % CI [0.78; 0.89]) for mortality. We conclude that HSI presents novel imaging biomarkers for the rapid, non-invasive prediction of sepsis and mortality, suggesting its potential as an important modality for guiding diagnosis and treatment.
comment: Markus A. Weigand, Lena Maier-Hein and Maximilian Dietrich contributed equally
☆ Docling Technical Report
This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.
comment: arXiv admin note: substantial text overlap with arXiv:2206.01062
☆ 3D-Aware Instance Segmentation and Tracking in Egocentric Videos
Egocentric videos present unique challenges for 3D scene understanding due to rapid camera motion, frequent object occlusions, and limited object visibility. This paper introduces a novel approach to instance segmentation and tracking in first-person video that leverages 3D awareness to overcome these obstacles. Our method integrates scene geometry, 3D object centroid tracking, and instance segmentation to create a robust framework for analyzing dynamic egocentric scenes. By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches. Extensive evaluations on the challenging EPIC Fields dataset demonstrate significant improvements across a range of tracking and segmentation consistency metrics. Specifically, our method outperforms the next best performing approach by $7$ points in Association Accuracy (AssA) and $4.5$ points in IDF1 score, while reducing the number of ID switches by $73\%$ to $80\%$ across various object categories. Leveraging our tracked instance segmentations, we showcase downstream applications in 3D object reconstruction and amodal video object segmentation in these egocentric settings.
☆ OccMamba: Semantic Occupancy Prediction with State Space Models
Training deep learning models for semantic occupancy prediction is challenging due to factors such as a large number of occupancy cells, severe occlusion, limited visual cues, complicated driving scenarios, etc. Recent methods often adopt transformer-based architectures given their strong capability in learning input-conditioned weights and long-range relationships. However, transformer-based networks are notorious for their quadratic computation complexity, seriously undermining their efficacy and deployment in semantic occupancy prediction. Inspired by the global modeling and linear computation complexity of the Mamba architecture, we present the first Mamba-based network for semantic occupancy prediction, termed OccMamba. However, directly applying the Mamba architecture to the occupancy prediction task yields unsatisfactory performance due to the inherent domain gap between the linguistic and 3D domains. To relieve this problem, we present a simple yet effective 3D-to-1D reordering operation, i.e., height-prioritized 2D Hilbert expansion. It can maximally retain the spatial structure of point clouds as well as facilitate the processing of Mamba blocks. Our OccMamba achieves state-of-the-art performance on three prevalent occupancy prediction benchmarks, including OpenOccupancy, SemanticKITTI and SemanticPOSS. Notably, on OpenOccupancy, our OccMamba outperforms the previous state-of-the-art Co-Occ by 3.1% IoU and 3.2% mIoU, respectively. Codes will be released upon publication.
comment: 9 pages, 4 figures
☆ Segment-Anything Models Achieve Zero-shot Robustness in Autonomous Driving
Semantic segmentation is a significant perception task in autonomous driving. It suffers from the risks of adversarial examples. In the past few years, deep learning has gradually transitioned from convolutional neural network (CNN) models with a relatively small number of parameters to foundation models with a huge number of parameters. The segment-anything model (SAM) is a generalized image segmentation framework that is capable of handling various types of images and is able to recognize and segment arbitrary objects in an image without the need to train on a specific object. It is a unified model that can handle diverse downstream tasks, including semantic segmentation, object detection, and tracking. In the task of semantic segmentation for autonomous driving, it is significant to study the zero-shot adversarial robustness of SAM. Therefore, we deliver a systematic empirical study on the robustness of SAM without additional training. Based on the experimental results, the zero-shot adversarial robustness of the SAM under the black-box corruptions and white-box adversarial attacks is acceptable, even without the need for additional training. The finding of this study is insightful in that the gigantic model parameters and huge amounts of training data lead to the phenomenon of emergence, which builds a guarantee of adversarial robustness. SAM is a vision foundation model that can be regarded as an early prototype of an artificial general intelligence (AGI) pipeline. In such a pipeline, a unified model can handle diverse tasks. Therefore, this research not only inspects the impact of vision foundation models on safe autonomous driving but also provides a perspective on developing trustworthy AGI. The code is available at: https://github.com/momo1986/robust_sam_iv.
comment: Accepted to IAVVC 2024
☆ SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models
Computer-assisted surgery (CAS) systems are designed to assist surgeons during procedures, thereby reducing complications and enhancing patient care. Training machine learning models for these systems requires a large corpus of annotated datasets, which is challenging to obtain in the surgical domain due to patient privacy concerns and the significant labeling effort required from doctors. Previous methods have explored unpaired image translation using generative models to create realistic surgical images from simulations. However, these approaches have struggled to produce high-quality, diverse surgical images. In this work, we introduce \emph{SurgicaL-CD}, a consistency-distilled diffusion method to generate realistic surgical images with only a few sampling steps without paired data. We evaluate our approach on three datasets, assessing the generated images in terms of quality and utility as downstream training datasets. Our results demonstrate that our method outperforms GANs and diffusion-based approaches. Our code is available at \url{https://gitlab.com/nct_tso_public/gan2diffusion}.
☆ Hear Your Face: Face-based voice conversion with F0 estimation
This paper delves into the emerging field of face-based voice conversion, leveraging the unique relationship between an individual's facial features and their vocal characteristics. We present a novel face-based voice conversion framework that particularly utilizes the average fundamental frequency of the target speaker, derived solely from their facial images. Through extensive analysis, our framework demonstrates superior speech generation quality and the ability to align facial features with voice characteristics, including tracking of the target speaker's fundamental frequency.
comment: Interspeech 2024
☆ Latent Diffusion for Guided Document Table Generation ICDAR 2024
Obtaining annotated table structure data for complex tables is a challenging task due to the inherent diversity and complexity of real-world document layouts. The scarcity of publicly available datasets with comprehensive annotations for intricate table structures hinders the development and evaluation of models designed for such scenarios. This research paper introduces a novel approach for generating annotated images for table structure by leveraging conditioned mask images of rows and columns through the application of latent diffusion models. The proposed method aims to enhance the quality of synthetic data used for training object detection models. Specifically, the study employs a conditioning mechanism to guide the generation of complex document table images, ensuring a realistic representation of table layouts. To evaluate the effectiveness of the generated data, we employ the popular YOLOv5 object detection model for training. The generated table images serve as valuable training samples, enriching the dataset with diverse table structures. The model is subsequently tested on the challenging pubtables-1m testset, a benchmark for table structure recognition in complex document layouts. Experimental results demonstrate that the introduced approach significantly improves the quality of synthetic data for training, leading to YOLOv5 models with enhanced performance. The mean Average Precision (mAP) values obtained on the pubtables-1m testset showcase results closely aligned with state-of-the-art methods. Furthermore, low FID results obtained on the synthetic data further validate the efficacy of the proposed methodology in generating annotated images for table structure.
comment: Accepted in ICDAR 2024
Anim-Director: A Large Multimodal Model Powered Agent for Controllable Animation Video Generation SIGGRAPH
Traditional animation generation methods depend on training generative models with human-labelled data, entailing a sophisticated multi-stage pipeline that demands substantial human effort and incurs high training costs. Due to limited prompting plans, these methods typically produce brief, information-poor, and context-incoherent animations. To overcome these limitations and automate the animation process, we pioneer the introduction of large multimodal models (LMMs) as the core processor to build an autonomous animation-making agent, named Anim-Director. This agent mainly harnesses the advanced understanding and reasoning capabilities of LMMs and generative AI tools to create animated videos from concise narratives or simple instructions. Specifically, it operates in three main stages: Firstly, the Anim-Director generates a coherent storyline from user inputs, followed by a detailed director's script that encompasses settings of character profiles and interior/exterior descriptions, and context-coherent scene descriptions that include appearing characters, interiors or exteriors, and scene events. Secondly, we employ LMMs with the image generation tool to produce visual images of settings and scenes. These images are designed to maintain visual consistency across different scenes using a visual-language prompting method that combines scene descriptions and images of the appearing character and setting. Thirdly, scene images serve as the foundation for producing animated videos, with LMMs generating prompts to guide this process. The whole process is notably autonomous without manual intervention, as the LMMs interact seamlessly with generative tools to generate prompts, evaluate visual quality, and select the best one to optimize the final output.
comment: Accepted by SIGGRAPH Asia 2024, Project and Codes: https://github.com/HITsz-TMG/Anim-Director
☆ Cross-composition Feature Disentanglement for Compositional Zero-shot Learning
Disentanglement of visual features of primitives (i.e., attributes and objects) has shown exceptional results in Compositional Zero-shot Learning (CZSL). However, due to the feature divergence of an attribute (resp. object) when combined with different objects (resp. attributes), it is challenging to learn disentangled primitive features that are general across different compositions. To this end, we propose the solution of cross-composition feature disentanglement, which takes multiple primitive-sharing compositions as inputs and constrains the disentangled primitive features to be general across these compositions. More specifically, we leverage a compositional graph to define the overall primitive-sharing relationships between compositions, and build a task-specific architecture upon the recently successful large pre-trained vision-language model (VLM) CLIP, with dual cross-composition disentangling adapters (called L-Adapter and V-Adapter) inserted into CLIP's frozen text and image encoders, respectively. Evaluation on three popular CZSL benchmarks shows that our proposed solution significantly improves the performance of CZSL, and its components have been verified by solid ablation studies.
comment: work in progress
☆ Event Stream based Human Action Recognition: A High-Definition Benchmark Dataset and Algorithms
Human Action Recognition (HAR) stands as a pivotal research domain in both computer vision and artificial intelligence, with RGB cameras dominating as the preferred tool for investigation and innovation in this field. However, in real-world applications, RGB cameras encounter numerous challenges, including light conditions, fast motion, and privacy concerns. Consequently, bio-inspired event cameras have garnered increasing attention due to their advantages of low energy consumption, high dynamic range, etc. Nevertheless, most existing event-based HAR datasets are low resolution ($346 \times 260$). In this paper, we propose a large-scale, high-definition ($1280 \times 800$) human action recognition dataset based on the CeleX-V event camera, termed CeleX-HAR. It encompasses 150 commonly occurring action categories, comprising a total of 124,625 video sequences. Various factors such as multi-view, illumination, action speed, and occlusion are considered when recording these data. To build a more comprehensive benchmark dataset, we report over 20 mainstream HAR models for future works to compare. In addition, we also propose a novel Mamba vision backbone network for event stream based HAR, termed EVMamba, which equips the spatial plane multi-directional scanning and novel voxel temporal scanning mechanism. By encoding and mining the spatio-temporal information of event streams, our EVMamba has achieved favorable results across multiple datasets. Both the dataset and source code will be released on \url{https://github.com/Event-AHU/CeleX-HAR}
comment: In Peer Review
☆ A Unified Framework for Iris Anti-Spoofing: Introducing IrisGeneral Dataset and Masked-MoE Method
Iris recognition is widely used in high-security scenarios due to its stability and distinctiveness. However, the acquisition of iris images typically requires near-infrared illumination and near-infrared band filters, leading to significant and consistent differences in imaging across devices. This underscores the importance of developing cross-domain capabilities in iris anti-spoofing methods. Despite this need, there is no dataset available that comprehensively evaluates the generalization ability of the iris anti-spoofing task. To address this gap, we propose the IrisGeneral dataset, which includes 10 subsets, belonging to 7 databases, published by 4 institutions, collected with 6 types of devices. IrisGeneral is designed with three protocols, aimed at evaluating average performance, cross-racial generalization, and cross-device generalization of iris anti-spoofing models. To tackle the challenge of integrating multiple sub-datasets in IrisGeneral, we employ multiple parameter sets to learn from the various subsets. Specifically, we utilize the Mixture of Experts (MoE) to fit complex data distributions using multiple sub-neural networks. To further enhance the generalization capabilities, we introduce a novel method Masked-MoE (MMoE). It randomly masks a portion of tokens for some experts and requires their outputs to be similar to the unmasked experts, which improves the generalization ability and effectively mitigates the overfitting issue produced by MoE. We selected ResNet50, VIT-B/16, CLIP, and FLIP as representative models and benchmarked them on the IrisGeneral dataset. Experimental results demonstrate that our proposed MMoE with CLIP achieves the best performance on IrisGeneral.
☆ Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction
Prostate cancer is the second most common cancer in males worldwide, and mpMRI is commonly used for diagnosis. However, interpreting mpMRI is challenging and requires expertise from radiologists. This highlights the urgent need for automated grading in mpMRI. Existing studies lack integration of clinical prior information and suffer from uneven training sample distribution due to prevalence. Therefore, we propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI. Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training. Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem. This method adjusts the training dynamically based on accuracy and recall in the validation set, resulting in high accuracy and recall simultaneously in the testing set.Thirdly, we design an Enhanced Cascade Prostate Cancer Classifier that classifies prostate cancer into different levels in an interpretable way, which refines the classification results and helps with clinical intervention. Our method is validated through experiments on the PI-CAI dataset and outperforms other methods with a more balanced result in both accuracy and recall rate.
☆ RealCustom++: Representing Images as Real-Word for Real-Time Customization
Text-to-image customization, which takes given texts and images depicting given subjects as inputs, aims to synthesize new images that align with both text semantics and subject appearance. This task provides precise control over details that text alone cannot capture and is fundamental for various real-world applications, garnering significant interest from academia and industry. Existing works follow the pseudo-word paradigm, which involves representing given subjects as pseudo-words and combining them with given texts to collectively guide the generation. However, the inherent conflict and entanglement between the pseudo-words and texts result in a dual-optimum paradox, where subject similarity and text controllability cannot be optimal simultaneously. We propose a novel real-words paradigm termed RealCustom++ that instead represents subjects as non-conflict real words, thereby disentangling subject similarity from text controllability and allowing both to be optimized simultaneously. Specifically, RealCustom++ introduces a novel "train-inference" decoupled framework: (1) During training, RealCustom++ learns the alignment between vision conditions and all real words in the text, ensuring high subject-similarity generation in open domains. This is achieved by the cross-layer cross-scale projector to robustly and finely extract subject features, and a curriculum training recipe that adapts the generated subject to diverse poses and sizes. (2) During inference, leveraging the learned general alignment, an adaptive mask guidance is proposed to only customize the generation of the specific target real word, keeping other subject-irrelevant regions uncontaminated to ensure high text-controllability in real-time.
comment: 23 pages
☆ R2GenCSR: Retrieving Context Samples for Large Language Model based X-ray Medical Report Generation
Inspired by the tremendous success of Large Language Models (LLMs), existing X-ray medical report generation methods attempt to leverage large models to achieve better performance. They usually adopt a Transformer to extract the visual features of a given X-ray image, and then, feed them into the LLM for text generation. How to extract more effective information for the LLMs to help them improve final results is an urgent problem that needs to be solved. Additionally, the use of visual Transformer models also brings high computational complexity. To address these issues, this paper proposes a novel context-guided efficient X-ray medical report generation framework. Specifically, we introduce the Mamba as the vision backbone with linear complexity, and the performance obtained is comparable to that of the strong Transformer model. More importantly, we perform context retrieval from the training set for samples within each mini-batch during the training phase, utilizing both positively and negatively related samples to enhance feature representation and discriminative learning. Subsequently, we feed the vision tokens, context information, and prompt statements to invoke the LLM for generating high-quality medical reports. Extensive experiments on three X-ray report generation datasets (i.e., IU-Xray, MIMIC-CXR, CheXpert Plus) fully validated the effectiveness of our proposed model. The source code of this work will be released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
comment: In Peer Review
☆ TraDiffusion: Trajectory-Based Training-Free Image Generation
In this work, we propose a training-free, trajectory-based controllable T2I approach, termed TraDiffusion. This novel method allows users to effortlessly guide image generation via mouse trajectories. To achieve precise control, we design a distance awareness energy function to effectively guide latent variables, ensuring that the focus of generation is within the areas defined by the trajectory. The energy function encompasses a control function to draw the generation closer to the specified trajectory and a movement function to diminish activity in areas distant from the trajectory. Through extensive experiments and qualitative assessments on the COCO dataset, the results reveal that TraDiffusion facilitates simpler, more natural image control. Moreover, it showcases the ability to manipulate salient regions, attributes, and relationships within the generated images, alongside visual input based on arbitrary or enhanced trajectories.
comment: The code: https://github.com/och-mac/TraDiffusion
☆ Coarse-Fine View Attention Alignment-Based GAN for CT Reconstruction from Biplanar X-Rays
For surgical planning and intra-operation imaging, CT reconstruction using X-ray images can potentially be an important alternative when CT imaging is not available or not feasible. In this paper, we aim to use biplanar X-rays to reconstruct a 3D CT image, because biplanar X-rays convey richer information than single-view X-rays and are more commonly used by surgeons. Different from previous studies in which the two X-ray views were treated indifferently when fusing the cross-view data, we propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the orthogonal biplanar views. This method consists of a view attention alignment sub-module and a fine-distillation sub-module that are designed to work together to highlight the unique or complementary information from each of the views. Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
☆ Mutually-Aware Feature Learning for Few-Shot Object Counting
Few-shot object counting has garnered significant attention for its practicality as it aims to count target objects in a query image based on given exemplars without the need for additional training. However, there is a shortcoming in the prevailing extract-and-match approach: query and exemplar features lack interaction during feature extraction since they are extracted unaware of each other and later correlated based on similarity. This can lead to insufficient target awareness of the extracted features, resulting in target confusion in precisely identifying the actual target when multiple class objects coexist. To address this limitation, we propose a novel framework, Mutually-Aware FEAture learning(MAFEA), which encodes query and exemplar features mutually aware of each other from the outset. By encouraging interaction between query and exemplar features throughout the entire pipeline, we can obtain target-aware features that are robust to a multi-category scenario. Furthermore, we introduce a background token to effectively associate the target region of query with exemplars and decouple its background region from them. Our extensive experiments demonstrate that our model reaches a new state-of-the-art performance on the two challenging benchmarks, FSCD-LVIS and FSC-147, with a remarkably reduced degree of the target confusion problem.
comment: Submitted to Pattern Recognition
☆ Diff2CT: Diffusion Learning to Reconstruct Spine CT from Biplanar X-Rays
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement. In scenarios where CT imaging is not an option, reconstructing CT scans from X-rays can offer a viable alternative. In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays. Distinct from previous research that relies on conventional image generation techniques, our approach leverages a conditional diffusion process to tackle the task of reconstruction. More precisely, we employ a diffusion-based probabilistic model trained to produce 3D CT images based on orthogonal biplanar X-rays. To improve the structural integrity of the reconstructed images, we incorporate a novel projection loss function. Experimental results validate that our proposed method surpasses existing state-of-the-art benchmarks in both visual image quality and multiple evaluative metrics. Specifically, our technique achieves a higher Structural Similarity Index (SSIM) of 0.83, a relative increase of 10\%, and a lower Fr\'echet Inception Distance (FID) of 83.43, which represents a relative decrease of 25\%.
☆ Pedestrian Attribute Recognition: A New Benchmark Dataset and A Large Language Model Augmented Framework SP60
Pedestrian Attribute Recognition (PAR) is one of the indispensable tasks in human-centered research. However, existing datasets neglect different domains (e.g., environments, times, populations, and data sources), only conducting simple random splits, and the performance of these datasets has already approached saturation. In the past five years, no large-scale dataset has been opened to the public. To address this issue, this paper proposes a new large-scale, cross-domain pedestrian attribute recognition dataset to fill the data gap, termed MSP60K. It consists of 60,122 images and 57 attribute annotations across eight scenarios. Synthetic degradation is also conducted to further narrow the gap between the dataset and real-world challenging scenarios. To establish a more rigorous benchmark, we evaluate 17 representative PAR models under both random and cross-domain split protocols on our dataset. Additionally, we propose an innovative Large Language Model (LLM) augmented PAR framework, named LLM-PAR. This framework processes pedestrian images through a Vision Transformer (ViT) backbone to extract features and introduces a multi-embedding query Transformer to learn partial-aware features for attribute classification. Significantly, we enhance this framework with LLM for ensemble learning and visual feature augmentation. Comprehensive experiments across multiple PAR benchmark datasets have thoroughly validated the efficacy of our proposed framework. The dataset and source code accompanying this paper will be made publicly available at \url{https://github.com/Event-AHU/OpenPAR}.
comment: MSP60K PAR Benchmark Dataset, LLM based PAR model, In Peer Review
Dataset Distillation for Histopathology Image Classification
Deep neural networks (DNNs) have exhibited remarkable success in the field of histopathology image analysis. On the other hand, the contemporary trend of employing large models and extensive datasets has underscored the significance of dataset distillation, which involves compressing large-scale datasets into a condensed set of synthetic samples, offering distinct advantages in improving training efficiency and streamlining downstream applications. In this work, we introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD), which integrates stain normalisation and model augmentation into the distillation progress. Such integration can substantially enhance the compatibility with histopathology images that are often characterised by high colour heterogeneity. We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks. The experimental results, carried out on three publicly available WSI datasets, including Camelyon16, TCGA-IDH, and UniToPath, demonstrate that the proposed Histo-DD can generate more informative synthetic patches than previous coreset selection and patch sampling methods. Moreover, the synthetic samples can preserve discriminative information, substantially reduce training efforts, and exhibit architecture-agnostic properties. These advantages indicate that synthetic samples can serve as an alternative to large-scale datasets.
☆ MePT: Multi-Representation Guided Prompt Tuning for Vision-Language Model
Recent advancements in pre-trained Vision-Language Models (VLMs) have highlighted the significant potential of prompt tuning for adapting these models to a wide range of downstream tasks. However, existing prompt tuning methods typically map an image to a single representation, limiting the model's ability to capture the diverse ways an image can be described. To address this limitation, we investigate the impact of visual prompts on the model's generalization capability and introduce a novel method termed Multi-Representation Guided Prompt Tuning (MePT). Specifically, MePT employs a three-branch framework that focuses on diverse salient regions, uncovering the inherent knowledge within images which is crucial for robust generalization. Further, we employ efficient self-ensemble techniques to integrate these versatile image representations, allowing MePT to learn all conditional, marginal, and fine-grained distributions effectively. We validate the effectiveness of MePT through extensive experiments, demonstrating significant improvements on both base-to-novel class prediction and domain generalization tasks.
☆ Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering ECCV 2024
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
comment: ECCV 2024, Project page: https://research.nvidia.com/labs/toronto-ai/DiPIR/
☆ TESL-Net: A Transformer-Enhanced CNN for Accurate Skin Lesion Segmentation
Early detection of skin cancer relies on precise segmentation of dermoscopic images of skin lesions. However, this task is challenging due to the irregular shape of the lesion, the lack of sharp borders, and the presence of artefacts such as marker colours and hair follicles. Recent methods for melanoma segmentation are U-Nets and fully connected networks (FCNs). As the depth of these neural network models increases, they can face issues like the vanishing gradient problem and parameter redundancy, potentially leading to a decrease in the Jaccard index of the segmentation model. In this study, we introduced a novel network named TESL-Net for the segmentation of skin lesions. The proposed TESL-Net involves a hybrid network that combines the local features of a CNN encoder-decoder architecture with long-range and temporal dependencies using bi-convolutional long-short-term memory (Bi-ConvLSTM) networks and a Swin transformer. This enables the model to account for the uncertainty of segmentation over time and capture contextual channel relationships in the data. We evaluated the efficacy of TESL-Net in three commonly used datasets (ISIC 2016, ISIC 2017, and ISIC 2018) for the segmentation of skin lesions. The proposed TESL-Net achieves state-of-the-art performance, as evidenced by a significantly elevated Jaccard index demonstrated by empirical results.
☆ Image-based Freeform Handwriting Authentication with Energy-oriented Self-Supervised Learning
Freeform handwriting authentication verifies a person's identity from their writing style and habits in messy handwriting data. This technique has gained widespread attention in recent years as a valuable tool for various fields, e.g., fraud prevention and cultural heritage protection. However, it still remains a challenging task in reality due to three reasons: (i) severe damage, (ii) complex high-dimensional features, and (iii) lack of supervision. To address these issues, we propose SherlockNet, an energy-oriented two-branch contrastive self-supervised learning framework for robust and fast freeform handwriting authentication. It consists of four stages: (i) pre-processing: converting manuscripts into energy distributions using a novel plug-and-play energy-oriented operator to eliminate the influence of noise; (ii) generalized pre-training: learning general representation through two-branch momentum-based adaptive contrastive learning with the energy distributions, which handles the high-dimensional features and spatial dependencies of handwriting; (iii) personalized fine-tuning: calibrating the learned knowledge using a small amount of labeled data from downstream tasks; and (iv) practical application: identifying individual handwriting from scrambled, missing, or forged data efficiently and conveniently. Considering the practicality, we construct EN-HA, a novel dataset that simulates data forgery and severe damage in real applications. Finally, we conduct extensive experiments on six benchmark datasets including our EN-HA, and the results prove the robustness and efficiency of SherlockNet.
comment: Accepted by TMM
☆ Implicit Grid Convolution for Multi-Scale Image Super-Resolution
Recently, Super-Resolution (SR) achieved significant performance improvement by employing neural networks. Most SR methods conventionally train a single model for each targeted scale, which increases redundancy in training and deployment in proportion to the number of scales targeted. This paper challenges this conventional fixed-scale approach. Our preliminary analysis reveals that, surprisingly, encoders trained at different scales extract similar features from images. Furthermore, the commonly used scale-specific upsampler, Sub-Pixel Convolution (SPConv), exhibits significant inter-scale correlations. Based on these observations, we propose a framework for training multiple integer scales simultaneously with a single model. We use a single encoder to extract features and introduce a novel upsampler, Implicit Grid Convolution~(IGConv), which integrates SPConv at all scales within a single module to predict multiple scales. Our extensive experiments demonstrate that training multiple scales with a single model reduces the training budget and stored parameters by one-third while achieving equivalent inference latency and comparable performance. Furthermore, we propose IGConv$^{+}$, which addresses spectral bias and input-independent upsampling and uses ensemble prediction to improve performance. As a result, SRFormer-IGConv$^{+}$ achieves a remarkable 0.25dB improvement in PSNR at Urban100$\times$4 while reducing the training budget, stored parameters, and inference cost compared to the existing SRFormer.
☆ SG-GS: Photo-realistic Animatable Human Avatars with Semantically-Guided Gaussian Splatting
Reconstructing photo-realistic animatable human avatars from monocular videos remains challenging in computer vision and graphics. Recently, methods using 3D Gaussians to represent the human body have emerged, offering faster optimization and real-time rendering. However, due to ignoring the crucial role of human body semantic information which represents the intrinsic structure and connections within the human body, they fail to achieve fine-detail reconstruction of dynamic human avatars. To address this issue, we propose SG-GS, which uses semantics-embedded 3D Gaussians, skeleton-driven rigid deformation, and non-rigid cloth dynamics deformation to create photo-realistic animatable human avatars from monocular videos. We then design a Semantic Human-Body Annotator (SHA) which utilizes SMPL's semantic prior for efficient body part semantic labeling. The generated labels are used to guide the optimization of Gaussian semantic attributes. To address the limited receptive field of point-level MLPs for local features, we also propose a 3D network that integrates geometric and semantic associations for human avatar deformation. We further implement three key strategies to enhance the semantic accuracy of 3D Gaussians and rendering quality: semantic projection with 2D regularization, semantic-guided density regularization and semantic-aware regularization with neighborhood consistency. Extensive experiments demonstrate that SG-GS achieves state-of-the-art geometry and appearance reconstruction performance.
comment: 12 pages, 5 figures
☆ ExpoMamba: Exploiting Frequency SSM Blocks for Efficient and Effective Image Enhancement
Low-light image enhancement remains a challenging task in computer vision, with existing state-of-the-art models often limited by hardware constraints and computational inefficiencies, particularly in handling high-resolution images. Recent foundation models, such as transformers and diffusion models, despite their efficacy in various domains, are limited in use on edge devices due to their computational complexity and slow inference times. We introduce ExpoMamba, a novel architecture that integrates components of the frequency state space within a modified U-Net, offering a blend of efficiency and effectiveness. This model is specifically optimized to address mixed exposure challenges, a common issue in low-light image enhancement, while ensuring computational efficiency. Our experiments demonstrate that ExpoMamba enhances low-light images up to 2-3x faster than traditional models with an inference time of 36.6 ms and achieves a PSNR improvement of approximately 15-20% over competing models, making it highly suitable for real-time image processing applications.
☆ C2P-CLIP: Injecting Category Common Prompt in CLIP to Enhance Generalization in Deepfake Detection
This work focuses on AIGC detection to develop universal detectors capable of identifying various types of forgery images. Recent studies have found large pre-trained models, such as CLIP, are effective for generalizable deepfake detection along with linear classifiers. However, two critical issues remain unresolved: 1) understanding why CLIP features are effective on deepfake detection through a linear classifier; and 2) exploring the detection potential of CLIP. In this study, we delve into the underlying mechanisms of CLIP's detection capabilities by decoding its detection features into text and performing word frequency analysis. Our finding indicates that CLIP detects deepfakes by recognizing similar concepts (Fig. \ref{fig:fig1} a). Building on this insight, we introduce Category Common Prompt CLIP, called C2P-CLIP, which integrates the category common prompt into the text encoder to inject category-related concepts into the image encoder, thereby enhancing detection performance (Fig. \ref{fig:fig1} b). Our method achieves a 12.41\% improvement in detection accuracy compared to the original CLIP, without introducing additional parameters during testing. Comprehensive experiments conducted on two widely-used datasets, encompassing 20 generation models, validate the efficacy of the proposed method, demonstrating state-of-the-art performance. The code is available at \url{https://github.com/chuangchuangtan/C2P-CLIP-DeepfakeDetection}
comment: 10 pages, 5 figures
☆ Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation
Text-to-video generation has been dominated by end-to-end diffusion-based or autoregressive models. On one hand, those novel models provide plausible versatility, but they are criticized for physical correctness, shading and illumination, camera motion, and temporal consistency. On the other hand, film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos and animations address the aforementioned shortcomings, but it is extremely tedious and requires tight collaboration between movie makers and 3D rendering experts. In this paper, we introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a natural language description of a video, multiple VLM agents auto-direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video that best aligns with the given description. Based on film making inspiration and augmented with Blender-based movie making knowledge, the Director agent decomposes the input text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on customized function composing and API calling. Then, the Reviewer agent, augmented with knowledge of video reviewing, character motion coordinates, and intermediate screenshots uses its compositional reasoning ability to provide feedback to the Programmer agent. The Programmer agent iteratively improves the scripts to yield the best overall video outcome. Our generated videos show better quality than commercial video generation models in 5 metrics on video quality and instruction-following performance. Moreover, our framework outperforms other approaches in a comprehensive user study on quality, consistency, and rationality.
☆ The Brittleness of AI-Generated Image Watermarking Techniques: Examining Their Robustness Against Visual Paraphrasing Attacks
The rapid advancement of text-to-image generation systems, exemplified by models like Stable Diffusion, Midjourney, Imagen, and DALL-E, has heightened concerns about their potential misuse. In response, companies like Meta and Google have intensified their efforts to implement watermarking techniques on AI-generated images to curb the circulation of potentially misleading visuals. However, in this paper, we argue that current image watermarking methods are fragile and susceptible to being circumvented through visual paraphrase attacks. The proposed visual paraphraser operates in two steps. First, it generates a caption for the given image using KOSMOS-2, one of the latest state-of-the-art image captioning systems. Second, it passes both the original image and the generated caption to an image-to-image diffusion system. During the denoising step of the diffusion pipeline, the system generates a visually similar image that is guided by the text caption. The resulting image is a visual paraphrase and is free of any watermarks. Our empirical findings demonstrate that visual paraphrase attacks can effectively remove watermarks from images. This paper provides a critical assessment, empirically revealing the vulnerability of existing watermarking techniques to visual paraphrase attacks. While we do not propose solutions to this issue, this paper serves as a call to action for the scientific community to prioritize the development of more robust watermarking techniques. Our first-of-its-kind visual paraphrase dataset and accompanying code are publicly available.
comment: 23 pages and 10 figures
☆ Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing
INTRODUCTION: Mild cognitive impairment (MCI) is characterized by a decline in cognitive functions beyond typical age and education-related expectations. Since, MCI has been linked to reduced social interactions and increased aimless movements, we aimed to automate the capture of these behaviors to enhance longitudinal monitoring. METHODS: Using a privacy-preserving distributed camera network, we collected movement and social interaction data from groups of individuals with MCI undergoing therapy within a 1700$m^2$ space. We developed movement and social interaction features, which were then used to train a series of machine learning algorithms to distinguish between higher and lower cognitive functioning MCI groups. RESULTS: A Wilcoxon rank-sum test revealed statistically significant differences between high and low-functioning cohorts in features such as linear path length, walking speed, change in direction while walking, entropy of velocity and direction change, and number of group formations in the indoor space. Despite lacking individual identifiers to associate with specific levels of MCI, a machine learning approach using the most significant features provided a 71% accuracy. DISCUSSION: We provide evidence to show that a privacy-preserving low-cost camera network using edge computing framework has the potential to distinguish between different levels of cognitive impairment from the movements and social interactions captured during group activities.
☆ CLIP-DPO: Vision-Language Models as a Source of Preference for Fixing Hallucinations in LVLMs ECCV 2024
Despite recent successes, LVLMs or Large Vision Language Models are prone to hallucinating details like objects and their properties or relations, limiting their real-world deployment. To address this and improve their robustness, we present CLIP-DPO, a preference optimization method that leverages contrastively pre-trained Vision-Language (VL) embedding models, such as CLIP, for DPO-based optimization of LVLMs. Unlike prior works tackling LVLM hallucinations, our method does not rely on paid-for APIs, and does not require additional training data or the deployment of other external LVLMs. Instead, starting from the initial pool of supervised fine-tuning data, we generate a diverse set of predictions, which are ranked based on their CLIP image-text similarities, and then filtered using a robust rule-based approach to obtain a set of positive and negative pairs for DPO-based training. We applied CLIP-DPO fine-tuning to the MobileVLM-v2 family of models and to LlaVA-1.5, in all cases observing significant improvements in terms of hallucination reduction over baseline models. We also observe better performance for zero-shot classification, suggesting improved grounding capabilities, and verify that the original performance on standard LVLM benchmarks is overall preserved.
comment: Accepted at ECCV 2024
♻ ☆ Beyond Full Label: Single-Point Prompt for Infrared Small Target Label Generation
In this work, we make the first attempt to construct a learning-based single-point annotation paradigm for infrared small target label generation (IRSTLG). Our intuition is that label generation requires just one more point prompt than target detection: IRSTLG can be regarded as an infrared small target detection (IRSTD) task with the target location hint. Based on this insight, we introduce an energy double guided single-point prompt (EDGSP) framework, which adeptly transforms the target detection network into a refined label generation method. Specifically, the proposed EDGSP includes: 1) target energy initialization (TEI) to create a foundational outline for sufficient shape evolution of pseudo label, 2) double prompt embedding (DPE) for rapid localization of interested regions and reinforcement of individual differences to avoid label adhesion, and 3) bounding box-based matching (BBM) to eliminate false alarms. Experimental results show that pseudo labels generated by three baselines equipped with EDGSP achieve 100% object-level probability of detection (Pd) and 0% false-alarm rate (Fa) on SIRST, NUDT-SIRST, and IRSTD-1k datasets, with a pixel-level intersection over union (IoU) improvement of 13.28% over state-of-the-art (SOTA) label generation methods. In the practical application of downstream IRSTD, EDGSP realizes, for the first time, a single-point generated pseudo mask beyond the full label. Even with coarse single-point annotations, it still achieves 99.5% performance of full labeling.
♻ ☆ MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Current state-of-the-art methods for human image customized synthesis typically require tedious training on large-scale datasets. In such cases, they are prone to overfitting and struggle to personalize individuals of unseen styles. Moreover, these methods extensively focus on single-concept human image synthesis and lack the flexibility needed for customizing individuals with multiple given concepts, thereby impeding their broader practical application. To this end, we propose MagicFace, a novel training-free method for universal-style human image personalized synthesis, enabling multi-concept customization by accurately integrating reference concept features into their latent generated region at the pixel level. Specifically, MagicFace introduces a coarse-to-fine generation pipeline, involving two sequential stages: semantic layout construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. In the first stage, RSA enables the latent image to query features from all reference concepts simultaneously, extracting the overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the latent generated regions of all concepts at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from the corresponding reference concept, which ensures precise attribute alignment and feature injection. Throughout the generation process, a weighted mask strategy is employed to ensure the model focuses more on the reference concepts. Extensive experiments demonstrate the superiority of MagicFace in both human-centric subject-to-image synthesis and multi-concept human image customization.
comment: project page: https://codegoat24.github.io/MagicFace
♻ ☆ CoMusion: Towards Consistent Stochastic Human Motion Prediction via Motion Diffusion ECCV 2024
Stochastic Human Motion Prediction (HMP) aims to predict multiple possible future human pose sequences from observed ones. Most prior works learn motion distributions through encoding-decoding in the latent space, which does not preserve motion's spatial-temporal structure. While effective, these methods often require complex, multi-stage training and yield predictions that are inconsistent with the provided history and can be physically unrealistic. To address these issues, we propose CoMusion, a single-stage, end-to-end diffusion-based stochastic HMP framework. CoMusion is inspired from the insight that a smooth future pose initialization improves prediction performance, a strategy not previously utilized in stochastic models but evidenced in deterministic works. To generate such initialization, CoMusion's motion predictor starts with a Transformer-based network for initial reconstruction of corrupted motion. Then, a graph convolutional network (GCN) is employed to refine the prediction considering past observations in the discrete cosine transformation (DCT) space. Our method, facilitated by the Transformer-GCN module design and a proposed variance scheduler, excels in predicting accurate, realistic, and consistent motions, while maintaining appropriate diversity. Experimental results on benchmark datasets demonstrate that CoMusion surpasses prior methods across metrics, while demonstrating superior generation quality. Our Code is released at https://github.com/jsun57/CoMusion/ .
comment: ECCV 2024
♻ ☆ Tensor network compressibility of convolutional models
Convolutional neural networks (CNNs) are one of the most widely used neural network architectures, showcasing state-of-the-art performance in computer vision tasks. Although larger CNNs generally exhibit higher accuracy, their size can be effectively reduced by ``tensorization'' while maintaining accuracy, namely, replacing the convolution kernels with compact decompositions such as Tucker, Canonical Polyadic decompositions, or quantum-inspired decompositions such as matrix product states, and directly training the factors in the decompositions to bias the learning towards low-rank decompositions. But why doesn't tensorization seem to impact the accuracy adversely? We explore this by assessing how \textit{truncating} the convolution kernels of \textit{dense} (untensorized) CNNs impact their accuracy. Specifically, we truncated the kernels of (i) a vanilla four-layer CNN and (ii) ResNet-50 pre-trained for image classification on CIFAR-10 and CIFAR-100 datasets. We found that kernels (especially those inside deeper layers) could often be truncated along several cuts resulting in significant loss in kernel norm but not in classification accuracy. This suggests that such ``correlation compression'' (underlying tensorization) is an intrinsic feature of how information is encoded in dense CNNs. We also found that aggressively truncated models could often recover the pre-truncation accuracy after only a few epochs of re-training, suggesting that compressing the internal correlations of convolution layers does not often transport the model to a worse minimum. Our results can be applied to tensorize and compress CNN models more effectively.
comment: 40 pages, 21 images
♻ ☆ CRITERIA: a New Benchmarking Paradigm for Evaluating Trajectory Prediction Models for Autonomous Driving
Benchmarking is a common method for evaluating trajectory prediction models for autonomous driving. Existing benchmarks rely on datasets, which are biased towards more common scenarios, such as cruising, and distance-based metrics that are computed by averaging over all scenarios. Following such a regiment provides a little insight into the properties of the models both in terms of how well they can handle different scenarios and how admissible and diverse their outputs are. There exist a number of complementary metrics designed to measure the admissibility and diversity of trajectories, however, they suffer from biases, such as length of trajectories. In this paper, we propose a new benChmarking paRadIgm for evaluaTing trajEctoRy predIction Approaches (CRITERIA). Particularly, we propose 1) a method for extracting driving scenarios at varying levels of specificity according to the structure of the roads, models' performance, and data properties for fine-grained ranking of prediction models; 2) A set of new bias-free metrics for measuring diversity, by incorporating the characteristics of a given scenario, and admissibility, by considering the structure of roads and kinematic compliancy, motivated by real-world driving constraints. 3) Using the proposed benchmark, we conduct extensive experimentation on a representative set of the prediction models using the large scale Argoverse dataset. We show that the proposed benchmark can produce a more accurate ranking of the models and serve as a means of characterizing their behavior. We further present ablation studies to highlight contributions of different elements that are used to compute the proposed metrics.
♻ ☆ Spatial-Frequency Dual Progressive Attention Network For Medical Image Segmentation
In medical images, various types of lesions often manifest significant differences in their shape and texture. Accurate medical image segmentation demands deep learning models with robust capabilities in multi-scale and boundary feature learning. However, previous networks still have limitations in addressing the above issues. Firstly, previous networks simultaneously fuse multi-level features or employ deep supervision to enhance multi-scale learning. However, this may lead to feature redundancy and excessive computational overhead, which is not conducive to network training and clinical deployment. Secondly, the majority of medical image segmentation networks exclusively learn features in the spatial domain, disregarding the abundant global information in the frequency domain. This results in a bias towards low-frequency components, neglecting crucial high-frequency information. To address these problems, we introduce SF-UNet, a spatial-frequency dual-domain attention network. It comprises two main components: the Multi-scale Progressive Channel Attention (MPCA) block, which progressively extract multi-scale features across adjacent encoder layers, and the lightweight Frequency-Spatial Attention (FSA) block, with only 0.05M parameters, enabling concurrent learning of texture and boundary features from both spatial and frequency domains. We validate the effectiveness of the proposed SF-UNet on three public datasets. Experimental results show that compared to previous state-of-the-art (SOTA) medical image segmentation networks, SF-UNet achieves the best performance, and achieves up to 9.4\% and 10.78\% improvement in DSC and IOU. Codes will be released at https://github.com/nkicsl/SF-UNet.
comment: 6 pages accepted by 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2024)
♻ ☆ In-context Prompt Learning for Test-time Vision Recognition with Frozen Vision-language Model
Current pre-trained vision-language models, such as CLIP, have demonstrated remarkable zero-shot generalization capabilities across various downstream tasks. However, their performance significantly degrades when test inputs exhibit different distributions. In this paper, we explore the concept of test-time prompt tuning (TTPT), which facilitates the adaptation of the CLIP model to novel downstream tasks through a one-step unsupervised optimization that involves only test samples. Inspired by in-context learning in natural language processing (NLP), we propose In-Context Prompt Learning (InCPL) for test-time visual recognition tasks, which empowers a pre-trained vision-language model with labeled examples as context information on downstream task. Specifically, InCPL associates a new test sample with very few labeled examples (sometimes just one) as context information, enabling reliable label estimation for the test sample and facilitating model adaptation. To achieve this, InCPL employs an efficient language-to-vision translator to explore the textual prior information for visual prompt learning. Further, we introduce a context-aware unsupervised loss to optimize visual prompts tailored to test samples. Finally, we design a cyclic learning strategy for visual and textual prompts to ensure mutual synergy across different modalities. This enables a pre-trained, frozen CLIP model to adapt to any task using its learned adaptive prompt. Our method demonstrates superior performance and achieves state-of-the-art results across various downstream datasets.
♻ ☆ The Phantom Menace: Unmasking Privacy Leakages in Vision-Language Models
Vision-Language Models (VLMs) combine visual and textual understanding, rendering them well-suited for diverse tasks like generating image captions and answering visual questions across various domains. However, these capabilities are built upon training on large amount of uncurated data crawled from the web. The latter may include sensitive information that VLMs could memorize and leak, raising significant privacy concerns. In this paper, we assess whether these vulnerabilities exist, focusing on identity leakage. Our study leads to three key findings: (i) VLMs leak identity information, even when the vision-language alignment and the fine-tuning use anonymized data; (ii) context has little influence on identity leakage; (iii) simple, widely used anonymization techniques, like blurring, are not sufficient to address the problem. These findings underscore the urgent need for robust privacy protection strategies when deploying VLMs. Ethical awareness and responsible development practices are essential to mitigate these risks.
♻ ☆ Exploring Vacant Classes in Label-Skewed Federated Learning
Label skews, characterized by disparities in local label distribution across clients, pose a significant challenge in federated learning. As minority classes suffer from worse accuracy due to overfitting on local imbalanced data, prior methods often incorporate class-balanced learning techniques during local training. Although these methods improve the mean accuracy across all classes, we observe that vacant classes-referring to categories absent from a client's data distribution-remain poorly recognized. Besides, there is still a gap in the accuracy of local models on minority classes compared to the global model. This paper introduces FedVLS, a novel approach to label-skewed federated learning that integrates both vacant-class distillation and logit suppression simultaneously. Specifically, vacant-class distillation leverages knowledge distillation during local training on each client to retain essential information related to vacant classes from the global model. Moreover, logit suppression directly penalizes network logits for non-label classes, effectively addressing misclassifications in minority classes that may be biased toward majority classes. Extensive experiments validate the efficacy of FedVLS, demonstrating superior performance compared to previous state-of-the-art (SOTA) methods across diverse datasets with varying degrees of label skews. Code is available in the supplementary material.
♻ ☆ Hybrid Reasoning Based on Large Language Models for Autonomous Car Driving
Large Language Models (LLMs) have garnered significant attention for their ability to understand text and images, generate human-like text, and perform complex reasoning tasks. However, their ability to generalize this advanced reasoning with a combination of natural language text for decision-making in dynamic situations requires further exploration. In this study, we investigate how well LLMs can adapt and apply a combination of arithmetic and common-sense reasoning, particularly in autonomous driving scenarios. We hypothesize that LLMs hybrid reasoning abilities can improve autonomous driving by enabling them to analyze detected object and sensor data, understand driving regulations and physical laws, and offer additional context. This addresses complex scenarios, like decisions in low visibility (due to weather conditions), where traditional methods might fall short. We evaluated Large Language Models (LLMs) based on accuracy by comparing their answers with human-generated ground truth inside CARLA. The results showed that when a combination of images (detected objects) and sensor data is fed into the LLM, it can offer precise information for brake and throttle control in autonomous vehicles across various weather conditions. This formulation and answers can assist in decision-making for auto-pilot systems.
comment: 12 pages, 5 figures
♻ ☆ Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging
Transfer learning has become an essential part of medical imaging classification algorithms, often leveraging ImageNet weights. The domain shift from natural to medical images has prompted alternatives such as RadImageNet, often showing comparable classification performance. However, it remains unclear whether the performance gains from transfer learning stem from improved generalization or shortcut learning. To address this, we conceptualize confounders by introducing the Medical Imaging Contextualized Confounder Taxonomy (MICCAT) and investigate a range of confounders across it -- whether synthetic or sampled from the data -- using two public chest X-ray and CT datasets. We show that ImageNet and RadImageNet achieve comparable classification performance, yet ImageNet is much more prone to overfitting to confounders. We recommend that researchers using ImageNet-pretrained models reexamine their model robustness by conducting similar experiments. Our code and experiments are available at https://github.com/DovileDo/source-matters.
♻ ☆ Global Control for Local SO(3)-Equivariant Scale-Invariant Vessel Segmentation
Personalized 3D vascular models can aid in a range of diagnostic, prognostic, and treatment-planning tasks relevant to cardiovascular disease management. Deep learning provides a means to obtain such models automatically from image data. Ideally, a user should have control over the included region in the vascular model. Additionally, the model should be watertight and highly accurate. To this end, we propose a combination of a global controller leveraging voxel mask segmentations to provide boundary conditions for vessels of interest to a local, iterative vessel segmentation model. We introduce the preservation of scale- and rotational symmetries in the local segmentation model, leading to generalisation to vessels of unseen sizes and orientations. Combined with the global controller, this enables flexible 3D vascular model building, without additional retraining. We demonstrate the potential of our method on a dataset containing abdominal aortic aneurysms (AAAs). Our method performs on par with a state-of-the-art segmentation model in the segmentation of AAAs, iliac arteries, and renal arteries, while providing a watertight, smooth surface representation. Moreover, we demonstrate that by adapting the global controller, we can easily extend vessel sections in the 3D model.
♻ ☆ Text-Conditioned Resampler For Long Form Video Understanding ECCV24
In this paper we present a text-conditioned video resampler (TCR) module that uses a pre-trained and frozen visual encoder and large language model (LLM) to process long video sequences for a task. TCR localises relevant visual features from the video given a text condition and provides them to a LLM to generate a text response. Due to its lightweight design and use of cross-attention, TCR can process more than 100 frames at a time with plain attention and without optimised implementations. We make the following contributions: (i) we design a transformer-based sampling architecture that can process long videos conditioned on a task, together with a training method that enables it to bridge pre-trained visual and language models; (ii) we identify tasks that could benefit from longer video perception; and (iii) we empirically validate its efficacy on a wide variety of evaluation tasks including NextQA, EgoSchema, and the EGO4D-LTA challenge.
comment: Accepted to the ECCV24 conference
♻ ☆ RET-CLIP: A Retinal Image Foundation Model Pre-trained with Clinical Diagnostic Reports MICCAI 2024
The Vision-Language Foundation model is increasingly investigated in the fields of computer vision and natural language processing, yet its exploration in ophthalmology and broader medical applications remains limited. The challenge is the lack of labeled data for the training of foundation model. To handle this issue, a CLIP-style retinal image foundation model is developed in this paper. Our foundation model, RET-CLIP, is specifically trained on a dataset of 193,865 patients to extract general features of color fundus photographs (CFPs), employing a tripartite optimization strategy to focus on left eye, right eye, and patient level to reflect real-world clinical scenarios. Extensive experiments demonstrate that RET-CLIP outperforms existing benchmarks across eight diverse datasets spanning four critical diagnostic categories: diabetic retinopathy, glaucoma, multiple disease diagnosis, and multi-label classification of multiple diseases, which demonstrate the performance and generality of our foundation model. The sourse code and pre-trained model are available at https://github.com/sStonemason/RET-CLIP.
comment: Accepted by MICCAI 2024
♻ ☆ DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields ECCV 2024
Progress in 3D computer vision tasks demands a huge amount of data, yet annotating multi-view images with 3D-consistent annotations, or point clouds with part segmentation is both time-consuming and challenging. This paper introduces DatasetNeRF, a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations, while utilizing minimal 2D human-labeled annotations. Specifically, we leverage the strong semantic prior within a 3D generative model to train a semantic decoder, requiring only a handful of fine-grained labeled samples. Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data. The generated data is applicable across various computer vision tasks, including video segmentation and 3D point cloud segmentation. Our approach not only surpasses baseline models in segmentation quality, achieving superior 3D consistency and segmentation precision on individual images, but also demonstrates versatility by being applicable to both articulated and non-articulated generative models. Furthermore, we explore applications stemming from our approach, such as 3D-aware semantic editing and 3D inversion.
comment: Accepted by ECCV 2024. Project page: https://ychgoaround.github.io/projects/DatasetNeRF/
♻ ☆ Less but Better: Enabling Generalized Zero-shot Learning Towards Unseen Domains by Intrinsic Learning from Redundant LLM Semantics
Generalized zero-shot learning (GZSL) focuses on recognizing seen and unseen classes against domain shift problem (DSP) where data of unseen classes may be misclassified as seen classes. However, existing GZSL is still limited to seen domains. In the current work, we pioneer cross-domain GZSL (CDGZSL) which addresses GZSL towards unseen domains. Different from existing GZSL methods which alleviate DSP by generating features of unseen classes with semantics, CDGZSL needs to construct a common feature space across domains and acquire the corresponding intrinsic semantics shared among domains to transfer from seen to unseen domains. Considering the information asymmetry problem caused by redundant class semantics annotated with large language models (LLMs), we present Meta Domain Alignment Semantic Refinement (MDASR). Technically, MDASR consists of two parts: Inter-class Similarity Alignment (ISA), which eliminates the non-intrinsic semantics not shared across all domains under the guidance of inter-class feature relationships, and Unseen-class Meta Generation (UMG), which preserves intrinsic semantics to maintain connectivity between seen and unseen classes by simulating feature generation. MDASR effectively aligns the redundant semantic space with the common feature space, mitigating the information asymmetry in CDGZSL. The effectiveness of MDASR is demonstrated on the Office-Home and Mini-DomainNet, and we have shared the LLM-based semantics for these datasets as the benchmark.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Dynamic Resolution Guidance for Facial Expression Recognition
Facial expression recognition (FER) is vital for human-computer interaction and emotion analysis, yet recognizing expressions in low-resolution images remains challenging. This paper introduces a practical method called Dynamic Resolution Guidance for Facial Expression Recognition (DRGFER) to effectively recognize facial expressions in images with varying resolutions without compromising FER model accuracy. Our framework comprises two main components: the Resolution Recognition Network (RRN) and the Multi-Resolution Adaptation Facial Expression Recognition Network (MRAFER). The RRN determines image resolution, outputs a binary vector, and the MRAFER assigns images to suitable facial expression recognition networks based on resolution. We evaluated DRGFER on widely-used datasets RAFDB and FERPlus, demonstrating that our method retains optimal model performance at each resolution and outperforms alternative resolution approaches. The proposed framework exhibits robustness against resolution variations and facial expressions, offering a promising solution for real-world applications.
♻ ☆ Sparse Global Matching for Video Frame Interpolation with Large Motion CVPR 2024
Large motion poses a critical challenge in Video Frame Interpolation (VFI) task. Existing methods are often constrained by limited receptive fields, resulting in sub-optimal performance when handling scenarios with large motion. In this paper, we introduce a new pipeline for VFI, which can effectively integrate global-level information to alleviate issues associated with large motion. Specifically, we first estimate a pair of initial intermediate flows using a high-resolution feature map for extracting local details. Then, we incorporate a sparse global matching branch to compensate for flow estimation, which consists of identifying flaws in initial flows and generating sparse flow compensation with a global receptive field. Finally, we adaptively merge the initial flow estimation with global flow compensation, yielding a more accurate intermediate flow. To evaluate the effectiveness of our method in handling large motion, we carefully curate a more challenging subset from commonly used benchmarks. Our method demonstrates the state-of-the-art performance on these VFI subsets with large motion.
comment: Accepted by CVPR 2024. Project page: https://sgm-vfi.github.io/
♻ ☆ Adversarial Prompt Tuning for Vision-Language Models ECCV 2024
With the rapid advancement of multimodal learning, pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capacities in bridging the gap between visual and language modalities. However, these models remain vulnerable to adversarial attacks, particularly in the image modality, presenting considerable security risks. This paper introduces Adversarial Prompt Tuning (AdvPT), a novel technique to enhance the adversarial robustness of image encoders in VLMs. AdvPT innovatively leverages learnable text prompts and aligns them with adversarial image embeddings, to address the vulnerabilities inherent in VLMs without the need for extensive parameter training or modification of the model architecture. We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques, further boosting defensive capabilities. Comprehensive experimental analyses provide insights into adversarial prompt tuning, a novel paradigm devoted to improving resistance to adversarial images through textual input modifications, paving the way for future robust multimodal learning research. These findings open up new possibilities for enhancing the security of VLMs. Our code is available at https://github.com/jiamingzhang94/Adversarial-Prompt-Tuning.
comment: ECCV 2024
♻ ☆ Topology-preserving Adversarial Training for Alleviating Natural Accuracy Degradation BMVC 2024
Despite the effectiveness in improving the robustness of neural networks, adversarial training has suffered from the natural accuracy degradation problem, i.e., accuracy on natural samples has reduced significantly. In this study, we reveal that natural accuracy degradation is highly related to the disruption of the natural sample topology in the representation space by quantitative and qualitative experiments. Based on this observation, we propose Topology-pReserving Adversarial traINing (TRAIN) to alleviate the problem by preserving the topology structure of natural samples from a standard model trained only on natural samples during adversarial training. As an additional regularization, our method can be combined with various popular adversarial training algorithms, taking advantage of both sides. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet show that our proposed method achieves consistent and significant improvements over various strong baselines in most cases. Specifically, without additional data, TRAIN achieves up to 8.86% improvement in natural accuracy and 6.33% improvement in robust accuracy.
comment: BMVC 2024; Code will be released on https://github.com/KululuMi/TRAIN
♻ ☆ SceneMotion: From Agent-Centric Embeddings to Scene-Wide Forecasts SC 2024
Self-driving vehicles rely on multimodal motion forecasts to effectively interact with their environment and plan safe maneuvers. We introduce SceneMotion, an attention-based model for forecasting scene-wide motion modes of multiple traffic agents. Our model transforms local agent-centric embeddings into scene-wide forecasts using a novel latent context module. This module learns a scene-wide latent space from multiple agent-centric embeddings, enabling joint forecasting and interaction modeling. The competitive performance in the Waymo Open Interaction Prediction Challenge demonstrates the effectiveness of our approach. Moreover, we cluster future waypoints in time and space to quantify the interaction between agents. We merge all modes and analyze each mode independently to determine which clusters are resolved through interaction or result in conflict. Our implementation is available at: https://github.com/kit-mrt/future-motion
comment: 7 pages, 3 figures, ITSC 2024; v2: added details about waypoint clustering
♻ ☆ Appearance-Based Refinement for Object-Centric Motion Segmentation ECCV 2024
The goal of this paper is to discover, segment, and track independently moving objects in complex visual scenes. Previous approaches have explored the use of optical flow for motion segmentation, leading to imperfect predictions due to partial motion, background distraction, and object articulations and interactions. To address this issue, we introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals. Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars, and an object-centric architecture that refines problematic masks based on exemplar information. The model is pre-trained on synthetic data and then adapted to real-world videos in a self-supervised manner, eliminating the need for human annotations. Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTubeVOS, SegTrackv2, and FBMS-59. We achieve competitive performance on single-object segmentation, while significantly outperforming existing models on the more challenging problem of multi-object segmentation. Finally, we investigate the benefits of using our model as a prompt for the per-frame Segment Anything Model.
comment: ECCV 2024. Project page: https://www.robots.ox.ac.uk/vgg/research/appear-refine/
♻ ☆ Robust Multimodal 3D Object Detection via Modality-Agnostic Decoding and Proximity-based Modality Ensemble
Recent advancements in 3D object detection have benefited from multi-modal information from the multi-view cameras and LiDAR sensors. However, the inherent disparities between the modalities pose substantial challenges. We observe that existing multi-modal 3D object detection methods heavily rely on the LiDAR sensor, treating the camera as an auxiliary modality for augmenting semantic details. This often leads to not only underutilization of camera data but also significant performance degradation in scenarios where LiDAR data is unavailable. Additionally, existing fusion methods overlook the detrimental impact of sensor noise induced by environmental changes, on detection performance. In this paper, we propose MEFormer to address the LiDAR over-reliance problem by harnessing critical information for 3D object detection from every available modality while concurrently safeguarding against corrupted signals during the fusion process. Specifically, we introduce Modality Agnostic Decoding (MOAD) that extracts geometric and semantic features with a shared transformer decoder regardless of input modalities and provides promising improvement with a single modality as well as multi-modality. Additionally, our Proximity-based Modality Ensemble (PME) module adaptively utilizes the strengths of each modality depending on the environment while mitigating the effects of a noisy sensor. Our MEFormer achieves state-of-the-art performance of 73.9% NDS and 71.5% mAP in the nuScenes validation set. Extensive analyses validate that our MEFormer improves robustness against challenging conditions such as sensor malfunctions or environmental changes. The source code is available at https://github.com/hanchaa/MEFormer
♻ ☆ LaRE^2: Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection CVPR 2024
The evolution of Diffusion Models has dramatically improved image generation quality, making it increasingly difficult to differentiate between real and generated images. This development, while impressive, also raises significant privacy and security concerns. In response to this, we propose a novel Latent REconstruction error guided feature REfinement method (LaRE^2) for detecting the diffusion-generated images. We come up with the Latent Reconstruction Error (LaRE), the first reconstruction-error based feature in the latent space for generated image detection. LaRE surpasses existing methods in terms of feature extraction efficiency while preserving crucial cues required to differentiate between the real and the fake. To exploit LaRE, we propose an Error-Guided feature REfinement module (EGRE), which can refine the image feature guided by LaRE to enhance the discriminativeness of the feature. Our EGRE utilizes an align-then-refine mechanism, which effectively refines the image feature for generated-image detection from both spatial and channel perspectives. Extensive experiments on the large-scale GenImage benchmark demonstrate the superiority of our LaRE^2, which surpasses the best SoTA method by up to 11.9%/12.1% average ACC/AP across 8 different image generators. LaRE also surpasses existing methods in terms of feature extraction cost, delivering an impressive speed enhancement of 8 times.
comment: CVPR 2024
♻ ☆ FlashGS: Efficient 3D Gaussian Splatting for Large-scale and High-resolution Rendering
This work introduces FlashGS, an open-source CUDA Python library, designed to facilitate the efficient differentiable rasterization of 3D Gaussian Splatting through algorithmic and kernel-level optimizations. FlashGS is developed based on the observations from a comprehensive analysis of the rendering process to enhance computational efficiency and bring the technique to wide adoption. The paper includes a suite of optimization strategies, encompassing redundancy elimination, efficient pipelining, refined control and scheduling mechanisms, and memory access optimizations, all of which are meticulously integrated to amplify the performance of the rasterization process. An extensive evaluation of FlashGS' performance has been conducted across a diverse spectrum of synthetic and real-world large-scale scenes, encompassing a variety of image resolutions. The empirical findings demonstrate that FlashGS consistently achieves an average 4x acceleration over mobile consumer GPUs, coupled with reduced memory consumption. These results underscore the superior performance and resource optimization capabilities of FlashGS, positioning it as a formidable tool in the domain of 3D rendering.
♻ ☆ Wilcoxon Nonparametric CFAR Scheme for Ship Detection in SAR Image
The parametric constant false alarm rate (CFAR) detection algorithms which are based on various statistical distributions, such as Gaussian, Gamma, Weibull, log-normal, G0 distribution, alpha-stable distribution, etc, are most widely used to detect the ship targets in SAR image at present. However, the clutter background in SAR images is complicated and variable. When the actual clutter background deviates from the assumed statistical distribution, the performance of the parametric CFAR detector will deteriorate. In addition to the parametric CFAR schemes, there is another class of nonparametric CFAR detectors which can maintain a constant false alarm rate for the target detection without the assumption of a known clutter distribution. In this work, the Wilcoxon nonparametric CFAR scheme for ship detection in SAR image is proposed and analyzed, and a closed form of the false alarm rate for the Wilcoxon nonparametric detector to determine the decision threshold is presented. By comparison with several typical parametric CFAR schemes on Radarsat-2, ICEYE-X6 and Gaofen-3 SAR images, the robustness of the Wilcoxon nonparametric detector to maintain a good false alarm performance in different detection backgrounds is revealed, and its detection performance for the weak ship in rough sea surface is improved to some extent. Moreover, the Wilcoxon nonparametric detector can suppress the false alarms resulting from the sidelobes at some degree and its detection speed is fast.
♻ ☆ iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning ECCV-24
Different from human nature, it is still common practice today for vision tasks to train deep learning models only initially and on fixed datasets. A variety of approaches have recently addressed handling continual data streams. However, extending these methods to manage out-of-distribution (OOD) scenarios has not effectively been investigated. On the other hand, it has recently been shown that non-continual neural mesh models exhibit strong performance in generalizing to such OOD scenarios. To leverage this decisive property in a continual learning setting, we propose incremental neural mesh models that can be extended with new meshes over time. In addition, we present a latent space initialization strategy that enables us to allocate feature space for future unseen classes in advance and a positional regularization term that forces the features of the different classes to consistently stay in respective latent space regions. We demonstrate the effectiveness of our method through extensive experiments on the Pascal3D and ObjectNet3D datasets and show that our approach outperforms the baselines for classification by $2-6\%$ in the in-domain and by $6-50\%$ in the OOD setting. Our work also presents the first incremental learning approach for pose estimation. Our code and model can be found at https://github.com/Fischer-Tom/iNeMo.
comment: ECCV-24
♻ ☆ MM-Mixing: Multi-Modal Mixing Alignment for 3D Understanding
We introduce MM-Mixing, a multi-modal mixing alignment framework for 3D understanding. MM-Mixing applies mixing-based methods to multi-modal data, preserving and optimizing cross-modal connections while enhancing diversity and improving alignment across modalities. Our proposed two-stage training pipeline combines feature-level and input-level mixing to optimize the 3D encoder. The first stage employs feature-level mixing with contrastive learning to align 3D features with their corresponding modalities. The second stage incorporates both feature-level and input-level mixing, introducing mixed point cloud inputs to further refine 3D feature representations. MM-Mixing enhances intermodality relationships, promotes generalization, and ensures feature consistency while providing diverse and realistic training samples. We demonstrate that MM-Mixing significantly improves baseline performance across various learning scenarios, including zero-shot 3D classification, linear probing 3D classification, and cross-modal 3D shape retrieval. Notably, we improved the zero-shot classification accuracy on ScanObjectNN from 51.3% to 61.9%, and on Objaverse-LVIS from 46.8% to 51.4%. Our findings highlight the potential of multi-modal mixing-based alignment to significantly advance 3D object recognition and understanding while remaining straightforward to implement and integrate into existing frameworks.
♻ ☆ Patch of Invisibility: Naturalistic Physical Black-Box Adversarial Attacks on Object Detectors ECML-PKDD 2024
Adversarial attacks on deep-learning models have been receiving increased attention in recent years. Work in this area has mostly focused on gradient-based techniques, so-called "white-box" attacks, wherein the attacker has access to the targeted model's internal parameters; such an assumption is usually unrealistic in the real world. Some attacks additionally use the entire pixel space to fool a given model, which is neither practical nor physical (i.e., real-world). On the contrary, we propose herein a direct, black-box, gradient-free method that uses the learned image manifold of a pretrained generative adversarial network (GAN) to generate naturalistic physical adversarial patches for object detectors. To our knowledge this is the first and only method that performs black-box physical attacks directly on object-detection models, which results with a model-agnostic attack. We show that our proposed method works both digitally and physically. We compared our approach against four different black-box attacks with different configurations. Our approach outperformed all other approaches that were tested in our experiments by a large margin.
comment: Accepted at MLCS @ ECML-PKDD 2024
♻ ☆ Knowledge Distillation with Refined Logits
Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.
comment: 11 pages, 7 figures
♻ ☆ SliceMamba with Neural Architecture Search for Medical Image Segmentation
Despite the progress made in Mamba-based medical image segmentation models, existing methods utilizing unidirectional or multi-directional feature scanning mechanisms struggle to effectively capture dependencies between neighboring positions, limiting the discriminant representation learning of local features. These local features are crucial for medical image segmentation as they provide critical structural information about lesions and organs. To address this limitation, we propose SliceMamba, a simple and effective locally sensitive Mamba-based medical image segmentation model. SliceMamba includes an efficient Bidirectional Slice Scan module (BSS), which performs bidirectional feature slicing and employs varied scanning mechanisms for sliced features with distinct shapes. This design ensures that spatially adjacent features remain close in the scanning sequence, thereby improving segmentation performance. Additionally, to fit the varying sizes and shapes of lesions and organs, we further introduce an Adaptive Slice Search method to automatically determine the optimal feature slice method based on the characteristics of the target data. Extensive experiments on two skin lesion datasets (ISIC2017 and ISIC2018), two polyp segmentation (Kvasir and ClinicDB) datasets, and one multi-organ segmentation dataset (Synapse) validate the effectiveness of our method.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Decoupling Forgery Semantics for Generalizable Deepfake Detection BMVC 2024
In this paper, we propose a novel method for detecting DeepFakes, enhancing the generalization of detection through semantic decoupling. There are now multiple DeepFake forgery technologies that not only possess unique forgery semantics but may also share common forgery semantics. The unique forgery semantics and irrelevant content semantics may promote over-fitting and hamper generalization for DeepFake detectors. For our proposed method, after decoupling, the common forgery semantics could be extracted from DeepFakes, and subsequently be employed for developing the generalizability of DeepFake detectors. Also, to pursue additional generalizability, we designed an adaptive high-pass module and a two-stage training strategy to improve the independence of decoupled semantics. Evaluation on FF++, Celeb-DF, DFD, and DFDC datasets showcases our method's excellent detection and generalization performance. Code is available at: https://github.com/leaffeall/DFS-GDD.
comment: Accepted by BMVC 2024
♻ ☆ Efficient Decoder for End-to-End Oriented Object Detection in Remote Sensing Images
Object instances in remote sensing images often distribute with multi-orientations, varying scales, and dense distribution. These issues bring challenges to end-to-end oriented object detectors including multi-scale features alignment and a large number of queries. To address these limitations, we propose an end-to-end oriented detector equipped with an efficient decoder, which incorporates two technologies, Rotated RoI attention (RRoI attention) and Selective Distinct Queries (SDQ). Specifically, RRoI attention effectively focuses on oriented regions of interest through a cross-attention mechanism and aligns multi-scale features. SDQ collects queries from intermediate decoder layers and then filters similar queries to obtain distinct queries. The proposed SDQ can facilitate the optimization of one-to-one label assignment, without introducing redundant initial queries or extra auxiliary branches. Extensive experiments on five datasets demonstrate the effectiveness of our method. Notably, our method achieves state-of-the-art performance on DIOR-R (67.31% mAP), DOTA-v1.5 (67.43% mAP), and DOTA-v2.0 (53.28% mAP) with the ResNet50 backbone.
comment: The paper has not been accepted yet. We will release a new version after the paper is accepted
♻ ☆ DomainForensics: Exposing Face Forgery across Domains via Bi-directional Adaptation
Recent DeepFake detection methods have shown excellent performance on public datasets but are significantly degraded on new forgeries. Solving this problem is important, as new forgeries emerge daily with the continuously evolving generative techniques. Many efforts have been made for this issue by seeking the commonly existing traces empirically on data level. In this paper, we rethink this problem and propose a new solution from the unsupervised domain adaptation perspective. Our solution, called DomainForensics, aims to transfer the forgery knowledge from known forgeries to new forgeries. Unlike recent efforts, our solution does not focus on data view but on learning strategies of DeepFake detectors to capture the knowledge of new forgeries through the alignment of domain discrepancies. In particular, unlike the general domain adaptation methods which consider the knowledge transfer in the semantic class category, thus having limited application, our approach captures the subtle forgery traces. We describe a new bi-directional adaptation strategy dedicated to capturing the forgery knowledge across domains. Specifically, our strategy considers both forward and backward adaptation, to transfer the forgery knowledge from the source domain to the target domain in forward adaptation and then reverse the adaptation from the target domain to the source domain in backward adaptation. In forward adaptation, we perform supervised training for the DeepFake detector in the source domain and jointly employ adversarial feature adaptation to transfer the ability to detect manipulated faces from known forgeries to new forgeries. In backward adaptation, we further improve the knowledge transfer by coupling adversarial adaptation with self-distillation on new forgeries. This enables the detector to expose new forgery features from unlabeled data and avoid forgetting the known knowledge of known...
comment: TIFS 2024
♻ ☆ Universal Approximation Theory: The Basic Theory for Deep Learning-Based Computer Vision Models
Computer vision (CV) is one of the most crucial fields in artificial intelligence. In recent years, a variety of deep learning models based on convolutional neural networks (CNNs) and Transformers have been designed to tackle diverse problems in CV. These algorithms have found practical applications in areas such as robotics and facial recognition. Despite the increasing power of current CV models, several fundamental questions remain unresolved: Why do CNNs require deep layers? What ensures the generalization ability of CNNs? Why do residual-based networks outperform fully convolutional networks like VGG? What is the fundamental difference between residual-based CNNs and Transformer-based networks? Why can CNNs utilize LoRA and pruning techniques? The root cause of these questions lies in the lack of a robust theoretical foundation for deep learning models in CV. To address these critical issues and techniques, we employ the Universal Approximation Theorem (UAT) to provide a theoretical basis for convolution- and Transformer-based models in CV. By doing so, we aim to elucidate these questions from a theoretical perspective.
♻ ☆ Geometric Pooling: maintaining more useful information
Graph Pooling technology plays an important role in graph node classification tasks. Sorting pooling technologies maintain large-value units for pooling graphs of varying sizes. However, by analyzing the statistical characteristic of activated units after pooling, we found that a large number of units dropped by sorting pooling are negative-value units that contain useful information and can contribute considerably to the final decision. To maintain more useful information, a novel pooling technology, called Geometric Pooling (GP), was proposed to contain the unique node features with negative values by measuring the similarity of all node features. We reveal the effectiveness of GP from the entropy reduction view. The experiments were conducted on TUdatasets to show the effectiveness of GP. The results showed that the proposed GP outperforms the SOTA graph pooling technologies by 1%\sim5% with fewer parameters.
comment: Accepted by IEEE ACCESS
♻ ☆ Deep evidential fusion with uncertainty quantification and contextual discounting for multimodal medical image segmentation
Single-modality medical images generally do not contain enough information to reach an accurate and reliable diagnosis. For this reason, physicians generally diagnose diseases based on multimodal medical images such as, e.g., PET/CT. The effective fusion of multimodal information is essential to reach a reliable decision and explain how the decision is made as well. In this paper, we propose a fusion framework for multimodal medical image segmentation based on deep learning and the Dempster-Shafer theory of evidence. In this framework, the reliability of each single modality image when segmenting different objects is taken into account by a contextual discounting operation. The discounted pieces of evidence from each modality are then combined by Dempster's rule to reach a final decision. Experimental results with a PET-CT dataset with lymphomas and a multi-MRI dataset with brain tumors show that our method outperforms the state-of-the-art methods in accuracy and reliability.
♻ ☆ MergeOcc: Bridge the Domain Gap between Different LiDARs for Robust Occupancy Prediction
LiDAR-based 3D occupancy prediction evolved rapidly alongside the emergence of large datasets. Nevertheless, the potential of existing diverse datasets remains underutilized as they kick in individually. Models trained on a specific dataset often suffer considerable performance degradation when deployed to real-world scenarios or datasets involving disparate LiDARs. This paper aims to develop a generalized model called MergeOcc, to simultaneously handle different LiDARs by leveraging multiple datasets. The gaps among LiDAR datasets primarily manifest in geometric disparities and semantic inconsistencies. Thus, MergeOcc incorporates a novel model featuring a geometric realignment module and a semantic label mapping module to enable multiple datasets training (MDT). The effectiveness of MergeOcc is validated through experiments on two prominent datasets for autonomous vehicles: OpenOccupancy-nuScenes and SemanticKITTI. The results demonstrate its enhanced robustness and remarkable performance across both types of LiDARs, outperforming several SOTA multi-modality methods. Notably, despite using an identical model architecture and hyper-parameter set, MergeOcc can significantly surpass the baseline due to its exposure to more diverse data. MergeOcc is considered the first cross-dataset 3D occupancy prediction pipeline that effectively bridges the domain gap for seamless deployment across heterogeneous platforms.
♻ ☆ SSL: A Self-similarity Loss for Improving Generative Image Super-resolution ACM MM 2024
Generative adversarial networks (GAN) and generative diffusion models (DM) have been widely used in real-world image super-resolution (Real-ISR) to enhance the image perceptual quality. However, these generative models are prone to generating visual artifacts and false image structures, resulting in unnatural Real-ISR results. Based on the fact that natural images exhibit high self-similarities, i.e., a local patch can have many similar patches to it in the whole image, in this work we propose a simple yet effective self-similarity loss (SSL) to improve the performance of generative Real-ISR models, enhancing the hallucination of structural and textural details while reducing the unpleasant visual artifacts. Specifically, we compute a self-similarity graph (SSG) of the ground-truth image, and enforce the SSG of Real-ISR output to be close to it. To reduce the training cost and focus on edge areas, we generate an edge mask from the ground-truth image, and compute the SSG only on the masked pixels. The proposed SSL serves as a general plug-and-play penalty, which could be easily applied to the off-the-shelf Real-ISR models. Our experiments demonstrate that, by coupling with SSL, the performance of many state-of-the-art Real-ISR models, including those GAN and DM based ones, can be largely improved, reproducing more perceptually realistic image details and eliminating many false reconstructions and visual artifacts. Codes and supplementary material can be found at https://github.com/ChrisDud0257/SSL
comment: Accepted by ACM MM 2024
♻ ☆ GPT-4V(ision) for Robotics: Multimodal Task Planning from Human Demonstration
We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos. Object are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in achieving real robots' operations from human demonstrations in a one-shot manner. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4V, highlighting the importance of incorporating human supervision within the pipeline. The prompts of GPT-4V/GPT-4 are available at this project page: https://microsoft.github.io/GPT4Vision-Robot-Manipulation-Prompts/
comment: 8 pages, 10 figures, 3 tables. Last updated on August 18th, 2024
♻ ☆ An Optimization-based Baseline for Rigid 2D/3D Registration Applied to Spine Surgical Navigation Using CMA-ES
A robust and efficient optimization-based 2D/3D registration framework is crucial for the navigation system of orthopedic surgical robots. It can provide precise position information of surgical instruments and implants during surgery. While artificial intelligence technology has advanced rapidly in recent years, traditional optimization-based registration methods remain indispensable in the field of 2D/3D registration.he exceptional precision of this method enables it to be considered as a post-processing step of the learning-based methods, thereby offering a reliable assurance for registration. In this paper, we present a coarse-to-fine registration framework based on the CMA-ES algorithm. We conducted intensive testing of our method using data from different parts of the spine. The results shows the effectiveness of the proposed framework on real orthopedic spine surgery clinical data. This work can be viewed as an additional extension that complements the optimization-based methods employed in our previous studies.
♻ ☆ CIC: A framework for Culturally-aware Image Captioning IJCAI 2024
Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, Culturally-aware Image Captioning (CIC), that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Resources can be found at https://shane3606.github.io/cic..
comment: Accepted in IJCAI 2024
♻ ☆ DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency
Diffusion models have established new state of the art in a multitude of computer vision tasks, including image restoration. Diffusion-based inverse problem solvers generate reconstructions of exceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degradation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics.
comment: 30 pages, 15 figures, published at the 41st International Conference on Machine Learning, Vienna, Austria, 2024
Artificial Intelligence 173
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
A major challenge of AI + Science lies in their inherent incompatibility: today's AI is primarily based on connectionism, while science depends on symbolism. To bridge the two worlds, we propose a framework to seamlessly synergize Kolmogorov-Arnold Networks (KANs) and science. The framework highlights KANs' usage for three aspects of scientific discovery: identifying relevant features, revealing modular structures, and discovering symbolic formulas. The synergy is bidirectional: science to KAN (incorporating scientific knowledge into KANs), and KAN to science (extracting scientific insights from KANs). We highlight major new functionalities in the pykan package: (1) MultKAN: KANs with multiplication nodes. (2) kanpiler: a KAN compiler that compiles symbolic formulas into KANs. (3) tree converter: convert KANs (or any neural networks) to tree graphs. Based on these tools, we demonstrate KANs' capability to discover various types of physical laws, including conserved quantities, Lagrangians, symmetries, and constitutive laws.
comment: 27 pages, 14 figures
☆ Demystifying the Communication Characteristics for Distributed Transformer Models
Deep learning (DL) models based on the transformer architecture have revolutionized many DL applications such as large language models (LLMs), vision transformers, audio generation, and time series prediction. Much of this progress has been fueled by distributed training, yet distributed communication remains a substantial bottleneck to training progress. This paper examines the communication behavior of transformer models - that is, how different parallelism schemes used in multi-node/multi-GPU DL Training communicate data in the context of transformers. We use GPT-based language models as a case study of the transformer architecture due to their ubiquity. We validate the empirical results obtained from our communication logs using analytical models. At a high level, our analysis reveals a need to optimize small message point-to-point communication further, correlations between sequence length, per-GPU throughput, model size, and optimizations used, and where to potentially guide further optimizations in framework and HPC middleware design and optimization.
☆ SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views ECCV 2024
Open-world 3D generation has recently attracted considerable attention. While many single-image-to-3D methods have yielded visually appealing outcomes, they often lack sufficient controllability and tend to produce hallucinated regions that may not align with users' expectations. In this paper, we explore an important scenario in which the input consists of one or a few unposed 2D images of a single object, with little or no overlap. We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for these sparse-view images. SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views. The diffusion model is trained to jointly predict surrogate representations for camera poses and multi-view images of the object under known poses, integrating all information from the input sparse views. These predictions are then leveraged to accomplish 3D reconstruction and pose estimation, and the reconstructed 3D model can be used to further refine the camera poses of input views. Through extensive experiments on three datasets, we demonstrate that our method not only significantly outperforms baseline methods in terms of 3D reconstruction quality and pose prediction accuracy but also exhibits strong efficiency. It requires only about 20 seconds to produce a textured mesh and camera poses for the input views. Project page: https://chaoxu.xyz/sparp.
comment: ECCV 2024
☆ Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models
Transformer architectures have become a dominant paradigm for domains like language modeling but suffer in many inference settings due to their quadratic-time self-attention. Recently proposed subquadratic architectures, such as Mamba, have shown promise, but have been pretrained with substantially less computational resources than the strongest Transformer models. In this work, we present a method that is able to distill a pretrained Transformer architecture into alternative architectures such as state space models (SSMs). The key idea to our approach is that we can view both Transformers and SSMs as applying different forms of mixing matrices over the token sequences. We can thus progressively distill the Transformer architecture by matching different degrees of granularity in the SSM: first matching the mixing matrices themselves, then the hidden units at each block, and finally the end-to-end predictions. Our method, called MOHAWK, is able to distill a Mamba-2 variant based on the Phi-1.5 architecture (Phi-Mamba) using only 3B tokens and a hybrid version (Hybrid Phi-Mamba) using 5B tokens. Despite using less than 1% of the training data typically used to train models from scratch, Phi-Mamba boasts substantially stronger performance compared to all past open-source non-Transformer models. MOHAWK allows models like SSMs to leverage computational resources invested in training Transformer-based architectures, highlighting a new avenue for building such models.
☆ Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network
Imbalanced datasets are a significant challenge in real-world scenarios. They lead to models that underperform on underrepresented classes, which is a critical issue in infrastructure inspection. This paper introduces the Enhanced Feature Pyramid Network (E-FPN), a deep learning model for the semantic segmentation of culverts and sewer pipes within imbalanced datasets. The E-FPN incorporates architectural innovations like sparsely connected blocks and depth-wise separable convolutions to improve feature extraction and handle object variations. To address dataset imbalance, the model employs strategies like class decomposition and data augmentation. Experimental results on the culvert-sewer defects dataset and a benchmark aerial semantic segmentation drone dataset show that the E-FPN outperforms state-of-the-art methods, achieving an average Intersection over Union (IoU) improvement of 13.8% and 27.2%, respectively. Additionally, class decomposition and data augmentation together boost the model's performance by approximately 6.9% IoU. The proposed E-FPN presents a promising solution for enhancing object segmentation in challenging, multi-class real-world datasets, with potential applications extending beyond culvert-sewer defect detection.
☆ NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction
Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction. Although promising, SDF-based methods often fail to capture detailed geometric structures, resulting in visible defects. By comparing SDF-based volume rendering to density-based volume rendering, we identify two main factors within the SDF-based approach that degrade surface quality: SDF-to-density representation and geometric regularization. These factors introduce challenges that hinder the optimization of the SDF field. To address these issues, we introduce NeuRodin, a novel two-stage neural surface reconstruction framework that not only achieves high-fidelity surface reconstruction but also retains the flexible optimization characteristics of density-based methods. NeuRodin incorporates innovative strategies that facilitate transformation of arbitrary topologies and reduce artifacts associated with density bias. Extensive evaluations on the Tanks and Temples and ScanNet++ datasets demonstrate the superiority of NeuRodin, showing strong reconstruction capabilities for both indoor and outdoor environments using solely posed RGB captures. Project website: https://open3dvlab.github.io/NeuRodin/
☆ Fairness Under Cover: Evaluating the Impact of Occlusions on Demographic Bias in Facial Recognition ECCV
This study investigates the effects of occlusions on the fairness of face recognition systems, particularly focusing on demographic biases. Using the Racial Faces in the Wild (RFW) dataset and synthetically added realistic occlusions, we evaluate their effect on the performance of face recognition models trained on the BUPT-Balanced and BUPT-GlobalFace datasets. We note increases in the dispersion of FMR, FNMR, and accuracy alongside decreases in fairness according to Equilized Odds, Demographic Parity, STD of Accuracy, and Fairness Discrepancy Rate. Additionally, we utilize a pixel attribution method to understand the importance of occlusions in model predictions, proposing a new metric, Face Occlusion Impact Ratio (FOIR), that quantifies the extent to which occlusions affect model performance across different demographic groups. Our results indicate that occlusions exacerbate existing demographic biases, with models placing higher importance on occlusions in an unequal fashion, particularly affecting African individuals more severely.
comment: Accepted at ECCV Workshop FAILED
☆ SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models
Deep model training on extensive datasets is increasingly becoming cost-prohibitive, prompting the widespread adoption of deep model fusion techniques to leverage knowledge from pre-existing models. From simple weight averaging to more sophisticated methods like AdaMerging, model fusion effectively improves model performance and accelerates the development of new models. However, potential interference between parameters of individual models and the lack of interpretability in the fusion progress remain significant challenges. Existing methods often try to resolve the parameter interference issue by evaluating attributes of parameters, such as their magnitude or sign, or by parameter pruning. In this study, we begin by examining the fine-tuning of linear layers through the lens of subspace analysis and explicitly define parameter interference as an optimization problem to shed light on this subject. Subsequently, we introduce an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction, which allows for the upscaling of source models into an MoE model without extra data or further training. Our approach relies on the observation that fine-tuning mostly keeps the important parts from the pre-training, but it uses less significant or unused areas to adapt to new tasks. Also, the issue of parameter interference, which is intrinsically intractable in the original parameter space, can be managed by expanding the dimensions. We conduct extensive experiments across diverse scenarios, such as image classification and text generalization tasks, using full fine-tuning and LoRA fine-tuning, and we apply our method to large language models (CLIP models, Flan-T5 models, and Mistral-7B models), highlighting the adaptability and scalability of SMILE. Code is available at https://github.com/tanganke/fusion_bench
comment: Code is available at https://github.com/tanganke/fusion_bench
☆ Customizing Language Models with Instance-wise LoRA for Sequential Recommendation
Sequential recommendation systems predict a user's next item of interest by analyzing past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches have applied LLMs to sequential recommendation through language generation paradigms. These methods convert user behavior sequences into prompts for LLM fine-tuning, utilizing Low-Rank Adaptation (LoRA) modules to refine recommendations. However, the uniform application of LoRA across diverse user behaviors sometimes fails to capture individual variability, leading to suboptimal performance and negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA), integrating LoRA with the Mixture of Experts (MoE) framework. iLoRA creates a diverse array of experts, each capturing specific aspects of user preferences, and introduces a sequence representation guided gate function. This gate function processes historical interaction sequences to generate enriched representations, guiding the gating network to output customized expert participation weights. This tailored approach mitigates negative transfer and dynamically adjusts to diverse behavior patterns. Extensive experiments on three benchmark datasets demonstrate the effectiveness of iLoRA, highlighting its superior performance compared to existing methods in capturing user-specific preferences and improving recommendation accuracy.
☆ Rhyme-aware Chinese lyric generator based on GPT
Neural language representation models such as GPT, pre-trained on large-scale corpora, can effectively capture rich semantic patterns from plain text and be fine-tuned to consistently improve natural language generation performance. However, existing pre-trained language models used to generate lyrics rarely consider rhyme information, which is crucial in lyrics. Using a pre-trained model directly results in poor performance. To enhance the rhyming quality of generated lyrics, we incorporate integrated rhyme information into our model, thereby improving lyric generation performance.
☆ Advancing Voice Cloning for Nepali: Leveraging Transfer Learning in a Low-Resource Language
Voice cloning is a prominent feature in personalized speech interfaces. A neural vocal cloning system can mimic someone's voice using just a few audio samples. Both speaker encoding and speaker adaptation are topics of research in the field of voice cloning. Speaker adaptation relies on fine-tuning a multi-speaker generative model, which involves training a separate model to infer a new speaker embedding used for speaker encoding. Both methods can achieve excellent performance, even with a small number of cloning audios, in terms of the speech's naturalness and similarity to the original speaker. Speaker encoding approaches are more appropriate for low-resource deployment since they require significantly less memory and have a faster cloning time than speaker adaption, which can offer slightly greater naturalness and similarity. The main goal is to create a vocal cloning system that produces audio output with a Nepali accent or that sounds like Nepali. For the further advancement of TTS, the idea of transfer learning was effectively used to address several issues that were encountered in the development of this system, including the poor audio quality and the lack of available data.
comment: 7 pages, 10 figures
☆ Learning Brave Assumption-Based Argumentation Frameworks via ASP
Assumption-based Argumentation (ABA) is advocated as a unifying formalism for various forms of non-monotonic reasoning, including logic programming. It allows capturing defeasible knowledge, subject to argumentative debate. While, in much existing work, ABA frameworks are given up-front, in this paper we focus on the problem of automating their learning from background knowledge and positive/negative examples. Unlike prior work, we newly frame the problem in terms of brave reasoning under stable extensions for ABA. We present a novel algorithm based on transformation rules (such as Rote Learning, Folding, Assumption Introduction and Fact Subsumption) and an implementation thereof that makes use of Answer Set Programming. Finally, we compare our technique to state-of-the-art ILP systems that learn defeasible knowledge.
comment: Extended version of the paper accepted at the 27th European Conference on Artificial Intelligence (ECAI 2024); Paper ID: M1488 (https://www.ecai2024.eu/)
☆ Molecular Graph Representation Learning Integrating Large Language Models with Domain-specific Small Models
Molecular property prediction is a crucial foundation for drug discovery. In recent years, pre-trained deep learning models have been widely applied to this task. Some approaches that incorporate prior biological domain knowledge into the pre-training framework have achieved impressive results. However, these methods heavily rely on biochemical experts, and retrieving and summarizing vast amounts of domain knowledge literature is both time-consuming and expensive. Large Language Models (LLMs) have demonstrated remarkable performance in understanding and efficiently providing general knowledge. Nevertheless, they occasionally exhibit hallucinations and lack precision in generating domain-specific knowledge. Conversely, Domain-specific Small Models (DSMs) possess rich domain knowledge and can accurately calculate molecular domain-related metrics. However, due to their limited model size and singular functionality, they lack the breadth of knowledge necessary for comprehensive representation learning. To leverage the advantages of both approaches in molecular property prediction, we propose a novel Molecular Graph representation learning framework that integrates Large language models and Domain-specific small models (MolGraph-LarDo). Technically, we design a two-stage prompt strategy where DSMs are introduced to calibrate the knowledge provided by LLMs, enhancing the accuracy of domain-specific information and thus enabling LLMs to generate more precise textual descriptions for molecular samples. Subsequently, we employ a multi-modal alignment method to coordinate various modalities, including molecular graphs and their corresponding descriptive texts, to guide the pre-training of molecular representations. Extensive experiments demonstrate the effectiveness of the proposed method.
☆ Geometry Informed Tokenization of Molecules for Language Model Generation
We consider molecule generation in 3D space using language models (LMs), which requires discrete tokenization of 3D molecular geometries. Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored. Here, we attempt to bridge this gap by proposing the Geo2Seq, which converts molecular geometries into $SE(3)$-invariant 1D discrete sequences. Geo2Seq consists of canonical labeling and invariant spherical representation steps, which together maintain geometric and atomic fidelity in a format conducive to LMs. Our experiments show that, when coupled with Geo2Seq, various LMs excel in molecular geometry generation, especially in controlled generation tasks.
☆ Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data
Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present \emph{Factorized-Dreamer}, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at \url{https://github.com/yangxy/Factorized-Dreamer/}.
☆ Enhancing Reinforcement Learning Through Guided Search
With the aim of improving performance in Markov Decision Problem in an Off-Policy setting, we suggest taking inspiration from what is done in Offline Reinforcement Learning (RL). In Offline RL, it is a common practice during policy learning to maintain proximity to a reference policy to mitigate uncertainty, reduce potential policy errors, and help improve performance. We find ourselves in a different setting, yet it raises questions about whether a similar concept can be applied to enhance performance ie, whether it is possible to find a guiding policy capable of contributing to performance improvement, and how to incorporate it into our RL agent. Our attention is particularly focused on algorithms based on Monte Carlo Tree Search (MCTS) as a guide.MCTS renowned for its state-of-the-art capabilities across various domains, catches our interest due to its ability to converge to equilibrium in single-player and two-player contexts. By harnessing the power of MCTS as a guide for our RL agent, we observed a significant performance improvement, surpassing the outcomes achieved by utilizing each method in isolation. Our experiments were carried out on the Atari 100k benchmark.
comment: Accepted Paper at ECAI 2024; Extended Version
☆ Envisioning Possibilities and Challenges of AI for Personalized Cancer Care SC
The use of Artificial Intelligence (AI) in healthcare, including in caring for cancer survivors, has gained significant interest. However, gaps remain in our understanding of how such AI systems can provide care, especially for ethnic and racial minority groups who continue to face care disparities. Through interviews with six cancer survivors, we identify critical gaps in current healthcare systems such as a lack of personalized care and insufficient cultural and linguistic accommodation. AI, when applied to care, was seen as a way to address these issues by enabling real-time, culturally aligned, and linguistically appropriate interactions. We also uncovered concerns about the implications of AI-driven personalization, such as data privacy, loss of human touch in caregiving, and the risk of echo chambers that limit exposure to diverse information. We conclude by discussing the trade-offs between AI-enhanced personalization and the need for structural changes in healthcare that go beyond technological solutions, leading us to argue that we should begin by asking, ``Why personalization?''
comment: 7 pages, 1 table, short paper at CSCW 2024
☆ Perturb-and-Compare Approach for Detecting Out-of-Distribution Samples in Constrained Access Environments
Accessing machine learning models through remote APIs has been gaining prevalence following the recent trend of scaling up model parameters for increased performance. Even though these models exhibit remarkable ability, detecting out-of-distribution (OOD) samples remains a crucial safety concern for end users as these samples may induce unreliable outputs from the model. In this work, we propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user. To bypass the access restriction, MixDiff applies an identical input-level perturbation to a given target sample and a similar in-distribution (ID) sample, then compares the relative difference in the model outputs of these two samples. MixDiff is model-agnostic and compatible with existing output-based OOD detection methods. We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model and empirically demonstrate that MixDiff consistently enhances the OOD detection performance on various datasets in vision and text domains.
comment: Accepted to European Conference on Artificial Intelligence (ECAI) 2024
☆ Convert and Speak: Zero-shot Accent Conversion with Minimum Supervision
Low resource of parallel data is the key challenge of accent conversion(AC) problem in which both the pronunciation units and prosody pattern need to be converted. We propose a two-stage generative framework "convert-and-speak" in which the conversion is only operated on the semantic token level and the speech is synthesized conditioned on the converted semantic token with a speech generative model in target accent domain. The decoupling design enables the "speaking" module to use massive amount of target accent speech and relieves the parallel data required for the "conversion" module. Conversion with the bridge of semantic token also relieves the requirement for the data with text transcriptions and unlocks the usage of language pre-training technology to further efficiently reduce the need of parallel accent speech data. To reduce the complexity and latency of "speaking", a single-stage AR generative model is designed to achieve good quality as well as lower computation cost. Experiments on Indian-English to general American-English conversion show that the proposed framework achieves state-of-the-art performance in accent similarity, speech quality, and speaker maintenance with only 15 minutes of weakly parallel data which is not constrained to the same speaker. Extensive experimentation with diverse accent types suggests that this framework possesses a high degree of adaptability, making it readily scalable to accommodate other accents with low-resource data. Audio samples are available at https://www.microsoft.com/en-us/research/project/convert-and-speak-zero-shot-accent-conversion-with-minimumsupervision/.
comment: 9 pages, 4 figures, conference
☆ ARMADA: Attribute-Based Multimodal Data Augmentation
In Multimodal Language Models (MLMs), the cost of manually annotating high-quality image-text pair data for fine-tuning and alignment is extremely high. While existing multimodal data augmentation frameworks propose ways to augment image-text pairs, they either suffer from semantic inconsistency between texts and images, or generate unrealistic images, causing knowledge gap with real world examples. To address these issues, we propose Attribute-based Multimodal Data Augmentation (ARMADA), a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes of the mentioned entities. Specifically, we extract entities and their visual attributes from the original text data, then search for alternative values for the visual attributes under the guidance of knowledge bases (KBs) and large language models (LLMs). We then utilize an image-editing model to edit the images with the extracted attributes. ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation, (ii) generates visually similar images of disparate categories using neighboring entities in the KB hierarchy, and (iii) uses the commonsense knowledge of LLMs to modulate auxiliary visual attributes such as backgrounds for more robust representation of original entities. Our empirical results over four downstream tasks demonstrate the efficacy of our framework to produce high-quality data and enhance the model performance. This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
☆ No Screening is More Efficient with Multiple Objects
We study efficient mechanism design for allocating multiple heterogeneous objects. We aim to maximize the residual surplus, the total value generated from an allocation minus the costs for screening agents' values. We discover a robust trend indicating that no-screening mechanisms such as serial dictatorship with exogenous priority order tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on this implication, we propose the register-invite-book system (RIB) as an efficient system for scheduling vaccination against pandemic diseases.
☆ Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.
comment: weirdlabuw.github.io/vpl
☆ Synthesis of Reward Machines for Multi-Agent Equilibrium Design (Full Version)
Mechanism design is a well-established game-theoretic paradigm for designing games to achieve desired outcomes. This paper addresses a closely related but distinct concept, equilibrium design. Unlike mechanism design, the designer's authority in equilibrium design is more constrained; she can only modify the incentive structures in a given game to achieve certain outcomes without the ability to create the game from scratch. We study the problem of equilibrium design using dynamic incentive structures, known as reward machines. We use weighted concurrent game structures for the game model, with goals (for the players and the designer) defined as mean-payoff objectives. We show how reward machines can be used to represent dynamic incentives that allocate rewards in a manner that optimises the designer's goal. We also introduce the main decision problem within our framework, the payoff improvement problem. This problem essentially asks whether there exists a dynamic incentive (represented by some reward machine) that can improve the designer's payoff by more than a given threshold value. We present two variants of the problem: strong and weak. We demonstrate that both can be solved in polynomial time using a Turing machine equipped with an NP oracle. Furthermore, we also establish that these variants are either NP-hard or coNP-hard. Finally, we show how to synthesise the corresponding reward machine if it exists.
☆ FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant
The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptions of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods do not yield user-friendly and explainable results, complicating the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and the corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Base on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing the model's robustness. Extensive experiments demonstrate that our method not only provides user-friendly explainable results but also significantly boosts accuracy and robustness compared to previous methods.
comment: 17 pages, 18 figures; project page: https://ffaa-vl.github.io
☆ Facial Wrinkle Segmentation for Cosmetic Dermatology: Pretraining with Texture Map-Based Weak Supervision
Facial wrinkle detection plays a crucial role in cosmetic dermatology. Precise manual segmentation of facial wrinkles is challenging and time-consuming, with inherent subjectivity leading to inconsistent results among graders. To address this issue, we propose two solutions. First, we build and release the first public facial wrinkle dataset, `FFHQ-Wrinkle', an extension of the NVIDIA FFHQ dataset. This dataset includes 1,000 images with human labels and 50,000 images with automatically generated weak labels. This dataset can foster the research community to develop advanced wrinkle detection algorithms. Second, we introduce a training strategy for U-Net-like encoder-decoder models to detect wrinkles across the face automatically. Our method employs a two-stage training strategy: texture map pretraining and finetuning on human-labeled data. Initially, we pretrain models on a large dataset with weak labels (N=50k) or masked texture maps generated through computer vision techniques, without human intervention. Subsequently, we finetune the models using human-labeled data (N=1k), which consists of manually labeled wrinkle masks. During finetuning, the network inputs a combination of RGB and masked texture maps, comprising four channels. We effectively combine labels from multiple annotators to minimize subjectivity in manual labeling. Our strategies demonstrate improved segmentation performance in facial wrinkle segmentation both quantitatively and visually compared to existing pretraining methods.
☆ The Practimum-Optimum Algorithm for Manufacturing Scheduling: A Paradigm Shift Leading to Breakthroughs in Scale and Performance
The Practimum-Optimum (P-O) algorithm represents a paradigm shift in developing automatic optimization products for complex real-life business problems such as large-scale manufacturing scheduling. It leverages deep business domain expertise to create a group of virtual human expert (VHE) agents with different "schools of thought" on how to create high-quality schedules. By computerizing them into algorithms, P-O generates many valid schedules at far higher speeds than human schedulers are capable of. Initially, these schedules can also be local optimum peaks far away from high-quality schedules. By submitting these schedules to a reinforced machine learning algorithm (RL), P-O learns the weaknesses and strengths of each VHE schedule, and accordingly derives reward and punishment changes in the Demand Set that will modify the relative priorities for time and resource allocation that jobs received in the prior iteration that led to the current state of the schedule. These cause the core logic of the VHE algorithms to explore, in the subsequent iteration, substantially different parts of the schedules universe and potentially find higher-quality schedules. Using the hill climbing analogy, this may be viewed as a big jump, shifting from a given local peak to a faraway promising start point equipped with knowledge embedded in the demand set for future iterations. This is a fundamental difference from most contemporary algorithms, which spend considerable time on local micro-steps restricted to the neighbourhoods of local peaks they visit. This difference enables a breakthrough in scale and performance for fully automatic manufacturing scheduling in complex organizations. The P-O algorithm is at the heart of Plataine Scheduler that, in one click, routinely schedules 30,000-50,000 tasks for real-life complex manufacturing operations.
☆ MSDiagnosis: An EMR-based Dataset for Clinical Multi-Step Diagnosis
Clinical diagnosis is critical in medical practice, typically requiring a continuous and evolving process that includes primary diagnosis, differential diagnosis, and final diagnosis. However, most existing clinical diagnostic tasks are single-step processes, which does not align with the complex multi-step diagnostic procedures found in real-world clinical settings. In this paper, we propose a multi-step diagnostic task and annotate a clinical diagnostic dataset (MSDiagnosis). This dataset includes primary diagnosis, differential diagnosis, and final diagnosis questions. Additionally, we propose a novel and effective framework. This framework combines forward inference, backward inference, reflection, and refinement, enabling the LLM to self-evaluate and adjust its diagnostic results. To assess the effectiveness of our proposed method, we design and conduct extensive experiments. The experimental results demonstrate the effectiveness of the proposed method. We also provide a comprehensive experimental analysis and suggest future research directions for this task.
☆ Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs
We study the problem of computing deterministic optimal policies for constrained Markov decision processes (MDPs) with continuous state and action spaces, which are widely encountered in constrained dynamical systems. Designing deterministic policy gradient methods in continuous state and action spaces is particularly challenging due to the lack of enumerable state-action pairs and the adoption of deterministic policies, hindering the application of existing policy gradient methods for constrained MDPs. To this end, we develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence. Specifically, we leverage regularization of the Lagrangian of the constrained MDP to propose a deterministic policy gradient primal-dual (D-PGPD) algorithm that updates the deterministic policy via a quadratic-regularized gradient ascent step and the dual variable via a quadratic-regularized gradient descent step. We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair. We instantiate D-PGPD with function approximation and prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair, up to a function approximation error. Furthermore, we demonstrate the effectiveness of our method in two continuous control problems: robot navigation and fluid control. To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
☆ Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics
Mathematical models and algorithms are an essential part of mathematical research data, as they are epistemically grounding numerical data. In order to represent models and algorithms as well as their relationship semantically to make this research data FAIR, two previously distinct ontologies were merged and extended, becoming a living knowledge graph. The link between the two ontologies is established by introducing computational tasks, as they occur in modeling, corresponding to algorithmic tasks. Moreover, controlled vocabularies are incorporated and a new class, distinguishing base quantities from specific use case quantities, was introduced. Also, both models and algorithms can now be enriched with metadata. Subject-specific metadata is particularly relevant here, such as the symmetry of a matrix or the linearity of a mathematical model. This is the only way to express specific workflows with concrete models and algorithms, as the feasible solution algorithm can only be determined if the mathematical properties of a model are known. We demonstrate this using two examples from different application areas of applied mathematics. In addition, we have already integrated over 250 research assets from applied mathematics into our knowledge graph.
comment: Preprint submitted to the 18th International Conference on Metadata and Semantics Research 2024
☆ Edge-Cloud Collaborative Motion Planning for Autonomous Driving with Large Language Models
Integrating large language models (LLMs) into autonomous driving enhances personalization and adaptability in open-world scenarios. However, traditional edge computing models still face significant challenges in processing complex driving data, particularly regarding real-time performance and system efficiency. To address these challenges, this study introduces EC-Drive, a novel edge-cloud collaborative autonomous driving system with data drift detection capabilities. EC-Drive utilizes drift detection algorithms to selectively upload critical data, including new obstacles and traffic pattern changes, to the cloud for processing by GPT-4, while routine data is efficiently managed by smaller LLMs on edge devices. This approach not only reduces inference latency but also improves system efficiency by optimizing communication resource use. Experimental validation confirms the system's robust processing capabilities and practical applicability in real-world driving conditions, demonstrating the effectiveness of this edge-cloud collaboration framework. Our data and system demonstration will be released at https://sites.google.com/view/ec-drive.
☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
☆ AdaResNet: Enhancing Residual Networks with Dynamic Weight Adjustment for Improved Feature Integration
In very deep neural networks, gradients can become extremely small during backpropagation, making it challenging to train the early layers. ResNet (Residual Network) addresses this issue by enabling gradients to flow directly through the network via skip connections, facilitating the training of much deeper networks. However, in these skip connections, the input ipd is directly added to the transformed data tfd, treating ipd and tfd equally, without adapting to different scenarios. In this paper, we propose AdaResNet (Auto-Adapting Residual Network), which automatically adjusts the ratio between ipd and tfd based on the training data. We introduce a variable, weight}_{tfd}^{ipd, to represent this ratio. This variable is dynamically adjusted during backpropagation, allowing it to adapt to the training data rather than remaining fixed. Experimental results demonstrate that AdaResNet achieves a maximum accuracy improvement of over 50\% compared to traditional ResNet.
☆ Contextual Importance and Utility in Python: New Functionality and Insights with the py-ciu Package IJCAI 2024
The availability of easy-to-use and reliable software implementations is important for allowing researchers in academia and industry to test, assess and take into use eXplainable AI (XAI) methods. This paper describes the \texttt{py-ciu} Python implementation of the Contextual Importance and Utility (CIU) model-agnostic, post-hoc explanation method and illustrates capabilities of CIU that go beyond the current state-of-the-art that could be useful for XAI practitioners in general.
comment: In Proceedings of XAI 2024 Workshop of 33rd International Joint Conference on Artificial Intelligence (IJCAI 2024), Jeju, South Corea
☆ Weakly Supervised Pretraining and Multi-Annotator Supervised Finetuning for Facial Wrinkle Detection
1. Research question: With the growing interest in skin diseases and skin aesthetics, the ability to predict facial wrinkles is becoming increasingly important. This study aims to evaluate whether a computational model, convolutional neural networks (CNN), can be trained for automated facial wrinkle segmentation. 2. Findings: Our study presents an effective technique for integrating data from multiple annotators and illustrates that transfer learning can enhance performance, resulting in dependable segmentation of facial wrinkles. 3. Meaning: This approach automates intricate and time-consuming tasks of wrinkle analysis with a deep learning framework. It could be used to facilitate skin treatments and diagnostics.
☆ Principle Driven Parameterized Fiber Model based on GPT-PINN Neural Network
In cater the need of Beyond 5G communications, large numbers of data driven artificial intelligence based fiber models has been put forward as to utilize artificial intelligence's regression ability to predict pulse evolution in fiber transmission at a much faster speed compared with the traditional split step Fourier method. In order to increase the physical interpretabiliy, principle driven fiber models have been proposed which inserts the Nonlinear Schodinger Equation into their loss functions. However, regardless of either principle driven or data driven models, they need to be re-trained the whole model under different transmission conditions. Unfortunately, this situation can be unavoidable when conducting the fiber communication optimization work. If the scale of different transmission conditions is large, then the whole model needs to be retrained large numbers of time with relatively large scale of parameters which may consume higher time costs. Computing efficiency will be dragged down as well. In order to address this problem, we propose the principle driven parameterized fiber model in this manuscript. This model breaks down the predicted NLSE solution with respect to one set of transmission condition into the linear combination of several eigen solutions which were outputted by each pre-trained principle driven fiber model via the reduced basis method. Therefore, the model can greatly alleviate the heavy burden of re-training since only the linear combination coefficients need to be found when changing the transmission condition. Not only strong physical interpretability can the model posses, but also higher computing efficiency can be obtained. Under the demonstration, the model's computational complexity is 0.0113% of split step Fourier method and 1% of the previously proposed principle driven fiber model.
☆ Caption-Driven Explorations: Aligning Image and Text Embeddings through Human-Inspired Foveated Vision
Understanding human attention is crucial for vision science and AI. While many models exist for free-viewing, less is known about task-driven image exploration. To address this, we introduce CapMIT1003, a dataset with captions and click-contingent image explorations, to study human attention during the captioning task. We also present NevaClip, a zero-shot method for predicting visual scanpaths by combining CLIP models with NeVA algorithms. NevaClip generates fixations to align the representations of foveated visual stimuli and captions. The simulated scanpaths outperform existing human attention models in plausibility for captioning and free-viewing tasks. This research enhances the understanding of human attention and advances scanpath prediction models.
comment: arXiv admin note: substantial text overlap with arXiv:2305.12380
☆ Fiber Transmission Model with Parameterized Inputs based on GPT-PINN Neural Network
In this manuscript, a novelty principle driven fiber transmission model for short-distance transmission with parameterized inputs is put forward. By taking into the account of the previously proposed principle driven fiber model, the reduced basis expansion method and transforming the parameterized inputs into parameterized coefficients of the Nonlinear Schrodinger Equations, universal solutions with respect to inputs corresponding to different bit rates can all be obtained without the need of re-training the whole model. This model, once adopted, can have prominent advantages in both computation efficiency and physical background. Besides, this model can still be effectively trained without the needs of transmitted signals collected in advance. Tasks of on-off keying signals with bit rates ranging from 2Gbps to 50Gbps are adopted to demonstrate the fidelity of the model.
☆ Microscopic Analysis on LLM players via Social Deduction Game
Recent studies have begun developing autonomous game players for social deduction games using large language models (LLMs). When building LLM players, fine-grained evaluations are crucial for addressing weaknesses in game-playing abilities. However, existing studies have often overlooked such assessments. Specifically, we point out two issues with the evaluation methods employed. First, game-playing abilities have typically been assessed through game-level outcomes rather than specific event-level skills; Second, error analyses have lacked structured methodologies. To address these issues, we propose an approach utilizing a variant of the SpyFall game, named SpyGame. We conducted an experiment with four LLMs, analyzing their gameplay behavior in SpyGame both quantitatively and qualitatively. For the quantitative analysis, we introduced eight metrics to resolve the first issue, revealing that these metrics are more effective than existing ones for evaluating the two critical skills: intent identification and camouflage. In the qualitative analysis, we performed thematic analysis to resolve the second issue. This analysis identifies four major categories that affect gameplay of LLMs. Additionally, we demonstrate how these categories complement and support the findings from the quantitative analysis.
comment: Under review, 10 pages
☆ Benchmarking LLMs for Translating Classical Chinese Poetry:Evaluating Adequacy, Fluency, and Elegance
Large language models (LLMs) have shown remarkable performance in general translation tasks. However, the increasing demand for high-quality translations that are not only adequate but also fluent and elegant. To assess the extent to which current LLMs can meet these demands, we introduce a suitable benchmark for translating classical Chinese poetry into English. This task requires not only adequacy in translating culturally and historically significant content but also a strict adherence to linguistic fluency and poetic elegance. Our study reveals that existing LLMs fall short of this task. To address these issues, we propose RAT, a \textbf{R}etrieval-\textbf{A}ugmented machine \textbf{T}ranslation method that enhances the translation process by incorporating knowledge related to classical poetry. Additionally, we propose an automatic evaluation metric based on GPT-4, which better assesses translation quality in terms of adequacy, fluency, and elegance, overcoming the limitations of traditional metrics. Our dataset and code will be made available.
comment: Work in progress
☆ SZU-AFS Antispoofing System for the ASVspoof 5 Challenge
This paper presents the SZU-AFS anti-spoofing system, designed for Track 1 of the ASVspoof 5 Challenge under open conditions. The system is built with four stages: selecting a baseline model, exploring effective data augmentation (DA) methods for fine-tuning, applying a co-enhancement strategy based on gradient norm aware minimization (GAM) for secondary fine-tuning, and fusing logits scores from the two best-performing fine-tuned models. The system utilizes the Wav2Vec2 front-end feature extractor and the AASIST back-end classifier as the baseline model. During model fine-tuning, three distinct DA policies have been investigated: single-DA, random-DA, and cascade-DA. Moreover, the employed GAM-based co-enhancement strategy, designed to fine-tune the augmented model at both data and optimizer levels, helps the Adam optimizer find flatter minima, thereby boosting model generalization. Overall, the final fusion system achieves a minDCF of 0.115 and an EER of 4.04% on the evaluation set.
comment: 8 pages, 2 figures, ASVspoof 5 Workshop (Interspeech2024 Satellite)
☆ LCE: A Framework for Explainability of DNNs for Ultrasound Image Based on Concept Discovery
Explaining the decisions of Deep Neural Networks (DNNs) for medical images has become increasingly important. Existing attribution methods have difficulty explaining the meaning of pixels while existing concept-based methods are limited by additional annotations or specific model structures that are difficult to apply to ultrasound images. In this paper, we propose the Lesion Concept Explainer (LCE) framework, which combines attribution methods with concept-based methods. We introduce the Segment Anything Model (SAM), fine-tuned on a large number of medical images, for concept discovery to enable a meaningful explanation of ultrasound image DNNs. The proposed framework is evaluated in terms of both faithfulness and understandability. We point out deficiencies in the popular faithfulness evaluation metrics and propose a new evaluation metric. Our evaluation of public and private breast ultrasound datasets (BUSI and FG-US-B) shows that LCE performs well compared to commonly-used explainability methods. Finally, we also validate that LCE can consistently provide reliable explanations for more meaningful fine-grained diagnostic tasks in breast ultrasound.
☆ Preoperative Rotator Cuff Tear Prediction from Shoulder Radiographs using a Convolutional Block Attention Module-Integrated Neural Network
Research question: We test whether a plane shoulder radiograph can be used together with deep learning methods to identify patients with rotator cuff tears as opposed to using an MRI in standard of care. Findings: By integrating convolutional block attention modules into a deep neural network, our model demonstrates high accuracy in detecting patients with rotator cuff tears, achieving an average AUC of 0.889 and an accuracy of 0.831. Meaning: This study validates the efficacy of our deep learning model to accurately detect rotation cuff tears from radiographs, offering a viable pre-assessment or alternative to more expensive imaging techniques such as MRI.
☆ Uncertainty Quantification of Pre-Trained and Fine-Tuned Surrogate Models using Conformal Prediction
Data-driven surrogate models have shown immense potential as quick, inexpensive approximations to complex numerical and experimental modelling tasks. However, most surrogate models characterising physical systems do not quantify their uncertainty, rendering their predictions unreliable, and needing further validation. Though Bayesian approximations offer some solace in estimating the error associated with these models, they cannot provide they cannot provide guarantees, and the quality of their inferences depends on the availability of prior information and good approximations to posteriors for complex problems. This is particularly pertinent to multi-variable or spatio-temporal problems. Our work constructs and formalises a conformal prediction framework that satisfies marginal coverage for spatio-temporal predictions in a model-agnostic manner, requiring near-zero computational costs. The paper provides an extensive empirical study of the application of the framework to ascertain valid error bars that provide guaranteed coverage across the surrogate model's domain of operation. The application scope of our work extends across a large range of spatio-temporal models, ranging from solving partial differential equations to weather forecasting. Through the applications, the paper looks at providing statistically valid error bars for deterministic models, as well as crafting guarantees to the error bars of probabilistic models. The paper concludes with a viable conformal prediction formalisation that provides guaranteed coverage of the surrogate model, regardless of model architecture, and its training regime and is unbothered by the curse of dimensionality.
☆ New spectral imaging biomarkers for sepsis and mortality in intensive care
With sepsis remaining a leading cause of mortality, early identification of septic patients and those at high risk of death is a challenge of high socioeconomic importance. The driving hypothesis of this study was that hyperspectral imaging (HSI) could provide novel biomarkers for sepsis diagnosis and treatment management due to its potential to monitor microcirculatory alterations. We conducted a comprehensive study involving HSI data of the palm and fingers from more than 480 patients on the day of their intensive care unit (ICU) admission. The findings demonstrate that HSI measurements can predict sepsis with an area under the receiver operating characteristic curve (AUROC) of 0.80 (95 % confidence interval (CI) [0.76; 0.84]) and mortality with an AUROC of 0.72 (95 % CI [0.65; 0.79]). The predictive performance improves substantially when additional clinical data is incorporated, leading to an AUROC of up to 0.94 (95 % CI [0.92; 0.96]) for sepsis and 0.84 (95 % CI [0.78; 0.89]) for mortality. We conclude that HSI presents novel imaging biomarkers for the rapid, non-invasive prediction of sepsis and mortality, suggesting its potential as an important modality for guiding diagnosis and treatment.
comment: Markus A. Weigand, Lena Maier-Hein and Maximilian Dietrich contributed equally
☆ 3D-Aware Instance Segmentation and Tracking in Egocentric Videos
Egocentric videos present unique challenges for 3D scene understanding due to rapid camera motion, frequent object occlusions, and limited object visibility. This paper introduces a novel approach to instance segmentation and tracking in first-person video that leverages 3D awareness to overcome these obstacles. Our method integrates scene geometry, 3D object centroid tracking, and instance segmentation to create a robust framework for analyzing dynamic egocentric scenes. By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches. Extensive evaluations on the challenging EPIC Fields dataset demonstrate significant improvements across a range of tracking and segmentation consistency metrics. Specifically, our method outperforms the next best performing approach by $7$ points in Association Accuracy (AssA) and $4.5$ points in IDF1 score, while reducing the number of ID switches by $73\%$ to $80\%$ across various object categories. Leveraging our tracked instance segmentations, we showcase downstream applications in 3D object reconstruction and amodal video object segmentation in these egocentric settings.
☆ TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition
While Parameter-Efficient Fine-Tuning (PEFT) methods like LoRA have effectively addressed GPU memory constraints during fine-tuning, their performance often falls short, especially in multidimensional task scenarios. To address this issue, one straightforward solution is to introduce task-specific LoRA modules as domain experts, leveraging the modeling of multiple experts' capabilities and thus enhancing the general capability of multi-task learning. Despite promising, these additional components often add complexity to the training and inference process, contravening the efficient characterization of PEFT designed for. Considering this, we introduce an innovative PEFT method, TeamLoRA, consisting of a collaboration and competition module for experts, and thus achieving the right balance of effectiveness and efficiency: (i) For collaboration, a novel knowledge-sharing and -organizing mechanism is devised to appropriately reduce the scale of matrix operations, thereby boosting the training and inference speed. (ii) For competition, we propose leveraging a game-theoretic interaction mechanism for experts, encouraging experts to transfer their domain-specific knowledge while facing diverse downstream tasks, and thus enhancing the performance. By doing so, TeamLoRA elegantly connects the experts as a "Team" with internal collaboration and competition, enabling a faster and more accurate PEFT paradigm for multi-task learning. To validate the superiority of TeamLoRA, we curate a comprehensive multi-task evaluation(CME) benchmark to thoroughly assess the capability of multi-task learning. Experiments conducted on our CME and other benchmarks indicate the effectiveness and efficiency of TeamLoRA. Our project is available at https://github.com/Lin-Tianwei/TeamLoRA.
☆ Self-Directed Turing Test for Large Language Models
The Turing test examines whether AIs can exhibit human-like behaviour in natural language conversations. Traditional Turing tests adopt a rigid dialogue format where each participant sends only one message each time and require continuous human involvement to direct the entire interaction with the test subject. This fails to reflect a natural conversational style and hinders the evaluation of Large Language Models (LLMs) in complex and prolonged dialogues. This paper proposes the Self-Directed Turing Test, which extends the original test with a burst dialogue format, allowing more dynamic exchanges by multiple consecutive messages. It further efficiently reduces human workload by having the LLM self-direct the majority of the test process, iteratively generating dialogues that simulate its interaction with humans. With the pseudo-dialogue history, the model then engages in a shorter dialogue with a human, which is paired with a human-human conversation on the same topic to be judged using questionnaires. We introduce the X-Turn Pass-Rate metric to assess the human likeness of LLMs across varying durations. While LLMs like GPT-4 initially perform well, achieving pass rates of 51.9% and 38.9% during 3 turns and 10 turns of dialogues respectively, their performance drops as the dialogue progresses, which underscores the difficulty in maintaining consistency in the long term.
☆ Importance Weighting Can Help Large Language Models Self-Improve
Large language models (LLMs) have shown remarkable capability in numerous tasks and applications. However, fine-tuning LLMs using high-quality datasets under external supervision remains prohibitively expensive. In response, LLM self-improvement approaches have been vibrantly developed recently. The typical paradigm of LLM self-improvement involves training LLM on self-generated data, part of which may be detrimental and should be filtered out due to the unstable data quality. While current works primarily employs filtering strategies based on answer correctness, in this paper, we demonstrate that filtering out correct but with high distribution shift extent (DSE) samples could also benefit the results of self-improvement. Given that the actual sample distribution is usually inaccessible, we propose a new metric called DS weight to approximate DSE, inspired by the Importance Weighting methods. Consequently, we integrate DS weight with self-consistency to comprehensively filter the self-generated samples and fine-tune the language model. Experiments show that with only a tiny valid set (up to 5\% size of the training set) to compute DS weight, our approach can notably promote the reasoning ability of current LLM self-improvement methods. The resulting performance is on par with methods that rely on external supervision from pre-trained reward models.
☆ Demystifying Reinforcement Learning in Production Scheduling via Explainable AI
Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems. Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque. We conduct a case study where we systematically apply two explainable AI (xAI) frameworks, namely SHAP (DeepSHAP) and Captum (Input x Gradient), to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production. We find that methods in the xAI literature lack falsifiability and consistent terminology, do not adequately consider domain-knowledge, the target audience or real-world scenarios, and typically provide simple input-output explanations rather than causal interpretations. To resolve this issue, we introduce a hypotheses-based workflow. This approach enables us to inspect whether explanations align with domain knowledge and match the reward hypotheses of the agent. We furthermore tackle the challenge of communicating these insights to third parties by tailoring hypotheses to the target audience, which can serve as interpretations of the agent's behavior after verification. Our proposed workflow emphasizes the repeated verification of explanations and may be applicable to various DRL-based scheduling use cases.
☆ Segment-Anything Models Achieve Zero-shot Robustness in Autonomous Driving
Semantic segmentation is a significant perception task in autonomous driving. It suffers from the risks of adversarial examples. In the past few years, deep learning has gradually transitioned from convolutional neural network (CNN) models with a relatively small number of parameters to foundation models with a huge number of parameters. The segment-anything model (SAM) is a generalized image segmentation framework that is capable of handling various types of images and is able to recognize and segment arbitrary objects in an image without the need to train on a specific object. It is a unified model that can handle diverse downstream tasks, including semantic segmentation, object detection, and tracking. In the task of semantic segmentation for autonomous driving, it is significant to study the zero-shot adversarial robustness of SAM. Therefore, we deliver a systematic empirical study on the robustness of SAM without additional training. Based on the experimental results, the zero-shot adversarial robustness of the SAM under the black-box corruptions and white-box adversarial attacks is acceptable, even without the need for additional training. The finding of this study is insightful in that the gigantic model parameters and huge amounts of training data lead to the phenomenon of emergence, which builds a guarantee of adversarial robustness. SAM is a vision foundation model that can be regarded as an early prototype of an artificial general intelligence (AGI) pipeline. In such a pipeline, a unified model can handle diverse tasks. Therefore, this research not only inspects the impact of vision foundation models on safe autonomous driving but also provides a perspective on developing trustworthy AGI. The code is available at: https://github.com/momo1986/robust_sam_iv.
comment: Accepted to IAVVC 2024
☆ Minor DPO reject penalty to increase training robustness
Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task. In the past it uses reinforcement learning from human feedback (RLHF) algorithm to optimize the LLM policy to align with these preferences and not to draft too far from the original model. Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method. Using preference pairs of chosen and reject data, DPO models the relative log probability as implicit reward function and optimize LLM policy using a simple binary cross entropy objective directly. DPO is quite straight forward and easy to be understood. It perform efficiently and well in most cases. In this article, we analyze the working mechanism of $\beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification. With these insights, we propose MinorDPO, which is better aligned to the original RL algorithm, and increase the stability of preference optimization process.
comment: 8 pages, 19 figures
☆ TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics
Predicting the resilience of complex networks, which represents the ability to retain fundamental functionality amidst external perturbations or internal failures, plays a critical role in understanding and improving real-world complex systems. Traditional theoretical approaches grounded in nonlinear dynamical systems rely on prior knowledge of network dynamics. On the other hand, data-driven approaches frequently encounter the challenge of insufficient labeled data, a predicament commonly observed in real-world scenarios. In this paper, we introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics. The core idea is the strategic utilization of the inherent joint distribution present in unlabeled network data, facilitating the learning process of the resilience predictor by illuminating the relationship between network topology and dynamics. Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%. Furthermore, the framework still demonstrates a pronounced augmentation capability in extreme low-data regimes, thereby underscoring its utility and robustness in enhancing the prediction of network resilience. We have open-sourced our code in the following link, https://github.com/tsinghua-fib-lab/TDNetGen.
☆ CMoralEval: A Moral Evaluation Benchmark for Chinese Large Language Models ACL 2024
What a large language model (LLM) would respond in ethically relevant context? In this paper, we curate a large benchmark CMoralEval for morality evaluation of Chinese LLMs. The data sources of CMoralEval are two-fold: 1) a Chinese TV program discussing Chinese moral norms with stories from the society and 2) a collection of Chinese moral anomies from various newspapers and academic papers on morality. With these sources, we aim to create a moral evaluation dataset characterized by diversity and authenticity. We develop a morality taxonomy and a set of fundamental moral principles that are not only rooted in traditional Chinese culture but also consistent with contemporary societal norms. To facilitate efficient construction and annotation of instances in CMoralEval, we establish a platform with AI-assisted instance generation to streamline the annotation process. These help us curate CMoralEval that encompasses both explicit moral scenarios (14,964 instances) and moral dilemma scenarios (15,424 instances), each with instances from different data sources. We conduct extensive experiments with CMoralEval to examine a variety of Chinese LLMs. Experiment results demonstrate that CMoralEval is a challenging benchmark for Chinese LLMs. The dataset is publicly available at \url{https://github.com/tjunlp-lab/CMoralEval}.
comment: Accepted by ACL 2024 (Findings)
☆ Contextual Dual Learning Algorithm with Listwise Distillation for Unbiased Learning to Rank
Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model. The effectiveness of the existing ULTR methods has primarily been validated on synthetic datasets. However, their performance on real-world click data remains unclear. Recently, Baidu released a large publicly available dataset of their web search logs. Subsequently, the NTCIR-17 ULTRE-2 task released a subset dataset extracted from it. We conduct experiments on commonly used or effective ULTR methods on this subset to determine whether they maintain their effectiveness. In this paper, we propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to simultaneously address both position bias and contextual bias. We utilize a listwise-input ranking model to obtain reconstructed feature vectors incorporating local contextual information and employ the Dual Learning Algorithm (DLA) method to jointly train this ranking model and a propensity model to address position bias. As this ranking model learns the interaction information within the documents list of the training set, to enhance the ranking model's generalization ability, we additionally train a pointwise-input ranking model to learn the listwise-input ranking model's capability for relevance judgment in a listwise manner. Extensive experiments and analysis confirm the effectiveness of our approach.
comment: 12 pages, 2 figures
☆ AutoML-guided Fusion of Entity and LLM-based representations
Large semantic knowledge bases are grounded in factual knowledge. However, recent approaches to dense text representations (embeddings) do not efficiently exploit these resources. Dense and robust representations of documents are essential for effectively solving downstream classification and retrieval tasks. This work demonstrates that injecting embedded information from knowledge bases can augment the performance of contemporary Large Language Model (LLM)-based representations for the task of text classification. Further, by considering automated machine learning (AutoML) with the fused representation space, we demonstrate it is possible to improve classification accuracy even if we use low-dimensional projections of the original representation space obtained via efficient matrix factorization. This result shows that significantly faster classifiers can be achieved with minimal or no loss in predictive performance, as demonstrated using five strong LLM baselines on six diverse real-life datasets.
☆ GoNoGo: An Efficient LLM-based Multi-Agent System for Streamlining Automotive Software Release Decision-Making
Traditional methods for making software deployment decisions in the automotive industry typically rely on manual analysis of tabular software test data. These methods often lead to higher costs and delays in the software release cycle due to their labor-intensive nature. Large Language Models (LLMs) present a promising solution to these challenges. However, their application generally demands multiple rounds of human-driven prompt engineering, which limits their practical deployment, particularly for industrial end-users who need reliable and efficient results. In this paper, we propose GoNoGo, an LLM agent system designed to streamline automotive software deployment while meeting both functional requirements and practical industrial constraints. Unlike previous systems, GoNoGo is specifically tailored to address domain-specific and risk-sensitive systems. We evaluate GoNoGo's performance across different task difficulties using zero-shot and few-shot examples taken from industrial practice. Our results show that GoNoGo achieves a 100% success rate for tasks up to Level 2 difficulty with 3-shot examples, and maintains high performance even for more complex tasks. We find that GoNoGo effectively automates decision-making for simpler tasks, significantly reducing the need for manual intervention. In summary, GoNoGo represents an efficient and user-friendly LLM-based solution currently employed in our industrial partner's company to assist with software release decision-making, supporting more informed and timely decisions in the release process for risk-sensitive vehicle systems.
☆ Propagating the prior from shallow to deep with a pre-trained velocity-model Generative Transformer network
Building subsurface velocity models is essential to our goals in utilizing seismic data for Earth discovery and exploration, as well as monitoring. With the dawn of machine learning, these velocity models (or, more precisely, their distribution) can be stored accurately and efficiently in a generative model. These stored velocity model distributions can be utilized to regularize or quantify uncertainties in inverse problems, like full waveform inversion. However, most generators, like normalizing flows or diffusion models, treat the image (velocity model) uniformly, disregarding spatial dependencies and resolution changes with respect to the observation locations. To address this weakness, we introduce VelocityGPT, a novel implementation that utilizes Transformer decoders trained autoregressively to generate a velocity model from shallow subsurface to deep. Owing to the fact that seismic data are often recorded on the Earth's surface, a top-down generator can utilize the inverted information in the shallow as guidance (prior) to generating the deep. To facilitate the implementation, we use an additional network to compress the velocity model. We also inject prior information, like well or structure (represented by a migration image) to generate the velocity model. Using synthetic data, we demonstrate the effectiveness of VelocityGPT as a promising approach in generative model applications for seismic velocity model building.
☆ Event Stream based Human Action Recognition: A High-Definition Benchmark Dataset and Algorithms
Human Action Recognition (HAR) stands as a pivotal research domain in both computer vision and artificial intelligence, with RGB cameras dominating as the preferred tool for investigation and innovation in this field. However, in real-world applications, RGB cameras encounter numerous challenges, including light conditions, fast motion, and privacy concerns. Consequently, bio-inspired event cameras have garnered increasing attention due to their advantages of low energy consumption, high dynamic range, etc. Nevertheless, most existing event-based HAR datasets are low resolution ($346 \times 260$). In this paper, we propose a large-scale, high-definition ($1280 \times 800$) human action recognition dataset based on the CeleX-V event camera, termed CeleX-HAR. It encompasses 150 commonly occurring action categories, comprising a total of 124,625 video sequences. Various factors such as multi-view, illumination, action speed, and occlusion are considered when recording these data. To build a more comprehensive benchmark dataset, we report over 20 mainstream HAR models for future works to compare. In addition, we also propose a novel Mamba vision backbone network for event stream based HAR, termed EVMamba, which equips the spatial plane multi-directional scanning and novel voxel temporal scanning mechanism. By encoding and mining the spatio-temporal information of event streams, our EVMamba has achieved favorable results across multiple datasets. Both the dataset and source code will be released on \url{https://github.com/Event-AHU/CeleX-HAR}
comment: In Peer Review
☆ Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method KDD 2024
Reciprocal recommender systems~(RRS), conducting bilateral recommendations between two involved parties, have gained increasing attention for enhancing matching efficiency. However, the majority of existing methods in the literature still reuse conventional ranking metrics to separately assess the performance on each side of the recommendation process. These methods overlook the fact that the ranking outcomes of both sides collectively influence the effectiveness of the RRS, neglecting the necessity of a more holistic evaluation and a capable systemic solution. In this paper, we systemically revisit the task of reciprocal recommendation, by introducing the new metrics, formulation, and method. Firstly, we propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS from three distinct perspectives: overall coverage, bilateral stability, and balanced ranking. These metrics provide a more holistic understanding of the system's effectiveness and enable a comprehensive evaluation. Furthermore, we formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions, which can better model the decoupled effects of potential influencing factors. By utilizing the potential outcome framework, we further develop a model-agnostic causal reciprocal recommendation method that considers the causal effects of recommendations. Additionally, we introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics. Extensive experiments on two real-world datasets from recruitment and dating scenarios demonstrate the effectiveness of our proposed metrics and approach. The code and dataset are available at: https://github.com/RUCAIBox/CRRS.
comment: KDD 2024
☆ Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction
Prostate cancer is the second most common cancer in males worldwide, and mpMRI is commonly used for diagnosis. However, interpreting mpMRI is challenging and requires expertise from radiologists. This highlights the urgent need for automated grading in mpMRI. Existing studies lack integration of clinical prior information and suffer from uneven training sample distribution due to prevalence. Therefore, we propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI. Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training. Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem. This method adjusts the training dynamically based on accuracy and recall in the validation set, resulting in high accuracy and recall simultaneously in the testing set.Thirdly, we design an Enhanced Cascade Prostate Cancer Classifier that classifies prostate cancer into different levels in an interpretable way, which refines the classification results and helps with clinical intervention. Our method is validated through experiments on the PI-CAI dataset and outperforms other methods with a more balanced result in both accuracy and recall rate.
☆ R2GenCSR: Retrieving Context Samples for Large Language Model based X-ray Medical Report Generation
Inspired by the tremendous success of Large Language Models (LLMs), existing X-ray medical report generation methods attempt to leverage large models to achieve better performance. They usually adopt a Transformer to extract the visual features of a given X-ray image, and then, feed them into the LLM for text generation. How to extract more effective information for the LLMs to help them improve final results is an urgent problem that needs to be solved. Additionally, the use of visual Transformer models also brings high computational complexity. To address these issues, this paper proposes a novel context-guided efficient X-ray medical report generation framework. Specifically, we introduce the Mamba as the vision backbone with linear complexity, and the performance obtained is comparable to that of the strong Transformer model. More importantly, we perform context retrieval from the training set for samples within each mini-batch during the training phase, utilizing both positively and negatively related samples to enhance feature representation and discriminative learning. Subsequently, we feed the vision tokens, context information, and prompt statements to invoke the LLM for generating high-quality medical reports. Extensive experiments on three X-ray report generation datasets (i.e., IU-Xray, MIMIC-CXR, CheXpert Plus) fully validated the effectiveness of our proposed model. The source code of this work will be released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
comment: In Peer Review
☆ Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs
Detecting and quantifying issue framing in textual discourse - the perspective one takes to a given topic (e.g. climate science vs. denialism, misogyny vs. gender equality) - is highly valuable to a range of end-users from social and political scientists to program evaluators and policy analysts. However, conceptual framing is notoriously challenging for automated natural language processing (NLP) methods since the words and phrases used by either `side' of an issue are often held in common, with only subtle stylistic flourishes separating their use. Here we develop and rigorously evaluate new detection methods for issue framing and narrative analysis within large text datasets. By introducing a novel application of next-token log probabilities derived from generative large language models (LLMs) we show that issue framing can be reliably and efficiently detected in large corpora with only a few examples of either perspective on a given issue, a method we call `paired completion'. Through 192 independent experiments over three novel, synthetic datasets, we evaluate paired completion against prompt-based LLM methods and labelled methods using traditional NLP and recent LLM contextual embeddings. We additionally conduct a cost-based analysis to mark out the feasible set of performant methods at production-level scales, and a model bias analysis. Together, our work demonstrates a feasible path to scalable, accurate and low-bias issue-framing in large corpora.
comment: 9 pages, 4 figures
☆ Mutually-Aware Feature Learning for Few-Shot Object Counting
Few-shot object counting has garnered significant attention for its practicality as it aims to count target objects in a query image based on given exemplars without the need for additional training. However, there is a shortcoming in the prevailing extract-and-match approach: query and exemplar features lack interaction during feature extraction since they are extracted unaware of each other and later correlated based on similarity. This can lead to insufficient target awareness of the extracted features, resulting in target confusion in precisely identifying the actual target when multiple class objects coexist. To address this limitation, we propose a novel framework, Mutually-Aware FEAture learning(MAFEA), which encodes query and exemplar features mutually aware of each other from the outset. By encouraging interaction between query and exemplar features throughout the entire pipeline, we can obtain target-aware features that are robust to a multi-category scenario. Furthermore, we introduce a background token to effectively associate the target region of query with exemplars and decouple its background region from them. Our extensive experiments demonstrate that our model reaches a new state-of-the-art performance on the two challenging benchmarks, FSCD-LVIS and FSC-147, with a remarkably reduced degree of the target confusion problem.
comment: Submitted to Pattern Recognition
☆ Pedestrian Attribute Recognition: A New Benchmark Dataset and A Large Language Model Augmented Framework SP60
Pedestrian Attribute Recognition (PAR) is one of the indispensable tasks in human-centered research. However, existing datasets neglect different domains (e.g., environments, times, populations, and data sources), only conducting simple random splits, and the performance of these datasets has already approached saturation. In the past five years, no large-scale dataset has been opened to the public. To address this issue, this paper proposes a new large-scale, cross-domain pedestrian attribute recognition dataset to fill the data gap, termed MSP60K. It consists of 60,122 images and 57 attribute annotations across eight scenarios. Synthetic degradation is also conducted to further narrow the gap between the dataset and real-world challenging scenarios. To establish a more rigorous benchmark, we evaluate 17 representative PAR models under both random and cross-domain split protocols on our dataset. Additionally, we propose an innovative Large Language Model (LLM) augmented PAR framework, named LLM-PAR. This framework processes pedestrian images through a Vision Transformer (ViT) backbone to extract features and introduces a multi-embedding query Transformer to learn partial-aware features for attribute classification. Significantly, we enhance this framework with LLM for ensemble learning and visual feature augmentation. Comprehensive experiments across multiple PAR benchmark datasets have thoroughly validated the efficacy of our proposed framework. The dataset and source code accompanying this paper will be made publicly available at \url{https://github.com/Event-AHU/OpenPAR}.
comment: MSP60K PAR Benchmark Dataset, LLM based PAR model, In Peer Review
☆ Partial-Multivariate Model for Forecasting
When solving forecasting problems including multiple time-series features, existing approaches often fall into two extreme categories, depending on whether to utilize inter-feature information: univariate and complete-multivariate models. Unlike univariate cases which ignore the information, complete-multivariate models compute relationships among a complete set of features. However, despite the potential advantage of leveraging the additional information, complete-multivariate models sometimes underperform univariate ones. Therefore, our research aims to explore a middle ground between these two by introducing what we term Partial-Multivariate models where a neural network captures only partial relationships, that is, dependencies within subsets of all features. To this end, we propose PMformer, a Transformer-based partial-multivariate model, with its training algorithm. We demonstrate that PMformer outperforms various univariate and complete-multivariate models, providing a theoretical rationale and empirical analysis for its superiority. Additionally, by proposing an inference technique for PMformer, the forecasting accuracy is further enhanced. Finally, we highlight other advantages of PMformer: efficiency and robustness under missing features.
comment: 25 pages
☆ Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering ECCV 2024
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
comment: ECCV 2024, Project page: https://research.nvidia.com/labs/toronto-ai/DiPIR/
☆ LightWeather: Harnessing Absolute Positional Encoding to Efficient and Scalable Global Weather Forecasting
Recently, Transformers have gained traction in weather forecasting for their capability to capture long-term spatial-temporal correlations. However, their complex architectures result in large parameter counts and extended training times, limiting their practical application and scalability to global-scale forecasting. This paper aims to explore the key factor for accurate weather forecasting and design more efficient solutions. Interestingly, our empirical findings reveal that absolute positional encoding is what really works in Transformer-based weather forecasting models, which can explicitly model the spatial-temporal correlations even without attention mechanisms. We theoretically prove that its effectiveness stems from the integration of geographical coordinates and real-world time features, which are intrinsically related to the dynamics of weather. Based on this, we propose LightWeather, a lightweight and effective model for station-based global weather forecasting. We employ absolute positional encoding and a simple MLP in place of other components of Transformer. With under 30k parameters and less than one hour of training time, LightWeather achieves state-of-the-art performance on global weather datasets compared to other advanced DL methods. The results underscore the superiority of integrating spatial-temporal knowledge over complex architectures, providing novel insights for DL in weather forecasting.
☆ Simulating Field Experiments with Large Language Models
Prevailing large language models (LLMs) are capable of human responses simulation through its unprecedented content generation and reasoning abilities. However, it is not clear whether and how to leverage LLMs to simulate field experiments. In this paper, we propose and evaluate two prompting strategies: the observer mode that allows a direct prediction on main conclusions and the participant mode that simulates distributions of responses from participants. Using this approach, we examine fifteen well cited field experimental papers published in INFORMS and MISQ, finding encouraging alignments between simulated experimental results and the actual results in certain scenarios. We further identify topics of which LLMs underperform, including gender difference and social norms related research. Additionally, the automatic and standardized workflow proposed in this paper enables the possibility of a large-scale screening of more papers with field experiments. This paper pioneers the utilization of large language models (LLMs) for simulating field experiments, presenting a significant extension to previous work which focused solely on lab environments. By introducing two novel prompting strategies, observer and participant modes, we demonstrate the ability of LLMs to both predict outcomes and replicate participant responses within complex field settings. Our findings indicate a promising alignment with actual experimental results in certain scenarios, achieving a stimulation accuracy of 66% in observer mode. This study expands the scope of potential applications for LLMs and illustrates their utility in assisting researchers prior to engaging in expensive field experiments. Moreover, it sheds light on the boundaries of LLMs when used in simulating field experiments, serving as a cautionary note for researchers considering the integration of LLMs into their experimental toolkit.
comment: 17 pages, 5 figures, 6 tables
☆ Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey
Reinforcement Learning (RL) is a potent tool for sequential decision-making and has achieved performance surpassing human capabilities across many challenging real-world tasks. As the extension of RL in the multi-agent system domain, multi-agent RL (MARL) not only need to learn the control policy but also requires consideration regarding interactions with all other agents in the environment, mutual influences among different system components, and the distribution of computational resources. This augments the complexity of algorithmic design and poses higher requirements on computational resources. Simultaneously, simulators are crucial to obtain realistic data, which is the fundamentals of RL. In this paper, we first propose a series of metrics of simulators and summarize the features of existing benchmarks. Second, to ease comprehension, we recall the foundational knowledge and then synthesize the recently advanced studies of MARL-related autonomous driving and intelligent transportation systems. Specifically, we examine their environmental modeling, state representation, perception units, and algorithm design. Conclusively, we discuss open challenges as well as prospects and opportunities. We hope this paper can help the researchers integrate MARL technologies and trigger more insightful ideas toward the intelligent and autonomous driving.
comment: 23 pages, 6 figures and 2 tables. Submitted to IEEE Journal
☆ Data-driven Conditional Instrumental Variables for Debiasing Recommender Systems
In recommender systems, latent variables can cause user-item interaction data to deviate from true user preferences. This biased data is then used to train recommendation models, further amplifying the bias and ultimately compromising both recommendation accuracy and user satisfaction. Instrumental Variable (IV) methods are effective tools for addressing the confounding bias introduced by latent variables; however, identifying a valid IV is often challenging. To overcome this issue, we propose a novel data-driven conditional IV (CIV) debiasing method for recommender systems, called CIV4Rec. CIV4Rec automatically generates valid CIVs and their corresponding conditioning sets directly from interaction data, significantly reducing the complexity of IV selection while effectively mitigating the confounding bias caused by latent variables in recommender systems. Specifically, CIV4Rec leverages a variational autoencoder (VAE) to generate the representations of the CIV and its conditional set from interaction data, followed by the application of least squares to derive causal representations for click prediction. Extensive experiments on two real-world datasets, Movielens-10M and Douban-Movie, demonstrate that our CIV4Rec successfully identifies valid CIVs, effectively reduces bias, and consequently improves recommendation accuracy.
☆ ExpoMamba: Exploiting Frequency SSM Blocks for Efficient and Effective Image Enhancement
Low-light image enhancement remains a challenging task in computer vision, with existing state-of-the-art models often limited by hardware constraints and computational inefficiencies, particularly in handling high-resolution images. Recent foundation models, such as transformers and diffusion models, despite their efficacy in various domains, are limited in use on edge devices due to their computational complexity and slow inference times. We introduce ExpoMamba, a novel architecture that integrates components of the frequency state space within a modified U-Net, offering a blend of efficiency and effectiveness. This model is specifically optimized to address mixed exposure challenges, a common issue in low-light image enhancement, while ensuring computational efficiency. Our experiments demonstrate that ExpoMamba enhances low-light images up to 2-3x faster than traditional models with an inference time of 36.6 ms and achieves a PSNR improvement of approximately 15-20% over competing models, making it highly suitable for real-time image processing applications.
☆ Deep Learning-based Machine Condition Diagnosis using Short-time Fourier Transformation Variants
In motor condition diagnosis, electrical current signature serves as an alternative feature to vibration-based sensor data, which is a more expensive and invasive method. Machine learning (ML) techniques have been emerging in diagnosing motor conditions using only motor phase current signals. This study converts time-series motor current signals to time-frequency 2D plots using Short-time Fourier Transform (STFT) methods. The motor current signal dataset consists of 3,750 sample points with five classes - one healthy and four synthetically-applied motor fault conditions, and with five loading conditions: 0, 25, 50, 75, and 100%. Five transformation methods are used on the dataset: non-overlap and overlap STFTs, non-overlap and overlap realigned STFTs, and synchrosqueezed STFT. Then, deep learning (DL) models based on the previous Convolutional Neural Network (CNN) architecture are trained and validated from generated plots of each method. The DL models of overlap-STFT, overlap R-STFT, non-overlap STFT, non-overlap R-STFT, and synchrosqueezed-STFT performed exceptionally with an average accuracy of 97.65, 96.03, 96.08, 96.32, and 88.27%, respectively. Four methods outperformed the previous best ML method with 93.20% accuracy, while all five outperformed previous 2D-plot-based methods with accuracy of 80.25, 74.80, and 82.80%, respectively, using the same dataset, same DL architecture, and validation steps.
comment: 4 pages, 6 images, submitted to 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika)
☆ Debiased Contrastive Representation Learning for Mitigating Dual Biases in Recommender Systems
In recommender systems, popularity and conformity biases undermine recommender effectiveness by disproportionately favouring popular items, leading to their over-representation in recommendation lists and causing an unbalanced distribution of user-item historical data. We construct a causal graph to address both biases and describe the abstract data generation mechanism. Then, we use it as a guide to develop a novel Debiased Contrastive Learning framework for Mitigating Dual Biases, called DCLMDB. In DCLMDB, both popularity bias and conformity bias are handled in the model training process by contrastive learning to ensure that user choices and recommended items are not unduly influenced by conformity and popularity. Extensive experiments on two real-world datasets, Movielens-10M and Netflix, show that DCLMDB can effectively reduce the dual biases, as well as significantly enhance the accuracy and diversity of recommendations.
☆ Exploring Wavelet Transformations for Deep Learning-based Machine Condition Diagnosis
Deep learning (DL) strategies have recently been utilized to diagnose motor faults by simply analyzing motor phase current signals, offering a less costly and non-intrusive alternative to vibration sensors. This research transforms these time-series current signals into time-frequency 2D representations via Wavelet Transform (WT). The dataset for motor current signals includes 3,750 data points across five categories: one representing normal conditions and four representing artificially induced faults, each under five different load conditions: 0, 25, 50, 75, and 100%. The study employs five WT-based techniques: WT-Amor, WT-Bump, WT-Morse, WSST-Amor, and WSST-Bump. Subsequently, five DL models adopting prior Convolutional Neural Network (CNN) architecture were developed and tested using the transformed 2D plots from each method. The DL models for WT-Amor, WT-Bump, and WT-Morse showed remarkable effectiveness with peak model accuracy of 90.93, 89.20, and 93.73%, respectively, surpassing previous 2D-image-based methods that recorded accuracy of 80.25, 74.80, and 82.80% respectively using the identical dataset and validation protocol. Notably, the WT-Morse approach slightly exceeded the formerly highest ML technique, achieving a 93.20% accuracy. However, the two WSST methods that utilized synchrosqueezing techniques faced difficulty accurately classifying motor faults. The performance of Wavelet-based deep learning methods offers a compelling alternative for machine condition monitoring.
comment: 4 pages, 6 figures, submitted to 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika)
☆ How to Make the Most of LLMs' Grammatical Knowledge for Acceptability Judgments
The grammatical knowledge of language models (LMs) is often measured using a benchmark of linguistic minimal pairs, where LMs are presented with a pair of acceptable and unacceptable sentences and required to judge which is acceptable. The existing dominant approach, however, naively calculates and compares the probabilities of paired sentences using LMs. Additionally, large language models (LLMs) have yet to be thoroughly examined in this field. We thus investigate how to make the most of LLMs' grammatical knowledge to comprehensively evaluate it. Through extensive experiments of nine judgment methods in English and Chinese, we demonstrate that a probability readout method, in-template LP, and a prompting-based method, Yes/No probability computing, achieve particularly high performance, surpassing the conventional approach. Our analysis reveals their different strengths, e.g., Yes/No probability computing is robust against token-length bias, suggesting that they harness different aspects of LLMs' grammatical knowledge. Consequently, we recommend using diverse judgment methods to evaluate LLMs comprehensively.
☆ Meta-Learning on Augmented Gene Expression Profiles for Enhanced Lung Cancer Detection
Gene expression profiles obtained through DNA microarray have proven successful in providing critical information for cancer detection classifiers. However, the limited number of samples in these datasets poses a challenge to employ complex methodologies such as deep neural networks for sophisticated analysis. To address this "small data" dilemma, Meta-Learning has been introduced as a solution to enhance the optimization of machine learning models by utilizing similar datasets, thereby facilitating a quicker adaptation to target datasets without the requirement of sufficient samples. In this study, we present a meta-learning-based approach for predicting lung cancer from gene expression profiles. We apply this framework to well-established deep learning methodologies and employ four distinct datasets for the meta-learning tasks, where one as the target dataset and the rest as source datasets. Our approach is evaluated against both traditional and deep learning methodologies, and the results show the superior performance of meta-learning on augmented source data compared to the baselines trained on single datasets. Moreover, we conduct the comparative analysis between meta-learning and transfer learning methodologies to highlight the efficiency of the proposed approach in addressing the challenges associated with limited sample sizes. Finally, we incorporate the explainability study to illustrate the distinctiveness of decisions made by meta-learning.
comment: Accepted to AMIA 2024 Annual Symposium
☆ On the Foundations of Conflict-Driven Solving for Hybrid MKNF Knowledge Bases
Hybrid MKNF Knowledge Bases (HMKNF-KBs) constitute a formalism for tightly integrated reasoning over closed-world rules and open-world ontologies. This approach allows for accurate modeling of real-world systems, which often rely on both categorical and normative reasoning. Conflict-driven solving is the leading approach for computationally hard problems, such as satisfiability (SAT) and answer set programming (ASP), in which MKNF is rooted. This paper investigates the theoretical underpinnings required for a conflict-driven solver of HMKNF-KBs. The approach defines a set of completion and loop formulas, whose satisfaction characterizes MKNF models. This forms the basis for a set of nogoods, which in turn can be used as the backbone for a conflict-driven solver.
☆ Attention is a smoothed cubic spline
We highlight a perhaps important but hitherto unobserved insight: The attention module in a transformer is a smoothed cubic spline. Viewed in this manner, this mysterious but critical component of a transformer becomes a natural development of an old notion deeply entrenched in classical approximation theory. More precisely, we show that with ReLU-activation, attention, masked attention, encoder-decoder attention are all cubic splines. As every component in a transformer is constructed out of compositions of various attention modules (= cubic splines) and feed forward neural networks (= linear splines), all its components -- encoder, decoder, and encoder-decoder blocks; multilayered encoders and decoders; the transformer itself -- are cubic or higher-order splines. If we assume the Pierce-Birkhoff conjecture, then the converse also holds, i.e., every spline is a ReLU-activated encoder. Since a spline is generally just $C^2$, one way to obtain a smoothed $C^\infty$-version is by replacing ReLU with a smooth activation; and if this activation is chosen to be SoftMax, we recover the original transformer as proposed by Vaswani et al. This insight sheds light on the nature of the transformer by casting it entirely in terms of splines, one of the best known and thoroughly understood objects in applied mathematics.
comment: 20 pages, 2 figures
☆ IDEA: Enhancing the rule learning ability of language agent through Induction, DEuction, and Abduction
While large language models (LLMs) have been thoroughly evaluated for deductive and inductive reasoning, their proficiency in abductive reasoning and holistic rule learning in interactive environments remains less explored. This work introduces RULEARN, a novel benchmark specifically designed to assess the rule-learning ability of LLMs in interactive settings. In RULEARN, agents interact with the environment to gather observations and discern patterns, using these insights to solve problems. To further enhance the rule-learning capabilities of LLM agents within this benchmark, we propose IDEA agent, which integrates Induction, Deduction, and Abduction processes. IDEA agent refines this approach by leveraging a structured reasoning sequence: generating hypotheses through abduction, testing them via deduction, and refining them based on induction feedback. This sequence enables agents to dynamically establish and apply rules, mimicking human-like reasoning processes. Our evaluation of five representative LLMs indicates that while these models can generate plausible initial hypotheses, they often struggle with strategic interaction within the environment, effective incorporation of feedback, and adaptive refinement of their hypotheses. IDEA agent demonstrates significantly improved performance on the RULEARN benchmark, offering valuable insights for the development of agents capable of human-like rule-learning in real-world scenarios. We will release our code and data.
comment: 9pages, 12 figs, 4 tables
☆ RUMI: Rummaging Using Mutual Information
This paper presents Rummaging Using Mutual Information (RUMI), a method for online generation of robot action sequences to gather information about the pose of a known movable object in visually-occluded environments. Focusing on contact-rich rummaging, our approach leverages mutual information between the object pose distribution and robot trajectory for action planning. From an observed partial point cloud, RUMI deduces the compatible object pose distribution and approximates the mutual information of it with workspace occupancy in real time. Based on this, we develop an information gain cost function and a reachability cost function to keep the object within the robot's reach. These are integrated into a model predictive control (MPC) framework with a stochastic dynamics model, updating the pose distribution in a closed loop. Key contributions include a new belief framework for object pose estimation, an efficient information gain computation strategy, and a robust MPC-based control scheme. RUMI demonstrates superior performance in both simulated and real tasks compared to baseline methods.
comment: 19 pages, 17 figures, submitted to IEEE Transactions on Robotics (T-RO)
☆ The Brittleness of AI-Generated Image Watermarking Techniques: Examining Their Robustness Against Visual Paraphrasing Attacks
The rapid advancement of text-to-image generation systems, exemplified by models like Stable Diffusion, Midjourney, Imagen, and DALL-E, has heightened concerns about their potential misuse. In response, companies like Meta and Google have intensified their efforts to implement watermarking techniques on AI-generated images to curb the circulation of potentially misleading visuals. However, in this paper, we argue that current image watermarking methods are fragile and susceptible to being circumvented through visual paraphrase attacks. The proposed visual paraphraser operates in two steps. First, it generates a caption for the given image using KOSMOS-2, one of the latest state-of-the-art image captioning systems. Second, it passes both the original image and the generated caption to an image-to-image diffusion system. During the denoising step of the diffusion pipeline, the system generates a visually similar image that is guided by the text caption. The resulting image is a visual paraphrase and is free of any watermarks. Our empirical findings demonstrate that visual paraphrase attacks can effectively remove watermarks from images. This paper provides a critical assessment, empirically revealing the vulnerability of existing watermarking techniques to visual paraphrase attacks. While we do not propose solutions to this issue, this paper serves as a call to action for the scientific community to prioritize the development of more robust watermarking techniques. Our first-of-its-kind visual paraphrase dataset and accompanying code are publicly available.
comment: 23 pages and 10 figures
☆ Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing
INTRODUCTION: Mild cognitive impairment (MCI) is characterized by a decline in cognitive functions beyond typical age and education-related expectations. Since, MCI has been linked to reduced social interactions and increased aimless movements, we aimed to automate the capture of these behaviors to enhance longitudinal monitoring. METHODS: Using a privacy-preserving distributed camera network, we collected movement and social interaction data from groups of individuals with MCI undergoing therapy within a 1700$m^2$ space. We developed movement and social interaction features, which were then used to train a series of machine learning algorithms to distinguish between higher and lower cognitive functioning MCI groups. RESULTS: A Wilcoxon rank-sum test revealed statistically significant differences between high and low-functioning cohorts in features such as linear path length, walking speed, change in direction while walking, entropy of velocity and direction change, and number of group formations in the indoor space. Despite lacking individual identifiers to associate with specific levels of MCI, a machine learning approach using the most significant features provided a 71% accuracy. DISCUSSION: We provide evidence to show that a privacy-preserving low-cost camera network using edge computing framework has the potential to distinguish between different levels of cognitive impairment from the movements and social interactions captured during group activities.
☆ Understanding Generative AI Content with Embedding Models
The construction of high-quality numerical features is critical to any quantitative data analysis. Feature engineering has been historically addressed by carefully hand-crafting data representations based on domain expertise. This work views the internal representations of modern deep neural networks (DNNs), called embeddings, as an automated form of traditional feature engineering. For trained DNNs, we show that these embeddings can reveal interpretable, high-level concepts in unstructured sample data. We use these embeddings in natural language and computer vision tasks to uncover both inherent heterogeneity in the underlying data and human-understandable explanations for it. In particular, we find empirical evidence that there is inherent separability between real data and that generated from AI models.
☆ Are LLMs Any Good for High-Level Synthesis?
The increasing complexity and demand for faster, energy-efficient hardware designs necessitate innovative High-Level Synthesis (HLS) methodologies. This paper explores the potential of Large Language Models (LLMs) to streamline or replace the HLS process, leveraging their ability to understand natural language specifications and refactor code. We survey the current research and conduct experiments comparing Verilog designs generated by a standard HLS tool (Vitis HLS) with those produced by LLMs translating C code or natural language specifications. Our evaluation focuses on quantifying the impact on performance, power, and resource utilization, providing an assessment of the efficiency of LLM-based approaches. This study aims to illuminate the role of LLMs in HLS, identifying promising directions for optimized hardware design in applications such as AI acceleration, embedded systems, and high-performance computing.
comment: ICCAD '24 Special Session on AI4HLS: New Frontiers in High-Level Synthesis Augmented with Artificial Intelligence
☆ Development of an AI Anti-Bullying System Using Large Language Model Key Topic Detection
This paper presents and evaluates work on the development of an artificial intelligence (AI) anti-bullying system. The system is designed to identify coordinated bullying attacks via social media and other mechanisms, characterize them and propose remediation and response activities to them. In particular, a large language model (LLM) is used to populate an enhanced expert system-based network model of a bullying attack. This facilitates analysis and remediation activity - such as generating report messages to social media companies - determination. The system is described and the efficacy of the LLM for populating the model is analyzed herein.
☆ Towards Automation of Human Stage of Decay Identification: An Artificial Intelligence Approach
Determining the stage of decomposition (SOD) is crucial for estimating the postmortem interval and identifying human remains. Currently, labor-intensive manual scoring methods are used for this purpose, but they are subjective and do not scale for the emerging large-scale archival collections of human decomposition photos. This study explores the feasibility of automating two common human decomposition scoring methods proposed by Megyesi and Gelderman using artificial intelligence (AI). We evaluated two popular deep learning models, Inception V3 and Xception, by training them on a large dataset of human decomposition images to classify the SOD for different anatomical regions, including the head, torso, and limbs. Additionally, an interrater study was conducted to assess the reliability of the AI models compared to human forensic examiners for SOD identification. The Xception model achieved the best classification performance, with macro-averaged F1 scores of .878, .881, and .702 for the head, torso, and limbs when predicting Megyesi's SODs, and .872, .875, and .76 for the head, torso, and limbs when predicting Gelderman's SODs. The interrater study results supported AI's ability to determine the SOD at a reliability level comparable to a human expert. This work demonstrates the potential of AI models trained on a large dataset of human decomposition images to automate SOD identification.
comment: 13 pages
☆ Webcam-based Pupil Diameter Prediction Benefits from Upscaling
Capturing pupil diameter is essential for assessing psychological and physiological states such as stress levels and cognitive load. However, the low resolution of images in eye datasets often hampers precise measurement. This study evaluates the impact of various upscaling methods, ranging from bicubic interpolation to advanced super-resolution, on pupil diameter predictions. We compare several pre-trained methods, including CodeFormer, GFPGAN, Real-ESRGAN, HAT, and SRResNet. Our findings suggest that pupil diameter prediction models trained on upscaled datasets are highly sensitive to the selected upscaling method and scale. Our results demonstrate that upscaling methods consistently enhance the accuracy of pupil diameter prediction models, highlighting the importance of upscaling in pupilometry. Overall, our work provides valuable insights for selecting upscaling techniques, paving the way for more accurate assessments in psychological and physiological research.
☆ Evaluating Image-Based Face and Eye Tracking with Event Cameras ECCV
Event Cameras, also known as Neuromorphic sensors, capture changes in local light intensity at the pixel level, producing asynchronously generated data termed ``events''. This distinct data format mitigates common issues observed in conventional cameras, like under-sampling when capturing fast-moving objects, thereby preserving critical information that might otherwise be lost. However, leveraging this data often necessitates the development of specialized, handcrafted event representations that can integrate seamlessly with conventional Convolutional Neural Networks (CNNs), considering the unique attributes of event data. In this study, We evaluate event-based Face and Eye tracking. The core objective of our study is to showcase the viability of integrating conventional algorithms with event-based data, transformed into a frame format while preserving the unique benefits of event cameras. To validate our approach, we constructed a frame-based event dataset by simulating events between RGB frames derived from the publicly accessible Helen Dataset. We assess its utility for face and eye detection tasks through the application of GR-YOLO -- a pioneering technique derived from YOLOv3. This evaluation includes a comparative analysis with results derived from training the dataset with YOLOv8. Subsequently, the trained models were tested on real event streams from various iterations of Prophesee's event cameras and further evaluated on the Faces in Event Stream (FES) benchmark dataset. The models trained on our dataset shows a good prediction performance across all the datasets obtained for validation with the best results of a mean Average precision score of 0.91. Additionally, The models trained demonstrated robust performance on real event camera data under varying light conditions.
comment: This paper has been accepted at The Workshop On Neuromorphic Vision: Advantages and Applications of Event Cameras at the European Conference on Computer Vision (ECCV), 2024
☆ Joint Modeling of Search and Recommendations Via an Unified Contextual Recommender (UniCoRn)
Search and recommendation systems are essential in many services, and they are often developed separately, leading to complex maintenance and technical debt. In this paper, we present a unified deep learning model that efficiently handles key aspects of both tasks.
comment: 3 pages, 1 figure
☆ BrewCLIP: A Bifurcated Representation Learning Framework for Audio-Visual Retrieval
Previous methods for audio-image matching generally fall into one of two categories: pipeline models or End-to-End models. Pipeline models first transcribe speech and then encode the resulting text; End-to-End models encode speech directly. Generally, pipeline models outperform end-to-end models, but the intermediate transcription necessarily discards some potentially useful non-textual information. In addition to textual information, speech can convey details such as accent, mood, and and emphasis, which should be effectively captured in the encoded representation. In this paper, we investigate whether non-textual information, which is overlooked by pipeline-based models, can be leveraged to improve speech-image matching performance. We thoroughly analyze and compare End-to-End models, pipeline models, and our proposed dual-channel model for robust audio-image retrieval on a variety of datasets. Our approach achieves a substantial performance gain over the previous state-of-the-art by leveraging strong pretrained models, a prompting mechanism and a bifurcated design.
☆ Efficient Reinforcement Learning in Probabilistic Reward Machines
In this paper, we study reinforcement learning in Markov Decision Processes with Probabilistic Reward Machines (PRMs), a form of non-Markovian reward commonly found in robotics tasks. We design an algorithm for PRMs that achieves a regret bound of $\widetilde{O}(\sqrt{HOAT} + H^2O^2A^{3/2} + H\sqrt{T})$, where $H$ is the time horizon, $O$ is the number of observations, $A$ is the number of actions, and $T$ is the number of time-steps. This result improves over the best-known bound, $\widetilde{O}(H\sqrt{OAT})$ of \citet{pmlr-v206-bourel23a} for MDPs with Deterministic Reward Machines (DRMs), a special case of PRMs. When $T \geq H^3O^3A^2$ and $OA \geq H$, our regret bound leads to a regret of $\widetilde{O}(\sqrt{HOAT})$, which matches the established lower bound of $\Omega(\sqrt{HOAT})$ for MDPs with DRMs up to a logarithmic factor. To the best of our knowledge, this is the first efficient algorithm for PRMs. Additionally, we present a new simulation lemma for non-Markovian rewards, which enables reward-free exploration for any non-Markovian reward given access to an approximate planner. Complementing our theoretical findings, we show through extensive experiment evaluations that our algorithm indeed outperforms prior methods in various PRM environments.
comment: 33 pages, 4 figures
☆ Boolean Matrix Logic Programming
We describe a datalog query evaluation approach based on efficient and composable boolean matrix manipulation modules. We first define an overarching problem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices as an alternative computation to evaluate datalog programs. We develop two novel BMLP modules for bottom-up inferences on linear dyadic recursive datalog programs, and show how additional modules can extend this capability to compute both linear and non-linear recursive datalog programs of arity two. Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively, when evaluating large programs with millions of facts. This boolean matrix approach significantly enhances the efficiency of datalog querying to support logic programming techniques.
☆ AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews
Automatic reviewing helps handle a large volume of papers, provides early feedback and quality control, reduces bias, and allows the analysis of trends. We evaluate the alignment of automatic paper reviews with human reviews using an arena of human preferences by pairwise comparisons. Gathering human preference may be time-consuming; therefore, we also use an LLM to automatically evaluate reviews to increase sample efficiency while reducing bias. In addition to evaluating human and LLM preferences among LLM reviews, we fine-tune an LLM to predict human preferences, predicting which reviews humans will prefer in a head-to-head battle between LLMs. We artificially introduce errors into papers and analyze the LLM's responses to identify limitations, use adaptive review questions, meta prompting, role-playing, integrate visual and textual analysis, use venue-specific reviewing materials, and predict human preferences, improving upon the limitations of the traditional review processes. We make the reviews of publicly available arXiv and open-access Nature journal papers available online, along with a free service which helps authors review and revise their research papers and improve their quality. This work develops proof-of-concept LLM reviewing systems that quickly deliver consistent, high-quality reviews and evaluate their quality. We mitigate the risks of misuse, inflated review scores, overconfident ratings, and skewed score distributions by augmenting the LLM with multiple documents, including the review form, reviewer guide, code of ethics and conduct, area chair guidelines, and previous year statistics, by finding which errors and shortcomings of the paper may be detected by automated reviews, and evaluating pairwise reviewer preferences. This work identifies and addresses the limitations of using LLMs as reviewers and evaluators and enhances the quality of the reviewing process.
comment: 42 pages
☆ HaSPeR: An Image Repository for Hand Shadow Puppet Recognition
Hand shadow puppetry, also known as shadowgraphy or ombromanie, is a form of theatrical art and storytelling where hand shadows are projected onto flat surfaces to create illusions of living creatures. The skilled performers create these silhouettes by hand positioning, finger movements, and dexterous gestures to resemble shadows of animals and objects. Due to the lack of practitioners and a seismic shift in people's entertainment standards, this art form is on the verge of extinction. To facilitate its preservation and proliferate it to a wider audience, we introduce ${\rm H{\small A}SP{\small E}R}$, a novel dataset consisting of 8,340 images of hand shadow puppets across 11 classes extracted from both professional and amateur hand shadow puppeteer clips. We provide a detailed statistical analysis of the dataset and employ a range of pretrained image classification models to establish baselines. Our findings show a substantial performance superiority of traditional convolutional models over attention-based transformer architectures. We also find that lightweight models, such as MobileNetV2, suited for mobile applications and embedded devices, perform comparatively well. We surmise that such low-latency architectures can be useful in developing ombromanie teaching tools, and we create a prototype application to explore this surmission. Keeping the best-performing model InceptionV3 under the limelight, we conduct comprehensive feature-spatial, explainability, and error analyses to gain insights into its decision-making process. To the best of our knowledge, this is the first documented dataset and research endeavor to preserve this dying art for future generations, with computer vision approaches. Our code and data are publicly available.
comment: Submitted to IEEE Transactions on Artificial Intelligence (IEEE TAI), 11 pages, 78 figures, 2 tables
☆ The Psychological Impacts of Algorithmic and AI-Driven Social Media on Teenagers: A Call to Action
This study investigates the meta-issues surrounding social media, which, while theoretically designed to enhance social interactions and improve our social lives by facilitating the sharing of personal experiences and life events, often results in adverse psychological impacts. Our investigation reveals a paradoxical outcome: rather than fostering closer relationships and improving social lives, the algorithms and structures that underlie social media platforms inadvertently contribute to a profound psychological impact on individuals, influencing them in unforeseen ways. This phenomenon is particularly pronounced among teenagers, who are disproportionately affected by curated online personas, peer pressure to present a perfect digital image, and the constant bombardment of notifications and updates that characterize their social media experience. As such, we issue a call to action for policymakers, platform developers, and educators to prioritize the well-being of teenagers in the digital age and work towards creating secure and safe social media platforms that protect the young from harm, online harassment, and exploitation.
comment: 7 pages, 0 figures, 2 tables, 2024 IEEE Conference on Digital Platforms and Societal Harms
☆ LegalBench-RAG: A Benchmark for Retrieval-Augmented Generation in the Legal Domain
Retrieval-Augmented Generation (RAG) systems are showing promising potential, and are becoming increasingly relevant in AI-powered legal applications. Existing benchmarks, such as LegalBench, assess the generative capabilities of Large Language Models (LLMs) in the legal domain, but there is a critical gap in evaluating the retrieval component of RAG systems. To address this, we introduce LegalBench-RAG, the first benchmark specifically designed to evaluate the retrieval step of RAG pipelines within the legal space. LegalBench-RAG emphasizes precise retrieval by focusing on extracting minimal, highly relevant text segments from legal documents. These highly relevant snippets are preferred over retrieving document IDs, or large sequences of imprecise chunks, both of which can exceed context window limitations. Long context windows cost more to process, induce higher latency, and lead LLMs to forget or hallucinate information. Additionally, precise results allow LLMs to generate citations for the end user. The LegalBench-RAG benchmark is constructed by retracing the context used in LegalBench queries back to their original locations within the legal corpus, resulting in a dataset of 6,858 query-answer pairs over a corpus of over 79M characters, entirely human-annotated by legal experts. We also introduce LegalBench-RAG-mini, a lightweight version for rapid iteration and experimentation. By providing a dedicated benchmark for legal retrieval, LegalBench-RAG serves as a critical tool for companies and researchers focused on enhancing the accuracy and performance of RAG systems in the legal domain. The LegalBench-RAG dataset is publicly available at https://github.com/zeroentropy-cc/legalbenchrag.
☆ A Disguised Wolf Is More Harmful Than a Toothless Tiger: Adaptive Malicious Code Injection Backdoor Attack Leveraging User Behavior as Triggers
In recent years, large language models (LLMs) have made significant progress in the field of code generation. However, as more and more users rely on these models for software development, the security risks associated with code generation models have become increasingly significant. Studies have shown that traditional deep learning robustness issues also negatively impact the field of code generation. In this paper, we first present the game-theoretic model that focuses on security issues in code generation scenarios. This framework outlines possible scenarios and patterns where attackers could spread malicious code models to create security threats. We also pointed out for the first time that the attackers can use backdoor attacks to dynamically adjust the timing of malicious code injection, which will release varying degrees of malicious code depending on the skill level of the user. Through extensive experiments on leading code generation models, we validate our proposed game-theoretic model and highlight the significant threats that these new attack scenarios pose to the safe use of code models.
☆ Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks
Emotion recognition from electroencephalogram (EEG) signals is a thriving field, particularly in neuroscience and Human-Computer Interaction (HCI). This study aims to understand and improve the predictive accuracy of emotional state classification through metrics such as valence, arousal, dominance, and likeness by applying a Long Short-Term Memory (LSTM) network to analyze EEG signals. Using a popular dataset of multi-channel EEG recordings known as DEAP, we look towards leveraging LSTM networks' properties to handle temporal dependencies within EEG signal data. This allows for a more comprehensive understanding and classification of emotional parameter states. We obtain accuracies of 89.89%, 90.33%, 90.70%, and 90.54% for arousal, valence, dominance, and likeness, respectively, demonstrating significant improvements in emotion recognition model capabilities. This paper elucidates the methodology and architectural specifics of our LSTM model and provides a benchmark analysis with existing papers.
comment: 13 pages, 3 figures; accepted at ICDSA '24 Conference, Jaipur, India
☆ DELIA: Diversity-Enhanced Learning for Instruction Adaptation in Large Language Models
Although instruction tuning is widely used to adjust behavior in Large Language Models (LLMs), extensive empirical evidence and research indicates that it is primarily a process where the model fits to specific task formats, rather than acquiring new knowledge or capabilities. We propose that this limitation stems from biased features learned during instruction tuning, which differ from ideal task-specfic features, leading to learn less underlying semantics in downstream tasks. However, ideal features are unknown and incalculable, constraining past work to rely on prior knowledge to assist reasoning or training, which limits LLMs' capabilities to the developers' abilities, rather than data-driven scalable learning. In our paper, through our novel data synthesis method, DELIA (Diversity-Enhanced Learning for Instruction Adaptation), we leverage the buffering effect of extensive diverse data in LLMs training to transform biased features in instruction tuning into approximations of ideal features, without explicit prior ideal features. Experiments show DELIA's better performance compared to common instruction tuning and other baselines. It outperforms common instruction tuning by 17.07%-33.41% on Icelandic-English translation bleurt score (WMT-21 dataset, gemma-7b-it) and improves accuracy by 36.1% on formatted text generation (Llama2-7b-chat). Notably, among knowledge injection methods we've known, DELIA uniquely align the internal representations of new special tokens with their prior semantics.
comment: 8 pages, 5 figures
☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
☆ Leveraging Superfluous Information in Contrastive Representation Learning
Contrastive representation learning, which aims to learnthe shared information between different views of unlabeled data by maximizing the mutual information between them, has shown its powerful competence in self-supervised learning for downstream tasks. However, recent works have demonstrated that more estimated mutual information does not guarantee better performance in different downstream tasks. Such works inspire us to conjecture that the learned representations not only maintain task-relevant information from unlabeled data but also carry task-irrelevant information which is superfluous for downstream tasks, thus leading to performance degeneration. In this paper we show that superfluous information does exist during the conventional contrastive learning framework, and further design a new objective, namely SuperInfo, to learn robust representations by a linear combination of both predictive and superfluous information. Besides, we notice that it is feasible to tune the coefficients of introduced losses to discard task-irrelevant information, while keeping partial non-shared task-relevant information according to our SuperInfo loss.We demonstrate that learning with our loss can often outperform the traditional contrastive learning approaches on image classification, object detection and instance segmentation tasks with significant improvements.
☆ Harmonizing Attention: Training-free Texture-aware Geometry Transfer
Extracting geometry features from photographic images independently of surface texture and transferring them onto different materials remains a complex challenge. In this study, we introduce Harmonizing Attention, a novel training-free approach that leverages diffusion models for texture-aware geometry transfer. Our method employs a simple yet effective modification of self-attention layers, allowing the model to query information from multiple reference images within these layers. This mechanism is seamlessly integrated into the inversion process as Texture-aligning Attention and into the generation process as Geometry-aligning Attention. This dual-attention approach ensures the effective capture and transfer of material-independent geometry features while maintaining material-specific textural continuity, all without the need for model fine-tuning.
comment: 10 pages, 6 figures
Detecting Wildfires on UAVs with Real-time Segmentation Trained by Larger Teacher Models
Early detection of wildfires is essential to prevent large-scale fires resulting in extensive environmental, structural, and societal damage. Uncrewed aerial vehicles (UAVs) can cover large remote areas effectively with quick deployment requiring minimal infrastructure and equipping them with small cameras and computers enables autonomous real-time detection. In remote areas, however, the UAVs are limited to on-board computing for detection due to the lack of high-bandwidth mobile networks. This limits the detection to methods which are light enough for the on-board computer alone. For accurate camera-based localisation, segmentation of the detected smoke is essential but training data for deep learning-based wildfire smoke segmentation is limited. This study shows how small specialised segmentation models can be trained using only bounding box labels, leveraging zero-shot foundation model supervision. The method offers the advantages of needing only fairly easily obtainable bounding box labels and requiring training solely for the smaller student network. The proposed method achieved 63.3% mIoU on a manually annotated and diverse wildfire dataset. The used model can perform in real-time at ~11 fps with a UAV-carried NVIDIA Jetson Orin NX computer while reliably recognising smoke, demonstrated at real-world forest burning events. Code is available at https://gitlab.com/fgi_nls/public/wildfire-real-time-segmentation
♻ ☆ Constructing Domain-Specific Evaluation Sets for LLM-as-a-judge
Large Language Models (LLMs) have revolutionized the landscape of machine learning, yet current benchmarks often fall short in capturing the diverse behavior of these models in real-world applications. A benchmark's usefulness is determined by its ability to clearly differentiate between models of varying capabilities (separability) and closely align with human preferences. Existing frameworks like Alpaca-Eval 2.0 LC \cite{dubois2024lengthcontrolledalpacaevalsimpleway} and Arena-Hard v0.1 \cite{li2024crowdsourced} are limited by their focus on general-purpose queries and lack of diversity across domains such as law, medicine, and multilingual contexts. In this paper, we address these limitations by introducing a novel data pipeline that curates diverse, domain-specific evaluation sets tailored for LLM-as-a-Judge frameworks. Our approach leverages a combination of manual curation, semi-supervised learning to generate clusters, and stratified sampling to ensure balanced representation across a wide range of domains and languages. The resulting evaluation set, which includes 1573 samples across 14 categories, demonstrates high separability (84\%) across ten top-ranked models, and agreement (84\%) with Chatbot Arena and (0.915) Spearman correlation. The agreement values are 9\% better than Arena Hard and 20\% better than AlpacaEval 2.0 LC, while the Spearman coefficient is 0.7 more than the next best benchmark, showcasing a significant improvement in the usefulness of the benchmark. We further provide an open-source evaluation tool that enables fine-grained analysis of model performance across user-defined categories, offering valuable insights for practitioners. This work contributes to the ongoing effort to enhance the transparency, diversity, and effectiveness of LLM evaluation methodologies.
comment: 14 pages, 8 figures, Under review
♻ ☆ SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation
Language Models (LMs) are increasingly employed in recommendation systems due to their advanced language understanding and generation capabilities. Recent recommender systems based on generative retrieval have leveraged the inferential abilities of LMs to directly generate the index tokens of the next item, based on item sequences within the user's interaction history. Previous studies have mostly focused on item indices based solely on textual semantic or collaborative information. However, although the standalone effectiveness of these aspects has been demonstrated, the integration of this information has remained unexplored. Our in-depth analysis finds that there is a significant difference in the knowledge captured by the model from heterogeneous item indices and diverse input prompts, which can have a high potential for complementarity. In this paper, we propose SC-Rec, a unified recommender system that learns diverse preference knowledge from two distinct item indices and multiple prompt templates. Furthermore, SC-Rec adopts a novel reranking strategy that aggregates a set of ranking results, inferred based on different indices and prompts, to achieve the self-consistency of the model. Our empirical evaluation on three real-world datasets demonstrates that SC-Rec considerably outperforms the state-of-the-art methods for sequential recommendation, effectively incorporating complementary knowledge from varied outputs of the model.
♻ ☆ MAT-SED: A Masked Audio Transformer with Masked-Reconstruction Based Pre-training for Sound Event Detection
Sound event detection (SED) methods that leverage a large pre-trained Transformer encoder network have shown promising performance in recent DCASE challenges. However, they still rely on an RNN-based context network to model temporal dependencies, largely due to the scarcity of labeled data. In this work, we propose a pure Transformer-based SED model with masked-reconstruction based pre-training, termed MAT-SED. Specifically, a Transformer with relative positional encoding is first designed as the context network, pre-trained by the masked-reconstruction task on all available target data in a self-supervised way. Both the encoder and the context network are jointly fine-tuned in a semi-supervised manner. Furthermore, a global-local feature fusion strategy is proposed to enhance the localization capability. Evaluation of MAT-SED on DCASE2023 task4 surpasses state-of-the-art performance, achieving 0.587/0.896 PSDS1/PSDS2 respectively.
comment: Received by interspeech 2024
♻ ☆ Collaborative Multi-source Domain Adaptation Through Optimal Transport
Multi-source Domain Adaptation (MDA) seeks to adapt models trained on data from multiple labeled source domains to perform effectively on an unlabeled target domain data, assuming access to sources data. To address the challenges of model adaptation and data privacy, we introduce Collaborative MDA Through Optimal Transport (CMDA-OT), a novel framework consisting of two key phases. In the first phase, each source domain is independently adapted to the target domain using optimal transport methods. In the second phase, a centralized collaborative learning architecture is employed, which aggregates the N models from the N sources without accessing their data, thereby safeguarding privacy. During this process, the server leverages a small set of pseudo-labeled samples from the target domain, known as the target validation subset, to refine and guide the adaptation. This dual-phase approach not only improves model performance on the target domain but also addresses vital privacy challenges inherent in domain adaptation.
♻ ☆ Decoding the human brain tissue response to radiofrequency excitation using a biophysical-model-free deep MRI on a chip framework
Magnetic resonance imaging (MRI) relies on radiofrequency (RF) excitation of proton spin. Clinical diagnosis requires a comprehensive collation of biophysical data via multiple MRI contrasts, acquired using a series of RF sequences that lead to lengthy examinations. Here, we developed a vision transformer-based framework that captures the spatiotemporal magnetic signal evolution and decodes the brain tissue response to RF excitation, constituting an MRI on a chip. Following a per-subject rapid calibration scan (28.2 s), a wide variety of image contrasts including fully quantitative molecular, water relaxation, and magnetic field maps can be generated automatically. The method was validated across healthy subjects and a cancer patient in two different imaging sites, and proved to be 94% faster than alternative protocols. The deep MRI on a chip (DeepMonC) framework may reveal the molecular composition of the human brain tissue in a wide range of pathologies, while offering clinically attractive scan times.
comment: This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
♻ ☆ MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Current state-of-the-art methods for human image customized synthesis typically require tedious training on large-scale datasets. In such cases, they are prone to overfitting and struggle to personalize individuals of unseen styles. Moreover, these methods extensively focus on single-concept human image synthesis and lack the flexibility needed for customizing individuals with multiple given concepts, thereby impeding their broader practical application. To this end, we propose MagicFace, a novel training-free method for universal-style human image personalized synthesis, enabling multi-concept customization by accurately integrating reference concept features into their latent generated region at the pixel level. Specifically, MagicFace introduces a coarse-to-fine generation pipeline, involving two sequential stages: semantic layout construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. In the first stage, RSA enables the latent image to query features from all reference concepts simultaneously, extracting the overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the latent generated regions of all concepts at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from the corresponding reference concept, which ensures precise attribute alignment and feature injection. Throughout the generation process, a weighted mask strategy is employed to ensure the model focuses more on the reference concepts. Extensive experiments demonstrate the superiority of MagicFace in both human-centric subject-to-image synthesis and multi-concept human image customization.
comment: project page: https://codegoat24.github.io/MagicFace
♻ ☆ A Multi-Stream Fusion Approach with One-Class Learning for Audio-Visual Deepfake Detection
This paper addresses the challenge of developing a robust audio-visual deepfake detection model. In practical use cases, new generation algorithms are continually emerging, and these algorithms are not encountered during the development of detection methods. This calls for the generalization ability of the method. Additionally, to ensure the credibility of detection methods, it is beneficial for the model to interpret which cues from the video indicate it is fake. Motivated by these considerations, we then propose a multi-stream fusion approach with one-class learning as a representation-level regularization technique. We study the generalization problem of audio-visual deepfake detection by creating a new benchmark by extending and re-splitting the existing FakeAVCeleb dataset. The benchmark contains four categories of fake videos (Real Audio-Fake Visual, Fake Audio-Fake Visual, Fake Audio-Real Visual, and Unsynchronized videos). The experimental results demonstrate that our approach surpasses the previous models by a large margin. Furthermore, our proposed framework offers interpretability, indicating which modality the model identifies as more likely to be fake. The source code is released at https://github.com/bok-bok/MSOC.
♻ ☆ Enhancing Partially Spoofed Audio Localization with Boundary-aware Attention Mechanism
The task of partially spoofed audio localization aims to accurately determine audio authenticity at a frame level. Although some works have achieved encouraging results, utilizing boundary information within a single model remains an unexplored research topic. In this work, we propose a novel method called Boundary-aware Attention Mechanism (BAM). Specifically, it consists of two core modules: Boundary Enhancement and Boundary Frame-wise Attention. The former assembles the intra-frame and inter-frame information to extract discriminative boundary features that are subsequently used for boundary position detection and authenticity decision, while the latter leverages boundary prediction results to explicitly control the feature interaction between frames, which achieves effective discrimination between real and fake frames. Experimental results on PartialSpoof database demonstrate our proposed method achieves the best performance. The code is available at https://github.com/media-sec-lab/BAM.
comment: Accepted by interspeech 2024
Data-driven Energy Consumption Modelling for Electric Micromobility using an Open Dataset
The escalating challenges of traffic congestion and environmental degradation underscore the critical importance of embracing E-Mobility solutions in urban spaces. In particular, micro E-Mobility tools such as E-scooters and E-bikes, play a pivotal role in this transition, offering sustainable alternatives for urban commuters. However, the energy consumption patterns for these tools are a critical aspect that impacts their effectiveness in real-world scenarios and is essential for trip planning and boosting user confidence in using these. To this effect, recent studies have utilised physical models customised for specific mobility tools and conditions, but these models struggle with generalization and effectiveness in real-world scenarios due to a notable absence of open datasets for thorough model evaluation and verification. To fill this gap, our work presents an open dataset, collected in Dublin, Ireland, specifically designed for energy modelling research related to E-Scooters and E-Bikes. Furthermore, we provide a comprehensive analysis of energy consumption modelling based on the dataset using a set of representative machine learning algorithms and compare their performance against the contemporary mathematical models as a baseline. Our results demonstrate a notable advantage for data-driven models in comparison to the corresponding mathematical models for estimating energy consumption. Specifically, data-driven models outperform physical models in accuracy by up to 83.83% for E-Bikes and 82.16% for E-Scooters based on an in-depth analysis of the dataset under certain assumptions.
comment: 7 pages, 5 figures, 4 tables. This manuscript has been accepted by the IEEE ITEC 2024
♻ ☆ Semantic Prototypes: Enhancing Transparency Without Black Boxes CIKM 2024
As machine learning (ML) models and datasets increase in complexity, the demand for methods that enhance explainability and interpretability becomes paramount. Prototypes, by encapsulating essential characteristics within data, offer insights that enable tactical decision-making and enhance transparency. Traditional prototype methods often rely on sub-symbolic raw data and opaque latent spaces, reducing explainability and increasing the risk of misinterpretations. This paper presents a novel framework that utilizes semantic descriptions to define prototypes and provide clear explanations, effectively addressing the shortcomings of conventional methods. Our approach leverages concept-based descriptions to cluster data on the semantic level, ensuring that prototypes not only represent underlying properties intuitively but are also straightforward to interpret. Our method simplifies the interpretative process and effectively bridges the gap between complex data structures and human cognitive processes, thereby enhancing transparency and fostering trust. Our approach outperforms existing widely-used prototype methods in facilitating human understanding and informativeness, as validated through a user survey.
comment: This paper has been accepted for publication as a full paper at the 33rd ACM International Conference on Information and Knowledge Management (CIKM 2024)
♻ ☆ Learning Using Generated Privileged Information by Text-to-Image Diffusion Models ICPR 2024
Learning Using Privileged Information is a particular type of knowledge distillation where the teacher model benefits from an additional data representation during training, called privileged information, improving the student model, which does not see the extra representation. However, privileged information is rarely available in practice. To this end, we propose a text classification framework that harnesses text-to-image diffusion models to generate artificial privileged information. The generated images and the original text samples are further used to train multimodal teacher models based on state-of-the-art transformer-based architectures. Finally, the knowledge from multimodal teachers is distilled into a text-based (unimodal) student. Hence, by employing a generative model to produce synthetic data as privileged information, we guide the training of the student model. Our framework, called Learning Using Generated Privileged Information (LUGPI), yields noticeable performance gains on four text classification data sets, demonstrating its potential in text classification without any additional cost during inference.
comment: Accepted at ICPR 2024
♻ ☆ Adaptive Draft-Verification for Efficient Large Language Model Decoding
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios. The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or rely on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts. To address these issues, we introduce a novel methodology called ADED, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM. The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that ADED significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications.
comment: Under review of Neurips 2024
♻ ☆ ORBIT: Oak Ridge Base Foundation Model for Earth System Predictability
Earth system predictability is challenged by the complexity of environmental dynamics and the multitude of variables involved. Current AI foundation models, although advanced by leveraging large and heterogeneous data, are often constrained by their size and data integration, limiting their effectiveness in addressing the full range of Earth system prediction challenges. To overcome these limitations, we introduce the Oak Ridge Base Foundation Model for Earth System Predictability (ORBIT), an advanced vision transformer model that scales up to 113 billion parameters using a novel hybrid tensor-data orthogonal parallelism technique. As the largest model of its kind, ORBIT surpasses the current climate AI foundation model size by a thousandfold. Performance scaling tests conducted on the Frontier supercomputer have demonstrated that ORBIT achieves 684 petaFLOPS to 1.6 exaFLOPS sustained throughput, with scaling efficiency maintained at 41% to 85% across 49,152 AMD GPUs. These breakthroughs establish new advances in AI-driven climate modeling and demonstrate promise to significantly improve the Earth system predictability.
♻ ☆ UniMem: Towards a Unified View of Long-Context Large Language Models
Long-context processing is a critical ability that constrains the applicability of large language models (LLMs). Although there exist various methods devoted to enhancing the long-context processing ability of LLMs, they are developed in an isolated manner and lack systematic analysis and integration of their strengths, hindering further developments. In this paper, we introduce UniMem, a Unified framework that reformulates existing long-context methods from the view of Memory augmentation of LLMs. Distinguished by its four core dimensions-Memory Management, Memory Writing, Memory Reading, and Memory Injection, UniMem empowers researchers to conduct systematic exploration of long-context methods. We re-formulate 16 existing methods based on UniMem and analyze four representative methods: Transformer-XL, Memorizing Transformer, RMT, and Longformer into equivalent UniMem forms to reveal their design principles and strengths. Based on these analyses, we propose UniMix, an innovative approach that integrates the strengths of these algorithms. Experimental results show that UniMix achieves superior performance in handling long contexts with significantly lower perplexity than baselines.
comment: COLM 2024
♻ ☆ A fuzzy loss for ontology classification
Deep learning models are often unaware of the inherent constraints of the task they are applied to. However, many downstream tasks require logical consistency. For ontology classification tasks, such constraints include subsumption and disjointness relations between classes. In order to increase the consistency of deep learning models, we propose a fuzzy loss that combines label-based loss with terms penalising subsumption- or disjointness-violations. Our evaluation on the ChEBI ontology shows that the fuzzy loss is able to decrease the number of consistency violations by several orders of magnitude without decreasing the classification performance. In addition, we use the fuzzy loss for unsupervised learning. We show that this can further improve consistency on data from a
♻ ☆ GradTree: Learning Axis-Aligned Decision Trees with Gradient Descent
Decision Trees (DTs) are commonly used for many machine learning tasks due to their high degree of interpretability. However, learning a DT from data is a difficult optimization problem, as it is non-convex and non-differentiable. Therefore, common approaches learn DTs using a greedy growth algorithm that minimizes the impurity locally at each internal node. Unfortunately, this greedy procedure can lead to inaccurate trees. In this paper, we present a novel approach for learning hard, axis-aligned DTs with gradient descent. The proposed method uses backpropagation with a straight-through operator on a dense DT representation, to jointly optimize all tree parameters. Our approach outperforms existing methods on binary classification benchmarks and achieves competitive results for multi-class tasks. The method is available under: https://github.com/s-marton/GradTree
♻ ☆ AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors
The complexity of financial data, characterized by its variability and low signal-to-noise ratio, necessitates advanced methods in quantitative investment that prioritize both performance and interpretability.Transitioning from early manual extraction to genetic programming, the most advanced approach in the alpha factor mining domain currently employs reinforcement learning to mine a set of combination factors with fixed weights. However, the performance of resultant alpha factors exhibits inconsistency, and the inflexibility of fixed factor weights proves insufficient in adapting to the dynamic nature of financial markets. To address this issue, this paper proposes a two-stage formulaic alpha generating framework AlphaForge, for alpha factor mining and factor combination. This framework employs a generative-predictive neural network to generate factors, leveraging the robust spatial exploration capabilities inherent in deep learning while concurrently preserving diversity. The combination model within the framework incorporates the temporal performance of factors for selection and dynamically adjusts the weights assigned to each component alpha factor. Experiments conducted on real-world datasets demonstrate that our proposed model outperforms contemporary benchmarks in formulaic alpha factor mining. Furthermore, our model exhibits a notable enhancement in portfolio returns within the realm of quantitative investment and real money investment.
♻ ☆ Compression Represents Intelligence Linearly
There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. Despite such appealing discussions, little empirical evidence is present for the interplay between compression and intelligence. In this work, we examine their relationship in the context of LLMs, treating LLMs as data compressors. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores as a surrogate, specifically targeting intelligence related to knowledge and commonsense, coding, and mathematical reasoning. Across 12 benchmarks, our study brings together 31 public LLMs that originate from diverse organizations. Remarkably, we find that LLMs' intelligence -- reflected by average benchmark scores -- almost linearly correlates with their ability to compress external text corpora. These results provide concrete evidence supporting the belief that superior compression indicates greater intelligence. Furthermore, our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
comment: COLM 2024. Data and code are available at https://github.com/hkust-nlp/llm-compression-intelligence
♻ ☆ Hybrid Reasoning Based on Large Language Models for Autonomous Car Driving
Large Language Models (LLMs) have garnered significant attention for their ability to understand text and images, generate human-like text, and perform complex reasoning tasks. However, their ability to generalize this advanced reasoning with a combination of natural language text for decision-making in dynamic situations requires further exploration. In this study, we investigate how well LLMs can adapt and apply a combination of arithmetic and common-sense reasoning, particularly in autonomous driving scenarios. We hypothesize that LLMs hybrid reasoning abilities can improve autonomous driving by enabling them to analyze detected object and sensor data, understand driving regulations and physical laws, and offer additional context. This addresses complex scenarios, like decisions in low visibility (due to weather conditions), where traditional methods might fall short. We evaluated Large Language Models (LLMs) based on accuracy by comparing their answers with human-generated ground truth inside CARLA. The results showed that when a combination of images (detected objects) and sensor data is fed into the LLM, it can offer precise information for brake and throttle control in autonomous vehicles across various weather conditions. This formulation and answers can assist in decision-making for auto-pilot systems.
comment: 12 pages, 5 figures
♻ ☆ An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning CVPR2024
Heterogeneous Federated Learning (HtFL) enables task-specific knowledge sharing among clients with different model architectures while preserving privacy. Despite recent research progress, transferring knowledge in HtFL is still difficult due to data and model heterogeneity. To tackle this, we introduce a public pre-trained generator (e.g., StyleGAN or Stable Diffusion) as the bridge and propose a new upload-efficient knowledge transfer scheme called Federated Knowledge-Transfer-Loop (FedKTL). It can produce task-related prototypical image-vector pairs via the generator's inference on the server. With these pairs, each client can transfer common knowledge from the generator to its local model through an additional supervised local task. We conduct extensive experiments on four datasets under two types of data heterogeneity with 14 heterogeneous models, including CNNs and ViTs. Results show that our FedKTL surpasses seven state-of-the-art methods by up to 7.31%. Moreover, our knowledge transfer scheme is applicable in cloud-edge scenarios with only one edge client. Code: https://github.com/TsingZ0/FedKTL
comment: Accepted by CVPR2024. We have incorporated additional analysis for the Stable Diffusion experiments in Appendix A
♻ ☆ Kolmogorov-Arnold Network for Online Reinforcement Learning
Kolmogorov-Arnold Networks (KANs) have shown potential as an alternative to Multi-Layer Perceptrons (MLPs) in neural networks, providing universal function approximation with fewer parameters and reduced memory usage. In this paper, we explore the use of KANs as function approximators within the Proximal Policy Optimization (PPO) algorithm. We evaluate this approach by comparing its performance to the original MLP-based PPO using the DeepMind Control Proprio Robotics benchmark. Our results indicate that the KAN-based reinforcement learning algorithm can achieve comparable performance to its MLP-based counterpart, often with fewer parameters. These findings suggest that KANs may offer a more efficient option for reinforcement learning models.
comment: Paper accepted at 24th International Conference on Control, Automation and Systems (ICCAS)
♻ ☆ Adversarial Prompt Tuning for Vision-Language Models ECCV 2024
With the rapid advancement of multimodal learning, pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capacities in bridging the gap between visual and language modalities. However, these models remain vulnerable to adversarial attacks, particularly in the image modality, presenting considerable security risks. This paper introduces Adversarial Prompt Tuning (AdvPT), a novel technique to enhance the adversarial robustness of image encoders in VLMs. AdvPT innovatively leverages learnable text prompts and aligns them with adversarial image embeddings, to address the vulnerabilities inherent in VLMs without the need for extensive parameter training or modification of the model architecture. We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques, further boosting defensive capabilities. Comprehensive experimental analyses provide insights into adversarial prompt tuning, a novel paradigm devoted to improving resistance to adversarial images through textual input modifications, paving the way for future robust multimodal learning research. These findings open up new possibilities for enhancing the security of VLMs. Our code is available at https://github.com/jiamingzhang94/Adversarial-Prompt-Tuning.
comment: ECCV 2024
♻ ☆ Multi-Meta-RAG: Improving RAG for Multi-Hop Queries using Database Filtering with LLM-Extracted Metadata
The retrieval-augmented generation (RAG) enables retrieval of relevant information from an external knowledge source and allows large language models (LLMs) to answer queries over previously unseen document collections. However, it was demonstrated that traditional RAG applications perform poorly in answering multi-hop questions, which require retrieving and reasoning over multiple elements of supporting evidence. We introduce a new method called Multi-Meta-RAG, which uses database filtering with LLM-extracted metadata to improve the RAG selection of the relevant documents from various sources, relevant to the question. While database filtering is specific to a set of questions from a particular domain and format, we found out that Multi-Meta-RAG greatly improves the results on the MultiHop-RAG benchmark. The code is available at https://github.com/mxpoliakov/Multi-Meta-RAG.
comment: Accepted to ICTERI 2024 Posters Track
♻ ☆ KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models
By integrating external knowledge, Retrieval-Augmented Generation (RAG) has become an effective strategy for mitigating the hallucination problems that large language models (LLMs) encounter when dealing with knowledge-intensive tasks. However, in the process of integrating external non-parametric supporting evidence with internal parametric knowledge, inevitable knowledge conflicts may arise, leading to confusion in the model's responses. To enhance the knowledge selection of LLMs in various contexts, some research has focused on refining their behavior patterns through instruction-tuning. Nonetheless, due to the absence of explicit negative signals and comparative objectives, models fine-tuned in this manner may still exhibit undesirable behaviors such as contextual ignorance and contextual overinclusion. To this end, we propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection based on contextual relevance in real retrieval scenarios. Concretely, we proposed a general paradigm for constructing knowledge conflict datasets, which comprehensively cover various error types and learn how to avoid these negative signals through preference optimization methods. Simultaneously, we proposed a rewriting strategy and data ratio optimization strategy to address preference imbalances. Experimental results show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37\%, while also exhibiting robust generalization across various out-of-distribution datasets.
♻ ☆ LaRE^2: Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection CVPR 2024
The evolution of Diffusion Models has dramatically improved image generation quality, making it increasingly difficult to differentiate between real and generated images. This development, while impressive, also raises significant privacy and security concerns. In response to this, we propose a novel Latent REconstruction error guided feature REfinement method (LaRE^2) for detecting the diffusion-generated images. We come up with the Latent Reconstruction Error (LaRE), the first reconstruction-error based feature in the latent space for generated image detection. LaRE surpasses existing methods in terms of feature extraction efficiency while preserving crucial cues required to differentiate between the real and the fake. To exploit LaRE, we propose an Error-Guided feature REfinement module (EGRE), which can refine the image feature guided by LaRE to enhance the discriminativeness of the feature. Our EGRE utilizes an align-then-refine mechanism, which effectively refines the image feature for generated-image detection from both spatial and channel perspectives. Extensive experiments on the large-scale GenImage benchmark demonstrate the superiority of our LaRE^2, which surpasses the best SoTA method by up to 11.9%/12.1% average ACC/AP across 8 different image generators. LaRE also surpasses existing methods in terms of feature extraction cost, delivering an impressive speed enhancement of 8 times.
comment: CVPR 2024
♻ ☆ Reverse Map Projections as Equivariant Quantum Embeddings
We introduce the novel class $(E_\alpha)_{\alpha \in [-\infty,1)}$ of reverse map projection embeddings, each one defining a unique new method of encoding classical data into quantum states. Inspired by well-known map projections from the unit sphere onto its tangent planes, used in practice in cartography, these embeddings address the common drawback of the amplitude embedding method, wherein scalar multiples of data points are identified and information about the norm of data is lost. We show how reverse map projections can be utilised as equivariant embeddings for quantum machine learning. Using these methods, we can leverage symmetries in classical datasets to significantly strengthen performance on quantum machine learning tasks. Finally, we select four values of $\alpha$ with which to perform a simple classification task, taking $E_\alpha$ as the embedding and experimenting with both equivariant and non-equivariant setups. We compare their results alongside those of standard amplitude embedding.
♻ ☆ zIA: a GenAI-powered local auntie assists tourists in Italy
The Tourism and Destination Management Organization (DMO) industry is rapidly evolving to adapt to new technologies and traveler expectations. Generative Artificial Intelligence (AI) offers an astonishing and innovative opportunity to enhance the tourism experience by providing personalized, interactive and engaging assistance. In this article, we propose a generative AI-based chatbot for tourism assistance. The chatbot leverages AI ability to generate realistic and creative texts, adopting the friendly persona of the well-known Italian all-knowledgeable aunties, to provide tourists with personalized information, tailored and dynamic pre, during and post recommendations and trip plans and personalized itineraries, using both text and voice commands, and supporting different languages to satisfy Italian and foreign tourists expectations. This work is under development in the Molise CTE research project, funded by the Italian Minister of the Economic Growth (MIMIT), with the aim to leverage the best emerging technologies available, such as Cloud and AI to produce state of the art solutions in the Smart City environment.
comment: 13 pages, 4 Figures
♻ ☆ Identification of quantum entanglement with Siamese convolutional neural networks and semi-supervised learning
Quantum entanglement is a fundamental property commonly used in various quantum information protocols and algorithms. Nonetheless, the problem of identifying entanglement has still not reached a general solution for systems larger than $2\times3$. In this study, we use deep convolutional NNs, a type of supervised machine learning, to identify quantum entanglement for any bipartition in a 3-qubit system. We demonstrate that training the model on synthetically generated datasets of random density matrices excluding challenging positive-under-partial-transposition entangled states (PPTES), which cannot be identified (and correctly labeled) in general, leads to good model accuracy even for PPTES states, that were outside the training data. Our aim is to enhance the model's generalization on PPTES. By applying entanglement-preserving symmetry operations through a triple Siamese network trained in a semi-supervised manner, we improve the model's accuracy and ability to recognize PPTES. Moreover, by constructing an ensemble of Siamese models, even better generalization is observed, in analogy with the idea of finding separate types of entanglement witnesses for different classes of states.
comment: Updated version with improved models; 12 pages, 7 figures, 4 tables
♻ ☆ Simply Trainable Nearest Neighbour Machine Translation with GPU Inference
Nearest neighbor machine translation is a successful approach for fast domain adaption, which interpolates the pre-trained transformers with domain-specific token-level k-nearest-neighbor (kNN) retrieval without retraining. Despite kNN MT's success, searching large reference corpus and fixed interpolation between the kNN and pre-trained model led to computational complexity and translation quality challenges. Among other papers, Dai et al. proposed methods to obtain a small number of reference samples dynamically for which they introduced a distance-aware interpolation method using an equation that includes free parameters. This paper proposes a simply trainable nearest neighbor machine translation and carry out inference experiments on GPU. Similar to Dai et al., we first adaptively construct a small datastore for each input sentence. Second, we train a single-layer network for the interpolation coefficient between the knnMT and pre-trained result to automatically interpolate in different domains. Experimental results on different domains show that our proposed method either improves or sometimes maintain the translation quality of methods in Dai et al. while being automatic. In addition, our GPU inference results demonstrate that knnMT can be integrated into GPUs with a drop of only 5% in terms of speed.
comment: 6 pages
♻ ☆ Wilcoxon Nonparametric CFAR Scheme for Ship Detection in SAR Image
The parametric constant false alarm rate (CFAR) detection algorithms which are based on various statistical distributions, such as Gaussian, Gamma, Weibull, log-normal, G0 distribution, alpha-stable distribution, etc, are most widely used to detect the ship targets in SAR image at present. However, the clutter background in SAR images is complicated and variable. When the actual clutter background deviates from the assumed statistical distribution, the performance of the parametric CFAR detector will deteriorate. In addition to the parametric CFAR schemes, there is another class of nonparametric CFAR detectors which can maintain a constant false alarm rate for the target detection without the assumption of a known clutter distribution. In this work, the Wilcoxon nonparametric CFAR scheme for ship detection in SAR image is proposed and analyzed, and a closed form of the false alarm rate for the Wilcoxon nonparametric detector to determine the decision threshold is presented. By comparison with several typical parametric CFAR schemes on Radarsat-2, ICEYE-X6 and Gaofen-3 SAR images, the robustness of the Wilcoxon nonparametric detector to maintain a good false alarm performance in different detection backgrounds is revealed, and its detection performance for the weak ship in rough sea surface is improved to some extent. Moreover, the Wilcoxon nonparametric detector can suppress the false alarms resulting from the sidelobes at some degree and its detection speed is fast.
♻ ☆ MM-Mixing: Multi-Modal Mixing Alignment for 3D Understanding
We introduce MM-Mixing, a multi-modal mixing alignment framework for 3D understanding. MM-Mixing applies mixing-based methods to multi-modal data, preserving and optimizing cross-modal connections while enhancing diversity and improving alignment across modalities. Our proposed two-stage training pipeline combines feature-level and input-level mixing to optimize the 3D encoder. The first stage employs feature-level mixing with contrastive learning to align 3D features with their corresponding modalities. The second stage incorporates both feature-level and input-level mixing, introducing mixed point cloud inputs to further refine 3D feature representations. MM-Mixing enhances intermodality relationships, promotes generalization, and ensures feature consistency while providing diverse and realistic training samples. We demonstrate that MM-Mixing significantly improves baseline performance across various learning scenarios, including zero-shot 3D classification, linear probing 3D classification, and cross-modal 3D shape retrieval. Notably, we improved the zero-shot classification accuracy on ScanObjectNN from 51.3% to 61.9%, and on Objaverse-LVIS from 46.8% to 51.4%. Our findings highlight the potential of multi-modal mixing-based alignment to significantly advance 3D object recognition and understanding while remaining straightforward to implement and integrate into existing frameworks.
♻ ☆ Fast Benchmarking of Asynchronous Multi-Fidelity Optimization on Zero-Cost Benchmarks
While deep learning has celebrated many successes, its results often hinge on the meticulous selection of hyperparameters (HPs). However, the time-consuming nature of deep learning training makes HP optimization (HPO) a costly endeavor, slowing down the development of efficient HPO tools. While zero-cost benchmarks, which provide performance and runtime without actual training, offer a solution for non-parallel setups, they fall short in parallel setups as each worker must communicate its queried runtime to return its evaluation in the exact order. This work addresses this challenge by introducing a user-friendly Python package that facilitates efficient parallel HPO with zero-cost benchmarks. Our approach calculates the exact return order based on the information stored in file system, eliminating the need for long waiting times and enabling much faster HPO evaluations. We first verify the correctness of our approach through extensive testing and the experiments with 6 popular HPO libraries show its applicability to diverse libraries and its ability to achieve over 1000x speedup compared to a traditional approach. Our package can be installed via pip install mfhpo-simulator.
comment: Accepted to AutoML Conference 2024 ABCD Track
♻ ☆ Two-step dynamic obstacle avoidance
Dynamic obstacle avoidance (DOA) is a fundamental challenge for any autonomous vehicle, independent of whether it operates in sea, air, or land. This paper proposes a two-step architecture for handling DOA tasks by combining supervised and reinforcement learning (RL). In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network, which is trained in a supervised fashion and offers robustness to non-linear obstacle movements. In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness. We illustrate the power of our two-step approach by training different RL agents in a challenging environment that requires to navigate amid multiple obstacles. The non-linear movements of obstacles are exemplarily modeled based on stochastic processes and periodic patterns, although our architecture is suitable for any obstacle dynamics. The experiments reveal that integrating our CR metrics into the observation space doubles the performance in terms of reward, which is equivalent to halving the number of collisions in the considered environment. We also perform a generalization experiment to validate the proposal in an RL environment based on maritime traffic and real-world vessel trajectory data. Furthermore, we show that the architecture's performance improvement is independent of the applied RL algorithm.
♻ ☆ Patch of Invisibility: Naturalistic Physical Black-Box Adversarial Attacks on Object Detectors ECML-PKDD 2024
Adversarial attacks on deep-learning models have been receiving increased attention in recent years. Work in this area has mostly focused on gradient-based techniques, so-called "white-box" attacks, wherein the attacker has access to the targeted model's internal parameters; such an assumption is usually unrealistic in the real world. Some attacks additionally use the entire pixel space to fool a given model, which is neither practical nor physical (i.e., real-world). On the contrary, we propose herein a direct, black-box, gradient-free method that uses the learned image manifold of a pretrained generative adversarial network (GAN) to generate naturalistic physical adversarial patches for object detectors. To our knowledge this is the first and only method that performs black-box physical attacks directly on object-detection models, which results with a model-agnostic attack. We show that our proposed method works both digitally and physically. We compared our approach against four different black-box attacks with different configurations. Our approach outperformed all other approaches that were tested in our experiments by a large margin.
comment: Accepted at MLCS @ ECML-PKDD 2024
♻ ☆ Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2
Sparse autoencoders (SAEs) are an unsupervised method for learning a sparse decomposition of a neural network's latent representations into seemingly interpretable features. Despite recent excitement about their potential, research applications outside of industry are limited by the high cost of training a comprehensive suite of SAEs. In this work, we introduce Gemma Scope, an open suite of JumpReLU SAEs trained on all layers and sub-layers of Gemma 2 2B and 9B and select layers of Gemma 2 27B base models. We primarily train SAEs on the Gemma 2 pre-trained models, but additionally release SAEs trained on instruction-tuned Gemma 2 9B for comparison. We evaluate the quality of each SAE on standard metrics and release these results. We hope that by releasing these SAE weights, we can help make more ambitious safety and interpretability research easier for the community. Weights and a tutorial can be found at https://huggingface.co/google/gemma-scope and an interactive demo can be found at https://www.neuronpedia.org/gemma-scope
comment: 12 main text pages, and 14 pages of acknowledgements, references and appendices
♻ ☆ Heuristic-enhanced Candidates Selection strategy for GPTs tackle Few-Shot Aspect-Based Sentiment Analysis
Few-Shot Aspect-Based Sentiment Analysis (FSABSA) is an indispensable and highly challenging task in natural language processing. However, methods based on Pre-trained Language Models (PLMs) struggle to accommodate multiple sub-tasks, and methods based on Generative Pre-trained Transformers (GPTs) perform poorly. To address the above issues, the paper designs a Heuristic-enhanced Candidates Selection (HCS) strategy and further proposes All in One (AiO) model based on it. The model works in a two-stage, which simultaneously accommodates the accuracy of PLMs and the generalization capability of GPTs. Specifically, in the first stage, a backbone model based on PLMs generates rough heuristic candidates for the input sentence. In the second stage, AiO leverages LLMs' contextual learning capabilities to generate precise predictions. The study conducted comprehensive comparative and ablation experiments on five benchmark datasets. The experimental results demonstrate that the proposed model can better adapt to multiple sub-tasks, and also outperforms the methods that directly utilize GPTs.
comment: 9 pages, 5 figures
♻ ☆ Dynamic Hypergraph-Enhanced Prediction of Sequential Medical Visits
This study introduces a pioneering Dynamic Hypergraph Networks (DHCE) model designed to predict future medical diagnoses from electronic health records with enhanced accuracy. The DHCE model innovates by identifying and differentiating acute and chronic diseases within a patient's visit history, constructing dynamic hypergraphs that capture the complex, high-order interactions between diseases. It surpasses traditional recurrent neural networks and graph neural networks by effectively integrating clinical event data, reflected through medical language model-assisted encoding, into a robust patient representation. Through extensive experiments on two benchmark datasets, MIMIC-III and MIMIC-IV, the DHCE model exhibits superior performance, significantly outpacing established baseline models in the precision of sequential diagnosis prediction.
♻ ☆ Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control
We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC). Leveraging ODMDwC's ability to find and track linear approximation of a non-linear system while incorporating control effects, the proposed method dynamically adapts to its changing behavior due to aging and seasonality. This approach enables the detection of changes in spatial, temporal, and spectral patterns, providing a robust solution that preserves correspondence between the score and the extent of change in the system dynamics. We formulate a truncated version of ODMDwC and utilize higher-order time-delay embeddings to mitigate noise and extract broad-band features. Our method addresses the challenges faced in industrial settings where safety-critical systems generate non-uniform data streams while requiring timely and accurate change-point detection to protect profit and life. Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method. We validate our approach using synthetic and real-world data, showing its competitiveness to other approaches on complex systems' benchmark datasets. Provided guidelines for hyperparameters selection enhance our method's practical applicability.
comment: preprint under review in Elsevier
♻ ☆ RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models
In this paper, we investigate the in-context learning ability of retrieval-augmented encoder-decoder language models. We first conduct a comprehensive analysis of existing models and identify their limitations in in-context learning, primarily due to a mismatch between pretraining and inference, as well as a restricted context length. To address these issues, we propose RAVEN, a model that combines retrieval-augmented masked language modeling and prefix language modeling. We further introduce Fusion-in-Context Learning to enhance the few-shot performance by enabling the model to leverage more in-context examples without requiring additional training. Through extensive experiments, we demonstrate that our simple yet effective design significantly improves performance, achieving results comparable to the most advanced language models in certain scenarios, despite having substantially fewer parameters. Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning and encourages further research in this direction.
comment: COLM 2024
♻ ☆ Contrastive Learning-based Chaining-Cluster for Multilingual Voice-Face Association
The innate correlation between a person's face and voice has recently emerged as a compelling area of study, especially within the context of multilingual environments. This paper introduces our novel solution to the Face-Voice Association in Multilingual Environments (FAME) 2024 challenge, focusing on a contrastive learning-based chaining-cluster method to enhance face-voice association. This task involves the challenges of building biometric relations between auditory and visual modality cues and modelling the prosody interdependence between different languages while addressing both intrinsic and extrinsic variability present in the data. To handle these non-trivial challenges, our method employs supervised cross-contrastive (SCC) learning to establish robust associations between voices and faces in multi-language scenarios. Following this, we have specifically designed a chaining-cluster-based post-processing step to mitigate the impact of outliers often found in unconstrained in the wild data. We conducted extensive experiments to investigate the impact of language on face-voice association. The overall results were evaluated on the FAME public evaluation platform, where we achieved 2nd place. The results demonstrate the superior performance of our method, and we validate the robustness and effectiveness of our proposed approach. Code is available at https://github.com/colaudiolab/FAME24_solution.
♻ ☆ Universal Approximation Theory: The Basic Theory for Deep Learning-Based Computer Vision Models
Computer vision (CV) is one of the most crucial fields in artificial intelligence. In recent years, a variety of deep learning models based on convolutional neural networks (CNNs) and Transformers have been designed to tackle diverse problems in CV. These algorithms have found practical applications in areas such as robotics and facial recognition. Despite the increasing power of current CV models, several fundamental questions remain unresolved: Why do CNNs require deep layers? What ensures the generalization ability of CNNs? Why do residual-based networks outperform fully convolutional networks like VGG? What is the fundamental difference between residual-based CNNs and Transformer-based networks? Why can CNNs utilize LoRA and pruning techniques? The root cause of these questions lies in the lack of a robust theoretical foundation for deep learning models in CV. To address these critical issues and techniques, we employ the Universal Approximation Theorem (UAT) to provide a theoretical basis for convolution- and Transformer-based models in CV. By doing so, we aim to elucidate these questions from a theoretical perspective.
♻ ☆ Universal Approximation Theory: The Basic Theory for Transformer-based Large Language Models
Language models have emerged as a critical area of focus in artificial intelligence, particularly with the introduction of groundbreaking innovations like ChatGPT. Large-scale Transformer networks have quickly become the leading approach for advancing natural language processing algorithms. Built on the Transformer architecture, these models enable interactions that closely mimic human communication and, equipped with extensive knowledge, can even assist in guiding human tasks. Despite their impressive capabilities and growing complexity, a key question remains-the theoretical foundations of large language models (LLMs). What makes Transformer so effective for powering intelligent language applications, such as translation and coding? What underlies LLMs' ability for In-Context Learning (ICL)? How does the LoRA scheme enhance the fine-tuning of LLMs? And what supports the practicality of pruning LLMs? To address these critical questions and explore the technological strategies within LLMs, we leverage the Universal Approximation Theory (UAT) to offer a theoretical backdrop, shedding light on the mechanisms that underpin these advancements.
♻ ☆ Timo: Towards Better Temporal Reasoning for Language Models
Reasoning about time is essential for Large Language Models (LLMs) to understand the world. Previous works focus on solving specific tasks, primarily on time-sensitive question answering. While these methods have proven effective, they cannot generalize to a wider spectrum of temporal reasoning tasks. Therefore, we propose a crucial question: Can we build a universal framework to handle a variety of temporal reasoning tasks? To that end, we systematically study 38 temporal reasoning tasks. Based on the observation that 19 tasks are directly related to mathematics, we first leverage the available mathematical dataset to set a solid foundation for temporal reasoning. However, the in-depth study indicates that focusing solely on mathematical enhancement falls short of addressing pure temporal reasoning tasks. To mitigate this limitation, we propose a simple but effective self-critic temporal optimization method to enhance the model's temporal reasoning capabilities without sacrificing general task abilities. Finally, we develop Timo, a model designed to excel in temporal reasoning at the 7B and 13B scales. Notably, Timo outperforms the counterpart LLMs by 10.0 and 7.6 in average accuracy scores and achieves the new state-of-the-art (SOTA) performance of comparable size. Extensive experiments further validate our framework's effectiveness and its generalization across diverse temporal tasks. The code is available at https://github.com/zhaochen0110/Timo.
comment: This paper has been accepted to the COLM 2024 conference
♻ ☆ ProductAE: Toward Deep Learning Driven Error-Correction Codes of Large Dimensions
While decades of theoretical research have led to the invention of several classes of error-correction codes, the design of such codes is an extremely challenging task, mostly driven by human ingenuity. Recent studies demonstrate that such designs can be effectively automated and accelerated via tools from machine learning (ML), thus enabling ML-driven classes of error-correction codes with promising performance gains compared to classical designs. A fundamental challenge, however, is that it is prohibitively complex, if not impossible, to design and train fully ML-driven encoder and decoder pairs for large code dimensions. In this paper, we propose Product Autoencoder (ProductAE) -- a computationally-efficient family of deep learning driven (encoder, decoder) pairs -- aimed at enabling the training of relatively large codes (both encoder and decoder) with a manageable training complexity. We build upon ideas from classical product codes and propose constructing large neural codes using smaller code components. ProductAE boils down the complex problem of training the encoder and decoder for a large code dimension $k$ and blocklength $n$ to less-complex sub-problems of training encoders and decoders for smaller dimensions and blocklengths. Our training results show successful training of ProductAEs of dimensions as large as $k = 300$ bits with meaningful performance gains compared to state-of-the-art classical and neural designs. Moreover, we demonstrate excellent robustness and adaptivity of ProductAEs to channel models different than the ones used for training.
comment: arXiv admin note: text overlap with arXiv:2110.04466
♻ ☆ LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition
Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks. This paper investigates LoRA composability for cross-task generalization and introduces LoraHub, a simple framework devised for the purposive assembly of LoRA modules trained on diverse given tasks, with the objective of achieving adaptable performance on unseen tasks. With just a few examples from a new task, LoraHub can fluidly combine multiple LoRA modules, eliminating the need for human expertise and assumptions. Notably, the composition requires neither additional model parameters nor gradients. Empirical results on the Big-Bench Hard benchmark suggest that LoraHub, while not surpassing the performance of in-context learning, offers a notable performance-efficiency trade-off in few-shot scenarios by employing a significantly reduced number of tokens per example during inference. Notably, LoraHub establishes a better upper bound compared to in-context learning when paired with different demonstration examples, demonstrating its potential for future development. Our vision is to establish a platform for LoRA modules, empowering users to share their trained LoRA modules. This collaborative approach facilitates the seamless application of LoRA modules to novel tasks, contributing to an adaptive ecosystem. Our code is available at https://github.com/sail-sg/lorahub, and all the pre-trained LoRA modules are released at https://huggingface.co/lorahub.
comment: COLM 2024
♻ ☆ Clue-Guided Path Exploration: Optimizing Knowledge Graph Retrieval with Large Language Models to Address the Information Black Box Challenge
In recent times, large language models (LLMs) have showcased remarkable capabilities. However, updating their knowledge poses challenges, potentially leading to inaccuracies when confronted with unfamiliar queries. To address this issue, integrating external knowledge bases such as knowledge graphs with large language models is a viable approach. The key challenge lies in extracting the required knowledge from knowledge graphs based on natural language, demanding high semantic understanding. Therefore, researchers are considering leveraging large language models directly for knowledge retrieval from these graphs. Current efforts typically rely on the comprehensive problem-solving capabilities of large language models. We argue that a problem we term the 'information black box' can significantly impact the practical effectiveness of such methods. Moreover, this kind of methods is less effective for scenarios where the questions are unfamiliar to the large language models. In this paper, we propose a Clue-Guided Path Exploration (CGPE) framework to optimize knowledge retrieval based on large language models. By addressing the 'information black box' issue and employing single-task approaches instead of complex tasks, we have enhanced the accuracy and efficiency of using large language models for retrieving knowledge graphs. Experiments on open-source datasets reveal that CGPE outperforms previous methods and is highly applicable to LLMs with fewer parameters. In some instances, even ChatGLM3, with its 6 billion parameters, can rival the performance of GPT-4. Furthermore, the results indicate a minimal invocation frequency of CGPE on LLMs, suggesting reduced computational overhead. For organizations and individuals facing constraints in computational resources, our research offers significant practical value.
♻ ☆ ReALM: Reference Resolution As Language Modeling SIGDIAL 2024
Reference resolution is an important problem, one that is essential to understand and successfully handle context of different kinds. This context includes both previous turns and context that pertains to non-conversational entities, such as entities on the user's screen or those running in the background. While LLMs have been shown to be extremely powerful for a variety of tasks, their use in reference resolution, particularly for non-conversational entities, remains underutilized. This paper demonstrates how LLMs can be used to create an extremely effective system to resolve references of various types, by showing how reference resolution can be converted into a language modeling problem, despite involving forms of entities like those on screen that are not traditionally conducive to being reduced to a text-only modality. We demonstrate large improvements over an existing system with similar functionality across different types of references, with our smallest model obtaining absolute gains of over 5% for on-screen references. We also benchmark against GPT-3.5 and GPT-4, with our smallest model achieving performance comparable to that of GPT-4, and our larger models substantially outperforming it.
comment: Accepted at SIGDIAL 2024 (Oral presentation)
♻ ☆ Applications of Nature-Inspired Metaheuristic Algorithms for Tackling Optimization Problems Across Disciplines
Nature-inspired metaheuristic algorithms are important components of artificial intelligence, and are increasingly used across disciplines to tackle various types of challenging optimization problems. This paper demonstrates the usefulness of such algorithms for solving a variety of challenging optimization problems in statistics using a nature-inspired metaheuristic algorithm called competitive swarm optimizer with mutated agents (CSO-MA). This algorithm was proposed by one of the authors and its superior performance relative to many of its competitors had been demonstrated in earlier work and again in this paper. The main goal of this paper is to show a typical nature-inspired metaheuristic algorithmi, like CSO-MA, is efficient for tackling many different types of optimization problems in statistics. Our applications are new and include finding maximum likelihood estimates of parameters in a single cell generalized trend model to study pseudotime in bioinformatics, estimating parameters in the commonly used Rasch model in education research, finding M-estimates for a Cox regression in a Markov renewal model, performing matrix completion tasks to impute missing data for a two compartment model, and selecting variables optimally in an ecology problem in China. To further demonstrate the flexibility of metaheuristics, we also find an optimal design for a car refueling experiment in the auto industry using a logistic model with multiple interacting factors. In addition, we show that metaheuristics can sometimes outperform optimization algorithms commonly used in statistics.
♻ ☆ Universal Approximation Theory: Foundations for Parallelism in Neural Networks
Neural networks are increasingly evolving towards training large models with big data, a method that has demonstrated superior performance across many tasks. However, this approach introduces an urgent problem: current deep learning models are predominantly serial, meaning that as the number of network layers increases, so do the training and inference times. This is unacceptable if deep learning is to continue advancing. Therefore, this paper proposes a deep learning parallelization strategy based on the Universal Approximation Theorem (UAT). From this foundation, we designed a parallel network called Para-Former to test our theory. Unlike traditional serial models, the inference time of Para-Former does not increase with the number of layers, significantly accelerating the inference speed of multi-layer networks. Experimental results validate the effectiveness of this network.
♻ ☆ Multiscale Representation Enhanced Temporal Flow Fusion Model for Long-Term Workload Forecasting CIKM '24
Accurate workload forecasting is critical for efficient resource management in cloud computing systems, enabling effective scheduling and autoscaling. Despite recent advances with transformer-based forecasting models, challenges remain due to the non-stationary, nonlinear characteristics of workload time series and the long-term dependencies. In particular, inconsistent performance between long-term history and near-term forecasts hinders long-range predictions. This paper proposes a novel framework leveraging self-supervised multiscale representation learning to capture both long-term and near-term workload patterns. The long-term history is encoded through multiscale representations while the near-term observations are modeled via temporal flow fusion. These representations of different scales are fused using an attention mechanism and characterized with normalizing flows to handle non-Gaussian/non-linear distributions of time series. Extensive experiments on 9 benchmarks demonstrate superiority over existing methods.
comment: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM '24), October 21--25, 2024, Boise, ID, USA
♻ ☆ Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis
Kolmogorov-Arnold Networks (KAN) has recently attracted significant attention as a promising alternative to traditional Multi-Layer Perceptrons (MLP). Despite their theoretical appeal, KAN require validation on large-scale benchmark datasets. Time series data, which has become increasingly prevalent in recent years, especially univariate time series are naturally suited for validating KAN. Therefore, we conducted a fair comparison among KAN, MLP, and mixed structures. The results indicate that KAN can achieve performance comparable to, or even slightly better than, MLP across 128 time series datasets. We also performed an ablation study on KAN, revealing that the output is primarily determined by the base component instead of b-spline function. Furthermore, we assessed the robustness of these models and found that KAN and the hybrid structure MLP\_KAN exhibit significant robustness advantages, attributed to their lower Lipschitz constants. This suggests that KAN and KAN layers hold strong potential to be robust models or to improve the adversarial robustness of other models.
comment: 14 pages, 8 figs
♻ ☆ The Geometry of Truth: Emergent Linear Structure in Large Language Model Representations of True/False Datasets
Large Language Models (LLMs) have impressive capabilities, but are prone to outputting falsehoods. Recent work has developed techniques for inferring whether a LLM is telling the truth by training probes on the LLM's internal activations. However, this line of work is controversial, with some authors pointing out failures of these probes to generalize in basic ways, among other conceptual issues. In this work, we use high-quality datasets of simple true/false statements to study in detail the structure of LLM representations of truth, drawing on three lines of evidence: 1. Visualizations of LLM true/false statement representations, which reveal clear linear structure. 2. Transfer experiments in which probes trained on one dataset generalize to different datasets. 3. Causal evidence obtained by surgically intervening in a LLM's forward pass, causing it to treat false statements as true and vice versa. Overall, we present evidence that at sufficient scale, LLMs linearly represent the truth or falsehood of factual statements. We also show that simple difference-in-mean probes generalize as well as other probing techniques while identifying directions which are more causally implicated in model outputs.
comment: Conference on Language Modeling, 2024
♻ ☆ CIC: A framework for Culturally-aware Image Captioning IJCAI 2024
Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, Culturally-aware Image Captioning (CIC), that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Resources can be found at https://shane3606.github.io/cic..
comment: Accepted in IJCAI 2024
♻ ☆ Symbiotic Game and Foundation Models for Cyber Deception Operations in Strategic Cyber Warfare
We are currently facing unprecedented cyber warfare with the rapid evolution of tactics, increasing asymmetry of intelligence, and the growing accessibility of hacking tools. In this landscape, cyber deception emerges as a critical component of our defense strategy against increasingly sophisticated attacks. This chapter aims to highlight the pivotal role of game-theoretic models and foundation models (FMs) in analyzing, designing, and implementing cyber deception tactics. Game models (GMs) serve as a foundational framework for modeling diverse adversarial interactions, allowing us to encapsulate both adversarial knowledge and domain-specific insights. Meanwhile, FMs serve as the building blocks for creating tailored machine learning models suited to given applications. By leveraging the synergy between GMs and FMs, we can advance proactive and automated cyber defense mechanisms by not only securing our networks against attacks but also enhancing their resilience against well-planned operations. This chapter discusses the games at the tactical, operational, and strategic levels of warfare, delves into the symbiotic relationship between these methodologies, and explores relevant applications where such a framework can make a substantial impact in cybersecurity. The chapter discusses the promising direction of the multi-agent neurosymbolic conjectural learning (MANSCOL), which allows the defender to predict adversarial behaviors, design adaptive defensive deception tactics, and synthesize knowledge for the operational level synthesis and adaptation. FMs serve as pivotal tools across various functions for MANSCOL, including reinforcement learning, knowledge assimilation, formation of conjectures, and contextual representation. This chapter concludes with a discussion of the challenges associated with FMs and their application in the domain of cybersecurity.
comment: 40 pages, 7 figures, 2 tables
♻ ☆ A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs
In this paper,we mainly focus on the numerical solution of high-dimensional stochastic optimal control problem driven by fully-coupled forward-backward stochastic differential equations (FBSDEs in short) through deep learning. We first transform the problem into a stochastic Stackelberg differential game problem (leader-follower problem), then a bi-level optimization method is developed where the leader's cost functional and the follower's cost functional are optimized alternatively via deep neural networks. As for the numerical results, we compute two examples of the investment-consumption problem solved through stochastic recursive utility models, and the results of both examples demonstrate the effectiveness of our proposed algorithm.
♻ ☆ Enhancing Source Code Classification Effectiveness via Prompt Learning Incorporating Knowledge Features
Researchers have investigated the potential of leveraging pre-trained language models, such as CodeBERT, to enhance source code-related tasks. Previous methodologies have relied on CodeBERT's '[CLS]' token as the embedding representation of input sequences for task performance, necessitating additional neural network layers to enhance feature representation, which in turn increases computational expenses. These approaches have also failed to fully leverage the comprehensive knowledge inherent within the source code and its associated text, potentially limiting classification efficacy. We propose CodeClassPrompt, a text classification technique that harnesses prompt learning to extract rich knowledge associated with input sequences from pre-trained models, thereby eliminating the need for additional layers and lowering computational costs. By applying an attention mechanism, we synthesize multi-layered knowledge into task-specific features, enhancing classification accuracy. Our comprehensive experimentation across four distinct source code-related tasks reveals that CodeClassPrompt achieves competitive performance while significantly reducing computational overhead.
comment: Accepted by Scientific Reports
♻ ☆ Super-intelligence or Superstition? Exploring Psychological Factors Underlying Unwarranted Belief in AI Predictions
This study investigates psychological factors influencing belief in AI predictions about personal behavior, comparing it to belief in astrology and personality-based predictions. Through an experiment with 238 participants, we examined how cognitive style, paranormal beliefs, AI attitudes, personality traits, and other factors affect perceived validity, reliability, usefulness, and personalization of predictions from different sources. Our findings reveal that belief in AI predictions is positively correlated with belief in predictions based on astrology and personality psychology. Notably, paranormal beliefs and positive AI attitudes significantly increased perceived validity, reliability, usefulness, and personalization of AI predictions. Conscientiousness was negatively correlated with belief in predictions across all sources, and interest in the prediction topic increased believability across predictions. Surprisingly, cognitive style did not significantly influence belief in predictions. These results highlight the "rational superstition" phenomenon in AI, where belief is driven more by mental heuristics and intuition than critical evaluation. We discuss implications for designing AI systems and communication strategies that foster appropriate trust and skepticism. This research contributes to our understanding of the psychology of human-AI interaction and offers insights for the design and deployment of AI systems.
♻ ☆ Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value ICML 2024
We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost.
comment: Accepted by ICML 2024 Conference
♻ ☆ Information-Theoretic Distillation for Reference-less Summarization
The current winning recipe for automatic summarization is using proprietary large-scale language models (LLMs) such as ChatGPT as is, or imitation learning from them as teacher models. While increasingly ubiquitous dependence on such large-scale language models is convenient, there remains an important question of whether small-scale models could have achieved competitive results, if we were to seek an alternative learning method -- that allows for a more cost-efficient, controllable, yet powerful summarizer. We present InfoSumm, a novel framework to distill a powerful summarizer based on the information-theoretic objective for summarization, without relying on either the LLM's capability or human-written references. To achieve this, we first propose a novel formulation of the desiderata of summarization (saliency, faithfulness and brevity) through the lens of mutual information between the original document and the summary. Based on this formulation, we start off from Pythia-2.8B as the teacher model, which is not yet capable of summarization, then self-train the model to optimize for the information-centric measures of ideal summaries. Distilling from the improved teacher, we arrive at a compact but powerful summarizer with only 568M parameters that performs competitively against ChatGPT, without ever relying on ChatGPT's capabilities. Extensive analysis demonstrates that our approach outperforms in-domain supervised models in human evaluation, let alone state-of-the-art unsupervised methods, and wins over ChatGPT in controllable summarization.
♻ ☆ Impossible Distillation: from Low-Quality Model to High-Quality Dataset & Model for Summarization and Paraphrasing NAACL 2024
We present Impossible Distillation, a novel framework for paraphrasing and sentence summarization, that distills a high-quality dataset and model from a low-quality teacher that itself cannot perform these tasks. Unlike prior works that rely on an extreme-scale teacher model (e.g., GPT3) or task-specific architecture, we hypothesize and verify the paraphrastic proximity intrinsic to pre-trained LMs (e.g., GPT2), where paraphrases occupy a proximal subspace in the LM distribution. By identifying and distilling generations from these subspaces, Impossible Distillation produces a high-quality dataset and model even from GPT2-scale LMs. We evaluate our method on multiple benchmarks spanning unconstrained / syntax-controlled paraphrase generation and sentence summarization. Our model with 770M parameters consistently outperforms strong baselines, including models distilled from ChatGPT, and sometimes, even ChatGPT itself. Also, we find that our distilled dataset from 1.5B LMs exhibits higher diversity and fidelity than up to 13 times larger datasets.
comment: NAACL 2024
♻ ☆ WalledEval: A Comprehensive Safety Evaluation Toolkit for Large Language Models
WalledEval is a comprehensive AI safety testing toolkit designed to evaluate large language models (LLMs). It accommodates a diverse range of models, including both open-weight and API-based ones, and features over 35 safety benchmarks covering areas such as multilingual safety, exaggerated safety, and prompt injections. The framework supports both LLM and judge benchmarking and incorporates custom mutators to test safety against various text-style mutations, such as future tense and paraphrasing. Additionally, WalledEval introduces WalledGuard, a new, small, and performant content moderation tool, and two datasets: SGXSTest and HIXSTest, which serve as benchmarks for assessing the exaggerated safety of LLMs and judges in cultural contexts. We make WalledEval publicly available at https://github.com/walledai/walledeval.
comment: Under review
♻ ☆ Diff-PIC: Revolutionizing Particle-In-Cell Simulation for Advancing Nuclear Fusion with Diffusion Models
Sustainable energy is a crucial global challenge, and recent breakthroughs in nuclear fusion ignition underscore the potential of harnessing energy extracted from nuclear fusion in everyday life, thereby drawing significant attention to fusion ignition research, especially Laser-Plasma Interaction (LPI). Unfortunately, the complexity of LPI at ignition scale renders theory-based analysis nearly impossible -- instead, it has to rely heavily on Particle-in-Cell (PIC) simulations, which is extremely computationally intensive, making it a major bottleneck in advancing fusion ignition. In response, this work introduces Diff-PIC, a novel paradigm that leverages conditional diffusion models as a computationally efficient alternative to PIC simulations for generating high-fidelity scientific data. Specifically, we design a distillation paradigm to distill the physical patterns captured by PIC simulations into diffusion models, demonstrating both theoretical and practical feasibility. Moreover, to ensure practical effectiveness, we provide solutions for two critical challenges: (1) We develop a physically-informed conditional diffusion model that can learn and generate meaningful embeddings for mathematically continuous physical conditions. This model offers algorithmic generalization and adaptable transferability, effectively capturing the complex relationships between physical conditions and simulation outcomes; and (2) We employ the rectified flow technique to make our model a one-step conditional diffusion model, enhancing its efficiency further while maintaining high fidelity and physical validity. Diff-PIC establishes a new paradigm for using diffusion models to overcome the computational barriers in nuclear fusion research, setting a benchmark for future innovations and advancements in this field.
♻ ☆ MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
Open-world generalization requires robotic systems to have a profound understanding of the physical world and the user command to solve diverse and complex tasks. While the recent advancement in vision-language models (VLMs) has offered unprecedented opportunities to solve open-world problems, how to leverage their capabilities to control robots remains a grand challenge. In this paper, we present MOKA (Marking Open-vocabulary Keypoint Affordances), an approach that employs VLMs to solve robotic manipulation tasks specified by free-form language instructions. Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world. By prompting the pre-trained VLM, our approach utilizes the VLM's commonsense knowledge and concept understanding acquired from broad data sources to predict affordances and generate motions. To facilitate the VLM's reasoning in zero-shot and few-shot manners, we propose a visual prompting technique that annotates marks on images, converting affordance reasoning into a series of visual question-answering problems that are solvable by the VLM. We further explore methods to enhance performance with robot experiences collected by MOKA through in-context learning and policy distillation. We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
♻ ☆ Malla: Demystifying Real-world Large Language Model Integrated Malicious Services USENIX Security
The underground exploitation of large language models (LLMs) for malicious services (i.e., Malla) is witnessing an uptick, amplifying the cyber threat landscape and posing questions about the trustworthiness of LLM technologies. However, there has been little effort to understand this new cybercrime, in terms of its magnitude, impact, and techniques. In this paper, we conduct the first systematic study on 212 real-world Mallas, uncovering their proliferation in underground marketplaces and exposing their operational modalities. Our study discloses the Malla ecosystem, revealing its significant growth and impact on today's public LLM services. Through examining 212 Mallas, we uncovered eight backend LLMs used by Mallas, along with 182 prompts that circumvent the protective measures of public LLM APIs. We further demystify the tactics employed by Mallas, including the abuse of uncensored LLMs and the exploitation of public LLM APIs through jailbreak prompts. Our findings enable a better understanding of the real-world exploitation of LLMs by cybercriminals, offering insights into strategies to counteract this cybercrime.
comment: Accepted at the 33rd USENIX Security Symposium (USENIX Security '24). The data and code are available at https://github.com/idllresearch/malicious-gpt
♻ ☆ SPEED: Scalable Preprocessing of EEG Data for Self-Supervised Learning
Electroencephalography (EEG) research typically focuses on tasks with narrowly defined objectives, but recent studies are expanding into the use of unlabeled data within larger models, aiming for a broader range of applications. This addresses a critical challenge in EEG research. For example, Kostas et al. (2021) show that self-supervised learning (SSL) outperforms traditional supervised methods. Given the high noise levels in EEG data, we argue that further improvements are possible with additional preprocessing. Current preprocessing methods often fail to efficiently manage the large data volumes required for SSL, due to their lack of optimization, reliance on subjective manual corrections, and validation processes or inflexible protocols that limit SSL. We propose a Python-based EEG preprocessing pipeline optimized for self-supervised learning, designed to efficiently process large-scale data. This optimization not only stabilizes self-supervised training but also enhances performance on downstream tasks compared to training with raw data.
comment: To appear in proceedings of 2024 IEEE International workshop on Machine Learning for Signal Processing
♻ ☆ Semantic Trajectory Data Mining with LLM-Informed POI Classification SC 2024
Human travel trajectory mining is crucial for transportation systems, enhancing route optimization, traffic management, and the study of human travel patterns. Previous rule-based approaches without the integration of semantic information show a limitation in both efficiency and accuracy. Semantic information, such as activity types inferred from Points of Interest (POI) data, can significantly enhance the quality of trajectory mining. However, integrating these insights is challenging, as many POIs have incomplete feature information, and current learning-based POI algorithms require the integrity of datasets to do the classification. In this paper, we introduce a novel pipeline for human travel trajectory mining. Our approach first leverages the strong inferential and comprehension capabilities of large language models (LLMs) to annotate POI with activity types and then uses a Bayesian-based algorithm to infer activity for each stay point in a trajectory. In our evaluation using the OpenStreetMap (OSM) POI dataset, our approach achieves a 93.4% accuracy and a 96.1% F-1 score in POI classification, and a 91.7% accuracy with a 92.3% F-1 score in activity inference.
comment: 7 pages, accepted for the 27th IEEE International Conference on Intelligent Transportation Systems (ITSC 2024)
♻ ☆ No Imputation Needed: A Switch Approach to Irregularly Sampled Time Series
Modeling irregularly-sampled time series (ISTS) is challenging because of missing values. Most existing methods focus on handling ISTS by converting irregularly sampled data into regularly sampled data via imputation. These models assume an underlying missing mechanism, which may lead to unwanted bias and sub-optimal performance. We present SLAN (Switch LSTM Aggregate Network), which utilizes a group of LSTMs to model ISTS without imputation, eliminating the assumption of any underlying process. It dynamically adapts its architecture on the fly based on the measured sensors using switches. SLAN exploits the irregularity information to explicitly capture each sensor's local summary and maintains a global summary state throughout the observational period. We demonstrate the efficacy of SLAN on two public datasets, namely, MIMIC-III, and Physionet 2012.
♻ ☆ Cost-Sensitive Learning to Defer to Multiple Experts with Workload Constraints
Learning to defer (L2D) aims to improve human-AI collaboration systems by learning how to defer decisions to humans when they are more likely to be correct than an ML classifier. Existing research in L2D overlooks key real-world aspects that impede its practical adoption, namely: i) neglecting cost-sensitive scenarios, where type I and type II errors have different costs; ii) requiring concurrent human predictions for every instance of the training dataset; and iii) not dealing with human work-capacity constraints. To address these issues, we propose the \textit{deferral under cost and capacity constraints framework} (DeCCaF). DeCCaF is a novel L2D approach, employing supervised learning to model the probability of human error under less restrictive data requirements (only one expert prediction per instance) and using constraint programming to globally minimize the error cost, subject to workload limitations. We test DeCCaF in a series of cost-sensitive fraud detection scenarios with different teams of 9 synthetic fraud analysts, with individual work-capacity constraints. The results demonstrate that our approach performs significantly better than the baselines in a wide array of scenarios, achieving an average $8.4\%$ reduction in the misclassification cost. The code used for the experiments is available at https://github.com/feedzai/deccaf
♻ ☆ Robust MRI Reconstruction by Smoothed Unrolling (SMUG)
As the popularity of deep learning (DL) in the field of magnetic resonance imaging (MRI) continues to rise, recent research has indicated that DL-based MRI reconstruction models might be excessively sensitive to minor input disturbances, including worst-case additive perturbations. This sensitivity often leads to unstable, aliased images. This raises the question of how to devise DL techniques for MRI reconstruction that can be robust to train-test variations. To address this problem, we propose a novel image reconstruction framework, termed Smoothed Unrolling (SMUG), which advances a deep unrolling-based MRI reconstruction model using a randomized smoothing (RS)-based robust learning approach. RS, which improves the tolerance of a model against input noises, has been widely used in the design of adversarial defense approaches for image classification tasks. Yet, we find that the conventional design that applies RS to the entire DL-based MRI model is ineffective. In this paper, we show that SMUG and its variants address the above issue by customizing the RS process based on the unrolling architecture of a DL-based MRI reconstruction model. Compared to the vanilla RS approach, we show that SMUG improves the robustness of MRI reconstruction with respect to a diverse set of instability sources, including worst-case and random noise perturbations to input measurements, varying measurement sampling rates, and different numbers of unrolling steps. Furthermore, we theoretically analyze the robustness of our method in the presence of perturbations.
♻ ☆ Fight Perturbations with Perturbations: Defending Adversarial Attacks via Neuron Influence
The vulnerabilities of deep learning models towards adversarial attacks have attracted increasing attention, especially when models are deployed in security-critical domains. Numerous defense methods, including reactive and proactive ones, have been proposed for model robustness improvement. Reactive defenses, such as conducting transformations to remove perturbations, usually fail to handle large perturbations. The proactive defenses that involve retraining, suffer from the attack dependency and high computation cost. In this paper, we consider defense methods from the general effect of adversarial attacks that take on neurons inside the model. We introduce the concept of neuron influence, which can quantitatively measure neurons' contribution to correct classification. Then, we observe that almost all attacks fool the model by suppressing neurons with larger influence and enhancing those with smaller influence. Based on this, we propose \emph{Neuron-level Inverse Perturbation} (NIP), a novel defense against general adversarial attacks. It calculates neuron influence from benign examples and then modifies input examples by generating inverse perturbations that can in turn strengthen neurons with larger influence and weaken those with smaller influence.
comment: Final version. Accepted to IEEE Transactions on Dependable and Secure Computing
Robotics 33
☆ A Biologically Inspired Design Principle for Building Robust Robotic Systems
Robustness, the ability of a system to maintain performance under significant and unanticipated environmental changes, is a critical property for robotic systems. While biological systems naturally exhibit robustness, there is no comprehensive understanding of how to achieve similar robustness in robotic systems. In this work, we draw inspirations from biological systems and propose a design principle that advocates active interconnections among system components to enhance robustness to environmental variations. We evaluate this design principle in a challenging long-horizon manipulation task: solving lockboxes. Our extensive simulated and real-world experiments demonstrate that we could enhance robustness against environmental changes by establishing active interconnections among system components without substantial changes in individual components. Our findings suggest that a systematic investigation of design principles in system building is necessary. It also advocates for interdisciplinary collaborations to explore and evaluate additional principles of biological robustness to advance the development of intelligent and adaptable robotic systems.
☆ Perfectly Undetectable Reflection and Scaling False Data Injection Attacks via Affine Transformation on Mobile Robot Trajectory Tracking Control
With the increasing integration of cyber-physical systems (CPS) into critical applications, ensuring their resilience against cyberattacks is paramount. A particularly concerning threat is the vulnerability of CPS to deceptive attacks that degrade system performance while remaining undetected. This paper investigates perfectly undetectable false data injection attacks (FDIAs) targeting the trajectory tracking control of a non-holonomic mobile robot. The proposed attack method utilizes affine transformations of intercepted signals, exploiting weaknesses inherent in the partially linear dynamic properties and symmetry of the nonlinear plant. The feasibility and potential impact of these attacks are validated through experiments using a Turtlebot 3 platform, highlighting the urgent need for sophisticated detection mechanisms and resilient control strategies to safeguard CPS against such threats. Furthermore, a novel approach for detection of these attacks called the state monitoring signature function (SMSF) is introduced. An example SMSF, a carefully designed function resilient to FDIA, is shown to be able to detect the presence of a FDIA through signatures based on systems states.
comment: 15 pages, 17 figures. Manuscript under review for publication
☆ Don't Get Stuck: A Deadlock Recovery Approach SC
When multiple agents share space, interactions can lead to deadlocks, where no agent can advance towards its goal. This paper addresses this challenge with a deadlock recovery strategy. In particular, the proposed algorithm integrates hybrid-A$^\star$, STL, and MPPI frameworks. Specifically, hybrid-A$^\star$ generates a reference path, STL defines a goal (deadlock avoidance) and associated constraints (w.r.t. traffic rules), and MPPI refines the path and speed accordingly. This STL-MPPI framework ensures system compliance to specifications and dynamics while ensuring the safety of the resulting maneuvers, indicating a strong potential for application to complex traffic scenarios (and rules) in practice. Validation studies are conducted in simulations and on scaled cars, respectively, to demonstrate the effectiveness of the proposed algorithm.
comment: Presented at the 27th IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024, Edmonton, Alberta, Canada
☆ Towards UAV-USV Collaboration in Harsh Maritime Conditions Including Large Waves
This paper introduces a system designed for tight collaboration between Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) in harsh maritime conditions characterized by large waves. This onboard UAV system aims to enhance collaboration with USVs for following and landing tasks under such challenging conditions. The main contribution of our system is the novel mathematical USV model, describing the movement of the USV in 6 degrees of freedom on a wavy water surface, which is used to estimate and predict USV states. The estimator fuses data from multiple global and onboard sensors, ensuring accurate USV state estimation. The predictor computes future USV states using the novel mathematical USV model and the last estimated states. The estimated and predicted USV states are forwarded into a trajectory planner that generates a UAV trajectory for following the USV or landing on its deck, even in harsh environmental conditions. The proposed approach was verified in numerous simulations and deployed to the real world, where the UAV was able to follow the USV and land on its deck repeatedly.
☆ Physics-Aware Combinatorial Assembly Planning using Deep Reinforcement Learning
Combinatorial assembly uses standardized unit primitives to build objects that satisfy user specifications. Lego is a widely used platform for combinatorial assembly, in which people use unit primitives (ie Lego bricks) to build highly customizable 3D objects. This paper studies sequence planning for physical combinatorial assembly using Lego. Given the shape of the desired object, we want to find a sequence of actions for placing Lego bricks to build the target object. In particular, we aim to ensure the planned assembly sequence is physically executable. However, assembly sequence planning (ASP) for combinatorial assembly is particularly challenging due to its combinatorial nature, ie the vast number of possible combinations and complex constraints. To address the challenges, we employ deep reinforcement learning to learn a construction policy for placing unit primitives sequentially to build the desired object. Specifically, we design an online physics-aware action mask that efficiently filters out invalid actions and guides policy learning. In the end, we demonstrate that the proposed method successfully plans physically valid assembly sequences for constructing different Lego structures. The generated construction plan can be executed in real.
☆ Source-Seeking Problem with Robot Swarms
We present an algorithm to solve the problem of locating the source, or maxima, of a scalar field using a robot swarm. We demonstrate how the robot swarm determines its direction of movement to approach the source using only field intensity measurements taken by each robot. In contrast with the current literature, our algorithm accommodates a generic (non-degenerate) geometry for the swarm's formation. Additionally, we rigorously show the effectiveness of the algorithm even when the dynamics of the robots are complex, such as a unicycle with constant speed. Not requiring a strict geometry for the swarm significantly enhances its resilience. For example, this allows the swarm to change its size and formation in the presence of obstacles or other real-world factors, including the loss or addition of individuals to the swarm on the fly. For clarity, the article begins by presenting the algorithm for robots with free dynamics. In the second part, we demonstrate the algorithm's effectiveness even considering non-holonomic dynamics for the robots, using the vector field guidance paradigm. Finally, we verify and validate our algorithm with various numerical simulations.
☆ Learning Precise Affordances from Egocentric Videos for Robotic Manipulation
Affordance, defined as the potential actions that an object offers, is crucial for robotic manipulation tasks. A deep understanding of affordance can lead to more intelligent AI systems. For example, such knowledge directs an agent to grasp a knife by the handle for cutting and by the blade when passing it to someone. In this paper, we present a streamlined affordance learning system that encompasses data collection, effective model training, and robot deployment. First, we collect training data from egocentric videos in an automatic manner. Different from previous methods that focus only on the object graspable affordance and represent it as coarse heatmaps, we cover both graspable (e.g., object handles) and functional affordances (e.g., knife blades, hammer heads) and extract data with precise segmentation masks. We then propose an effective model, termed Geometry-guided Affordance Transformer (GKT), to train on the collected data. GKT integrates an innovative Depth Feature Injector (DFI) to incorporate 3D shape and geometric priors, enhancing the model's understanding of affordances. To enable affordance-oriented manipulation, we further introduce Aff-Grasp, a framework that combines GKT with a grasp generation model. For comprehensive evaluation, we create an affordance evaluation dataset with pixel-wise annotations, and design real-world tasks for robot experiments. The results show that GKT surpasses the state-of-the-art by 15.9% in mIoU, and Aff-Grasp achieves high success rates of 95.5% in affordance prediction and 77.1% in successful grasping among 179 trials, including evaluations with seen, unseen objects, and cluttered scenes.
comment: Project page: https://reagan1311.github.io/affgrasp
☆ Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.
comment: weirdlabuw.github.io/vpl
☆ Understanding cyclists' perception of driverless vehicles through eye-tracking and interviews
As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when explicitly instructed, and (3) how they carry out such tasks. Using a Wizard-of-Oz method, 37 participants cycled a designated route and encountered an AV multiple times in two experimental sessions. In Session 1, participants cycled the route uninstructed, while in Session 2, they were instructed to verbally report whether they detected the presence or absence of a driver. Additionally, we recorded the participants' gaze behaviour with eye-tracking and their responses in post-session interviews. The interviews revealed that 30% of the cyclists spontaneously mentioned the absence of a driver (Session 1), and when instructed (Session 2), they detected the absence and presence of the driver with 93% accuracy. The eye-tracking data showed that cyclists looked more frequently and longer at the vehicle in Session 2 compared to Session 1. Furthermore, participants exhibited intermittent sampling of the vehicle, and they looked in front of the vehicle when it was far away and towards the windshield region when it was closer. The post-session interviews also indicated that participants were curious, felt safe, and reported a need to receive information about the AV's driving state. In conclusion, cyclists can detect the absence of a driver in the AV, and this detection may influence their perceptions of safety. Further research is needed to explore these findings in real-world traffic conditions.
☆ Edge-Cloud Collaborative Motion Planning for Autonomous Driving with Large Language Models
Integrating large language models (LLMs) into autonomous driving enhances personalization and adaptability in open-world scenarios. However, traditional edge computing models still face significant challenges in processing complex driving data, particularly regarding real-time performance and system efficiency. To address these challenges, this study introduces EC-Drive, a novel edge-cloud collaborative autonomous driving system with data drift detection capabilities. EC-Drive utilizes drift detection algorithms to selectively upload critical data, including new obstacles and traffic pattern changes, to the cloud for processing by GPT-4, while routine data is efficiently managed by smaller LLMs on edge devices. This approach not only reduces inference latency but also improves system efficiency by optimizing communication resource use. Experimental validation confirms the system's robust processing capabilities and practical applicability in real-world driving conditions, demonstrating the effectiveness of this edge-cloud collaboration framework. Our data and system demonstration will be released at https://sites.google.com/view/ec-drive.
☆ Human Mimetic Forearm Design with Radioulnar Joint using Miniature Bone-Muscle Modules and Its Applications IROS2017
The human forearm is composed of two long, thin bones called the radius and the ulna, and rotates using two axle joints. We aimed to develop a forearm based on the body proportion, weight ratio, muscle arrangement, and joint performance of the human body in order to bring out its benefits. For this, we need to miniaturize the muscle modules. To approach this task, we arranged two muscle motors inside one muscle module, and used the space effectively by utilizing common parts. In addition, we enabled the muscle module to also be used as the bone structure. Moreover, we used miniature motors and developed a way to dissipate the motor heat to the bone structure. Through these approaches, we succeeded in developing a forearm with a radioulnar joint based on the body proportion, weight ratio, muscle arrangement, and joint performance of the human body, while keeping maintainability and reliability. Also, we performed some motions such as soldering, opening a book, turning a screw, and badminton swinging using the benefits of the radioulnar structure, which have not been discussed before, and verified that Kengoro can realize skillful motions using the radioulnar joint like a human.
comment: Accepted at IROS2017
☆ Automated Vehicle Driver Monitoring Dataset from Real-World Scenarios
From SAE Level 3 of automation onwards, drivers are allowed to engage in activities that are not directly related to driving during their travel. However, in level 3, a misunderstanding of the capabilities of the system might lead drivers to engage in secondary tasks, which could impair their ability to react to challenging traffic situations. Anticipating driver activity allows for early detection of risky behaviors, to prevent accidents. To be able to predict the driver activity, a Deep Learning network needs to be trained on a dataset. However, the use of datasets based on simulation for training and the migration to real-world data for prediction has proven to be suboptimal. Hence, this paper presents a real-world driver activity dataset, openly accessible on IEEE Dataport, which encompasses various activities that occur in autonomous driving scenarios under various illumination and weather conditions. Results from the training process showed that the dataset provides an excellent benchmark for implementing models for driver activity recognition.
comment: 6 pages
☆ Integrating Naturalistic Insights in Objective Multi-Vehicle Safety Framework
As autonomous vehicle technology advances, the precise assessment of safety in complex traffic scenarios becomes crucial, especially in mixed-vehicle environments where human perception of safety must be taken into account. This paper presents a framework designed for assessing traffic safety in multi-vehicle situations, facilitating the simultaneous utilization of diverse objective safety metrics. Additionally, it allows the integration of subjective perception of safety by adjusting model parameters. The framework was applied to evaluate various model configurations in car-following scenarios on a highway, utilizing naturalistic driving datasets. The evaluation of the model showed an outstanding performance, particularly when integrating multiple objective safety measures. Furthermore, the performance was significantly enhanced when considering all surrounding vehicles.
☆ Harnessing the Potential of Omnidirectional Multi-Rotor Aerial Vehicles in Cooperative Jamming Against Eavesdropping
Recent research in communications-aware robotics has been propelled by advancements in 5G and emerging 6G technologies. This field now includes the integration of Multi-Rotor Aerial Vehicles (MRAVs) into cellular networks, with a specific focus on under-actuated MRAVs. These vehicles face challenges in independently controlling position and orientation due to their limited control inputs, which adversely affects communication metrics such as Signal-to-Noise Ratio. In response, a newer class of omnidirectional MRAVs has been developed, which can control both position and orientation simultaneously by tilting their propellers. However, exploiting this capability fully requires sophisticated motion planning techniques. This paper presents a novel application of omnidirectional MRAVs designed to enhance communication security and thwart eavesdropping. It proposes a strategy where one MRAV functions as an aerial Base Station, while another acts as a friendly jammer to secure communications. This study is the first to apply such a strategy to MRAVs in scenarios involving eavesdroppers.
comment: 6 pages, 4 figures, Accepted for presentation to the 2024 IEEE Global Communications Conference (IEEE GLOBECOM), Cape Town, South Africa. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Quantitative 3D Map Accuracy Evaluation Hardware and Algorithm for LiDAR(-Inertial) SLAM
Accuracy evaluation of a 3D pointcloud map is crucial for the development of autonomous driving systems. In this work, we propose a user-independent software/hardware system that can quantitatively evaluate the accuracy of a 3D pointcloud map acquired from LiDAR(-Inertial) SLAM. We introduce a LiDAR target that functions robustly in the outdoor environment, while remaining observable by LiDAR. We also propose a software algorithm that automatically extracts representative points and calculates the accuracy of the 3D pointcloud map by leveraging GPS position data. This methodology overcomes the limitations of the manual selection method, that its result varies between users. Furthermore, two different error metrics, relative and absolute errors, are introduced to analyze the accuracy from different perspectives. Our implementations are available at: https://github.com/SangwooJung98/3D_Map_Evaluation
comment: ICCAS 2024 accepted, 5 pages, 6 figures, 2 Tables
☆ An Efficient Deep Reinforcement Learning Model for Online 3D Bin Packing Combining Object Rearrangement and Stable Placement
This paper presents an efficient deep reinforcement learning (DRL) framework for online 3D bin packing (3D-BPP). The 3D-BPP is an NP-hard problem significant in logistics, warehousing, and transportation, involving the optimal arrangement of objects inside a bin. Traditional heuristic algorithms often fail to address dynamic and physical constraints in real-time scenarios. We introduce a novel DRL framework that integrates a reliable physics heuristic algorithm and object rearrangement and stable placement. Our experiment show that the proposed framework achieves higher space utilization rates effectively minimizing the amount of wasted space with fewer training epochs.
☆ Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey
Reinforcement Learning (RL) is a potent tool for sequential decision-making and has achieved performance surpassing human capabilities across many challenging real-world tasks. As the extension of RL in the multi-agent system domain, multi-agent RL (MARL) not only need to learn the control policy but also requires consideration regarding interactions with all other agents in the environment, mutual influences among different system components, and the distribution of computational resources. This augments the complexity of algorithmic design and poses higher requirements on computational resources. Simultaneously, simulators are crucial to obtain realistic data, which is the fundamentals of RL. In this paper, we first propose a series of metrics of simulators and summarize the features of existing benchmarks. Second, to ease comprehension, we recall the foundational knowledge and then synthesize the recently advanced studies of MARL-related autonomous driving and intelligent transportation systems. Specifically, we examine their environmental modeling, state representation, perception units, and algorithm design. Conclusively, we discuss open challenges as well as prospects and opportunities. We hope this paper can help the researchers integrate MARL technologies and trigger more insightful ideas toward the intelligent and autonomous driving.
comment: 23 pages, 6 figures and 2 tables. Submitted to IEEE Journal
☆ CusADi: A GPU Parallelization Framework for Symbolic Expressions and Optimal Control RAL 2024
The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of instances. In this work, we present CusADi, an extension of the CasADi symbolic framework to support the parallelization of arbitrary closed-form expressions on GPUs with CUDA. We also formulate a closed-form approximation for solving general optimal control problems, enabling large-scale parallelization and evaluation of MPC controllers. Our results show a ten-fold speedup relative to similar MPC implementation on the CPU, and we demonstrate the use of CusADi for various applications, including parallel simulation, parameter sweeps, and policy training.
comment: RAL 2024 submission
☆ RUMI: Rummaging Using Mutual Information
This paper presents Rummaging Using Mutual Information (RUMI), a method for online generation of robot action sequences to gather information about the pose of a known movable object in visually-occluded environments. Focusing on contact-rich rummaging, our approach leverages mutual information between the object pose distribution and robot trajectory for action planning. From an observed partial point cloud, RUMI deduces the compatible object pose distribution and approximates the mutual information of it with workspace occupancy in real time. Based on this, we develop an information gain cost function and a reachability cost function to keep the object within the robot's reach. These are integrated into a model predictive control (MPC) framework with a stochastic dynamics model, updating the pose distribution in a closed loop. Key contributions include a new belief framework for object pose estimation, an efficient information gain computation strategy, and a robust MPC-based control scheme. RUMI demonstrates superior performance in both simulated and real tasks compared to baseline methods.
comment: 19 pages, 17 figures, submitted to IEEE Transactions on Robotics (T-RO)
☆ NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
♻ ☆ CRITERIA: a New Benchmarking Paradigm for Evaluating Trajectory Prediction Models for Autonomous Driving
Benchmarking is a common method for evaluating trajectory prediction models for autonomous driving. Existing benchmarks rely on datasets, which are biased towards more common scenarios, such as cruising, and distance-based metrics that are computed by averaging over all scenarios. Following such a regiment provides a little insight into the properties of the models both in terms of how well they can handle different scenarios and how admissible and diverse their outputs are. There exist a number of complementary metrics designed to measure the admissibility and diversity of trajectories, however, they suffer from biases, such as length of trajectories. In this paper, we propose a new benChmarking paRadIgm for evaluaTing trajEctoRy predIction Approaches (CRITERIA). Particularly, we propose 1) a method for extracting driving scenarios at varying levels of specificity according to the structure of the roads, models' performance, and data properties for fine-grained ranking of prediction models; 2) A set of new bias-free metrics for measuring diversity, by incorporating the characteristics of a given scenario, and admissibility, by considering the structure of roads and kinematic compliancy, motivated by real-world driving constraints. 3) Using the proposed benchmark, we conduct extensive experimentation on a representative set of the prediction models using the large scale Argoverse dataset. We show that the proposed benchmark can produce a more accurate ranking of the models and serve as a means of characterizing their behavior. We further present ablation studies to highlight contributions of different elements that are used to compute the proposed metrics.
♻ ☆ Sim-to-Real Transfer of Deep Reinforcement Learning Agents for Online Coverage Path Planning
Sim-to-real transfer presents a difficult challenge, where models trained in simulation are to be deployed in the real world. The distribution shift between the two settings leads to biased representations of the dynamics, and thus to suboptimal predictions in the real-world environment. In this work, we tackle the challenge of sim-to-real transfer of reinforcement learning (RL) agents for coverage path planning (CPP). In CPP, the task is for a robot to find a path that covers every point of a confined area. Specifically, we consider the case where the environment is unknown, and the agent needs to plan the path online while mapping the environment. We bridge the sim-to-real gap through a semi-virtual environment, including a real robot and real-time aspects, while utilizing a simulated sensor and obstacles to enable environment randomization and automated episode resetting. We investigate what level of fine-tuning is needed for adapting to a realistic setting, comparing to an agent trained solely in simulation. We find that a high inference frequency allows first-order Markovian policies to transfer directly from simulation, while higher-order policies can be fine-tuned to further reduce the sim-to-real gap. Moreover, they can operate at a lower frequency, thus reducing computational requirements. In both cases, our approaches transfer state-of-the-art results from simulation to the real domain, where direct learning would take in the order of weeks with manual interaction, that is, it would be completely infeasible.
♻ ☆ ForzaETH Race Stack -- Scaled Autonomous Head-to-Head Racing on Fully Commercial off-the-Shelf Hardware
Autonomous racing in robotics combines high-speed dynamics with the necessity for reliability and real-time decision-making. While such racing pushes software and hardware to their limits, many existing full-system solutions necessitate complex, custom hardware and software, and usually focus on Time-Trials rather than full unrestricted Head-to-Head racing, due to financial and safety constraints. This limits their reproducibility, making advancements and replication feasible mostly for well-resourced laboratories with comprehensive expertise in mechanical, electrical, and robotics fields. Researchers interested in the autonomy domain but with only partial experience in one of these fields, need to spend significant time with familiarization and integration. The ForzaETH Race Stack addresses this gap by providing an autonomous racing software platform designed for F1TENTH, a 1:10 scaled Head-to-Head autonomous racing competition, which simplifies replication by using commercial off-the-shelf hardware. This approach enhances the competitive aspect of autonomous racing and provides an accessible platform for research and development in the field. The ForzaETH Race Stack is designed with modularity and operational ease of use in mind, allowing customization and adaptability to various environmental conditions, such as track friction and layout. Capable of handling both Time-Trials and Head-to-Head racing, the stack has demonstrated its effectiveness, robustness, and adaptability in the field by winning the official F1TENTH international competition multiple times.
comment: This paper has been accepted at the Journal of Field Robotics
♻ ☆ NVINS: Robust Visual Inertial Navigation Fused with NeRF-augmented Camera Pose Regressor and Uncertainty Quantification IROS 2024
In recent years, Neural Radiance Fields (NeRF) have emerged as a powerful tool for 3D reconstruction and novel view synthesis. However, the computational cost of NeRF rendering and degradation in quality due to the presence of artifacts pose significant challenges for its application in real-time and robust robotic tasks, especially on embedded systems. This paper introduces a novel framework that integrates NeRF-derived localization information with Visual-Inertial Odometry (VIO) to provide a robust solution for real-time robotic navigation. By training an absolute pose regression network with augmented image data rendered from a NeRF and quantifying its uncertainty, our approach effectively counters positional drift and enhances system reliability. We also establish a mathematically sound foundation for combining visual inertial navigation with camera localization neural networks, considering uncertainty under a Bayesian framework. Experimental validation in a photorealistic simulation environment demonstrates significant improvements in accuracy compared to a conventional VIO approach.
comment: Accepted to IROS 2024, 8 pages, 5 figures, 2 tables
♻ ☆ Bi-VLA: Vision-Language-Action Model-Based System for Bimanual Robotic Dexterous Manipulations
This research introduces the Bi-VLA (Vision-Language-Action) model, a novel system designed for bimanual robotic dexterous manipulation that seamlessly integrates vision for scene understanding, language comprehension for translating human instructions into executable code, and physical action generation. We evaluated the system's functionality through a series of household tasks, including the preparation of a desired salad upon human request. Bi-VLA demonstrates the ability to interpret complex human instructions, perceive and understand the visual context of ingredients, and execute precise bimanual actions to prepare the requested salad. We assessed the system's performance in terms of accuracy, efficiency, and adaptability to different salad recipes and human preferences through a series of experiments. Our results show a 100% success rate in generating the correct executable code by the Language Module, a 96.06% success rate in detecting specific ingredients by the Vision Module, and an overall success rate of 83.4% in correctly executing user-requested tasks.
comment: The paper was accepted to the IEEE SMC 2024
♻ ☆ Localization in Dynamic Planar Environments Using Few Distance Measurements
We present a method for determining the unknown location of a sensor placed in a known 2D environment in the presence of unknown dynamic obstacles, using only few distance measurements. We present guarantees on the quality of the localization, which are robust under mild assumptions on the density of the unknown/dynamic obstacles in the known environment. We demonstrate the effectiveness of our method in simulated experiments for different environments and varying dynamic-obstacle density. Our open source software is available at https://github.com/TAU-CGL/vb-fdml2-public.
♻ ☆ HyperSurf: Quadruped Robot Leg Capable of Surface Recognition with GRU and Real-to-Sim Transferring
This paper introduces a system of data collection acceleration and real-to-sim transferring for surface recognition on a quadruped robot. The system features a mechanical single-leg setup capable of stepping on various easily interchangeable surfaces. Additionally, it incorporates a GRU-based Surface Recognition System, inspired by the system detailed in the Dog-Surf paper. This setup facilitates the expansion of dataset collection for model training, enabling data acquisition from hard-to-reach surfaces in laboratory conditions. Furthermore, it opens avenues for transferring surface properties from reality to simulation, thereby allowing the training of optimal gaits for legged robots in simulation environments using a pre-prepared library of digital twins of surfaces. Moreover, enhancements have been made to the GRU-based Surface Recognition System, allowing for the integration of data from both the quadruped robot and the single-leg setup. The dataset and code have been made publicly available.
comment: IEEE SMC 2024
♻ ☆ SceneMotion: From Agent-Centric Embeddings to Scene-Wide Forecasts SC 2024
Self-driving vehicles rely on multimodal motion forecasts to effectively interact with their environment and plan safe maneuvers. We introduce SceneMotion, an attention-based model for forecasting scene-wide motion modes of multiple traffic agents. Our model transforms local agent-centric embeddings into scene-wide forecasts using a novel latent context module. This module learns a scene-wide latent space from multiple agent-centric embeddings, enabling joint forecasting and interaction modeling. The competitive performance in the Waymo Open Interaction Prediction Challenge demonstrates the effectiveness of our approach. Moreover, we cluster future waypoints in time and space to quantify the interaction between agents. We merge all modes and analyze each mode independently to determine which clusters are resolved through interaction or result in conflict. Our implementation is available at: https://github.com/kit-mrt/future-motion
comment: 7 pages, 3 figures, ITSC 2024; v2: added details about waypoint clustering
♻ ☆ Two-step dynamic obstacle avoidance
Dynamic obstacle avoidance (DOA) is a fundamental challenge for any autonomous vehicle, independent of whether it operates in sea, air, or land. This paper proposes a two-step architecture for handling DOA tasks by combining supervised and reinforcement learning (RL). In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network, which is trained in a supervised fashion and offers robustness to non-linear obstacle movements. In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness. We illustrate the power of our two-step approach by training different RL agents in a challenging environment that requires to navigate amid multiple obstacles. The non-linear movements of obstacles are exemplarily modeled based on stochastic processes and periodic patterns, although our architecture is suitable for any obstacle dynamics. The experiments reveal that integrating our CR metrics into the observation space doubles the performance in terms of reward, which is equivalent to halving the number of collisions in the considered environment. We also perform a generalization experiment to validate the proposal in an RL environment based on maritime traffic and real-world vessel trajectory data. Furthermore, we show that the architecture's performance improvement is independent of the applied RL algorithm.
♻ ☆ GPT-4V(ision) for Robotics: Multimodal Task Planning from Human Demonstration
We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos. Object are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in achieving real robots' operations from human demonstrations in a one-shot manner. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4V, highlighting the importance of incorporating human supervision within the pipeline. The prompts of GPT-4V/GPT-4 are available at this project page: https://microsoft.github.io/GPT4Vision-Robot-Manipulation-Prompts/
comment: 8 pages, 10 figures, 3 tables. Last updated on August 18th, 2024
♻ ☆ MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
Open-world generalization requires robotic systems to have a profound understanding of the physical world and the user command to solve diverse and complex tasks. While the recent advancement in vision-language models (VLMs) has offered unprecedented opportunities to solve open-world problems, how to leverage their capabilities to control robots remains a grand challenge. In this paper, we present MOKA (Marking Open-vocabulary Keypoint Affordances), an approach that employs VLMs to solve robotic manipulation tasks specified by free-form language instructions. Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world. By prompting the pre-trained VLM, our approach utilizes the VLM's commonsense knowledge and concept understanding acquired from broad data sources to predict affordances and generate motions. To facilitate the VLM's reasoning in zero-shot and few-shot manners, we propose a visual prompting technique that annotates marks on images, converting affordance reasoning into a series of visual question-answering problems that are solvable by the VLM. We further explore methods to enhance performance with robot experiences collected by MOKA through in-context learning and policy distillation. We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
♻ ☆ Vision-Based Dexterous Motion Planning by Dynamic Movement Primitives with Human Hand Demonstration
This paper proposes a vision-based framework for a 7-degree-of-freedom robotic manipulator, with the primary objective of facilitating its capacity to acquire information from human hand demonstrations for the execution of dexterous pick-and-place tasks. Most existing works only focus on the position demonstration without considering the orientations. In this paper, by employing a single depth camera, MediaPipe is applied to generate the three-dimensional coordinates of a human hand, thereby comprehensively recording the hand's motion, encompassing the trajectory of the wrist, orientation of the hand, and the grasp motion. A mean filter is applied during data pre-processing to smooth the raw data. The demonstration is designed to pick up an object at a specific angle, navigate around obstacles in its path and subsequently, deposit it within a sloped container. The robotic system demonstrates its learning capabilities, facilitated by the implementation of Dynamic Movement Primitives, enabling the assimilation of user actions into its trajectories with different start and end poi
comment: This paper has been published in 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE)
♻ ☆ STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery
Accurate geo-localization of Unmanned Aerial Vehicles (UAVs) is crucial for outdoor applications including search and rescue operations, power line inspections, and environmental monitoring. The vulnerability of Global Navigation Satellite Systems (GNSS) signals to interference and spoofing necessitates the development of additional robust localization methods for autonomous navigation. Visual Geo-localization (VG), leveraging onboard cameras and reference satellite maps, offers a promising solution for absolute localization. Specifically, Thermal Geo-localization (TG), which relies on image-based matching between thermal imagery with satellite databases, stands out by utilizing infrared cameras for effective nighttime localization. However, the efficiency and effectiveness of current TG approaches, are hindered by dense sampling on satellite maps and geometric noises in thermal query images. To overcome these challenges, we introduce STHN, a novel UAV thermal geo-localization approach that employs a coarse-to-fine deep homography estimation method. This method attains reliable thermal geo-localization within a 512-meter radius of the UAV's last known location even with a challenging 11\% size ratio between thermal and satellite images, despite the presence of indistinct textures and self-similar patterns. We further show how our research significantly enhances UAV thermal geo-localization performance and robustness against geometric noises under low-visibility conditions in the wild. The code is made publicly available.
comment: 8 pages, 7 figures. Accepted for IEEE Robotics and Automation Letters
Graphics 11
☆ MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model
Open-world 3D reconstruction models have recently garnered significant attention. However, without sufficient 3D inductive bias, existing methods typically entail expensive training costs and struggle to extract high-quality 3D meshes. In this work, we introduce MeshFormer, a sparse-view reconstruction model that explicitly leverages 3D native structure, input guidance, and training supervision. Specifically, instead of using a triplane representation, we store features in 3D sparse voxels and combine transformers with 3D convolutions to leverage an explicit 3D structure and projective bias. In addition to sparse-view RGB input, we require the network to take input and generate corresponding normal maps. The input normal maps can be predicted by 2D diffusion models, significantly aiding in the guidance and refinement of the geometry's learning. Moreover, by combining Signed Distance Function (SDF) supervision with surface rendering, we directly learn to generate high-quality meshes without the need for complex multi-stage training processes. By incorporating these explicit 3D biases, MeshFormer can be trained efficiently and deliver high-quality textured meshes with fine-grained geometric details. It can also be integrated with 2D diffusion models to enable fast single-image-to-3D and text-to-3D tasks. Project page: https://meshformer3d.github.io
comment: 20 pages, 9 figures
☆ SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views ECCV 2024
Open-world 3D generation has recently attracted considerable attention. While many single-image-to-3D methods have yielded visually appealing outcomes, they often lack sufficient controllability and tend to produce hallucinated regions that may not align with users' expectations. In this paper, we explore an important scenario in which the input consists of one or a few unposed 2D images of a single object, with little or no overlap. We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for these sparse-view images. SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views. The diffusion model is trained to jointly predict surrogate representations for camera poses and multi-view images of the object under known poses, integrating all information from the input sparse views. These predictions are then leveraged to accomplish 3D reconstruction and pose estimation, and the reconstructed 3D model can be used to further refine the camera poses of input views. Through extensive experiments on three datasets, we demonstrate that our method not only significantly outperforms baseline methods in terms of 3D reconstruction quality and pose prediction accuracy but also exhibits strong efficiency. It requires only about 20 seconds to produce a textured mesh and camera poses for the input views. Project page: https://chaoxu.xyz/sparp.
comment: ECCV 2024
☆ Neural Representation of Shape-Dependent Laplacian Eigenfunctions
The eigenfunctions of the Laplace operator are essential in mathematical physics, engineering, and geometry processing. Typically, these are computed by discretizing the domain and performing eigendecomposition, tying the results to a specific mesh. However, this method is unsuitable for continuously-parameterized shapes. We propose a novel representation for eigenfunctions in continuously-parameterized shape spaces, where eigenfunctions are spatial fields with continuous dependence on shape parameters, defined by minimal Dirichlet energy, unit norm, and mutual orthogonality. We implement this with multilayer perceptrons trained as neural fields, mapping shape parameters and domain positions to eigenfunction values. A unique challenge is enforcing mutual orthogonality with respect to causality, where the causal ordering varies across the shape space. Our training method therefore requires three interwoven concepts: (1) learning $n$ eigenfunctions concurrently by minimizing Dirichlet energy with unit norm constraints; (2) filtering gradients during backpropagation to enforce causal orthogonality, preventing earlier eigenfunctions from being influenced by later ones; (3) dynamically sorting the causal ordering based on eigenvalues to track eigenvalue curve crossovers. We demonstrate our method on problems such as shape family analysis, predicting eigenfunctions for incomplete shapes, interactive shape manipulation, and computing higher-dimensional eigenfunctions, on all of which traditional methods fall short.
☆ DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.
☆ Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering ECCV 2024
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
comment: ECCV 2024, Project page: https://research.nvidia.com/labs/toronto-ai/DiPIR/
☆ Double-Precision Floating-Point Data Visualizations Using Vulkan API
Proper representation of data in graphical visualizations becomes challenging when high accuracy in data types is required, especially in those situations where the difference between double-precision floating-point and single-precision floating-point values makes a significant difference. Some of the limitations of using single-precision over double-precision include lesser accuracy, which accumulates errors over time, and poor modeling of large or small numbers. In such scenarios, emulated double precision is often used as a solution. The proposed methodology uses a modern GPU pipeline and graphics library API specifications to use native double precision. In this research, the approach is implemented using the Vulkan API, C++, and GLSL. Experimental evaluation with a series of experiments on 2D and 3D point datasets is proposed to indicate the effectiveness of the approach. This evaluates performance comparisons between native double-precision implementations against their emulated double-precision approaches with respect to rendering performance and accuracy. This study provides insight into the benefits of using native double-precision in graphical applications, denoting limitations and problems with emulated double-precision usages. These results improve the general understanding of the precision involved in graphical visualizations and assist developers in making decisions about which precision methods to use during their applications.
comment: 17 pages, 8 figusres
☆ Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation
Text-to-video generation has been dominated by end-to-end diffusion-based or autoregressive models. On one hand, those novel models provide plausible versatility, but they are criticized for physical correctness, shading and illumination, camera motion, and temporal consistency. On the other hand, film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos and animations address the aforementioned shortcomings, but it is extremely tedious and requires tight collaboration between movie makers and 3D rendering experts. In this paper, we introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a natural language description of a video, multiple VLM agents auto-direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video that best aligns with the given description. Based on film making inspiration and augmented with Blender-based movie making knowledge, the Director agent decomposes the input text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on customized function composing and API calling. Then, the Reviewer agent, augmented with knowledge of video reviewing, character motion coordinates, and intermediate screenshots uses its compositional reasoning ability to provide feedback to the Programmer agent. The Programmer agent iteratively improves the scripts to yield the best overall video outcome. Our generated videos show better quality than commercial video generation models in 5 metrics on video quality and instruction-following performance. Moreover, our framework outperforms other approaches in a comprehensive user study on quality, consistency, and rationality.
☆ Visual Storytelling: A Methodological Approach to Designing and Implementing a Visualisation Poster
We present a design study of developing a visualisation poster. Posters can be difficult to create, and the story on a poster is not always clear. Using a case-study approach we propose three important aspects: the poster should have a clear focus (especially a hero visualisation), envisioning its use helps to drive the important aspects, and third the essence (its fundamental concept and guiding idea) must be clear. We will use case studies that have focused on the use of the Five Design-Sheet method (FdS) as a way to sketch and plan a visualisation, before successfully implementing and creating the visual poster. The case studies serve as a practical illustration of the workflow, offering a means to explain the three key processes involved: (1) comprehending the data, (2) employing a design study with the FdS (Five Design-Sheet), (3) crafting, evaluating and refining the visualisation.
comment: 5 pages, 1 figure, accepted for publication to the EG UK Computer Graphics & Visual Computing (CGVC) 2024
Estimation and Visualization of Isosurface Uncertainty from Linear and High-Order Interpolation Methods
Isosurface visualization is fundamental for exploring and analyzing 3D volumetric data. Marching cubes (MC) algorithms with linear interpolation are commonly used for isosurface extraction and visualization. Although linear interpolation is easy to implement, it has limitations when the underlying data is complex and high-order, which is the case for most real-world data. Linear interpolation can output vertices at the wrong location. Its inability to deal with sharp features and features smaller than grid cells can lead to an incorrect isosurface with holes and broken pieces. Despite these limitations, isosurface visualizations typically do not include insight into the spatial location and the magnitude of these errors. We utilize high-order interpolation methods with MC algorithms and interactive visualization to highlight these uncertainties. Our visualization tool helps identify the regions of high interpolation errors. It also allows users to query local areas for details and compare the differences between isosurfaces from different interpolation methods. In addition, we employ high-order methods to identify and reconstruct possible features that linear methods cannot detect. We showcase how our visualization tool helps explore and understand the extracted isosurface errors through synthetic and real-world data.
☆ Efficient Scene Appearance Aggregation for Level-of-Detail Rendering
Creating an appearance-preserving level-of-detail (LoD) representation for arbitrary 3D scenes is a challenging problem. The appearance of a scene is an intricate combination of both geometry and material models, and is further complicated by correlation due to the spatial configuration of scene elements. We present a novel volumetric representation for the aggregated appearance of complex scenes and an efficient pipeline for LoD generation and rendering. The core of our representation is the Aggregated Bidirectional Scattering Distribution Function (ABSDF) that summarizes the far-field appearance of all surfaces inside a voxel. We propose a closed-form factorization of the ABSDF that accounts for spatially varying and orientation-varying material parameters. We tackle the challenge of capturing the correlation existing locally within a voxel and globally across different parts of the scene. Our method faithfully reproduces appearance and achieves higher quality than existing scene filtering methods while being inherently efficient to render. The memory footprint and rendering cost of our representation are independent of the original scene complexity.
♻ ☆ Neural Appearance Model for Cloth Rendering
The realistic rendering of woven and knitted fabrics has posed significant challenges throughout many years. Previously, fiber-based micro-appearance models have achieved considerable success in attaining high levels of realism. However, rendering such models remains complex due to the intricate internal scatterings of hundreds of fibers within a yarn, requiring vast amounts of memory and time to render. In this paper, we introduce a new framework to capture aggregated appearance by tracing many light paths through the underlying fiber geometry. We then employ lightweight neural networks to accurately model the aggregated BSDF, which allows for the precise modeling of a diverse array of materials while offering substantial improvements in speed and reductions in memory. Furthermore, we introduce a novel importance sampling scheme to further speed up the rate of convergence. We validate the efficacy and versatility of our framework through comparisons with preceding fiber-based shading models as well as the most recent yarn-based model.
comment: 12 pages, 10 figures, 3 tables
Robotics 16
☆ ContactSDF: Signed Distance Functions as Multi-Contact Models for Dexterous Manipulation
In this paper, we propose ContactSDF, a method that uses signed distance functions (SDFs) to approximate multi-contact models, including both collision detection and time-stepping routines. ContactSDF first establishes an SDF using the supporting plane representation of an object for collision detection, and then use the generated contact dual cones to build a second SDF for time stepping prediction of the next state. Those two SDFs create a differentiable and closed-form multi-contact dynamic model for state prediction, enabling efficient model learning and optimization for contact-rich manipulation. We perform extensive simulation experiments to show the effectiveness of ContactSDF for model learning and real-time control of dexterous manipulation. We further evaluate the ContactSDF on a hardware Allegro hand for on-palm reorientation tasks. Results show with around 2 minutes of learning on hardware, the ContactSDF achieves high-quality dexterous manipulation at a frequency of 30-60Hz.
☆ HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
comment: Project Page: https://github.com/HiAgent2024/HiAgent
☆ Swift Trust in Mobile Ad Hoc Human-Robot Teams
Integrating robots into teams of humans is anticipated to bring significant capability improvements for tasks such as searching potentially hazardous buildings. Trust between humans and robots is recognized as a key enabler for human-robot teaming (HRT) activity: if trust during a mission falls below sufficient levels for cooperative tasks to be completed, it could critically affect success. Changes in trust could be particularly problematic in teams that have formed on an ad hoc basis (as might be expected in emergency situations) where team members may not have previously worked together. In such ad hoc teams, a foundational level of 'swift trust' may be fragile and challenging to sustain in the face of inevitable setbacks. We present results of an experiment focused on understanding trust building, violation and repair processes in ad hoc teams (one human and two robots). Trust violation occurred through robots becoming unresponsive, with limited communication and feedback. We perform exploratory analysis of a variety of data, including communications and performance logs, trust surveys and post-experiment interviews, toward understanding how autonomous systems can be designed into interdependent ad hoc human-robot teams where swift trust can be sustained.
☆ Design and Experimental Study of Vacuum Suction Grabbing Technology to Grasp Fabric Piece
The primary objective of this study was to design the grabbing technique used to determine the vacuum suction gripper and its design parameters for the pocket welting operation in apparel manufacturing. It presents the application of vacuum suction in grabbing technology, a technique that has revolutionized the handling and manipulation to grasp the various fabric materials in a range of garment industries. Vacuum suction, being non-intrusive and non-invasive, offers several advantages compared to traditional grabbing methods. It is particularly useful in scenarios where soft woven fabric and air-impermeable fabric items need to be handled with utmost care. The paper delves into the working principles of vacuum suction, its various components, and the underlying physics involved. Furthermore, it explores the various applications of vacuum suction in the garment industry into the automation exploration. The paper also highlights the challenges and limitations of vacuum suction technology and suggests potential areas for further research and development.
comment: 9 Pages, 3 figures, 6 diagrams, 1 table
☆ Towards Safe and Robust Autonomous Vehicle Platooning: A Self-Organizing Cooperative Control Framework
In the emerging hybrid traffic flow environment, which includes both human-driven vehicles (HDVs) and autonomous vehicles (AVs), ensuring safe and robust decision-making and control is crucial for the effective operation of autonomous vehicle platooning. Current systems for cooperative adaptive cruise control and lane changing are inadequate in responding to real-world emergency situations, limiting the potential of autonomous vehicle platooning technology. To address the aforementioned challenges, we propose a Twin-World Safety-Enhanced Data-Model-Knowledge Hybrid-Driven autonomous vehicle platooning Cooperative Control Framework. Within this framework, a deep reinforcement learning formation decision model integrating traffic priors is designed, and a twin-world deduction model based on safety priority judgment is proposed. Subsequently, an optimal control-based multi-scenario decision-control right adaptive switching mechanism is designed to achieve adaptive switching between data-driven and model-driven methods. Through simulation experiments and hardware-in-loop tests, our algorithm has demonstrated excellent performance in terms of safety, robustness, and flexibility. A detailed account of the validation results for the model can be found in \url{https://perfectxu88.github.io/towardssafeandrobust.github.io/}.
☆ Behavioral Learning of Dish Rinsing and Scrubbing based on Interruptive Direct Teaching Considering Assistance Rate
Robots are expected to manipulate objects in a safe and dexterous way. For example, washing dishes is a dexterous operation that involves scrubbing the dishes with a sponge and rinsing them with water. It is necessary to learn it safely without splashing water and without dropping the dishes. In this study, we propose a safe and dexterous manipulation system. %that can scrub and rinse dirty dishes. The robot learns a dynamics model of the object by estimating the state of the object and the robot itself, the control input, and the amount of human assistance required (assistance rate) after the human corrects the initial trajectory of the robot's hands by interruptive direct teaching. By backpropagating the error between the estimated and the reference value %at the next time using the acquired dynamics model, the robot can generate a control input that approaches the reference value, for example, so that human assistance is not required and the dish does not move excessively. This allows for adaptive rinsing and scrubbing of dishes with unknown shapes and properties. As a result, it is possible to generate safe actions that require less human assistance.
comment: Accepted at Advanced Robotics
♻ ☆ Complementarity-Free Multi-Contact Modeling and Optimization for Dexterous Manipulation
A significant barrier preventing model-based methods from matching the high performance of reinforcement learning in dexterous manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated using complementarity models, multi-contact dynamics introduces combinatorial complexity and non-smoothness, complicating contact-rich planning and control. In this paper, we circumvent these challenges by introducing a novel, simplified multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as explicit time stepping, differentiability, automatic satisfaction of Coulomb friction law, and minimal hyperparameter tuning. We demonstrate the effectiveness and efficiency of the model for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across tasks, (II) high manipulation accuracy with an average reorientation error of 11{\deg} and position error of 7.8 mm, and (III) model predictive control running at 50-100 Hz for all tested dexterous manipulation tasks. These results are achieved with minimal hyperparameter tuning.
comment: Video demo: https://youtu.be/NsL4hbSXvFg
♻ ☆ EqNIO: Subequivariant Neural Inertial Odometry
Neural networks are seeing rapid adoption in purely inertial odometry, where accelerometer and gyroscope measurements from commodity inertial measurement units (IMU) are used to regress displacements and associated uncertainties. They can learn informative displacement priors, which can be directly fused with the raw data with off-the-shelf non-linear filters. Nevertheless, these networks do not consider the physical roto-reflective symmetries inherent in IMU data, leading to the need to memorize the same priors for every possible motion direction, which hinders generalization. In this work, we characterize these symmetries and show that the IMU data and the resulting displacement and covariance transform equivariantly, when rotated around the gravity vector and reflected with respect to arbitrary planes parallel to gravity. We design a neural network that respects these symmetries by design through equivariant processing in three steps: First, it estimates an equivariant gravity-aligned frame from equivariant vectors and invariant scalars derived from IMU data, leveraging expressive linear and non-linear layers tailored to commute with the underlying symmetry transformation. We then map the IMU data into this frame, thereby achieving an invariant canonicalization that can be directly used with off-the-shelf inertial odometry networks. Finally, we map these network outputs back into the original frame, thereby obtaining equivariant covariances and displacements. We demonstrate the generality of our framework by applying it to the filter-based approach based on TLIO, and the end-to-end RONIN architecture, and show better performance on the TLIO, Aria, RIDI and OxIOD datasets than existing methods.
comment: 27 pages
♻ ☆ Towards Unconstrained Collision Injury Protection Data Sets: Initial Surrogate Experiments for the Human Hand
Safety for physical human-robot interaction (pHRI) is a major concern for all application domains. While current standardization for industrial robot applications provide safety constraints that address the onset of pain in blunt impacts, these impact thresholds are difficult to use on edged or pointed impactors. The most severe injuries occur in constrained contact scenarios, where crushing is possible. Nevertheless, situations potentially resulting in constrained contact only occur in certain areas of a workspace and design or organisational approaches can be used to avoid them. What remains are risks to the human physical integrity caused by unconstrained accidental contacts, which are difficult to avoid while maintaining robot motion efficiency. Nevertheless, the probability and severity of injuries occurring with edged or pointed impacting objects in unconstrained collisions is hardly researched. In this paper, we propose an experimental setup and procedure using two pendulums modeling human hands and arms and robots to understand the injury potential of unconstrained collisions of human hands with edged objects. Pig feet are used as ex vivo surrogate samples - as these closely resemble the physiological characteristics of human hands - to create an initial injury database on the severity of injuries caused by unconstrained edged or pointed impacts. For the effective mass range of typical lightweight robots, the data obtained show low probabilities of injuries such as skin cuts or bone/tendon injuries in unconstrained collisions when the velocity is reduced to < 0.5 m/s. The proposed experimental setups and procedures should be complemented by sufficient human modeling and will eventually lead to a complete understanding of the biomechanical injury potential in pHRI.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Using Implicit Behavior Cloning and Dynamic Movement Primitive to Facilitate Reinforcement Learning for Robot Motion Planning
Reinforcement learning (RL) for motion planning of multi-degree-of-freedom robots still suffers from low efficiency in terms of slow training speed and poor generalizability. In this paper, we propose a novel RL-based robot motion planning framework that uses implicit behavior cloning (IBC) and dynamic movement primitive (DMP) to improve the training speed and generalizability of an off-policy RL agent. IBC utilizes human demonstration data to leverage the training speed of RL, and DMP serves as a heuristic model that transfers motion planning into a simpler planning space. To support this, we also create a human demonstration dataset using a pick-and-place experiment that can be used for similar studies. Comparison studies in simulation reveal the advantage of the proposed method over the conventional RL agents with faster training speed and higher scores. A real-robot experiment indicates the applicability of the proposed method to a simple assembly task. Our work provides a novel perspective on using motion primitives and human demonstration to leverage the performance of RL for robot applications.
♻ ☆ Human Orientation Estimation under Partial Observation IROS 2024
Reliable Human Orientation Estimation (HOE) from a monocular image is critical for autonomous agents to understand human intention. Significant progress has been made in HOE under full observation. However, the existing methods easily make a wrong prediction under partial observation and give it an unexpectedly high confidence. To solve the above problems, this study first develops a method called Part-HOE that estimates orientation from the visible joints of a target person so that it is able to handle partial observation. Subsequently, we introduce a confidence-aware orientation estimation method, enabling more accurate orientation estimation and reasonable confidence estimation under partial observation. The effectiveness of our method is validated on both public and custom-built datasets, and it shows great accuracy and reliability improvement in partial observation scenarios. In particular, we show in real experiments that our method can benefit the robustness and consistency of the Robot Person Following (RPF) task.
comment: Accepted by IROS 2024
♻ ☆ Expectable Motion Unit: Avoiding Hazards From Human Involuntary Motions in Human-Robot Interaction
In robotics, many control and planning schemes have been developed to ensure human physical safety in human-robot interaction. The human psychological state and the expectation towards the robot, however, are typically neglected. Even if the robot behaviour is regarded as biomechanically safe, humans may still react with a rapid involuntary motion (IM) caused by a startle or surprise. Such sudden, uncontrolled motions can jeopardize safety and should be prevented by any means. In this letter, we propose the Expectable Motion Unit (EMU), which ensures that a certain probability of IM occurrence is not exceeded in a typical HRI setting. Based on a model of IM occurrence generated through an experiment with 29 participants, we establish the mapping between robot velocity, robot-human distance, and the relative frequency of IM occurrence. This mapping is processed towards a real-time capable robot motion generator that limits the robot velocity during task execution if necessary. The EMU is combined in a holistic safety framework that integrates both the physical and psychological safety knowledge. A validation experiment showed that the EMU successfully avoids human IM in five out of six cases.
♻ ☆ Towards Safe Robot Use with Edged or Pointed Objects: A Surrogate Study Assembling a Human Hand Injury Protection Database
The use of pointed or edged tools or objects is one of the most challenging aspects of today's application of physical human-robot interaction (pHRI). One reason for this is that the severity of harm caused by such edged or pointed impactors is less well studied than for blunt impactors. Consequently, the standards specify well-reasoned force and pressure thresholds for blunt impactors and advise avoiding any edges and corners in contacts. Nevertheless, pointed or edged impactor geometries cannot be completely ruled out in real pHRI applications. For example, to allow edged or pointed tools such as screwdrivers near human operators, the knowledge of injury severity needs to be extended so that robot integrators can perform well-reasoned, time-efficient risk assessments. In this paper, we provide the initial datasets on injury prevention for the human hand based on drop tests with surrogates for the human hand, namely pig claws and chicken drumsticks. We then demonstrate the ease and efficiency of robot use using the dataset for contact on two examples. Finally, our experiments provide a set of injuries that may also be expected for human subjects under certain robot mass-velocity constellations in collisions. To extend this work, testing on human samples and a collaborative effort from research institutes worldwide is needed to create a comprehensive human injury avoidance database for any pHRI scenario and thus for safe pHRI applications including edged and pointed geometries.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ An Observability-Constrained Magnetic Field-Aided Inertial Navigation System -- Extended Version
Maintaining consistent uncertainty estimates in localization systems is crucial as the perceived uncertainty commonly affects high-level system components, such as control or decision processes. A method for constructing an observability-constrained magnetic field-aided inertial navigation system is proposed to address the issue of erroneous yaw observability, which leads to inconsistent estimates of yaw uncertainty. The proposed method builds upon the previously proposed observability-constrained extended Kalman filter and extends it to work with a magnetic field-based odometry-aided inertial navigation system. The proposed method is evaluated using simulation and real-world data, showing that (i) the system observability properties are preserved, (ii) the estimation accuracy increases, and (iii) the perceived uncertainty calculated by the EKF is more consistent with the true uncertainty of the filter estimates.
comment: Accepted to IPIN 2024
♻ ☆ DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands
Achieving human-like dexterous manipulation remains a crucial area of research in robotics. Current research focuses on improving the success rate of pick-and-place tasks. Compared with pick-and-place, throwing-catching behavior has the potential to increase the speed of transporting objects to their destination. However, dynamic dexterous manipulation poses a major challenge for stable control due to a large number of dynamic contacts. In this paper, we propose a Learning-based framework for Throwing-Catching tasks using dexterous hands (LTC). Our method, LTC, achieves a 73\% success rate across 45 scenarios (diverse hand poses and objects), and the learned policies demonstrate strong zero-shot transfer performance on unseen objects. Additionally, in tasks where the object in hand faces sideways, an extremely unstable scenario due to the lack of support from the palm, all baselines fail, while our method still achieves a success rate of over 60\%.
♻ ☆ Advancements in Translation Accuracy for Stereo Visual-Inertial Initialization
As the current initialization method in the state-of-the-art Stereo Visual-Inertial SLAM framework, ORB-SLAM3 has limitations. Its success depends on the performance of the pure stereo SLAM system and is based on the underlying assumption that pure visual SLAM can accurately estimate the camera trajectory, which is essential for inertial parameter estimation. Meanwhile, the further improved initialization method for ORB-SLAM3, known as Stereo-NEC, is time-consuming due to applying keypoint tracking to estimate gyroscope bias with normal epipolar constraints. To address the limitations of previous methods, this paper proposes a method aimed at enhancing translation accuracy during the initialization stage. The fundamental concept of our method is to improve the translation estimate with a 3 Degree-of-Freedom (DoF) Bundle Adjustment (BA), independently, while the rotation estimate is fixed, instead of using ORB-SLAM3's 6-DoF BA. Additionally, the rotation estimate will be updated by considering IMU measurements and gyroscope bias, unlike ORB-SLAM3's rotation, which is directly obtained from stereo visual odometry and may yield inferior results when operating in challenging scenarios. We also conduct extensive evaluations on the public benchmark, the EuRoC dataset, demonstrating that our method excels in accuracy.
Computer Vision 28
☆ The First Competition on Resource-Limited Infrared Small Target Detection Challenge: Methods and Results
In this paper, we briefly summarize the first competition on resource-limited infrared small target detection (namely, LimitIRSTD). This competition has two tracks, including weakly-supervised infrared small target detection (Track 1) and lightweight infrared small target detection (Track 2). 46 and 60 teams successfully registered and took part in Tracks 1 and Track 2, respectively. The top-performing methods and their results in each track are described with details. This competition inspires the community to explore the tough problems in the application of infrared small target detection, and ultimately promote the deployment of this technology under limited resource.
☆ Enhancing ASL Recognition with GCNs and Successive Residual Connections SP
This study presents a novel approach for enhancing American Sign Language (ASL) recognition using Graph Convolutional Networks (GCNs) integrated with successive residual connections. The method leverages the MediaPipe framework to extract key landmarks from each hand gesture, which are then used to construct graph representations. A robust preprocessing pipeline, including translational and scale normalization techniques, ensures consistency across the dataset. The constructed graphs are fed into a GCN-based neural architecture with residual connections to improve network stability. The architecture achieves state-of-the-art results, demonstrating superior generalization capabilities with a validation accuracy of 99.14%.
comment: To be submitted in G2-SP CV 2024. Contains 7 pages, 5 figures
☆ Generating Automatically Print/Scan Textures for Morphing Attack Detection Applications
Morphing Attack Detection (MAD) is a relevant topic that aims to detect attempts by unauthorised individuals to access a "valid" identity. One of the main scenarios is printing morphed images and submitting the respective print in a passport application process. Today, small datasets are available to train the MAD algorithm because of privacy concerns and the limitations resulting from the effort associated with the printing and scanning of images at large numbers. In order to improve the detection capabilities and spot such morphing attacks, it will be necessary to have a larger and more realistic dataset representing the passport application scenario with the diversity of devices and the resulting printed scanned or compressed images. Creating training data representing the diversity of attacks is a very demanding task because the training material is developed manually. This paper proposes two different methods based on transfer-transfer for automatically creating digital print/scan face images and using such images in the training of a Morphing Attack Detection algorithm. Our proposed method can reach an Equal Error Rate (EER) of 3.84% and 1.92% on the FRGC/FERET database when including our synthetic and texture-transfer print/scan with 600 dpi to handcrafted images, respectively.
comment: Paper under revision process in Journal
☆ AnomalyFactory: Regard Anomaly Generation as Unsupervised Anomaly Localization ECCV 2024
Recent advances in anomaly generation approaches alleviate the effect of data insufficiency on task of anomaly localization. While effective, most of them learn multiple large generative models on different datasets and cumbersome anomaly prediction models for different classes. To address the limitations, we propose a novel scalable framework, named AnomalyFactory, that unifies unsupervised anomaly generation and localization with same network architecture. It starts with a BootGenerator that combines structure of a target edge map and appearance of a reference color image with the guidance of a learned heatmap. Then, it proceeds with a FlareGenerator that receives supervision signals from the BootGenerator and reforms the heatmap to indicate anomaly locations in the generated image. Finally, it easily transforms the same network architecture to a BlazeDetector that localizes anomaly pixels with the learned heatmap by converting the anomaly images generated by the FlareGenerator to normal images. By manipulating the target edge maps and combining them with various reference images, AnomalyFactory generates authentic and diversity samples cross domains. Comprehensive experiments carried on 5 datasets, including MVTecAD, VisA, MVTecLOCO, MADSim and RealIAD, demonstrate that our approach is superior to competitors in generation capability and scalability.
comment: Accepted to the 2nd workshop on Vision-based InduStrial InspectiON (VISION) at ECCV 2024
☆ NAVERO: Unlocking Fine-Grained Semantics for Video-Language Compositionality
We study the capability of Video-Language (VidL) models in understanding compositions between objects, attributes, actions and their relations. Composition understanding becomes particularly challenging for video data since the compositional relations rapidly change over time in videos. We first build a benchmark named AARO to evaluate composition understanding related to actions on top of spatial concepts. The benchmark is constructed by generating negative texts with incorrect action descriptions for a given video and the model is expected to pair a positive text with its corresponding video. Furthermore, we propose a training method called NAVERO which utilizes video-text data augmented with negative texts to enhance composition understanding. We also develop a negative-augmented visual-language matching loss which is used explicitly to benefit from the generated negative text. We compare NAVERO with other state-of-the-art methods in terms of compositional understanding as well as video-text retrieval performance. NAVERO achieves significant improvement over other methods for both video-language and image-language composition understanding, while maintaining strong performance on traditional text-video retrieval tasks.
☆ StyleBrush: Style Extraction and Transfer from a Single Image
Stylization for visual content aims to add specific style patterns at the pixel level while preserving the original structural features. Compared with using predefined styles, stylization guided by reference style images is more challenging, where the main difficulty is to effectively separate style from structural elements. In this paper, we propose StyleBrush, a method that accurately captures styles from a reference image and ``brushes'' the extracted style onto other input visual content. Specifically, our architecture consists of two branches: ReferenceNet, which extracts style from the reference image, and Structure Guider, which extracts structural features from the input image, thus enabling image-guided stylization. We utilize LLM and T2I models to create a dataset comprising 100K high-quality style images, encompassing a diverse range of styles and contents with high aesthetic score. To construct training pairs, we crop different regions of the same training image. Experiments show that our approach achieves state-of-the-art results through both qualitative and quantitative analyses. We will release our code and dataset upon acceptance of the paper.
comment: 9 pages, 6figures, Under Review
☆ Source-Free Test-Time Adaptation For Online Surface-Defect Detection ICPR 2024
Surface defect detection is significant in industrial production. However, detecting defects with varying textures and anomaly classes during the test time is challenging. This arises due to the differences in data distributions between source and target domains. Collecting and annotating new data from the target domain and retraining the model is time-consuming and costly. In this paper, we propose a novel test-time adaptation surface-defect detection approach that adapts pre-trained models to new domains and classes during inference. Our approach involves two core ideas. Firstly, we introduce a supervisor to filter samples and select only those with high confidence to update the model. This ensures that the model is not excessively biased by incorrect data. Secondly, we propose the augmented mean prediction to generate robust pseudo labels and a dynamically-balancing loss to facilitate the model in effectively integrating classification and segmentation results to improve surface-defect detection accuracy. Our approach is real-time and does not require additional offline retraining. Experiments demonstrate it outperforms state-of-the-art techniques.
comment: Accepted to ICPR 2024
☆ Advances in Multiple Instance Learning for Whole Slide Image Analysis: Techniques, Challenges, and Future Directions
Whole slide images (WSIs) are gigapixel-scale digital images of H\&E-stained tissue samples widely used in pathology. The substantial size and complexity of WSIs pose unique analytical challenges. Multiple Instance Learning (MIL) has emerged as a powerful approach for addressing these challenges, particularly in cancer classification and detection. This survey provides a comprehensive overview of the challenges and methodologies associated with applying MIL to WSI analysis, including attention mechanisms, pseudo-labeling, transformers, pooling functions, and graph neural networks. Additionally, it explores the potential of MIL in discovering cancer cell morphology, constructing interpretable machine learning models, and quantifying cancer grading. By summarizing the current challenges, methodologies, and potential applications of MIL in WSI analysis, this survey aims to inform researchers about the state of the field and inspire future research directions.
☆ Image-Based Geolocation Using Large Vision-Language Models
Geolocation is now a vital aspect of modern life, offering numerous benefits but also presenting serious privacy concerns. The advent of large vision-language models (LVLMs) with advanced image-processing capabilities introduces new risks, as these models can inadvertently reveal sensitive geolocation information. This paper presents the first in-depth study analyzing the challenges posed by traditional deep learning and LVLM-based geolocation methods. Our findings reveal that LVLMs can accurately determine geolocations from images, even without explicit geographic training. To address these challenges, we introduce \tool{}, an innovative framework that significantly enhances image-based geolocation accuracy. \tool{} employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies by carefully analyzing visual and contextual cues such as vehicle types, architectural styles, natural landscapes, and cultural elements. Extensive testing on a dataset of 50,000 ground-truth data points shows that \tool{} outperforms both traditional models and human benchmarks in accuracy. It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37\% win rate, and delivers highly precise geolocation predictions, with the closest distances as accurate as 0.3 km. Furthermore, our study highlights issues related to dataset integrity, leading to the creation of a more robust dataset and a refined framework that leverages LVLMs' cognitive capabilities to improve geolocation precision. These findings underscore \tool{}'s superior ability to interpret complex visual data, the urgent need to address emerging security vulnerabilities posed by LVLMs, and the importance of responsible AI development to ensure user privacy protection.
☆ MedMAP: Promoting Incomplete Multi-modal Brain Tumor Segmentation with Alignment
Brain tumor segmentation is often based on multiple magnetic resonance imaging (MRI). However, in clinical practice, certain modalities of MRI may be missing, which presents a more difficult scenario. To cope with this challenge, Knowledge Distillation, Domain Adaption, and Shared Latent Space have emerged as commonly promising strategies. However, recent efforts typically overlook the modality gaps and thus fail to learn important invariant feature representations across different modalities. Such drawback consequently leads to limited performance for missing modality models. To ameliorate these problems, pre-trained models are used in natural visual segmentation tasks to minimize the gaps. However, promising pre-trained models are often unavailable in medical image segmentation tasks. Along this line, in this paper, we propose a novel paradigm that aligns latent features of involved modalities to a well-defined distribution anchor as the substitution of the pre-trained model}. As a major contribution, we prove that our novel training paradigm ensures a tight evidence lower bound, thus theoretically certifying its effectiveness. Extensive experiments on different backbones validate that the proposed paradigm can enable invariant feature representations and produce models with narrowed modality gaps. Models with our alignment paradigm show their superior performance on both BraTS2018 and BraTS2020 datasets.
☆ 3C: Confidence-Guided Clustering and Contrastive Learning for Unsupervised Person Re-Identification
Unsupervised person re-identification (Re-ID) aims to learn a feature network with cross-camera retrieval capability in unlabelled datasets. Although the pseudo-label based methods have achieved great progress in Re-ID, their performance in the complex scenario still needs to sharpen up. In order to reduce potential misguidance, including feature bias, noise pseudo-labels and invalid hard samples, accumulated during the learning process, in this pa per, a confidence-guided clustering and contrastive learning (3C) framework is proposed for unsupervised person Re-ID. This 3C framework presents three confidence degrees. i) In the clustering stage, the confidence of the discrepancy between samples and clusters is proposed to implement a harmonic discrepancy clustering algorithm (HDC). ii) In the forward-propagation training stage, the confidence of the camera diversity of a cluster is evaluated via a novel camera information entropy (CIE). Then, the clusters with high CIE values will play leading roles in training the model. iii) In the back-propagation training stage, the confidence of the hard sample in each cluster is designed and further used in a confidence integrated harmonic discrepancy (CHD), to select the informative sample for updating the memory in contrastive learning. Extensive experiments on three popular Re-ID benchmarks demonstrate the superiority of the proposed framework. Particularly, the 3C framework achieves state-of-the-art results: 86.7%/94.7%, 45.3%/73.1% and 47.1%/90.6% in terms of mAP/Rank-1 accuracy on Market-1501, the com plex datasets MSMT17 and VeRi-776, respectively. Code is available at https://github.com/stone5265/3C-reid.
☆ Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning
In this work, we propose a geometry-aware semi-supervised method for fine-grained building function recognition. This method leverages the geometric relationships between multi-source data to improve the accuracy of pseudo labels in semi-supervised learning, extending the task's scope and making it applicable to cross-categorization systems of building function recognition. Firstly, we design an online semi-supervised pre-training stage, which facilitates the precise acquisition of building facade location information in street-view images. In the second stage, we propose a geometry-aware coarse annotation generation module. This module effectively combines GIS data and street-view data based on the geometric relationships, improving the accuracy of pseudo annotations. In the third stage, we combine the newly generated coarse annotations with the existing labeled dataset to achieve fine-grained functional recognition of buildings across multiple cities at a large scale. Extensive experiments demonstrate that our proposed framework exhibits superior performance in fine-grained functional recognition of buildings. Within the same categorization system, it achieves improvements of 7.6% and 4.8% compared to fully-supervised methods and state-of-the-art semi-supervised methods, respectively. Additionally, our method also performs well in cross-city tasks, i.e., extending the model trained on OmniCity (New York) to new areas (i.e., Los Angeles and Boston). This study provides a novel solution for the fine-grained function recognition of large-scale buildings across multiple cities, offering essential data for understanding urban infrastructure planning, human activity patterns, and the interactions between humans and buildings.
comment: This paper is currently under review
☆ G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors
Reversible face anonymization, unlike traditional face pixelization, seeks to replace sensitive identity information in facial images with synthesized alternatives, preserving privacy without sacrificing image clarity. Traditional methods, such as encoder-decoder networks, often result in significant loss of facial details due to their limited learning capacity. Additionally, relying on latent manipulation in pre-trained GANs can lead to changes in ID-irrelevant attributes, adversely affecting data utility due to GAN inversion inaccuracies. This paper introduces G\textsuperscript{2}Face, which leverages both generative and geometric priors to enhance identity manipulation, achieving high-quality reversible face anonymization without compromising data utility. We utilize a 3D face model to extract geometric information from the input face, integrating it with a pre-trained GAN-based decoder. This synergy of generative and geometric priors allows the decoder to produce realistic anonymized faces with consistent geometry. Moreover, multi-scale facial features are extracted from the original face and combined with the decoder using our novel identity-aware feature fusion blocks (IFF). This integration enables precise blending of the generated facial patterns with the original ID-irrelevant features, resulting in accurate identity manipulation. Extensive experiments demonstrate that our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility. Code is available at https://github.com/Harxis/G2Face.
☆ Retina-inspired Object Motion Segmentation
Dynamic Vision Sensors (DVS) have emerged as a revolutionary technology with a high temporal resolution that far surpasses RGB cameras. DVS technology draws biological inspiration from photoreceptors and the initial retinal synapse. Our research showcases the potential of additional retinal functionalities to extract visual features. We provide a domain-agnostic and efficient algorithm for ego-motion compensation based on Object Motion Sensitivity (OMS), one of the multiple robust features computed within the mammalian retina. We develop a framework based on experimental neuroscience that translates OMS' biological circuitry to a low-overhead algorithm. OMS processes DVS data from dynamic scenes to perform pixel-wise object motion segmentation. Using a real and a synthetic dataset, we highlight OMS' ability to differentiate object motion from ego-motion, bypassing the need for deep networks. This paper introduces a bio-inspired computer vision method that dramatically reduces the number of parameters by a factor of 1000 compared to prior works. Our work paves the way for robust, high-speed, and low-bandwidth decision-making for in-sensor computations.
☆ Attention Is Not What You Need: Revisiting Multi-Instance Learning for Whole Slide Image Classification
Although attention-based multi-instance learning algorithms have achieved impressive performances on slide-level whole slide image (WSI) classification tasks, they are prone to mistakenly focus on irrelevant patterns such as staining conditions and tissue morphology, leading to incorrect patch-level predictions and unreliable interpretability. Moreover, these attention-based MIL algorithms tend to focus on salient instances and struggle to recognize hard-to-classify instances. In this paper, we first demonstrate that attention-based WSI classification methods do not adhere to the standard MIL assumptions. From the standard MIL assumptions, we propose a surprisingly simple yet effective instance-based MIL method for WSI classification (FocusMIL) based on max-pooling and forward amortized variational inference. We argue that synergizing the standard MIL assumption with variational inference encourages the model to focus on tumour morphology instead of spurious correlations. Our experimental evaluations show that FocusMIL significantly outperforms the baselines in patch-level classification tasks on the Camelyon16 and TCGA-NSCLC benchmarks. Visualization results show that our method also achieves better classification boundaries for identifying hard instances and mitigates the effect of spurious correlations between bags and labels.
CLIP-CID: Efficient CLIP Distillation via Cluster-Instance Discrimination
Contrastive Language-Image Pre-training (CLIP) has achieved excellent performance over a wide range of tasks. However, the effectiveness of CLIP heavily relies on a substantial corpus of pre-training data, resulting in notable consumption of computational resources. Although knowledge distillation has been widely applied in single modality models, how to efficiently expand knowledge distillation to vision-language foundation models with extensive data remains relatively unexplored. In this paper, we introduce CLIP-CID, a novel distillation mechanism that effectively transfers knowledge from a large vision-language foundation model to a smaller model. We initially propose a simple but efficient image semantic balance method to reduce transfer learning bias and improve distillation efficiency. This method filters out 43.7% of image-text pairs from the LAION400M while maintaining superior performance. After that, we leverage cluster-instance discrimination to facilitate knowledge transfer from the teacher model to the student model, thereby empowering the student model to acquire a holistic semantic comprehension of the pre-training data. Experimental results demonstrate that CLIP-CID achieves state-of-the-art performance on various downstream tasks including linear probe and zero-shot classification.
comment: 11 pages,8 figures
☆ Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs
Medical image synthesis generates additional imaging modalities that are costly, invasive or harmful to acquire, which helps to facilitate the clinical workflow. When training pairs are substantially misaligned (e.g., lung MRI-CT pairs with respiratory motion), accurate image synthesis remains a critical challenge. Recent works explored the directional registration module to adjust misalignment in generative adversarial networks (GANs); however, substantial misalignment will lead to 1) suboptimal data mapping caused by correspondence ambiguity, and 2) degraded image fidelity caused by morphology influence on discriminators. To address the challenges, we propose a novel Deformation-aware GAN (DA-GAN) to dynamically correct the misalignment during the image synthesis based on multi-objective inverse consistency. Specifically, in the generative process, three levels of inverse consistency cohesively optimise symmetric registration and image generation for improved correspondence. In the adversarial process, to further improve image fidelity under misalignment, we design deformation-aware discriminators to disentangle the mismatched spatial morphology from the judgement of image fidelity. Experimental results show that DA-GAN achieved superior performance on a public dataset with simulated misalignments and a real-world lung MRI-CT dataset with respiratory motion misalignment. The results indicate the potential for a wide range of medical image synthesis tasks such as radiotherapy planning.
comment: Accepted by MIDL2024
♻ ☆ Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction
In the realm of modern mobile E-commerce, providing users with nearby commercial service recommendations through location-based online services has become increasingly vital. While machine learning approaches have shown promise in multi-scene recommendation, existing methodologies often struggle to address cold-start problems in unprecedented scenes: the increasing diversity of commercial choices, along with the short online lifespan of scenes, give rise to the complexity of effective recommendations in online and dynamic scenes. In this work, we propose Scene-wise Adaptive Network (SwAN), a novel approach that emphasizes high-performance cold-start online recommendations for new scenes. Our approach introduces several crucial capabilities, including scene similarity learning, user-specific scene transition cognition, scene-specific information construction for the new scene, and enhancing the diverged logical information between scenes. We demonstrate SwAN's potential to optimize dynamic multi-scene recommendation problems by effectively online handling cold-start recommendations for any newly arrived scenes. More encouragingly, SwAN has been successfully deployed in Meituan's online catering recommendation service, which serves millions of customers per day, and SwAN has achieved a 5.64% CTR index improvement relative to the baselines and a 5.19% increase in daily order volume proportion.
comment: 10 pages, 6 figures, accepted by Recsys 2024
♻ ☆ M&M: Unsupervised Mamba-based Mastoidectomy for Cochlear Implant Surgery with Noisy Data
Cochlear Implant (CI) procedures involve inserting an array of electrodes into the cochlea located inside the inner ear. Mastoidectomy is a surgical procedure that uses a high-speed drill to remove part of the mastoid region of the temporal bone, providing safe access to the cochlea through the middle and inner ear. We aim to develop an intraoperative navigation system that registers plans created using 3D preoperative Computerized Tomography (CT) volumes with the 2D surgical microscope view. Herein, we propose a method to synthesize the mastoidectomy volume using only the preoperative CT scan, where the mastoid is intact. We introduce an unsupervised learning framework designed to synthesize mastoidectomy. For model training purposes, this method uses postoperative CT scans to avoid manual data cleaning or labeling, even when the region removed during mastoidectomy is visible but affected by metal artifacts, low signal-to-noise ratio, or electrode wiring. Our approach estimates mastoidectomy regions with a mean dice score of 70.0%. This approach represents a major step forward for CI intraoperative navigation by predicting realistic mastoidectomy-removed regions in preoperative planning that can be used to register the pre-surgery plan to intraoperative microscopy.
♻ ☆ Latent Guard: a Safety Framework for Text-to-image Generation ECCV 2024
With the ability to generate high-quality images, text-to-image (T2I) models can be exploited for creating inappropriate content. To prevent misuse, existing safety measures are either based on text blacklists, which can be easily circumvented, or harmful content classification, requiring large datasets for training and offering low flexibility. Hence, we propose Latent Guard, a framework designed to improve safety measures in text-to-image generation. Inspired by blacklist-based approaches, Latent Guard learns a latent space on top of the T2I model's text encoder, where it is possible to check the presence of harmful concepts in the input text embeddings. Our proposed framework is composed of a data generation pipeline specific to the task using large language models, ad-hoc architectural components, and a contrastive learning strategy to benefit from the generated data. The effectiveness of our method is verified on three datasets and against four baselines. Code and data will be shared at https://latentguard.github.io/.
comment: This paper has been accepted to ECCV 2024
♻ ☆ SynopGround: A Large-Scale Dataset for Multi-Paragraph Video Grounding from TV Dramas and Synopses ACM MM 2024
Video grounding is a fundamental problem in multimodal content understanding, aiming to localize specific natural language queries in an untrimmed video. However, current video grounding datasets merely focus on simple events and are either limited to shorter videos or brief sentences, which hinders the model from evolving toward stronger multimodal understanding capabilities. To address these limitations, we present a large-scale video grounding dataset named SynopGround, in which more than 2800 hours of videos are sourced from popular TV dramas and are paired with accurately localized human-written synopses. Each paragraph in the synopsis serves as a language query and is manually annotated with precise temporal boundaries in the long video. These paragraph queries are tightly correlated to each other and contain a wealth of abstract expressions summarizing video storylines and specific descriptions portraying event details, which enables the model to learn multimodal perception on more intricate concepts over longer context dependencies. Based on the dataset, we further introduce a more complex setting of video grounding dubbed Multi-Paragraph Video Grounding (MPVG), which takes as input multiple paragraphs and a long video for grounding each paragraph query to its temporal interval. In addition, we propose a novel Local-Global Multimodal Reasoner (LGMR) to explicitly model the local-global structures of long-term multimodal inputs for MPVG. Our method provides an effective baseline solution to the multi-paragraph video grounding problem. Extensive experiments verify the proposed model's effectiveness as well as its superiority in long-term multi-paragraph video grounding over prior state-of-the-arts. Dataset and code are publicly available. Project page: https://synopground.github.io/.
comment: Accepted to ACM MM 2024. Project page: https://synopground.github.io/
♻ ☆ Interpreting Global Perturbation Robustness of Image Models using Axiomatic Spectral Importance Decomposition
Perturbation robustness evaluates the vulnerabilities of models, arising from a variety of perturbations, such as data corruptions and adversarial attacks. Understanding the mechanisms of perturbation robustness is critical for global interpretability. We present a model-agnostic, global mechanistic interpretability method to interpret the perturbation robustness of image models. This research is motivated by two key aspects. First, previous global interpretability works, in tandem with robustness benchmarks, e.g. mean corruption error (mCE), are not designed to directly interpret the mechanisms of perturbation robustness within image models. Second, we notice that the spectral signal-to-noise ratios (SNR) of perturbed natural images exponentially decay over the frequency. This power-law-like decay implies that: Low-frequency signals are generally more robust than high-frequency signals -- yet high classification accuracy can not be achieved by low-frequency signals alone. By applying Shapley value theory, our method axiomatically quantifies the predictive powers of robust features and non-robust features within an information theory framework. Our method, dubbed as \textbf{I-ASIDE} (\textbf{I}mage \textbf{A}xiomatic \textbf{S}pectral \textbf{I}mportance \textbf{D}ecomposition \textbf{E}xplanation), provides a unique insight into model robustness mechanisms. We conduct extensive experiments over a variety of vision models pre-trained on ImageNet to show that \textbf{I-ASIDE} can not only \textbf{measure} the perturbation robustness but also \textbf{provide interpretations} of its mechanisms.
comment: Accepted by Transactions on Machine Learning Research (TMLR 2024)
♻ ☆ A Synthetic Benchmarking Pipeline to Compare Camera Calibration Algorithms ICPR 2024
Accurate camera calibration is crucial for various computer vision applications. However, measuring calibration accuracy in the real world is challenging due to the lack of datasets with ground truth to evaluate them. In this paper, we present SynthCal, a synthetic camera calibration benchmarking pipeline that generates images of calibration patterns to measure and enable accurate quantification of calibration algorithm performance in camera parameter estimation. We present a SynthCal generated calibration dataset with four common patterns, two camera types, and two environments with varying view, distortion, lighting, and noise levels for both monocular and multi-camera systems. The dataset evaluates both single and multi-view calibration algorithms by measuring re-projection and root-mean-square errors for identical patterns and camera settings. Additionally, we analyze the significance of different patterns using different calibration configurations. The experimental results demonstrate the effectiveness of SynthCal in evaluating various calibration algorithms and patterns.
comment: ICPR 2024
♻ ☆ Diffusion Feedback Helps CLIP See Better
Contrastive Language-Image Pre-training (CLIP), which excels at abstracting open-world representations across domains and modalities, has become a foundation for a variety of vision and multimodal tasks. However, recent studies reveal that CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure, etc. These visual shortcomings also limit the perception capabilities of multimodal large language models (MLLMs) built on CLIP. The main reason could be that the image-text pairs used to train CLIP are inherently biased, due to the lack of the distinctiveness of the text and the diversity of images. In this work, we present a simple post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process. We introduce DIVA, which uses the DIffusion model as a Visual Assistant for CLIP. Specifically, DIVA leverages generative feedback from text-to-image diffusion models to optimize CLIP representations, with only images (without corresponding text). We demonstrate that DIVA improves CLIP's performance on the challenging MMVP-VLM benchmark which assesses fine-grained visual abilities to a large extent (e.g., 3-7%), and enhances the performance of MLLMs and vision models on multimodal understanding and segmentation tasks. Extensive evaluation on 29 image classification and retrieval benchmarks confirms that our framework preserves CLIP's strong zero-shot capabilities. The code is available at https://github.com/baaivision/DIVA.
♻ ☆ Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting
This paper aims to tackle the problem of modeling dynamic urban streets for autonomous driving scenes. Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view synthesis of dynamic urban street scenes. However, significant limitations are their slow training and rendering speed. We introduce Street Gaussians, a new explicit scene representation that tackles these limitations. Specifically, the dynamic urban scene is represented as a set of point clouds equipped with semantic logits and 3D Gaussians, each associated with either a foreground vehicle or the background. To model the dynamics of foreground object vehicles, each object point cloud is optimized with optimizable tracked poses, along with a 4D spherical harmonics model for the dynamic appearance. The explicit representation allows easy composition of object vehicles and background, which in turn allows for scene editing operations and rendering at 135 FPS (1066 $\times$ 1600 resolution) within half an hour of training. The proposed method is evaluated on multiple challenging benchmarks, including KITTI and Waymo Open datasets. Experiments show that the proposed method consistently outperforms state-of-the-art methods across all datasets. The code will be released to ensure reproducibility.
comment: Project page: https://zju3dv.github.io/street_gaussians/
♻ ☆ Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving
3D object detection has recently received much attention due to its great potential in autonomous vehicle (AV). The success of deep learning based object detectors relies on the availability of large-scale annotated datasets, which is time-consuming and expensive to compile, especially for 3D bounding box annotation. In this work, we investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden. Given limited annotation budget, only the most informative frames and objects are automatically selected for human to annotate. Technically, we take the advantage of the multimodal information provided in an AV dataset, and propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples. We benchmark the proposed method against other AL strategies under realistic annotation cost measurement, where the realistic costs for annotating a frame and a 3D bounding box are both taken into consideration. We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly.
♻ ☆ XAI-Based Detection of Adversarial Attacks on Deepfake Detectors
We introduce a novel methodology for identifying adversarial attacks on deepfake detectors using eXplainable Artificial Intelligence (XAI). In an era characterized by digital advancement, deepfakes have emerged as a potent tool, creating a demand for efficient detection systems. However, these systems are frequently targeted by adversarial attacks that inhibit their performance. We address this gap, developing a defensible deepfake detector by leveraging the power of XAI. The proposed methodology uses XAI to generate interpretability maps for a given method, providing explicit visualizations of decision-making factors within the AI models. We subsequently employ a pretrained feature extractor that processes both the input image and its corresponding XAI image. The feature embeddings extracted from this process are then used for training a simple yet effective classifier. Our approach contributes not only to the detection of deepfakes but also enhances the understanding of possible adversarial attacks, pinpointing potential vulnerabilities. Furthermore, this approach does not change the performance of the deepfake detector. The paper demonstrates promising results suggesting a potential pathway for future deepfake detection mechanisms. We believe this study will serve as a valuable contribution to the community, sparking much-needed discourse on safeguarding deepfake detectors.
comment: Accepted at TMLR 2024
♻ ☆ GABInsight: Exploring Gender-Activity Binding Bias in Vision-Language Models
Vision-language models (VLMs) are intensively used in many downstream tasks, including those requiring assessments of individuals appearing in the images. While VLMs perform well in simple single-person scenarios, in real-world applications, we often face complex situations in which there are persons of different genders doing different activities. We show that in such cases, VLMs are biased towards identifying the individual with the expected gender (according to ingrained gender stereotypes in the model or other forms of sample selection bias) as the performer of the activity. We refer to this bias in associating an activity with the gender of its actual performer in an image or text as the Gender-Activity Binding (GAB) bias and analyze how this bias is internalized in VLMs. To assess this bias, we have introduced the GAB dataset with approximately 5500 AI-generated images that represent a variety of activities, addressing the scarcity of real-world images for some scenarios. To have extensive quality control, the generated images are evaluated for their diversity, quality, and realism. We have tested 12 renowned pre-trained VLMs on this dataset in the context of text-to-image and image-to-text retrieval to measure the effect of this bias on their predictions. Additionally, we have carried out supplementary experiments to quantify the bias in VLMs' text encoders and to evaluate VLMs' capability to recognize activities. Our experiments indicate that VLMs experience an average performance decline of about 13.2% when confronted with gender-activity binding bias.
Artificial Intelligence 80
☆ Does Thought Require Sensory Grounding? From Pure Thinkers to Large Language Models
Does the capacity to think require the capacity to sense? A lively debate on this topic runs throughout the history of philosophy and now animates discussions of artificial intelligence. I argue that in principle, there can be pure thinkers: thinkers that lack the capacity to sense altogether. I also argue for significant limitations in just what sort of thought is possible in the absence of the capacity to sense. Regarding AI, I do not argue directly that large language models can think or understand, but I rebut one important argument (the argument from sensory grounding) that they cannot. I also use recent results regarding language models to address the question of whether or how sensory grounding enhances cognitive capacities.
☆ Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks \cite{qi2023fine}-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions \cite{huang2024vaccine, rosati2024representation} and fine-tuning stage solutions \cite{huang2024lazy,mukhoti2023fine}. However, our evaluation shows that both categories of defenses fail \textit{when some specific training hyper-parameters are chosen} -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textbf{\textit{agnostic to the training hyper-parameters in the fine-tuning stage}}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.
☆ Moonshine: Distilling Game Content Generators into Steerable Generative Models
Procedural Content Generation via Machine Learning (PCGML) has enhanced game content creation, yet challenges in controllability and limited training data persist. This study addresses these issues by distilling a constructive PCG algorithm into a controllable PCGML model. We first generate a large amount of content with a constructive algorithm and label it using a Large Language Model (LLM). We use these synthetic labels to condition two PCGML models for content-specific generation, a diffusion model and the five-dollar model. This neural network distillation process ensures that the generation aligns with the original algorithm while introducing controllability through plain text. We define this text-conditioned PCGML as a Text-to-game-Map (T2M) task, offering an alternative to prevalent text-to-image multi-modal tasks. We compare our distilled models with the baseline constructive algorithm. Our analysis of the variety, accuracy, and quality of our generation demonstrates the efficacy of distilling constructive methods into controllable text-conditioned PCGML models.
☆ SynTraC: A Synthetic Dataset for Traffic Signal Control from Traffic Monitoring Cameras SC2024
This paper introduces SynTraC, the first public image-based traffic signal control dataset, aimed at bridging the gap between simulated environments and real-world traffic management challenges. Unlike traditional datasets for traffic signal control which aim to provide simplified feature vectors like vehicle counts from traffic simulators, SynTraC provides real-style images from the CARLA simulator with annotated features, along with traffic signal states. This image-based dataset comes with diverse real-world scenarios, including varying weather and times of day. Additionally, SynTraC also provides different reward values for advanced traffic signal control algorithms like reinforcement learning. Experiments with SynTraC demonstrate that it is still an open challenge to image-based traffic signal control methods compared with feature-based control methods, indicating our dataset can further guide the development of future algorithms. The code for this paper can be found in \url{https://github.com/DaRL-LibSignal/SynTraC}.SynTraC
comment: Accepted to IEEE ITSC2024
☆ Say My Name: a Model's Bias Discovery Framework
In the last few years, due to the broad applicability of deep learning to downstream tasks and end-to-end training capabilities, increasingly more concerns about potential biases to specific, non-representative patterns have been raised. Many works focusing on unsupervised debiasing usually leverage the tendency of deep models to learn ``easier'' samples, for example by clustering the latent space to obtain bias pseudo-labels. However, the interpretation of such pseudo-labels is not trivial, especially for a non-expert end user, as it does not provide semantic information about the bias features. To address this issue, we introduce ``Say My Name'' (SaMyNa), the first tool to identify biases within deep models semantically. Unlike existing methods, our approach focuses on biases learned by the model. Our text-based pipeline enhances explainability and supports debiasing efforts: applicable during either training or post-hoc validation, our method can disentangle task-related information and proposes itself as a tool to analyze biases. Evaluation on traditional benchmarks demonstrates its effectiveness in detecting biases and even disclaiming them, showcasing its broad applicability for model diagnosis.
☆ MergeRepair: An Exploratory Study on Merging Task-Specific Adapters in Code LLMs for Automated Program Repair
[Context] Large Language Models (LLMs) have shown good performance in several software development-related tasks such as program repair, documentation, code refactoring, debugging, and testing. Adapters are specialized, small modules designed for parameter efficient fine-tuning of LLMs for specific tasks, domains, or applications without requiring extensive retraining of the entire model. These adapters offer a more efficient way to customize LLMs for particular needs, leveraging the pre-existing capabilities of the large model. Merging LLMs and adapters has shown promising results for various natural language domains and tasks, enabling the use of the learned models and adapters without additional training for a new task. [Objective] This research proposes continual merging and empirically studies the capabilities of merged adapters in Code LLMs, specially for the Automated Program Repair (APR) task. The goal is to gain insights into whether and how merging task-specific adapters can affect the performance of APR. [Method] In our framework, MergeRepair, we plan to merge multiple task-specific adapters using three different merging methods and evaluate the performance of the merged adapter for the APR task. Particularly, we will employ two main merging scenarios for all three techniques, (i) merging using equal-weight averaging applied on parameters of different adapters, where all adapters are of equal importance; and (ii) our proposed approach, continual merging, in which we sequentially merge the task-specific adapters and the order and weight of merged adapters matter. By exploratory study of merging techniques, we will investigate the improvement and generalizability of merged adapters for APR. Through continual merging, we will explore the capability of merged adapters and the effect of task order, as it occurs in real-world software projects.
☆ Grammatical Error Feedback: An Implicit Evaluation Approach
Grammatical feedback is crucial for consolidating second language (L2) learning. Most research in computer-assisted language learning has focused on feedback through grammatical error correction (GEC) systems, rather than examining more holistic feedback that may be more useful for learners. This holistic feedback will be referred to as grammatical error feedback (GEF). In this paper, we present a novel implicit evaluation approach to GEF that eliminates the need for manual feedback annotations. Our method adopts a grammatical lineup approach where the task is to pair feedback and essay representations from a set of possible alternatives. This matching process can be performed by appropriately prompting a large language model (LLM). An important aspect of this process, explored here, is the form of the lineup, i.e., the selection of foils. This paper exploits this framework to examine the quality and need for GEC to generate feedback, as well as the system used to generate feedback, using essays from the Cambridge Learner Corpus.
☆ HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
comment: Project Page: https://github.com/HiAgent2024/HiAgent
☆ Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment
Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources while preserving data privacy, particularly in manufacturing and shared production environments. However, the presence of data heterogeneity variations in data distribution, quality, and volume across different or clients and production sites, poses significant challenges to the effectiveness and efficiency of FL. This paper provides a comprehensive overview of heterogeneity in FL within the context of manufacturing, detailing the types and sources of heterogeneity, including non-independent and identically distributed (non-IID) data, unbalanced data, variable data quality, and statistical heterogeneity. We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects. These methodologies include personalized and customized models, robust aggregation techniques, and client selection techniques. By synthesizing existing research and proposing new strategies, this paper aims to provide insight for effectively managing data heterogeneity in FL, enhancing model robustness, and ensuring fair and efficient training across diverse environments. Future research directions are also identified, highlighting the need for adaptive and scalable solutions to further improve the FL paradigm in the context of Industry 4.0.
☆ Using ChatGPT to Score Essays and Short-Form Constructed Responses
This study aimed to determine if ChatGPT's large language models could match the scoring accuracy of human and machine scores from the ASAP competition. The investigation focused on various prediction models, including linear regression, random forest, gradient boost, and boost. ChatGPT's performance was evaluated against human raters using quadratic weighted kappa (QWK) metrics. Results indicated that while ChatGPT's gradient boost model achieved QWKs close to human raters for some data sets, its overall performance was inconsistent and often lower than human scores. The study highlighted the need for further refinement, particularly in handling biases and ensuring scoring fairness. Despite these challenges, ChatGPT demonstrated potential for scoring efficiency, especially with domain-specific fine-tuning. The study concludes that ChatGPT can complement human scoring but requires additional development to be reliable for high-stakes assessments. Future research should improve model accuracy, address ethical considerations, and explore hybrid models combining ChatGPT with empirical methods.
comment: 35 pages, 8 tables, 2 Figures, 27 references
☆ PA-LLaVA: A Large Language-Vision Assistant for Human Pathology Image Understanding
The previous advancements in pathology image understanding primarily involved developing models tailored to specific tasks. Recent studies has demonstrated that the large vision-language model can enhance the performance of various downstream tasks in medical image understanding. In this study, we developed a domain-specific large language-vision assistant (PA-LLaVA) for pathology image understanding. Specifically, (1) we first construct a human pathology image-text dataset by cleaning the public medical image-text data for domain-specific alignment; (2) Using the proposed image-text data, we first train a pathology language-image pretraining (PLIP) model as the specialized visual encoder for pathology image, and then we developed scale-invariant connector to avoid the information loss caused by image scaling; (3) We adopt two-stage learning to train PA-LLaVA, first stage for domain alignment, and second stage for end to end visual question \& answering (VQA) task. In experiments, we evaluate our PA-LLaVA on both supervised and zero-shot VQA datasets, our model achieved the best overall performance among multimodal models of similar scale. The ablation experiments also confirmed the effectiveness of our design. We posit that our PA-LLaVA model and the datasets presented in this work can promote research in field of computational pathology. All codes are available at: https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA}{https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA
comment: 8 pages, 4 figs
☆ Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path
Large Language Models (LLMs) have achieved great success in various reasoning tasks. In this work, we focus on the graph reasoning ability of LLMs. Although theoretical studies proved that LLMs are capable of handling graph reasoning tasks, empirical evaluations reveal numerous failures. To deepen our understanding on this discrepancy, we revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem. Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these three fundamental tasks. Meanwhile, we perform a real-world investigation on knowledge graphs and make consistent observations with our findings. The codes and datasets are available.
☆ ALS-HAR: Harnessing Wearable Ambient Light Sensors to Enhance IMU-based HAR
Despite the widespread integration of ambient light sensors (ALS) in smart devices commonly used for screen brightness adaptation, their application in human activity recognition (HAR), primarily through body-worn ALS, is largely unexplored. In this work, we developed ALS-HAR, a robust wearable light-based motion activity classifier. Although ALS-HAR achieves comparable accuracy to other modalities, its natural sensitivity to external disturbances, such as changes in ambient light, weather conditions, or indoor lighting, makes it challenging for daily use. To address such drawbacks, we introduce strategies to enhance environment-invariant IMU-based activity classifications through augmented multi-modal and contrastive classifications by transferring the knowledge extracted from the ALS. Our experiments on a real-world activity dataset for three different scenarios demonstrate that while ALS-HAR's accuracy strongly relies on external lighting conditions, cross-modal information can still improve other HAR systems, such as IMU-based classifiers.Even in scenarios where ALS performs insufficiently, the additional knowledge enables improved accuracy and macro F1 score by up to 4.2 % and 6.4 %, respectively, for IMU-based classifiers and even surpasses multi-modal sensor fusion models in two of our three experiment scenarios. Our research highlights the untapped potential of ALS integration in advancing sensor-based HAR technology, paving the way for practical and efficient wearable ALS-based activity recognition systems with potential applications in healthcare, sports monitoring, and smart indoor environments.
☆ A Unified Framework for Interpretable Transformers Using PDEs and Information Theory
This paper presents a novel unified theoretical framework for understanding Transformer architectures by integrating Partial Differential Equations (PDEs), Neural Information Flow Theory, and Information Bottleneck Theory. We model Transformer information dynamics as a continuous PDE process, encompassing diffusion, self-attention, and nonlinear residual components. Our comprehensive experiments across image and text modalities demonstrate that the PDE model effectively captures key aspects of Transformer behavior, achieving high similarity (cosine similarity > 0.98) with Transformer attention distributions across all layers. While the model excels in replicating general information flow patterns, it shows limitations in fully capturing complex, non-linear transformations. This work provides crucial theoretical insights into Transformer mechanisms, offering a foundation for future optimizations in deep learning architectural design. We discuss the implications of our findings, potential applications in model interpretability and efficiency, and outline directions for enhancing PDE models to better mimic the intricate behaviors observed in Transformers, paving the way for more transparent and optimized AI systems.
☆ A Logic for Policy Based Resource Exchanges in Multiagent Systems
In multiagent systems autonomous agents interact with each other to achieve individual and collective goals. Typical interactions concern negotiation and agreement on resource exchanges. Modeling and formalizing these agreements pose significant challenges, particularly in capturing the dynamic behaviour of agents, while ensuring that resources are correctly handled. Here, we propose exchange environments as a formal setting where agents specify and obey exchange policies, which are declarative statements about what resources they offer and what they require in return. Furthermore, we introduce a decidable extension of the computational fragment of linear logic as a fundamental tool for representing exchange environments and studying their dynamics in terms of provability.
☆ Out-of-distribution generalization via composition: a lens through induction heads in Transformers
Large language models (LLMs) such as GPT-4 sometimes appear to be creative, solving novel tasks often with a few demonstrations in the prompt. These tasks require the models to generalize on distributions different from those from training data -- which is known as out-of-distribution (OOD) generalization. Despite the tremendous success of LLMs, how they approach OOD generalization remains an open and underexplored question. We examine OOD generalization in settings where instances are generated according to hidden rules, including in-context learning with symbolic reasoning. Models are required to infer the hidden rules behind input prompts without any fine-tuning. We empirically examined the training dynamics of Transformers on a synthetic example and conducted extensive experiments on a variety of pretrained LLMs, focusing on a type of components known as induction heads. We found that OOD generalization and composition are tied together -- models can learn rules by composing two self-attention layers, thereby achieving OOD generalization. Furthermore, a shared latent subspace in the embedding (or feature) space acts as a bridge for composition by aligning early layers and later layers, which we refer to as the common bridge representation hypothesis.
comment: 41 pages, 25 figures
☆ Beyond Local Views: Global State Inference with Diffusion Models for Cooperative Multi-Agent Reinforcement Learning
In partially observable multi-agent systems, agents typically only have access to local observations. This severely hinders their ability to make precise decisions, particularly during decentralized execution. To alleviate this problem and inspired by image outpainting, we propose State Inference with Diffusion Models (SIDIFF), which uses diffusion models to reconstruct the original global state based solely on local observations. SIDIFF consists of a state generator and a state extractor, which allow agents to choose suitable actions by considering both the reconstructed global state and local observations. In addition, SIDIFF can be effortlessly incorporated into current multi-agent reinforcement learning algorithms to improve their performance. Finally, we evaluated SIDIFF on different experimental platforms, including Multi-Agent Battle City (MABC), a novel and flexible multi-agent reinforcement learning environment we developed. SIDIFF achieved desirable results and outperformed other popular algorithms.
comment: 15 pages, 12 figures
☆ Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose \textbf{HEI}, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.
comment: 20 pages, 7 figures
☆ REFINE-LM: Mitigating Language Model Stereotypes via Reinforcement Learning
With the introduction of (large) language models, there has been significant concern about the unintended bias such models may inherit from their training data. A number of studies have shown that such models propagate gender stereotypes, as well as geographical and racial bias, among other biases. While existing works tackle this issue by preprocessing data and debiasing embeddings, the proposed methods require a lot of computational resources and annotation effort while being limited to certain types of biases. To address these issues, we introduce REFINE-LM, a debiasing method that uses reinforcement learning to handle different types of biases without any fine-tuning. By training a simple model on top of the word probability distribution of a LM, our bias agnostic reinforcement learning method enables model debiasing without human annotations or significant computational resources. Experiments conducted on a wide range of models, including several LMs, show that our method (i) significantly reduces stereotypical biases while preserving LMs performance; (ii) is applicable to different types of biases, generalizing across contexts such as gender, ethnicity, religion, and nationality-based biases; and (iii) it is not expensive to train.
☆ PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis ACM MM 2024
While existing Aspect-based Sentiment Analysis (ABSA) has received extensive effort and advancement, there are still gaps in defining a more holistic research target seamlessly integrating multimodality, conversation context, fine-granularity, and also covering the changing sentiment dynamics as well as cognitive causal rationales. This paper bridges the gaps by introducing a multimodal conversational ABSA, where two novel subtasks are proposed: 1) Panoptic Sentiment Sextuple Extraction, panoramically recognizing holder, target, aspect, opinion, sentiment, rationale from multi-turn multi-party multimodal dialogue. 2) Sentiment Flipping Analysis, detecting the dynamic sentiment transformation throughout the conversation with the causal reasons. To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements. To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism. Extensive evaluations demonstrate the superiority of our methods over strong baselines, validating the efficacy of all our proposed methods. The work is expected to open up a new era for the ABSA community, and thus all our codes and data are open at https://PanoSent.github.io/
comment: Accepted by ACM MM 2024 (Oral)
☆ MedMAP: Promoting Incomplete Multi-modal Brain Tumor Segmentation with Alignment
Brain tumor segmentation is often based on multiple magnetic resonance imaging (MRI). However, in clinical practice, certain modalities of MRI may be missing, which presents a more difficult scenario. To cope with this challenge, Knowledge Distillation, Domain Adaption, and Shared Latent Space have emerged as commonly promising strategies. However, recent efforts typically overlook the modality gaps and thus fail to learn important invariant feature representations across different modalities. Such drawback consequently leads to limited performance for missing modality models. To ameliorate these problems, pre-trained models are used in natural visual segmentation tasks to minimize the gaps. However, promising pre-trained models are often unavailable in medical image segmentation tasks. Along this line, in this paper, we propose a novel paradigm that aligns latent features of involved modalities to a well-defined distribution anchor as the substitution of the pre-trained model}. As a major contribution, we prove that our novel training paradigm ensures a tight evidence lower bound, thus theoretically certifying its effectiveness. Extensive experiments on different backbones validate that the proposed paradigm can enable invariant feature representations and produce models with narrowed modality gaps. Models with our alignment paradigm show their superior performance on both BraTS2018 and BraTS2020 datasets.
☆ In-Memory Learning Automata Architecture using Y-Flash Cell
The modern implementation of machine learning architectures faces significant challenges due to frequent data transfer between memory and processing units. In-memory computing, primarily through memristor-based analog computing, offers a promising solution to overcome this von Neumann bottleneck. In this technology, data processing and storage are located inside the memory. Here, we introduce a novel approach that utilizes floating-gate Y-Flash memristive devices manufactured with a standard 180 nm CMOS process. These devices offer attractive features, including analog tunability and moderate device-to-device variation; such characteristics are essential for reliable decision-making in ML applications. This paper uses a new machine learning algorithm, the Tsetlin Machine (TM), for in-memory processing architecture. The TM's learning element, Automaton, is mapped into a single Y-Flash cell, where the Automaton's range is transferred into the Y-Flash's conductance scope. Through comprehensive simulations, the proposed hardware implementation of the learning automata, particularly for Tsetlin machines, has demonstrated enhanced scalability and on-edge learning capabilities.
GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings
Deep generative models have recently made a remarkable progress in capturing complex probability distributions over graphs. However, they are intractable and thus unable to answer even the most basic probabilistic inference queries without resorting to approximations. Therefore, we propose graph sum-product networks (GraphSPNs), a tractable deep generative model which provides exact and efficient inference over (arbitrary parts of) graphs. We investigate different principles to make SPNs permutation invariant. We demonstrate that GraphSPNs are able to (conditionally) generate novel and chemically valid molecular graphs, being competitive to, and sometimes even better than, existing intractable models. We find out that (Graph)SPNs benefit from ensuring the permutation invariance via canonical ordering.
☆ Parallel Sampling via Counting
We show how to use parallelization to speed up sampling from an arbitrary distribution $\mu$ on a product space $[q]^n$, given oracle access to counting queries: $\mathbb{P}_{X\sim \mu}[X_S=\sigma_S]$ for any $S\subseteq [n]$ and $\sigma_S \in [q]^S$. Our algorithm takes $O({n^{2/3}\cdot \operatorname{polylog}(n,q)})$ parallel time, to the best of our knowledge, the first sublinear in $n$ runtime for arbitrary distributions. Our results have implications for sampling in autoregressive models. Our algorithm directly works with an equivalent oracle that answers conditional marginal queries $\mathbb{P}_{X\sim \mu}[X_i=\sigma_i\;\vert\; X_S=\sigma_S]$, whose role is played by a trained neural network in autoregressive models. This suggests a roughly $n^{1/3}$-factor speedup is possible for sampling in any-order autoregressive models. We complement our positive result by showing a lower bound of $\widetilde{\Omega}(n^{1/3})$ for the runtime of any parallel sampling algorithm making at most $\operatorname{poly}(n)$ queries to the counting oracle, even for $q=2$.
☆ Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting
Relevance modeling is a critical component for enhancing user experience in search engines, with the primary objective of identifying items that align with users' queries. Traditional models only rely on the semantic congruence between queries and items to ascertain relevance. However, this approach represents merely one aspect of the relevance judgement, and is insufficient in isolation. Even powerful Large Language Models (LLMs) still cannot accurately judge the relevance of a query and an item from a semantic perspective. To augment LLMs-driven relevance modeling, this study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions. The challenge lies in the effective prompting of LLMs to capture dynamic search intentions, which poses several obstacles in real-world relevance scenarios, i.e., the absence of domain-specific knowledge, the inadequacy of an isolated prompt, and the prohibitive costs associated with deploying LLMs. In response, we propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with LLMs effectively. Specifically, we perform the user-driven behavior neighbors retrieval from the daily search logs to obtain domain-specific knowledge in time, retrieving candidates that users consider to meet their expectations. Then, we guide LLMs for relevance modeling by employing advanced prompting techniques that progressively improve the outputs of the LLMs, followed by a progressive aggregation with comprehensive consideration of diverse aspects. For online serving, we have developed an industrial application framework tailored for the deployment of LLMs in relevance modeling. Experiments on real-world industry data and online A/B testing demonstrate our proposal achieves promising performance.
☆ Enhancing Modal Fusion by Alignment and Label Matching for Multimodal Emotion Recognition INTERSPEECH 2024
To address the limitation in multimodal emotion recognition (MER) performance arising from inter-modal information fusion, we propose a novel MER framework based on multitask learning where fusion occurs after alignment, called Foal-Net. The framework is designed to enhance the effectiveness of modality fusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL) and cross-modal emotion label matching (MEM). First, AVEL achieves alignment of emotional information in audio-video representations through contrastive learning. Then, a modal fusion network integrates the aligned features. Meanwhile, MEM assesses whether the emotions of the current sample pair are the same, providing assistance for modal information fusion and guiding the model to focus more on emotional information. The experimental results conducted on IEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and emotion alignment is necessary before modal fusion.
comment: The paper has been accepted by INTERSPEECH 2024
☆ HySem: A context length optimized LLM pipeline for unstructured tabular extraction
Regulatory compliance reporting in the pharmaceutical industry relies on detailed tables, but these are often under-utilized beyond compliance due to their unstructured format and arbitrary content. Extracting and semantically representing tabular data is challenging due to diverse table presentations. Large Language Models (LLMs) demonstrate substantial potential for semantic representation, yet they encounter challenges related to accuracy and context size limitations, which are crucial considerations for the industry applications. We introduce HySem, a pipeline that employs a novel context length optimization technique to generate accurate semantic JSON representations from HTML tables. This approach utilizes a custom fine-tuned model specifically designed for cost- and privacy-sensitive small and medium pharmaceutical enterprises. Running on commodity hardware and leveraging open-source models, our auto-correcting agents rectify both syntax and semantic errors in LLM-generated content. HySem surpasses its peer open-source models in accuracy and provides competitive performance when benchmarked against OpenAI GPT-4o and effectively addresses context length limitations, which is a crucial factor for supporting larger tables.
comment: 9 pages, 4 tables, 3 figures, 1 algorithm
☆ Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs
Medical image synthesis generates additional imaging modalities that are costly, invasive or harmful to acquire, which helps to facilitate the clinical workflow. When training pairs are substantially misaligned (e.g., lung MRI-CT pairs with respiratory motion), accurate image synthesis remains a critical challenge. Recent works explored the directional registration module to adjust misalignment in generative adversarial networks (GANs); however, substantial misalignment will lead to 1) suboptimal data mapping caused by correspondence ambiguity, and 2) degraded image fidelity caused by morphology influence on discriminators. To address the challenges, we propose a novel Deformation-aware GAN (DA-GAN) to dynamically correct the misalignment during the image synthesis based on multi-objective inverse consistency. Specifically, in the generative process, three levels of inverse consistency cohesively optimise symmetric registration and image generation for improved correspondence. In the adversarial process, to further improve image fidelity under misalignment, we design deformation-aware discriminators to disentangle the mismatched spatial morphology from the judgement of image fidelity. Experimental results show that DA-GAN achieved superior performance on a public dataset with simulated misalignments and a real-world lung MRI-CT dataset with respiratory motion misalignment. The results indicate the potential for a wide range of medical image synthesis tasks such as radiotherapy planning.
comment: Accepted by MIDL2024
☆ FASST: Fast LLM-based Simultaneous Speech Translation
Simultaneous speech translation (SST) takes streaming speech input and generates text translation on the fly. Existing methods either have high latency due to recomputation of input representations, or fall behind of offline ST in translation quality. In this paper, we propose FASST, a fast large language model based method for streaming speech translation. We propose blockwise-causal speech encoding and consistency mask, so that streaming speech input can be encoded incrementally without recomputation. Furthermore, we develop a two-stage training strategy to optimize FASST for simultaneous inference. We evaluate FASST and multiple strong prior models on MuST-C dataset. Experiment results show that FASST achieves the best quality-latency trade-off. It outperforms the previous best model by an average of 1.5 BLEU under the same latency for English to Spanish translation.
☆ A Robust Algorithm for Contactless Fingerprint Enhancement and Matching
Compared to contact fingerprint images, contactless fingerprint images exhibit four distinct characteristics: (1) they contain less noise; (2) they have fewer discontinuities in ridge patterns; (3) the ridge-valley pattern is less distinct; and (4) they pose an interoperability problem, as they lack the elastic deformation caused by pressing the finger against the capture device. These properties present significant challenges for the enhancement of contactless fingerprint images. In this study, we propose a novel contactless fingerprint identification solution that enhances the accuracy of minutiae detection through improved frequency estimation and a new region-quality-based minutia extraction algorithm. In addition, we introduce an efficient and highly accurate minutiae-based encoding and matching algorithm. We validate the effectiveness of our approach through extensive experimental testing. Our method achieves a minimum Equal Error Rate (EER) of 2.84\% on the PolyU contactless fingerprint dataset, demonstrating its superior performance compared to existing state-of-the-art techniques. The proposed fingerprint identification method exhibits notable precision and resilience, proving to be an effective and feasible solution for contactless fingerprint-based identification systems.
☆ Distinguish Confusion in Legal Judgment Prediction via Revised Relation Knowledge
Legal Judgment Prediction (LJP) aims to automatically predict a law case's judgment results based on the text description of its facts. In practice, the confusing law articles (or charges) problem frequently occurs, reflecting that the law cases applicable to similar articles (or charges) tend to be misjudged. Although some recent works based on prior knowledge solve this issue well, they ignore that confusion also occurs between law articles with a high posterior semantic similarity due to the data imbalance problem instead of only between the prior highly similar ones, which is this work's further finding. This paper proposes an end-to-end model named \textit{D-LADAN} to solve the above challenges. On the one hand, D-LADAN constructs a graph among law articles based on their text definition and proposes a graph distillation operation (GDO) to distinguish the ones with a high prior semantic similarity. On the other hand, D-LADAN presents a novel momentum-updated memory mechanism to dynamically sense the posterior similarity between law articles (or charges) and a weighted GDO to adaptively capture the distinctions for revising the inductive bias caused by the data imbalance problem. We perform extensive experiments to demonstrate that D-LADAN significantly outperforms state-of-the-art methods in accuracy and robustness.
comment: Accepted by ACM TOIS
☆ Challenges and Responses in the Practice of Large Language Models
This paper carefully summarizes extensive and profound questions from all walks of life, focusing on the current high-profile AI field, covering multiple dimensions such as industry trends, academic research, technological innovation and business applications. This paper meticulously curates questions that are both thought-provoking and practically relevant, providing nuanced and insightful answers to each. To facilitate readers' understanding and reference, this paper specifically classifies and organizes these questions systematically and meticulously from the five core dimensions of computing power infrastructure, software architecture, data resources, application scenarios, and brain science. This work aims to provide readers with a comprehensive, in-depth and cutting-edge AI knowledge framework to help people from all walks of life grasp the pulse of AI development, stimulate innovative thinking, and promote industrial progress.
☆ $\mathbb{BEHR}$NOULLI: A Binary EHR Data-Oriented Medication Recommendation System
The medical community believes binary medical event outcomes in EHR data contain sufficient information for making a sensible recommendation. However, there are two challenges to effectively utilizing such data: (1) modeling the relationship between massive 0,1 event outcomes is difficult, even with expert knowledge; (2) in practice, learning can be stalled by the binary values since the equally important 0 entries propagate no learning signals. Currently, there is a large gap between the assumed sufficient information and the reality that no promising results have been shown by utilizing solely the binary data: visiting or secondary information is often necessary to reach acceptable performance. In this paper, we attempt to build the first successful binary EHR data-oriented drug recommendation system by tackling the two difficulties, making sensible drug recommendations solely using the binary EHR medical records. To this end, we take a statistical perspective to view the EHR data as a sample from its cohorts and transform them into continuous Bernoulli probabilities. The transformed entries not only model a deterministic binary event with a distribution but also allow reflecting \emph{event-event} relationship by conditional probability. A graph neural network is learned on top of the transformation. It captures event-event correlations while emphasizing \emph{event-to-patient} features. Extensive results demonstrate that the proposed method achieves state-of-the-art performance on large-scale databases, outperforming baseline methods that use secondary information by a large margin. The source code is available at \url{https://github.com/chenzRG/BEHRMecom}
☆ Comparison between the Structures of Word Co-occurrence and Word Similarity Networks for Ill-formed and Well-formed Texts in Taiwan Mandarin
The study of word co-occurrence networks has attracted the attention of researchers due to their potential significance as well as applications. Understanding the structure of word co-occurrence networks is therefore important to fully realize their significance and usages. In past studies, word co-occurrence networks built on well-formed texts have been found to possess certain characteristics, including being small-world, following a two-regime power law distribution, and being generally disassortative. On the flip side, past studies have found that word co-occurrence networks built from ill-formed texts such as microblog posts may behave differently from those built from well-formed documents. While both kinds of word co-occurrence networks are small-world and disassortative, word co-occurrence networks built from ill-formed texts are scale-free and follow the power law distribution instead of the two-regime power law distribution. However, since past studies on the behavior of word co-occurrence networks built from ill-formed texts only investigated English, the universality of such characteristics remains to be seen among different languages. In addition, it is yet to be investigated whether there could be possible similitude/differences between word co-occurrence networks and other potentially comparable networks. This study therefore investigates and compares the structure of word co-occurrence networks and word similarity networks based on Taiwan Mandarin ill-formed internet forum posts and compare them with those built with well-formed judicial judgments, and seeks to find out whether the three aforementioned properties (scale-free, small-world, and disassortative) for ill-formed and well-formed texts are universal among different languages and between word co-occurrence and word similarity networks.
comment: 4 pages, 1 figure, 5 tables
☆ Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion
Spiking neural networks (SNNs) are becoming a promising alternative to conventional artificial neural networks (ANNs) due to their rich neural dynamics and the implementation of energy-efficient neuromorphic chips. However, the non-differential binary communication mechanism makes SNN hard to converge to an ANN-level accuracy. When SNN encounters sequence learning, the situation becomes worse due to the difficulties in modeling long-range dependencies. To overcome these difficulties, researchers developed variants of LIF neurons and different surrogate gradients but still failed to obtain good results when the sequence became longer (e.g., $>$500). Unlike them, we obtain an optimal SNN in sequence learning by directly mapping parameters from a quantized CRNN. We design two sub-pipelines to support the end-to-end conversion of different structures in neural networks, which is called CNN-Morph (CNN $\rightarrow$ QCNN $\rightarrow$ BIFSNN) and RNN-Morph (RNN $\rightarrow$ QRNN $\rightarrow$ RBIFSNN). Using conversion pipelines and the s-analog encoding method, the conversion error of our framework is zero. Furthermore, we give the theoretical and experimental demonstration of the lossless CRNN-SNN conversion. Our results show the effectiveness of our method over short and long timescales tasks compared with the state-of-the-art learning- and conversion-based methods. We reach the highest accuracy of 99.16% (0.46 $\uparrow$) on S-MNIST, 94.95% (3.95 $\uparrow$) on PS-MNIST (sequence length of 784) respectively, and the lowest loss of 0.057 (0.013 $\downarrow$) within 8 time-steps in collision avoidance dataset.
comment: Accepted by 33rd International Conference on Artificial Neural Networks
☆ Federated Graph Learning with Structure Proxy Alignment KDD 2024
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray.
comment: Accepted by KDD 2024
☆ Game Development as Human-LLM Interaction
Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Interaction-driven Game Engine (IGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as an IGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$ : configure the game script segment based on the user's input; (2) $P_{code}$ : generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$ : interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on the LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our IGE smoothly. We construct an IGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness. The code and data are available at \url{https://github.com/alterego238/IGE}.
☆ Offline RLHF Methods Need More Accurate Supervision Signals
With the rapid advances in Large Language Models (LLMs), aligning LLMs with human preferences become increasingly important. Although Reinforcement Learning with Human Feedback (RLHF) proves effective, it is complicated and highly resource-intensive. As such, offline RLHF has been introduced as an alternative solution, which directly optimizes LLMs with ranking losses on a fixed preference dataset. Current offline RLHF only captures the ``ordinal relationship'' between responses, overlooking the crucial aspect of ``how much'' one is preferred over the others. To address this issue, we propose a simple yet effective solution called \textbf{R}eward \textbf{D}ifference \textbf{O}ptimization, shorted as \textbf{RDO}. Specifically, we introduce {\it reward difference coefficients} to reweigh sample pairs in offline RLHF. We then develop a {\it difference model} involving rich interactions between a pair of responses for predicting these difference coefficients. Experiments with 7B LLMs on the HH and TL;DR datasets substantiate the effectiveness of our method in both automatic metrics and human evaluation, thereby highlighting its potential for aligning LLMs with human intent and values.
comment: under review
☆ VRCopilot: Authoring 3D Layouts with Generative AI Models in VR
Immersive authoring provides an intuitive medium for users to create 3D scenes via direct manipulation in Virtual Reality (VR). Recent advances in generative AI have enabled the automatic creation of realistic 3D layouts. However, it is unclear how capabilities of generative AI can be used in immersive authoring to support fluid interactions, user agency, and creativity. We introduce VRCopilot, a mixed-initiative system that integrates pre-trained generative AI models into immersive authoring to facilitate human-AI co-creation in VR. VRCopilot presents multimodal interactions to support rapid prototyping and iterations with AI, and intermediate representations such as wireframes to augment user controllability over the created content. Through a series of user studies, we evaluated the potential and challenges in manual, scaffolded, and automatic creation in immersive authoring. We found that scaffolded creation using wireframes enhanced the user agency compared to automatic creation. We also found that manual creation via multimodal specification offers the highest sense of creativity and agency.
comment: UIST 2024
Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
As artificial intelligence progresses, the task of distinguishing between real and AI-generated images is increasingly complicated by sophisticated generative models. This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models, such as DALL-E 3, MidJourney, and Stable Diffusion 3. We introduce a comprehensive dataset, tailored to include images from these advanced generators, which serves as the foundation for extensive evaluation. we propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP). This baseline system is designed to effectively differentiate between real and AI-generated images under various challenging conditions. Enhancing this approach, we introduce a hybrid architecture that combines Kolmogorov-Arnold Networks (KAN) with the MLP. This hybrid model leverages the adaptive, high-resolution feature transformation capabilities of KAN, enabling our system to capture and analyze complex patterns in AI-generated images that are typically overlooked by conventional models. In out-of-distribution testing, our proposed model consistently outperformed the standard MLP across three out of distribution test datasets, demonstrating superior performance and robustness in classifying real images from AI-generated images with impressive F1 scores.
comment: 8 Pages, IEEE Transactions
☆ Concept Distillation from Strong to Weak Models via Hypotheses-to-Theories Prompting
Hand-crafting high quality prompts to optimize the performance of language models is a complicated and labor-intensive process. Furthermore, when migrating to newer, smaller, or weaker models (possibly due to latency or cost gains), prompts need to be updated to re-optimize the task performance. We propose Concept Distillation (CD), an automatic prompt optimization technique for enhancing weaker models on complex tasks. CD involves: (1) collecting mistakes made by weak models with a base prompt (initialization), (2) using a strong model to generate reasons for these mistakes and create rules/concepts for weak models (induction), and (3) filtering these rules based on validation set performance and integrating them into the base prompt (deduction/verification). We evaluated CD on NL2Code and mathematical reasoning tasks, observing significant performance boosts for small and weaker language models. Notably, Mistral-7B's accuracy on Multi-Arith increased by 20%, and Phi-3-mini-3.8B's accuracy on HumanEval rose by 34%. Compared to other automated methods, CD offers an effective, cost-efficient strategy for improving weak models' performance on complex tasks and enables seamless workload migration across different language models without compromising performance.
comment: 13 pages, 8 figures, conference
☆ Meta-Learning Empowered Meta-Face: Personalized Speaking Style Adaptation for Audio-Driven 3D Talking Face Animation
Audio-driven 3D face animation is increasingly vital in live streaming and augmented reality applications. While remarkable progress has been observed, most existing approaches are designed for specific individuals with predefined speaking styles, thus neglecting the adaptability to varied speaking styles. To address this limitation, this paper introduces MetaFace, a novel methodology meticulously crafted for speaking style adaptation. Grounded in the novel concept of meta-learning, MetaFace is composed of several key components: the Robust Meta Initialization Stage (RMIS) for fundamental speaking style adaptation, the Dynamic Relation Mining Neural Process (DRMN) for forging connections between observed and unobserved speaking styles, and the Low-rank Matrix Memory Reduction Approach to enhance the efficiency of model optimization as well as learning style details. Leveraging these novel designs, MetaFace not only significantly outperforms robust existing baselines but also establishes a new state-of-the-art, as substantiated by our experimental results.
☆ E-CGL: An Efficient Continual Graph Learner
Continual learning has emerged as a crucial paradigm for learning from sequential data while preserving previous knowledge. In the realm of continual graph learning, where graphs continuously evolve based on streaming graph data, continual graph learning presents unique challenges that require adaptive and efficient graph learning methods in addition to the problem of catastrophic forgetting. The first challenge arises from the interdependencies between different graph data, where previous graphs can influence new data distributions. The second challenge lies in the efficiency concern when dealing with large graphs. To addresses these two problems, we produce an Efficient Continual Graph Learner (E-CGL) in this paper. We tackle the interdependencies issue by demonstrating the effectiveness of replay strategies and introducing a combined sampling strategy that considers both node importance and diversity. To overcome the limitation of efficiency, E-CGL leverages a simple yet effective MLP model that shares weights with a GCN during training, achieving acceleration by circumventing the computationally expensive message passing process. Our method comprehensively surpasses nine baselines on four graph continual learning datasets under two settings, meanwhile E-CGL largely reduces the catastrophic forgetting problem down to an average of -1.1%. Additionally, E-CGL achieves an average of 15.83x training time acceleration and 4.89x inference time acceleration across the four datasets. These results indicate that E-CGL not only effectively manages the correlation between different graph data during continual training but also enhances the efficiency of continual learning on large graphs. The code is publicly available at https://github.com/aubreygjh/E-CGL.
☆ Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks
Large Language Models (LLMs) have increasingly become pivotal in content generation with notable societal impact. These models hold the potential to generate content that could be deemed harmful.Efforts to mitigate this risk include implementing safeguards to ensure LLMs adhere to social ethics.However, despite such measures, the phenomenon of "jailbreaking" -- where carefully crafted prompts elicit harmful responses from models -- persists as a significant challenge. Recognizing the continuous threat posed by jailbreaking tactics and their repercussions for the trustworthy use of LLMs, a rigorous assessment of the models' robustness against such attacks is essential. This study introduces an comprehensive evaluation framework and conducts an large-scale empirical experiment to address this need. We concentrate on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs. We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak. By normalizing and aggregating these metrics, we present a detailed reliability score for different LLMs, coupled with strategic recommendations to reduce their susceptibility to such vulnerabilities. Additionally, we explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework. Our extensive experimental results demonstrate a lack of resilience among all tested LLMs against certain strategies, and highlight the need to concentrate on the reliability facets of LLMs. We believe our study can provide valuable insights into enhancing the security evaluation of LLMs against jailbreak within the domain.
☆ Learning Fair Invariant Representations under Covariate and Correlation Shifts Simultaneously CIKM 2024
Achieving the generalization of an invariant classifier from training domains to shifted test domains while simultaneously considering model fairness is a substantial and complex challenge in machine learning. Existing methods address the problem of fairness-aware domain generalization, focusing on either covariate shift or correlation shift, but rarely consider both at the same time. In this paper, we introduce a novel approach that focuses on learning a fairness-aware domain-invariant predictor within a framework addressing both covariate and correlation shifts simultaneously, ensuring its generalization to unknown test domains inaccessible during training. In our approach, data are first disentangled into content and style factors in latent spaces. Furthermore, fairness-aware domain-invariant content representations can be learned by mitigating sensitive information and retaining as much other information as possible. Extensive empirical studies on benchmark datasets demonstrate that our approach surpasses state-of-the-art methods with respect to model accuracy as well as both group and individual fairness.
comment: CIKM 2024
♻ ☆ Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction
In the realm of modern mobile E-commerce, providing users with nearby commercial service recommendations through location-based online services has become increasingly vital. While machine learning approaches have shown promise in multi-scene recommendation, existing methodologies often struggle to address cold-start problems in unprecedented scenes: the increasing diversity of commercial choices, along with the short online lifespan of scenes, give rise to the complexity of effective recommendations in online and dynamic scenes. In this work, we propose Scene-wise Adaptive Network (SwAN), a novel approach that emphasizes high-performance cold-start online recommendations for new scenes. Our approach introduces several crucial capabilities, including scene similarity learning, user-specific scene transition cognition, scene-specific information construction for the new scene, and enhancing the diverged logical information between scenes. We demonstrate SwAN's potential to optimize dynamic multi-scene recommendation problems by effectively online handling cold-start recommendations for any newly arrived scenes. More encouragingly, SwAN has been successfully deployed in Meituan's online catering recommendation service, which serves millions of customers per day, and SwAN has achieved a 5.64% CTR index improvement relative to the baselines and a 5.19% increase in daily order volume proportion.
comment: 10 pages, 6 figures, accepted by Recsys 2024
♻ ☆ IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations
Current foundation models exhibit impressive capabilities when prompted either with text only or with both image and text inputs. But do their capabilities change depending on the input modality? In this work, we propose $\textbf{IsoBench}$, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple $\textbf{isomorphic representations}$ of inputs, such as visual, textual, and mathematical presentations. IsoBench provides fine-grained feedback to diagnose performance gaps caused by the form of the representation. Across various foundation models, we observe that on the same problem, models have a consistent preference towards textual representations. Most prominently, when evaluated on all IsoBench problems, Claude-3 Opus performs 28.7 points worse when provided with images instead of text; similarly, GPT-4 Turbo is 18.7 points worse and Gemini Pro is 14.9 points worse. Finally, we present two prompting techniques, $\textit{IsoCombination}$ and $\textit{IsoScratchPad}$, which improve model performance by considering combinations of, and translations between, different input representations.
comment: 1st Conference on Language Modeling (COLM), 2024
♻ ☆ Could a Large Language Model be Conscious? NeurIPS
There has recently been widespread discussion of whether large language models might be sentient. Should we take this idea seriously? I will break down the strongest reasons for and against. Given mainstream assumptions in the science of consciousness, there are significant obstacles to consciousness in current models: for example, their lack of recurrent processing, a global workspace, and unified agency. At the same time, it is quite possible that these obstacles will be overcome in the next decade or so. I conclude that while it is somewhat unlikely that current large language models are conscious, we should take seriously the possibility that successors to large language models may be conscious in the not-too-distant future.
comment: Invited lecture at NeurIPS, November 28, 2022
♻ ☆ Bergeron: Combating Adversarial Attacks through a Conscience-Based Alignment Framework
Research into AI alignment has grown considerably since the recent introduction of increasingly capable Large Language Models (LLMs). Unfortunately, modern methods of alignment still fail to fully prevent harmful responses when models are deliberately attacked. Such vulnerabilities can lead to LLMs being manipulated into generating hazardous content: from instructions for creating dangerous materials to inciting violence or endorsing unethical behaviors. To help mitigate this issue, we introduce Bergeron: a framework designed to improve the robustness of LLMs against attacks without any additional parameter fine-tuning. Bergeron is organized into two tiers; with a secondary LLM acting as a guardian to the primary LLM. This framework better safeguards the primary model against incoming attacks while monitoring its output for any harmful content. Empirical analysis reviews that by using Bergeron to complement models with existing alignment training, we can significantly improve the robustness and safety of multiple, commonly used commercial and open-source LLMs. Specifically, we found that models integrated with Bergeron are, on average, nearly seven times more resistant to attacks compared to models without such support.
♻ ☆ Data Science Kitchen at GermEval 2021: A Fine Selection of Hand-Picked Features, Delivered Fresh from the Oven
This paper presents the contribution of the Data Science Kitchen at GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. The task aims at extending the identification of offensive language, by including additional subtasks that identify comments which should be prioritized for fact-checking by moderators and community managers. Our contribution focuses on a feature-engineering approach with a conventional classification backend. We combine semantic and writing style embeddings derived from pre-trained deep neural networks with additional numerical features, specifically designed for this task. Classifier ensembles are used to derive predictions for each subtask via a majority voting scheme. Our best submission achieved macro-averaged F1-scores of 66.8\%,\,69.9\% and 72.5\% for the identification of toxic, engaging, and fact-claiming comments.
comment: Accepted at 17th Conference on Natural Language Processing (KONVENS 2021)
♻ ☆ Data-driven Semi-supervised Machine Learning with Surrogate Measures of Safety for Abnormal Driving Behavior Detection
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers' behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behavior detection (also referred to in this paper as anomalies). Most existing ML-based detectors rely on (fully) supervised ML methods, which require substantial labeled data. However, ground truth labels are not always available in the real world, and labeling large amounts of data is tedious. Thus, there is a need to explore unsupervised or semi-supervised methods to make the anomaly detection process more feasible and efficient. To fill this research gap, this study analyzes large-scale real-world data revealing several abnormal driving behaviors (e.g., sudden acceleration, rapid lane-changing) and develops a Hierarchical Extreme Learning Machines (HELM) based semi-supervised ML method using partly labeled data to accurately detect the identified abnormal driving behaviors. Moreover, previous ML-based approaches predominantly utilized basic vehicle motion features (such as velocity and acceleration) to label and detect abnormal driving behaviors, while this study seeks to introduce Surrogate Measures of Safety (SMoS) as input features for ML models to improve the detection performance. Results from extensive experiments demonstrate the effectiveness of the proposed semi-supervised ML model with the introduced SMoS serving as important features. The proposed semi-supervised ML method outperforms other baseline semi-supervised or unsupervised methods regarding various metrics, e.g., delivering the best accuracy at 99.58% and the best F-1 measure at 0.9913. The ablation study further highlights the significance of SMoS for advancing the detection performance of abnormal driving behaviors.
comment: 24 pages, 10 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under third round review by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay
We explore the hypothesis that LLMs, such as GPT-3.5 and GPT-4, possess broader cognitive functions, particularly in non-linguistic domains. Our approach extends beyond standard linguistic benchmarks by incorporating games like Tic-Tac-Toe, Connect Four, and Battleship, encoded via ASCII, to assess strategic thinking and decision-making. To evaluate the models' ability to generalize beyond their training data, we introduce two additional games. The first game, LEGO Connect Language (LCL), tests the models' capacity to understand spatial logic and follow assembly instructions. The second game, the game of shapes, challenges the models to identify shapes represented by 1s within a matrix of zeros, further testing their spatial reasoning skills. This "show, don't tell" strategy uses games instead of simply querying the models. Our results show that despite their proficiency on standard benchmarks, GPT-3.5 and GPT-4's abilities to play and reason about fully observable games without pre-training is mediocre. Both models fail to anticipate losing moves in Tic-Tac-Toe and Connect Four, and they are unable to play Battleship correctly. While GPT-4 shows some success in the game of shapes, both models fail at the assembly tasks presented in the LCL game. These results suggest that while GPT models can emulate conversational proficiency and basic rule comprehension, their performance in strategic gameplay and spatial reasoning tasks is very limited. Importantly, this reveals a blind spot in current LLM benchmarks that we highlight with our gameplay benchmark suite ChildPlay (https://github.com/child-play-neurips/child-play). Our findings provide a cautionary tale about claims of emergent intelligence and reasoning capabilities of LLMs that are roughly the size of GPT-3.5 and GPT-4.
♻ ☆ Leveraging Knowledge Graph-Based Human-Like Memory Systems to Solve Partially Observable Markov Decision Processes
Humans observe only part of their environment at any moment but can still make complex, long-term decisions thanks to our long-term memory. To test how an AI can learn and utilize its long-term memory, we have developed a partially observable Markov decision processes (POMDP) environment, where the agent has to answer questions while navigating a maze. The environment is completely knowledge graph (KG) based, where the hidden states are dynamic KGs. A KG is both human- and machine-readable, making it easy to see what the agents remember and forget. We train and compare agents with different memory systems, to shed light on how human brains work when it comes to managing its own memory. By repurposing the given learning objective as learning a memory management policy, we were able to capture the most likely hidden state, which is not only interpretable but also reusable.
♻ ☆ Latent Guard: a Safety Framework for Text-to-image Generation ECCV 2024
With the ability to generate high-quality images, text-to-image (T2I) models can be exploited for creating inappropriate content. To prevent misuse, existing safety measures are either based on text blacklists, which can be easily circumvented, or harmful content classification, requiring large datasets for training and offering low flexibility. Hence, we propose Latent Guard, a framework designed to improve safety measures in text-to-image generation. Inspired by blacklist-based approaches, Latent Guard learns a latent space on top of the T2I model's text encoder, where it is possible to check the presence of harmful concepts in the input text embeddings. Our proposed framework is composed of a data generation pipeline specific to the task using large language models, ad-hoc architectural components, and a contrastive learning strategy to benefit from the generated data. The effectiveness of our method is verified on three datasets and against four baselines. Code and data will be shared at https://latentguard.github.io/.
comment: This paper has been accepted to ECCV 2024
♻ ☆ A Machine with Short-Term, Episodic, and Semantic Memory Systems
Inspired by the cognitive science theory of the explicit human memory systems, we have modeled an agent with short-term, episodic, and semantic memory systems, each of which is modeled with a knowledge graph. To evaluate this system and analyze the behavior of this agent, we designed and released our own reinforcement learning agent environment, "the Room", where an agent has to learn how to encode, store, and retrieve memories to maximize its return by answering questions. We show that our deep Q-learning based agent successfully learns whether a short-term memory should be forgotten, or rather be stored in the episodic or semantic memory systems. Our experiments indicate that an agent with human-like memory systems can outperform an agent without this memory structure in the environment.
♻ ☆ A Machine With Human-Like Memory Systems
Inspired by the cognitive science theory, we explicitly model an agent with both semantic and episodic memory systems, and show that it is better than having just one of the two memory systems. In order to show this, we have designed and released our own challenging environment, "the Room", compatible with OpenAI Gym, where an agent has to properly learn how to encode, store, and retrieve memories to maximize its rewards. The Room environment allows for a hybrid intelligence setup where machines and humans can collaborate. We show that two agents collaborating with each other results in better performance than one agent acting alone.
comment: Submitted to Human-Centered Design of Symbiotic Hybrid Intelligence 2022 (https://ii.tudelft.nl/humancenteredsymbioticHI/)
♻ ☆ Post-Training Sparse Attention with Double Sparsity
The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve $\frac{1}{16}$ token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1$\times$ acceleration in attention operations and a 1.9$\times$ improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3$\times$ compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at https://github.com/andy-yang-1/DoubleSparse.
♻ ☆ Interpreting Global Perturbation Robustness of Image Models using Axiomatic Spectral Importance Decomposition
Perturbation robustness evaluates the vulnerabilities of models, arising from a variety of perturbations, such as data corruptions and adversarial attacks. Understanding the mechanisms of perturbation robustness is critical for global interpretability. We present a model-agnostic, global mechanistic interpretability method to interpret the perturbation robustness of image models. This research is motivated by two key aspects. First, previous global interpretability works, in tandem with robustness benchmarks, e.g. mean corruption error (mCE), are not designed to directly interpret the mechanisms of perturbation robustness within image models. Second, we notice that the spectral signal-to-noise ratios (SNR) of perturbed natural images exponentially decay over the frequency. This power-law-like decay implies that: Low-frequency signals are generally more robust than high-frequency signals -- yet high classification accuracy can not be achieved by low-frequency signals alone. By applying Shapley value theory, our method axiomatically quantifies the predictive powers of robust features and non-robust features within an information theory framework. Our method, dubbed as \textbf{I-ASIDE} (\textbf{I}mage \textbf{A}xiomatic \textbf{S}pectral \textbf{I}mportance \textbf{D}ecomposition \textbf{E}xplanation), provides a unique insight into model robustness mechanisms. We conduct extensive experiments over a variety of vision models pre-trained on ImageNet to show that \textbf{I-ASIDE} can not only \textbf{measure} the perturbation robustness but also \textbf{provide interpretations} of its mechanisms.
comment: Accepted by Transactions on Machine Learning Research (TMLR 2024)
♻ ☆ Towards A Unified View of Answer Calibration for Multi-Step Reasoning ACL2024
Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. We generally divide multi-step reasoning into two phases: path generation to generate the reasoning path(s); and answer calibration post-processing the reasoning path(s) to obtain a final answer. However, the existing literature lacks systematic analysis on different answer calibration approaches. In this paper, we summarize the taxonomy of recent answer calibration techniques and break them down into step-level and path-level strategies. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Experimental results reveal that integrating the dominance of both strategies tends to derive optimal outcomes. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.
comment: Accepted by NLRSE@ACL2024
♻ ☆ SLEGO: A Collaborative Data Analytics System with LLM Recommender for Diverse Users
This paper presents the SLEGO (Software-Lego) system, a collaborative analytics platform that bridges the gap between experienced developers and novice users using a cloud-based platform with modular, reusable microservices. These microservices enable developers to share their analytical tools and workflows, while a simple graphical user interface (GUI) allows novice users to build comprehensive analytics pipelines without programming skills. Supported by a knowledge base and a Large Language Model (LLM) powered recommendation system, SLEGO enhances the selection and integration of microservices, increasing the efficiency of analytics pipeline construction. Case studies in finance and machine learning illustrate how SLEGO promotes the sharing and assembly of modular microservices, significantly improving resource reusability and team collaboration. The results highlight SLEGO's role in democratizing data analytics by integrating modular design, knowledge bases, and recommendation systems, fostering a more inclusive and efficient analytical environment.
comment: 11 pages, 10 figures, 5 tables
♻ ☆ Loss- and Reward-Weighting for Efficient Distributed Reinforcement Learning
This paper introduces two learning schemes for distributed agents in Reinforcement Learning (RL) environments, namely Reward-Weighted (R-Weighted) and Loss-Weighted (L-Weighted) gradient merger. The R/L weighted methods replace standard practices for training multiple agents, such as summing or averaging the gradients. The core of our methods is to scale the gradient of each actor based on how high the reward (for R-Weighted) or the loss (for L-Weighted) is compared to the other actors. During training, each agent operates in differently initialized versions of the same environment, which gives different gradients from different actors. In essence, the R-Weights and L-Weights of each agent inform the other agents of its potential, which again reports which environment should be prioritized for learning. This approach of distributed learning is possible because environments that yield higher rewards, or low losses, have more critical information than environments that yield lower rewards or higher losses. We empirically demonstrate that the R-Weighted methods work superior to the state-of-the-art in multiple RL environments.
♻ ☆ What model does MuZero learn?
Model-based reinforcement learning has drawn considerable interest in recent years, given its promise to improve sample efficiency. Moreover, when using deep-learned models, it is potentially possible to learn compact models from complex sensor data. However, the effectiveness of these learned models, particularly their capacity to plan, i.e., to improve the current policy, remains unclear. In this work, we study MuZero, a well-known deep model-based reinforcement learning algorithm, and explore how far it achieves its learning objective of a value-equivalent model and how useful the learned models are for policy improvement. Amongst various other insights, we conclude that the model learned by MuZero cannot effectively generalize to evaluate unseen policies, which limits the extent to which we can additionally improve the current policy by planning with the model.
comment: ECAI 2024
♻ ☆ Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning IJCAI 2024
The significance of network structures in promoting group cooperation within social dilemmas has been widely recognized. Prior studies attribute this facilitation to the assortment of strategies driven by spatial interactions. Although reinforcement learning has been employed to investigate the impact of dynamic interaction on the evolution of cooperation, there remains a lack of understanding about how agents develop neighbour selection behaviours and the formation of strategic assortment within an explicit interaction structure. To address this, our study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game. This framework allows agents to select dilemma strategies and interacting neighbours based on their long-term experiences, differing from existing research that relies on preset social norms or external incentives. By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction. The results indicate that long-term experience enables agents to develop the ability to identify non-cooperative neighbours and exhibit a preference for interaction with cooperative ones. This emergent self-organizing behaviour leads to the clustering of agents with similar strategies, thereby increasing network reciprocity and enhancing group cooperation.
comment: Accepted at IJCAI 2024 (33rd International Joint Conference on Artificial Intelligence - Jeju)
♻ ☆ Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images
Accurate brain lesion delineation is important for planning neurosurgical treatment. Automatic brain lesion segmentation methods based on convolutional neural networks have demonstrated remarkable performance. However, neural network performance is constrained by the lack of large-scale well-annotated training datasets. In this manuscript, we propose a comprehensive framework to efficiently generate new samples for training a brain lesion segmentation model. We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner. Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images to obtain training samples. Finally, to effectively train the brain lesion segmentation model with augmented images we introduce a new prototype consistence regularization to align real and synthetic features. Our framework is validated by extensive experiments on two public brain lesion segmentation datasets: ATLAS v2.0 and Shift MS. Our method outperforms existing brain image data augmentation schemes. For instance, our method improves the Dice from 50.36% to 60.23% compared to the U-Net with conventional data augmentation techniques for the ATLAS v2.0 dataset.
comment: 11 pages, 7 figures, 8 tables
♻ ☆ LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We engage in experiments across eight diverse datasets, focusing on four representative tasks encompassing entity and relation extraction, event extraction, link prediction, and question-answering, thereby thoroughly exploring LLMs' performance in the domain of construction and inference. Empirically, our findings suggest that LLMs, represented by GPT-4, are more suited as inference assistants rather than few-shot information extractors. Specifically, while GPT-4 exhibits good performance in tasks related to KG construction, it excels further in reasoning tasks, surpassing fine-tuned models in certain cases. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, leading to the proposition of a Virtual Knowledge Extraction task and the development of the corresponding VINE dataset. Based on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning. We anticipate that this research can provide invaluable insights for future undertakings in the field of knowledge graphs. The code and datasets are in https://github.com/zjunlp/AutoKG.
comment: World Wide Web Journal
♻ ☆ Mind the Model, Not the Agent: The Primacy Bias in Model-based RL
The primacy bias in model-free reinforcement learning (MFRL), which refers to the agent's tendency to overfit early data and lose the ability to learn from new data, can significantly decrease the performance of MFRL algorithms. Previous studies have shown that employing simple techniques, such as resetting the agent's parameters, can substantially alleviate the primacy bias in MFRL. However, the primacy bias in model-based reinforcement learning (MBRL) remains unexplored. In this work, we focus on investigating the primacy bias in MBRL. We begin by observing that resetting the agent's parameters harms its performance in the context of MBRL. We further find that the primacy bias in MBRL is more closely related to the primacy bias of the world model instead of the primacy bias of the agent. Based on this finding, we propose \textit{world model resetting}, a simple yet effective technique to alleviate the primacy bias in MBRL. We apply our method to two different MBRL algorithms, MBPO and DreamerV2. We validate the effectiveness of our method on multiple continuous control tasks on MuJoCo and DeepMind Control Suite, as well as discrete control tasks on Atari 100k benchmark. The experimental results show that \textit{world model resetting} can significantly alleviate the primacy bias in the model-based setting and improve the algorithm's performance. We also give a guide on how to perform \textit{world model resetting} effectively.
comment: Accepted by European Conference on Artificial Intelligence (ECAI) 2024
♻ ☆ Generative AI Voting: Fair Collective Choice is Resilient to LLM Biases and Inconsistencies
Scaling up deliberative and voting participation is a longstanding endeavor -- a cornerstone for direct democracy and legitimate collective choice. Recent breakthroughs in generative artificial intelligence (AI) and large language models (LLMs) unravel new capabilities for AI personal assistants to overcome cognitive bandwidth limitations of humans, providing decision support or even direct representation of human voters at large scale. However, the quality of this representation and what underlying biases manifest when delegating collective decision-making to LLMs is an alarming and timely challenge to tackle. By rigorously emulating with high realism more than >50K LLM voting personas in 81 real-world voting elections, we disentangle the nature of different biases in LLMS (GPT 3, GPT 3.5, and Llama2). Complex preferential ballot formats exhibit significant inconsistencies compared to simpler majoritarian elections that show higher consistency. Strikingly though, by demonstrating for the first time in real-world a proportional representation of voters in direct democracy, we are also able to show that fair ballot aggregation methods, such as equal shares, prove to be a win-win: fairer voting outcomes for humans with fairer AI representation. This novel underlying relationship proves paramount for democratic resilience in progressives scenarios with low voters turnout and voter fatigue supported by AI representatives: abstained voters are mitigated by recovering highly representative voting outcomes that are fairer. These interdisciplinary insights provide remarkable foundations for science, policymakers, and citizens to develop safeguards and resilience for AI risks in democratic innovations.
comment: 33 pages, 9 figures
♻ ☆ DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands
Achieving human-like dexterous manipulation remains a crucial area of research in robotics. Current research focuses on improving the success rate of pick-and-place tasks. Compared with pick-and-place, throwing-catching behavior has the potential to increase the speed of transporting objects to their destination. However, dynamic dexterous manipulation poses a major challenge for stable control due to a large number of dynamic contacts. In this paper, we propose a Learning-based framework for Throwing-Catching tasks using dexterous hands (LTC). Our method, LTC, achieves a 73\% success rate across 45 scenarios (diverse hand poses and objects), and the learned policies demonstrate strong zero-shot transfer performance on unseen objects. Additionally, in tasks where the object in hand faces sideways, an extremely unstable scenario due to the lack of support from the palm, all baselines fail, while our method still achieves a success rate of over 60\%.
♻ ☆ GABInsight: Exploring Gender-Activity Binding Bias in Vision-Language Models
Vision-language models (VLMs) are intensively used in many downstream tasks, including those requiring assessments of individuals appearing in the images. While VLMs perform well in simple single-person scenarios, in real-world applications, we often face complex situations in which there are persons of different genders doing different activities. We show that in such cases, VLMs are biased towards identifying the individual with the expected gender (according to ingrained gender stereotypes in the model or other forms of sample selection bias) as the performer of the activity. We refer to this bias in associating an activity with the gender of its actual performer in an image or text as the Gender-Activity Binding (GAB) bias and analyze how this bias is internalized in VLMs. To assess this bias, we have introduced the GAB dataset with approximately 5500 AI-generated images that represent a variety of activities, addressing the scarcity of real-world images for some scenarios. To have extensive quality control, the generated images are evaluated for their diversity, quality, and realism. We have tested 12 renowned pre-trained VLMs on this dataset in the context of text-to-image and image-to-text retrieval to measure the effect of this bias on their predictions. Additionally, we have carried out supplementary experiments to quantify the bias in VLMs' text encoders and to evaluate VLMs' capability to recognize activities. Our experiments indicate that VLMs experience an average performance decline of about 13.2% when confronted with gender-activity binding bias.
♻ ☆ Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs
Daily internet communication relies heavily on tree-structured graphs, embodied by popular data formats such as XML and JSON. However, many recent generative (probabilistic) models utilize neural networks to learn a probability distribution over undirected cyclic graphs. This assumption of a generic graph structure brings various computational challenges, and, more importantly, the presence of non-linearities in neural networks does not permit tractable probabilistic inference. We address these problems by proposing sum-product-set networks, an extension of probabilistic circuits from unstructured tensor data to tree-structured graph data. To this end, we use random finite sets to reflect a variable number of nodes and edges in the graph and to allow for exact and efficient inference. We demonstrate that our tractable model performs comparably to various intractable models based on neural networks.
♻ ☆ Causality in the Can: Diet Coke's Impact on Fatness
Artificially sweetened beverages like Diet Coke are often considered better alternatives to sugary drinks, but the debate over their impact on health, particularly in relation to obesity, continues. Previous research has predominantly used association-based methods with observational or Randomized Controlled Trial (RCT) data, which may not accurately capture the causal relationship between Diet Coke consumption and obesity, leading to potentially limited conclusions. In contrast, we employed causal inference methods using structural causal models, integrating both observational and RCT data. Specifically, we utilized data from the National Health and Nutrition Examination Survey (NHANES), which includes diverse demographic information, as our observational data source. This data was then used to construct a causal graph, and the back-door criterion, along with its adjustment formula, was applied to estimate the RCT data. We then calculated the counterfactual quantity, the Probability of Necessity and Sufficiency (PNS), using both NHANES data and estimated RCT data. We propose that PNS is the essential metric for assessing the impact of Diet Coke on obesity. Our results indicate that between 20 to 50 percent of individuals, especially those with poor dietary habits, are more likely to gain weight from Diet Coke. Conversely, in groups like young females with healthier diets, only a small proportion experience weight gain due to Diet Coke. These findings highlight the influence of individual lifestyle and potential hormonal factors on the varied effects of Diet Coke, providing a new framework for understanding its nutritional impacts on public health.
♻ ☆ Imitation Learning for Intra-Day Power Grid Operation through Topology Actions
Power grid operation is becoming increasingly complex due to the increase in generation of renewable energy. The recent series of Learning To Run a Power Network (L2RPN) competitions have encouraged the use of artificial agents to assist human dispatchers in operating power grids. In this paper we study the performance of imitation learning for day-ahead power grid operation through topology actions. In particular, we consider two rule-based expert agents: a greedy agent and a N-1 agent. While the latter is more computationally expensive since it takes N-1 safety considerations into account, it exhibits a much higher operational performance. We train a fully-connected neural network (FCNN) on expert state-action pairs and evaluate it in two ways. First, we find that classification accuracy is limited despite extensive hyperparameter tuning, due to class imbalance and class overlap. Second, as a power system agent, the FCNN performs only slightly worse than expert agents. Furthermore, hybrid agents, which incorporate minimal additional simulations, match expert agents' performance with significantly lower computational cost. Consequently, imitation learning shows promise for developing fast, high-performing power grid agents, motivating its further exploration in future L2RPN studies.
comment: To be presented at the Machine Learning for Sustainable Power Systems 2024 workshop and to be published in the corresponding Springer Communications in Computer and Information Science proceedings
♻ ☆ A Crowding Distance That Provably Solves the Difficulties of the NSGA-II in Many-Objective Optimization
Recent theoretical works have shown that the NSGA-II can have enormous difficulties to solve problems with more than two objectives. In contrast, algorithms like the NSGA-III or SMS-EMOA, differing from the NSGA-II only in the secondary selection criterion, provably perform well in these situations. To remedy this shortcoming of the NSGA-II, but at the same time keep the advantages of the widely accepted crowding distance, we use the insights of these previous work to define a variant of the crowding distance, called truthful crowding distance. Different from the classic crowding distance, it has for any number of objectives the desirable property that a small crowding distance value indicates that some other solution has a similar objective vector. Building on this property, we conduct mathematical runtime analyses for the NSGA-II with truthful crowding distance. We show that this algorithm can solve the many-objective versions of the OneMinMax, COCZ, LOTZ, and OJZJ$_k$ problems in the same (polynomial) asymptotic runtimes as the NSGA-III and the SMS-EMOA. This contrasts the exponential lower bounds previously shown for the classic NSGA-II. For the bi-objective versions of these problems, our NSGA-II has a similar performance as the classic NSGA-II, gaining however from smaller admissible population sizes. For the bi-objective OneMinMax problem, we also observe a (minimally) better performance in approximating the Pareto front. These results suggest that our truthful version of the NSGA-II has the same good performance as the classic NSGA-II in two objectives, but can resolve the drastic problems in more than two objectives.
♻ ☆ MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? ECCV 2024
The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
comment: Accepted by ECCV 2024, 46 Pages, Benchmark Project Page: https://mathverse-cuhk.github.io
♻ ☆ Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models
Although Large Language Models (LLMs) have demonstrated strong instruction-following ability, they are further supposed to be controlled and guided by rules in real-world scenarios to be safe, accurate, and intelligent. This demands the possession of inferential rule-following capability of LLMs. However, few works have made a clear evaluation of the inferential rule-following capability of LLMs. Previous studies that try to evaluate the inferential rule-following capability of LLMs fail to distinguish the inferential rule-following scenarios from the instruction-following scenarios. Therefore, this paper first clarifies the concept of inferential rule-following and proposes a comprehensive benchmark, RuleBench, to evaluate a diversified range of inferential rule-following abilities. Our experimental results on a variety of LLMs show that they are still limited in following rules. Our analysis based on the evaluation results provides insights into the improvements for LLMs toward a better inferential rule-following intelligent agent. We further propose Inferential Rule-Following Tuning (IRFT), which outperforms IFT in helping LLMs solve RuleBench. The data and code can be found at: https://anonymous.4open.science/r/llm-rule-following-B3E3/
♻ ☆ TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation
There is a growing interest in utilizing large-scale language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and in-context learning capabilities. In this scenario, tokenizing (i.e., indexing) users and items becomes essential for ensuring a seamless alignment of LLMs with recommendations. While several studies have made progress in representing users and items through textual contents or latent representations, challenges remain in efficiently capturing high-order collaborative knowledge into discrete tokens that are compatible with LLMs. Additionally, the majority of existing tokenization approaches often face difficulties in generalizing effectively to new/unseen users or items that were not in the training corpus. To address these challenges, we propose a novel framework called TokenRec, which introduces not only an effective ID tokenization strategy but also an efficient retrieval paradigm for LLM-based recommendations. Specifically, our tokenization strategy, Masked Vector-Quantized (MQ) Tokenizer, involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving a smooth incorporation of high-order collaborative knowledge and a generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.
comment: Submitted to IEEE TKDE. Our code and dataset will be made available upon acceptance of the paper
♻ ☆ Towards Learning Abductive Reasoning using VSA Distributed Representations
We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
comment: Accepted at the 18th International Conference on Neural-Symbolic Learning and Reasoning (NeSy) 2024 [Spotlight]
♻ ☆ A Survey of Mamba
Deep learning, as a vital technique, has sparked a notable revolution in artificial intelligence. As the most representative architecture, Transformers have empowered numerous advanced models, especially the large language models that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models, has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering from three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first recall the foundational knowledge of various representative deep learning models and the details of Mamba as preliminaries. Then, to showcase the significance of Mamba, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present an discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
♻ ☆ DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
comment: 9 pages,8 figures
♻ ☆ $\rm SP^3$: Enhancing Structured Pruning via PCA Projection
Structured pruning is a widely used technique for reducing the size of pre-trained language models (PLMs), but current methods often overlook the potential of compressing the hidden dimension (d) in PLMs, a dimension critical to model size and efficiency. This paper introduces a novel structured pruning approach, Structured Pruning with PCA Projection (SP3), targeting the effective reduction of d by projecting features into a space defined by principal components before masking. Extensive experiments on benchmarks (GLUE and SQuAD) show that SP3 can reduce d by 70%, compress 94% of the BERTbase model, maintain over 96% accuracy, and outperform other methods that compress d by 6% in accuracy at the same compression ratio. SP3 has also proven effective with other models, including OPT and Llama. Our data and code are available at an anonymous repo.
comment: 21 pages
Graphics 4
☆ Meta-Learning Empowered Meta-Face: Personalized Speaking Style Adaptation for Audio-Driven 3D Talking Face Animation
Audio-driven 3D face animation is increasingly vital in live streaming and augmented reality applications. While remarkable progress has been observed, most existing approaches are designed for specific individuals with predefined speaking styles, thus neglecting the adaptability to varied speaking styles. To address this limitation, this paper introduces MetaFace, a novel methodology meticulously crafted for speaking style adaptation. Grounded in the novel concept of meta-learning, MetaFace is composed of several key components: the Robust Meta Initialization Stage (RMIS) for fundamental speaking style adaptation, the Dynamic Relation Mining Neural Process (DRMN) for forging connections between observed and unobserved speaking styles, and the Low-rank Matrix Memory Reduction Approach to enhance the efficiency of model optimization as well as learning style details. Leveraging these novel designs, MetaFace not only significantly outperforms robust existing baselines but also establishes a new state-of-the-art, as substantiated by our experimental results.
☆ Glyph-Based Uncertainty Visualization and Analysis of Time-Varying Vector Fields
Uncertainty is inherent to most data, including vector field data, yet it is often omitted in visualizations and representations. Effective uncertainty visualization can enhance the understanding and interpretability of vector field data. For instance, in the context of severe weather events such as hurricanes and wildfires, effective uncertainty visualization can provide crucial insights about fire spread or hurricane behavior and aid in resource management and risk mitigation. Glyphs are commonly used for representing vector uncertainty but are often limited to 2D. In this work, we present a glyph-based technique for accurately representing 3D vector uncertainty and a comprehensive framework for visualization, exploration, and analysis using our new glyphs. We employ hurricane and wildfire examples to demonstrate the efficacy of our glyph design and visualization tool in conveying vector field uncertainty.
♻ ☆ Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting
This paper aims to tackle the problem of modeling dynamic urban streets for autonomous driving scenes. Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view synthesis of dynamic urban street scenes. However, significant limitations are their slow training and rendering speed. We introduce Street Gaussians, a new explicit scene representation that tackles these limitations. Specifically, the dynamic urban scene is represented as a set of point clouds equipped with semantic logits and 3D Gaussians, each associated with either a foreground vehicle or the background. To model the dynamics of foreground object vehicles, each object point cloud is optimized with optimizable tracked poses, along with a 4D spherical harmonics model for the dynamic appearance. The explicit representation allows easy composition of object vehicles and background, which in turn allows for scene editing operations and rendering at 135 FPS (1066 $\times$ 1600 resolution) within half an hour of training. The proposed method is evaluated on multiple challenging benchmarks, including KITTI and Waymo Open datasets. Experiments show that the proposed method consistently outperforms state-of-the-art methods across all datasets. The code will be released to ensure reproducibility.
comment: Project page: https://zju3dv.github.io/street_gaussians/
♻ ☆ A Synthetic Benchmarking Pipeline to Compare Camera Calibration Algorithms ICPR 2024
Accurate camera calibration is crucial for various computer vision applications. However, measuring calibration accuracy in the real world is challenging due to the lack of datasets with ground truth to evaluate them. In this paper, we present SynthCal, a synthetic camera calibration benchmarking pipeline that generates images of calibration patterns to measure and enable accurate quantification of calibration algorithm performance in camera parameter estimation. We present a SynthCal generated calibration dataset with four common patterns, two camera types, and two environments with varying view, distortion, lighting, and noise levels for both monocular and multi-camera systems. The dataset evaluates both single and multi-view calibration algorithms by measuring re-projection and root-mean-square errors for identical patterns and camera settings. Additionally, we analyze the significance of different patterns using different calibration configurations. The experimental results demonstrate the effectiveness of SynthCal in evaluating various calibration algorithms and patterns.
comment: ICPR 2024
Robotics 16
☆ Design and Control of Modular Soft-Rigid Hybrid Manipulators with Self-Contact
Soft robotics focuses on designing robots with highly deformable materials, allowing them to adapt and operate safely and reliably in unstructured and variable environments. While soft robots offer increased compliance over rigid body robots, their payloads are limited, and they consume significant energy when operating against gravity in terrestrial environments. To address the carrying capacity limitation, we introduce a novel class of soft-rigid hybrid robot manipulators (SRH) that incorporates both soft continuum modules and rigid joints in a serial configuration. The SRH manipulators can seamlessly transition between being compliant and delicate to rigid and strong, achieving this through dynamic shape modulation and employing self-contact among rigid components to effectively form solid structures. We discuss the design and fabrication of SRH robots, and present a class of novel control algorithms for SRH systems. We propose a configuration space PD+ shape controller and a Cartesian impedance controller, both of which are provably stable, endowing the soft robot with the necessary low-level capabilities. We validate the controllers on SRH hardware and demonstrate the robot performing several tasks. Our results highlight the potential for the soft-rigid hybrid paradigm to produce robots that are both physically safe and effective at task performance.
comment: 23 pages, 7 figures
Reinforcement Learning Compensated Model Predictive Control for Off-road Driving on Unknown Deformable Terrain
This study presents an Actor-Critic reinforcement learning Compensated Model Predictive Controller (AC2MPC) designed for high-speed, off-road autonomous driving on deformable terrains. Addressing the difficulty of modeling unknown tire-terrain interaction and ensuring real-time control feasibility and performance, this framework integrates deep reinforcement learning with a model predictive controller to manage unmodeled nonlinear dynamics. We evaluate the controller framework over constant and varying velocity profiles using high-fidelity simulator Project Chrono. Our findings demonstrate that our controller statistically outperforms standalone model-based and learning-based controllers over three unknown terrains that represent sandy deformable track, sandy and rocky track and cohesive clay-like deformable soil track. Despite varied and previously unseen terrain characteristics, this framework generalized well enough to track longitudinal reference speeds with the least error. Furthermore, this framework required significantly less training data compared to purely learning based controller, converging in fewer steps while delivering better performance. Even when under-trained, this controller outperformed the standalone controllers, highlighting its potential for safer and more efficient real-world deployment.
comment: Submitted to IEEE Transactions on Intelligent Vehicles as a Regular Paper
☆ V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models
Advancements in autonomous driving have increasingly focused on end-to-end (E2E) systems that manage the full spectrum of driving tasks, from environmental perception to vehicle navigation and control. This paper introduces V2X-VLM, an innovative E2E vehicle-infrastructure cooperative autonomous driving (VICAD) framework with large vision-language models (VLMs). V2X-VLM is designed to enhance situational awareness, decision-making, and ultimate trajectory planning by integrating data from vehicle-mounted cameras, infrastructure sensors, and textual information. The strength of the comprehensive multimodel data fusion of the VLM enables precise and safe E2E trajectory planning in complex and dynamic driving scenarios. Validation on the DAIR-V2X dataset demonstrates that V2X-VLM outperforms existing state-of-the-art methods in cooperative autonomous driving.
☆ Intuitive Human-Robot Interface: A 3-Dimensional Action Recognition and UAV Collaboration Framework
Harnessing human movements to command an Unmanned Aerial Vehicle (UAV) holds the potential to revolutionize their deployment, rendering it more intuitive and user-centric. In this research, we introduce a novel methodology adept at classifying three-dimensional human actions, leveraging them to coordinate on-field with a UAV. Utilizing a stereo camera, we derive both RGB and depth data, subsequently extracting three-dimensional human poses from the continuous video feed. This data is then processed through our proposed k-nearest neighbour classifier, the results of which dictate the behaviour of the UAV. It also includes mechanisms ensuring the robot perpetually maintains the human within its visual purview, adeptly tracking user movements. We subjected our approach to rigorous testing involving multiple tests with real robots. The ensuing results, coupled with comprehensive analysis, underscore the efficacy and inherent advantages of our proposed methodology.
comment: Accepted in International Conference on Informatics in Control, Automation and Robotics (ICINCO) 2024
☆ Learning Based Toolpath Planner on Diverse Graphs for 3D Printing
This paper presents a learning based planner for computing optimized 3D printing toolpaths on prescribed graphs, the challenges of which include the varying graph structures on different models and the large scale of nodes & edges on a graph. We adopt an on-the-fly strategy to tackle these challenges, formulating the planner as a Deep Q-Network (DQN) based optimizer to decide the next `best' node to visit. We construct the state spaces by the Local Search Graph (LSG) centered at different nodes on a graph, which is encoded by a carefully designed algorithm so that LSGs in similar configurations can be identified to re-use the earlier learned DQN priors for accelerating the computation of toolpath planning. Our method can cover different 3D printing applications by defining their corresponding reward functions. Toolpath planning problems in wire-frame printing, continuous fiber printing, and metallic printing are selected to demonstrate its generality. The performance of our planner has been verified by testing the resultant toolpaths in physical experiments. By using our planner, wire-frame models with up to 4.2k struts can be successfully printed, up to 93.3% of sharp turns on continuous fiber toolpaths can be avoided, and the thermal distortion in metallic printing can be reduced by 24.9%.
☆ Impact-Resilient Orchestrated Robust Controller for Heavy-duty Hydraulic Manipulators
Heavy-duty operations, typically performed using heavy-duty hydraulic manipulators (HHMs), are susceptible to environmental contact due to tracking errors or sudden environmental changes. Therefore, beyond precise control design, it is crucial that the manipulator be resilient to potential impacts without relying on contact-force sensors, which mostly cannot be utilized. This paper proposes a novel force-sensorless robust impact-resilient controller for a generic 6-degree-of-freedom (DoF) HHM constituting from anthropomorphic arm and spherical wrist mechanisms. The scheme consists of a neuroadaptive subsystem-based impedance controller, which is designed to ensure both accurate tracking of position and orientation with stabilization of HHMs upon contact, along with a novel generalized momentum observer, which is for the first time introduced in Pl\"ucker coordinate, to estimate the impact force. Finally, by leveraging the concepts of virtual stability and virtual power flow, the semi-global uniformly ultimately boundedness of the entire system is assured. To demonstrate the efficacy and versatility of the proposed method, extensive experiments were conducted using a generic 6-DoF industrial HHM. The experimental results confirm the exceptional performance of the designed method by achieving a subcentimeter tracking accuracy and by 80% reduction of impact of the contact.
comment: This paper has been submitted for possible publication in IEEE
☆ LOID: Lane Occlusion Inpainting and Detection for Enhanced Autonomous Driving Systems
Accurate lane detection is essential for effective path planning and lane following in autonomous driving, especially in scenarios with significant occlusion from vehicles and pedestrians. Existing models often struggle under such conditions, leading to unreliable navigation and safety risks. We propose two innovative approaches to enhance lane detection in these challenging environments, each showing notable improvements over current methods. The first approach aug-Segment improves conventional lane detection models by augmenting the training dataset of CULanes with simulated occlusions and training a segmentation model. This method achieves a 12% improvement over a number of SOTA models on the CULanes dataset, demonstrating that enriched training data can better handle occlusions, however, since this model lacked robustness to certain settings, our main contribution is the second approach, LOID Lane Occlusion Inpainting and Detection. LOID introduces an advanced lane detection network that uses an image processing pipeline to identify and mask occlusions. It then employs inpainting models to reconstruct the road environment in the occluded areas. The enhanced image is processed by a lane detection algorithm, resulting in a 20% & 24% improvement over several SOTA models on the BDDK100 and CULanes datasets respectively, highlighting the effectiveness of this novel technique.
comment: 8 pages, 6 figures and 4 tables
☆ Training Verifiably Robust Agents Using Set-Based Reinforcement Learning
Reinforcement learning often uses neural networks to solve complex control tasks. However, neural networks are sensitive to input perturbations, which makes their deployment in safety-critical environments challenging. This work lifts recent results from formally verifying neural networks against such disturbances to reinforcement learning in continuous state and action spaces using reachability analysis. While previous work mainly focuses on adversarial attacks for robust reinforcement learning, we train neural networks utilizing entire sets of perturbed inputs and maximize the worst-case reward. The obtained agents are verifiably more robust than agents obtained by related work, making them more applicable in safety-critical environments. This is demonstrated with an extensive empirical evaluation of four different benchmarks.
☆ Using neuroevolution for designing soft medical devices
Soft robots can exhibit better performance in specific tasks compared to conventional robots, particularly in healthcare-related tasks. However, the field of soft robotics is still young, and designing them often involves mimicking natural organisms or relying heavily on human experts' creativity. A formal automated design process is required. We propose the use of neuroevolution-based algorithms to automatically design initial sketches of soft actuators that can enable the movement of future medical devices, such as drug-delivering catheters. The actuator morphologies discovered by algorithms like Age-Fitness Pareto Optimization, NeuroEvolution of Augmenting Topologies (NEAT), and Hypercube-based NEAT (HyperNEAT) were compared based on the maximum displacement reached and their robustness against various control methods. Analyzing the results granted the insight that neuroevolution-based algorithms produce better-performing and more robust actuators under different control methods. Moreover, the best-performing morphologies were discovered by the NEAT algorithm. As a future work aspect, we propose using the morphologies discovered here as test beds to optimize specialized controllers, enabling more effective functionality towards the desired deflections of the suggested soft catheters.
☆ Brain Inspired Probabilistic Occupancy Grid Mapping with Hyperdimensional Computing
Real-time robotic systems require advanced perception, computation, and action capability. However, the main bottleneck in current autonomous systems is the trade-off between computational capability, energy efficiency and model determinism. World modeling, a key objective of many robotic systems, commonly uses occupancy grid mapping (OGM) as the first step towards building an end-to-end robotic system with perception, planning, autonomous maneuvering, and decision making capabilities. OGM divides the environment into discrete cells and assigns probability values to attributes such as occupancy and traversability. Existing methods fall into two categories: traditional methods and neural methods. Traditional methods rely on dense statistical calculations, while neural methods employ deep learning for probabilistic information processing. Recent works formulate a deterministic theory of neural computation at the intersection of cognitive science and vector symbolic architectures. In this study, we propose a Fourier-based hyperdimensional OGM system, VSA-OGM, combined with a novel application of Shannon entropy that retains the interpretability and stability of traditional methods along with the improved computational efficiency of neural methods. Our approach, validated across multiple datasets, achieves similar accuracy to covariant traditional methods while approximately reducing latency by 200x and memory by 1000x. Compared to invariant traditional methods, we see similar accuracy values while reducing latency by 3.7x. Moreover, we achieve 1.5x latency reductions compared to neural methods while eliminating the need for domain-specific model training.
Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation
Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and planting arrangement and high-to-reach fruits. In such cases, aerial robots integrated with manipulation capabilities can pave new ways in robotic harvesting. This paper outlines the design and implementation of a bimanual UAV that employs visual perception and learning to autonomously detect avocados, reach, and harvest them. The dual-arm system comprises a gripper and a fixer arm, to address a key challenge when harvesting avocados: once grasped, a rotational motion is the most efficient way to detach the avocado from the peduncle; however, the peduncle may store elastic energy preventing the avocado from being harvested. The fixer arm aims to stabilize the peduncle, allowing the gripper arm to harvest. The integrated visual perception process enables the detection of avocados and the determination of their pose; the latter is then used to determine target points for a bimanual manipulation planner. Several experiments are conducted to assess the efficacy of each component, and integrated experiments assess the effectiveness of the system.
comment: First Two Authors Share Equal Contribution. 13 Pages, 15 Figures
♻ ☆ Risk Occupancy: A New and Efficient Paradigm through Vehicle-Road-Cloud Collaboration
This study introduces the 4D Risk Occupancy within a vehicle-road-cloud architecture, integrating the road surface spatial, risk, and temporal dimensions, and endowing the algorithm with beyond-line-of-sight, all-angles, and efficient abilities. The algorithm simplifies risk modeling by focusing on directly observable information and key factors, drawing on the concept of Occupancy Grid Maps (OGM), and incorporating temporal prediction to effectively map current and future risk occupancy. Compared to conventional driving risk fields and grid occupancy maps, this algorithm can map global risks more efficiently, simply, and reliably. It can integrate future risk information, adapting to dynamic traffic environments. The 4D Risk Occupancy also unifies the expression of BEV detection and lane line detection results, enhancing the intuitiveness and unity of environmental perception. Using DAIR-V2X data, this paper validates the 4D Risk Occupancy algorithm and develops a local path planning model based on it. Qualitative experiments under various road conditions demonstrate the practicality and robustness of this local path planning model. Quantitative analysis shows that the path planning based on risk occupation significantly improves trajectory planning performance, increasing safety redundancy by 12.5% and reducing average deceleration by 5.41% at an initial braking speed of 8 m/s, thereby improving safety and comfort. This work provides a new global perception method and local path planning method through Vehicle-Road-Cloud architecture, offering a new perceptual paradigm for achieving safer and more efficient autonomous driving.
comment: 13 pages,9 figures
♻ ☆ Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic
In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, _variance_ is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning.
comment: 8 pages
♻ ☆ Orchestrated Robust Controller for the Precision Control of Heavy-duty Hydraulic Manipulators
Vast industrial investment along with increased academic research on hydraulic heavy-duty manipulators has unavoidably paved the way for their automatization, necessitating the design of robust and high-precision controllers. In this study, an orchestrated robust controller is designed to address the mentioned issue for a generic manipulator with an anthropomorphic arm and spherical wrist. To do so, the entire robotic system is decomposed into subsystems, and a robust controller is designed at each local subsystem by considering unknown model uncertainties, unknown disturbances, and compound input nonlinearities, thanks to virtual decomposition control (VDC). As such, radial basic function neural networks (RBFNNs) are incorporated into VDC to tackle unknown disturbances and uncertainties, resulting in novel decentralized RBFNNs. All robust local controllers designed at each local subsystem, then, are orchestrated to accomplish high-precision control. In the end, for the first time in the context of VDC, a semi-globally uniformly ultimate boundedness is achieved under the designed controller. The validity of the theoretical results is verified by performing extensive simulations and experiments on a 6-degrees-of-freedom industrial manipulator with a nominal lifting capacity of 600 kg at 5 meters reach. Comparing the simulation result to the state-of-the-art controller along with provided experimental results, demonstrates that proposed method established all promises and performed excellently.
comment: Submitted to IEEE Transactions on Robotics. Revised version resubmitted after receiving a 'revise and resubmit' decision
♻ ☆ PRIME: Scaffolding Manipulation Tasks with Behavior Primitives for Data-Efficient Imitation Learning
Imitation learning has shown great potential for enabling robots to acquire complex manipulation behaviors. However, these algorithms suffer from high sample complexity in long-horizon tasks, where compounding errors accumulate over the task horizons. We present PRIME (PRimitive-based IMitation with data Efficiency), a behavior primitive-based framework designed for improving the data efficiency of imitation learning. PRIME scaffolds robot tasks by decomposing task demonstrations into primitive sequences, followed by learning a high-level control policy to sequence primitives through imitation learning. Our experiments demonstrate that PRIME achieves a significant performance improvement in multi-stage manipulation tasks, with 10-34% higher success rates in simulation over state-of-the-art baselines and 20-48% on physical hardware.
♻ ☆ On Safety and Liveness Filtering Using Hamilton-Jacobi Reachability Analysis
Hamilton-Jacobi (HJ) reachability-based filtering provides a powerful framework to co-optimize performance and safety (or liveness) for autonomous systems. Under this filtering scheme, a nominal controller is minimally modified to ensure system safety or liveness. However, the resulting controllers can exhibit abrupt switching and bang-bang behavior, which is not suitable for applications of autonomous systems in the real world. This work presents a novel, unifying framework to design safety and liveness filters through reachability analysis. We explicitly characterize the maximal set of control inputs that ensures safety (or liveness) at a given state. Different safety filters can then be constructed using different subsets of this maximal set along with a projection operator to modify the nominal controller. We use the proposed framework to design three safety filters, each balancing performance, computation time, and smoothness differently. We highlight their relative strengths and limitations by applying these filters to autonomous navigation and rocket landing scenarios and on a physical robot testbed. We also discuss practical aspects associated with implementing these filters on real-world autonomous systems. Our research advances the understanding and potential application of reachability-based controllers on real-world autonomous systems.
comment: 16 pages, 13 figures
Computer Vision 1
♻ ☆ DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection
Automatic fingerprint recognition systems suffer from the threat of presentation attacks due to their wide range of deployment in areas including national borders and commercial applications. A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent. This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks in known-material and unknown-material protocols of the liveness detection competition. The proposed presentation attack detection model, in this way, utilizes the capabilities of both deep CNN and handcrafted features techniques and exhibits better performance than their individual performances. We have validated our proposed method on benchmark databases from the Liveness Detection Competition in 2015, 2017, and 2019, yielding overall accuracy of 96.10\%, 96.49\%, and 94.99\% on them, respectively. The proposed method outperforms state-of-the-art methods in terms of classification accuracy.
comment: arXiv admin note:
Artificial Intelligence 49
☆ A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models
Advancements in high-computing devices increase the necessity for improved and new understanding and development of smart manufacturing factories. Discrete-event models with simulators have been shown to be critical to architect, designing, building, and operating the manufacturing of semiconductor chips. The diffusion, implantation, and lithography machines have intricate processes due to their feedforward and feedback connectivity. The dataset collected from simulations of the factory models holds the promise of generating valuable machine-learning models. As surrogate data-based models, their executions are highly efficient compared to the physics-based counterpart models. For the development of surrogate models, it is beneficial to have publicly available benchmark simulation models that are grounded in factory models that have concise structures and accurate behaviors. Hence, in this research, a dataset is devised and constructed based on a benchmark model of an Intel semiconductor fabrication factory. The model is formalized using the Parallel Discrete-Event System Specification and executed using the DEVS-Suite simulator. The time series dataset is constructed using discrete-event time trajectories. This dataset is further analyzed and used to develop baseline univariate and multivariate machine learning models. The dataset can also be utilized in the machine learning community for behavioral analysis based on formalized and scalable component-based discrete-event models and simulations.
☆ Evaluating Usability and Engagement of Large Language Models in Virtual Reality for Traditional Scottish Curling
This paper explores the innovative application of Large Language Models (LLMs) in Virtual Reality (VR) environments to promote heritage education, focusing on traditional Scottish curling presented in the game ``Scottish Bonspiel VR''. Our study compares the effectiveness of LLM-based chatbots with pre-defined scripted chatbots, evaluating key criteria such as usability, user engagement, and learning outcomes. The results show that LLM-based chatbots significantly improve interactivity and engagement, creating a more dynamic and immersive learning environment. This integration helps document and preserve cultural heritage and enhances dissemination processes, which are crucial for safeguarding intangible cultural heritage (ICH) amid environmental changes. Furthermore, the study highlights the potential of novel technologies in education to provide immersive experiences that foster a deeper appreciation of cultural heritage. These findings support the wider application of LLMs and VR in cultural education to address global challenges and promote sustainable practices to preserve and enhance cultural heritage.
☆ PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Most methods for neural network verification focus on bounding the image, i.e., set of outputs for a given input set. This can be used to, for example, check the robustness of neural network predictions to bounded perturbations of an input. However, verifying properties concerning the preimage, i.e., the set of inputs satisfying an output property, requires abstractions in the input space. We present a general framework for preimage abstraction that produces under- and over-approximations of any polyhedral output set. Our framework employs cheap parameterised linear relaxations of the neural network, together with an anytime refinement procedure that iteratively partitions the input region by splitting on input features and neurons. The effectiveness of our approach relies on carefully designed heuristics and optimization objectives to achieve rapid improvements in the approximation volume. We evaluate our method on a range of tasks, demonstrating significant improvement in efficiency and scalability to high-input-dimensional image classification tasks compared to state-of-the-art techniques. Further, we showcase the application to quantitative verification and robustness analysis, presenting a sound and complete algorithm for the former and providing sound quantitative results for the latter.
comment: arXiv admin note: text overlap with arXiv:2305.03686
☆ V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models
Advancements in autonomous driving have increasingly focused on end-to-end (E2E) systems that manage the full spectrum of driving tasks, from environmental perception to vehicle navigation and control. This paper introduces V2X-VLM, an innovative E2E vehicle-infrastructure cooperative autonomous driving (VICAD) framework with large vision-language models (VLMs). V2X-VLM is designed to enhance situational awareness, decision-making, and ultimate trajectory planning by integrating data from vehicle-mounted cameras, infrastructure sensors, and textual information. The strength of the comprehensive multimodel data fusion of the VLM enables precise and safe E2E trajectory planning in complex and dynamic driving scenarios. Validation on the DAIR-V2X dataset demonstrates that V2X-VLM outperforms existing state-of-the-art methods in cooperative autonomous driving.
☆ Towards Effective Top-N Hamming Search via Bipartite Graph Contrastive Hashing
Searching on bipartite graphs serves as a fundamental task for various real-world applications, such as recommendation systems, database retrieval, and document querying. Conventional approaches rely on similarity matching in continuous Euclidean space of vectorized node embeddings. To handle intensive similarity computation efficiently, hashing techniques for graph-structured data have emerged as a prominent research direction. However, despite the retrieval efficiency in Hamming space, previous studies have encountered catastrophic performance decay. To address this challenge, we investigate the problem of hashing with Graph Convolutional Network for effective Top-N search. Our findings indicate the learning effectiveness of incorporating hashing techniques within the exploration of bipartite graph reception fields, as opposed to simply treating hashing as post-processing to output embeddings. To further enhance the model performance, we advance upon these findings and propose Bipartite Graph Contrastive Hashing (BGCH+). BGCH+ introduces a novel dual augmentation approach to both intermediate information and hash code outputs in the latent feature spaces, thereby producing more expressive and robust hash codes within a dual self-supervised learning paradigm. Comprehensive empirical analyses on six real-world benchmarks validate the effectiveness of our dual feature contrastive learning in boosting the performance of BGCH+ compared to existing approaches.
☆ Siamese Multiple Attention Temporal Convolution Networks for Human Mobility Signature Identification SC
The Human Mobility Signature Identification (HuMID) problem stands as a fundamental task within the realm of driving style representation, dedicated to discerning latent driving behaviors and preferences from diverse driver trajectories for driver identification. Its solutions hold significant implications across various domains (e.g., ride-hailing, insurance), wherein their application serves to safeguard users and mitigate potential fraudulent activities. Present HuMID solutions often exhibit limitations in adaptability when confronted with lengthy trajectories, consequently incurring substantial computational overhead. Furthermore, their inability to effectively extract crucial local information further impedes their performance. To address this problem, we propose a Siamese Multiple Attention Temporal Convolutional Network (Siamese MA-TCN) to capitalize on the strengths of both TCN architecture and multi-head self-attention, enabling the proficient extraction of both local and long-term dependencies. Additionally, we devise a novel attention mechanism tailored for the efficient aggregation of multi-scale representations derived from our model. Experimental evaluations conducted on two real-world taxi trajectory datasets reveal that our proposed model effectively extracts both local key information and long-term dependencies. These findings highlight the model's outstanding generalization capabilities, demonstrating its robustness and adaptability across datasets of varying sizes.
comment: 27th IEEE International Conference on Intelligent Transportation Systems (ITSC) (ITSC 2024)
☆ FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection
This study introduces the Federated Medical Knowledge Injection (FEDMEKI) platform, a new benchmark designed to address the unique challenges of integrating medical knowledge into foundation models under privacy constraints. By leveraging a cross-silo federated learning approach, FEDMEKI circumvents the issues associated with centralized data collection, which is often prohibited under health regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the USA. The platform is meticulously designed to handle multi-site, multi-modal, and multi-task medical data, which includes 7 medical modalities, including images, signals, texts, laboratory test results, vital signs, input variables, and output variables. The curated dataset to validate FEDMEKI covers 8 medical tasks, including 6 classification tasks (lung opacity detection, COVID-19 detection, electrocardiogram (ECG) abnormal detection, mortality prediction, sepsis prediction, and enlarged cardiomediastinum detection) and 2 generation tasks (medical visual question answering (MedVQA) and ECG noise clarification). This comprehensive dataset is partitioned across several clients to facilitate the decentralized training process under 16 benchmark approaches. FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models by allowing them to learn from a broader spectrum of medical knowledge without direct data exposure, thereby setting a new benchmark in the application of foundation models within the healthcare sector.
comment: Submitted to Neurips 2024 DB Track
☆ Neuro-Symbolic AI for Military Applications
Artificial Intelligence (AI) plays a significant role in enhancing the capabilities of defense systems, revolutionizing strategic decision-making, and shaping the future landscape of military operations. Neuro-Symbolic AI is an emerging approach that leverages and augments the strengths of neural networks and symbolic reasoning. These systems have the potential to be more impactful and flexible than traditional AI systems, making them well-suited for military applications. This paper comprehensively explores the diverse dimensions and capabilities of Neuro-Symbolic AI, aiming to shed light on its potential applications in military contexts. We investigate its capacity to improve decision-making, automate complex intelligence analysis, and strengthen autonomous systems. We further explore its potential to solve complex tasks in various domains, in addition to its applications in military contexts. Through this exploration, we address ethical, strategic, and technical considerations crucial to the development and deployment of Neuro-Symbolic AI in military and civilian applications. Contributing to the growing body of research, this study represents a comprehensive exploration of the extensive possibilities offered by Neuro-Symbolic AI.
comment: Accepted at IEEE Transactions on Artificial Intelligence (TAI)
☆ Flatten: Video Action Recognition is an Image Classification task
In recent years, video action recognition, as a fundamental task in the field of video understanding, has been deeply explored by numerous researchers.Most traditional video action recognition methods typically involve converting videos into three-dimensional data that encapsulates both spatial and temporal information, subsequently leveraging prevalent image understanding models to model and analyze these data. However,these methods have significant drawbacks. Firstly, when delving into video action recognition tasks, image understanding models often need to be adapted accordingly in terms of model architecture and preprocessing for these spatiotemporal tasks; Secondly, dealing with high-dimensional data often poses greater challenges and incurs higher time costs compared to its lower-dimensional counterparts.To bridge the gap between image-understanding and video-understanding tasks while simplifying the complexity of video comprehension, we introduce a novel video representation architecture, Flatten, which serves as a plug-and-play module that can be seamlessly integrated into any image-understanding network for efficient and effective 3D temporal data modeling.Specifically, by applying specific flattening operations (e.g., row-major transform), 3D spatiotemporal data is transformed into 2D spatial information, and then ordinary image understanding models are used to capture temporal dynamic and spatial semantic information, which in turn accomplishes effective and efficient video action recognition. Extensive experiments on commonly used datasets (Kinetics-400, Something-Something v2, and HMDB-51) and three classical image classification models (Uniformer, SwinV2, and ResNet), have demonstrated that embedding Flatten provides a significant performance improvements over original model.
comment: 13pages, 6figures
☆ On the Improvement of Generalization and Stability of Forward-Only Learning via Neural Polarization
Forward-only learning algorithms have recently gained attention as alternatives to gradient backpropagation, replacing the backward step of this latter solver with an additional contrastive forward pass. Among these approaches, the so-called Forward-Forward Algorithm (FFA) has been shown to achieve competitive levels of performance in terms of generalization and complexity. Networks trained using FFA learn to contrastively maximize a layer-wise defined goodness score when presented with real data (denoted as positive samples) and to minimize it when processing synthetic data (corr. negative samples). However, this algorithm still faces weaknesses that negatively affect the model accuracy and training stability, primarily due to a gradient imbalance between positive and negative samples. To overcome this issue, in this work we propose a novel implementation of the FFA algorithm, denoted as Polar-FFA, which extends the original formulation by introducing a neural division (\emph{polarization}) between positive and negative instances. Neurons in each of these groups aim to maximize their goodness when presented with their respective data type, thereby creating a symmetric gradient behavior. To empirically gauge the improved learning capabilities of our proposed Polar-FFA, we perform several systematic experiments using different activation and goodness functions over image classification datasets. Our results demonstrate that Polar-FFA outperforms FFA in terms of accuracy and convergence speed. Furthermore, its lower reliance on hyperparameters reduces the need for hyperparameter tuning to guarantee optimal generalization capabilities, thereby allowing for a broader range of neural network configurations.
comment: To be published in ECAI 2024
☆ Architectural Foundations and Strategic Considerations for the Large Language Model Infrastructures
The development of a large language model (LLM) infrastructure is a pivotal undertaking in artificial intelligence. This paper explores the intricate landscape of LLM infrastructure, software, and data management. By analyzing these core components, we emphasize the pivotal considerations and safeguards crucial for successful LLM development. This work presents a concise synthesis of the challenges and strategies inherent in constructing a robust and effective LLM infrastructure, offering valuable insights for researchers and practitioners alike.
☆ Maintainability Challenges in ML: A Systematic Literature Review
Background: As Machine Learning (ML) advances rapidly in many fields, it is being adopted by academics and businesses alike. However, ML has a number of different challenges in terms of maintenance not found in traditional software projects. Identifying what causes these maintainability challenges can help mitigate them early and continue delivering value in the long run without degrading ML performance. Aim: This study aims to identify and synthesise the maintainability challenges in different stages of the ML workflow and understand how these stages are interdependent and impact each other's maintainability. Method: Using a systematic literature review, we screened more than 13000 papers, then selected and qualitatively analysed 56 of them. Results: (i) a catalogue of maintainability challenges in different stages of Data Engineering, Model Engineering workflows and the current challenges when building ML systems are discussed; (ii) a map of 13 maintainability challenges to different interdependent stages of ML that impact the overall workflow; (iii) Provided insights to developers of ML tools and researchers. Conclusions: In this study, practitioners and organisations will learn about maintainability challenges and their impact at different stages of ML workflow. This will enable them to avoid pitfalls and help to build a maintainable ML system. The implications and challenges will also serve as a basis for future research to strengthen our understanding of the ML system's maintainability.
☆ AI Managed Emergency Documentation with a Pretrained Model
This study investigates the use of a large language model system to improve efficiency and quality in emergency department (ED) discharge letter writing. Time constraints and infrastructural deficits make compliance with current discharge letter targets difficult. We explored potential efficiencies from an artificial intelligence software in the generation of ED discharge letters and the attitudes of doctors toward this technology. The evaluated system leverages advanced techniques to fine-tune a model to generate discharge summaries from short-hand inputs, including voice, text, and electronic health record data. Nineteen physicians with emergency medicine experience evaluated the system text and voice-to-text interfaces against manual typing. The results showed significant time savings with MedWrite LLM interfaces compared to manual methods.
comment: Ethical approval for the study was obtained from the University College Dublin, Human Research Ethics Committee (UCD HREC)
☆ SA-GDA: Spectral Augmentation for Graph Domain Adaptation
Graph neural networks (GNNs) have achieved impressive impressions for graph-related tasks. However, most GNNs are primarily studied under the cases of signal domain with supervised training, which requires abundant task-specific labels and is difficult to transfer to other domains. There are few works focused on domain adaptation for graph node classification. They mainly focused on aligning the feature space of the source and target domains, without considering the feature alignment between different categories, which may lead to confusion of classification in the target domain. However, due to the scarcity of labels of the target domain, we cannot directly perform effective alignment of categories from different domains, which makes the problem more challenging. In this paper, we present the \textit{Spectral Augmentation for Graph Domain Adaptation (\method{})} for graph node classification. First, we observe that nodes with the same category in different domains exhibit similar characteristics in the spectral domain, while different classes are quite different. Following the observation, we align the category feature space of different domains in the spectral domain instead of aligning the whole features space, and we theoretical proof the stability of proposed \method{}. Then, we develop a dual graph convolutional network to jointly exploits local and global consistency for feature aggregation. Last, we utilize a domain classifier with an adversarial learning submodule to facilitate knowledge transfer between different domain graphs. Experimental results on a variety of publicly available datasets reveal the effectiveness of our \method{}.
☆ EEG-SCMM: Soft Contrastive Masked Modeling for Cross-Corpus EEG-Based Emotion Recognition AAAI 2025
Emotion recognition using electroencephalography (EEG) signals has garnered widespread attention in recent years. However, existing studies have struggled to develop a sufficiently generalized model suitable for different datasets without re-training (cross-corpus). This difficulty arises because distribution differences across datasets far exceed the intra-dataset variability. To solve this problem, we propose a novel Soft Contrastive Masked Modeling (SCMM) framework. Inspired by emotional continuity, SCMM integrates soft contrastive learning with a new hybrid masking strategy to effectively mine the "short-term continuity" characteristics inherent in human emotions. During the self-supervised learning process, soft weights are assigned to sample pairs, enabling adaptive learning of similarity relationships across samples. Furthermore, we introduce an aggregator that weightedly aggregates complementary information from multiple close samples based on pairwise similarities among samples to enhance fine-grained feature representation, which is then used for original sample reconstruction. Extensive experiments on the SEED, SEED-IV and DEAP datasets show that SCMM achieves state-of-the-art (SOTA) performance, outperforming the second-best method by an average accuracy of 4.26% under two types of cross-corpus conditions (same-class and different-class) for EEG-based emotion recognition.
comment: 16 pages, 8 figures, 15 tables, submitted to AAAI 2025
☆ Chinese Metaphor Recognition Using a Multi-stage Prompting Large Language Model
Metaphors are common in everyday language, and the identification and understanding of metaphors are facilitated by models to achieve a better understanding of the text. Metaphors are mainly identified and generated by pre-trained models in existing research, but situations, where tenors or vehicles are not included in the metaphor, cannot be handled. The problem can be effectively solved by using Large Language Models (LLMs), but significant room for exploration remains in this early-stage research area. A multi-stage generative heuristic-enhanced prompt framework is proposed in this study to enhance the ability of LLMs to recognize tenors, vehicles, and grounds in Chinese metaphors. In the first stage, a small model is trained to obtain the required confidence score for answer candidate generation. In the second stage, questions are clustered and sampled according to specific rules. Finally, the heuristic-enhanced prompt needed is formed by combining the generated answer candidates and demonstrations. The proposed model achieved 3rd place in Track 1 of Subtask 1, 1st place in Track 2 of Subtask 1, and 1st place in both tracks of Subtask 2 at the NLPCC-2024 Shared Task 9.
☆ Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making
Resolving the dichotomy between the human-like yet constrained reasoning processes of Cognitive Architectures and the broad but often noisy inference behavior of Large Language Models (LLMs) remains a challenging but exciting pursuit, for enabling reliable machine reasoning capabilities in production systems. Because Cognitive Architectures are famously developed for the purpose of modeling the internal mechanisms of human cognitive decision-making at a computational level, new investigations consider the goal of informing LLMs with the knowledge necessary for replicating such processes, e.g., guided perception, memory, goal-setting, and action. Previous approaches that use LLMs for grounded decision-making struggle with complex reasoning tasks that require slower, deliberate cognition over fast and intuitive inference -- reporting issues related to the lack of sufficient grounding, as in hallucination. To resolve these challenges, we introduce LLM-ACTR, a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making by integrating the ACT-R Cognitive Architecture with LLMs. Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations, injects this information into trainable LLM adapter layers, and fine-tunes the LLMs for downstream prediction. Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability of our approach, compared to LLM-only baselines that leverage chain-of-thought reasoning strategies.
comment: 20 pages, 8 figures, 2 tables
☆ Ranking Across Different Content Types: The Robust Beauty of Multinomial Blending RecSys24
An increasing number of media streaming services have expanded their offerings to include entities of multiple content types. For instance, audio streaming services that started by offering music only, now also offer podcasts, merchandise items, and videos. Ranking items across different content types into a single slate poses a significant challenge for traditional learning-to-rank (LTR) algorithms due to differing user engagement patterns for different content types. We explore a simple method for cross-content-type ranking, called multinomial blending (MB), which can be used in conjunction with most existing LTR algorithms. We compare MB to existing baselines not only in terms of ranking quality but also from other industry-relevant perspectives such as interpretability, ease-of-use, and stability in dynamic environments with changing user behavior and ranking model retraining. Finally, we report the results of an A/B test from an Amazon Music ranking use-case.
comment: To appear in 18th ACM Conference on Recommender Systems (RecSys24), Bari, Italy. ACM, New York, NY, USA, 3 pages
☆ Linear Attention is Enough in Spatial-Temporal Forecasting
As the most representative scenario of spatial-temporal forecasting tasks, the traffic forecasting task attracted numerous attention from machine learning community due to its intricate correlation both in space and time dimension. Existing methods often treat road networks over time as spatial-temporal graphs, addressing spatial and temporal representations independently. However, these approaches struggle to capture the dynamic topology of road networks, encounter issues with message passing mechanisms and over-smoothing, and face challenges in learning spatial and temporal relationships separately. To address these limitations, we propose treating nodes in road networks at different time steps as independent spatial-temporal tokens and feeding them into a vanilla Transformer to learn complex spatial-temporal patterns, design STformer achieving SOTA. Given its quadratic complexity, we introduce a variant NSTformer based on Nystr$\ddot{o}$m method to approximate self-attention with linear complexity but even slightly better than former in a few cases astonishingly. Extensive experimental results on traffic datasets demonstrate that the proposed method achieves state-of-the-art performance at an affordable computational cost. Our code will be made available.
☆ CogLM: Tracking Cognitive Development of Large Language Models
Piaget's Theory of Cognitive Development (PTC) posits that the development of cognitive levels forms the foundation for human learning across various abilities. As Large Language Models (LLMs) have recently shown remarkable abilities across a wide variety of tasks, we are curious about the cognitive levels of current LLMs: to what extent they have developed and how this development has been achieved. To this end, we construct a benchmark CogLM (Cognitive Ability Evaluation for Language Model) based on PTC to assess the cognitive levels of LLMs. CogLM comprises 1,220 questions spanning 10 cognitive abilities crafted by more than 20 human experts, providing a comprehensive testbed for the cognitive levels of LLMs. Through extensive experiments across multiple mainstream LLMs with CogLM, we find that: (1) Human-like cognitive abilities have emerged in advanced LLMs (GPT-4), comparable to those of a 20-year-old human. (2) The parameter size and optimization objective are two key factors affecting the cognitive levels of LLMs. (3) The performance on downstream tasks is positively correlated with the level of cognitive abilities. These findings fill the gap in research on the cognitive abilities of LLMs, tracing the development of LLMs from a cognitive perspective and guiding the future direction of their evolution.
comment: under review
☆ Learning to Explore for Stochastic Gradient MCMC
Bayesian Neural Networks(BNNs) with high-dimensional parameters pose a challenge for posterior inference due to the multi-modality of the posterior distributions. Stochastic Gradient MCMC(SGMCMC) with cyclical learning rate scheduling is a promising solution, but it requires a large number of sampling steps to explore high-dimensional multi-modal posteriors, making it computationally expensive. In this paper, we propose a meta-learning strategy to build \gls{sgmcmc} which can efficiently explore the multi-modal target distributions. Our algorithm allows the learned SGMCMC to quickly explore the high-density region of the posterior landscape. Also, we show that this exploration property is transferrable to various tasks, even for the ones unseen during a meta-training stage. Using popular image classification benchmarks and a variety of downstream tasks, we demonstrate that our method significantly improves the sampling efficiency, achieving better performance than vanilla \gls{sgmcmc} without incurring significant computational overhead.
☆ Vanilla Gradient Descent for Oblique Decision Trees
Decision Trees (DTs) constitute one of the major highly non-linear AI models, valued, e.g., for their efficiency on tabular data. Learning accurate DTs is, however, complicated, especially for oblique DTs, and does take a significant training time. Further, DTs suffer from overfitting, e.g., they proverbially "do not generalize" in regression tasks. Recently, some works proposed ways to make (oblique) DTs differentiable. This enables highly efficient gradient-descent algorithms to be used to learn DTs. It also enables generalizing capabilities by learning regressors at the leaves simultaneously with the decisions in the tree. Prior approaches to making DTs differentiable rely either on probabilistic approximations at the tree's internal nodes (soft DTs) or on approximations in gradient computation at the internal node (quantized gradient descent). In this work, we propose \textit{DTSemNet}, a novel \textit{sem}antically equivalent and invertible encoding for (hard, oblique) DTs as Neural \textit{Net}works (NNs), that uses standard vanilla gradient descent. Experiments across various classification and regression benchmarks show that oblique DTs learned using \textit{DTSemNet} are more accurate than oblique DTs of similar size learned using state-of-the-art techniques. Further, DT training time is significantly reduced. We also experimentally demonstrate that \textit{DTSemNet} can learn DT policies as efficiently as NN policies in the Reinforcement Learning (RL) setup with physical inputs (dimensions $\leq32$). The code is available at {\color{blue}\textit{\url{https://github.com/CPS-research-group/dtsemnet}}}.
comment: Published in ECAI2024. This version includes supplementary material
☆ Better Python Programming for all: With the focus on Maintainability
This study aims to enhance the maintainability of code generated by Large Language Models (LLMs), with a focus on the Python programming language. As the use of LLMs for coding assistance grows, so do concerns about the maintainability of the code they produce. Previous research has mainly concentrated on the functional accuracy and testing success of generated code, overlooking aspects of maintainability. Our approach involves the use of a specifically designed dataset for training and evaluating the model, ensuring a thorough assessment of code maintainability. At the heart of our work is the fine-tuning of an LLM for code refactoring, aimed at enhancing code readability, reducing complexity, and improving overall maintainability. After fine-tuning an LLM to prioritize code maintainability, our evaluations indicate that this model significantly improves code maintainability standards, suggesting a promising direction for the future of AI-assisted software development.
☆ Identifying Technical Debt and Its Types Across Diverse Software Projects Issues
Technical Debt (TD) identification in software projects issues is crucial for maintaining code quality, reducing long-term maintenance costs, and improving overall project health. This study advances TD classification using transformer-based models, addressing the critical need for accurate and efficient TD identification in large-scale software development. Our methodology employs multiple binary classifiers for TD and its type, combined through ensemble learning, to enhance accuracy and robustness in detecting various forms of TD. We train and evaluate these models on a comprehensive dataset from GitHub Archive Issues (2015-2024), supplemented with industrial data validation. We demonstrate that in-project fine-tuned transformer models significantly outperform task-specific fine-tuned models in TD classification, highlighting the importance of project-specific context in accurate TD identification. Our research also reveals the superiority of specialized binary classifiers over multi-class models for TD and its type identification, enabling more targeted debt resolution strategies. A comparative analysis shows that the smaller DistilRoBERTa model is more effective than larger language models like GPTs for TD classification tasks, especially after fine-tuning, offering insights into efficient model selection for specific TD detection tasks. The study also assesses generalization capabilities using metrics such as MCC, AUC ROC, Recall, and F1 score, focusing on model effectiveness, fine-tuning impact, and relative performance. By validating our approach on out-of-distribution and real-world industrial datasets, we ensure practical applicability, addressing the diverse nature of software projects.
☆ Markov Balance Satisfaction Improves Performance in Strictly Batch Offline Imitation Learning
Imitation learning (IL) is notably effective for robotic tasks where directly programming behaviors or defining optimal control costs is challenging. In this work, we address a scenario where the imitator relies solely on observed behavior and cannot make environmental interactions during learning. It does not have additional supplementary datasets beyond the expert's dataset nor any information about the transition dynamics. Unlike state-of-the-art (SOTA) IL methods, this approach tackles the limitations of conventional IL by operating in a more constrained and realistic setting. Our method uses the Markov balance equation and introduces a novel conditional density estimation-based imitation learning framework. It employs conditional normalizing flows for transition dynamics estimation and aims at satisfying a balance equation for the environment. Through a series of numerical experiments on Classic Control and MuJoCo environments, we demonstrate consistently superior empirical performance compared to many SOTA IL algorithms.
☆ Selective Prompt Anchoring for Code Generation
Recent advances in large language models (LLMs) such as Copilot and ChatGPT have transformed software development by automating coding tasks. Despite these advancements, challenges remain in reducing error rates and fully meeting user expectations. Our empirical study reveals LLMs tend to dilute their self-attention on the initial prompt as more code tokens are generated. We hypothesize this self-attention dilution issue is one of the root causes of inaccuracies in LLM-generated code. To mitigate this issue, we propose Selective Prompt Anchoring (SPA). SPA amplifies the influence of the selected parts in the initial prompt, which we refer to as ``anchored text'', during code generation. Specifically, SPA calculates the logit distribution difference with and without the anchored text. We prove this difference approximates the anchored text's contextual contribution to the output logits. SPA creates an augmented logit distribution by linearly combining the original logit distribution and the logit difference. We evaluate SPA with five LLMs on four benchmarks. Our results demonstrate that using SPA can consistently improve Pass@1 rates by up to 9.7% in all settings. Notably, with selective text anchoring, a small version of DeepSeek-Coder (6.7B) can achieve better performance than an original much larger version (33B). Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
comment: Under review
☆ Measuring Visual Sycophancy in Multimodal Models
This paper introduces and examines the phenomenon of "visual sycophancy" in multimodal language models, a term we propose to describe these models' tendency to disproportionately favor visually presented information, even when it contradicts their prior knowledge or responses. Our study employs a systematic methodology to investigate this phenomenon: we present models with images of multiple-choice questions, which they initially answer correctly, then expose the same model to versions with visually pre-marked options. Our findings reveal a significant shift in the models' responses towards the pre-marked option despite their previous correct answers. Comprehensive evaluations demonstrate that visual sycophancy is a consistent and quantifiable behavior across various model architectures. Our findings highlight potential limitations in the reliability of these models when processing potentially misleading visual information, raising important questions about their application in critical decision-making contexts.
☆ Temporal Reversed Training for Spiking Neural Networks with Generalized Spatio-Temporal Representation
Spiking neural networks (SNNs) have received widespread attention as an ultra-low energy computing paradigm. Recent studies have focused on improving the feature extraction capability of SNNs, but they suffer from inefficient inference and suboptimal performance. In this paper, we propose a simple yet effective temporal reversed training (TRT) method to optimize the spatio-temporal performance of SNNs and circumvent these problems. We perturb the input temporal data by temporal reversal, prompting the SNN to produce original-reversed consistent output logits and to learn perturbation-invariant representations. For static data without temporal dimension, we generalize this strategy by exploiting the inherent temporal property of spiking neurons for spike feature temporal reversal. In addition, we utilize the lightweight ``star operation" (element-wise multiplication) to hybridize the original and temporally reversed spike firing rates and expand the implicit dimensions, which serves as spatio-temporal regularization to further enhance the generalization of the SNN. Our method involves only an additional temporal reversal operation and element-wise multiplication during training, thus incurring negligible training overhead and not affecting the inference efficiency at all. Extensive experiments on static/neuromorphic object/action recognition, and 3D point cloud classification tasks demonstrate the effectiveness and generalizability of our method. In particular, with only two timesteps, our method achieves 74.77\% and 90.57\% accuracy on ImageNet and ModelNet40, respectively.
comment: 15 pages, 8 figures
☆ Fragment-Masked Molecular Optimization
Molecular optimization is a crucial aspect of drug discovery, aimed at refining molecular structures to enhance drug efficacy and minimize side effects, ultimately accelerating the overall drug development process. Many target-based molecular optimization methods have been proposed, significantly advancing drug discovery. These methods primarily on understanding the specific drug target structures or their hypothesized roles in combating diseases. However, challenges such as a limited number of available targets and a difficulty capturing clear structures hinder innovative drug development. In contrast, phenotypic drug discovery (PDD) does not depend on clear target structures and can identify hits with novel and unbiased polypharmacology signatures. As a result, PDD-based molecular optimization can reduce potential safety risks while optimizing phenotypic activity, thereby increasing the likelihood of clinical success. Therefore, we propose a fragment-masked molecular optimization method based on PDD (FMOP). FMOP employs a regression-free diffusion model to conditionally optimize the molecular masked regions without training, effectively generating new molecules with similar scaffolds. On the large-scale drug response dataset GDSCv2, we optimize the potential molecules across all 945 cell lines. The overall experiments demonstrate that the in-silico optimization success rate reaches 94.4%, with an average efficacy increase of 5.3%. Additionally, we conduct extensive ablation and visualization experiments, confirming that FMOP is an effective and robust molecular optimization method. The code is available at:https://anonymous.4open.science/r/FMOP-98C2.
comment: 11 pages, 5 figures, 2 tables
☆ Depth-guided Texture Diffusion for Image Semantic Segmentation
Depth information provides valuable insights into the 3D structure especially the outline of objects, which can be utilized to improve the semantic segmentation tasks. However, a naive fusion of depth information can disrupt feature and compromise accuracy due to the modality gap between the depth and the vision. In this work, we introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge. Our method extracts low-level features from edges and textures to create a texture image. This image is then selectively diffused across the depth map, enhancing structural information vital for precisely extracting object outlines. By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image, enabling more accurate semantic segmentation. We conduct comprehensive experiments across diverse, commonly-used datasets spanning a wide range of semantic segmentation tasks, including Camouflaged Object Detection (COD), Salient Object Detection (SOD), and indoor semantic segmentation. With source-free estimated depth or depth captured by depth cameras, our method consistently outperforms existing baselines and achieves new state-of-theart results, demonstrating the effectiveness of our Depth-guided Texture Diffusion for image semantic segmentation.
☆ Research on color recipe recommendation based on unstructured data using TENN
Recently, services and business models based on large language models, such as OpenAI Chatgpt, Google BARD, and Microsoft copilot, have been introduced, and the applications utilizing natural language processing with deep learning are increasing, and it is one of the natural language preprocessing methods. Conversion to machine language through tokenization and processing of unstructured data are increasing. Although algorithms that can understand and apply human language are becoming increasingly sophisticated, it is difficult to apply them to processes that rely on human emotions and senses in industries that still mainly deal with standardized data. In particular, in processes where brightness, saturation, and color information are essential, such as painting and injection molding, most small and medium-sized companies, excluding large corporations, rely on the tacit knowledge and sensibility of color mixers, and even customer companies often present non-standardized requirements. . In this paper, we proposed TENN to infer color recipe based on unstructured data with emotional natural language, and demonstrated it.
☆ Linking Robustness and Generalization: A k* Distribution Analysis of Concept Clustering in Latent Space for Vision Models
Most evaluations of vision models use indirect methods to assess latent space quality. These methods often involve adding extra layers to project the latent space into a new one. This projection makes it difficult to analyze and compare the original latent space. This article uses the k* Distribution, a local neighborhood analysis method, to examine the learned latent space at the level of individual concepts, which can be extended to examine the entire latent space. We introduce skewness-based true and approximate metrics for interpreting individual concepts to assess the overall quality of vision models' latent space. Our findings indicate that current vision models frequently fracture the distributions of individual concepts within the latent space. Nevertheless, as these models improve in generalization across multiple datasets, the degree of fracturing diminishes. A similar trend is observed in robust vision models, where increased robustness correlates with reduced fracturing. Ultimately, this approach enables a direct interpretation and comparison of the latent spaces of different vision models and reveals a relationship between a model's generalizability and robustness. Results show that as a model becomes more general and robust, it tends to learn features that result in better clustering of concepts. Project Website is available online at https://shashankkotyan.github.io/k-Distribution/
♻ ☆ RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
Despite Retrieval-Augmented Generation (RAG) showing promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems. This work has been open sourced at https://github.com/amazon-science/RAGChecker.
comment: Under Review. Github Repo: https://github.com/amazon-science/RAGChecker
♻ ☆ MatchSeg: Towards Better Segmentation via Reference Image Matching
Recently, automated medical image segmentation methods based on deep learning have achieved great success. However, they heavily rely on large annotated datasets, which are costly and time-consuming to acquire. Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images, known as the query set. Inspired by this paradigm, we introduce MatchSeg, a novel framework that enhances medical image segmentation through strategic reference image matching. We leverage contrastive language-image pre-training (CLIP) to select highly relevant samples when defining the support set. Additionally, we design a joint attention module to strengthen the interaction between support and query features, facilitating a more effective knowledge transfer between support and query sets. We validated our method across four public datasets. Experimental results demonstrate superior segmentation performance and powerful domain generalization ability of MatchSeg against existing methods for domain-specific and cross-domain segmentation tasks. Our code is made available at https://github.com/keeplearning-again/MatchSeg
comment: International Conference on Bioinformatics and Biomedicine (BIBM 2024)
♻ ☆ SmartQuant: CXL-based AI Model Store in Support of Runtime Configurable Weight Quantization
Recent studies have revealed that, during the inference on generative AI models such as transformer, the importance of different weights exhibits substantial context-dependent variations. This naturally manifests a promising potential of adaptively configuring weight quantization to improve the generative AI inference efficiency. Although configurable weight quantization can readily leverage the hardware support of variable-precision arithmetics in modern GPU and AI accelerators, little prior research has studied how one could exploit variable weight quantization to proportionally improve the AI model memory access speed and energy efficiency. Motivated by the rapidly maturing CXL ecosystem, this work develops a CXL-based design solution to fill this gap. The key is to allow CXL memory controllers play an active role in supporting and exploiting runtime configurable weight quantization. Using transformer as a representative generative AI model, we carried out experiments that well demonstrate the effectiveness of the proposed design solution.
♻ ☆ Can Machines Imitate Humans? Integrative Turing Tests for Vision and Language Demonstrate a Narrowing Gap
As AI algorithms increasingly participate in daily activities, it becomes critical to ascertain whether the agents we interact with are human or not. To address this question, we turn to the Turing test and systematically benchmark current AIs in their abilities to imitate humans in three language tasks (Image captioning, Word association, and Conversation) and three vision tasks (Object detection, Color estimation, and Attention prediction). The experiments involved 549 human agents plus 26 AI agents for dataset creation, and 1,126 human judges plus 10 AI judges, in 25,650 Turing-like tests. The results reveal that current AIs are not far from being able to impersonate humans in complex language and vision challenges. While human judges were often deceived, simple AI judges outperformed human judges in distinguishing human answers from AI answers. The results of imitation tests are only minimally correlated with standard performance metrics in AI. Thus, evaluating whether a machine can pass as a human constitutes an important independent test to evaluate AI algorithms. The curated, large-scale, Turing datasets introduced here and their evaluation metrics provide new benchmarks and insights to assess whether an agent is human or not and emphasize the relevance of rigorous, systematic, and quantitative imitation tests in these and other AI domains.
comment: 59 pages, 3 main figures, 15 supp figures, and 1 supp table
♻ ☆ KAN or MLP: A Fairer Comparison
This paper does not introduce a novel method. Instead, it offers a fairer and more comprehensive comparison of KAN and MLP models across various tasks, including machine learning, computer vision, audio processing, natural language processing, and symbolic formula representation. Specifically, we control the number of parameters and FLOPs to compare the performance of KAN and MLP. Our main observation is that, except for symbolic formula representation tasks, MLP generally outperforms KAN. We also conduct ablation studies on KAN and find that its advantage in symbolic formula representation mainly stems from its B-spline activation function. When B-spline is applied to MLP, performance in symbolic formula representation significantly improves, surpassing or matching that of KAN. However, in other tasks where MLP already excels over KAN, B-spline does not substantially enhance MLP's performance. Furthermore, we find that KAN's forgetting issue is more severe than that of MLP in a standard class-incremental continual learning setting, which differs from the findings reported in the KAN paper. We hope these results provide insights for future research on KAN and other MLP alternatives. Project link: https://github.com/yu-rp/KANbeFair
comment: Technical Report
♻ ☆ Backpropagation-Free Multi-modal On-Device Model Adaptation via Cloud-Device Collaboration
In our increasingly interconnected world, where intelligent devices continually amass copious personalized multi-modal data, a pressing need arises to deliver high-quality, personalized device-aware services. However, this endeavor presents a multifaceted challenge to prevailing artificial intelligence (AI) systems primarily rooted in the cloud. As these systems grapple with shifting data distributions between the cloud and devices, the traditional approach of fine-tuning-based adaptation (FTA) exists the following issues: the costly and time-consuming data annotation required by FTA and the looming risk of model overfitting. To surmount these challenges, we introduce a Universal On-Device Multi-modal Model Adaptation Framework, revolutionizing on-device model adaptation by striking a balance between efficiency and effectiveness. The framework features the Fast Domain Adaptor (FDA) hosted in the cloud, providing tailored parameters for the Lightweight Multi-modal Model on devices. To enhance adaptability across multi-modal tasks, the AnchorFrame Distribution Reasoner (ADR) minimizes communication costs. Our contributions, encapsulated in the Cloud-Device Collaboration Multi-modal Parameter Generation (CDC-MMPG) framework, represent a pioneering solution for on-Device Multi-modal Model Adaptation (DMMA). Extensive experiments validate the efficiency and effectiveness of our method, particularly in video question answering and retrieval tasks, driving forward the integration of intelligent devices into our daily lives.
♻ ☆ DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild
Blind image quality assessment (IQA) in the wild, which assesses the quality of images with complex authentic distortions and no reference images, presents significant challenges. Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem. Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA (DP-IQA), to utilize the T2I model's prior for improved performance and generalization ability. Specifically, we utilize pre-trained Stable Diffusion as the backbone, extracting multi-level features from the denoising U-Net guided by prompt embeddings through a tunable text adapter. Simultaneously, an image adapter compensates for information loss introduced by the lossy pre-trained encoder. Unlike T2I models that require full image distribution modeling, our approach targets image quality assessment, which inherently requires fewer parameters. To improve applicability, we distill the knowledge into a lightweight CNN-based student model, significantly reducing parameters while maintaining or even enhancing generalization performance. Experimental results demonstrate that DP-IQA achieves state-of-the-art performance on various in-the-wild datasets, highlighting the superior generalization capability of T2I priors in blind IQA tasks. To our knowledge, DP-IQA is the first method to apply pre-trained diffusion priors in blind IQA. Codes and checkpoints are available at https://github.com/RomGai/DP-IQA.
♻ ☆ PhaGO: Protein function annotation for bacteriophages by integrating the genomic context
Bacteriophages are viruses that target bacteria, playing a crucial role in microbial ecology. Phage proteins are important in understanding phage biology, such as virus infection, replication, and evolution. Although a large number of new phages have been identified via metagenomic sequencing, many of them have limited protein function annotation. Accurate function annotation of phage proteins presents several challenges, including their inherent diversity and the scarcity of annotated ones. Existing tools have yet to fully leverage the unique properties of phages in annotating protein functions. In this work, we propose a new protein function annotation tool for phages by leveraging the modular genomic structure of phage genomes. By employing embeddings from the latest protein foundation models and Transformer to capture contextual information between proteins in phage genomes, PhaGO surpasses state-of-the-art methods in annotating diverged proteins and proteins with uncommon functions by 6.78% and 13.05% improvement, respectively. PhaGO can annotate proteins lacking homology search results, which is critical for characterizing the rapidly accumulating phage genomes. We demonstrate the utility of PhaGO by identifying 688 potential holins in phages, which exhibit high structural conservation with known holins. The results show the potential of PhaGO to extend our understanding of newly discovered phages.
comment: 17 pages,6 figures
♻ ☆ Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization ACL 2024
A single language model, even when aligned with labelers through reinforcement learning from human feedback (RLHF), may not suit all human preferences. Recent approaches therefore prefer customization, gathering multi-dimensional feedback, and creating distinct reward models for each dimension. Different language models are then optimized for various preferences using multi-objective RLHF (MORLHF) with varying reward weights. However, RL fine-tuning is unstable and resource-heavy, especially with diverse and usually conflicting objectives. In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free extension of Direct Preference Optimization (DPO) for multiple alignment objectives. Essentially, MODPO folds language modeling directly into reward modeling, training language models as implicit collective reward models that combine all objectives with specific weights. MODPO theoretically yields the same optimal solutions as MORLHF but is practically more stable and efficient. Empirical results in safety alignment and long-form question answering show that MODPO matches or outperforms existing methods, producing a Pareto front of language models catering to diverse preferences with three times less computational resources compared to MORLHF. Code is available at https://github.com/ZHZisZZ/modpo.
comment: Findings of ACL 2024
♻ ☆ Tackling GenAI Copyright Issues: Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. While various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to infringe copyright. To achieve this, we introduce a metric for quantifying the level of originality of data in a manner that is consistent with the legal framework. This metric can be practically estimated by drawing samples from a generative model, which is then used for the genericization process. As a practical implementation, we introduce PREGen, which combines our genericization method with an existing mitigation technique. Experiments demonstrate that our genericization method successfully modifies the output of a text-to-image generative model so that it produces more generic, copyright-compliant images. PREGen dramatically improves the performance of the existing method, reducing the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt. Additionally, although generative models have been found to generate copyrighted characters even when the names of characters are not directly mentioned in the prompt, PREGen almost completely suppresses the generation of copyrighted characters for such prompts.
comment: 18 pages, 8 figures
♻ ☆ PRIME: Scaffolding Manipulation Tasks with Behavior Primitives for Data-Efficient Imitation Learning
Imitation learning has shown great potential for enabling robots to acquire complex manipulation behaviors. However, these algorithms suffer from high sample complexity in long-horizon tasks, where compounding errors accumulate over the task horizons. We present PRIME (PRimitive-based IMitation with data Efficiency), a behavior primitive-based framework designed for improving the data efficiency of imitation learning. PRIME scaffolds robot tasks by decomposing task demonstrations into primitive sequences, followed by learning a high-level control policy to sequence primitives through imitation learning. Our experiments demonstrate that PRIME achieves a significant performance improvement in multi-stage manipulation tasks, with 10-34% higher success rates in simulation over state-of-the-art baselines and 20-48% on physical hardware.
♻ ☆ Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling
Recommender systems can be helpful for individuals to make well-informed decisions in complex financial markets. While many studies have focused on predicting stock prices, even advanced models fall short of accurately forecasting them. Additionally, previous studies indicate that individual investors often disregard established investment theories, favoring their personal preferences instead. This presents a challenge for stock recommendation systems, which must not only provide strong investment performance but also respect these individual preferences. To create effective stock recommender systems, three critical elements must be incorporated: 1) individual preferences, 2) portfolio diversification, and 3) the temporal dynamics of the first two. In response, we propose a new model, Portfolio Temporal Graph Network Recommender, PfoTGNRec, which can handle time-varying collaborative signals and incorporates diversification-enhancing sampling. On real-world individual trading data, our approach demonstrates superior performance compared to state-of-the-art baselines, including cutting-edge dynamic embedding models and existing stock recommendation models. Indeed, we show that PfoTGNRec is an effective solution that can balance customer preferences with the need to suggest portfolios with high Return-on-Investment. The source code and data are available at https://anonymous.4open.science/r/ICAIF2024-E23E.
♻ ☆ WeakSAM: Segment Anything Meets Weakly-supervised Instance-level Recognition ACM MM 2024
Weakly supervised visual recognition using inexact supervision is a critical yet challenging learning problem. It significantly reduces human labeling costs and traditionally relies on multi-instance learning and pseudo-labeling. This paper introduces WeakSAM and solves the weakly-supervised object detection (WSOD) and segmentation by utilizing the pre-learned world knowledge contained in a vision foundation model, i.e., the Segment Anything Model (SAM). WeakSAM addresses two critical limitations in traditional WSOD retraining, i.e., pseudo ground truth (PGT) incompleteness and noisy PGT instances, through adaptive PGT generation and Region of Interest (RoI) drop regularization. It also addresses the SAM's problems of requiring prompts and category unawareness for automatic object detection and segmentation. Our results indicate that WeakSAM significantly surpasses previous state-of-the-art methods in WSOD and WSIS benchmarks with large margins, i.e. average improvements of 7.4% and 8.5%, respectively. The code is available at \url{https://github.com/hustvl/WeakSAM}.
comment: Accepted by ACM MM 2024. Code is available at https://github.com/hustvl/WeakSAM
♻ ☆ Open Ko-LLM Leaderboard: Evaluating Large Language Models in Korean with Ko-H5 Benchmark ACL 2024
This paper introduces the Open Ko-LLM Leaderboard and the Ko-H5 Benchmark as vital tools for evaluating Large Language Models (LLMs) in Korean. Incorporating private test sets while mirroring the English Open LLM Leaderboard, we establish a robust evaluation framework that has been well integrated in the Korean LLM community. We perform data leakage analysis that shows the benefit of private test sets along with a correlation study within the Ko-H5 benchmark and temporal analyses of the Ko-H5 score. Moreover, we present empirical support for the need to expand beyond set benchmarks. We hope the Open Ko-LLM Leaderboard sets precedent for expanding LLM evaluation to foster more linguistic diversity.
comment: Accepted at ACL 2024 Main
♻ ☆ Integrating Large Language Models into a Tri-Modal Architecture for Automated Depression Classification
Major Depressive Disorder (MDD) is a pervasive mental health condition that affects 300 million people worldwide. This work presents a novel, BiLSTM-based tri-modal model-level fusion architecture for the binary classification of depression from clinical interview recordings. The proposed architecture incorporates Mel Frequency Cepstral Coefficients, Facial Action Units, and uses a two-shot learning based GPT-4 model to process text data. This is the first work to incorporate large language models into a multi-modal architecture for this task. It achieves impressive results on the DAIC-WOZ AVEC 2016 Challenge cross-validation split and Leave-One-Subject-Out cross-validation split, surpassing all baseline models and multiple state-of-the-art models. In Leave-One-Subject-Out testing, it achieves an accuracy of 91.01%, an F1-Score of 85.95%, a precision of 80%, and a recall of 92.86%.
comment: Keywords: Multi-Modal Neural Networks, Deep Learning, Large Language Models, Depression Diagnosis, Biomedical Informatics, DAIC-WOZ
♻ ☆ Large Language Models Struggle in Token-Level Clinical Named Entity Recognition
Large Language Models (LLMs) have revolutionized various sectors, including healthcare where they are employed in diverse applications. Their utility is particularly significant in the context of rare diseases, where data scarcity, complexity, and specificity pose considerable challenges. In the clinical domain, Named Entity Recognition (NER) stands out as an essential task and it plays a crucial role in extracting relevant information from clinical texts. Despite the promise of LLMs, current research mostly concentrates on document-level NER, identifying entities in a more general context across entire documents, without extracting their precise location. Additionally, efforts have been directed towards adapting ChatGPT for token-level NER. However, there is a significant research gap when it comes to employing token-level NER for clinical texts, especially with the use of local open-source LLMs. This study aims to bridge this gap by investigating the effectiveness of both proprietary and local LLMs in token-level clinical NER. Essentially, we delve into the capabilities of these models through a series of experiments involving zero-shot prompting, few-shot prompting, retrieval-augmented generation (RAG), and instruction-fine-tuning. Our exploration reveals the inherent challenges LLMs face in token-level NER, particularly in the context of rare diseases, and suggests possible improvements for their application in healthcare. This research contributes to narrowing a significant gap in healthcare informatics and offers insights that could lead to a more refined application of LLMs in the healthcare sector.
comment: AMIA 2024 Annual Symposium Proceedings
♻ ☆ k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Most examinations of neural networks' learned latent spaces typically employ dimensionality reduction techniques such as t-SNE or UMAP. These methods distort the local neighborhood in the visualization, making it hard to distinguish the structure of a subset of samples in the latent space. In response to this challenge, we introduce the {k*~distribution} and its corresponding visualization technique This method uses local neighborhood analysis to guarantee the preservation of the structure of sample distributions for individual classes within the subset of the learned latent space. This facilitates easy comparison of different k*~distributions, enabling analysis of how various classes are processed by the same neural network. Our study reveals three distinct distributions of samples within the learned latent space subset: a) Fractured, b) Overlapped, and c) Clustered, providing a more profound understanding of existing contemporary visualizations. Experiments show that the distribution of samples within the network's learned latent space significantly varies depending on the class. Furthermore, we illustrate that our analysis can be applied to explore the latent space of diverse neural network architectures, various layers within neural networks, transformations applied to input samples, and the distribution of training and testing data for neural networks. Thus, the k* distribution should aid in visualizing the structure inside neural networks and further foster their understanding. Project Website is available online at https://shashankkotyan.github.io/k-Distribution/.
comment: Published in IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
Graphics 2
☆ Unified Smooth Vector Graphics: Modeling Gradient Meshes and Curve-based Approaches Jointly as Poisson Problem
Research on smooth vector graphics is separated into two independent research threads: one on interpolation-based gradient meshes and the other on diffusion-based curve formulations. With this paper, we propose a mathematical formulation that unifies gradient meshes and curve-based approaches as solution to a Poisson problem. To combine these two well-known representations, we first generate a non-overlapping intermediate patch representation that specifies for each patch a target Laplacian and boundary conditions. Unifying the treatment of boundary conditions adds further artistic degrees of freedoms to the existing formulations, such as Neumann conditions on diffusion curves. To synthesize a raster image for a given output resolution, we then rasterize boundary conditions and Laplacians for the respective patches and compute the final image as solution to a Poisson problem. We evaluate the method on various test scenes containing gradient meshes and curve-based primitives. Since our mathematical formulation works with established smooth vector graphics primitives on the front-end, it is compatible with existing content creation pipelines and with established editing tools. Rather than continuing two separate research paths, we hope that a unification of the formulations will lead to new rasterization and vectorization tools in the future that utilize the strengths of both approaches.
☆ Fairness-Aware Streaming Feature Selection with Causal Graphs
Its crux lies in the optimization of a tradeoff between accuracy and fairness of resultant models on the selected feature subset. The technical challenge of our setting is twofold: 1) streaming feature inputs, such that an informative feature may become obsolete or redundant for prediction if its information has been covered by other similar features that arrived prior to it, and 2) non-associational feature correlation, such that bias may be leaked from those seemingly admissible, non-protected features. To overcome this, we propose Streaming Feature Selection with Causal Fairness (SFCF) that builds two causal graphs egocentric to prediction label and protected feature, respectively, striving to model the complex correlation structure among streaming features, labels, and protected information. As such, bias can be eradicated from predictive modeling by removing those features being causally correlated with the protected feature yet independent to the labels. We theorize that the originally redundant features for prediction can later become admissible, when the learning accuracy is compromised by the large number of removed features (non-protected but can be used to reconstruct bias information). We benchmark SFCF\ on five datasets widely used in streaming feature research, and the results substantiate its performance superiority over six rival models in terms of efficiency and sparsity of feature selection and equalized odds of the resultant predictive models.
comment: This paper has been accepted by the 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2024)
Computer Vision 95
☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
☆ SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation
Image segmentation plays an important role in vision understanding. Recently, the emerging vision foundation models continuously achieved superior performance on various tasks. Following such success, in this paper, we prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models. We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation. Specifically, SAM2-UNet adopts the Hiera backbone of SAM2 as the encoder, while the decoder uses the classic U-shaped design. Additionally, adapters are inserted into the encoder to allow parameter-efficient fine-tuning. Preliminary experiments on various downstream tasks, such as camouflaged object detection, salient object detection, marine animal segmentation, mirror detection, and polyp segmentation, demonstrate that our SAM2-UNet can simply beat existing specialized state-of-the-art methods without bells and whistles. Project page: \url{https://github.com/WZH0120/SAM2-UNet}.
comment: Technical Report
☆ DPA: Dual Prototypes Alignment for Unsupervised Adaptation of Vision-Language Models
Vision-language models (VLMs), e.g., CLIP, have shown remarkable potential in zero-shot image classification. However, adapting these models to new domains remains challenging, especially in unsupervised settings where labelled data is unavailable. Recent research has proposed pseudo-labelling approaches to adapt CLIP in an unsupervised manner using unlabelled target data. Nonetheless, these methods struggle due to noisy pseudo-labels resulting from the misalignment between CLIP's visual and textual representations. This study introduces DPA, an unsupervised domain adaptation method for VLMs. DPA introduces the concept of dual prototypes, acting as distinct classifiers, along with the convex combination of their outputs, thereby leading to accurate pseudo-label construction. Next, it ranks pseudo-labels to facilitate robust self-training, particularly during early training. Finally, it addresses visual-textual misalignment by aligning textual prototypes with image prototypes to further improve the adaptation performance. Experiments on 13 downstream vision tasks demonstrate that DPA significantly outperforms zero-shot CLIP and the state-of-the-art unsupervised adaptation baselines.
☆ HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis
In pathological research, education, and clinical practice, the decision-making process based on pathological images is critically important. This significance extends to digital pathology image analysis: its adequacy is demonstrated by the extensive information contained within tissue structures, which is essential for accurate cancer classification and grading. Additionally, its necessity is highlighted by the inherent requirement for interpretability in the conclusions generated by algorithms. For humans, determining tumor type and grade typically involves multi-scale analysis, which presents a significant challenge for AI algorithms. Traditional patch-based methods are inadequate for modeling such complex structures, as they fail to capture the intricate, multi-scale information inherent in whole slide images. Consequently, there is a pressing need for advanced AI techniques capable of efficiently and accurately replicating this complex analytical process. To address this issue, we introduce HistoGym, an open-source reinforcement learning environment for histopathological image analysis. Following OpenAI Gym APIs, HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors. Leveraging the pyramid feature of WSIs and the OpenSlide API, HistoGym provides a unified framework for various clinical tasks, including tumor detection and classification. We detail the observation, action, and reward specifications tailored for the histopathological image analysis domain and provide an open-source Python-based interface for both clinicians and researchers. To accommodate different clinical demands, we offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios, showcasing several noteworthy results.
☆ RGBT Tracking via All-layer Multimodal Interactions with Progressive Fusion Mamba
Existing RGBT tracking methods often design various interaction models to perform cross-modal fusion of each layer, but can not execute the feature interactions among all layers, which plays a critical role in robust multimodal representation, due to large computational burden. To address this issue, this paper presents a novel All-layer multimodal Interaction Network, named AINet, which performs efficient and effective feature interactions of all modalities and layers in a progressive fusion Mamba, for robust RGBT tracking. Even though modality features in different layers are known to contain different cues, it is always challenging to build multimodal interactions in each layer due to struggling in balancing interaction capabilities and efficiency. Meanwhile, considering that the feature discrepancy between RGB and thermal modalities reflects their complementary information to some extent, we design a Difference-based Fusion Mamba (DFM) to achieve enhanced fusion of different modalities with linear complexity. When interacting with features from all layers, a huge number of token sequences (3840 tokens in this work) are involved and the computational burden is thus large. To handle this problem, we design an Order-dynamic Fusion Mamba (OFM) to execute efficient and effective feature interactions of all layers by dynamically adjusting the scan order of different layers in Mamba. Extensive experiments on four public RGBT tracking datasets show that AINet achieves leading performance against existing state-of-the-art methods.
☆ PFDiff: Training-free Acceleration of Diffusion Models through the Gradient Guidance of Past and Future
Diffusion Probabilistic Models (DPMs) have shown remarkable potential in image generation, but their sampling efficiency is hindered by the need for numerous denoising steps. Most existing solutions accelerate the sampling process by proposing fast ODE solvers. However, the inevitable discretization errors of the ODE solvers are significantly magnified when the number of function evaluations (NFE) is fewer. In this work, we propose PFDiff, a novel training-free and orthogonal timestep-skipping strategy, which enables existing fast ODE solvers to operate with fewer NFE. Based on two key observations: a significant similarity in the model's outputs at time step size that is not excessively large during the denoising process of existing ODE solvers, and a high resemblance between the denoising process and SGD. PFDiff, by employing gradient replacement from past time steps and foresight updates inspired by Nesterov momentum, rapidly updates intermediate states, thereby reducing unnecessary NFE while correcting for discretization errors inherent in first-order ODE solvers. Experimental results demonstrate that PFDiff exhibits flexible applicability across various pre-trained DPMs, particularly excelling in conditional DPMs and surpassing previous state-of-the-art training-free methods. For instance, using DDIM as a baseline, we achieved 16.46 FID (4 NFE) compared to 138.81 FID with DDIM on ImageNet 64x64 with classifier guidance, and 13.06 FID (10 NFE) on Stable Diffusion with 7.5 guidance scale.
☆ Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models
Medical image segmentation is crucial for clinical decision-making, but the scarcity of annotated data presents significant challenges. Few-shot segmentation (FSS) methods show promise but often require retraining on the target domain and struggle to generalize across different modalities. Similarly, adapting foundation models like the Segment Anything Model (SAM) for medical imaging has limitations, including the need for finetuning and domain-specific adaptation. To address these issues, we propose a novel method that adapts DINOv2 and Segment Anything Model 2 (SAM 2) for retrieval-augmented few-shot medical image segmentation. Our approach uses DINOv2's feature as query to retrieve similar samples from limited annotated data, which are then encoded as memories and stored in memory bank. With the memory attention mechanism of SAM 2, the model leverages these memories as conditions to generate accurate segmentation of the target image. We evaluated our framework on three medical image segmentation tasks, demonstrating superior performance and generalizability across various modalities without the need for any retraining or finetuning. Overall, this method offers a practical and effective solution for few-shot medical image segmentation and holds significant potential as a valuable annotation tool in clinical applications.
☆ PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors
Online vectorized High-Definition (HD) map construction is crucial for subsequent prediction and planning tasks in autonomous driving. Following MapTR paradigm, recent works have made noteworthy achievements. However, reference points are randomly initialized in mainstream methods, leading to unstable matching between predictions and ground truth. To address this issue, we introduce PriorMapNet to enhance online vectorized HD map construction with priors. We propose the PPS-Decoder, which provides reference points with position and structure priors. Fitted from the map elements in the dataset, prior reference points lower the learning difficulty and achieve stable matching. Furthermore, we propose the PF-Encoder to enhance the image-to-BEV transformation with BEV feature priors. Besides, we propose the DMD cross-attention, which decouples cross-attention along multi-scale and multi-sample respectively to achieve efficiency. Our proposed PriorMapNet achieves state-of-the-art performance in the online vectorized HD map construction task on nuScenes and Argoverse2 datasets. The code will be released publicly soon.
☆ Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer ECCV2024
Visual retrieval systems face significant challenges when updating models with improved representations due to misalignment between the old and new representations. The costly and resource-intensive backfilling process involves recalculating feature vectors for images in the gallery set whenever a new model is introduced. To address this, prior research has explored backward-compatible training methods that enable direct comparisons between new and old representations without backfilling. Despite these advancements, achieving a balance between backward compatibility and the performance of independently trained models remains an open problem. In this paper, we address it by expanding the representation space with additional dimensions and learning an orthogonal transformation to achieve compatibility with old models and, at the same time, integrate new information. This transformation preserves the original feature space's geometry, ensuring that our model aligns with previous versions while also learning new data. Our Orthogonal Compatible Aligned (OCA) approach eliminates the need for re-indexing during model updates and ensures that features can be compared directly across different model updates without additional mapping functions. Experimental results on CIFAR-100 and ImageNet-1k demonstrate that our method not only maintains compatibility with previous models but also achieves state-of-the-art accuracy, outperforming several existing methods.
comment: Accepted at BEW2024 Workshop at ECCV2024
☆ Assessing Generalization Capabilities of Malaria Diagnostic Models from Thin Blood Smears MICCAI 2024
Malaria remains a significant global health challenge, necessitating rapid and accurate diagnostic methods. While computer-aided diagnosis (CAD) tools utilizing deep learning have shown promise, their generalization to diverse clinical settings remains poorly assessed. This study evaluates the generalization capabilities of a CAD model for malaria diagnosis from thin blood smear images across four sites. We explore strategies to enhance generalization, including fine-tuning and incremental learning. Our results demonstrate that incorporating site-specific data significantly improves model performance, paving the way for broader clinical application.
comment: MICCAI 2024 AMAI Workshop, Accepted for presentation, Submitted Manuscript Version, 10 pages
☆ A Disease-Specific Foundation Model Using Over 100K Fundus Images: Release and Validation for Abnormality and Multi-Disease Classification on Downstream Tasks
Artificial intelligence applied to retinal images offers significant potential for recognizing signs and symptoms of retinal conditions and expediting the diagnosis of eye diseases and systemic disorders. However, developing generalized artificial intelligence models for medical data often requires a large number of labeled images representing various disease signs, and most models are typically task-specific, focusing on major retinal diseases. In this study, we developed a Fundus-Specific Pretrained Model (Image+Fundus), a supervised artificial intelligence model trained to detect abnormalities in fundus images. A total of 57,803 images were used to develop this pretrained model, which achieved superior performance across various downstream tasks, indicating that our proposed model outperforms other general methods. Our Image+Fundus model offers a generalized approach to improve model performance while reducing the number of labeled datasets required. Additionally, it provides more disease-specific insights into fundus images, with visualizations generated by our model. These disease-specific foundation models are invaluable in enhancing the performance and efficiency of deep learning models in the field of fundus imaging.
comment: 10 pages, 4 figures
☆ Multi-task Learning Approach for Intracranial Hemorrhage Prognosis
Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.
comment: 16 pages
☆ VF-NeRF: Learning Neural Vector Fields for Indoor Scene Reconstruction
Implicit surfaces via neural radiance fields (NeRF) have shown surprising accuracy in surface reconstruction. Despite their success in reconstructing richly textured surfaces, existing methods struggle with planar regions with weak textures, which account for the majority of indoor scenes. In this paper, we address indoor dense surface reconstruction by revisiting key aspects of NeRF in order to use the recently proposed Vector Field (VF) as the implicit representation. VF is defined by the unit vector directed to the nearest surface point. It therefore flips direction at the surface and equals to the explicit surface normals. Except for this flip, VF remains constant along planar surfaces and provides a strong inductive bias in representing planar surfaces. Concretely, we develop a novel density-VF relationship and a training scheme that allows us to learn VF via volume rendering By doing this, VF-NeRF can model large planar surfaces and sharp corners accurately. We show that, when depth cues are available, our method further improves and achieves state-of-the-art results in reconstructing indoor scenes and rendering novel views. We extensively evaluate VF-NeRF on indoor datasets and run ablations of its components.
comment: 15 pages
☆ PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
Masked autoencoder has been widely explored in point cloud self-supervised learning, whereby the point cloud is generally divided into visible and masked parts. These methods typically include an encoder accepting visible patches (normalized) and corresponding patch centers (position) as input, with the decoder accepting the output of the encoder and the centers (position) of the masked parts to reconstruct each point in the masked patches. Then, the pre-trained encoders are used for downstream tasks. In this paper, we show a motivating empirical result that when directly feeding the centers of masked patches to the decoder without information from the encoder, it still reconstructs well. In other words, the centers of patches are important and the reconstruction objective does not necessarily rely on representations of the encoder, thus preventing the encoder from learning semantic representations. Based on this key observation, we propose a simple yet effective method, i.e., learning to Predict Centers for Point Masked AutoEncoders (PCP-MAE) which guides the model to learn to predict the significant centers and use the predicted centers to replace the directly provided centers. Specifically, we propose a Predicting Center Module (PCM) that shares parameters with the original encoder with extra cross-attention to predict centers. Our method is of high pre-training efficiency compared to other alternatives and achieves great improvement over Point-MAE, particularly outperforming it by 5.50%, 6.03%, and 5.17% on three variants of ScanObjectNN. The code will be made publicly available.
☆ Comparative Analysis of Generative Models: Enhancing Image Synthesis with VAEs, GANs, and Stable Diffusion
This paper examines three major generative modelling frameworks: Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Stable Diffusion models. VAEs are effective at learning latent representations but frequently yield blurry results. GANs can generate realistic images but face issues such as mode collapse. Stable Diffusion models, while producing high-quality images with strong semantic coherence, are demanding in terms of computational resources. Additionally, the paper explores how incorporating Grounding DINO and Grounded SAM with Stable Diffusion improves image accuracy by utilising sophisticated segmentation and inpainting techniques. The analysis guides on selecting suitable models for various applications and highlights areas for further research.
☆ MicroSSIM: Improved Structural Similarity for Comparing Microscopy Data ECCV 24
Microscopy is routinely used to image biological structures of interest. Due to imaging constraints, acquired images are typically low-SNR and contain noise. Over the last few years, regression-based tasks like unsupervised denoising and splitting have found utility in working with such noisy micrographs. For evaluation, Structural Similarity (SSIM) is one of the most popular measures used in the field. For such tasks, the best evaluation would be when both low-SNR noisy images and corresponding high-SNR clean images are obtained directly from a microscope. However, due to the following three peculiar properties of the microscopy data, we observe that SSIM is not well suited to this data regime: (a) high-SNR micrographs have higher intensity pixels as compared to low SNR micrographs, (b) high-SNR micrographs have higher intensity pixels than found in natural images, images for which SSIM was developed, and (c) a digitally configurable offset is added by the detector present inside the microscope. We show that SSIM components behave unexpectedly when the prediction generated from low-SNR input is compared with the corresponding high-SNR data. We explain this behavior by introducing the phenomenon of saturation, where the value of SSIM components becomes less sensitive to (dis)similarity between the images. We introduce microSSIM, a variant of SSIM, which overcomes the above-discussed issues. We justify the soundness and utility of microSSIM using theoretical and empirical arguments and show the utility of microSSIM on two tasks: unsupervised denoising and joint image splitting with unsupervised denoising. Since our formulation can be applied to a broad family of SSIM-based measures, we also introduce MicroMS3IM, a microscopy-specific variation of MS-SSIM. The source code and python package is available at https://github.com/juglab/MicroSSIM.
comment: Accepted at BIC workshop, ECCV 24
☆ A lifted Bregman strategy for training unfolded proximal neural network Gaussian denoisers
Unfolded proximal neural networks (PNNs) form a family of methods that combines deep learning and proximal optimization approaches. They consist in designing a neural network for a specific task by unrolling a proximal algorithm for a fixed number of iterations, where linearities can be learned from prior training procedure. PNNs have shown to be more robust than traditional deep learning approaches while reaching at least as good performances, in particular in computational imaging. However, training PNNs still depends on the efficiency of available training algorithms. In this work, we propose a lifted training formulation based on Bregman distances for unfolded PNNs. Leveraging the deterministic mini-batch block-coordinate forward-backward method, we design a bespoke computational strategy beyond traditional back-propagation methods for solving the resulting learning problem efficiently. We assess the behaviour of the proposed training approach for PNNs through numerical simulations on image denoising, considering a denoising PNN whose structure is based on dual proximal-gradient iterations.
comment: 2024 IEEE International Workshop on Machine Learning for Signal Processing, Sept. 22--25, 2024, London, UK
☆ Task-Aware Dynamic Transformer for Efficient Arbitrary-Scale Image Super-Resolution
Arbitrary-scale super-resolution (ASSR) aims to learn a single model for image super-resolution at arbitrary magnifying scales. Existing ASSR networks typically comprise an off-the-shelf scale-agnostic feature extractor and an arbitrary scale upsampler. These feature extractors often use fixed network architectures to address different ASSR inference tasks, each of which is characterized by an input image and an upsampling scale. However, this overlooks the difficulty variance of super-resolution on different inference scenarios, where simple images or small SR scales could be resolved with less computational effort than difficult images or large SR scales. To tackle this difficulty variability, in this paper, we propose a Task-Aware Dynamic Transformer (TADT) as an input-adaptive feature extractor for efficient image ASSR. Our TADT consists of a multi-scale feature extraction backbone built upon groups of Multi-Scale Transformer Blocks (MSTBs) and a Task-Aware Routing Controller (TARC). The TARC predicts the inference paths within feature extraction backbone, specifically selecting MSTBs based on the input images and SR scales. The prediction of inference path is guided by a new loss function to trade-off the SR accuracy and efficiency. Experiments demonstrate that, when working with three popular arbitrary-scale upsamplers, our TADT achieves state-of-the-art ASSR performance when compared with mainstream feature extractors, but with relatively fewer computational costs. The code will be publicly released.
comment: ECAI 2024
☆ Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS
Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses--referred to as SfM-free methods--is crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions. Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS. However, most existing works rely on per-pixel image loss functions, such as L2 loss. In SfM-free methods, inaccurate initial poses lead to misalignment issue, which, under the constraints of per-pixel image loss functions, results in excessive gradients, causing unstable optimization and poor convergence for NVS. In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS. We use correspondences between the target and the rendered result to achieve better pixel alignment, facilitating the optimization of relative poses between frames. We then apply the learned poses to optimize the entire scene. Each 2D screen-space pixel is associated with its corresponding 3D Gaussians through approximated surface rendering to facilitate gradient back propagation. Experimental results underline the superior performance and time efficiency of the proposed approach compared to the state-of-the-art baselines.
comment: arXiv admin note: text overlap with arXiv:2312.07504 by other authors
☆ Decoupling Feature Representations of Ego and Other Modalities for Incomplete Multi-modal Brain Tumor Segmentation
Multi-modal brain tumor segmentation typically involves four magnetic resonance imaging (MRI) modalities, while incomplete modalities significantly degrade performance. Existing solutions employ explicit or implicit modality adaptation, aligning features across modalities or learning a fused feature robust to modality incompleteness. They share a common goal of encouraging each modality to express both itself and the others. However, the two expression abilities are entangled as a whole in a seamless feature space, resulting in prohibitive learning burdens. In this paper, we propose DeMoSeg to enhance the modality adaptation by Decoupling the task of representing the ego and other Modalities for robust incomplete multi-modal Segmentation. The decoupling is super lightweight by simply using two convolutions to map each modality onto four feature sub-spaces. The first sub-space expresses itself (Self-feature), while the remaining sub-spaces substitute for other modalities (Mutual-features). The Self- and Mutual-features interactively guide each other through a carefully-designed Channel-wised Sparse Self-Attention (CSSA). After that, a Radiologist-mimic Cross-modality expression Relationships (RCR) is introduced to have available modalities provide Self-feature and also `lend' their Mutual-features to compensate for the absent ones by exploiting the clinical prior knowledge. The benchmark results on BraTS2020, BraTS2018 and BraTS2015 verify the DeMoSeg's superiority thanks to the alleviated modality adaptation difficulty. Concretely, for BraTS2020, DeMoSeg increases Dice by at least 0.92%, 2.95% and 4.95% on whole tumor, tumor core and enhanced tumor regions, respectively, compared to other state-of-the-arts. Codes are at https://github.com/kk42yy/DeMoSeg
comment: 8 pages, 4 figures
☆ Beyond the Hype: A dispassionate look at vision-language models in medical scenario
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across diverse tasks, garnering significant attention in AI communities. However, their performance and reliability in specialized domains such as medicine remain insufficiently assessed. In particular, most assessments over-concentrate in evaluating VLMs based on simple Visual Question Answering (VQA) on multi-modality data, while ignoring the in-depth characteristic of LVLMs. In this study, we introduce RadVUQA, a novel Radiological Visual Understanding and Question Answering benchmark, to comprehensively evaluate existing LVLMs. RadVUQA mainly validates LVLMs across five dimensions: 1) Anatomical understanding, assessing the models' ability to visually identify biological structures; 2) Multimodal comprehension, which involves the capability of interpreting linguistic and visual instructions to produce desired outcomes; 3) Quantitative and spatial reasoning, evaluating the models' spatial awareness and proficiency in combining quantitative analysis with visual and linguistic information; 4) Physiological knowledge, measuring the models' capability to comprehend functions and mechanisms of organs and systems; and 5) Robustness, which assesses the models' capabilities against unharmonised and synthetic data. The results indicate that both generalized LVLMs and medical-specific LVLMs have critical deficiencies with weak multimodal comprehension and quantitative reasoning capabilities. Our findings reveal the large gap between existing LVLMs and clinicians, highlighting the urgent need for more robust and intelligent LVLMs. The code and dataset will be available after the acceptance of this paper.
comment: 10 pages
☆ TsCA: On the Semantic Consistency Alignment via Conditional Transport for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to recognize novel \textit{state-object} compositions by leveraging the shared knowledge of their primitive components. Despite considerable progress, effectively calibrating the bias between semantically similar multimodal representations, as well as generalizing pre-trained knowledge to novel compositional contexts, remains an enduring challenge. In this paper, our interest is to revisit the conditional transport (CT) theory and its homology to the visual-semantics interaction in CZSL and further, propose a novel Trisets Consistency Alignment framework (dubbed TsCA) that well-addresses these issues. Concretely, we utilize three distinct yet semantically homologous sets, i.e., patches, primitives, and compositions, to construct pairwise CT costs to minimize their semantic discrepancies. To further ensure the consistency transfer within these sets, we implement a cycle-consistency constraint that refines the learning by guaranteeing the feature consistency of the self-mapping during transport flow, regardless of modality. Moreover, we extend the CT plans to an open-world setting, which enables the model to effectively filter out unfeasible pairs, thereby speeding up the inference as well as increasing the accuracy. Extensive experiments are conducted to verify the effectiveness of the proposed method.
☆ HyCoT: Hyperspectral Compression Transformer with an Efficient Training Strategy
The development of learning-based hyperspectral image (HSI) compression models has recently attracted significant interest. Existing models predominantly utilize convolutional filters, which capture only local dependencies. Furthermore, they often incur high training costs and exhibit substantial computational complexity. To address these limitations, in this paper we propose Hyperspectral Compression Transformer (HyCoT) that is a transformer-based autoencoder for pixelwise HSI compression. Additionally, we introduce an efficient training strategy to accelerate the training process. Experimental results on the HySpecNet-11k dataset demonstrate that HyCoT surpasses the state-of-the-art across various compression ratios by over 1 dB with significantly reduced computational requirements. Our code and pre-trained weights are publicly available at https://git.tu-berlin.de/rsim/hycot .
☆ LLM-PCGC: Large Language Model-based Point Cloud Geometry Compression
The key to effective point cloud compression is to obtain a robust context model consistent with complex 3D data structures. Recently, the advancement of large language models (LLMs) has highlighted their capabilities not only as powerful generators for in-context learning and generation but also as effective compressors. These dual attributes of LLMs make them particularly well-suited to meet the demands of data compression. Therefore, this paper explores the potential of using LLM for compression tasks, focusing on lossless point cloud geometry compression (PCGC) experiments. However, applying LLM directly to PCGC tasks presents some significant challenges, i.e., LLM does not understand the structure of the point cloud well, and it is a difficult task to fill the gap between text and point cloud through text description, especially for large complicated and small shapeless point clouds. To address these problems, we introduce a novel architecture, namely the Large Language Model-based Point Cloud Geometry Compression (LLM-PCGC) method, using LLM to compress point cloud geometry information without any text description or aligning operation. By utilizing different adaptation techniques for cross-modality representation alignment and semantic consistency, including clustering, K-tree, token mapping invariance, and Low Rank Adaptation (LoRA), the proposed method can translate LLM to a compressor/generator for point cloud. To the best of our knowledge, this is the first structure to employ LLM as a compressor for point cloud data. Experiments demonstrate that the LLM-PCGC outperforms the other existing methods significantly, by achieving -40.213% bit rate reduction compared to the reference software of MPEG Geometry-based Point Cloud Compression (G-PCC) standard, and by achieving -2.267% bit rate reduction compared to the state-of-the-art learning-based method.
☆ Towards Physical World Backdoor Attacks against Skeleton Action Recognition ECCV 2024
Skeleton Action Recognition (SAR) has attracted significant interest for its efficient representation of the human skeletal structure. Despite its advancements, recent studies have raised security concerns in SAR models, particularly their vulnerability to adversarial attacks. However, such strategies are limited to digital scenarios and ineffective in physical attacks, limiting their real-world applicability. To investigate the vulnerabilities of SAR in the physical world, we introduce the Physical Skeleton Backdoor Attacks (PSBA), the first exploration of physical backdoor attacks against SAR. Considering the practicalities of physical execution, we introduce a novel trigger implantation method that integrates infrequent and imperceivable actions as triggers into the original skeleton data. By incorporating a minimal amount of this manipulated data into the training set, PSBA enables the system misclassify any skeleton sequences into the target class when the trigger action is present. We examine the resilience of PSBA in both poisoned and clean-label scenarios, demonstrating its efficacy across a range of datasets, poisoning ratios, and model architectures. Additionally, we introduce a trigger-enhancing strategy to strengthen attack performance in the clean label setting. The robustness of PSBA is tested against three distinct backdoor defenses, and the stealthiness of PSBA is evaluated using two quantitative metrics. Furthermore, by employing a Kinect V2 camera, we compile a dataset of human actions from the real world to mimic physical attack situations, with our findings confirming the effectiveness of our proposed attacks. Our project website can be found at https://qichenzheng.github.io/psba-website.
comment: Accepted by ECCV 2024
☆ Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning
Recently, foundation models based on Vision Transformers (ViTs) have become widely available. However, their fine-tuning process is highly resource-intensive, and it hinders their adoption in several edge or low-energy applications. To this end, in this paper we introduce an efficient fine-tuning method for ViTs called $\textbf{ALaST}$ ($\textit{Adaptive Layer Selection Fine-Tuning for Vision Transformers}$) to speed up the fine-tuning process while reducing computational cost, memory load, and training time. Our approach is based on the observation that not all layers are equally critical during fine-tuning, and their importance varies depending on the current mini-batch. Therefore, at each fine-tuning step, we adaptively estimate the importance of all layers and we assign what we call ``compute budgets'' accordingly. Layers that were allocated lower budgets are either trained with a reduced number of input tokens or kept frozen. Freezing a layer reduces the computational cost and memory usage by preventing updates to its weights, while discarding tokens removes redundant data, speeding up processing and reducing memory requirements. We show that this adaptive compute allocation enables a nearly-optimal schedule for distributing computational resources across layers, resulting in substantial reductions in training time (up to 1.5x), FLOPs (up to 2x), and memory load (up to 2x) compared to traditional full fine-tuning approaches. Additionally, it can be successfully combined with other parameter-efficient fine-tuning methods, such as LoRA.
☆ QMambaBSR: Burst Image Super-Resolution with Query State Space Model
Burst super-resolution aims to reconstruct high-resolution images with higher quality and richer details by fusing the sub-pixel information from multiple burst low-resolution frames. In BusrtSR, the key challenge lies in extracting the base frame's content complementary sub-pixel details while simultaneously suppressing high-frequency noise disturbance. Existing methods attempt to extract sub-pixels by modeling inter-frame relationships frame by frame while overlooking the mutual correlations among multi-current frames and neglecting the intra-frame interactions, leading to inaccurate and noisy sub-pixels for base frame super-resolution. Further, existing methods mainly employ static upsampling with fixed parameters to improve spatial resolution for all scenes, failing to perceive the sub-pixel distribution difference across multiple frames and cannot balance the fusion weights of different frames, resulting in over-smoothed details and artifacts. To address these limitations, we introduce a novel Query Mamba Burst Super-Resolution (QMambaBSR) network, which incorporates a Query State Space Model (QSSM) and Adaptive Up-sampling module (AdaUp). Specifically, based on the observation that sub-pixels have consistent spatial distribution while random noise is inconsistently distributed, a novel QSSM is proposed to efficiently extract sub-pixels through inter-frame querying and intra-frame scanning while mitigating noise interference in a single step. Moreover, AdaUp is designed to dynamically adjust the upsampling kernel based on the spatial distribution of multi-frame sub-pixel information in the different burst scenes, thereby facilitating the reconstruction of the spatial arrangement of high-resolution details. Extensive experiments on four popular synthetic and real-world benchmarks demonstrate that our method achieves a new state-of-the-art performance.
☆ Modeling the Neonatal Brain Development Using Implicit Neural Representations MICCAI 2024
The human brain undergoes rapid development during the third trimester of pregnancy. In this work, we model the neonatal development of the infant brain in this age range. As a basis, we use MR images of preterm- and term-birth neonates from the developing human connectome project (dHCP). We propose a neural network, specifically an implicit neural representation (INR), to predict 2D- and 3D images of varying time points. In order to model a subject-specific development process, it is necessary to disentangle the age from the subjects' identity in the latent space of the INR. We propose two methods, Subject Specific Latent Vectors (SSL) and Stochastic Global Latent Augmentation (SGLA), enabling this disentanglement. We perform an analysis of the results and compare our proposed model to an age-conditioned denoising diffusion model as a baseline. We also show that our method can be applied in a memory-efficient way, which is especially important for 3D data.
comment: Preprint, Accepted for PRIME MICCAI 2024
☆ Extracting polygonal footprints in off-nadir images with Segment Anything Model
Building Footprint Extraction (BFE) in off-nadir aerial images often relies on roof segmentation and roof-to-footprint offset prediction, then drugging roof-to-footprint via the offset. However, the results from this multi-stage inference are not applicable in data production, because of the low quality of masks given by prediction. To solve this problem, we proposed OBMv2 in this paper, which supports both end-to-end and promptable polygonal footprint prediction. Different from OBM, OBMv2 using a newly proposed Self Offset Attention (SOFA) to bridge the performance gap on bungalow and skyscraper, which realized a real end-to-end footprint polygon prediction without postprocessing. %, such as Non-Maximum Suppression (NMS) and Distance NMS (DNMS). % To fully use information contained in roof masks, building masks and offsets, we proposed a Multi-level Information SyStem (MISS) for footprint prediction, with which OBMv2 can predict footprints even with insufficient predictions. Additionally, to squeeze information from the same model, we were inspired by Retrieval-Augmented Generation (RAG) in Nature Language Processing and proposed "RAG in BFE" problem. To verify the effectiveness of the proposed method, experiments were conducted on open datasets BONAI and OmniCity-view3. A generalization test was also conducted on Huizhou test set. The code will be available at \url{https://github.com/likaiucas/OBM}.
☆ Historical Printed Ornaments: Dataset and Tasks
This paper aims to develop the study of historical printed ornaments with modern unsupervised computer vision. We highlight three complex tasks that are of critical interest to book historians: clustering, element discovery, and unsupervised change localization. For each of these tasks, we introduce an evaluation benchmark, and we adapt and evaluate state-of-the-art models. Our Rey's Ornaments dataset is designed to be a representative example of a set of ornaments historians would be interested in. It focuses on an XVIIIth century bookseller, Marc-Michel Rey, providing a consistent set of ornaments with a wide diversity and representative challenges. Our results highlight the limitations of state-of-the-art models when faced with real data and show simple baselines such as k-means or congealing can outperform more sophisticated approaches on such data. Our dataset and code can be found at https://printed-ornaments.github.io/.
☆ A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of \textbf{180 benchmarks} and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
☆ SketchRef: A Benchmark Dataset and Evaluation Metrics for Automated Sketch Synthesis
Sketch, a powerful artistic technique to capture essential visual information about real-world objects, is increasingly gaining attention in the image synthesis field. However, evaluating the quality of synthesized sketches presents unique unsolved challenges. Current evaluation methods for sketch synthesis are inadequate due to the lack of a unified benchmark dataset, over-reliance on classification accuracy for recognizability, and unfair evaluation of sketches with different levels of simplification. To address these issues, we introduce SketchRef, a benchmark dataset comprising 4 categories of reference photos--animals, human faces, human bodies, and common objects--alongside novel evaluation metrics. Considering that classification accuracy is insufficient to measure the structural consistency between a sketch and its reference photo, we propose the mean Object Keypoint Similarity (mOKS) metric, utilizing pose estimation to assess structure-level recognizability. To ensure fair evaluation sketches with different simplification levels, we propose a recognizability calculation method constrained by simplicity. We also collect 8K responses from art enthusiasts, validating the effectiveness of our proposed evaluation methods. We hope this work can provide a comprehensive evaluation of sketch synthesis algorithms, thereby aligning their performance more closely with human understanding.
☆ Reference-free Axial Super-resolution of 3D Microscopy Images using Implicit Neural Representation with a 2D Diffusion Prior MICCAI2024
Analysis and visualization of 3D microscopy images pose challenges due to anisotropic axial resolution, demanding volumetric super-resolution along the axial direction. While training a learning-based 3D super-resolution model seems to be a straightforward solution, it requires ground truth isotropic volumes and suffers from the curse of dimensionality. Therefore, existing methods utilize 2D neural networks to reconstruct each axial slice, eventually piecing together the entire volume. However, reconstructing each slice in the pixel domain fails to give consistent reconstruction in all directions leading to misalignment artifacts. In this work, we present a reconstruction framework based on implicit neural representation (INR), which allows 3D coherency even when optimized by independent axial slices in a batch-wise manner. Our method optimizes a continuous volumetric representation from low-resolution axial slices, using a 2D diffusion prior trained on high-resolution lateral slices without requiring isotropic volumes. Through experiments on real and synthetic anisotropic microscopy images, we demonstrate that our method surpasses other state-of-the-art reconstruction methods. The source code is available on GitHub: https://github.com/hvcl/INR-diffusion.
comment: MICCAI2024 accepted
☆ Generative Dataset Distillation Based on Diffusion Model ECCV 2024
This paper presents our method for the generative track of The First Dataset Distillation Challenge at ECCV 2024. Since the diffusion model has become the mainstay of generative models because of its high-quality generative effects, we focus on distillation methods based on the diffusion model. Considering that the track can only generate a fixed number of images in 10 minutes using a generative model for CIFAR-100 and Tiny-ImageNet datasets, we need to use a generative model that can generate images at high speed. In this study, we proposed a novel generative dataset distillation method based on Stable Diffusion. Specifically, we use the SDXL-Turbo model which can generate images at high speed and quality. Compared to other diffusion models that can only generate images per class (IPC) = 1, our method can achieve an IPC = 10 for Tiny-ImageNet and an IPC = 20 for CIFAR-100, respectively. Additionally, to generate high-quality distilled datasets for CIFAR-100 and Tiny-ImageNet, we use the class information as text prompts and post data augmentation for the SDXL-Turbo model. Experimental results show the effectiveness of the proposed method, and we achieved third place in the generative track of the ECCV 2024 DD Challenge. Codes are available at https://github.com/Guang000/BANKO.
comment: The Third Place Winner in Generative Track of the ECCV 2024 DD Challenge
☆ Bi-Directional Deep Contextual Video Compression
Deep video compression has made remarkable process in recent years, with the majority of advancements concentrated on P-frame coding. Although efforts to enhance B-frame coding are ongoing, their compression performance is still far behind that of traditional bi-directional video codecs. In this paper, we introduce a bi-directional deep contextual video compression scheme tailored for B-frames, termed DCVC-B, to improve the compression performance of deep B-frame coding. Our scheme mainly has three key innovations. First, we develop a bi-directional motion difference context propagation method for effective motion difference coding, which significantly reduces the bit cost of bi-directional motions. Second, we propose a bi-directional contextual compression model and a corresponding bi-directional temporal entropy model, to make better use of the multi-scale temporal contexts. Third, we propose a hierarchical quality structure-based training strategy, leading to an effective bit allocation across large groups of pictures (GOP). Experimental results show that our DCVC-B achieves an average reduction of 26.6% in BD-Rate compared to the reference software for H.265/HEVC under random access conditions. Remarkably, it surpasses the performance of the H.266/VVC reference software on certain test datasets under the same configuration.
☆ Learning A Low-Level Vision Generalist via Visual Task Prompt
Building a unified model for general low-level vision tasks holds significant research and practical value. Current methods encounter several critical issues. Multi-task restoration approaches can address multiple degradation-to-clean restoration tasks, while their applicability to tasks with different target domains (e.g., image stylization) is limited. Methods like PromptGIP can handle multiple input-target domains but rely on the Masked Autoencoder (MAE) paradigm. Consequently, they are tied to the ViT architecture, resulting in suboptimal image reconstruction quality. In addition, these methods are sensitive to prompt image content and often struggle with low-frequency information processing. In this paper, we propose a Visual task Prompt-based Image Processing (VPIP) framework to overcome these challenges. VPIP employs visual task prompts to manage tasks with different input-target domains and allows flexible selection of backbone network suitable for general tasks. Besides, a new prompt cross-attention is introduced to facilitate interaction between the input and prompt information. Based on the VPIP framework, we train a low-level vision generalist model, namely GenLV, on 30 diverse tasks. Experimental results show that GenLV can successfully address a variety of low-level tasks, significantly outperforming existing methods both quantitatively and qualitatively. Codes are available at https://github.com/chxy95/GenLV.
comment: Accepted to ACMMM24
☆ MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis. Although fully convolutional neural networks (CNNs) are commonly employed for segmentation, they are constrained by inductive biases and face challenges in establishing long-range dependencies. Transformer-based models address these limitations but introduce substantial computational overhead. Recently, a simple yet efficient Multilayer Perceptron (MLP) architecture was proposed for image classification, achieving competitive performance relative to advanced transformers. However, its effectiveness for ophthalmic image segmentation remains unexplored. In this paper, we introduce MM-UNet, an efficient Mixed MLP model tailored for ophthalmic image segmentation. Within MM-UNet, we propose a multi-scale MLP (MMLP) module that facilitates the interaction of features at various depths through a grouping strategy, enabling simultaneous capture of global and local information. We conducted extensive experiments on both a private anterior segment optical coherence tomography (AS-OCT) image dataset and a public fundus image dataset. The results demonstrated the superiority of our MM-UNet model in comparison to state-of-the-art deep segmentation networks.
comment: OMIA2024
☆ Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation CVPR 2024
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods by enabling the identification of both previously seen and unseen objects in real-world scenarios. It leverages a dual-modality approach, utilizing both 3D point clouds and 2D multi-view images to generate class-agnostic object mask proposals. Previous efforts predominantly focused on enhancing 3D mask proposal models; consequently, the information that could come from 2D association to 3D was not fully exploited. This bias towards 3D data, while effective for familiar indoor objects, limits the system's adaptability to new and varied object types, where 2D models offer greater utility. Addressing this gap, we introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities. Our framework comprises three components: 3D pathway, 2D pathway, and Dual-Path Integration. 3D pathway generates spatially accurate class-agnostic mask proposals of common indoor objects from 3D point cloud data using a pre-trained 3D model, while 2D pathway utilizes pre-trained open-vocabulary instance segmentation model to identify a diverse array of object proposals from multi-view RGB-D images. In Dual-Path Integration, our Conditional Integration process, which operates in two stages, filters and merges the proposals from both pathways adaptively. This process harmonizes output proposals to enhance segmentation capabilities. Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data, as evidenced by comprehensive evaluations on the ScanNet200 and qualitative results on ARKitScenes datasets.
comment: OpenSUN 3D: 2nd Workshop on Open-Vocabulary 3D Scene Understanding (CVPR 2024)
☆ S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
As artificial intelligence (AI) technology advances, ensuring the robustness and safety of AI-driven systems has become paramount. However, varying perceptions of robustness among AI developers create misaligned evaluation metrics, complicating the assessment and certification of safety-critical and complex AI systems such as autonomous driving (AD) agents. To address this challenge, we introduce Simulation-Based Robustness Assessment Framework (S-RAF) for autonomous driving. S-RAF leverages the CARLA Driving simulator to rigorously assess AD agents across diverse conditions, including faulty sensors, environmental changes, and complex traffic situations. By quantifying robustness and its relationship with other safety-critical factors, such as carbon emissions, S-RAF aids developers and stakeholders in building safe and responsible driving agents, and streamlining safety certification processes. Furthermore, S-RAF offers significant advantages, such as reduced testing costs, and the ability to explore edge cases that may be unsafe to test in the real world. The code for this framework is available here: https://github.com/cognitive-robots/rai-leaderboard
☆ TAMER: Tree-Aware Transformer for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) has extensive applications in automated grading and office automation. However, existing sequence-based decoding methods, which directly predict $\LaTeX$ sequences, struggle to understand and model the inherent tree structure of $\LaTeX$ and often fail to ensure syntactic correctness in the decoded results. To address these challenges, we propose a novel model named TAMER (Tree-Aware Transformer) for handwritten mathematical expression recognition. TAMER introduces an innovative Tree-aware Module while maintaining the flexibility and efficient training of Transformer. TAMER combines the advantages of both sequence decoding and tree decoding models by jointly optimizing sequence prediction and tree structure prediction tasks, which enhances the model's understanding and generalization of complex mathematical expression structures. During inference, TAMER employs a Tree Structure Prediction Scoring Mechanism to improve the structural validity of the generated $\LaTeX$ sequences. Experimental results on CROHME datasets demonstrate that TAMER outperforms traditional sequence decoding and tree decoding models, especially in handling complex mathematical structures, achieving state-of-the-art (SOTA) performance.
☆ Tuning a SAM-Based Model with Multi-Cognitive Visual Adapter to Remote Sensing Instance Segmentation
The Segment Anything Model (SAM), a foundational model designed for promptable segmentation tasks, demonstrates exceptional generalization capabilities, making it highly promising for natural scene image segmentation. However, SAM's lack of pretraining on massive remote sensing images and its interactive structure limit its automatic mask prediction capabilities. In this paper, a Multi-Cognitive SAM-Based Instance Segmentation Model (MC-SAM SEG) is introduced to employ SAM on remote sensing domain. The SAM-Mona encoder utilizing the Multi-cognitive Visual Adapter (Mona) is conducted to facilitate SAM's transfer learning in remote sensing applications. The proposed method named MC-SAM SEG extracts high-quality features by fine-tuning the SAM-Mona encoder along with a feature aggregator. Subsequently, a pixel decoder and transformer decoder are designed for prompt-free mask generation and instance classification. The comprehensive experiments are conducted on the HRSID and WHU datasets for instance segmentation tasks on Synthetic Aperture Radar (SAR) images and optical remote sensing images respectively. The evaluation results indicate the proposed method surpasses other deep learning algorithms and verify its effectiveness and generalization.
Tell Codec What Worth Compressing: Semantically Disentangled Image Coding for Machine with LMMs
We present a new image compression paradigm to achieve ``intelligently coding for machine'' by cleverly leveraging the common sense of Large Multimodal Models (LMMs). We are motivated by the evidence that large language/multimodal models are powerful general-purpose semantics predictors for understanding the real world. Different from traditional image compression typically optimized for human eyes, the image coding for machines (ICM) framework we focus on requires the compressed bitstream to more comply with different downstream intelligent analysis tasks. To this end, we employ LMM to \textcolor{red}{tell codec what to compress}: 1) first utilize the powerful semantic understanding capability of LMMs w.r.t object grounding, identification, and importance ranking via prompts, to disentangle image content before compression, 2) and then based on these semantic priors we accordingly encode and transmit objects of the image in order with a structured bitstream. In this way, diverse vision benchmarks including image classification, object detection, instance segmentation, etc., can be well supported with such a semantically structured bitstream. We dub our method ``\textit{SDComp}'' for ``\textit{S}emantically \textit{D}isentangled \textit{Comp}ression'', and compare it with state-of-the-art codecs on a wide variety of different vision tasks. SDComp codec leads to more flexible reconstruction results, promised decoded visual quality, and a more generic/satisfactory intelligent task-supporting ability.
☆ EraW-Net: Enhance-Refine-Align W-Net for Scene-Associated Driver Attention Estimation
Associating driver attention with driving scene across two fields of views (FOVs) is a hard cross-domain perception problem, which requires comprehensive consideration of cross-view mapping, dynamic driving scene analysis, and driver status tracking. Previous methods typically focus on a single view or map attention to the scene via estimated gaze, failing to exploit the implicit connection between them. Moreover, simple fusion modules are insufficient for modeling the complex relationships between the two views, making information integration challenging. To address these issues, we propose a novel method for end-to-end scene-associated driver attention estimation, called EraW-Net. This method enhances the most discriminative dynamic cues, refines feature representations, and facilitates semantically aligned cross-domain integration through a W-shaped architecture, termed W-Net. Specifically, a Dynamic Adaptive Filter Module (DAF-Module) is proposed to address the challenges of frequently changing driving environments by extracting vital regions. It suppresses the indiscriminately recorded dynamics and highlights crucial ones by innovative joint frequency-spatial analysis, enhancing the model's ability to parse complex dynamics. Additionally, to track driver states during non-fixed facial poses, we propose a Global Context Sharing Module (GCS-Module) to construct refined feature representations by capturing hierarchical features that adapt to various scales of head and eye movements. Finally, W-Net achieves systematic cross-view information integration through its "Encoding-Independent Partial Decoding-Fusion Decoding" structure, addressing semantic misalignment in heterogeneous data integration. Experiments demonstrate that the proposed method robustly and accurately estimates the mapping of driver attention in scene on large public datasets.
comment: 13pages, 9 figures,
☆ Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models
In this paper, we propose a novel learning-based framework for non-rigid point cloud matching, which can be trained purely on point clouds without any correspondence annotation but also be extended naturally to partial-to-full matching. Our key insight is to incorporate semantic features derived from large vision models (LVMs) to geometry-based shape feature learning. Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries. Furthermore, our framework also enjoys the strong generalizability and robustness regarding partial observations of LVMs, leading to improvements in the regarding point cloud matching tasks. In order to achieve the above, we propose a pixel-to-point feature aggregation module, a local and global attention network as well as a geometrical similarity loss function. Experimental results show that our method achieves state-of-the-art results in matching non-rigid point clouds in both near-isometric and heterogeneous shape collection as well as more realistic partial and noisy data.
comment: 12 pages, 4 figures
☆ S$^3$Attention: Improving Long Sequence Attention with Smoothed Skeleton Sketching
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks. Various improved Attention structures are proposed to reduce the computation cost by inducing low rankness and approximating the whole sequence by sub-sequences. The most challenging part of those approaches is maintaining the proper balance between information preservation and computation reduction: the longer sub-sequences used, the better information is preserved, but at the price of introducing more noise and computational costs. In this paper, we propose a smoothed skeleton sketching based Attention structure, coined S$^3$Attention, which significantly improves upon the previous attempts to negotiate this trade-off. S$^3$Attention has two mechanisms to effectively minimize the impact of noise while keeping the linear complexity to the sequence length: a smoothing block to mix information over long sequences and a matrix sketching method that simultaneously selects columns and rows from the input matrix. We verify the effectiveness of S$^3$Attention both theoretically and empirically. Extensive studies over Long Range Arena (LRA) datasets and six time-series forecasting show that S$^3$Attention significantly outperforms both vanilla Attention and other state-of-the-art variants of Attention structures.
☆ A New Chinese Landscape Paintings Generation Model based on Stable Diffusion using DreamBooth HPCA
This study mainly introduces a method combining the Stable Diffusion Model (SDM) and Parameter-Efficient Fine-Tuning method for generating Chinese Landscape Paintings. This training process is accelerated by combining LoRA with pre-trained SDM and DreamBooth with pre-trained SDM, respectively. On the Chinese Landscape Paintings Internet dataset used in this paper, this study finds that SDM combined with DreamBooth exhibits superior performance, outperforming other models, including the generic pre-trained SDM and LoRA-based fine-tuning SDM. The SDM combined with DreamBooth achieves a FID of 12.75 on the dataset and outperforms all other models in terms of expert evaluation, highlighting the model's versatility in the field of Chinese Landscape Paintings given the unique identifier, high fidelity and high quality. This study illustrates the potential of specialised fine-tuning method to improve the performance of SDM on domain-specific tasks, particularly in the domain of Landscape Paintings.
comment: accepted by AHPCAI
☆ A training regime to learn unified representations from complementary breast imaging modalities
Full Field Digital Mammograms (FFDMs) and Digital Breast Tomosynthesis (DBT) are the two most widely used imaging modalities for breast cancer screening. Although DBT has increased cancer detection compared to FFDM, its widespread adoption in clinical practice has been slowed by increased interpretation times and a perceived decrease in the conspicuity of specific lesion types. Specifically, the non-inferiority of DBT for microcalcifications remains under debate. Due to concerns about the decrease in visual acuity, combined DBT-FFDM acquisitions remain popular, leading to overall increased exam times and radiation dosage. Enabling DBT to provide diagnostic information present in both FFDM and DBT would reduce reliance on FFDM, resulting in a reduction in both quantities. We propose a machine learning methodology that learns high-level representations leveraging the complementary diagnostic signal from both DBT and FFDM. Experiments on a large-scale data set validate our claims and show that our representations enable more accurate breast lesion detection than any DBT- or FFDM-based model.
Detection and tracking of MAVs using a LiDAR with rosette scanning pattern
The usage of commercial Micro Aerial Vehicles (MAVs) has increased drastically during the last decade. While the added value of MAVs to society is apparent, their growing use is also coming with increasing risks like violating public airspace at airports or committing privacy violations. To mitigate these issues it is becoming critical to develop solutions that incorporate the detection and tracking of MAVs with autonomous systems. This work presents a method for the detection and tracking of MAVs using a novel, low-cost rosette scanning LiDAR on a pan-tilt turret. Once the static background is captured, a particle filter is utilized to detect a possible target and track its position with a physical, programmable pan-tilt system. The tracking makes it possible to keep the MAV in the center, maximizing the density of 3D points measured on the target by the LiDAR sensor. The developed algorithm was evaluated within the indoor MIcro aerial vehicle and MOtion capture (MIMO) arena and has state-of-the-art tracking accuracy, stability, and fast re-detection time in case of tracking loss. Based on the outdoor tests, it was possible to significantly increase the detection distance and number of returned points compared to other similar methods using LiDAR.
☆ Scaling up Multimodal Pre-training for Sign Language Understanding
Sign language serves as the primary meaning of communication for the deaf-mute community. Different from spoken language, it commonly conveys information by the collaboration of manual features, i.e., hand gestures and body movements, and non-manual features, i.e., facial expressions and mouth cues. To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied in recent years, including isolated/continuous sign language recognition (ISLR/CSLR), gloss-free sign language translation (GF-SLT) and sign language retrieval (SL-RT). Sign language recognition and translation aims to understand the semantic meaning conveyed by sign languages from gloss-level and sentence-level, respectively. In contrast, SL-RT focuses on retrieving sign videos or corresponding texts from a closed-set under the query-by-example search paradigm. These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos. To advance the development of sign language understanding, exploring a generalized model that is applicable across various SLU tasks is a profound research direction.
comment: Sign language recognition; Sign language translation; Sign language retrieval
☆ Language-Driven Interactive Shadow Detection ACM MM 2024
Traditional shadow detectors often identify all shadow regions of static images or video sequences. This work presents the Referring Video Shadow Detection (RVSD), which is an innovative task that rejuvenates the classic paradigm by facilitating the segmentation of particular shadows in videos based on descriptive natural language prompts. This novel RVSD not only achieves segmentation of arbitrary shadow areas of interest based on descriptions (flexibility) but also allows users to interact with visual content more directly and naturally by using natural language prompts (interactivity), paving the way for abundant applications ranging from advanced video editing to virtual reality experiences. To pioneer the RVSD research, we curated a well-annotated RVSD dataset, which encompasses 86 videos and a rich set of 15,011 paired textual descriptions with corresponding shadows. To the best of our knowledge, this dataset is the first one for addressing RVSD. Based on this dataset, we propose a Referring Shadow-Track Memory Network (RSM-Net) for addressing the RVSD task. In our RSM-Net, we devise a Twin-Track Synergistic Memory (TSM) to store intra-clip memory features and hierarchical inter-clip memory features, and then pass these memory features into a memory read module to refine features of the current video frame for referring shadow detection. We also develop a Mixed-Prior Shadow Attention (MSA) to utilize physical priors to obtain a coarse shadow map for learning more visual features by weighting it with the input video frame. Experimental results show that our RSM-Net achieves state-of-the-art performance for RVSD with a notable Overall IOU increase of 4.4\%. Our code and dataset are available at https://github.com/whq-xxh/RVSD.
comment: ACM MM 2024
☆ Privacy-Preserving Vision Transformer Using Images Encrypted with Restricted Random Permutation Matrices
We propose a novel method for privacy-preserving fine-tuning vision transformers (ViTs) with encrypted images. Conventional methods using encrypted images degrade model performance compared with that of using plain images due to the influence of image encryption. In contrast, the proposed encryption method using restricted random permutation matrices can provide a higher performance than the conventional ones.
comment: 4 pages, 9 figures
☆ Focus on Focus: Focus-oriented Representation Learning and Multi-view Cross-modal Alignment for Glioma Grading
Recently, multimodal deep learning, which integrates histopathology slides and molecular biomarkers, has achieved a promising performance in glioma grading. Despite great progress, due to the intra-modality complexity and inter-modality heterogeneity, existing studies suffer from inadequate histopathology representation learning and inefficient molecular-pathology knowledge alignment. These two issues hinder existing methods to precisely interpret diagnostic molecular-pathology features, thereby limiting their grading performance. Moreover, the real-world applicability of existing multimodal approaches is significantly restricted as molecular biomarkers are not always available during clinical deployment. To address these problems, we introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference, enhancing molecular-pathology representation effectively. Specifically, we propose a Focus-oriented Representation Learning (FRL) module to encourage the model to identify regions positively or negatively related to glioma grading and guide it to focus on the diagnostic areas with a consistency constraint. To effectively link the molecular biomarkers to morphological features, we propose a Multi-view Cross-modal Alignment (MCA) module that projects histopathology representations into molecular subspaces, aligning morphological features with corresponding molecular biomarker status by supervised contrastive learning. Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading. Remarkably, our FoF achieves superior performance using only histopathology slides compared to existing multimodal methods. The source code is available at https://github.com/peterlipan/FoF.
☆ GS-ID: Illumination Decomposition on Gaussian Splatting via Diffusion Prior and Parametric Light Source Optimization
We present GS-ID, a novel framework for illumination decomposition on Gaussian Splatting, achieving photorealistic novel view synthesis and intuitive light editing. Illumination decomposition is an ill-posed problem facing three main challenges: 1) priors for geometry and material are often lacking; 2) complex illumination conditions involve multiple unknown light sources; and 3) calculating surface shading with numerous light sources is computationally expensive. To address these challenges, we first introduce intrinsic diffusion priors to estimate the attributes for physically based rendering. Then we divide the illumination into environmental and direct components for joint optimization. Last, we employ deferred rendering to reduce the computational load. Our framework uses a learnable environment map and Spherical Gaussians (SGs) to represent light sources parametrically, therefore enabling controllable and photorealistic relighting on Gaussian Splatting. Extensive experiments and applications demonstrate that GS-ID produces state-of-the-art illumination decomposition results while achieving better geometry reconstruction and rendering performance.
comment: 15 pages, 13 figures
☆ Visual-Friendly Concept Protection via Selective Adversarial Perturbations
Personalized concept generation by tuning diffusion models with a few images raises potential legal and ethical concerns regarding privacy and intellectual property rights. Researchers attempt to prevent malicious personalization using adversarial perturbations. However, previous efforts have mainly focused on the effectiveness of protection while neglecting the visibility of perturbations. They utilize global adversarial perturbations, which introduce noticeable alterations to original images and significantly degrade visual quality. In this work, we propose the Visual-Friendly Concept Protection (VCPro) framework, which prioritizes the protection of key concepts chosen by the image owner through adversarial perturbations with lower perceptibility. To ensure these perturbations are as inconspicuous as possible, we introduce a relaxed optimization objective to identify the least perceptible yet effective adversarial perturbations, solved using the Lagrangian multiplier method. Qualitative and quantitative experiments validate that VCPro achieves a better trade-off between the visibility of perturbations and protection effectiveness, effectively prioritizing the protection of target concepts in images with less perceptible perturbations.
comment: Under Review
☆ Efficient Image-to-Image Diffusion Classifier for Adversarial Robustness
Diffusion models (DMs) have demonstrated great potential in the field of adversarial robustness, where DM-based defense methods can achieve superior defense capability without adversarial training. However, they all require huge computational costs due to the usage of large-scale pre-trained DMs, making it difficult to conduct full evaluation under strong attacks and compare with traditional CNN-based methods. Simply reducing the network size and timesteps in DMs could significantly harm the image generation quality, which invalidates previous frameworks. To alleviate this issue, we redesign the diffusion framework from generating high-quality images to predicting distinguishable image labels. Specifically, we employ an image translation framework to learn many-to-one mapping from input samples to designed orthogonal image labels. Based on this framework, we introduce an efficient Image-to-Image diffusion classifier with a pruned U-Net structure and reduced diffusion timesteps. Besides the framework, we redesign the optimization objective of DMs to fit the target of image classification, where a new classification loss is incorporated in the DM-based image translation framework to distinguish the generated label from those of other classes. We conduct sufficient evaluations of the proposed classifier under various attacks on popular benchmarks. Extensive experiments show that our method achieves better adversarial robustness with fewer computational costs than DM-based and CNN-based methods. The code is available at https://github.com/hfmei/IDC.
☆ CoSEC: A Coaxial Stereo Event Camera Dataset for Autonomous Driving
Conventional frame camera is the mainstream sensor of the autonomous driving scene perception, while it is limited in adverse conditions, such as low light. Event camera with high dynamic range has been applied in assisting frame camera for the multimodal fusion, which relies heavily on the pixel-level spatial alignment between various modalities. Typically, existing multimodal datasets mainly place event and frame cameras in parallel and directly align them spatially via warping operation. However, this parallel strategy is less effective for multimodal fusion, since the large disparity exacerbates spatial misalignment due to the large event-frame baseline. We argue that baseline minimization can reduce alignment error between event and frame cameras. In this work, we introduce hybrid coaxial event-frame devices to build the multimodal system, and propose a coaxial stereo event camera (CoSEC) dataset for autonomous driving. As for the multimodal system, we first utilize the microcontroller to achieve time synchronization, and then spatially calibrate different sensors, where we perform intra- and inter-calibration of stereo coaxial devices. As for the multimodal dataset, we filter LiDAR point clouds to generate depth and optical flow labels using reference depth, which is further improved by fusing aligned event and frame data in nighttime conditions. With the help of the coaxial device, the proposed dataset can promote the all-day pixel-level multimodal fusion. Moreover, we also conduct experiments to demonstrate that the proposed dataset can improve the performance and generalization of the multimodal fusion.
comment: This work has been submitted to the IEEE for possible publication
☆ Achieving Complex Image Edits via Function Aggregation with Diffusion Models
Diffusion models have demonstrated strong performance in generative tasks, making them ideal candidates for image editing. Recent studies highlight their ability to apply desired edits effectively by following textual instructions, yet two key challenges persist. First, these models struggle to apply multiple edits simultaneously, resulting in computational inefficiencies due to their reliance on sequential processing. Second, relying on textual prompts to determine the editing region can lead to unintended alterations in other parts of the image. In this work, we introduce FunEditor, an efficient diffusion model designed to learn atomic editing functions and perform complex edits by aggregating simpler functions. This approach enables complex editing tasks, such as object movement, by aggregating multiple functions and applying them simultaneously to specific areas. FunEditor is 5 to 24 times faster inference than existing methods on complex tasks like object movement. Our experiments demonstrate that FunEditor significantly outperforms recent baselines, including both inference-time optimization methods and fine-tuned models, across various metrics, such as image quality assessment (IQA) and object-background consistency.
☆ DFT-Based Adversarial Attack Detection in MRI Brain Imaging: Enhancing Diagnostic Accuracy in Alzheimer's Case Studies
Recent advancements in deep learning, particularly in medical imaging, have significantly propelled the progress of healthcare systems. However, examining the robustness of medical images against adversarial attacks is crucial due to their real-world applications and profound impact on individuals' health. These attacks can result in misclassifications in disease diagnosis, potentially leading to severe consequences. Numerous studies have explored both the implementation of adversarial attacks on medical images and the development of defense mechanisms against these threats, highlighting the vulnerabilities of deep neural networks to such adversarial activities. In this study, we investigate adversarial attacks on images associated with Alzheimer's disease and propose a defensive method to counteract these attacks. Specifically, we examine adversarial attacks that employ frequency domain transformations on Alzheimer's disease images, along with other well-known adversarial attacks. Our approach utilizes a convolutional neural network (CNN)-based autoencoder architecture in conjunction with the two-dimensional Fourier transform of images for detection purposes. The simulation results demonstrate that our detection and defense mechanism effectively mitigates several adversarial attacks, thereby enhancing the robustness of deep neural networks against such vulnerabilities.
comment: 10 pages, 4 figures, conference
☆ TEXTOC: Text-driven Object-Centric Style Transfer
We present Text-driven Object-Centric Style Transfer (TEXTOC), a novel method that guides style transfer at an object-centric level using textual inputs. The core of TEXTOC is our Patch-wise Co-Directional (PCD) loss, meticulously designed for precise object-centric transformations that are closely aligned with the input text. This loss combines a patch directional loss for text-guided style direction and a patch distribution consistency loss for even CLIP embedding distribution across object regions. It ensures a seamless and harmonious style transfer across object regions. Key to our method are the Text-Matched Patch Selection (TMPS) and Pre-fixed Region Selection (PRS) modules for identifying object locations via text, eliminating the need for segmentation masks. Lastly, we introduce an Adaptive Background Preservation (ABP) loss to maintain the original style and structural essence of the image's background. This loss is applied to dynamically identified background areas. Extensive experiments underline the effectiveness of our approach in creating visually coherent and textually aligned style transfers.
♻ ☆ Beyond Full Label: Single-Point Prompt for Infrared Small Target Label Generation
In this work, we make the first attempt to construct a learning-based single-point annotation paradigm for infrared small target label generation (IRSTLG). Our intuition is that label generation requires just one more point prompt than target detection: IRSTLG can be regarded as an infrared small target detection (IRSTD) task with the target location hint. Based on this insight, we introduce an energy double guided single-point prompt (EDGSP) framework, which adeptly transforms the target detection network into a refined label generation method. Specifically, the proposed EDGSP includes: 1) target energy initialization (TEI) to create a foundational outline for sufficient shape evolution of pseudo label, 2) double prompt embedding (DPE) for rapid localization of interested regions and reinforcement of individual differences to avoid label adhesion, and 3) bounding box-based matching (BBM) to eliminate false alarms. Experimental results show that pseudo labels generated by three baselines equipped with EDGSP achieve 100% object-level probability of detection (Pd) and 0% false-alarm rate (Fa) on SIRST, NUDT-SIRST, and IRSTD-1k datasets, with a pixel-level intersection over union (IoU) improvement of 13.28% over state-of-the-art (SOTA) label generation methods. In the practical application of downstream IRSTD, EDGSP realizes, for the first time, a single-point generated pseudo mask beyond the full label. Even with coarse single-point annotations, it still achieves 99.5% performance of full labeling.
♻ ☆ FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our video demo, code and model are available at https://360cvgroup.github.io/FancyVideo/.
♻ ☆ OC3D: Weakly Supervised Outdoor 3D Object Detection with Only Coarse Click Annotation
LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents OC3D, an innovative weakly supervised method requiring only coarse clicks on the bird's eye view of the 3D point cloud. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this problem, our proposed OC3D adopts a two-stage strategy. In the first stage, we initially design a novel dynamic and static classification strategy and then propose the Click2Box and Click2Mask modules to generate box-level and mask-level pseudo-labels for static and dynamic instances, respectively. In the second stage, we design a Mask2Box module, leveraging the learning capabilities of neural networks to update mask-level pseudo-labels, which contain less information, to box-level pseudo-labels. Experimental results on the widely used KITTI and nuScenes datasets demonstrate that our OC3D with only coarse clicks achieves state-of-the-art performance compared to weakly-supervised 3D detection methods. Combining OC3D with a missing click mining strategy, we propose an OC3D++ pipeline, which requires only 0.2% annotation cost in the KITTI dataset to achieve performance comparable to fully supervised methods. The code will be made publicly available.
♻ ☆ Adaptive Learning of Consistency and Inconsistency Information for Fake News Detection
The rapid advancement of social media platforms has significantly reduced the cost of information dissemination, yet it has also led to a proliferation of fake news, posing a threat to societal trust and credibility. Most of fake news detection research focused on integrating text and image information to represent the consistency of multiple modes in news content, while paying less attention to inconsistent information. Besides, existing methods that leveraged inconsistent information often caused one mode overshadowing another, leading to ineffective use of inconsistent clue. To address these issues, we propose an adaptive multi-modal feature fusion network (MFF-Net). Inspired by human judgment processes for determining truth and falsity in news, MFF-Net focuses on inconsistent parts when news content is generally consistent and consistent parts when it is generally inconsistent. Specifically, MFF-Net extracts semantic and global features from images and texts respectively, and learns consistency information between modes through a multiple feature fusion module. To deal with the problem of modal information being easily masked, we design a single modal feature filtering strategy to capture inconsistent information from corresponding modes separately. Finally, similarity scores are calculated based on global features with adaptive adjustments made to achieve weighted fusion of consistent and inconsistent features. Extensive experimental results demonstrate that MFF-Net outperforms state-of-the-art methods across three public news datasets derived from real social medias.
♻ ☆ Exploring learning environments for label\-efficient cancer diagnosis
Despite significant research efforts and advancements, cancer remains a leading cause of mortality. Early cancer prediction has become a crucial focus in cancer research to streamline patient care and improve treatment outcomes. Manual tumor detection by histopathologists can be time consuming, prompting the need for computerized methods to expedite treatment planning. Traditional approaches to tumor detection rely on supervised learning, necessitates a large amount of annotated data for model training. However, acquiring such extensive labeled data can be laborious and time\-intensive. This research examines the three learning environments: supervised learning (SL), semi\-supervised learning (Semi\-SL), and self\-supervised learning (Self\-SL): to predict kidney, lung, and breast cancer. Three pre\-trained deep learning models (Residual Network\-50, Visual Geometry Group\-16, and EfficientNetB0) are evaluated based on these learning settings using seven carefully curated training sets. To create the first training set (TS1), SL is applied to all annotated image samples. Five training sets (TS2\-TS6) with different ratios of labeled and unlabeled cancer images are used to evaluateSemi\-SL. Unlabeled cancer images from the final training set (TS7) are utilized for Self\-SL assessment. Among different learning environments, outcomes from the Semi\-SL setting show a strong degree of agreement with the outcomes achieved in the SL setting. The uniform pattern of observations from the pre\-trained models across all three datasets validates the methodology and techniques of the research. Based on modest number of labeled samples and minimal computing cost, our study suggests that the Semi\-SL option can be a highly viable replacement for the SL option under label annotation constraint scenarios.
comment: Submitted to the journal
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ DivCon: Divide and Conquer for Progressive Text-to-Image Generation
Diffusion-driven text-to-image (T2I) generation has achieved remarkable advancements. To further improve T2I models' capability in numerical and spatial reasoning, the layout is employed as an intermedium to bridge large language models and layout-based diffusion models. However, these methods still struggle with generating images from textural prompts with multiple objects and complicated spatial relationships. To tackle this challenge, we introduce a divide-and-conquer approach which decouples the T2I generation task into simple subtasks. Our approach divides the layout prediction stage into numerical & spatial reasoning and bounding box prediction. Then, the layout-to-image generation stage is conducted in an iterative manner to reconstruct objects from easy ones to difficult ones. We conduct experiments on the HRS and NSR-1K benchmarks and our approach outperforms previous state-of-the-art models with notable margins. In addition, visual results demonstrate that our approach significantly improves the controllability and consistency in generating multiple objects from complex textural prompts.
♻ ☆ DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks, but the high computational cost and significant latency issues have hindered widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Besides, during the reparameterization of post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to select Median as the Optimal Scaling Factor, denoted as MOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has been extensively validated and significantly improves the performance of quantization models, especially in low-bit settings.
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
SLAM for Visually Impaired People: a Survey
In recent decades, several assistive technologies have been developed to improve the ability of blind and visually impaired (BVI) individuals to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in developing these assistive technologies. We present the first systematic literature review of 54 recent studies on SLAM-based solutions for blind and visually impaired people, focusing on literature published from 2017 onward. This review explores various localization and mapping techniques employed in this context. We systematically identified and categorized diverse SLAM approaches and analyzed their localization and mapping techniques, sensor types, computing resources, and machine-learning methods. We discuss the advantages and limitations of these techniques for blind and visually impaired navigation. Moreover, we examine the major challenges described across studies, including practical challenges and considerations that affect usability and adoption. Our analysis also evaluates the effectiveness of these SLAM-based solutions in real-world scenarios and user satisfaction, providing insights into their practical impact on BVI mobility. The insights derived from this review identify critical gaps and opportunities for future research activities, particularly in addressing the challenges presented by dynamic and complex environments. We explain how SLAM technology offers the potential to improve the ability of visually impaired individuals to navigate effectively. Finally, we present future opportunities and challenges in this domain.
comment: 47 pages, 42 tables, 6 figures
♻ ☆ CeCNN: Copula-enhanced convolutional neural networks in joint prediction of refraction error and axial length based on ultra-widefield fundus images
The ultra-widefield (UWF) fundus image is an attractive 3D biomarker in AI-aided myopia screening because it provides much richer myopia-related information. Though axial length (AL) has been acknowledged to be highly related to the two key targets of myopia screening, Spherical Equivalence (SE) measurement and high myopia diagnosis, its prediction based on the UWF fundus image is rarely considered. To save the high expense and time costs of measuring SE and AL, we propose the Copula-enhanced Convolutional Neural Network (CeCNN), a one-stop UWF-based ophthalmic AI framework to jointly predict SE, AL, and myopia status. The CeCNN formulates a multiresponse regression that relates multiple dependent discrete-continuous responses and the image covariate, where the nonlinearity of the association is modeled by a backbone CNN. To thoroughly describe the dependence structure among the responses, we model and incorporate the conditional dependence among responses in a CNN through a new copula-likelihood loss. We provide statistical interpretations of the conditional dependence among responses, and reveal that such dependence is beyond the dependence explained by the image covariate. We heuristically justify that the proposed loss can enhance the estimation efficiency of the CNN weights. We apply the CeCNN to the UWF dataset collected by us and demonstrate that the CeCNN sharply enhances the predictive capability of various backbone CNNs. Our study evidences the ophthalmology view that besides SE, AL is also an important measure to myopia.
♻ ☆ Multi-task Image Restoration Guided By Robust DINO Features
Multi-task image restoration has gained significant interest due to its inherent versatility and efficiency compared to its single-task counterpart. However, performance decline is observed with an increase in the number of tasks, primarily attributed to the restoration model's challenge in handling different tasks with distinct natures at the same time. Thus, a perspective emerged aiming to explore the degradation-insensitive semantic commonalities among different degradation tasks. In this paper, we observe that the features of DINOv2 can effectively model semantic information and are independent of degradation factors. Motivated by this observation, we propose \mbox{\textbf{DINO-IR}}, a multi-task image restoration approach leveraging robust features extracted from DINOv2 to solve multi-task image restoration simultaneously. We first propose a pixel-semantic fusion (PSF) module to dynamically fuse DINOV2's shallow features containing pixel-level information and deep features containing degradation-independent semantic information. To guide the restoration model with the features of DINOv2, we develop a DINO-Restore adaption and fusion module to adjust the channel of fused features from PSF and then integrate them with the features from the restoration model. By formulating these modules into a unified deep model, we propose a DINO perception contrastive loss to constrain the model training. Extensive experimental results demonstrate that our DINO-IR performs favorably against existing multi-task image restoration approaches in various tasks by a large margin. The source codes and trained models will be made available.
♻ ☆ GLDiTalker: Speech-Driven 3D Facial Animation with Graph Latent Diffusion Transformer
Speech-driven talking head generation is an important but challenging task for many downstream applications such as augmented reality. Existing methods have achieved remarkable performance by utilizing autoregressive models or diffusion models. However, most still suffer from modality inconsistencies, specifically the misalignment between audio and mesh modalities, which causes inconsistencies in motion diversity and lip-sync accuracy. To address this issue, this paper introduces GLDiTalker, a novel speech-driven 3D facial animation model that employs a Graph Latent Diffusion Transformer. The core idea behind GLDiTalker is that the audio-mesh modality misalignment can be resolved by diffusing the signal in a latent quantilized spatial-temporal space. To achieve this, GLDiTalker builds upon a quantilized space-time diffusion training pipeline, which consists of a Graph Enhanced Quantilized Space Learning Stage and a Space-Time Powered Latent Diffusion Stage. The first stage ensures lip-sync accuracy, while the second stage enhances motion diversity. Together, these stages enable GLDiTalker to generate temporally and spatially stable, realistic models. Extensive evaluations on several widely used benchmarks demonstrate that our method achieves superior performance compared to existing methods.
comment: 9 pages, 5 figures
♻ ☆ Gaussian Pancakes: Geometrically-Regularized 3D Gaussian Splatting for Realistic Endoscopic Reconstruction
Within colorectal cancer diagnostics, conventional colonoscopy techniques face critical limitations, including a limited field of view and a lack of depth information, which can impede the detection of precancerous lesions. Current methods struggle to provide comprehensive and accurate 3D reconstructions of the colonic surface which can help minimize the missing regions and reinspection for pre-cancerous polyps. Addressing this, we introduce 'Gaussian Pancakes', a method that leverages 3D Gaussian Splatting (3D GS) combined with a Recurrent Neural Network-based Simultaneous Localization and Mapping (RNNSLAM) system. By introducing geometric and depth regularization into the 3D GS framework, our approach ensures more accurate alignment of Gaussians with the colon surface, resulting in smoother 3D reconstructions with novel viewing of detailed textures and structures. Evaluations across three diverse datasets show that Gaussian Pancakes enhances novel view synthesis quality, surpassing current leading methods with a 18% boost in PSNR and a 16% improvement in SSIM. It also delivers over 100X faster rendering and more than 10X shorter training times, making it a practical tool for real-time applications. Hence, this holds promise for achieving clinical translation for better detection and diagnosis of colorectal cancer.
comment: 12 pages, 5 figures
♻ ☆ A Medical Data-Effective Learning Benchmark for Highly Efficient Pre-training of Foundation Models
Foundation models, pre-trained on massive datasets, have achieved unprecedented generalizability. However, is it truly necessary to involve such vast amounts of data in pre-training, consuming extensive computational resources? This paper introduces data-effective learning, aiming to use data in the most impactful way to pre-train foundation models. This involves strategies that focus on data quality rather than quantity, ensuring the data used for training has high informational value. Data-effective learning plays a profound role in accelerating foundation model training, reducing computational costs, and saving data storage, which is very important as the volume of medical data in recent years has grown beyond many people's expectations. However, due to the lack of standards and comprehensive benchmarks, research on medical data-effective learning is poorly studied. To address this gap, our paper introduces a comprehensive benchmark specifically for evaluating data-effective learning in the medical field. This benchmark includes a dataset with millions of data samples from 31 medical centers (DataDEL), a baseline method for comparison (MedDEL), and a new evaluation metric (NormDEL) to objectively measure data-effective learning performance. Our extensive experimental results show the baseline MedDEL can achieve performance comparable to the original large dataset with only 5% of the data. Establishing such an open data-effective learning benchmark is crucial for the medical foundation model research community because it facilitates efficient data use, promotes collaborative breakthroughs, and fosters the development of cost-effective, scalable, and impactful healthcare solutions.
♻ ☆ MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Vision Transformers (ViTs) achieve excellent performance in various tasks, but they are also vulnerable to adversarial attacks. Building robust ViTs is highly dependent on dedicated Adversarial Training (AT) strategies. However, current ViTs' adversarial training only employs well-established training approaches from convolutional neural network (CNN) training, where pre-training provides the basis for AT fine-tuning with the additional help of tailored data augmentations. In this paper, we take a closer look at the adversarial robustness of ViTs by providing a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training. Specifically, we show that MI between the adversarial example and its latent representation in ViT-based autoencoders should be constrained by utilizing the MI bounds. Based on this finding, we propose a masked autoencoder-based pre-training method, MIMIR, that employs an MI penalty to facilitate the adversarial training of ViTs. Extensive experiments show that MIMIR outperforms state-of-the-art adversarially trained ViTs on benchmark datasets with higher natural and robust accuracy, indicating that ViTs can substantially benefit from exploiting MI. In addition, we consider two adaptive attacks by assuming that the adversary is aware of the MIMIR design, which further verifies the provided robustness.
♻ ☆ Motion-compensated MR CINE reconstruction with reconstruction-driven motion estimation
In cardiac CINE, motion-compensated MR reconstruction (MCMR) is an effective approach to address highly undersampled acquisitions by incorporating motion information between frames. In this work, we propose a novel perspective for addressing the MCMR problem and a more integrated and efficient solution to the MCMR field. Contrary to state-of-the-art (SOTA) MCMR methods which break the original problem into two sub-optimization problems, i.e. motion estimation and reconstruction, we formulate this problem as a single entity with one single optimization. Our approach is unique in that the motion estimation is directly driven by the ultimate goal, reconstruction, but not by the canonical motion-warping loss (similarity measurement between motion-warped images and target images). We align the objectives of motion estimation and reconstruction, eliminating the drawbacks of artifacts-affected motion estimation and therefore error-propagated reconstruction. Further, we can deliver high-quality reconstruction and realistic motion without applying any regularization/smoothness loss terms, circumventing the non-trivial weighting factor tuning. We evaluate our method on two datasets: 1) an in-house acquired 2D CINE dataset for the retrospective study and 2) the public OCMR cardiac dataset for the prospective study. The conducted experiments indicate that the proposed MCMR framework can deliver artifact-free motion estimation and high-quality MR images even for imaging accelerations up to 20x, outperforming SOTA non-MCMR and MCMR methods in both qualitative and quantitative evaluation across all experiments. The code is available at https://github.com/JZPeterPan/MCMR-Recon-Driven-Motion.
♻ ☆ CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification
We propose CLIP-EBC, the first fully CLIP-based model for accurate crowd density estimation. While the CLIP model has demonstrated remarkable success in addressing recognition tasks such as zero-shot image classification, its potential for counting has been largely unexplored due to the inherent challenges in transforming a regression problem, such as counting, into a recognition task. In this work, we investigate and enhance CLIP's ability to count, focusing specifically on the task of estimating crowd sizes from images. Existing classification-based crowd-counting frameworks have significant limitations, including the quantization of count values into bordering real-valued bins and the sole focus on classification errors. These practices result in label ambiguity near the shared borders and inaccurate prediction of count values. Hence, directly applying CLIP within these frameworks may yield suboptimal performance. To address these challenges, we first propose the Enhanced Blockwise Classification (EBC) framework. Unlike previous methods, EBC utilizes integer-valued bins, effectively reducing ambiguity near bin boundaries. Additionally, it incorporates a regression loss based on density maps to improve the prediction of count values. Within our backbone-agnostic EBC framework, we then introduce CLIP-EBC to fully leverage CLIP's recognition capabilities for this task. Extensive experiments demonstrate the effectiveness of EBC and the competitive performance of CLIP-EBC. Specifically, our EBC framework can improve existing classification-based methods by up to 44.5% on the UCF-QNRF dataset, and CLIP-EBC achieves state-of-the-art performance on the NWPU-Crowd test set, with an MAE of 58.2 and an RMSE of 268.5, representing improvements of 8.6% and 13.3% over the previous best method, STEERER. The code and weights are available at https://github.com/Yiming-M/CLIP-EBC.
♻ ☆ DualFocus: Integrating Plausible Descriptions in Text-based Person Re-identification
Text-based Person Re-identification (TPR) aims to retrieve specific individual images from datasets based on textual descriptions. Existing TPR methods primarily focus on recognizing explicit and positive characteristics, often overlooking the role of negative descriptions. This oversight can lead to false positives-images that meet positive criteria but should be excluded based on negative descriptions. To address these limitations, we introduce DualFocus, a unified framework that integrates plausible descriptions to enhance the interpretative accuracy of vision-language models in TPR tasks. DualFocus leverages Dual (Positive/Negative) Attribute Prompt Learning (DAPL), which incorporates Dual Image-Attribute Contrastive (DIAC) Learning and Sensitive Image-Attributes Matching (SIAM) Learning, enabling the detection of non-existent attributes and reducing false positives. To achieve a balance between coarse and fine-grained alignment of visual and textual embeddings, we propose the Dynamic Tokenwise Similarity (DTS) loss, which refines the representation of both matching and non-matching descriptions, thereby improving the matching process through detailed and adaptable similarity assessments. The comprehensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid, DualFocus demonstrates superior performance over state-of-the-art methods, significantly enhancing both precision and robustness in TPR.
♻ ☆ Distilling High Diagnostic Value Patches for Whole Slide Image Classification Using Attention Mechanism
Multiple Instance Learning (MIL) has garnered widespread attention in the field of Whole Slide Image (WSI) classification as it replaces pixel-level manual annotation with diagnostic reports as labels, significantly reducing labor costs. Recent research has shown that bag-level MIL methods often yield better results because they can consider all patches of the WSI as a whole. However, a drawback of such methods is the incorporation of more redundant patches, leading to interference. To extract patches with high diagnostic value while excluding interfering patches to address this issue, we developed an attention-based feature distillation multi-instance learning (AFD-MIL) approach. This approach proposed the exclusion of redundant patches as a preprocessing operation in weakly supervised learning, directly mitigating interference from extensive noise. It also pioneers the use of attention mechanisms to distill features with high diagnostic value, as opposed to the traditional practice of indiscriminately and forcibly integrating all patches. Additionally, we introduced global loss optimization to finely control the feature distillation module. AFD-MIL is orthogonal to many existing MIL methods, leading to consistent performance improvements. This approach has surpassed the current state-of-the-art method, achieving 91.47% ACC (accuracy) and 94.29% AUC (area under the curve) on the Camelyon16 (Camelyon Challenge 2016, breast cancer), while 93.33% ACC and 98.17% AUC on the TCGA-NSCLC (The Cancer Genome Atlas Program: non-small cell lung cancer). Different feature distillation methods were used for the two datasets, tailored to the specific diseases, thereby improving performance and interpretability.
♻ ☆ Gradient Alignment Improves Test-Time Adaptation for Medical Image Segmentation
Although recent years have witnessed significant advancements in medical image segmentation, the pervasive issue of domain shift among medical images from diverse centres hinders the effective deployment of pre-trained models. Many Test-time Adaptation (TTA) methods have been proposed to address this issue by fine-tuning pre-trained models with test data during inference. These methods, however, often suffer from less-satisfactory optimization due to suboptimal optimization direction (dictated by the gradient) and fixed step-size (predicated on the learning rate). In this paper, we propose the Gradient alignment-based Test-time adaptation (GraTa) method to improve both the gradient direction and learning rate in the optimization procedure. Unlike conventional TTA methods, which primarily optimize the pseudo gradient derived from a self-supervised objective, our method incorporates an auxiliary gradient with the pseudo one to facilitate gradient alignment. Such gradient alignment enables the model to excavate the similarities between different gradients and correct the gradient direction to approximate the empirical gradient related to the current segmentation task. Additionally, we design a dynamic learning rate based on the cosine similarity between the pseudo and auxiliary gradients, thereby empowering the adaptive fine-tuning of pre-trained models on diverse test data. Extensive experiments establish the effectiveness of the proposed gradient alignment and dynamic learning rate and substantiate the superiority of our GraTa method over other state-of-the-art TTA methods on a benchmark medical image segmentation task. The code and weights of pre-trained source models will be available.
♻ ☆ HCS-TNAS: Hybrid Constraint-driven Semi-supervised Transformer-NAS for Ultrasound Image Segmentation
Precise ultrasound segmentation is vital for clinicians to provide comprehensive diagnoses. However, developing a model that accurately segments ultrasound images is challenging due to the images' low quality and the scarcity of extensive labeled data. This results in two main solutions: (1) optimizing multi-scale feature representations, and (2) increasing resistance to data dependency. The first approach necessitates an advanced network architecture, but a handcrafted network is knowledge-intensive and often yields limited improvement. In contrast, neural architecture search (NAS) can more easily attain optimal performance, albeit with significant computational costs. Regarding the second issue, semi-supervised learning (SSL) is an established method, but combining it with complex NAS faces the risk of overfitting to a few labeled samples without extra constraints. Therefore, we introduce a hybrid constraint-driven semi-supervised Transformer-NAS (HCS-TNAS), balancing both solutions for segmentation. HCS-TNAS includes an Efficient NAS-ViT module for multi-scale token search before ViT's attention calculation, effectively capturing contextual and local information with lower computational costs, and a hybrid SSL framework that adds network independence and contrastive learning to the optimization for solving data dependency. By further developing a stage-wise optimization strategy, a rational network structure is identified. Experiments on public datasets show that HCS-TNAS achieves state-of-the-art performance, pushing the limit of ultrasound segmentation.
♻ ☆ ICAL: Implicit Character-Aided Learning for Enhanced Handwritten Mathematical Expression Recognition ICDAR 2024
Significant progress has been made in the field of handwritten mathematical expression recognition, while existing encoder-decoder methods are usually difficult to model global information in $LaTeX$. Therefore, this paper introduces a novel approach, Implicit Character-Aided Learning (ICAL), to mine the global expression information and enhance handwritten mathematical expression recognition. Specifically, we propose the Implicit Character Construction Module (ICCM) to predict implicit character sequences and use a Fusion Module to merge the outputs of the ICCM and the decoder, thereby producing corrected predictions. By modeling and utilizing implicit character information, ICAL achieves a more accurate and context-aware interpretation of handwritten mathematical expressions. Experimental results demonstrate that ICAL notably surpasses the state-of-the-art(SOTA) models, improving the expression recognition rate (ExpRate) by 2.25\%/1.81\%/1.39\% on the CROHME 2014/2016/2019 datasets respectively, and achieves a remarkable 69.06\% on the challenging HME100k test set. We make our code available on the GitHub: https://github.com/qingzhenduyu/ICAL
comment: ICDAR 2024 Oral Paper
♻ ☆ PEANO-ViT: Power-Efficient Approximations of Non-Linearities in Vision Transformers
The deployment of Vision Transformers (ViTs) on hardware platforms, specially Field-Programmable Gate Arrays (FPGAs), presents many challenges, which are mainly due to the substantial computational and power requirements of their non-linear functions, notably layer normalization, softmax, and Gaussian Error Linear Unit (GELU). These critical functions pose significant obstacles to efficient hardware implementation due to their complex mathematical operations and the inherent resource count and architectural limitations of FPGAs. PEANO-ViT offers a novel approach to streamlining the implementation of the layer normalization layer by introducing a division-free technique that simultaneously approximates the division and square root function. Additionally, PEANO-ViT provides a multi-scale division strategy to eliminate division operations in the softmax layer, aided by a Pade-based approximation for the exponential function. Finally, PEANO-ViT introduces a piece-wise linear approximation for the GELU function, carefully designed to bypass the computationally intensive operations associated with GELU. In our comprehensive evaluations, PEANO-ViT exhibits minimal accuracy degradation (<= 0.5% for DeiT-B) while significantly enhancing power efficiency, achieving improvements of 1.91x, 1.39x, 8.01x for layer normalization, softmax, and GELU, respectively. This improvement is achieved through substantial reductions in DSP, LUT, and register counts for these non-linear operations. Consequently, PEANO-ViT enables efficient deployment of Vision Transformers on resource- and power-constrained FPGA platforms.
♻ ☆ VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary
With the rapid development of Text-to-Image (T2I) models, biases in human image generation against demographic social groups become a significant concern, impacting fairness and ethical standards in AI. Some researchers propose their methods to tackle with the issue. However, existing methods are designed for specific models with fixed prompts, limiting their adaptability to the fast-evolving models and diverse practical scenarios. Moreover, they neglect the impact of hallucinations, leading to discrepancies between expected and actual results. To address these issues, we introduce VersusDebias, a novel and universal debiasing framework for biases in arbitrary T2I models, consisting of an array generation (AG) module and an image generation (IG) module. The self-adaptive AG module generates specialized attribute arrays to post-process hallucinations and debias multiple attributes simultaneously. The IG module employs a small language model to modify prompts according to the arrays and drives the T2I model to generate debiased images, enabling zero-shot debiasing. Extensive experiments demonstrate VersusDebias's capability to debias any models across gender, race, and age simultaneously. In both zero-shot and few-shot scenarios, VersusDebias outperforms existing methods, showcasing its exceptional utility. Our work is accessible at https://github.com/VersusDebias/VersusDebias to ensure reproducibility and facilitate further research.
♻ ☆ Self-Learning Symmetric Multi-view Probabilistic Clustering
Multi-view Clustering (MVC) has achieved significant progress, with many efforts dedicated to learn knowledge from multiple views. However, most existing methods are either not applicable or require additional steps for incomplete MVC. Such a limitation results in poor-quality clustering performance and poor missing view adaptation. Besides, noise or outliers might significantly degrade the overall clustering performance, which are not handled well by most existing methods. In this paper, we propose a novel unified framework for incomplete and complete MVC named self-learning symmetric multi-view probabilistic clustering (SLS-MPC). SLS-MPC proposes a novel symmetric multi-view probability estimation and equivalently transforms multi-view pairwise posterior matching probability into composition of each view's individual distribution, which tolerates data missing and might extend to any number of views. Then, SLS-MPC proposes a novel self-learning probability function without any prior knowledge and hyper-parameters to learn each view's individual distribution. Next, graph-context-aware refinement with path propagation and co-neighbor propagation is used to refine pairwise probability, which alleviates the impact of noise and outliers. Finally, SLS-MPC proposes a probabilistic clustering algorithm to adjust clustering assignments by maximizing the joint probability iteratively without category information. Extensive experiments on multiple benchmarks show that SLS-MPC outperforms previous state-of-the-art methods.
comment: accepted by IEEE Transactions on Knowledge and Data Engineering(TKDE)
♻ ☆ BIGbench: A Unified Benchmark for Social Bias in Text-to-Image Generative Models Based on Multi-modal LLM
Text-to-Image (T2I) generative models are becoming increasingly crucial due to their ability to generate high-quality images, which also raises concerns about the social biases in their outputs, especially in the human generation. Sociological research has established systematic classifications of bias. However, existing bias research about T2I models conflates different types of bias, impeding methodological progress. In this paper, we introduce BIGbench, a unified benchmark for Biases of Image Generation, featuring a meticulously designed dataset. Unlike existing benchmarks, BIGbench classifies and evaluates biases across four dimensions: manifestation of bias, visibility of bias, acquired attributes, and protected attributes, which ensures exceptional accuracy for analysis. Furthermore, BIGbench applies advanced multi-modal large language models to achieve fully automated and highly accurate evaluations. We apply BIGbench to evaluate eight representative general T2I models and three debiased methods. Our human evaluation results underscore BIGbench's effectiveness in aligning images and identifying various biases. Besides, our study also reveal new research directions about biases, such as the effect of distillation and irrelevant protected attributes. Our benchmark is openly accessible at https://github.com/BIGbench2024/BIGbench2024/ to ensure reproducibility.
comment: arXiv admin note: substantial text overlap with arXiv:2405.17814
Metric3D v2: A Versatile Monocular Geometric Foundation Model for Zero-shot Metric Depth and Surface Normal Estimation
We introduce Metric3D v2, a geometric foundation model for zero-shot metric depth and surface normal estimation from a single image, which is crucial for metric 3D recovery. While depth and normal are geometrically related and highly complimentary, they present distinct challenges. SoTA monocular depth methods achieve zero-shot generalization by learning affine-invariant depths, which cannot recover real-world metrics. Meanwhile, SoTA normal estimation methods have limited zero-shot performance due to the lack of large-scale labeled data. To tackle these issues, we propose solutions for both metric depth estimation and surface normal estimation. For metric depth estimation, we show that the key to a zero-shot single-view model lies in resolving the metric ambiguity from various camera models and large-scale data training. We propose a canonical camera space transformation module, which explicitly addresses the ambiguity problem and can be effortlessly plugged into existing monocular models. For surface normal estimation, we propose a joint depth-normal optimization module to distill diverse data knowledge from metric depth, enabling normal estimators to learn beyond normal labels. Equipped with these modules, our depth-normal models can be stably trained with over 16 million of images from thousands of camera models with different-type annotations, resulting in zero-shot generalization to in-the-wild images with unseen camera settings. Our method enables the accurate recovery of metric 3D structures on randomly collected internet images, paving the way for plausible single-image metrology. Our project page is at https://JUGGHM.github.io/Metric3Dv2.
comment: Our project page is at https://JUGGHM.github.io/Metric3Dv2. Accpeted to TPAMI. arXiv admin note: text overlap with arXiv:2307.10984
HandRefiner: Refining Malformed Hands in Generated Images by Diffusion-based Conditional Inpainting
Diffusion models have achieved remarkable success in generating realistic images but suffer from generating accurate human hands, such as incorrect finger counts or irregular shapes. This difficulty arises from the complex task of learning the physical structure and pose of hands from training images, which involves extensive deformations and occlusions. For correct hand generation, our paper introduces a lightweight post-processing solution called $\textbf{HandRefiner}$. HandRefiner employs a conditional inpainting approach to rectify malformed hands while leaving other parts of the image untouched. We leverage the hand mesh reconstruction model that consistently adheres to the correct number of fingers and hand shape, while also being capable of fitting the desired hand pose in the generated image. Given a generated failed image due to malformed hands, we utilize ControlNet modules to re-inject such correct hand information. Additionally, we uncover a phase transition phenomenon within ControlNet as we vary the control strength. It enables us to take advantage of more readily available synthetic data without suffering from the domain gap between realistic and synthetic hands. Experiments demonstrate that HandRefiner can significantly improve the generation quality quantitatively and qualitatively. The code is available at https://github.com/wenquanlu/HandRefiner .
♻ ☆ AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation
Diffusion models achieve great success in generating diverse and high-fidelity images, yet their widespread application, especially in real-time scenarios, is hampered by their inherently slow generation speed. The slow generation stems from the necessity of multi-step network inference. While some certain predictions benefit from the full computation of the model in each sampling iteration, not every iteration requires the same amount of computation, potentially leading to inefficient computation. Unlike typical adaptive computation challenges that deal with single-step generation problems, diffusion processes with a multi-step generation need to dynamically adjust their computational resource allocation based on the ongoing assessment of each step's importance to the final image output, presenting a unique set of challenges. In this work, we propose AdaDiff, an adaptive framework that dynamically allocates computation resources in each sampling step to improve the generation efficiency of diffusion models. To assess the effects of changes in computational effort on image quality, we present a timestep-aware uncertainty estimation module (UEM). Integrated at each intermediate layer, the UEM evaluates the predictive uncertainty. This uncertainty measurement serves as an indicator for determining whether to terminate the inference process. Additionally, we introduce an uncertainty-aware layer-wise loss aimed at bridging the performance gap between full models and their adaptive counterparts.
♻ ☆ Incomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation
Recent studies of multimodal industrial anomaly detection (IAD) based on 3D point clouds and RGB images have highlighted the importance of exploiting the redundancy and complementarity among modalities for accurate classification and segmentation. However, achieving multimodal IAD in practical production lines remains a work in progress. It is essential to consider the trade-offs between the costs and benefits associated with the introduction of new modalities while ensuring compatibility with current processes. Existing quality control processes combine rapid in-line inspections, such as optical and infrared imaging with high-resolution but time-consuming near-line characterization techniques, including industrial CT and electron microscopy to manually or semi-automatically locate and analyze defects in the production of Li-ion batteries and composite materials. Given the cost and time limitations, only a subset of the samples can be inspected by all in-line and near-line methods, and the remaining samples are only evaluated through one or two forms of in-line inspection. To fully exploit data for deep learning-driven automatic defect detection, the models must have the ability to leverage multimodal training and handle incomplete modalities during inference. In this paper, we propose CMDIAD, a Cross-Modal Distillation framework for IAD to demonstrate the feasibility of a Multi-modal Training, Few-modal Inference (MTFI) pipeline. Our findings show that the MTFI pipeline can more effectively utilize incomplete multimodal information compared to applying only a single modality for training and inference. Moreover, we investigate the reasons behind the asymmetric performance improvement using point clouds or RGB images as the main modality of inference. This provides a foundation for our future multimodal dataset construction with additional modalities from manufacturing scenarios.
♻ ☆ Enhanced Self-Checkout System for Retail Based on Improved YOLOv10
With the rapid advancement of deep learning technologies, computer vision has shown immense potential in retail automation. This paper presents a novel self-checkout system for retail based on an improved YOLOv10 network, aimed at enhancing checkout efficiency and reducing labor costs. We propose targeted optimizations to the YOLOv10 model, by incorporating the detection head structure from YOLOv8, which significantly improves product recognition accuracy. Additionally, we develop a post-processing algorithm tailored for self-checkout scenarios, to further enhance the application of system. Experimental results demonstrate that our system outperforms existing methods in both product recognition accuracy and checkout speed. This research not only provides a new technical solution for retail automation but offers valuable insights into optimizing deep learning models for real-world applications.
♻ ☆ Multistatic-Radar RCS-Signature Recognition of Aerial Vehicles: A Bayesian Fusion Approach
Radar Automated Target Recognition (RATR) for Unmanned Aerial Vehicles (UAVs) involves transmitting Electromagnetic Waves (EMWs) and performing target type recognition on the received radar echo, crucial for defense and aerospace applications. Previous studies highlighted the advantages of multistatic radar configurations over monostatic ones in RATR. However, fusion methods in multistatic radar configurations often suboptimally combine classification vectors from individual radars probabilistically. To address this, we propose a fully Bayesian RATR framework employing Optimal Bayesian Fusion (OBF) to aggregate classification probability vectors from multiple radars. OBF, based on expected 0-1 loss, updates a Recursive Bayesian Classification (RBC) posterior distribution for target UAV type, conditioned on historical observations across multiple time steps. We evaluate the approach using simulated random walk trajectories for seven drones, correlating target aspect angles to Radar Cross Section (RCS) measurements in an anechoic chamber. Comparing against single radar Automated Target Recognition (ATR) systems and suboptimal fusion methods, our empirical results demonstrate that the OBF method integrated with RBC significantly enhances classification accuracy compared to other fusion methods and single radar configurations.
comment: Accepted to IEEE Transactions on Aerospace and Electronic Systems
♻ ☆ Novel-View Acoustic Synthesis from 3D Reconstructed Rooms
We investigate the benefit of combining blind audio recordings with 3D scene information for novel-view acoustic synthesis. Given audio recordings from 2-4 microphones and the 3D geometry and material of a scene containing multiple unknown sound sources, we estimate the sound anywhere in the scene. We identify the main challenges of novel-view acoustic synthesis as sound source localization, separation, and dereverberation. While naively training an end-to-end network fails to produce high-quality results, we show that incorporating room impulse responses (RIRs) derived from 3D reconstructed rooms enables the same network to jointly tackle these tasks. Our method outperforms existing methods designed for the individual tasks, demonstrating its effectiveness at utilizing 3D visual information. In a simulated study on the Matterport3D-NVAS dataset, our model achieves near-perfect accuracy on source localization, a PSNR of 26.44dB and a SDR of 14.23dB for source separation and dereverberation, resulting in a PSNR of 25.55 dB and a SDR of 14.20 dB on novel-view acoustic synthesis. We release our code and model on our project website at https://github.com/apple/ml-nvas3d. Please wear headphones when listening to the results.
comment: Interspeech 2024
♻ ☆ Component Selection for Craft Assembly Tasks
Inspired by traditional handmade crafts, where a person improvises assemblies based on the available objects, we formally introduce the Craft Assembly Task. It is a robotic assembly task that involves building an accurate representation of a given target object using the available objects, which do not directly correspond to its parts. In this work, we focus on selecting the subset of available objects for the final craft, when the given input is an RGB image of the target in the wild. We use a mask segmentation neural network to identify visible parts, followed by retrieving labelled template meshes. These meshes undergo pose optimization to determine the most suitable template. Then, we propose to simplify the parts of the transformed template mesh to primitive shapes like cuboids or cylinders. Finally, we design a search algorithm to find correspondences in the scene based on local and global proportions. We develop baselines for comparison that consider all possible combinations, and choose the highest scoring combination for common metrics used in foreground maps and mask accuracy. Our approach achieves comparable results to the baselines for two different scenes, and we show qualitative results for an implementation in a real-world scenario.
comment: Published on IEEE RA-L
♻ ☆ Relative-Interior Solution for the (Incomplete) Linear Assignment Problem with Applications to the Quadratic Assignment Problem
We study the set of optimal solutions of the dual linear programming formulation of the linear assignment problem (LAP) to propose a method for computing a solution from the relative interior of this set. Assuming that an arbitrary dual-optimal solution and an optimal assignment are available (for which many efficient algorithms already exist), our method computes a relative-interior solution in linear time. Since the LAP occurs as a subproblem in the linear programming (LP) relaxation of the quadratic assignment problem (QAP), we employ our method as a new component in the family of dual-ascent algorithms that provide bounds on the optimal value of the QAP. To make our results applicable to the incomplete QAP, which is of interest in practical use-cases, we also provide a linear-time reduction from the incomplete LAP to the complete LAP along with a mapping that preserves optimality and membership in the relative interior. Our experiments on publicly available benchmarks indicate that our approach with relative-interior solution can frequently provide bounds near the optimum of the LP relaxation and its runtime is much lower when compared to a commercial LP solver.
Artificial Intelligence 124
☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
☆ GeoTransformer: Enhancing Urban Forecasting with Geospatial Attention Mechanisms
Recent advancements have focused on encoding urban spatial information into high-dimensional spaces, with notable efforts dedicated to integrating sociodemographic data and satellite imagery. These efforts have established foundational models in this field. However, the effective utilization of these spatial representations for urban forecasting applications remains under-explored. To address this gap, we introduce GeoTransformer, a novel structure that synergizes the Transformer architecture with geospatial statistics prior. GeoTransformer employs an innovative geospatial attention mechanism to incorporate extensive urban information and spatial dependencies into a unified predictive model. Specifically, we compute geospatial weighted attention scores between the target region and surrounding regions and leverage the integrated urban information for predictions. Extensive experiments on GDP and ride-share demand prediction tasks demonstrate that GeoTransformer significantly outperforms existing baseline models, showcasing its potential to enhance urban forecasting tasks.
☆ Optimal Symmetries in Binary Classification
We explore the role of group symmetries in binary classification tasks, presenting a novel framework that leverages the principles of Neyman-Pearson optimality. Contrary to the common intuition that larger symmetry groups lead to improved classification performance, our findings show that selecting the appropriate group symmetries is crucial for optimising generalisation and sample efficiency. We develop a theoretical foundation for designing group equivariant neural networks that align the choice of symmetries with the underlying probability distributions of the data. Our approach provides a unified methodology for improving classification accuracy across a broad range of applications by carefully tailoring the symmetry group to the specific characteristics of the problem. Theoretical analysis and experimental results demonstrate that optimal classification performance is not always associated with the largest equivariant groups possible in the domain, even when the likelihood ratio is invariant under one of its proper subgroups, but rather with those subgroups themselves. This work offers insights and practical guidelines for constructing more effective group equivariant architectures in diverse machine-learning contexts.
comment: 13 pages, 1 figure, 2 tables
☆ EasyRec: Simple yet Effective Language Models for Recommendation
Deep neural networks have become a powerful technique for learning representations from user-item interaction data in collaborative filtering (CF) for recommender systems. However, many existing methods heavily rely on unique user and item IDs, which limits their ability to perform well in practical zero-shot learning scenarios where sufficient training data may be unavailable. Inspired by the success of language models (LMs) and their strong generalization capabilities, a crucial question arises: How can we harness the potential of language models to empower recommender systems and elevate its generalization capabilities to new heights? In this study, we propose EasyRec - an effective and easy-to-use approach that seamlessly integrates text-based semantic understanding with collaborative signals. EasyRec employs a text-behavior alignment framework, which combines contrastive learning with collaborative language model tuning, to ensure a strong alignment between the text-enhanced semantic space and the collaborative behavior information. Extensive empirical evaluations across diverse real-world datasets demonstrate the superior performance of EasyRec compared to state-of-the-art alternative models, particularly in the challenging text-based zero-shot recommendation scenarios. Furthermore, the study highlights the potential of seamlessly integrating EasyRec as a plug-and-play component into text-enhanced collaborative filtering frameworks, thereby empowering existing recommender systems to elevate their recommendation performance and adapt to the evolving user preferences in dynamic environments. For better result reproducibility of our EasyRec framework, the model implementation details, source code, and datasets are available at the link: https://github.com/HKUDS/EasyRec.
☆ CIKMar: A Dual-Encoder Approach to Prompt-Based Reranking in Educational Dialogue Systems
In this study, we introduce CIKMar, an efficient approach to educational dialogue systems powered by the Gemma Language model. By leveraging a Dual-Encoder ranking system that incorporates both BERT and SBERT model, we have designed CIKMar to deliver highly relevant and accurate responses, even with the constraints of a smaller language model size. Our evaluation reveals that CIKMar achieves a robust recall and F1-score of 0.70 using BERTScore metrics. However, we have identified a significant challenge: the Dual-Encoder tends to prioritize theoretical responses over practical ones. These findings underscore the potential of compact and efficient models like Gemma in democratizing access to advanced educational AI systems, ensuring effective and contextually appropriate responses.
comment: This paper is the result of the final project of the Natural Language Processing course, Master of Artificial Intelligence, Universitas Gadjah Mada
☆ A Disease-Specific Foundation Model Using Over 100K Fundus Images: Release and Validation for Abnormality and Multi-Disease Classification on Downstream Tasks
Artificial intelligence applied to retinal images offers significant potential for recognizing signs and symptoms of retinal conditions and expediting the diagnosis of eye diseases and systemic disorders. However, developing generalized artificial intelligence models for medical data often requires a large number of labeled images representing various disease signs, and most models are typically task-specific, focusing on major retinal diseases. In this study, we developed a Fundus-Specific Pretrained Model (Image+Fundus), a supervised artificial intelligence model trained to detect abnormalities in fundus images. A total of 57,803 images were used to develop this pretrained model, which achieved superior performance across various downstream tasks, indicating that our proposed model outperforms other general methods. Our Image+Fundus model offers a generalized approach to improve model performance while reducing the number of labeled datasets required. Additionally, it provides more disease-specific insights into fundus images, with visualizations generated by our model. These disease-specific foundation models are invaluable in enhancing the performance and efficiency of deep learning models in the field of fundus imaging.
comment: 10 pages, 4 figures
☆ A Transparency Paradox? Investigating the Impact of Explanation Specificity and Autonomous Vehicle Perceptual Inaccuracies on Passengers
Transparency in automated systems could be afforded through the provision of intelligible explanations. While transparency is desirable, might it lead to catastrophic outcomes (such as anxiety), that could outweigh its benefits? It's quite unclear how the specificity of explanations (level of transparency) influences recipients, especially in autonomous driving (AD). In this work, we examined the effects of transparency mediated through varying levels of explanation specificity in AD. We first extended a data-driven explainer model by adding a rule-based option for explanation generation in AD, and then conducted a within-subject lab study with 39 participants in an immersive driving simulator to study the effect of the resulting explanations. Specifically, our investigation focused on: (1) how different types of explanations (specific vs. abstract) affect passengers' perceived safety, anxiety, and willingness to take control of the vehicle when the vehicle perception system makes erroneous predictions; and (2) the relationship between passengers' behavioural cues and their feelings during the autonomous drives. Our findings showed that passengers felt safer with specific explanations when the vehicle's perception system had minimal errors, while abstract explanations that hid perception errors led to lower feelings of safety. Anxiety levels increased when specific explanations revealed perception system errors (high transparency). We found no significant link between passengers' visual patterns and their anxiety levels. Our study suggests that passengers prefer clear and specific explanations (high transparency) when they originate from autonomous vehicles (AVs) with optimal perceptual accuracy.
comment: Submitted to Transportation Research Part F: Traffic Psychology and Behaviour. arXiv admin note: text overlap with arXiv:2307.00633
☆ Evaluating the Evaluator: Measuring LLMs' Adherence to Task Evaluation Instructions
LLMs-as-a-judge is a recently popularized method which replaces human judgements in task evaluation (Zheng et al. 2024) with automatic evaluation using LLMs. Due to widespread use of RLHF (Reinforcement Learning from Human Feedback), state-of-the-art LLMs like GPT4 and Llama3 are expected to have strong alignment with human preferences when prompted for a quality judgement, such as the coherence of a text. While this seems beneficial, it is not clear whether the assessments by an LLM-as-a-judge constitute only an evaluation based on the instructions in the prompts, or reflect its preference for high-quality data similar to its fine-tune data. To investigate how much influence prompting the LLMs-as-a-judge has on the alignment of AI judgements to human judgements, we analyze prompts with increasing levels of instructions about the target quality of an evaluation, for several LLMs-as-a-judge. Further, we compare to a prompt-free method using model perplexity as a quality measure instead. We aggregate a taxonomy of quality criteria commonly used across state-of-the-art evaluations with LLMs and provide this as a rigorous benchmark of models as judges. Overall, we show that the LLMs-as-a-judge benefit only little from highly detailed instructions in prompts and that perplexity can sometimes align better with human judgements than prompting, especially on textual quality.
☆ Pessimistic Iterative Planning for Robust POMDPs
Robust partially observable Markov decision processes (robust POMDPs) extend classical POMDPs to handle additional uncertainty on the transition and observation probabilities via so-called uncertainty sets. Policies for robust POMDPs must not only be memory-based to account for partial observability but also robust against model uncertainty to account for the worst-case instances from the uncertainty sets. We propose the pessimistic iterative planning (PIP) framework, which finds robust memory-based policies for robust POMDPs. PIP alternates between two main steps: (1) selecting an adversarial (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this adversarial POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next adversarial POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network trained using supervision policies optimized for the adversarial POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against a baseline method in an ablation study and competitive performance compared to a state-of-the-art robust POMDP solver.
☆ ASVspoof 5: Crowdsourced Speech Data, Deepfakes, and Adversarial Attacks at Scale
ASVspoof 5 is the fifth edition in a series of challenges that promote the study of speech spoofing and deepfake attacks, and the design of detection solutions. Compared to previous challenges, the ASVspoof 5 database is built from crowdsourced data collected from a vastly greater number of speakers in diverse acoustic conditions. Attacks, also crowdsourced, are generated and tested using surrogate detection models, while adversarial attacks are incorporated for the first time. New metrics support the evaluation of spoofing-robust automatic speaker verification (SASV) as well as stand-alone detection solutions, i.e., countermeasures without ASV. We describe the two challenge tracks, the new database, the evaluation metrics, baselines, and the evaluation platform, and present a summary of the results. Attacks significantly compromise the baseline systems, while submissions bring substantial improvements.
comment: 8 pages, ASVspoof 5 Workshop (Interspeech2024 Satellite)
☆ Symbolic Parameter Learning in Probabilistic Answer Set Programming
Parameter learning is a crucial task in the field of Statistical Relational Artificial Intelligence: given a probabilistic logic program and a set of observations in the form of interpretations, the goal is to learn the probabilities of the facts in the program such that the probabilities of the interpretations are maximized. In this paper, we propose two algorithms to solve such a task within the formalism of Probabilistic Answer Set Programming, both based on the extraction of symbolic equations representing the probabilities of the interpretations. The first solves the task using an off-the-shelf constrained optimization solver while the second is based on an implementation of the Expectation Maximization algorithm. Empirical results show that our proposals often outperform existing approaches based on projected answer set enumeration in terms of quality of the solution and in terms of execution time. The paper has been accepted at the ICLP2024 conference and is under consideration in Theory and Practice of Logic Programming (TPLP).
comment: The paper has been accepted at the ICLP2024 conference and is under consideration in Theory and Practice of Logic Programming (TPLP)
☆ Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS
Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses--referred to as SfM-free methods--is crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions. Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS. However, most existing works rely on per-pixel image loss functions, such as L2 loss. In SfM-free methods, inaccurate initial poses lead to misalignment issue, which, under the constraints of per-pixel image loss functions, results in excessive gradients, causing unstable optimization and poor convergence for NVS. In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS. We use correspondences between the target and the rendered result to achieve better pixel alignment, facilitating the optimization of relative poses between frames. We then apply the learned poses to optimize the entire scene. Each 2D screen-space pixel is associated with its corresponding 3D Gaussians through approximated surface rendering to facilitate gradient back propagation. Experimental results underline the superior performance and time efficiency of the proposed approach compared to the state-of-the-art baselines.
comment: arXiv admin note: text overlap with arXiv:2312.07504 by other authors
☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling feature interactions is crucial for click-through rate (CTR) prediction, particularly when it comes to high-order explicit interactions. Traditional methods struggle with this task because they often predefine a maximum interaction order, which relies heavily on prior knowledge and can limit the model's effectiveness. Additionally, modeling high-order interactions typically leads to increased computational costs. Therefore, the challenge lies in adaptively modeling high-order feature interactions while maintaining efficiency. To address this issue, we introduce Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein), designed to optimize both predictive accuracy and computational efficiency. We firstly identify limitations of directly applying Kolmogorov-Arnold Networks (KAN) to CTR and then introduce KarSein to overcome these issues. It features a novel architecture that reduces the computational costs of KAN and supports embedding vectors as feature inputs. Additionally, KarSein employs guided symbolic regression to address the challenge of KAN in spontaneously learning multiplicative relationships. Extensive experiments demonstrate KarSein's superior performance, achieving significant predictive accuracy with minimal computational overhead. Furthermore, KarSein maintains strong global explainability while enabling the removal of redundant features, resulting in a sparse network structure. These advantages also position KarSein as a promising method for efficient inference.
comment: KarSein for CTR
☆ Beam Prediction based on Large Language Models
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss, requiring extensive antenna arrays and frequent beam training. Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization. In this letter, we use large language models (LLMs) to improve the robustness of beam prediction. By converting time series data into text-based representations and employing the Prompt-as-Prefix (PaP) technique for contextual enrichment, our approach unleashes the strength of LLMs for time series forecasting. Simulation results demonstrate that our LLM-based method offers superior robustness and generalization compared to LSTM-based models, showcasing the potential of LLMs in wireless communications.
☆ Beyond the Hype: A dispassionate look at vision-language models in medical scenario
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across diverse tasks, garnering significant attention in AI communities. However, their performance and reliability in specialized domains such as medicine remain insufficiently assessed. In particular, most assessments over-concentrate in evaluating VLMs based on simple Visual Question Answering (VQA) on multi-modality data, while ignoring the in-depth characteristic of LVLMs. In this study, we introduce RadVUQA, a novel Radiological Visual Understanding and Question Answering benchmark, to comprehensively evaluate existing LVLMs. RadVUQA mainly validates LVLMs across five dimensions: 1) Anatomical understanding, assessing the models' ability to visually identify biological structures; 2) Multimodal comprehension, which involves the capability of interpreting linguistic and visual instructions to produce desired outcomes; 3) Quantitative and spatial reasoning, evaluating the models' spatial awareness and proficiency in combining quantitative analysis with visual and linguistic information; 4) Physiological knowledge, measuring the models' capability to comprehend functions and mechanisms of organs and systems; and 5) Robustness, which assesses the models' capabilities against unharmonised and synthetic data. The results indicate that both generalized LVLMs and medical-specific LVLMs have critical deficiencies with weak multimodal comprehension and quantitative reasoning capabilities. Our findings reveal the large gap between existing LVLMs and clinicians, highlighting the urgent need for more robust and intelligent LVLMs. The code and dataset will be available after the acceptance of this paper.
comment: 10 pages
☆ NFDI4DSO: Towards a BFO Compliant Ontology for Data Science
The NFDI4DataScience (NFDI4DS) project aims to enhance the accessibility and interoperability of research data within Data Science (DS) and Artificial Intelligence (AI) by connecting digital artifacts and ensuring they adhere to FAIR (Findable, Accessible, Interoperable, and Reusable) principles. To this end, this poster introduces the NFDI4DS Ontology, which describes resources in DS and AI and models the structure of the NFDI4DS consortium. Built upon the NFDICore ontology and mapped to the Basic Formal Ontology (BFO), this ontology serves as the foundation for the NFDI4DS knowledge graph currently under development.
☆ Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing
Student extracurricular activities play an important role in enriching the students' educational experiences. With the increasing popularity of Machine Learning and Natural Language Processing, it becomes a logical step that incorporating ML-NLP in improving extracurricular activities is a potential focus of study in Artificial Intelligence (AI). This research study aims to develop a machine learning workflow that will quantify the effectiveness of student-organized activities based on student emotional responses using sentiment analysis. The study uses the Bidirectional Encoder Representations from Transformers (BERT) Large Language Model (LLM) called via the pysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data set from Organization C, a Recognized Student Organization (RSO) of a higher educational institute in the Philippines, College X, was used to develop the workflow. The workflow consisted of data preprocessing, key feature selection, LLM feature processing, and score aggregation, resulting in an Event Score for each data set. The results show that the BERT LLM can also be used effectively in analyzing sentiment beyond product reviews and post comments. For the student affairs offices of educational institutions, this study can provide a practical example of how NLP can be applied to real-world scenarios, showcasing the potential impact of data-driven decision making.
comment: 11 pages, 4 figures, presented in International Conference on Generative Al and its Applications (ICGAIA-24) last 22nd - 23rd, July, 2024 at Jakarta, Indonesia
☆ The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents and evaluates multi-agent workflows for synthetic Preference Optimization (PO) dataset generation. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
Can Large Language Models Improve the Adversarial Robustness of Graph Neural Networks?
Graph neural networks (GNNs) are vulnerable to adversarial perturbations, especially for topology attacks, and many methods that improve the robustness of GNNs have received considerable attention. Recently, we have witnessed the significant success of large language models (LLMs), leading many to explore the great potential of LLMs on GNNs. However, they mainly focus on improving the performance of GNNs by utilizing LLMs to enhance the node features. Therefore, we ask: Will the robustness of GNNs also be enhanced with the powerful understanding and inference capabilities of LLMs? By presenting the empirical results, we find that despite that LLMs can improve the robustness of GNNs, there is still an average decrease of 23.1% in accuracy, implying that the GNNs remain extremely vulnerable against topology attack. Therefore, another question is how to extend the capabilities of LLMs on graph adversarial robustness. In this paper, we propose an LLM-based robust graph structure inference framework, LLM4RGNN, which distills the inference capabilities of GPT-4 into a local LLM for identifying malicious edges and an LM-based edge predictor for finding missing important edges, so as to recover a robust graph structure. Extensive experiments demonstrate that LLM4RGNN consistently improves the robustness across various GNNs. Even in some cases where the perturbation ratio increases to 40%, the accuracy of GNNs is still better than that on the clean graph.
☆ LLM-PCGC: Large Language Model-based Point Cloud Geometry Compression
The key to effective point cloud compression is to obtain a robust context model consistent with complex 3D data structures. Recently, the advancement of large language models (LLMs) has highlighted their capabilities not only as powerful generators for in-context learning and generation but also as effective compressors. These dual attributes of LLMs make them particularly well-suited to meet the demands of data compression. Therefore, this paper explores the potential of using LLM for compression tasks, focusing on lossless point cloud geometry compression (PCGC) experiments. However, applying LLM directly to PCGC tasks presents some significant challenges, i.e., LLM does not understand the structure of the point cloud well, and it is a difficult task to fill the gap between text and point cloud through text description, especially for large complicated and small shapeless point clouds. To address these problems, we introduce a novel architecture, namely the Large Language Model-based Point Cloud Geometry Compression (LLM-PCGC) method, using LLM to compress point cloud geometry information without any text description or aligning operation. By utilizing different adaptation techniques for cross-modality representation alignment and semantic consistency, including clustering, K-tree, token mapping invariance, and Low Rank Adaptation (LoRA), the proposed method can translate LLM to a compressor/generator for point cloud. To the best of our knowledge, this is the first structure to employ LLM as a compressor for point cloud data. Experiments demonstrate that the LLM-PCGC outperforms the other existing methods significantly, by achieving -40.213% bit rate reduction compared to the reference software of MPEG Geometry-based Point Cloud Compression (G-PCC) standard, and by achieving -2.267% bit rate reduction compared to the state-of-the-art learning-based method.
☆ Neural Reward Machines
Non-markovian Reinforcement Learning (RL) tasks are very hard to solve, because agents must consider the entire history of state-action pairs to act rationally in the environment. Most works use symbolic formalisms (as Linear Temporal Logic or automata) to specify the temporally-extended task. These approaches only work in finite and discrete state environments or continuous problems for which a mapping between the raw state and a symbolic interpretation is known as a symbol grounding (SG) function. Here, we define Neural Reward Machines (NRM), an automata-based neurosymbolic framework that can be used for both reasoning and learning in non-symbolic non-markovian RL domains, which is based on the probabilistic relaxation of Moore Machines. We combine RL with semisupervised symbol grounding (SSSG) and we show that NRMs can exploit high-level symbolic knowledge in non-symbolic environments without any knowledge of the SG function, outperforming Deep RL methods which cannot incorporate prior knowledge. Moreover, we advance the research in SSSG, proposing an algorithm for analysing the groundability of temporal specifications, which is more efficient than baseline techniques of a factor $10^3$.
☆ Fine-tuning LLMs for Autonomous Spacecraft Control: A Case Study Using Kerbal Space Program SP
Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompt. This study explores the use of fine-tuned Large Language Models (LLMs) for autonomous spacecraft control, using the Kerbal Space Program Differential Games suite (KSPDG) as a testing environment. Traditional Reinforcement Learning (RL) approaches face limitations in this domain due to insufficient simulation capabilities and data. By leveraging LLMs, specifically fine-tuning models like GPT-3.5 and LLaMA, we demonstrate how these models can effectively control spacecraft using language-based inputs and outputs. Our approach integrates real-time mission telemetry into textual prompts processed by the LLM, which then generate control actions via an agent. The results open a discussion about the potential of LLMs for space operations beyond their nominal use for text-related tasks. Future work aims to expand this methodology to other space control tasks and evaluate the performance of different LLM families. The code is available at this URL: \texttt{https://github.com/ARCLab-MIT/kspdg}.
comment: ESA SPAICE Conference 2024. arXiv admin note: text overlap with arXiv:2404.00413
☆ Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning
Recently, foundation models based on Vision Transformers (ViTs) have become widely available. However, their fine-tuning process is highly resource-intensive, and it hinders their adoption in several edge or low-energy applications. To this end, in this paper we introduce an efficient fine-tuning method for ViTs called $\textbf{ALaST}$ ($\textit{Adaptive Layer Selection Fine-Tuning for Vision Transformers}$) to speed up the fine-tuning process while reducing computational cost, memory load, and training time. Our approach is based on the observation that not all layers are equally critical during fine-tuning, and their importance varies depending on the current mini-batch. Therefore, at each fine-tuning step, we adaptively estimate the importance of all layers and we assign what we call ``compute budgets'' accordingly. Layers that were allocated lower budgets are either trained with a reduced number of input tokens or kept frozen. Freezing a layer reduces the computational cost and memory usage by preventing updates to its weights, while discarding tokens removes redundant data, speeding up processing and reducing memory requirements. We show that this adaptive compute allocation enables a nearly-optimal schedule for distributing computational resources across layers, resulting in substantial reductions in training time (up to 1.5x), FLOPs (up to 2x), and memory load (up to 2x) compared to traditional full fine-tuning approaches. Additionally, it can be successfully combined with other parameter-efficient fine-tuning methods, such as LoRA.
☆ Robust Stochastic Shortest-Path Planning via Risk-Sensitive Incremental Sampling
With the pervasiveness of Stochastic Shortest-Path (SSP) problems in high-risk industries, such as last-mile autonomous delivery and supply chain management, robust planning algorithms are crucial for ensuring successful task completion while mitigating hazardous outcomes. Mainstream chance-constrained incremental sampling techniques for solving SSP problems tend to be overly conservative and typically do not consider the likelihood of undesirable tail events. We propose an alternative risk-aware approach inspired by the asymptotically-optimal Rapidly-Exploring Random Trees (RRT*) planning algorithm, which selects nodes along path segments with minimal Conditional Value-at-Risk (CVaR). Our motivation rests on the step-wise coherence of the CVaR risk measure and the optimal substructure of the SSP problem. Thus, optimizing with respect to the CVaR at each sampling iteration necessarily leads to an optimal path in the limit of the sample size. We validate our approach via numerical path planning experiments in a two-dimensional grid world with obstacles and stochastic path-segment lengths. Our simulation results show that incorporating risk into the tree growth process yields paths with lengths that are significantly less sensitive to variations in the noise parameter, or equivalently, paths that are more robust to environmental uncertainty. Algorithmic analyses reveal similar query time and memory space complexity to the baseline RRT* procedure, with only a marginal increase in processing time. This increase is offset by significantly lower noise sensitivity and reduced planner failure rates.
comment: Accepted for presentation at the 2024 IEEE Conference on Decision and Control (CDC)
☆ A Multivocal Literature Review on Privacy and Fairness in Federated Learning
Federated Learning presents a way to revolutionize AI applications by eliminating the necessity for data sharing. Yet, research has shown that information can still be extracted during training, making additional privacy-preserving measures such as differential privacy imperative. To implement real-world federated learning applications, fairness, ranging from a fair distribution of performance to non-discriminative behaviour, must be considered. Particularly in high-risk applications (e.g. healthcare), avoiding the repetition of past discriminatory errors is paramount. As recent research has demonstrated an inherent tension between privacy and fairness, we conduct a multivocal literature review to examine the current methods to integrate privacy and fairness in federated learning. Our analyses illustrate that the relationship between privacy and fairness has been neglected, posing a critical risk for real-world applications. We highlight the need to explore the relationship between privacy, fairness, and performance, advocating for the creation of integrated federated learning frameworks.
comment: Accepted for publication at the Internationale Tagung Wirtschaftsinformatik 2024
☆ Mitigating Backdoor Attacks in Federated Learning via Flipping Weight Updates of Low-Activation Input Neurons
Federated learning enables multiple clients to collaboratively train machine learning models under the overall planning of the server while adhering to privacy requirements. However, the server cannot directly oversee the local training process, creating an opportunity for malicious clients to introduce backdoors. Existing research shows that backdoor attacks activate specific neurons in the compromised model, which remain dormant when processing clean data. Leveraging this insight, we propose a method called Flipping Weight Updates of Low-Activation Input Neurons (FLAIN) to defend against backdoor attacks in federated learning. Specifically, after completing global training, we employ an auxiliary dataset to identify low-activation input neurons and flip the associated weight updates. We incrementally raise the threshold for low-activation inputs and flip the weight updates iteratively, until the performance degradation on the auxiliary data becomes unacceptable. Extensive experiments validate that our method can effectively reduce the success rate of backdoor attacks to a low level in various attack scenarios including those with non-IID data distribution or high MCRs, causing only minimal performance degradation on clean data.
☆ TextCAVs: Debugging vision models using text MICCAI 2024
Concept-based interpretability methods are a popular form of explanation for deep learning models which provide explanations in the form of high-level human interpretable concepts. These methods typically find concept activation vectors (CAVs) using a probe dataset of concept examples. This requires labelled data for these concepts -- an expensive task in the medical domain. We introduce TextCAVs: a novel method which creates CAVs using vision-language models such as CLIP, allowing for explanations to be created solely using text descriptions of the concept, as opposed to image exemplars. This reduced cost in testing concepts allows for many concepts to be tested and for users to interact with the model, testing new ideas as they are thought of, rather than a delay caused by image collection and annotation. In early experimental results, we demonstrate that TextCAVs produces reasonable explanations for a chest x-ray dataset (MIMIC-CXR) and natural images (ImageNet), and that these explanations can be used to debug deep learning-based models.
comment: 11 pages, 2 figures. Accepted at iMIMIC Workshop at MICCAI 2024
☆ Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings reveal that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies. To address this issue, we introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, our novel Primed Counterfactual Prompting with CoT approach effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies. Our contributions offer practical solutions for developing more robust and fair language models.
☆ Understanding Enthymemes in Argument Maps: Bridging Argument Mining and Logic-based Argumentation
Argument mining is natural language processing technology aimed at identifying arguments in text. Furthermore, the approach is being developed to identify the premises and claims of those arguments, and to identify the relationships between arguments including support and attack relationships. In this paper, we assume that an argument map contains the premises and claims of arguments, and support and attack relationships between them, that have been identified by argument mining. So from a piece of text, we assume an argument map is obtained automatically by natural language processing. However, to understand and to automatically analyse that argument map, it would be desirable to instantiate that argument map with logical arguments. Once we have the logical representation of the arguments in an argument map, we can use automated reasoning to analyze the argumentation (e.g. check consistency of premises, check validity of claims, and check the labelling on each arc corresponds with thw logical arguments). We address this need by using classical logic for representing the explicit information in the text, and using default logic for representing the implicit information in the text. In order to investigate our proposal, we consider some specific options for instantiation.
comment: Research note
☆ Magazine Supply Optimization: a Case-study
Supply optimization is a complex and challenging task in the magazine retail industry because of the fixed inventory assumption, irregular sales patterns, and varying product and point-of-sale characteristics. We introduce AthenIA, an industrialized magazine supply optimization solution that plans the supply for over 20,000 points of sale in France. We modularize the supply planning process into a four-step pipeline: demand sensing, optimization, business rules, and operating. The core of the solution is a novel group conformalized quantile regression method that integrates domain expert insights, coupled with a supply optimization technique that balances the costs of out-of-stock against the costs of over-supply. AthenIA has proven to be a valuable tool for magazine publishers, particularly in the context of evolving economic and ecological challenges.
☆ A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of \textbf{180 benchmarks} and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
☆ RealMedQA: A pilot biomedical question answering dataset containing realistic clinical questions
Clinical question answering systems have the potential to provide clinicians with relevant and timely answers to their questions. Nonetheless, despite the advances that have been made, adoption of these systems in clinical settings has been slow. One issue is a lack of question-answering datasets which reflect the real-world needs of health professionals. In this work, we present RealMedQA, a dataset of realistic clinical questions generated by humans and an LLM. We describe the process for generating and verifying the QA pairs and assess several QA models on BioASQ and RealMedQA to assess the relative difficulty of matching answers to questions. We show that the LLM is more cost-efficient for generating "ideal" QA pairs. Additionally, we achieve a lower lexical similarity between questions and answers than BioASQ which provides an additional challenge to the top two QA models, as per the results. We release our code and our dataset publicly to encourage further research.
comment: Accepted at AMIA Annual Symposium 2024
☆ SketchRef: A Benchmark Dataset and Evaluation Metrics for Automated Sketch Synthesis
Sketch, a powerful artistic technique to capture essential visual information about real-world objects, is increasingly gaining attention in the image synthesis field. However, evaluating the quality of synthesized sketches presents unique unsolved challenges. Current evaluation methods for sketch synthesis are inadequate due to the lack of a unified benchmark dataset, over-reliance on classification accuracy for recognizability, and unfair evaluation of sketches with different levels of simplification. To address these issues, we introduce SketchRef, a benchmark dataset comprising 4 categories of reference photos--animals, human faces, human bodies, and common objects--alongside novel evaluation metrics. Considering that classification accuracy is insufficient to measure the structural consistency between a sketch and its reference photo, we propose the mean Object Keypoint Similarity (mOKS) metric, utilizing pose estimation to assess structure-level recognizability. To ensure fair evaluation sketches with different simplification levels, we propose a recognizability calculation method constrained by simplicity. We also collect 8K responses from art enthusiasts, validating the effectiveness of our proposed evaluation methods. We hope this work can provide a comprehensive evaluation of sketch synthesis algorithms, thereby aligning their performance more closely with human understanding.
☆ DeepDFA: Automata Learning through Neural Probabilistic Relaxations
In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers interpretability post-training, alongside reduced complexity and enhanced training efficiency compared to traditional RNNs. Moreover, by leveraging gradient-based optimization, our method surpasses combinatorial approaches in both scalability and noise resilience. Validation experiments conducted on target regular languages of varying size and complexity demonstrate that our approach is accurate, fast, and robust to noise in both the input symbols and the output labels of training data, integrating the strengths of both logical grammar induction and deep learning.
☆ PatUntrack: Automated Generating Patch Examples for Issue Reports without Tracked Insecure Code
Security patches are essential for enhancing the stability and robustness of projects in the software community. While vulnerabilities are officially expected to be patched before being disclosed, patching vulnerabilities is complicated and remains a struggle for many organizations. To patch vulnerabilities, security practitioners typically track vulnerable issue reports (IRs), and analyze their relevant insecure code to generate potential patches. However, the relevant insecure code may not be explicitly specified and practitioners cannot track the insecure code in the repositories, thus limiting their ability to generate patches. In such cases, providing examples of insecure code and the corresponding patches would benefit the security developers to better locate and fix the insecure code. In this paper, we propose PatUntrack to automatically generating patch examples from IRs without tracked insecure code. It auto-prompts Large Language Models (LLMs) to make them applicable to analyze the vulnerabilities. It first generates the completed description of the Vulnerability-Triggering Path (VTP) from vulnerable IRs. Then, it corrects hallucinations in the VTP description with external golden knowledge. Finally, it generates Top-K pairs of Insecure Code and Patch Example based on the corrected VTP description. To evaluate the performance, we conducted experiments on 5,465 vulnerable IRs. The experimental results show that PatUntrack can obtain the highest performance and improve the traditional LLM baselines by +14.6% (Fix@10) on average in patch example generation. Furthermore, PatUntrack was applied to generate patch examples for 76 newly disclosed vulnerable IRs. 27 out of 37 replies from the authors of these IRs confirmed the usefulness of the patch examples generated by PatUntrack, indicating that they can benefit from these examples for patching the vulnerabilities.
comment: Accepted by ASE'24
☆ Generative Dataset Distillation Based on Diffusion Model ECCV 2024
This paper presents our method for the generative track of The First Dataset Distillation Challenge at ECCV 2024. Since the diffusion model has become the mainstay of generative models because of its high-quality generative effects, we focus on distillation methods based on the diffusion model. Considering that the track can only generate a fixed number of images in 10 minutes using a generative model for CIFAR-100 and Tiny-ImageNet datasets, we need to use a generative model that can generate images at high speed. In this study, we proposed a novel generative dataset distillation method based on Stable Diffusion. Specifically, we use the SDXL-Turbo model which can generate images at high speed and quality. Compared to other diffusion models that can only generate images per class (IPC) = 1, our method can achieve an IPC = 10 for Tiny-ImageNet and an IPC = 20 for CIFAR-100, respectively. Additionally, to generate high-quality distilled datasets for CIFAR-100 and Tiny-ImageNet, we use the class information as text prompts and post data augmentation for the SDXL-Turbo model. Experimental results show the effectiveness of the proposed method, and we achieved third place in the generative track of the ECCV 2024 DD Challenge. Codes are available at https://github.com/Guang000/BANKO.
comment: The Third Place Winner in Generative Track of the ECCV 2024 DD Challenge
☆ MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis. Although fully convolutional neural networks (CNNs) are commonly employed for segmentation, they are constrained by inductive biases and face challenges in establishing long-range dependencies. Transformer-based models address these limitations but introduce substantial computational overhead. Recently, a simple yet efficient Multilayer Perceptron (MLP) architecture was proposed for image classification, achieving competitive performance relative to advanced transformers. However, its effectiveness for ophthalmic image segmentation remains unexplored. In this paper, we introduce MM-UNet, an efficient Mixed MLP model tailored for ophthalmic image segmentation. Within MM-UNet, we propose a multi-scale MLP (MMLP) module that facilitates the interaction of features at various depths through a grouping strategy, enabling simultaneous capture of global and local information. We conducted extensive experiments on both a private anterior segment optical coherence tomography (AS-OCT) image dataset and a public fundus image dataset. The results demonstrated the superiority of our MM-UNet model in comparison to state-of-the-art deep segmentation networks.
comment: OMIA2024
☆ A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models
Recent studies on logical reasoning in auto-regressive Language Models (LMs) have sparked a debate on whether such models can learn systematic reasoning principles during pre-training or merely exploit superficial patterns in the training data. This paper presents a mechanistic interpretation of syllogistic reasoning in LMs to further enhance our understanding of internal dynamics. Specifically, we present a methodology for circuit discovery aimed at disentangling content-independent reasoning mechanisms from world knowledge acquired during pre-training. Through two distinct intervention methods, we uncover a sufficient and necessary circuit involving middle-term suppression that elucidates how LMs transfer information to derive valid conclusions from premises. Furthermore, we investigate how belief biases manifest in syllogistic reasoning, finding evidence of partial contamination from additional attention heads responsible for encoding commonsense and contextualized knowledge. Finally, we explore the generalization of the discovered mechanisms across various syllogistic schemes and model sizes, finding that the identified circuit is sufficient and necessary for all the schemes on which the model achieves high downstream accuracy ($\geq$ 60\%). Overall, our findings suggest that LMs indeed learn transferable content-independent reasoning mechanisms, but that, at the same time, such mechanisms do not involve generalisable and abstract logical primitives, being susceptible to contamination by the same world knowledge acquired during pre-training.
☆ S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
As artificial intelligence (AI) technology advances, ensuring the robustness and safety of AI-driven systems has become paramount. However, varying perceptions of robustness among AI developers create misaligned evaluation metrics, complicating the assessment and certification of safety-critical and complex AI systems such as autonomous driving (AD) agents. To address this challenge, we introduce Simulation-Based Robustness Assessment Framework (S-RAF) for autonomous driving. S-RAF leverages the CARLA Driving simulator to rigorously assess AD agents across diverse conditions, including faulty sensors, environmental changes, and complex traffic situations. By quantifying robustness and its relationship with other safety-critical factors, such as carbon emissions, S-RAF aids developers and stakeholders in building safe and responsible driving agents, and streamlining safety certification processes. Furthermore, S-RAF offers significant advantages, such as reduced testing costs, and the ability to explore edge cases that may be unsafe to test in the real world. The code for this framework is available here: https://github.com/cognitive-robots/rai-leaderboard
☆ AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios. Traditionally, BPS approaches employ a control-flow-first perspective by enriching a process model with simulation parameters. Although such approaches can mimic the behavior of centrally orchestrated processes, such as those supported by workflow systems, current control-flow-first approaches cannot faithfully capture the dynamics of real-world processes that involve distinct resource behavior and decentralized decision-making. Recognizing this issue, this paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log, modeling distinct resource behaviors and interaction patterns to simulate the underlying process. Our experiments show that AgentSimulator achieves state-of-the-art simulation accuracy with significantly lower computation times than existing approaches while providing high interpretability and adaptability to different types of process-execution scenarios.
☆ String Diagram of Optimal Transports
We propose a hierarchical framework of optimal transports (OTs), namely string diagrams of OTs. Our target problem is a safety problem on string diagrams of OTs, which requires proving or disproving that the minimum transportation cost in a given string diagram of OTs is above a given threshold. We reduce the safety problem on a string diagram of OTs to that on a monolithic OT by composing cost matrices. Our novel reduction exploits an algebraic structure of cost matrices equipped with two compositions: a sequential composition and a parallel composition. We provide a novel algorithm for the safety problem on string diagrams of OTs by our reduction, and we demonstrate its efficiency and performance advantage through experiments.
comment: Preprint, under review, 14 pages, 2 fugures, 1 table
Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments
This full paper in the research track evaluates the usage of data logged from cybersecurity exercises in order to predict students who are potentially at risk of performing poorly. Hands-on exercises are essential for learning since they enable students to practice their skills. In cybersecurity, hands-on exercises are often complex and require knowledge of many topics. Therefore, students may miss solutions due to gaps in their knowledge and become frustrated, which impedes their learning. Targeted aid by the instructor helps, but since the instructor's time is limited, efficient ways to detect struggling students are needed. This paper develops automated tools to predict when a student is having difficulty. We formed a dataset with the actions of 313 students from two countries and two learning environments: KYPO CRP and EDURange. These data are used in machine learning algorithms to predict the success of students in exercises deployed in these environments. After extracting features from the data, we trained and cross-validated eight classifiers for predicting the exercise outcome and evaluated their predictive power. The contribution of this paper is comparing two approaches to feature engineering, modeling, and classification performance on data from two learning environments. Using the features from either learning environment, we were able to detect and distinguish between successful and struggling students. A decision tree classifier achieved the highest balanced accuracy and sensitivity with data from both learning environments. The results show that activity data from cybersecurity exercises are suitable for predicting student success. In a potential application, such models can aid instructors in detecting struggling students and providing targeted help. We publish data and code for building these models so that others can adopt or adapt them.
comment: To appear for publication in the FIE 2024 conference proceedings
☆ Focus on Focus: Focus-oriented Representation Learning and Multi-view Cross-modal Alignment for Glioma Grading
Recently, multimodal deep learning, which integrates histopathology slides and molecular biomarkers, has achieved a promising performance in glioma grading. Despite great progress, due to the intra-modality complexity and inter-modality heterogeneity, existing studies suffer from inadequate histopathology representation learning and inefficient molecular-pathology knowledge alignment. These two issues hinder existing methods to precisely interpret diagnostic molecular-pathology features, thereby limiting their grading performance. Moreover, the real-world applicability of existing multimodal approaches is significantly restricted as molecular biomarkers are not always available during clinical deployment. To address these problems, we introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference, enhancing molecular-pathology representation effectively. Specifically, we propose a Focus-oriented Representation Learning (FRL) module to encourage the model to identify regions positively or negatively related to glioma grading and guide it to focus on the diagnostic areas with a consistency constraint. To effectively link the molecular biomarkers to morphological features, we propose a Multi-view Cross-modal Alignment (MCA) module that projects histopathology representations into molecular subspaces, aligning morphological features with corresponding molecular biomarker status by supervised contrastive learning. Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading. Remarkably, our FoF achieves superior performance using only histopathology slides compared to existing multimodal methods. The source code is available at https://github.com/peterlipan/FoF.
☆ GS-ID: Illumination Decomposition on Gaussian Splatting via Diffusion Prior and Parametric Light Source Optimization
We present GS-ID, a novel framework for illumination decomposition on Gaussian Splatting, achieving photorealistic novel view synthesis and intuitive light editing. Illumination decomposition is an ill-posed problem facing three main challenges: 1) priors for geometry and material are often lacking; 2) complex illumination conditions involve multiple unknown light sources; and 3) calculating surface shading with numerous light sources is computationally expensive. To address these challenges, we first introduce intrinsic diffusion priors to estimate the attributes for physically based rendering. Then we divide the illumination into environmental and direct components for joint optimization. Last, we employ deferred rendering to reduce the computational load. Our framework uses a learnable environment map and Spherical Gaussians (SGs) to represent light sources parametrically, therefore enabling controllable and photorealistic relighting on Gaussian Splatting. Extensive experiments and applications demonstrate that GS-ID produces state-of-the-art illumination decomposition results while achieving better geometry reconstruction and rendering performance.
comment: 15 pages, 13 figures
☆ Ex3: Automatic Novel Writing by Extracting, Excelsior and Expanding
Generating long-term texts such as novels using artificial intelligence has always been a challenge. A common approach is to use large language models (LLMs) to construct a hierarchical framework that first plans and then writes. Despite the fact that the generated novels reach a sufficient length, they exhibit poor logical coherence and appeal in their plots and deficiencies in character and event depiction, ultimately compromising the overall narrative quality. In this paper, we propose a method named Extracting Excelsior and Expanding. Ex3 initially extracts structure information from raw novel data. By combining this structure information with the novel data, an instruction-following dataset is meticulously crafted. This dataset is then utilized to fine-tune the LLM, aiming for excelsior generation performance. In the final stage, a tree-like expansion method is deployed to facilitate the generation of arbitrarily long novels. Evaluation against previous methods showcases Ex3's ability to produce higher-quality long-form novels.
☆ Adversarial Contrastive Learning Based Physics-Informed Temporal Networks for Cuffless Blood Pressure Estimation
Time series data mining is immensely important in extensive applications, such as traffic, medical, and e-commerce. In this paper, we focus on medical temporal variation modeling, \emph{i.e.,} cuffless blood pressure (BP) monitoring which has great value in cardiovascular healthcare. Although providing a comfortable user experience, such methods are suffering from the demand for a significant amount of realistic data to train an individual model for each subject, especially considering the invasive or obtrusive BP ground-truth measurements. To tackle this challenge, we introduce a novel physics-informed temporal network~(PITN) with adversarial contrastive learning to enable precise BP estimation with very limited data. Specifically, we first enhance the physics-informed neural network~(PINN) with the temporal block for investigating BP dynamics' multi-periodicity for personal cardiovascular cycle modeling and temporal variation. We then employ adversarial training to generate extra physiological time series data, improving PITN's robustness in the face of sparse subject-specific training data. Furthermore, we utilize contrastive learning to capture the discriminative variations of cardiovascular physiologic phenomena. This approach aggregates physiological signals with similar blood pressure values in latent space while separating clusters of samples with dissimilar blood pressure values. Experiments on three widely-adopted datasets with different modailties (\emph{i.e.,} bioimpedance, PPG, millimeter-wave) demonstrate the superiority and effectiveness of the proposed methods over previous state-of-the-art approaches. The code is available at~\url{https://github.com/Zest86/ACL-PITN}.
comment: 14 pages, 8 figures
☆ An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem
The Maximum Minimal Cut Problem (MMCP), a NP-hard combinatorial optimization (CO) problem, has not received much attention due to the demanding and challenging bi-connectivity constraint. Moreover, as a CO problem, it is also a daunting task for machine learning, especially without labeled instances. To deal with these problems, this work proposes an unsupervised learning framework combined with heuristics for MMCP that can provide valid and high-quality solutions. As far as we know, this is the first work that explores machine learning and heuristics to solve MMCP. The unsupervised solver is inspired by a relaxation-plus-rounding approach, the relaxed solution is parameterized by graph neural networks, and the cost and penalty of MMCP are explicitly written out, which can train the model end-to-end. A crucial observation is that each solution corresponds to at least one spanning tree. Based on this finding, a heuristic solver that implements tree transformations by adding vertices is utilized to repair and improve the solution quality of the unsupervised solver. Alternatively, the graph is simplified while guaranteeing solution consistency, which reduces the running time. We conduct extensive experiments to evaluate our framework and give a specific application. The results demonstrate the superiority of our method against two techniques designed.
☆ Fairness Issues and Mitigations in (Differentially Private) Socio-demographic Data Processes
Statistical agencies rely on sampling techniques to collect socio-demographic data crucial for policy-making and resource allocation. This paper shows that surveys of important societal relevance introduce sampling errors that unevenly impact group-level estimates, thereby compromising fairness in downstream decisions. To address these issues, this paper introduces an optimization approach modeled on real-world survey design processes, ensuring sampling costs are optimized while maintaining error margins within prescribed tolerances. Additionally, privacy-preserving methods used to determine sampling rates can further impact these fairness issues. The paper explores the impact of differential privacy on the statistics informing the sampling process, revealing a surprising effect: not only the expected negative effect from the addition of noise for differential privacy is negligible, but also this privacy noise can in fact reduce unfairness as it positively biases smaller counts. These findings are validated over an extensive analysis using datasets commonly applied in census statistics.
☆ Context-Aware Assistant Selection for Improved Inference Acceleration with Large Language Models
Despite their widespread adoption, large language models (LLMs) remain prohibitive to use under resource constraints, with their ever growing sizes only increasing the barrier for use. One noted issue is the high latency associated with auto-regressive generation, rendering large LLMs use dependent on advanced computing infrastructure. Assisted decoding, where a smaller draft model guides a larger target model's generation, has helped alleviate this, but remains dependent on alignment between the two models. Thus if the draft model is insufficiently capable on some domain relative to the target model, performance can degrade. Alternatively, one can leverage multiple draft models to better cover the expertise of the target, but when multiple black-box draft models are available, selecting an assistant without details about its construction can be difficult. To better understand this decision making problem, we observe it as a contextual bandit, where a policy must choose a draft model based on a context. We show that even without prior knowledge of the draft models, creating an offline dataset from only outputs of independent draft/target models and training a policy over the alignment of these outputs can accelerate performance on multiple domains provided the candidates are effective. Further results show this to hold on various settings with multiple assisted decoding candidates, highlighting its flexibility and the advantageous role that such decision making can play.
comment: 14 pages (9 pages main content + references + appendix)
☆ A theory of understanding for artificial intelligence: composability, catalysts, and learning
Understanding is a crucial yet elusive concept in artificial intelligence (AI). This work proposes a framework for analyzing understanding based on the notion of composability. Given any subject (e.g., a person or an AI), we suggest characterizing its understanding of an object in terms of its ability to process (compose) relevant inputs into satisfactory outputs from the perspective of a verifier. This highly universal framework can readily apply to non-human subjects, such as AIs, non-human animals, and institutions. Further, we propose methods for analyzing the inputs that enhance output quality in compositions, which we call catalysts. We show how the structure of a subject can be revealed by analyzing its components that act as catalysts and argue that a subject's learning ability can be regarded as its ability to compose inputs into its inner catalysts. Finally we examine the importance of learning ability for AIs to attain general intelligence. Our analysis indicates that models capable of generating outputs that can function as their own catalysts, such as language models, establish a foundation for potentially overcoming existing limitations in AI understanding.
comment: 13 pages, 3 figures
☆ Learning to Route for Dynamic Adapter Composition in Continual Learning with Language Models
Parameter-efficient fine-tuning (PEFT) methods are increasingly used with pre-trained language models (PLMs) for continual learning (CL). These methods involve training a PEFT module for each new task and using similarity-based selection to route modules during inference. However, they face two major limitations: 1) interference with already learned modules and 2) suboptimal routing when composing modules. In this paper, we introduce a method that isolates the training of PEFT modules for task specialization. Then, before evaluation, it learns to compose the previously learned modules by training a router that leverages samples from a small memory. We evaluate our method in two CL setups using several benchmarks. Our results show that our method provides a better composition of PEFT modules, leading to better generalization and performance compared to previous methods.
☆ Language Models Show Stable Value Orientations Across Diverse Role-Plays
We demonstrate that large language models (LLMs) exhibit consistent value orientations despite adopting diverse personas, revealing a persistent inertia in their responses that remains stable across the variety of roles they are prompted to assume. To systematically explore this phenomenon, we introduce the role-play-at-scale methodology, which involves prompting LLMs with randomized, diverse personas and analyzing the macroscopic trend of their responses. Unlike previous works that simply feed these questions to LLMs as if testing human subjects, our role-play-at-scale methodology diagnoses inherent tendencies in a systematic and scalable manner by: (1) prompting the model to act in different random personas and (2) asking the same question multiple times for each random persona. This approach reveals consistent patterns in LLM responses across diverse role-play scenarios, indicating deeply encoded inherent tendencies. Our findings contribute to the discourse on value alignment in foundation models and demonstrate the efficacy of role-play-at-scale as a diagnostic tool for uncovering encoded biases in LLMs.
☆ mRNA2vec: mRNA Embedding with Language Model in the 5'UTR-CDS for mRNA Design
Messenger RNA (mRNA)-based vaccines are accelerating the discovery of new drugs and revolutionizing the pharmaceutical industry. However, selecting particular mRNA sequences for vaccines and therapeutics from extensive mRNA libraries is costly. Effective mRNA therapeutics require carefully designed sequences with optimized expression levels and stability. This paper proposes a novel contextual language model (LM)-based embedding method: mRNA2vec. In contrast to existing mRNA embedding approaches, our method is based on the self-supervised teacher-student learning framework of data2vec. We jointly use the 5' untranslated region (UTR) and coding sequence (CDS) region as the input sequences. We adapt our LM-based approach specifically to mRNA by 1) considering the importance of location on the mRNA sequence with probabilistic masking, 2) using Minimum Free Energy (MFE) prediction and Secondary Structure (SS) classification as additional pretext tasks. mRNA2vec demonstrates significant improvements in translation efficiency (TE) and expression level (EL) prediction tasks in UTR compared to SOTA methods such as UTR-LM. It also gives a competitive performance in mRNA stability and protein production level tasks in CDS such as CodonBERT.
☆ Keep Calm and Relax -- HMI for Autonomous Vehicles
The growing popularity of self-driving, so-called autonomous vehicles has increased the need for human-machine interfaces~(HMI) and user interaction~(UI) to enhance passenger trust and comfort. While fallback drivers significantly influence the perceived trustfulness of self-driving vehicles, fallback drivers are an expensive solution that may not even improve vehicle safety in emergency situations. Based on a comprehensive literature review, this work delves into the potential of HMI and UI in enhancing trustfulness and emotion regulation in driverless vehicles. By analyzing the impact of various HMI and UI on passenger emotions, innovative and cost-effective concepts for improving human-vehicle interaction are conceptualized. To enable a trustful, highly comfortable, and safe ride, this work concludes by discussing whether HMI and UI are suitable for calming passengers down in emergencies, leading to smarter mobility for all.
comment: 14 pages, 3 figures, 1 table
☆ Improving VTE Identification through Language Models from Radiology Reports: A Comparative Study of Mamba, Phi-3 Mini, and BERT
Venous thromboembolism (VTE) is a critical cardiovascular condition, encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE). Accurate and timely identification of VTE is essential for effective medical care. This study builds upon our previous work, which addressed VTE detection using deep learning methods for DVT and a hybrid approach combining deep learning and rule-based classification for PE. Our earlier approaches, while effective, had two major limitations: they were complex and required expert involvement for feature engineering of the rule set. To overcome these challenges, we utilize the Mamba architecture-based classifier. This model achieves remarkable results, with a 97\% accuracy and F1 score on the DVT dataset and a 98\% accuracy and F1 score on the PE dataset. In contrast to the previous hybrid method on PE identification, the Mamba classifier eliminates the need for hand-engineered rules, significantly reducing model complexity while maintaining comparable performance. Additionally, we evaluated a lightweight Large Language Model (LLM), Phi-3 Mini, in detecting VTE. While this model delivers competitive results, outperforming the baseline BERT models, it proves to be computationally intensive due to its larger parameter set. Our evaluation shows that the Mamba-based model demonstrates superior performance and efficiency in VTE identification, offering an effective solution to the limitations of previous approaches.
☆ On the Completeness of Conflict-Based Search: Temporally-Relative Duplicate Pruning
Conflict-Based Search (CBS) algorithm for the multi-agent pathfinding (MAPF) problem is that it is incomplete for problems which have no solution; if no mitigating procedure is run in parallel, CBS will run forever when given an unsolvable problem instance. In this work, we introduce Temporally-Relative Duplicate Pruning (TRDP), a technique for duplicate detection and removal in both classic and continuous-time MAPF domains. TRDP is a simple procedure which closes the long-standing theoretic loophole of incompleteness for CBS by detecting and avoiding the expansion of duplicate states. TRDP is shown both theoretically and empirically to ensure termination without a significant impact on runtime in the majority of problem instances. In certain cases, TRDP is shown to increase performance significantly
comment: 9 pages, 4 figures, 2 tables
☆ Efficient Autoregressive Audio Modeling via Next-Scale Prediction
Audio generation has achieved remarkable progress with the advance of sophisticated generative models, such as diffusion models (DMs) and autoregressive (AR) models. However, due to the naturally significant sequence length of audio, the efficiency of audio generation remains an essential issue to be addressed, especially for AR models that are incorporated in large language models (LLMs). In this paper, we analyze the token length of audio tokenization and propose a novel \textbf{S}cale-level \textbf{A}udio \textbf{T}okenizer (SAT), with improved residual quantization. Based on SAT, a scale-level \textbf{A}coustic \textbf{A}uto\textbf{R}egressive (AAR) modeling framework is further proposed, which shifts the next-token AR prediction to next-scale AR prediction, significantly reducing the training cost and inference time. To validate the effectiveness of the proposed approach, we comprehensively analyze design choices and demonstrate the proposed AAR framework achieves a remarkable \textbf{35}$\times$ faster inference speed and +\textbf{1.33} Fr\'echet Audio Distance (FAD) against baselines on the AudioSet benchmark. Code: \url{https://github.com/qiuk2/AAR}.
comment: 7 pages, 6 figures, 7 tables
☆ Classifier-Free Guidance is a Predictor-Corrector
We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-powered distribution $p(x|c)^\gamma p(x)^{1-\gamma}$. Then, we clarify the behavior of CFG by showing that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the conditional distribution together with a Langevin dynamics corrector for a gamma-powered distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically understand CFG by embedding it in a broader design space of principled sampling methods.
comment: AB and PN contributed equally
☆ On the Undecidability of Artificial Intelligence Alignment: Machines that Halt
The inner alignment problem, which asserts whether an arbitrary artificial intelligence (AI) model satisfices a non-trivial alignment function of its outputs given its inputs, is undecidable. This is rigorously proved by Rice's theorem, which is also equivalent to a reduction to Turing's Halting Problem, whose proof sketch is presented in this work. Nevertheless, there is an enumerable set of provenly aligned AIs that are constructed from a finite set of provenly aligned operations. Therefore, we argue that the alignment should be a guaranteed property from the AI architecture rather than a characteristic imposed post-hoc on an arbitrary AI model. Furthermore, while the outer alignment problem is the definition of a judge function that captures human values and preferences, we propose that such a function must also impose a halting constraint that guarantees that the AI model always reaches a terminal state in finite execution steps. Our work presents examples and models that illustrate this constraint and the intricate challenges involved, advancing a compelling case for adopting an intrinsically hard-aligned approach to AI systems architectures that ensures halting.
comment: Submitted for the Scientific Reports AI Alignment Collection
☆ Adaptive Uncertainty Quantification for Generative AI
This work is concerned with conformal prediction in contemporary applications (including generative AI) where a black-box model has been trained on data that are not accessible to the user. Mirroring split-conformal inference, we design a wrapper around a black-box algorithm which calibrates conformity scores. This calibration is local and proceeds in two stages by first adaptively partitioning the predictor space into groups and then calibrating sectionally group by group. Adaptive partitioning (self-grouping) is achieved by fitting a robust regression tree to the conformity scores on the calibration set. This new tree variant is designed in such a way that adding a single new observation does not change the tree fit with overwhelmingly large probability. This add-one-in robustness property allows us to conclude a finite sample group-conditional coverage guarantee, a refinement of the marginal guarantee. In addition, unlike traditional split-conformal inference, adaptive splitting and within-group calibration yields adaptive bands which can stretch and shrink locally. We demonstrate benefits of local tightening on several simulated as well as real examples using non-parametric regression. Finally, we consider two contemporary classification applications for obtaining uncertainty quantification around GPT-4o predictions. We conformalize skin disease diagnoses based on self-reported symptoms as well as predicted states of U.S. legislators based on summaries of their ideology. We demonstrate substantial local tightening of the uncertainty sets while attaining similar marginal coverage.
☆ Ask, Attend, Attack: A Effective Decision-Based Black-Box Targeted Attack for Image-to-Text Models
While image-to-text models have demonstrated significant advancements in various vision-language tasks, they remain susceptible to adversarial attacks. Existing white-box attacks on image-to-text models require access to the architecture, gradients, and parameters of the target model, resulting in low practicality. Although the recently proposed gray-box attacks have improved practicality, they suffer from semantic loss during the training process, which limits their targeted attack performance. To advance adversarial attacks of image-to-text models, this paper focuses on a challenging scenario: decision-based black-box targeted attacks where the attackers only have access to the final output text and aim to perform targeted attacks. Specifically, we formulate the decision-based black-box targeted attack as a large-scale optimization problem. To efficiently solve the optimization problem, a three-stage process \textit{Ask, Attend, Attack}, called \textit{AAA}, is proposed to coordinate with the solver. \textit{Ask} guides attackers to create target texts that satisfy the specific semantics. \textit{Attend} identifies the crucial regions of the image for attacking, thus reducing the search space for the subsequent \textit{Attack}. \textit{Attack} uses an evolutionary algorithm to attack the crucial regions, where the attacks are semantically related to the target texts of \textit{Ask}, thus achieving targeted attacks without semantic loss. Experimental results on transformer-based and CNN+RNN-based image-to-text models confirmed the effectiveness of our proposed \textit{AAA}.
☆ ASGM-KG: Unveiling Alluvial Gold Mining Through Knowledge Graphs
Artisanal and Small-Scale Gold Mining (ASGM) is a low-cost yet highly destructive mining practice, leading to environmental disasters across the world's tropical watersheds. The topic of ASGM spans multiple domains of research and information, including natural and social systems, and knowledge is often atomized across a diversity of media and documents. We therefore introduce a knowledge graph (ASGM-KG) that consolidates and provides crucial information about ASGM practices and their environmental effects. The current version of ASGM-KG consists of 1,899 triples extracted using a large language model (LLM) from documents and reports published by both non-governmental and governmental organizations. These documents were carefully selected by a group of tropical ecologists with expertise in ASGM. This knowledge graph was validated using two methods. First, a small team of ASGM experts reviewed and labeled triples as factual or non-factual. Second, we devised and applied an automated factual reduction framework that relies on a search engine and an LLM for labeling triples. Our framework performs as well as five baselines on a publicly available knowledge graph and achieves over 90 accuracy on our ASGM-KG validated by domain experts. ASGM-KG demonstrates an advancement in knowledge aggregation and representation for complex, interdisciplinary environmental crises such as ASGM.
☆ Differentiable Edge-based OPC
Optical proximity correction (OPC) is crucial for pushing the boundaries of semiconductor manufacturing and enabling the continued scaling of integrated circuits. While pixel-based OPC, termed as inverse lithography technology (ILT), has gained research interest due to its flexibility and precision. Its complexity and intricate features can lead to challenges in mask writing, increased defects, and higher costs, hence hindering widespread industrial adoption. In this paper, we propose DiffOPC, a differentiable OPC framework that enjoys the virtue of both edge-based OPC and ILT. By employing a mask rule-aware gradient-based optimization approach, DiffOPC efficiently guides mask edge segment movement during mask optimization, minimizing wafer error by propagating true gradients from the cost function back to the mask edges. Our approach achieves lower edge placement error while reducing manufacturing cost by half compared to state-of-the-art OPC techniques, bridging the gap between the high accuracy of pixel-based OPC and the practicality required for industrial adoption, thus offering a promising solution for advanced semiconductor manufacturing.
comment: Accepted by ICCAD24
☆ Adaptive Guardrails For Large Language Models via Trust Modeling and In-Context Learning
Guardrails have become an integral part of Large language models (LLMs), by moderating harmful or toxic response in order to maintain LLMs' alignment to human expectations. However, the existing guardrail methods do not consider different needs and access rights of individual users, and treat all the users with the same rule. This study introduces an adaptive guardrail mechanism, supported by trust modeling and enhanced with in-context learning, to dynamically modulate access to sensitive content based on user trust metrics. By leveraging a combination of direct interaction trust and authority-verified trust, the system precisely tailors the strictness of content moderation to align with the user's credibility and the specific context of their inquiries. Our empirical evaluations demonstrate that the adaptive guardrail effectively meets diverse user needs, outperforming existing guardrails in practicality while securing sensitive information and precisely managing potentially hazardous content through a context-aware knowledge base. This work is the first to introduce trust-oriented concept within a guardrail system, offering a scalable solution that enriches the discourse on ethical deployment for next-generation LLMs.
comment: Under Review
♻ ☆ OC3D: Weakly Supervised Outdoor 3D Object Detection with Only Coarse Click Annotation
LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents OC3D, an innovative weakly supervised method requiring only coarse clicks on the bird's eye view of the 3D point cloud. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this problem, our proposed OC3D adopts a two-stage strategy. In the first stage, we initially design a novel dynamic and static classification strategy and then propose the Click2Box and Click2Mask modules to generate box-level and mask-level pseudo-labels for static and dynamic instances, respectively. In the second stage, we design a Mask2Box module, leveraging the learning capabilities of neural networks to update mask-level pseudo-labels, which contain less information, to box-level pseudo-labels. Experimental results on the widely used KITTI and nuScenes datasets demonstrate that our OC3D with only coarse clicks achieves state-of-the-art performance compared to weakly-supervised 3D detection methods. Combining OC3D with a missing click mining strategy, we propose an OC3D++ pipeline, which requires only 0.2% annotation cost in the KITTI dataset to achieve performance comparable to fully supervised methods. The code will be made publicly available.
♻ ☆ DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection CIKM 2024
Utilizing market forecasts is pivotal in optimizing portfolio selection strategies. We introduce DeepClair, a novel framework for portfolio selection. DeepClair leverages a transformer-based time-series forecasting model to predict market trends, facilitating more informed and adaptable portfolio decisions. To integrate the forecasting model into a deep reinforcement learning-driven portfolio selection framework, we introduced a two-step strategy: first, pre-training the time-series model on market data, followed by fine-tuning the portfolio selection architecture using this model. Additionally, we investigated the optimization technique, Low-Rank Adaptation (LoRA), to enhance the pre-trained forecasting model for fine-tuning in investment scenarios. This work bridges market forecasting and portfolio selection, facilitating the advancement of investment strategies.
comment: CIKM 2024 Accepted
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL
Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08%, compared to the baseline accuracy of 46.35% for vanilla GPT-4 and the baseline accuracy of 57.56% for MAC-SQL. Besides, our approach makes similar progress on Spider.
comment: 22 pages, 14 figures
♻ ☆ MathBridge: A Large Corpus Dataset for Translating Spoken Mathematical Expressions into $LaTeX$ Formulas for Improved Readability
Improving the readability of mathematical expressions in text-based document such as subtitle of mathematical video, is an significant task. To achieve this, mathematical expressions should be convert to compiled formulas. For instance, the spoken expression ``x equals minus b plus or minus the square root of b squared minus four a c, all over two a'' from automatic speech recognition is more readily comprehensible when displayed as a compiled formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. To convert mathematical spoken sentences to compiled formulas, two processes are required: spoken sentences are converted into LaTeX formulas, and LaTeX formulas are converted into compiled formulas. The latter can be managed by using LaTeX engines. However, there is no way to do the former effectively. Even if we try to solve this using language models, there is no paired data between spoken sentences and LaTeX formulas to train it. In this paper, we introduce MathBridge, the first extensive dataset for translating mathematical spoken sentences into LaTeX formulas. MathBridge comprises approximately 23 million LaTeX formulas paired with the corresponding mathematical spoken sentences. Through comprehensive evaluations, including fine-tuning with proposed data, we discovered that MathBridge significantly enhances the capabilities of pretrained language models for converting to LaTeX formulas from mathematical spoken sentences. Specifically, for the T5-large model, the sacreBLEU score increased from 4.77 to 46.8, demonstrating substantial enhancement.
comment: 9 pages, 6 figures
♻ ☆ A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites
Unit tests represent the most basic level of testing within the software testing lifecycle and are crucial to ensuring software correctness. Designing and creating unit tests is a costly and labor-intensive process that is ripe for automation. Recently, Large Language Models (LLMs) have been applied to various aspects of software development, including unit test generation. Although several empirical studies evaluating LLMs' capabilities in test code generation exist, they primarily focus on simple scenarios, such as the straightforward generation of unit tests for individual methods. These evaluations often involve independent and small-scale test units, providing a limited view of LLMs' performance in real-world software development scenarios. Moreover, previous studies do not approach the problem at a suitable scale for real-life applications. Generated unit tests are often evaluated via manual integration into the original projects, a process that limits the number of tests executed and reduces overall efficiency. To address these gaps, we have developed an approach for generating and evaluating more real-life complexity test suites. Our approach focuses on class-level test code generation and automates the entire process from test generation to test assessment. In this work, we present AgoneTest: an automated system for generating test suites for Java projects and a comprehensive and principled methodology for evaluating the generated test suites. Starting from a state-of-the-art dataset (i.e., Methods2Test), we built a new dataset for comparing human-written tests with those generated by LLMs. Our key contributions include a scalable automated software system, a new dataset, and a detailed methodology for evaluating test quality.
♻ ☆ Heavy-Ball Momentum Accelerated Actor-Critic With Function Approximation
By using an parametric value function to replace the Monte-Carlo rollouts for value estimation, the actor-critic (AC) algorithms can reduce the variance of stochastic policy gradient so that to improve the convergence rate. While existing works mainly focus on analyzing convergence rate of AC algorithms under Markovian noise, the impacts of momentum on AC algorithms remain largely unexplored. In this work, we first propose a heavy-ball momentum based advantage actor-critic (\mbox{HB-A2C}) algorithm by integrating the heavy-ball momentum into the critic recursion that is parameterized by a linear function. When the sample trajectory follows a Markov decision process, we quantitatively certify the acceleration capability of the proposed HB-A2C algorithm. Our theoretical results demonstrate that the proposed HB-A2C finds an $\epsilon$-approximate stationary point with $\oo{\epsilon^{-2}}$ iterations for reinforcement learning tasks with Markovian noise. Moreover, we also reveal the dependence of learning rates on the length of the sample trajectory. By carefully selecting the momentum factor of the critic recursion, the proposed HB-A2C can balance the errors introduced by the initialization and the stoschastic approximation.
♻ ☆ Surprise-Adaptive Intrinsic Motivation for Unsupervised Reinforcement Learning
Both entropy-minimizing and entropy-maximizing (curiosity) objectives for unsupervised reinforcement learning (RL) have been shown to be effective in different environments, depending on the environment's level of natural entropy. However, neither method alone results in an agent that will consistently learn intelligent behavior across environments. In an effort to find a single entropy-based method that will encourage emergent behaviors in any environment, we propose an agent that can adapt its objective online, depending on the entropy conditions by framing the choice as a multi-armed bandit problem. We devise a novel intrinsic feedback signal for the bandit, which captures the agent's ability to control the entropy in its environment. We demonstrate that such agents can learn to control entropy and exhibit emergent behaviors in both high- and low-entropy regimes and can learn skillful behaviors in benchmark tasks. Videos of the trained agents and summarized findings can be found on our project page https://sites.google.com/view/surprise-adaptive-agents
comment: Published at the Reinforcement Learning Conference 2024
♻ ☆ CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
Constructing assurance cases is a widely used, and sometimes required, process toward demonstrating that safety-critical systems will operate safely in their planned environment. To mitigate the risk of errors and missing edge cases, the concept of defeaters - arguments or evidence that challenge claims in an assurance case - has been introduced. Defeaters can provide timely detection of weaknesses in the arguments, prompting further investigation and timely mitigations. However, capturing defeaters relies on expert judgment, experience, and creativity and must be done iteratively due to evolving requirements and regulations. This paper proposes CoDefeater, an automated process to leverage large language models (LLMs) for finding defeaters. Initial results on two systems show that LLMs can efficiently find known and unforeseen feasible defeaters to support safety analysts in enhancing the completeness and confidence of assurance cases.
comment: ASE 2024 NIER
♻ ☆ Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Several recent advances in AI systems solve problems by providing a "scaffolding" program that structures multiple calls to language models (LMs) to generate better outputs. A scaffolding program is written in a programming language such as Python. In this work, we use a language-model-infused scaffolding program to improve itself. We start with a seed "improver" that improves an input program according to a given utility function by querying an LM several times and returning the best solution. We then run this seed improver to improve itself. Across a small set of downstream tasks, the resulting improved improver generates programs with significantly better performance than its seed improver. A variety of self-improvement strategies are proposed by the language model, including beam search, genetic algorithms, and simulated annealing. Since the language models themselves are not altered, this is not full recursive self-improvement. Nonetheless, it demonstrates that a modern language model, GPT-4 in our experiments, is capable of writing code that can call itself to improve itself. We consider concerns around the development of self-improving technologies and evaluate the frequency with which the generated code bypasses a sandbox.
comment: Published as a conference paper at COLM 2024
♻ ☆ Apollo: A Lightweight Multilingual Medical LLM towards Democratizing Medical AI to 6B People
Despite the vast repository of global medical knowledge predominantly being in English, local languages are crucial for delivering tailored healthcare services, particularly in areas with limited medical resources. To extend the reach of medical AI advancements to a broader population, we aim to develop medical LLMs across the six most widely spoken languages, encompassing a global population of 6.1 billion. This effort culminates in the creation of the ApolloCorpora multilingual medical dataset and the XMedBench benchmark. In the multilingual medical benchmark, the released Apollo models, at various relatively-small sizes (i.e., 0.5B, 1.8B, 2B, 6B, and 7B), achieve the best performance among models of equivalent size. Especially, Apollo-7B is the state-of-the-art multilingual medical LLMs up to 70B. Additionally, these lite models could be used to improve the multi-lingual medical capabilities of larger models without fine-tuning in a proxy-tuning fashion. We will open-source training corpora, code, model weights and evaluation benchmark.
comment: Preprint
♻ ☆ AI-as-exploration: Navigating intelligence space
Artificial Intelligence is a field that lives many lives, and the term has come to encompass a motley collection of scientific and commercial endeavours. In this paper, I articulate the contours of a rather neglected but central scientific role that AI has to play, which I dub `AI-as-exploration'.The basic thrust of AI-as-exploration is that of creating and studying systems that can reveal candidate building blocks of intelligence that may differ from the forms of human and animal intelligence we are familiar with. In other words, I suggest that AI is one of the best tools we have for exploring intelligence space, namely the space of possible intelligent systems. I illustrate the value of AI-as-exploration by focusing on a specific case study, i.e., recent work on the capacity to combine novel and invented concepts in humans and Large Language Models. I show that the latter, despite showing human-level accuracy in such a task, probably solve it in ways radically different, but no less relevant to intelligence research, to those hypothesised for humans.
♻ ☆ Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning
Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment. Focusing on infinite-horizon Markov decision processes, the goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner, where each agent only communicates with its neighbors over some prescribed graph topology. We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods in the tabular setting under softmax parameterization, where gradient tracking is applied to estimate the global Q-function to mitigate the impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees under exact policy evaluation, where the rates are nearly independent of the size of the state-action space and illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the first time that near dimension-free global convergence is established for federated multi-task RL using policy optimization. We further go beyond the tabular setting by proposing a federated natural actor critic (NAC) method for multi-task RL with function approximation, and establish its finite-time sample complexity taking the errors of function approximation into account.
♻ ☆ Self-Supervised Multimodal Learning: A Survey
Multimodal learning, which aims to understand and analyze information from multiple modalities, has achieved substantial progress in the supervised regime in recent years. However, the heavy dependence on data paired with expensive human annotations impedes scaling up models. Meanwhile, given the availability of large-scale unannotated data in the wild, self-supervised learning has become an attractive strategy to alleviate the annotation bottleneck. Building on these two directions, self-supervised multimodal learning (SSML) provides ways to learn from raw multimodal data. In this survey, we provide a comprehensive review of the state-of-the-art in SSML, in which we elucidate three major challenges intrinsic to self-supervised learning with multimodal data: (1) learning representations from multimodal data without labels, (2) fusion of different modalities, and (3) learning with unaligned data. We then detail existing solutions to these challenges. Specifically, we consider (1) objectives for learning from multimodal unlabeled data via self-supervision, (2) model architectures from the perspective of different multimodal fusion strategies, and (3) pair-free learning strategies for coarse-grained and fine-grained alignment. We also review real-world applications of SSML algorithms in diverse fields such as healthcare, remote sensing, and machine translation. Finally, we discuss challenges and future directions for SSML. A collection of related resources can be found at: https://github.com/ys-zong/awesome-self-supervised-multimodal-learning.
comment: Accepted to IEEE T-PAMI
♻ ☆ Detecting Hidden Triggers: Mapping Non-Markov Reward Functions to Markov
Many Reinforcement Learning algorithms assume a Markov reward function to guarantee optimality. However, not all reward functions are Markov. This paper proposes a framework for mapping non-Markov reward functions into equivalent Markov ones by learning specialized reward automata, Reward Machines. Unlike the general practice of learning Reward Machines, we do not require a set of high-level propositional symbols from which to learn. Rather, we learn hidden triggers, directly from data, that construct them. We demonstrate the importance of learning Reward Machines over their Deterministic Finite-State Automata counterparts given their ability to model reward dependencies. We formalize this distinction in our learning objective. Our mapping process is constructed as an Integer Linear Programming problem. We prove that our mappings form a suitable proxy for maximizing reward expectations. We empirically validate our approach by learning black-box, non-Markov reward functions in the Officeworld domain. Additionally, we demonstrate the effectiveness of learning reward dependencies in a new domain, Breakfastworld.
♻ ☆ Agentic Skill Discovery
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control. A remaining challenge is to acquire a diverse set of fundamental skills. Existing approaches either manually decompose a complex task into atomic robotic actions in a top-down fashion, or bootstrap as many combinations as possible in a bottom-up fashion to cover a wider range of task possibilities. These decompositions or combinations, however, require an initial skill library. For example, a ``grasping'' capability can never emerge from a skill library containing only diverse ``pushing'' skills. Existing skill discovery techniques with reinforcement learning acquire skills by an exhaustive exploration but often yield non-meaningful behaviors. In this study, we introduce a novel framework for skill discovery that is entirely driven by LLMs. The framework begins with an LLM generating task proposals based on the provided scene description and the robot's configurations, aiming to incrementally acquire new skills upon task completion. For each proposed task, a series of reinforcement learning processes are initiated, utilizing reward and success determination functions sampled by the LLM to develop the corresponding policy. The reliability and trustworthiness of learned behaviors are further ensured by an independent vision-language model. We show that starting with zero skill, the skill library emerges and expands to more and more meaningful and reliable skills, enabling the robot to efficiently further propose and complete advanced tasks. Project page: \url{https://agentic-skill-discovery.github.io}.
comment: Webpage see https://agentic-skill-discovery.github.io/
♻ ☆ Fine-Tuned 'Small' LLMs (Still) Significantly Outperform Zero-Shot Generative AI Models in Text Classification
Generative AI offers a simple, prompt-based alternative to fine-tuning smaller BERT-style LLMs for text classification tasks. This promises to eliminate the need for manually labeled training data and task-specific model training. However, it remains an open question whether tools like ChatGPT can deliver on this promise. In this paper, we show that smaller, fine-tuned LLMs (still) consistently and significantly outperform larger, zero-shot prompted models in text classification. We compare three major generative AI models (ChatGPT with GPT-3.5/GPT-4 and Claude Opus) with several fine-tuned LLMs across a diverse set of classification tasks (sentiment, approval/disapproval, emotions, party positions) and text categories (news, tweets, speeches). We find that fine-tuning with application-specific training data achieves superior performance in all cases. To make this approach more accessible to a broader audience, we provide an easy-to-use toolkit alongside this paper. Our toolkit, accompanied by non-technical step-by-step guidance, enables users to select and fine-tune BERT-like LLMs for any classification task with minimal technical and computational effort.
♻ ☆ Improving Task Instructions for Data Annotators: How Clear Rules and Higher Pay Increase Performance in Data Annotation in the AI Economy
The global surge in AI applications is transforming industries, leading to displacement and complementation of existing jobs, while also giving rise to new employment opportunities. Data annotation, encompassing the labelling of images or annotating of texts by human workers, crucially influences the quality of a dataset directly influences the quality of AI models trained on it. This paper delves into the economics of data annotation, with a specific focus on the impact of task instruction design (that is, the choice between rules and standards as theorised in law and economics) and monetary incentives on data quality and costs. An experimental study involving 307 data annotators examines six groups with varying task instructions (norms) and monetary incentives. Results reveal that annotators provided with clear rules exhibit higher accuracy rates, outperforming those with vague standards by 14%. Similarly, annotators receiving an additional monetary incentive perform significantly better, with the highest accuracy rate recorded in the group working with both clear rules and incentives (87.5% accuracy). In addition, our results show that rules are perceived as being more helpful by annotators than standards and reduce annotators' difficulty in annotating images. These empirical findings underscore the double benefit of rule-based instructions on both data quality and worker wellbeing. Our research design allows us to reveal that, in our study, rules are more cost-efficient in increasing accuracy than monetary incentives. The paper contributes experimental insights to discussions on the economical, ethical, and legal considerations of AI technologies. Addressing policymakers and practitioners, we emphasise the need for a balanced approach in optimising data annotation processes for efficient and ethical AI development and usage.
comment: 38 pages, 8 figures, 2 tables
♻ ☆ Transformers and Cortical Waves: Encoders for Pulling In Context Across Time
The capabilities of transformer networks such as ChatGPT and other Large Language Models (LLMs) have captured the world's attention. The crucial computational mechanism underlying their performance relies on transforming a complete input sequence - for example, all the words in a sentence - into a long "encoding vector" that allows transformers to learn long-range temporal dependencies in naturalistic sequences. Specifically, "self-attention" applied to this encoding vector enhances temporal context in transformers by computing associations between pairs of words in the input sequence. We suggest that waves of neural activity traveling across single cortical areas or multiple regions at the whole-brain scale could implement a similar encoding principle. By encapsulating recent input history into a single spatial pattern at each moment in time, cortical waves may enable temporal context to be extracted from sequences of sensory inputs, the same computational principle used in transformers.
comment: 27 pages, 5 figures
♻ ☆ A Medical Data-Effective Learning Benchmark for Highly Efficient Pre-training of Foundation Models
Foundation models, pre-trained on massive datasets, have achieved unprecedented generalizability. However, is it truly necessary to involve such vast amounts of data in pre-training, consuming extensive computational resources? This paper introduces data-effective learning, aiming to use data in the most impactful way to pre-train foundation models. This involves strategies that focus on data quality rather than quantity, ensuring the data used for training has high informational value. Data-effective learning plays a profound role in accelerating foundation model training, reducing computational costs, and saving data storage, which is very important as the volume of medical data in recent years has grown beyond many people's expectations. However, due to the lack of standards and comprehensive benchmarks, research on medical data-effective learning is poorly studied. To address this gap, our paper introduces a comprehensive benchmark specifically for evaluating data-effective learning in the medical field. This benchmark includes a dataset with millions of data samples from 31 medical centers (DataDEL), a baseline method for comparison (MedDEL), and a new evaluation metric (NormDEL) to objectively measure data-effective learning performance. Our extensive experimental results show the baseline MedDEL can achieve performance comparable to the original large dataset with only 5% of the data. Establishing such an open data-effective learning benchmark is crucial for the medical foundation model research community because it facilitates efficient data use, promotes collaborative breakthroughs, and fosters the development of cost-effective, scalable, and impactful healthcare solutions.
♻ ☆ MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Vision Transformers (ViTs) achieve excellent performance in various tasks, but they are also vulnerable to adversarial attacks. Building robust ViTs is highly dependent on dedicated Adversarial Training (AT) strategies. However, current ViTs' adversarial training only employs well-established training approaches from convolutional neural network (CNN) training, where pre-training provides the basis for AT fine-tuning with the additional help of tailored data augmentations. In this paper, we take a closer look at the adversarial robustness of ViTs by providing a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training. Specifically, we show that MI between the adversarial example and its latent representation in ViT-based autoencoders should be constrained by utilizing the MI bounds. Based on this finding, we propose a masked autoencoder-based pre-training method, MIMIR, that employs an MI penalty to facilitate the adversarial training of ViTs. Extensive experiments show that MIMIR outperforms state-of-the-art adversarially trained ViTs on benchmark datasets with higher natural and robust accuracy, indicating that ViTs can substantially benefit from exploiting MI. In addition, we consider two adaptive attacks by assuming that the adversary is aware of the MIMIR design, which further verifies the provided robustness.
♻ ☆ Reinforcement Learning from Multi-role Debates as Feedback for Bias Mitigation in LLMs
Bias in LLMs can harm user experience and societal outcomes. However, current bias mitigation methods often require intensive human feedback, lack transferability to other topics or yield overconfident and random outputs. We find that involving LLMs in role-playing scenario boosts their ability to recognize and mitigate biases. Based on this, we propose Reinforcement Learning from Multi-role Debates as Feedback (RLDF), a novel approach for bias mitigation replacing human feedback in traditional RLHF. We utilize LLMs in multi-role debates to create a dataset that includes both high-bias and low-bias instances for training the reward model in reinforcement learning. Our approach comprises two modes: (1) self-reflection, where the same LLM participates in multi-role debates, and (2) teacher-student, where a more advanced LLM like GPT-3.5-turbo guides the LLM to perform this task. Experimental results across different LLMs on BBQ and our datasets demonstrate the effectiveness of our approach in bias mitigation. Our source code and datasets are available at \texttt{https://anonymous.4open.science/r/RLDF-E344}.
comment: The first three authors contributed equally to this work
♻ ☆ Active Inference Tree Search in Large POMDPs
The ability to plan ahead efficiently is key for both living organisms and artificial systems. Model-based planning and prospection are widely studied in cognitive neuroscience and artificial intelligence (AI), but from different perspectives--and with different desiderata in mind (biological realism versus scalability) that are difficult to reconcile. Here, we introduce a novel method to plan in POMDPs--Active Inference Tree Search (AcT)--that combines the normative character and biological realism of a leading planning theory in neuroscience (Active Inference) and the scalability of tree search methods in AI. This unification enhances both approaches. On the one hand, tree searches enable the biologically grounded, first principle method of active inference to be applied to large-scale problems. On the other hand, active inference provides a principled solution to the exploration-exploitation dilemma, which is often addressed heuristically in tree search methods. Our simulations show that AcT successfully navigates binary trees that are challenging for sampling-based methods, problems that require adaptive exploration, and the large POMDP problem 'RockSample'--in which AcT reproduces state-of-the-art POMDP solutions. Furthermore, we illustrate how AcT can be used to simulate neurophysiological responses (e.g., in the hippocampus and prefrontal cortex) of humans and other animals that solve large planning problems. These numerical analyses show that Active Tree Search is a principled realisation of neuroscientific and AI planning theories, which offer both biological realism and scalability.
comment: 47 pages, 9 figures, 1 Appendix of two sections with pseudocodes and one encoding example, submitted preprint
♻ ☆ CollaFuse: Navigating Limited Resources and Privacy in Collaborative Generative AI
In the landscape of generative artificial intelligence, diffusion-based models present challenges for socio-technical systems in data requirements and privacy. Traditional approaches like federated learning distribute the learning process but strain individual clients, especially with constrained resources (e.g., edge devices). In response to these challenges, we introduce CollaFuse, a novel framework inspired by split learning. Tailored for efficient and collaborative use of denoising diffusion probabilistic models, CollaFuse enables shared server training and inference, alleviating client computational burdens. This is achieved by retaining data and computationally inexpensive GPU processes locally at each client while outsourcing the computationally expensive processes to the shared server. Demonstrated in a healthcare context, CollaFuse enhances privacy by highly reducing the need for sensitive information sharing. These capabilities hold the potential to impact various application areas, such as the design of edge computing solutions, healthcare research, or autonomous driving. In essence, our work advances distributed machine learning, shaping the future of collaborative GenAI networks.
comment: Thirty-Second European Conference on Information Systems (ECIS 2024)
♻ ☆ Active Sensing of Knee Osteoarthritis Progression with Reinforcement Learning
Osteoarthritis (OA) is the most common musculoskeletal disease, which has no cure. Knee OA (KOA) is one of the highest causes of disability worldwide, and it costs billions of United States dollars to the global community. Prediction of KOA progression has been of high interest to the community for years, as it can advance treatment development through more efficient clinical trials and improve patient outcomes through more efficient healthcare utilization. Existing approaches for predicting KOA, however, are predominantly static, i.e. consider data from a single time point to predict progression many years into the future, and knee level, i.e. consider progression in a single joint only. Due to these and related reasons, these methods fail to deliver the level of predictive performance, which is sufficient to result in cost savings and better patient outcomes. Collecting extensive data from all patients on a regular basis could address the issue, but it is limited by the high cost at a population level. In this work, we propose to go beyond static prediction models in OA, and bring a novel Active Sensing (AS) approach, designed to dynamically follow up patients with the objective of maximizing the number of informative data acquisitions, while minimizing their total cost over a period of time. Our approach is based on Reinforcement Learning (RL), and it leverages a novel reward function designed specifically for AS of disease progression in more than one part of a human body. Our method is end-to-end, relies on multi-modal Deep Learning, and requires no human input at inference time. Throughout an exhaustive experimental evaluation, we show that using RL can provide a higher monetary benefit when compared to state-of-the-art baselines.
♻ ☆ Unlocking the Non-Native Language Context Limitation: Native Language Prompting Facilitates Knowledge Elicitation
Multilingual large language models (MLLMs) struggle to answer questions posed in non-dominant languages, even though they have acquired the relevant knowledge from their dominant language corpus. In contrast, human multilinguals can overcome such non-native language context limitations through Positive Native Language Transfer (PNLT). Inspired by the process of PNLT, we analogize the dominant language of MLLMs to the native language of human multilinguals, and propose Native Language Prompting (NatLan) to simulate the PNLT observed in human multilinguals. It explicitly creates native language contexts for MLLMs to facilitate the elicitation of the rich native language knowledge during question-answering, unlocking the limitations imposed by non-native language contexts. By employing multi-MLLM collaboration, NatLan reduces the workload on each MLLM in simulating PNLT and refines semantic transfer. On the C-Eval benchmark, NatLan provides up to a 10.1% average accuracy improvement and up to a 5.0% increase in the hard-level subset across five MLLMs, surpassing all top-notch related methods. Our code is available at https://github.com/AnonyNLP/NatLan.
♻ ☆ On the Overlooked Pitfalls of Weight Decay and How to Mitigate Them: A Gradient-Norm Perspective NeurIPS 2023
Weight decay is a simple yet powerful regularization technique that has been very widely used in training of deep neural networks (DNNs). While weight decay has attracted much attention, previous studies fail to discover some overlooked pitfalls on large gradient norms resulted by weight decay. In this paper, we discover that, weight decay can unfortunately lead to large gradient norms at the final phase (or the terminated solution) of training, which often indicates bad convergence and poor generalization. To mitigate the gradient-norm-centered pitfalls, we present the first practical scheduler for weight decay, called the Scheduled Weight Decay (SWD) method that can dynamically adjust the weight decay strength according to the gradient norm and significantly penalize large gradient norms during training. Our experiments also support that SWD indeed mitigates large gradient norms and often significantly outperforms the conventional constant weight decay strategy for Adaptive Moment Estimation (Adam).
comment: NeurIPS 2023, 21 pages, 20 figures. Keywords: Weight Decay, Regularization, Optimization, Deep Learning
♻ ☆ Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Lehman Go Indifferent
Prior attacks on graph neural networks have mostly focused on graph poisoning and evasion, neglecting the network's weights and biases. Traditional weight-based fault injection attacks, such as bit flip attacks used for convolutional neural networks, do not consider the unique properties of graph neural networks. We propose the Injectivity Bit Flip Attack, the first bit flip attack designed specifically for graph neural networks. Our attack targets the learnable neighborhood aggregation functions in quantized message passing neural networks, degrading their ability to distinguish graph structures and losing the expressivity of the Weisfeiler-Lehman test. Our findings suggest that exploiting mathematical properties specific to certain graph neural network architectures can significantly increase their vulnerability to bit flip attacks. Injectivity Bit Flip Attacks can degrade the maximal expressive Graph Isomorphism Networks trained on various graph property prediction datasets to random output by flipping only a small fraction of the network's bits, demonstrating its higher destructive power compared to a bit flip attack transferred from convolutional neural networks. Our attack is transparent and motivated by theoretical insights which are confirmed by extensive empirical results.
♻ ☆ ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast
Data-driven weather forecast based on machine learning (ML) has experienced rapid development and demonstrated superior performance in the global medium-range forecast compared to traditional physics-based dynamical models. However, most of these ML models struggle with accurately predicting extreme weather, which is related to training loss and the uncertainty of weather systems. Through mathematical analysis, we prove that the use of symmetric losses, such as the Mean Squared Error (MSE), leads to biased predictions and underestimation of extreme values. To address this issue, we introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast. Beyond the evolution in training loss, we introduce a training-free extreme value enhancement module named ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples, thereby increasing the hit rate of low-probability extreme events. Combined with an advanced global weather forecast model, extensive experiments show that our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
♻ ☆ DropKAN: Dropout Kolmogorov-Arnold Networks
We propose DropKAN (Dropout Kolmogorov-Arnold Networks) a regularization method that prevents co-adaptation of activation function weights in Kolmogorov-Arnold Networks (KANs). DropKAN functions by embedding the drop mask directly within the KAN layer, randomly masking the outputs of some activations within the KANs' computation graph. We show that this simple procedure that require minimal coding effort has a regularizing effect and consistently lead to better generalization of KANs. We analyze the adaptation of the standard Dropout with KANs and demonstrate that Dropout applied to KANs' neurons can lead to unpredictable behavior in the feedforward pass. We carry an empirical study with real world Machine Learning datasets to validate our findings. Our results suggest that DropKAN is consistently a better alternative to using standard Dropout with KANs, and improves the generalization performance of KANs. Our implementation of DropKAN is available at: \url{https://github.com/Ghaith81/dropkan}.
♻ ☆ Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference
Large Language Models have excelled in various fields but encounter challenges in memory and time efficiency due to the expanding Key-Value (KV) cache required for long-sequence inference. Recent efforts try to reduce KV cache size to a given memory budget by evicting vast non-critical cache elements during runtime, while preserving generation quality. Our revisiting of current eviction methods reveals that they fundamentally minimize an upper bound of the $L_1$ eviction loss between the pre- and post-eviction outputs of multi-head self-attention mechanisms. Moreover, our analysis indicates that the common practices of uniformly assigning budgets across attention heads harm their post-eviction generation quality. In light of these findings, we propose a simple yet effective adaptive budget allocation algorithm. This algorithm not only optimizes the theoretical loss upper bound but also reduces the $L_1$ eviction loss in practice by aligning with the varied characteristics across different heads. By integrating this algorithm into two state-of-the-art methods, we demonstrate the effectiveness of using adaptive budget allocation to optimize KV cache eviction. Extensive evaluations on 16 datasets and the Needle-in-a-Haystack test confirm significant performance improvements across various tasks.
♻ ☆ Handling Distribution Shifts on Graphs: An Invariance Perspective ICLR2022
There is increasing evidence suggesting neural networks' sensitivity to distribution shifts, so that research on out-of-distribution (OOD) generalization comes into the spotlight. Nonetheless, current endeavors mostly focus on Euclidean data, and its formulation for graph-structured data is not clear and remains under-explored, given two-fold fundamental challenges: 1) the inter-connection among nodes in one graph, which induces non-IID generation of data points even under the same environment, and 2) the structural information in the input graph, which is also informative for prediction. In this paper, we formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM), that facilitates graph neural networks to leverage invariance principles for prediction. EERM resorts to multiple context explorers (specified as graph structure editers in our case) that are adversarially trained to maximize the variance of risks from multiple virtual environments. Such a design enables the model to extrapolate from a single observed environment which is the common case for node-level prediction. We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution and further demonstrate its power on various real-world datasets for handling distribution shifts from artificial spurious features, cross-domain transfers and dynamic graph evolution.
comment: ICLR2022, 30 pages
♻ ☆ SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations NeurIPS 2023
Learning representations on large-sized graphs is a long-standing challenge due to the inter-dependence nature involved in massive data points. Transformers, as an emerging class of foundation encoders for graph-structured data, have shown promising performance on small graphs due to its global attention capable of capturing all-pair influence beyond neighboring nodes. Even so, existing approaches tend to inherit the spirit of Transformers in language and vision tasks, and embrace complicated models by stacking deep multi-head attentions. In this paper, we critically demonstrate that even using a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks where node numbers range from thousand-level to billion-level. This encourages us to rethink the design philosophy for Transformers on large graphs, where the global attention is a computation overhead hindering the scalability. We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model that can efficiently propagate information among arbitrary nodes in one layer. SGFormer requires none of positional encodings, feature/graph pre-processing or augmented loss. Empirically, SGFormer successfully scales to the web-scale graph ogbn-papers100M and yields up to 141x inference acceleration over SOTA Transformers on medium-sized graphs. Beyond current results, we believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.
comment: Accepted to NeurIPS 2023, the codes are available at https://github.com/qitianwu/SGFormer
♻ ☆ Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective
Recent advances in neural information retrieval (IR) models have significantly enhanced their effectiveness over various IR tasks. The robustness of these models, essential for ensuring their reliability in practice, has also garnered significant attention. With a wide array of research on robust IR being proposed, we believe it is the opportune moment to consolidate the current status, glean insights from existing methodologies, and lay the groundwork for future development. We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance. With a focus on adversarial and OOD robustness, we dissect robustness solutions for dense retrieval models (DRMs) and neural ranking models (NRMs), respectively, recognizing them as pivotal components of the neural IR pipeline. We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models. To the best of our knowledge, this is the first comprehensive survey on the robustness of neural IR models, and we will also be giving our first tutorial presentation at SIGIR 2024 \url{https://sigir2024-robust-information-retrieval.github.io}. Along with the organization of existing work, we introduce a Benchmark for robust IR (BestIR), a heterogeneous evaluation benchmark for robust neural information retrieval, which is publicly available at \url{https://github.com/Davion-Liu/BestIR}. We hope that this study provides useful clues for future research on the robustness of IR models and helps to develop trustworthy search engines \url{https://github.com/Davion-Liu/Awesome-Robustness-in-Information-Retrieval}.
comment: Survey paper
♻ ☆ What Do Language Models Hear? Probing for Auditory Representations in Language Models
This work explores whether language models encode meaningfully grounded representations of sounds of objects. We learn a linear probe that retrieves the correct text representation of an object given a snippet of audio related to that object, where the sound representation is given by a pretrained audio model. This probe is trained via a contrastive loss that pushes the language representations and sound representations of an object to be close to one another. After training, the probe is tested on its ability to generalize to objects that were not seen during training. Across different language models and audio models, we find that the probe generalization is above chance in many cases, indicating that despite being trained only on raw text, language models encode grounded knowledge of sounds for some objects.
♻ ☆ Natural Language Interaction with a Household Electricity Knowledge-based Digital Twin
Domain specific digital twins, representing a digital replica of various segments of the smart grid, are foreseen as able to model, simulate, and control the respective segments. At the same time, knowledge-based digital twins, coupled with AI, may also empower humans to understand aspects of the system through natural language interaction in view of planning and policy making. This paper is the first to assess and report on the potential of Retrieval Augmented Generation (RAG) question answers related to household electrical energy measurement aspects leveraging a knowledge-based energy digital twin. Relying on the recently published electricity consumption knowledge graph that actually represents a knowledge-based digital twin, we study the capabilities of ChatGPT, Gemini and Llama in answering electricity related questions. Furthermore, we compare the answers with the ones generated through a RAG techniques that leverages an existing electricity knowledge-based digital twin. Our findings illustrate that the RAG approach not only reduces the incidence of incorrect information typically generated by LLMs but also significantly improves the quality of the output by grounding responses in verifiable data. This paper details our methodology, presents a comparative analysis of responses with and without RAG, and discusses the implications of our findings for future applications of AI in specialized sectors like energy data analysis.
comment: Accepted at IEEE SmartGridComm'24
♻ ☆ PEANO-ViT: Power-Efficient Approximations of Non-Linearities in Vision Transformers
The deployment of Vision Transformers (ViTs) on hardware platforms, specially Field-Programmable Gate Arrays (FPGAs), presents many challenges, which are mainly due to the substantial computational and power requirements of their non-linear functions, notably layer normalization, softmax, and Gaussian Error Linear Unit (GELU). These critical functions pose significant obstacles to efficient hardware implementation due to their complex mathematical operations and the inherent resource count and architectural limitations of FPGAs. PEANO-ViT offers a novel approach to streamlining the implementation of the layer normalization layer by introducing a division-free technique that simultaneously approximates the division and square root function. Additionally, PEANO-ViT provides a multi-scale division strategy to eliminate division operations in the softmax layer, aided by a Pade-based approximation for the exponential function. Finally, PEANO-ViT introduces a piece-wise linear approximation for the GELU function, carefully designed to bypass the computationally intensive operations associated with GELU. In our comprehensive evaluations, PEANO-ViT exhibits minimal accuracy degradation (<= 0.5% for DeiT-B) while significantly enhancing power efficiency, achieving improvements of 1.91x, 1.39x, 8.01x for layer normalization, softmax, and GELU, respectively. This improvement is achieved through substantial reductions in DSP, LUT, and register counts for these non-linear operations. Consequently, PEANO-ViT enables efficient deployment of Vision Transformers on resource- and power-constrained FPGA platforms.
♻ ☆ VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary
With the rapid development of Text-to-Image (T2I) models, biases in human image generation against demographic social groups become a significant concern, impacting fairness and ethical standards in AI. Some researchers propose their methods to tackle with the issue. However, existing methods are designed for specific models with fixed prompts, limiting their adaptability to the fast-evolving models and diverse practical scenarios. Moreover, they neglect the impact of hallucinations, leading to discrepancies between expected and actual results. To address these issues, we introduce VersusDebias, a novel and universal debiasing framework for biases in arbitrary T2I models, consisting of an array generation (AG) module and an image generation (IG) module. The self-adaptive AG module generates specialized attribute arrays to post-process hallucinations and debias multiple attributes simultaneously. The IG module employs a small language model to modify prompts according to the arrays and drives the T2I model to generate debiased images, enabling zero-shot debiasing. Extensive experiments demonstrate VersusDebias's capability to debias any models across gender, race, and age simultaneously. In both zero-shot and few-shot scenarios, VersusDebias outperforms existing methods, showcasing its exceptional utility. Our work is accessible at https://github.com/VersusDebias/VersusDebias to ensure reproducibility and facilitate further research.
♻ ☆ RT-Surv: Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records
Accurate patient selection is critical in radiotherapy (RT) to prevent ineffective treatments. Traditional survival prediction models, relying on structured data, often lack precision. This study explores the potential of large language models (LLMs) to structure unstructured electronic health record (EHR) data, thereby improving survival prediction accuracy through comprehensive clinical information integration. Data from 34,276 patients treated with RT at Yonsei Cancer Center between 2013 and 2023 were analyzed, encompassing both structured and unstructured data. An open-source LLM was used to structure the unstructured EHR data via single-shot learning, with its performance compared against a domain-specific medical LLM and a smaller variant. Survival prediction models were developed using statistical, machine learning, and deep learning approaches, incorporating both structured and LLM-structured data. Clinical experts evaluated the accuracy of the LLM-structured data. The open-source LLM achieved 87.5% accuracy in structuring unstructured EHR data without additional training, significantly outperforming the domain-specific medical LLM, which reached only 35.8% accuracy. Larger LLMs were more effective, particularly in extracting clinically relevant features like general condition and disease extent, which closely correlated with patient survival. Incorporating LLM-structured clinical features into survival prediction models significantly improved accuracy, with the C-index of deep learning models increasing from 0.737 to 0.820. These models also became more interpretable by emphasizing clinically significant factors. This study shows that general-domain LLMs, even without specific medical training, can effectively structure large-scale unstructured EHR data, substantially enhancing the accuracy and interpretability of clinical predictive models.
comment: 23 pages, 2 tables, 4 figures
♻ ☆ SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
Explainable Artificial Intelligence (XAI) plays a crucial role in enhancing the transparency and accountability of AI models, particularly in natural language processing (NLP) tasks. However, popular XAI methods such as LIME and SHAP have been found to be unstable and potentially misleading, underscoring the need for a standardized evaluation approach. This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method that leverages large language models (LLMs) to generate Soft Counterfactual explanations in a zero-shot manner. By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals without extensive fine-tuning. SCENE adopts Validitysoft and Csoft metrics to assess the effectiveness of model-agnostic XAI methods in text classification tasks. Applied to CNN, RNN, and Transformer architectures, SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
♻ ☆ Spectral Clustering for Discrete Distributions
The discrete distribution is often used to describe complex instances in machine learning, such as images, sequences, and documents. Traditionally, clustering of discrete distributions (D2C) has been approached using Wasserstein barycenter methods. These methods operate under the assumption that clusters can be well-represented by barycenters, which is seldom true in many real-world applications. Additionally, these methods are not scalable for large datasets due to the high computational cost of calculating Wasserstein barycenters. In this work, we explore the feasibility of using spectral clustering combined with distribution affinity measures (e.g., maximum mean discrepancy and Wasserstein distance) to cluster discrete distributions. We demonstrate that these methods can be more accurate and efficient than barycenter methods. To further enhance scalability, we propose using linear optimal transport to construct affinity matrices efficiently for large datasets. We provide theoretical guarantees for the success of our methods in clustering distributions. Experiments on both synthetic and real data show that our methods outperform existing baselines.
♻ ☆ TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for Enhanced CTR Prediction at Kuaishou CIKM 2024
The significance of modeling long-term user interests for CTR prediction tasks in large-scale recommendation systems is progressively gaining attention among researchers and practitioners. Existing work, such as SIM and TWIN, typically employs a two-stage approach to model long-term user behavior sequences for efficiency concerns. The first stage rapidly retrieves a subset of sequences related to the target item from a long sequence using a search-based mechanism namely the General Search Unit (GSU), while the second stage calculates the interest scores using the Exact Search Unit (ESU) on the retrieved results. Given the extensive length of user behavior sequences spanning the entire life cycle, potentially reaching up to 10^6 in scale, there is currently no effective solution for fully modeling such expansive user interests. To overcome this issue, we introduced TWIN-V2, an enhancement of TWIN, where a divide-and-conquer approach is applied to compress life-cycle behaviors and uncover more accurate and diverse user interests. Specifically, a hierarchical clustering method groups items with similar characteristics in life-cycle behaviors into a single cluster during the offline phase. By limiting the size of clusters, we can compress behavior sequences well beyond the magnitude of 10^5 to a length manageable for online inference in GSU retrieval. Cluster-aware target attention extracts comprehensive and multi-faceted long-term interests of users, thereby making the final recommendation results more accurate and diverse. Extensive offline experiments on a multi-billion-scale industrial dataset and online A/B tests have demonstrated the effectiveness of TWIN-V2. Under an efficient deployment framework, TWIN-V2 has been successfully deployed to the primary traffic that serves hundreds of millions of daily active users at Kuaishou.
comment: Accepted by CIKM 2024
♻ ☆ PlotMap: Automated Layout Design for Building Game Worlds
World-building, the process of developing both the narrative and physical world of a game, plays a vital role in the game's experience. Critically-acclaimed independent and AAA video games are praised for strong world-building, with game maps that masterfully intertwine with and elevate the narrative, captivating players and leaving a lasting impression. However, designing game maps that support a desired narrative is challenging, as it requires satisfying complex constraints from various considerations. Most existing map generation methods focus on considerations about gameplay mechanics or map topography, while the need to support the story is typically neglected. As a result, extensive manual adjustment is still required to design a game world that facilitates particular stories. In this work, we approach this problem by introducing an extra layer of plot facility layout design that is independent of the underlying map generation method in a world-building pipeline. Concretely, we define (plot) facility layout tasks as the tasks of assigning concrete locations on a game map to abstract locations mentioned in a given story (plot facilities), following spatial constraints derived from the story. We present two methods for solving these tasks automatically: an evolutionary computation based approach through Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and a Reinforcement Learning (RL) based approach. We develop a method of generating datasets of facility layout tasks, create a gym-like environment for experimenting with and evaluating different methods, and further analyze the two methods with comprehensive experiments, aiming to provide insights for solving facility layout tasks. We will release the code and a dataset containing 10, 000 tasks of different scales.
comment: In 2024 IEEE Conference on Games (CoG)
♻ ☆ ToolSword: Unveiling Safety Issues of Large Language Models in Tool Learning Across Three Stages ACL 2024
Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present *ToolSword*, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing **malicious queries** and **jailbreak attacks** in the input stage, **noisy misdirection** and **risky cues** in the execution stage, and **harmful feedback** and **error conflicts** in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data is released in https://github.com/Junjie-Ye/ToolSword.
comment: Accepted by ACL 2024 Main Conference
♻ ☆ The Common Core Ontologies
The Common Core Ontologies (CCO) are designed as a mid-level ontology suite that extends the Basic Formal Ontology. CCO has since been increasingly adopted by a broad group of users and applications and is proposed as the first standard mid-level ontology. Despite these successes, documentation of the contents and design patterns of the CCO has been comparatively minimal. This paper is a step toward providing enhanced documentation for the mid-level ontology suite through a discussion of the contents of the eleven ontologies that collectively comprise the Common Core Ontology suite.
comment: 12 pages
♻ ☆ Foundations for Digital Twins
The growing reliance on digital twins across various industries and domains brings with it semantic interoperability challenges. Ontologies are a well-known strategy for addressing such challenges, though given the complexity of the phenomenon, there are risks of reintroducing the interoperability challenges at the level of ontology representations. In the interest of avoiding such pitfalls, we introduce and defend characterizations of digital twins within the context of the Common Core Ontologies, an extension of the widely-used Basic Formal Ontology. We provide a set of definitions and design patterns relevant to the domain of digital twins, highlighted by illustrative use cases of digital twins and their physical counterparts. In doing so, we provide a foundation on which to build more sophisticated ontological content related and connected to digital twins.
comment: 14
♻ ☆ Capabilities: An Ontology
In our daily lives, as in science and in all other domains, we encounter huge numbers of dispositions (tendencies, potentials, powers) which are realized in processes such as sneezing, sweating, shedding dandruff, and on and on. Among this plethora of what we can think of as mere dispositions is a subset of dispositions in whose realizations we have an interest a car responding well when driven on ice, a rabbits lungs responding well when it is chased by a wolf, and so on. We call the latter capabilities and we attempt to provide a robust ontological account of what capabilities are that is of sufficient generality to serve a variety of purposes, for example by providing a useful extension to ontology-based research in areas where capabilities data are currently being collected in siloed fashion.
comment: 14
♻ ☆ Towards a Cyber Information Ontology
This paper introduces a set of terms that are intended to act as an interface between cyber ontologies (like a file system ontology or a data fusion ontology) and top- and mid-level ontologies, specifically Basic Formal Ontology and the Common Core Ontologies. These terms center on what makes cyberinformation management unique: numerous acts of copying items of information, the aggregates of copies that result from those acts, and the faithful members of those aggregates that represent all other members.
comment: 14
♻ ☆ Middle Architecture Criteria
Mid-level ontologies are used to integrate terminologies and data across disparate domains. There are, however, no clear, defensible criteria for determining whether a given ontology should count as mid-level, because we lack a rigorous characterization of what the middle level of generality is supposed to contain. Attempts to provide such a characterization have failed, we believe, because they have focused on the goal of specifying what is characteristic of those single ontologies that have been advanced as mid-level ontologies. Unfortunately, single ontologies of this sort are generally a mixture of top- and mid-level, and sometimes even of domain-level terms. To gain clarity, we aim to specify the necessary and sufficient conditions for a collection of one or more ontologies to inhabit what we call a mid-level architecture.
comment: 14 pages
MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering
Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks such as medical question answering (QA). In addition, LLMs tend to function as "black-boxes", making it challenging to modify their behavior. To address the problem, our work employs a transparent process of retrieval augmented generation (RAG), aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt. Focusing on medical QA, we evaluate the impact of different retrieval models and the number of facts on LLM performance using the MedQA-SMILE dataset. Notably, our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of RAG to enhance LLM performance, offering a practical approach to mitigate the challenges posed by black-box LLMs.
comment: Accepted by AMIA 2024 Annual Symposium
♻ ☆ Activations Through Extensions: A Framework To Boost Performance Of Neural Networks
Activation functions are non-linearities in neural networks that allow them to learn complex mapping between inputs and outputs. Typical choices for activation functions are ReLU, Tanh, Sigmoid etc., where the choice generally depends on the application domain. In this work, we propose a framework/strategy that unifies several works on activation functions and theoretically explains the performance benefits of these works. We also propose novel techniques that originate from the framework and allow us to obtain ``extensions'' (i.e. special generalizations of a given neural network) of neural networks through operations on activation functions. We theoretically and empirically show that ``extensions'' of neural networks have performance benefits compared to vanilla neural networks with insignificant space and time complexity costs on standard test functions. We also show the benefits of neural network ``extensions'' in the time-series domain on real-world datasets.
♻ ☆ Characterizing and Understanding HGNN Training on GPUs
Owing to their remarkable representation capabilities for heterogeneous graph data, Heterogeneous Graph Neural Networks (HGNNs) have been widely adopted in many critical real-world domains such as recommendation systems and medical analysis. Prior to their practical application, identifying the optimal HGNN model parameters tailored to specific tasks through extensive training is a time-consuming and costly process. To enhance the efficiency of HGNN training, it is essential to characterize and analyze the execution semantics and patterns within the training process to identify performance bottlenecks. In this study, we conduct an in-depth quantification and analysis of two mainstream HGNN training scenarios, including single-GPU and multi-GPU distributed training. Based on the characterization results, we disclose the performance bottlenecks and their underlying causes in different HGNN training scenarios and provide optimization guidelines from both software and hardware perspectives.
comment: 23 pages, 14 figures, submitted to ACM TACO
♻ ☆ Open-Source Molecular Processing Pipeline for Generating Molecules
Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].
comment: Presented at the 2024 Molecular Machine Learning Conference (MoML 2024)
♻ ☆ RandomNet: Clustering Time Series Using Untrained Deep Neural Networks
Neural networks are widely used in machine learning and data mining. Typically, these networks need to be trained, implying the adjustment of weights (parameters) within the network based on the input data. In this work, we propose a novel approach, RandomNet, that employs untrained deep neural networks to cluster time series. RandomNet uses different sets of random weights to extract diverse representations of time series and then ensembles the clustering relationships derived from these different representations to build the final clustering results. By extracting diverse representations, our model can effectively handle time series with different characteristics. Since all parameters are randomly generated, no training is required during the process. We provide a theoretical analysis of the effectiveness of the method. To validate its performance, we conduct extensive experiments on all of the 128 datasets in the well-known UCR time series archive and perform statistical analysis of the results. These datasets have different sizes, sequence lengths, and they are from diverse fields. The experimental results show that the proposed method is competitive compared with existing state-of-the-art methods.
comment: 25 pages, 10 figures
♻ ☆ Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models AAAI25
Large language models (LLMs) have generated significant attention since their inception, finding applications across various academic and industrial domains. However, these models often suffer from the "hallucination problem", where outputs, though grammatically and logically coherent, lack factual accuracy or are entirely fabricated. A particularly troubling issue discovered and widely discussed recently is the numerical comparison error where multiple LLMs incorrectly infer that "9.11$>$9.9". We discovered that the order in which LLMs generate answers and reasoning impacts their consistency. Specifically, results vary significantly when an LLM generates an answer first and then provides the reasoning versus generating the reasoning process first and then the conclusion. Inspired by this, we propose a new benchmark method for assessing LLM consistency: comparing responses generated through these two different approaches. This benchmark effectively identifies instances where LLMs fabricate answers and subsequently generate justifications. Furthermore, we introduce a novel and straightforward prompt strategy designed to mitigate this issue. Experimental results demonstrate that this strategy improves performance across various LLMs compared to direct questioning. This work not only sheds light on a critical flaw in LLMs but also offers a practical solution to enhance their reliability.
comment: 7 pages, submitted to AAAI25
♻ ☆ ChatGPT in Data Visualization Education: A Student Perspective
Unlike traditional educational chatbots that rely on pre-programmed responses, large-language model-driven chatbots, such as ChatGPT, demonstrate remarkable versatility to serve as a dynamic resource for addressing student needs from understanding advanced concepts to solving complex problems. This work explores the impact of such technology on student learning in an interdisciplinary, project-oriented data visualization course. Throughout the semester, students engaged with ChatGPT across four distinct projects, designing and implementing data visualizations using a variety of tools such as Tableau, D3, and Vega-lite. We collected conversation logs and reflection surveys after each assignment and conducted interviews with selected students to gain deeper insights into their experiences with ChatGPT. Our analysis examined the advantages and barriers of using ChatGPT, students' querying behavior, the types of assistance sought, and its impact on assignment outcomes and engagement. We discuss design considerations for an educational solution tailored for data visualization education, extending beyond ChatGPT's basic interface.
comment: 12 pages; 3 figures
♻ ☆ G-SciEdBERT: A Contextualized LLM for Science Assessment Tasks in German
The advancement of natural language processing has paved the way for automated scoring systems in various languages, such as German (e.g., German BERT [G-BERT]). Automatically scoring written responses to science questions in German is a complex task and challenging for standard G-BERT as they lack contextual knowledge in the science domain and may be unaligned with student writing styles. This paper presents a contextualized German Science Education BERT (G-SciEdBERT), an innovative large language model tailored for scoring German-written responses to science tasks and beyond. Using G-BERT, we pre-trained G-SciEdBERT on a corpus of 30K German written science responses with 3M tokens on the Programme for International Student Assessment (PISA) 2018. We fine-tuned G-SciEdBERT on an additional 20K student-written responses with 2M tokens and examined the scoring accuracy. We then compared its scoring performance with G-BERT. Our findings revealed a substantial improvement in scoring accuracy with G-SciEdBERT, demonstrating a 10.2% increase of quadratic weighted Kappa compared to G-BERT (mean difference = 0.1026, SD = 0.069). These insights underline the significance of specialized language models like G-SciEdBERT, which is trained to enhance the accuracy of contextualized automated scoring, offering a substantial contribution to the field of AI in education.
comment: Accepted by EDM and Submitted to JEDM
♻ ☆ iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).
comment: 8 pages, 3 figures, 3 tables
♻ ☆ DyCE: Dynamically Configurable Exiting for Deep Learning Compression and Real-time Scaling
Conventional deep learning (DL) model compression and scaling methods focus on altering the model's components, impacting the results across all samples uniformly. However, since samples vary in difficulty, a dynamic model that adapts computation based on sample complexity offers a novel perspective for compression and scaling. Despite this potential, existing dynamic models are typically monolithic and model-specific, limiting their generalizability as broad compression and scaling methods. Additionally, most deployed DL systems are fixed, unable to adjust their scale once deployed and, therefore, cannot adapt to the varying real-time demands. This paper introduces DyCE, a dynamically configurable system that can adjust the performance-complexity trade-off of a DL model at runtime without requiring re-initialization or redeployment on inference hardware. DyCE achieves this by adding small exit networks to intermediate layers of the original model, allowing computation to terminate early if acceptable results are obtained. DyCE also decouples the design of an efficient dynamic model, facilitating easy adaptation to new base models and potential general use in compression and scaling. We also propose methods for generating optimized configurations and determining the types and positions of exit networks to achieve desired performance and complexity trade-offs. By enabling simple configuration switching, DyCE provides fine-grained performance tuning in real-time. We demonstrate the effectiveness of DyCE through image classification tasks using deep convolutional neural networks (CNNs). DyCE significantly reduces computational complexity by 23.5% for ResNet152 and 25.9% for ConvNextv2-tiny on ImageNet, with accuracy reductions of less than 0.5%.
♻ ☆ Exploiting Symmetry in Dynamics for Model-Based Reinforcement Learning with Asymmetric Rewards
Recent work in reinforcement learning has leveraged symmetries in the model to improve sample efficiency in training a policy. A commonly used simplifying assumption is that the dynamics and reward both exhibit the same symmetry; however, in many real-world environments, the dynamical model exhibits symmetry independent of the reward model. In this paper, we assume only the dynamics exhibit symmetry, extending the scope of problems in reinforcement learning and learning in control theory to which symmetry techniques can be applied. We use Cartan's moving frame method to introduce a technique for learning dynamics that, by construction, exhibit specified symmetries. Numerical experiments demonstrate that the proposed method learns a more accurate dynamical model
Graphics 2
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
comment: Project webpage: https://lseancs.github.io/generativephotomontage/ ; corrected typos in v2
Robotics 19
☆ System Identification For Constrained Robots
Identifying the parameters of robotic systems, such as motor inertia or joint friction, is critical to satisfactory controller synthesis, model analysis, and observer design. Conventional identification techniques are designed primarily for unconstrained systems, such as robotic manipulators. In contrast, the growing importance of legged robots that feature closed kinematic chains or other constraints, poses challenges to these traditional methods. This paper introduces a system identification approach for constrained systems that relies on iterative least squares to identify motor inertia and joint friction parameters from data. The proposed approach is validated in simulation and in the real-world on Digit, which is a 20 degree-of-freedom humanoid robot built by Agility Robotics. In these experiments, the parameters identified by the proposed method enable a model-based controller to achieve better tracking performance than when it uses the default parameters provided by the manufacturer. The implementation of the approach is available at https://github.com/roahmlab/ConstrainedSysID.
☆ A Transparency Paradox? Investigating the Impact of Explanation Specificity and Autonomous Vehicle Perceptual Inaccuracies on Passengers
Transparency in automated systems could be afforded through the provision of intelligible explanations. While transparency is desirable, might it lead to catastrophic outcomes (such as anxiety), that could outweigh its benefits? It's quite unclear how the specificity of explanations (level of transparency) influences recipients, especially in autonomous driving (AD). In this work, we examined the effects of transparency mediated through varying levels of explanation specificity in AD. We first extended a data-driven explainer model by adding a rule-based option for explanation generation in AD, and then conducted a within-subject lab study with 39 participants in an immersive driving simulator to study the effect of the resulting explanations. Specifically, our investigation focused on: (1) how different types of explanations (specific vs. abstract) affect passengers' perceived safety, anxiety, and willingness to take control of the vehicle when the vehicle perception system makes erroneous predictions; and (2) the relationship between passengers' behavioural cues and their feelings during the autonomous drives. Our findings showed that passengers felt safer with specific explanations when the vehicle's perception system had minimal errors, while abstract explanations that hid perception errors led to lower feelings of safety. Anxiety levels increased when specific explanations revealed perception system errors (high transparency). We found no significant link between passengers' visual patterns and their anxiety levels. Our study suggests that passengers prefer clear and specific explanations (high transparency) when they originate from autonomous vehicles (AVs) with optimal perceptual accuracy.
comment: Submitted to Transportation Research Part F: Traffic Psychology and Behaviour. arXiv admin note: text overlap with arXiv:2307.00633
☆ User-centered evaluation of the Wearable Walker lower limb exoskeleton, preliminary assessment based on the Experience protocol
Using lower-limbs exoskeletons provides potential advantages in terms of productivity and safety associated with reduced stress. However, complex issues in human-robot interaction are still open, such as the physiological effects of exoskeletons and the impact on the user's subjective experience. In this work, an innovative exoskeleton, the Wearable Walker, is assessed using the EXPERIENCE benchmarking protocol from the EUROBENCH project. The Wearable Walker is a lower-limb exoskeleton that enhances human abilities, such as carrying loads. The device uses a unique control approach called Blend Control that provides smooth assistance torques. It operates two models simultaneously, one in the case in which the left foot is grounded and another for the grounded right foot. These models generate assistive torques combined to provide continuous and smooth overall assistance, preventing any abrupt changes in torque due to model switching. The EXPERIENCE protocol consists of walking on flat ground while gathering physiological signals such as heart rate, its variability, respiration rate, and galvanic skin response and completing a questionnaire. The test was performed with five healthy subjects. The scope of the present study is twofold: to evaluate the specific exoskeleton and its current control system to gain insight into possible improvements and to present a case study for a formal and replicable benchmarking of wearable robots.
comment: 12 pages, 5 figures
☆ Robust Stochastic Shortest-Path Planning via Risk-Sensitive Incremental Sampling
With the pervasiveness of Stochastic Shortest-Path (SSP) problems in high-risk industries, such as last-mile autonomous delivery and supply chain management, robust planning algorithms are crucial for ensuring successful task completion while mitigating hazardous outcomes. Mainstream chance-constrained incremental sampling techniques for solving SSP problems tend to be overly conservative and typically do not consider the likelihood of undesirable tail events. We propose an alternative risk-aware approach inspired by the asymptotically-optimal Rapidly-Exploring Random Trees (RRT*) planning algorithm, which selects nodes along path segments with minimal Conditional Value-at-Risk (CVaR). Our motivation rests on the step-wise coherence of the CVaR risk measure and the optimal substructure of the SSP problem. Thus, optimizing with respect to the CVaR at each sampling iteration necessarily leads to an optimal path in the limit of the sample size. We validate our approach via numerical path planning experiments in a two-dimensional grid world with obstacles and stochastic path-segment lengths. Our simulation results show that incorporating risk into the tree growth process yields paths with lengths that are significantly less sensitive to variations in the noise parameter, or equivalently, paths that are more robust to environmental uncertainty. Algorithmic analyses reveal similar query time and memory space complexity to the baseline RRT* procedure, with only a marginal increase in processing time. This increase is offset by significantly lower noise sensitivity and reduced planner failure rates.
comment: Accepted for presentation at the 2024 IEEE Conference on Decision and Control (CDC)
☆ Case Study: Runtime Safety Verification of Neural Network Controlled System
Neural networks are increasingly used in safety-critical applications such as robotics and autonomous vehicles. However, the deployment of neural-network-controlled systems (NNCSs) raises significant safety concerns. Many recent advances overlook critical aspects of verifying control and ensuring safety in real-time scenarios. This paper presents a case study on using POLAR-Express, a state-of-the-art NNCS reachability analysis tool, for runtime safety verification in a Turtlebot navigation system using LiDAR. The Turtlebot, equipped with a neural network controller for steering, operates in a complex environment with obstacles. We developed a safe online controller switching strategy that switches between the original NNCS controller and an obstacle avoidance controller based on the verification results. Our experiments, conducted in a ROS2 Flatland simulation environment, explore the capabilities and limitations of using POLAR-Express for runtime verification and demonstrate the effectiveness of our switching strategy.
comment: 15 pages, 5 figures, submitted to Runtime Verification 2024
☆ S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
As artificial intelligence (AI) technology advances, ensuring the robustness and safety of AI-driven systems has become paramount. However, varying perceptions of robustness among AI developers create misaligned evaluation metrics, complicating the assessment and certification of safety-critical and complex AI systems such as autonomous driving (AD) agents. To address this challenge, we introduce Simulation-Based Robustness Assessment Framework (S-RAF) for autonomous driving. S-RAF leverages the CARLA Driving simulator to rigorously assess AD agents across diverse conditions, including faulty sensors, environmental changes, and complex traffic situations. By quantifying robustness and its relationship with other safety-critical factors, such as carbon emissions, S-RAF aids developers and stakeholders in building safe and responsible driving agents, and streamlining safety certification processes. Furthermore, S-RAF offers significant advantages, such as reduced testing costs, and the ability to explore edge cases that may be unsafe to test in the real world. The code for this framework is available here: https://github.com/cognitive-robots/rai-leaderboard
Detection and tracking of MAVs using a LiDAR with rosette scanning pattern
The usage of commercial Micro Aerial Vehicles (MAVs) has increased drastically during the last decade. While the added value of MAVs to society is apparent, their growing use is also coming with increasing risks like violating public airspace at airports or committing privacy violations. To mitigate these issues it is becoming critical to develop solutions that incorporate the detection and tracking of MAVs with autonomous systems. This work presents a method for the detection and tracking of MAVs using a novel, low-cost rosette scanning LiDAR on a pan-tilt turret. Once the static background is captured, a particle filter is utilized to detect a possible target and track its position with a physical, programmable pan-tilt system. The tracking makes it possible to keep the MAV in the center, maximizing the density of 3D points measured on the target by the LiDAR sensor. The developed algorithm was evaluated within the indoor MIcro aerial vehicle and MOtion capture (MIMO) arena and has state-of-the-art tracking accuracy, stability, and fast re-detection time in case of tracking loss. Based on the outdoor tests, it was possible to significantly increase the detection distance and number of returned points compared to other similar methods using LiDAR.
☆ Study of MRI-compatible Notched Plastic Ultrasonic Stator with FEM Simulation and Holography Validation
Intra-operative image guidance using magnetic resonance imaging (MRI) can significantly enhance the precision of surgical procedures, such as deep brain tumor ablation. However, the powerful magnetic fields and limited space within an MRI scanner require the use of robotic devices to aid surgeons. Piezoelectric motors are commonly utilized to drive these robots, with piezoelectric ultrasonic motors being particularly notable. These motors consist of a piezoelectric ring stator that is bonded to a rotor through frictional coupling. When the stator is excited at specific frequencies, it generates distinctive mode shapes with surface waves that exhibit both in-plane and out-of-plane displacement, leading to the rotation of the rotor. In this study, we continue our previous work and refine the motor design and performance, we combine finite element modeling (FEM) with stroboscopic and time-averaged digital holography to validate a further plastic-based ultrasonic motor with better rotary performance.
comment: 4 pages, 9 figures, 1 table
☆ On the Completeness of Conflict-Based Search: Temporally-Relative Duplicate Pruning
Conflict-Based Search (CBS) algorithm for the multi-agent pathfinding (MAPF) problem is that it is incomplete for problems which have no solution; if no mitigating procedure is run in parallel, CBS will run forever when given an unsolvable problem instance. In this work, we introduce Temporally-Relative Duplicate Pruning (TRDP), a technique for duplicate detection and removal in both classic and continuous-time MAPF domains. TRDP is a simple procedure which closes the long-standing theoretic loophole of incompleteness for CBS by detecting and avoiding the expansion of duplicate states. TRDP is shown both theoretically and empirically to ensure termination without a significant impact on runtime in the majority of problem instances. In certain cases, TRDP is shown to increase performance significantly
comment: 9 pages, 4 figures, 2 tables
☆ Diffusion Model for Planning: A Systematic Literature Review
Diffusion models, which leverage stochastic processes to capture complex data distributions effectively, have shown their performance as generative models, achieving notable success in image-related tasks through iterative denoising processes. Recently, diffusion models have been further applied and show their strong abilities in planning tasks, leading to a significant growth in related publications since 2023. To help researchers better understand the field and promote the development of the field, we conduct a systematic literature review of recent advancements in the application of diffusion models for planning. Specifically, this paper categorizes and discusses the current literature from the following perspectives: (i) relevant datasets and benchmarks used for evaluating diffusion modelbased planning; (ii) fundamental studies that address aspects such as sampling efficiency; (iii) skill-centric and condition-guided planning for enhancing adaptability; (iv) safety and uncertainty managing mechanism for enhancing safety and robustness; and (v) domain-specific application such as autonomous driving. Finally, given the above literature review, we further discuss the challenges and future directions in this field.
comment: 13 pages, 2 figures, 4 tables
☆ Formalization of Operational Domain and Operational Design Domain for Automated Vehicles
Specifying an Operational Design Domain (ODD) is crucial for safeguarding automated vehicle systems against conditions that exceed their capabilities. Yet, prior definitions of ODD have relied on ambiguous and unclear terms, resulting in numerous misunderstandings and misconceptions. This paper introduces a formal approach to clearly define the Operational Domain (OD) and ODD for automated vehicles. Furthermore, the absence of essential terms, such as the OD, has resulted in the creation of numerous terms that have made things more complicated and confusing. This level of complexity is unacceptable when it comes to developing safety-critical systems, where any uncertainty can lead to significant risks. This study addresses these deficiencies by providing a precise mathematical model of OD and clarifying its relationship with other terms. Also, by formalizing these terms, this work establishes a foundation for developing further concepts such as ODD specification and ODD monitoring, which are explained in this paper.
☆ Handling abort commands for household kitchen robots
We propose a solution for handling abort commands given to robots. The solution is exemplified with a running scenario with household kitchen robots. The robot uses planning to find sequences of actions that must be performed in order to gracefully cancel a previously received command. The Planning Domain Definition Language (PDDL) is used to write a domain to model kitchen activities and behaviours, and this domain is enriched with knowledge from online ontologies and knowledge graphs, like DBPedia. We discuss the results obtained in different scenarios.
♻ ☆ Agentic Skill Discovery
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control. A remaining challenge is to acquire a diverse set of fundamental skills. Existing approaches either manually decompose a complex task into atomic robotic actions in a top-down fashion, or bootstrap as many combinations as possible in a bottom-up fashion to cover a wider range of task possibilities. These decompositions or combinations, however, require an initial skill library. For example, a ``grasping'' capability can never emerge from a skill library containing only diverse ``pushing'' skills. Existing skill discovery techniques with reinforcement learning acquire skills by an exhaustive exploration but often yield non-meaningful behaviors. In this study, we introduce a novel framework for skill discovery that is entirely driven by LLMs. The framework begins with an LLM generating task proposals based on the provided scene description and the robot's configurations, aiming to incrementally acquire new skills upon task completion. For each proposed task, a series of reinforcement learning processes are initiated, utilizing reward and success determination functions sampled by the LLM to develop the corresponding policy. The reliability and trustworthiness of learned behaviors are further ensured by an independent vision-language model. We show that starting with zero skill, the skill library emerges and expands to more and more meaningful and reliable skills, enabling the robot to efficiently further propose and complete advanced tasks. Project page: \url{https://agentic-skill-discovery.github.io}.
comment: Webpage see https://agentic-skill-discovery.github.io/
♻ ☆ MonoForce: Self-supervised Learning of Physics-informed Model for Predicting Robot-terrain Interaction IROS 2024
While autonomous navigation of mobile robots on rigid terrain is a well-explored problem, navigating on deformable terrain such as tall grass or bushes remains a challenge. To address it, we introduce an explainable, physics-aware and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images, both on rigid and non-rigid terrain. The proposed MonoForce model consists of a black-box module which predicts robot-terrain interaction forces from onboard cameras, followed by a white-box module, which transforms these forces and a control signals into predicted trajectories, using only the laws of classical mechanics. The differentiable white-box module allows backpropagating the predicted trajectory errors into the black-box module, serving as a self-supervised loss that measures consistency between the predicted forces and ground-truth trajectories of the robot. Experimental evaluation on a public dataset and our data has shown that while the prediction capabilities are comparable to state-of-the-art algorithms on rigid terrain, MonoForce shows superior accuracy on non-rigid terrain such as tall grass or bushes. To facilitate the reproducibility of our results, we release both the code and datasets.
comment: IROS 2024
♻ ☆ AirPilot: A PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe UAV flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative controllers are one of the most popular and widely used control algorithms for drones control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced PID drone controller using Proximal Policy Optimization. AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the Gazebo simulator and subsequently implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error by more than 82% and improving overshoot, speed and settling time significantly.
comment: 14 pages, 17 figures
♻ ☆ Geometric Tracking Control of Omnidirectional Multirotors for Aggressive Maneuvers
An omnidirectional multirotor has the maneuverability of decoupled translational and rotational motions, superseding the traditional multirotors' motion capability. Such maneuverability is achieved due to the ability of the omnidirectional multirotor to frequently alter the thrust amplitude and direction. In doing so, the rotors' settling time, which is induced by inherent rotor dynamics, significantly affects the omnidirectional multirotor's tracking performance, especially in aggressive flights. To resolve this issue, we propose a novel tracking controller that takes the rotor dynamics into account and does not require additional rotor state measurement. We prove that the proposed controller yields almost global exponential stability. The proposed controller is validated in experiments, where we demonstrate significantly improved tracking performance in multiple aggressive maneuvers compared with a baseline geometric PD controller.
♻ ☆ Component Selection for Craft Assembly Tasks
Inspired by traditional handmade crafts, where a person improvises assemblies based on the available objects, we formally introduce the Craft Assembly Task. It is a robotic assembly task that involves building an accurate representation of a given target object using the available objects, which do not directly correspond to its parts. In this work, we focus on selecting the subset of available objects for the final craft, when the given input is an RGB image of the target in the wild. We use a mask segmentation neural network to identify visible parts, followed by retrieving labelled template meshes. These meshes undergo pose optimization to determine the most suitable template. Then, we propose to simplify the parts of the transformed template mesh to primitive shapes like cuboids or cylinders. Finally, we design a search algorithm to find correspondences in the scene based on local and global proportions. We develop baselines for comparison that consider all possible combinations, and choose the highest scoring combination for common metrics used in foreground maps and mask accuracy. Our approach achieves comparable results to the baselines for two different scenes, and we show qualitative results for an implementation in a real-world scenario.
comment: Published on IEEE RA-L
♻ ☆ iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).
comment: 8 pages, 3 figures, 3 tables
♻ ☆ Exploiting Symmetry in Dynamics for Model-Based Reinforcement Learning with Asymmetric Rewards
Recent work in reinforcement learning has leveraged symmetries in the model to improve sample efficiency in training a policy. A commonly used simplifying assumption is that the dynamics and reward both exhibit the same symmetry; however, in many real-world environments, the dynamical model exhibits symmetry independent of the reward model. In this paper, we assume only the dynamics exhibit symmetry, extending the scope of problems in reinforcement learning and learning in control theory to which symmetry techniques can be applied. We use Cartan's moving frame method to introduce a technique for learning dynamics that, by construction, exhibit specified symmetries. Numerical experiments demonstrate that the proposed method learns a more accurate dynamical model
Computer Vision 143
☆ Can Large Language Models Understand Symbolic Graphics Programs?
Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
comment: Technical Report v1 (44 pages, 23 figures, project page: https://sgp-bench.github.io/)
☆ Understanding the Local Geometry of Generative Model Manifolds
Deep generative models learn continuous representations of complex data manifolds using a finite number of samples during training. For a pre-trained generative model, the common way to evaluate the quality of the manifold representation learned, is by computing global metrics like Fr\'echet Inception Distance using a large number of generated and real samples. However, generative model performance is not uniform across the learned manifold, e.g., for \textit{foundation models} like Stable Diffusion generation performance can vary significantly based on the conditioning or initial noise vector being denoised. In this paper we study the relationship between the \textit{local geometry of the learned manifold} and downstream generation. Based on the theory of continuous piecewise-linear (CPWL) generators, we use three geometric descriptors - scaling ($\psi$), rank ($\nu$), and complexity ($\delta$) - to characterize a pre-trained generative model manifold locally. We provide quantitative and qualitative evidence showing that for a given latent, the local descriptors are correlated with generation aesthetics, artifacts, uncertainty, and even memorization. Finally we demonstrate that training a \textit{reward model} on the local geometry can allow controlling the likelihood of a generated sample under the learned distribution.
comment: Pre-print. 11 pages main, 8 pages app., 28 figures
☆ Towards Flexible Visual Relationship Segmentation
Visual relationship understanding has been studied separately in human-object interaction(HOI) detection, scene graph generation(SGG), and referring relationships(RR) tasks. Given the complexity and interconnectedness of these tasks, it is crucial to have a flexible framework that can effectively address these tasks in a cohesive manner. In this work, we propose FleVRS, a single model that seamlessly integrates the above three aspects in standard and promptable visual relationship segmentation, and further possesses the capability for open-vocabulary segmentation to adapt to novel scenarios. FleVRS leverages the synergy between text and image modalities, to ground various types of relationships from images and use textual features from vision-language models to visual conceptual understanding. Empirical validation across various datasets demonstrates that our framework outperforms existing models in standard, promptable, and open-vocabulary tasks, e.g., +1.9 $mAP$ on HICO-DET, +11.4 $Acc$ on VRD, +4.7 $mAP$ on unseen HICO-DET. Our FleVRS represents a significant step towards a more intuitive, comprehensive, and scalable understanding of visual relationships.
☆ SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training ICCV 23
In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.
comment: This paper is an extension of our ICCV 23 paper (arXiv:2303.05118)
☆ HeightLane: BEV Heightmap guided 3D Lane Detection
Accurate 3D lane detection from monocular images presents significant challenges due to depth ambiguity and imperfect ground modeling. Previous attempts to model the ground have often used a planar ground assumption with limited degrees of freedom, making them unsuitable for complex road environments with varying slopes. Our study introduces HeightLane, an innovative method that predicts a height map from monocular images by creating anchors based on a multi-slope assumption. This approach provides a detailed and accurate representation of the ground. HeightLane employs the predicted heightmap along with a deformable attention-based spatial feature transform framework to efficiently convert 2D image features into 3D bird's eye view (BEV) features, enhancing spatial understanding and lane structure recognition. Additionally, the heightmap is used for the positional encoding of BEV features, further improving their spatial accuracy. This explicit view transformation bridges the gap between front-view perceptions and spatially accurate BEV representations, significantly improving detection performance. To address the lack of the necessary ground truth (GT) height map in the original OpenLane dataset, we leverage the Waymo dataset and accumulate its LiDAR data to generate a height map for the drivable area of each scene. The GT heightmaps are used to train the heightmap extraction module from monocular images. Extensive experiments on the OpenLane validation set show that HeightLane achieves state-of-the-art performance in terms of F-score, highlighting its potential in real-world applications.
comment: 10 pages, 6 figures, 5 tables
☆ Snuffy: Efficient Whole Slide Image Classifier ECCV 2024
Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requiring long training periods and considerable computational resources. At the same time, no pre-training affects performance due to domain shifts from natural images to WSIs. We introduce \textbf{\textit{Snuffy}} architecture, a novel MIL-pooling method based on sparse transformers that mitigates performance loss with limited pre-training and enables continual few-shot pre-training as a competitive option. Our sparsity pattern is tailored for pathology and is theoretically proven to be a universal approximator with the tightest probabilistic sharp bound on the number of layers for sparse transformers, to date. We demonstrate Snuffy's effectiveness on CAMELYON16 and TCGA Lung cancer datasets, achieving superior WSI and patch-level accuracies. The code is available on \url{https://github.com/jafarinia/snuffy}.
comment: Accepted for ECCV 2024
☆ Computer Vision Model Compression Techniques for Embedded Systems: A Survey
Deep neural networks have consistently represented the state of the art in most computer vision problems. In these scenarios, larger and more complex models have demonstrated superior performance to smaller architectures, especially when trained with plenty of representative data. With the recent adoption of Vision Transformer (ViT) based architectures and advanced Convolutional Neural Networks (CNNs), the total number of parameters of leading backbone architectures increased from 62M parameters in 2012 with AlexNet to 7B parameters in 2024 with AIM-7B. Consequently, deploying such deep architectures faces challenges in environments with processing and runtime constraints, particularly in embedded systems. This paper covers the main model compression techniques applied for computer vision tasks, enabling modern models to be used in embedded systems. We present the characteristics of compression subareas, compare different approaches, and discuss how to choose the best technique and expected variations when analyzing it on various embedded devices. We also share codes to assist researchers and new practitioners in overcoming initial implementation challenges for each subarea and present trends for Model Compression. Case studies for compression models are available at \href{https://github.com/venturusbr/cv-model-compression}{https://github.com/venturusbr/cv-model-compression}.
☆ Comparative Evaluation of 3D Reconstruction Methods for Object Pose Estimation
Object pose estimation is essential to many industrial applications involving robotic manipulation, navigation, and augmented reality. Current generalizable object pose estimators, i.e., approaches that do not need to be trained per object, rely on accurate 3D models. Predominantly, CAD models are used, which can be hard to obtain in practice. At the same time, it is often possible to acquire images of an object. Naturally, this leads to the question whether 3D models reconstructed from images are sufficient to facilitate accurate object pose estimation. We aim to answer this question by proposing a novel benchmark for measuring the impact of 3D reconstruction quality on pose estimation accuracy. Our benchmark provides calibrated images for object reconstruction registered with the test images of the YCB-V dataset for pose evaluation under the BOP benchmark format. Detailed experiments with multiple state-of-the-art 3D reconstruction and object pose estimation approaches show that the geometry produced by modern reconstruction methods is often sufficient for accurate pose estimation. Our experiments lead to interesting observations: (1) Standard metrics for measuring 3D reconstruction quality are not necessarily indicative of pose estimation accuracy, which shows the need for dedicated benchmarks such as ours. (2) Classical, non-learning-based approaches can perform on par with modern learning-based reconstruction techniques and can even offer a better reconstruction time-pose accuracy tradeoff. (3) There is still a sizable gap between performance with reconstructed and with CAD models. To foster research on closing this gap, our benchmark is publicly available at https://github.com/VarunBurde/reconstruction_pose_benchmark}.
☆ Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective
Reconstruction-based methods, particularly those leveraging autoencoders, have been widely adopted to perform anomaly detection in brain MRI. While most existing works try to improve detection accuracy by proposing new model structures or algorithms, we tackle the problem through image quality assessment, an underexplored perspective in the field. We propose a fusion quality loss function that combines Structural Similarity Index Measure loss with l1 loss, offering a more comprehensive evaluation of reconstruction quality. Additionally, we introduce a data pre-processing strategy that enhances the average intensity ratio (AIR) between normal and abnormal regions, further improving the distinction of anomalies. By fusing the aforementioned two methods, we devise the image quality assessment (IQA) approach. The proposed IQA approach achieves significant improvements (>10%) in terms of Dice coefficient (DICE) and Area Under the Precision-Recall Curve (AUPRC) on the BraTS21 (T2, FLAIR) and MSULB datasets when compared with state-of-the-art methods. These results highlight the importance of invoking the comprehensive image quality assessment in medical anomaly detection and provide a new perspective for future research in this field.
☆ The Dawn of KAN in Image-to-Image (I2I) Translation: Integrating Kolmogorov-Arnold Networks with GANs for Unpaired I2I Translation
Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of research, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two-layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learning can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain.
comment: 10 pages, 6 Figures, 1 Table
☆ Moving Healthcare AI-Support Systems for Visually Detectable Diseases onto Constrained Devices
Image classification usually requires connectivity and access to the cloud which is often limited in many parts of the world, including hard to reach rural areas. TinyML aims to solve this problem by hosting AI assistants on constrained devices, eliminating connectivity issues by processing data within the device itself, without internet or cloud access. This pilot study explores the use of tinyML to provide healthcare support with low spec devices in low connectivity environments, focusing on diagnosis of skin diseases and the ethical use of AI assistants in a healthcare setting. To investigate this, 10,000 images of skin lesions were used to train a model for classifying visually detectable diseases (VDDs). The model weights were then offloaded to a Raspberry Pi with a webcam attached, to be used for the classification of skin lesions without internet access. It was found that the developed prototype achieved a test accuracy of 78% and a test loss of 1.08.
comment: 6 pages, 5 figures
☆ Learned Multimodal Compression for Autonomous Driving SP 2024
Autonomous driving sensors generate an enormous amount of data. In this paper, we explore learned multimodal compression for autonomous driving, specifically targeted at 3D object detection. We focus on camera and LiDAR modalities and explore several coding approaches. One approach involves joint coding of fused modalities, while others involve coding one modality first, followed by conditional coding of the other modality. We evaluate the performance of these coding schemes on the nuScenes dataset. Our experimental results indicate that joint coding of fused modalities yields better results compared to the alternatives.
comment: 6 pages, 5 figures, IEEE MMSP 2024
☆ WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting
The underwater 3D scene reconstruction is a challenging, yet interesting problem with applications ranging from naval robots to VR experiences. The problem was successfully tackled by fully volumetric NeRF-based methods which can model both the geometry and the medium (water). Unfortunately, these methods are slow to train and do not offer real-time rendering. More recently, 3D Gaussian Splatting (3DGS) method offered a fast alternative to NeRFs. However, because it is an explicit method that renders only the geometry, it cannot render the medium and is therefore unsuited for underwater reconstruction. Therefore, we propose a novel approach that fuses volumetric rendering with 3DGS to handle underwater data effectively. Our method employs 3DGS for explicit geometry representation and a separate volumetric field (queried once per pixel) for capturing the scattering medium. This dual representation further allows the restoration of the scenes by removing the scattering medium. Our method outperforms state-of-the-art NeRF-based methods in rendering quality on the underwater SeaThru-NeRF dataset. Furthermore, it does so while offering real-time rendering performance, addressing the efficiency limitations of existing methods. Web: https://water-splatting.github.io
comment: Web: https://water-splatting.github.io
☆ A Multi-task Adversarial Attack Against Face Authentication
Deep-learning-based identity management systems, such as face authentication systems, are vulnerable to adversarial attacks. However, existing attacks are typically designed for single-task purposes, which means they are tailored to exploit vulnerabilities unique to the individual target rather than being adaptable for multiple users or systems. This limitation makes them unsuitable for certain attack scenarios, such as morphing, universal, transferable, and counter attacks. In this paper, we propose a multi-task adversarial attack algorithm called MTADV that are adaptable for multiple users or systems. By interpreting these scenarios as multi-task attacks, MTADV is applicable to both single- and multi-task attacks, and feasible in the white- and gray-box settings. Furthermore, MTADV is effective against various face datasets, including LFW, CelebA, and CelebA-HQ, and can work with different deep learning models, such as FaceNet, InsightFace, and CurricularFace. Importantly, MTADV retains its feasibility as a single-task attack targeting a single user/system. To the best of our knowledge, MTADV is the first adversarial attack method that can target all of the aforementioned scenarios in one algorithm.
comment: Accepted by ACM Transactions on Multimedia Computing, Communications, and Applications
☆ Towards Practical Human Motion Prediction with LiDAR Point Clouds
Human motion prediction is crucial for human-centric multimedia understanding and interacting. Current methods typically rely on ground truth human poses as observed input, which is not practical for real-world scenarios where only raw visual sensor data is available. To implement these methods in practice, a pre-phrase of pose estimation is essential. However, such two-stage approaches often lead to performance degradation due to the accumulation of errors. Moreover, reducing raw visual data to sparse keypoint representations significantly diminishes the density of information, resulting in the loss of fine-grained features. In this paper, we propose \textit{LiDAR-HMP}, the first single-LiDAR-based 3D human motion prediction approach, which receives the raw LiDAR point cloud as input and forecasts future 3D human poses directly. Building upon our novel structure-aware body feature descriptor, LiDAR-HMP adaptively maps the observed motion manifold to future poses and effectively models the spatial-temporal correlations of human motions for further refinement of prediction results. Extensive experiments show that our method achieves state-of-the-art performance on two public benchmarks and demonstrates remarkable robustness and efficacy in real-world deployments.
☆ Heavy Labels Out! Dataset Distillation with Label Space Lightening
Dataset distillation or condensation aims to condense a large-scale training dataset into a much smaller synthetic one such that the training performance of distilled and original sets on neural networks are similar. Although the number of training samples can be reduced substantially, current state-of-the-art methods heavily rely on enormous soft labels to achieve satisfactory performance. As a result, the required storage can be comparable even to original datasets, especially for large-scale ones. To solve this problem, instead of storing these heavy labels, we propose a novel label-lightening framework termed HeLlO aiming at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images. Specifically, to construct such projectors, we leverage prior knowledge in open-source foundation models, e.g., CLIP, and introduce a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and target distributions, so that original models for soft-label generation can be distilled into a group of low-rank matrices. Moreover, an effective image optimization method is proposed to further mitigate the potential error between the original and distilled label generators. Extensive experiments demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets. Our code will be available.
☆ Beyond Full Label: Single-Point Prompt for Infrared Small Target Label Generation
In this work, we make the first attempt to construct a learning-based single-point annotation paradigm for infrared small target label generation (IRSTLG). Our intuition is that label generation requires just one more point prompt than target detection: IRSTLG can be regarded as an infrared small target detection (IRSTD) task with the target location hint. Based on this insight, we introduce an energy double guided single-point prompt (EDGSP) framework, which adeptly transforms the target detection network into a refined label generation method. Specifically, the proposed EDGSP includes: 1) target energy initialization (TEI) to create a foundational outline for sufficient shape evolution of pseudo label, 2) double prompt embedding (DPE) for rapid localization of interested regions and reinforcement of individual differences to avoid label adhesion, and 3) bounding box-based matching (BBM) to eliminate false alarms. Experimental results show that pseudo labels generated by three baselines equipped with EDGSP achieve 100% object-level probability of detection (Pd) and 0% false-alarm rate (Fa) on SIRST, NUDT-SIRST, and IRSTD-1k datasets, with a pixel-level intersection over union (IoU) improvement of 13.28% over state-of-the-art label generation methods. Additionally, the downstream detection task reveals that our centroid-annotated pseudo labels surpass full labels, even with coarse single-point annotations, it still achieves 99.5% performance of full labeling.
☆ FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. The video show results can be available at https://fancyvideo.github.io/, and we will make our code and model weights publicly available.
☆ Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion ICML 2024
This work addresses the challenge of quantifying originality in text-to-image (T2I) generative diffusion models, with a focus on copyright originality. We begin by evaluating T2I models' ability to innovate and generalize through controlled experiments, revealing that stable diffusion models can effectively recreate unseen elements with sufficiently diverse training data. Then, our key insight is that concepts and combinations of image elements the model is familiar with, and saw more during training, are more concisly represented in the model's latent space. We hence propose a method that leverages textual inversion to measure the originality of an image based on the number of tokens required for its reconstruction by the model. Our approach is inspired by legal definitions of originality and aims to assess whether a model can produce original content without relying on specific prompts or having the training data of the model. We demonstrate our method using both a pre-trained stable diffusion model and a synthetic dataset, showing a correlation between the number of tokens and image originality. This work contributes to the understanding of originality in generative models and has implications for copyright infringement cases.
comment: GenLaw ICML 2024
☆ Your Turn: Real-World Turning Angle Estimation for Parkinson's Disease Severity Assessment
People with Parkinson's Disease (PD) often experience progressively worsening gait, including changes in how they turn around, as the disease progresses. Existing clinical rating tools are not capable of capturing hour-by-hour variations of PD symptoms, as they are confined to brief assessments within clinic settings. Measuring real-world gait turning angles continuously and passively is a component step towards using gait characteristics as sensitive indicators of disease progression in PD. This paper presents a deep learning-based approach to automatically quantify turning angles by extracting 3D skeletons from videos and calculating the rotation of hip and knee joints. We utilise state-of-the-art human pose estimation models, Fastpose and Strided Transformer, on a total of 1386 turning video clips from 24 subjects (12 people with PD and 12 healthy control volunteers), trimmed from a PD dataset of unscripted free-living videos in a home-like setting (Turn-REMAP). We also curate a turning video dataset, Turn-H3.6M, from the public Human3.6M human pose benchmark with 3D ground truth, to further validate our method. Previous gait research has primarily taken place in clinics or laboratories evaluating scripted gait outcomes, but this work focuses on real-world settings where complexities exist, such as baggy clothing and poor lighting. Due to difficulties in obtaining accurate ground truth data in a free-living setting, we quantise the angle into the nearest bin $45^\circ$ based on the manual labelling of expert clinicians. Our method achieves a turning calculation accuracy of 41.6%, a Mean Absolute Error (MAE) of 34.7{\deg}, and a weighted precision WPrec of 68.3% for Turn-REMAP. This is the first work to explore the use of single monocular camera data to quantify turns by PD patients in a home setting.
☆ Towards flexible perception with visual memory
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is nearly impossible, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in ``stone'' weights.
☆ Unsupervised Variational Translator for Bridging Image Restoration and High-Level Vision Tasks
Recent research tries to extend image restoration capabilities from human perception to machine perception, thereby enhancing the performance of high-level vision tasks in degraded environments. These methods, primarily based on supervised learning, typically involve the retraining of restoration networks or high-level vision networks. However, collecting paired data in real-world scenarios and retraining large-scale models are challenge. To this end, we propose an unsupervised learning method called \textbf{Va}riational \textbf{T}ranslator (VaT), which does not require retraining existing restoration and high-level vision networks. Instead, it establishes a lightweight network that serves as an intermediate bridge between them. By variational inference, VaT approximates the joint distribution of restoration output and high-level vision input, dividing the optimization objective into preserving content and maximizing marginal likelihood associated with high-level vision tasks. By cleverly leveraging self-training paradigms, VaT achieves the above optimization objective without requiring labels. As a result, the translated images maintain a close resemblance to their original content while also demonstrating exceptional performance on high-level vision tasks. Extensive experiments in dehazing and low-light enhancement for detection and classification show the superiority of our method over other state-of-the-art unsupervised counterparts, even significantly surpassing supervised methods in some complex real-world scenarios.
☆ Unlearnable Examples Detection via Iterative Filtering
Deep neural networks are proven to be vulnerable to data poisoning attacks. Recently, a specific type of data poisoning attack known as availability attacks has led to the failure of data utilization for model learning by adding imperceptible perturbations to images. Consequently, it is quite beneficial and challenging to detect poisoned samples, also known as Unlearnable Examples (UEs), from a mixed dataset. In response, we propose an Iterative Filtering approach for UEs identification. This method leverages the distinction between the inherent semantic mapping rules and shortcuts, without the need for any additional information. We verify that when training a classifier on a mixed dataset containing both UEs and clean data, the model tends to quickly adapt to the UEs compared to the clean data. Due to the accuracy gaps between training with clean/poisoned samples, we employ a model to misclassify clean samples while correctly identifying the poisoned ones. The incorporation of additional classes and iterative refinement enhances the model's ability to differentiate between clean and poisoned samples. Extensive experiments demonstrate the superiority of our method over state-of-the-art detection approaches across various attacks, datasets, and poison ratios, significantly reducing the Half Total Error Rate (HTER) compared to existing methods.
comment: Accepted by ICANN 2024
☆ CorrAdaptor: Adaptive Local Context Learning for Correspondence Pruning
In the fields of computer vision and robotics, accurate pixel-level correspondences are essential for enabling advanced tasks such as structure-from-motion and simultaneous localization and mapping. Recent correspondence pruning methods usually focus on learning local consistency through k-nearest neighbors, which makes it difficult to capture robust context for each correspondence. We propose CorrAdaptor, a novel architecture that introduces a dual-branch structure capable of adaptively adjusting local contexts through both explicit and implicit local graph learning. Specifically, the explicit branch uses KNN-based graphs tailored for initial neighborhood identification, while the implicit branch leverages a learnable matrix to softly assign neighbors and adaptively expand the local context scope, significantly enhancing the model's robustness and adaptability to complex image variations. Moreover, we design a motion injection module to integrate motion consistency into the network to suppress the impact of outliers and refine local context learning, resulting in substantial performance improvements. The experimental results on extensive correspondence-based tasks indicate that our CorrAdaptor achieves state-of-the-art performance both qualitatively and quantitatively. The code and pre-trained models are available at https://github.com/TaoWangzj/CorrAdaptor.
comment: 8 pages, 4 figures, accepted by ECAI
☆ Category-Prompt Refined Feature Learning for Long-Tailed Multi-Label Image Classification ACM MM 2024
Real-world data consistently exhibits a long-tailed distribution, often spanning multiple categories. This complexity underscores the challenge of content comprehension, particularly in scenarios requiring Long-Tailed Multi-Label image Classification (LTMLC). In such contexts, imbalanced data distribution and multi-object recognition pose significant hurdles. To address this issue, we propose a novel and effective approach for LTMLC, termed Category-Prompt Refined Feature Learning (CPRFL), utilizing semantic correlations between different categories and decoupling category-specific visual representations for each category. Specifically, CPRFL initializes category-prompts from the pretrained CLIP's embeddings and decouples category-specific visual representations through interaction with visual features, thereby facilitating the establishment of semantic correlations between the head and tail classes. To mitigate the visual-semantic domain bias, we design a progressive Dual-Path Back-Propagation mechanism to refine the prompts by progressively incorporating context-related visual information into prompts. Simultaneously, the refinement process facilitates the progressive purification of the category-specific visual representations under the guidance of the refined prompts. Furthermore, taking into account the negative-positive sample imbalance, we adopt the Asymmetric Loss as our optimization objective to suppress negative samples across all classes and potentially enhance the head-to-tail recognition performance. We validate the effectiveness of our method on two LTMLC benchmarks and extensive experiments demonstrate the superiority of our work over baselines. The code is available at https://github.com/jiexuanyan/CPRFL.
comment: Accepted by ACM MM 2024
☆ Unsupervised Part Discovery via Dual Representation Alignment
Object parts serve as crucial intermediate representations in various downstream tasks, but part-level representation learning still has not received as much attention as other vision tasks. Previous research has established that Vision Transformer can learn instance-level attention without labels, extracting high-quality instance-level representations for boosting downstream tasks. In this paper, we achieve unsupervised part-specific attention learning using a novel paradigm and further employ the part representations to improve part discovery performance. Specifically, paired images are generated from the same image with different geometric transformations, and multiple part representations are extracted from these paired images using a novel module, named PartFormer. These part representations from the paired images are then exchanged to improve geometric transformation invariance. Subsequently, the part representations are aligned with the feature map extracted by a feature map encoder, achieving high similarity with the pixel representations of the corresponding part regions and low similarity in irrelevant regions. Finally, the geometric and semantic constraints are applied to the part representations through the intermediate results in alignment for part-specific attention learning, encouraging the PartFormer to focus locally and the part representations to explicitly include the information of the corresponding parts. Moreover, the aligned part representations can further serve as a series of reliable detectors in the testing phase, predicting pixel masks for part discovery. Extensive experiments are carried out on four widely used datasets, and our results demonstrate that the proposed method achieves competitive performance and robustness due to its part-specific attention.
comment: Accepted by TPAMI-2024
☆ Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
comment: 20 pages
☆ When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding
Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.
☆ OC3D: Weakly Supervised Outdoor 3D Object Detection with Only Coarse Click Annotation
LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents OC3D, an innovative weakly supervised method requiring only coarse clicks on the bird' s eye view of the 3D point cloud. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this problem, our proposed OC3D adopts a two-stage strategy. In the first stage, we initially design a novel dynamic and static classification strategy and then propose the Click2Box and Click2Mask modules to generate box-level and mask-level pseudo-labels for static and dynamic instances, respectively. In the second stage, we design a Mask2Box module, leveraging the learning capabilities of neural networks to update mask-level pseudo-labels, which contain less information, to box level pseudo-labels. Experimental results on the widely used KITTI and nuScenes datasets demonstrate that our OC3D with only coarse clicks achieves state-of-the-art performance compared to weakly-supervised 3D detection methods. Combining OC3D with a missing click mining strategy, we propose a OC3D++ pipeline, which requires only 0.2% annotation cost in the KITTI dataset to achieve performance comparable to fully supervised methods.
☆ HAIR: Hypernetworks-based All-in-One Image Restoration
Image restoration involves recovering a high-quality clean image from its degraded version, which is a fundamental task in computer vision. Recent progress in image restoration has demonstrated the effectiveness of learning models capable of addressing various degradations simultaneously, i.e., the All-in-One image restoration models. However, these existing methods typically utilize the same parameters facing images with different degradation types, which causes the model to be forced to trade off between degradation types, therefore impair the total performance. To solve this problem, we propose HAIR, a Hypernetworks-based plug-in-and-play method that dynamically generated parameters for the corresponding networks based on the contents of input images. HAIR consists of 2 main components: Classifier (Cl) and Hyper Selecting Net (HSN). To be more specific, the Classifier is a simple image classification network which is used to generate a Global Information Vector (GIV) that contains the degradation information of the input image; And the HSNs can be seen as a simple Fully-connected Neural Network that receive the GIV and output parameters for the corresponding modules. Extensive experiments shows that incorporating HAIR into the architectures can significantly improve the performance of different models on image restoration tasks at a low cost, \textbf{although HAIR only generate parameters and haven't change these models' logical structures at all.} With incorporating HAIR into the popular architecture Restormer, our method obtains superior or at least comparable performance to current state-of-the-art methods on a range of image restoration tasks. \href{https://github.com/toummHus/HAIR}{\textcolor{blue}{$\underline{\textbf{Code and pre-trained checkpoints are available here.}}$}}
comment: 13 pages, 4 figures, 6 tables
☆ ColorMamba: Towards High-quality NIR-to-RGB Spectral Translation with Mamba
Translating NIR to the visible spectrum is challenging due to cross-domain complexities. Current models struggle to balance a broad receptive field with computational efficiency, limiting practical use. Although the Selective Structured State Space Model, especially the improved version, Mamba, excels in generative tasks by capturing long-range dependencies with linear complexity, its default approach of converting 2D images into 1D sequences neglects local context. In this work, we propose a simple but effective backbone, dubbed ColorMamba, which first introduces Mamba into spectral translation tasks. To explore global long-range dependencies and local context for efficient spectral translation, we introduce learnable padding tokens to enhance the distinction of image boundaries and prevent potential confusion within the sequence model. Furthermore, local convolutional enhancement and agent attention are designed to improve the vanilla Mamba. Moreover, we exploit the HSV color to provide multi-scale guidance in the reconstruction process for more accurate spectral translation. Extensive experiments show that our ColorMamba achieves a 1.02 improvement in terms of PSNR compared with the state-of-the-art method. Our code is available at https://github.com/AlexYangxx/ColorMamba.
comment: Code is available at https://github.com/AlexYangxx/ColorMamba
☆ Single-image coherent reconstruction of objects and humans CVPR
Existing methods for reconstructing objects and humans from a monocular image suffer from severe mesh collisions and performance limitations for interacting occluding objects. This paper introduces a method to obtain a globally consistent 3D reconstruction of interacting objects and people from a single image. Our contributions include: 1) an optimization framework, featuring a collision loss, tailored to handle human-object and human-human interactions, ensuring spatially coherent scene reconstruction; and 2) a novel technique to robustly estimate 6 degrees of freedom (DOF) poses, specifically for heavily occluded objects, exploiting image inpainting. Notably, our proposed method operates effectively on images from real-world scenarios, without necessitating scene or object-level 3D supervision. Extensive qualitative and quantitative evaluation against existing methods demonstrates a significant reduction in collisions in the final reconstructions of scenes with multiple interacting humans and objects and a more coherent scene reconstruction.
comment: Accepted at AI for 3D Generation, CVPR Workshop
☆ Treat Stillness with Movement: Remote Sensing Change Detection via Coarse-grained Temporal Foregrounds Mining
Current works focus on addressing the remote sensing change detection task using bi-temporal images. Although good performance can be achieved, however, seldom of they consider the motion cues which may also be vital. In this work, we revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework. To be specific, given the bi-temporal images, we first transform them into a video using interpolation operations. Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region prediction. Subsequently, we design a novel Coarse-grained Foregrounds Augmented Spatial Encoder module to integrate both global and local information. We also introduce a motion augmented strategy that leverages motion cues as an additional output to aggregate with the spatial features for improved results. Meanwhile, we feed the input image pairs into the ResNet to get the different features and also the spatial blocks for fine-grained feature learning. More importantly, we propose a mask augmented strategy that utilizes coarse-grained changed regions, incorporating them into the decoder blocks to enhance the final changed prediction. Extensive experiments conducted on multiple benchmark datasets fully validated the effectiveness of our proposed framework for remote sensing image change detection. The source code of this paper will be released on https://github.com/Event-AHU/CTM_Remote_Sensing_Change_Detection
comment: In Peer Review
☆ MambaMIM: Pre-training Mamba with State Space Token-interpolation
Generative self-supervised learning demonstrates outstanding representation learning capabilities in both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). However, there are currently no generative pre-training methods related to selective state space models (Mamba) that can handle long-range dependencies effectively. To address this challenge, we introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T), a general-purpose pre-training method for arbitrary Mamba architectures. Our method, MambaMIM, incorporates a bottom-up 3D hybrid masking strategy in the encoder to maintain masking consistency across different architectures. Additionally, S6T is employed to learn causal relationships between the masked sequence in the state space. MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for pre-training medical image tasks. The code is available at: https://github.com/FengheTan9/MambaMIM
comment: 10 pages, 7 figures
☆ Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging MICCAI 2024
Data scarcity is a major limiting factor for applying modern machine learning techniques to clinical tasks. Although sufficient data exists for some well-studied medical tasks, there remains a long tail of clinically relevant tasks with poor data availability. Recently, numerous foundation models have demonstrated high suitability for few-shot learning (FSL) and zero-shot learning (ZSL), potentially making them more accessible to practitioners. However, it remains unclear which foundation model performs best on FSL medical image analysis tasks and what the optimal methods are for learning from limited data. We conducted a comprehensive benchmark study of ZSL and FSL using 16 pretrained foundation models on 19 diverse medical imaging datasets. Our results indicate that BiomedCLIP, a model pretrained exclusively on medical data, performs best on average for very small training set sizes, while very large CLIP models pretrained on LAION-2B perform best with slightly more training samples. However, simply fine-tuning a ResNet-18 pretrained on ImageNet performs similarly with more than five training examples per class. Our findings also highlight the need for further research on foundation models specifically tailored for medical applications and the collection of more datasets to train these models.
comment: Accepted as an oral presentation in MICCAI 2024 2nd International Workshop on Foundation Models for General Medical AI
☆ CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection ECCV 2024
Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.
comment: Accepted to ECCV 2024
☆ PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation
Segmenting multiple objects (e.g., organs) in medical images often requires an understanding of their topology, which simultaneously quantifies the shape of the objects and their positions relative to each other. This understanding is important for segmentation networks to generalize better with limited training data, which is common in medical image analysis. However, many popular networks were trained to optimize only pixel-wise performance, ignoring the topological correctness of the segmentation. In this paper, we introduce a new topology-aware loss function, which we call PI-Att, that explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps. We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss. Besides, we propose a new mechanism to adaptively calculate the persistence image at the end of each epoch based on the network's performance. This adaptive calculation enables the network to learn topology outline in the first epochs, and then topology details towards the end of training. The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
☆ An Advanced Deep Learning Based Three-Stream Hybrid Model for Dynamic Hand Gesture Recognition
In the modern context, hand gesture recognition has emerged as a focal point. This is due to its wide range of applications, which include comprehending sign language, factories, hands-free devices, and guiding robots. Many researchers have attempted to develop more effective techniques for recognizing these hand gestures. However, there are challenges like dataset limitations, variations in hand forms, external environments, and inconsistent lighting conditions. To address these challenges, we proposed a novel three-stream hybrid model that combines RGB pixel and skeleton-based features to recognize hand gestures. In the procedure, we preprocessed the dataset, including augmentation, to make rotation, translation, and scaling independent systems. We employed a three-stream hybrid model to extract the multi-feature fusion using the power of the deep learning module. In the first stream, we extracted the initial feature using the pre-trained Imagenet module and then enhanced this feature by using a multi-layer of the GRU and LSTM modules. In the second stream, we extracted the initial feature with the pre-trained ReseNet module and enhanced it with the various combinations of the GRU and LSTM modules. In the third stream, we extracted the hand pose key points using the media pipe and then enhanced them using the stacked LSTM to produce the hierarchical feature. After that, we concatenated the three features to produce the final. Finally, we employed a classification module to produce the probabilistic map to generate predicted output. We mainly produced a powerful feature vector by taking advantage of the pixel-based deep learning feature and pos-estimation-based stacked deep learning feature, including a pre-trained model with a scratched deep learning model for unequalled gesture detection capabilities.
☆ DIVE: Towards Descriptive and Diverse Visual Commonsense Generation EMNLP 2023
Towards human-level visual understanding, visual commonsense generation has been introduced to generate commonsense inferences beyond images. However, current research on visual commonsense generation has overlooked an important human cognitive ability: generating descriptive and diverse inferences. In this work, we propose a novel visual commonsense generation framework, called DIVE, which aims to improve the descriptiveness and diversity of generated inferences. DIVE involves two methods, generic inference filtering and contrastive retrieval learning, which address the limitations of existing visual commonsense resources and training objectives. Experimental results verify that DIVE outperforms state-of-the-art models for visual commonsense generation in terms of both descriptiveness and diversity, while showing a superior quality in generating unique and novel inferences. Notably, DIVE achieves human-level descriptiveness and diversity on Visual Commonsense Graphs. Furthermore, human evaluations confirm that DIVE aligns closely with human judgments on descriptiveness and diversity\footnote{Our code and dataset are available at https://github.com/Park-ing-lot/DIVE.
comment: 19 pages, 10 figuers, EMNLP 2023 (main)
☆ Asteroid: Resource-Efficient Hybrid Pipeline Parallelism for Collaborative DNN Training on Heterogeneous Edge Devices
On-device Deep Neural Network (DNN) training has been recognized as crucial for privacy-preserving machine learning at the edge. However, the intensive training workload and limited onboard computing resources pose significant challenges to the availability and efficiency of model training. While existing works address these challenges through native resource management optimization, we instead leverage our observation that edge environments usually comprise a rich set of accompanying trusted edge devices with idle resources beyond a single terminal. We propose Asteroid, a distributed edge training system that breaks the resource walls across heterogeneous edge devices for efficient model training acceleration. Asteroid adopts a hybrid pipeline parallelism to orchestrate distributed training, along with a judicious parallelism planning for maximizing throughput under certain resource constraints. Furthermore, a fault-tolerant yet lightweight pipeline replay mechanism is developed to tame the device-level dynamics for training robustness and performance stability. We implement Asteroid on heterogeneous edge devices with both vision and language models, demonstrating up to 12.2x faster training than conventional parallelism methods and 2.1x faster than state-of-the-art hybrid parallelism methods through evaluations. Furthermore, Asteroid can recover training pipeline 14x faster than baseline methods while preserving comparable throughput despite unexpected device exiting and failure.
comment: Accepted by The 30th Annual International Conference on Mobile Computing and Networking (MobiCom'24)
☆ Adaptive Learning of Consistency and Inconsistency Information for Fake News Detection
The rapid advancement of social media platforms has significantly reduced the cost of information dissemination, yet it has also led to a proliferation of fake news, posing a threat to societal trust and credibility. Most of fake news detection research focused on integrating text and image information to represent the consistency of multiple modes in news content, while paying less attention to inconsistent information. Besides, existing methods that leveraged inconsistent information often caused one mode overshadowing another, leading to ineffective use of inconsistent clue. To address these issues, we propose an adaptive multi-modal feature fusion network (MFF-Net). Inspired by human judgment processes for determining truth and falsity in news, MFF-Net focuses on inconsistent parts when news content is generally consistent and consistent parts when it is generally inconsistent. Specifically, MFF-Net extracts semantic and global features from images and texts respectively, and learns consistency information between modes through a multiple feature fusion module. To deal with the problem of modal information being easily masked, we design a single modal feature filtering strategy to capture inconsistent information from corresponding modes separately. Finally, similarity scores are calculated based on global features with adaptive adjustments made to achieve weighted fusion of consistent and inconsistent features. Extensive experimental results demonstrate that MFF-Net outperforms state-of-the-art methods across three public news datasets derived from real social medias.
☆ MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing
Novel View Synthesis (NVS) and 3D generation have recently achieved prominent improvements. However, these works mainly focus on confined categories or synthetic 3D assets, which are discouraged from generalizing to challenging in-the-wild scenes and fail to be employed with 2D synthesis directly. Moreover, these methods heavily depended on camera poses, limiting their real-world applications. To overcome these issues, we propose MVInpainter, re-formulating the 3D editing as a multi-view 2D inpainting task. Specifically, MVInpainter partially inpaints multi-view images with the reference guidance rather than intractably generating an entirely novel view from scratch, which largely simplifies the difficulty of in-the-wild NVS and leverages unmasked clues instead of explicit pose conditions. To ensure cross-view consistency, MVInpainter is enhanced by video priors from motion components and appearance guidance from concatenated reference key&value attention. Furthermore, MVInpainter incorporates slot attention to aggregate high-level optical flow features from unmasked regions to control the camera movement with pose-free training and inference. Sufficient scene-level experiments on both object-centric and forward-facing datasets verify the effectiveness of MVInpainter, including diverse tasks, such as multi-view object removal, synthesis, insertion, and replacement. The project page is https://ewrfcas.github.io/MVInpainter/.
comment: Project page: https://ewrfcas.github.io/MVInpainter/
☆ Co-Fix3D: Enhancing 3D Object Detection with Collaborative Refinement
In the realm of autonomous driving,accurately detecting occluded or distant objects,referred to as weak positive sample ,presents significant challenges. These challenges predominantly arise during query initialization, where an over-reliance on heatmap confidence often results in a high rate of false positives, consequently masking weaker detections and impairing system performance. To alleviate this issue, we propose a novel approach, Co-Fix3D, which employs a collaborative hybrid multi-stage parallel query generation mechanism for BEV representations. Our method incorporates the Local-Global Feature Enhancement (LGE) module, which refines BEV features to more effectively highlight weak positive samples. It uniquely leverages the Discrete Wavelet Transform (DWT) for accurate noise reduction and features refinement in localized areas, and incorporates an attention mechanism to more comprehensively optimize global BEV features. Moreover, our method increases the volume of BEV queries through a multi-stage parallel processing of the LGE, significantly enhancing the probability of selecting weak positive samples. This enhancement not only improves training efficiency within the decoder framework but also boosts overall system performance. Notably, Co-Fix3D achieves superior results on the stringent nuScenes benchmark, outperforming all previous models with a 69.1% mAP and 72.9% NDS on the LiDAR-based benchmark, and 72.3% mAP and 74.1% NDS on the multi-modality benchmark, without relying on test-time augmentation or additional datasets. The source code will be made publicly available upon acceptance.
☆ Monte Carlo Path Tracing and Statistical Event Detection for Event Camera Simulation
This paper presents a novel event camera simulation system fully based on physically based Monte Carlo path tracing with adaptive path sampling. The adaptive sampling performed in the proposed method is based on a statistical technique, hypothesis testing for the hypothesis whether the difference of logarithmic luminances at two distant periods is significantly larger than a predefined event threshold. To this end, our rendering system collects logarithmic luminances rather than raw luminance in contrast to the conventional rendering system imitating conventional RGB cameras. Then, based on the central limit theorem, we reasonably assume that the distribution of the population mean of logarithmic luminance can be modeled as a normal distribution, allowing us to model the distribution of the difference of logarithmic luminance as a normal distribution. Then, using Student's t-test, we can test the hypothesis and determine whether to discard the null hypothesis for event non-occurrence. When we sample a sufficiently large number of path samples to satisfy the central limit theorem and obtain a clean set of events, our method achieves significant speed up compared to a simple approach of sampling paths uniformly at every pixel. To our knowledge, we are the first to simulate the behavior of event cameras in a physically accurate manner using an adaptive sampling technique in Monte Carlo path tracing, and we believe this study will contribute to the development of computer vision applications using event cameras.
comment: 10 pages, 7 figures, Presented at ICCP 2024
☆ IIU: Independent Inference Units for Knowledge-based Visual Question Answering
Knowledge-based visual question answering requires external knowledge beyond visible content to answer the question correctly. One limitation of existing methods is that they focus more on modeling the inter-modal and intra-modal correlations, which entangles complex multimodal clues by implicit embeddings and lacks interpretability and generalization ability. The key challenge to solve the above problem is to separate the information and process it separately at the functional level. By reusing each processing unit, the generalization ability of the model to deal with different data can be increased. In this paper, we propose Independent Inference Units (IIU) for fine-grained multi-modal reasoning to decompose intra-modal information by the functionally independent units. Specifically, IIU processes each semantic-specific intra-modal clue by an independent inference unit, which also collects complementary information by communication from different units. To further reduce the impact of redundant information, we propose a memory update module to maintain semantic-relevant memory along with the reasoning process gradually. In comparison with existing non-pretrained multi-modal reasoning models on standard datasets, our model achieves a new state-of-the-art, enhancing performance by 3%, and surpassing basic pretrained multi-modal models. The experimental results show that our IIU model is effective in disentangling intra-modal clues as well as reasoning units to provide explainable reasoning evidence. Our code is available at https://github.com/Lilidamowang/IIU.
☆ Exploring learning environments for label\-efficient cancer diagnosis
Despite significant research efforts and advancements, cancer remains a leading cause of mortality. Early cancer prediction has become a crucial focus in cancer research to streamline patient care and improve treatment outcomes. Manual tumor detection by histopathologists can be time consuming, prompting the need for computerized methods to expedite treatment planning. Traditional approaches to tumor detection rely on supervised learning, necessitates a large amount of annotated data for model training. However, acquiring such extensive labeled data can be laborious and time\-intensive. This research examines the three learning environments: supervised learning (SL), semi\-supervised learning (Semi\-SL), and self\-supervised learning (Self\-SL): to predict kidney, lung, and breast cancer. Three pre\-trained deep learning models (Residual Network\-50, Visual Geometry Group\-16, and EfficientNetB0) are evaluated based on these learning settings using seven carefully curated training sets. To create the first training set (TS1), SL is applied to all annotated image samples. Five training sets (TS2\-TS6) with different ratios of labeled and unlabeled cancer images are used to evaluateSemi\-SL. Unlabeled cancer images from the final training set (TS7) are utilized for Self\-SL assessment. Among different learning environments, outcomes from the Semi\-SL setting show a strong degree of agreement with the outcomes achieved in the SL setting. The uniform pattern of observations from the pre\-trained models across all three datasets validates the methodology and techniques of the research. Based on modest number of labeled samples and minimal computing cost, our study suggests that the Semi\-SL option can be a highly viable replacement for the SL option under label annotation constraint scenarios.
comment: Submitted to the journal
☆ Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
With the rise of neural networks in various domains, multi-task learning (MTL) gained significant relevance. A key challenge in MTL is balancing individual task losses during neural network training to improve performance and efficiency through knowledge sharing across tasks. To address these challenges, we propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting and computing analytically optimal uncertainty-based weights, normalized by a softmax function with tunable temperature. Our approach yields comparable results to the combinatorially prohibitive, brute-force approach of Scalarization while offering a more cost-effective yet high-performing alternative. We conduct an extensive benchmark on various datasets and architectures. Our method consistently outperforms six other common weighting methods. Furthermore, we report noteworthy experimental findings for the practical application of MTL. For example, larger networks diminish the influence of weighting methods, and tuning the weight decay has a low impact compared to the learning rate.
☆ LLaVA-Surg: Towards Multimodal Surgical Assistant via Structured Surgical Video Learning
Multimodal large language models (LLMs) have achieved notable success across various domains, while research in the medical field has largely focused on unimodal images. Meanwhile, current general-domain multimodal models for videos still lack the capabilities to understand and engage in conversations about surgical videos. One major contributing factor is the absence of datasets in the surgical field. In this paper, we create a new dataset, Surg-QA, consisting of 102,000 surgical video-instruction pairs, the largest of its kind so far. To build such a dataset, we propose a novel two-stage question-answer generation pipeline with LLM to learn surgical knowledge in a structured manner from the publicly available surgical lecture videos. The pipeline breaks down the generation process into two stages to significantly reduce the task complexity, allowing us to use a more affordable, locally deployed open-source LLM than the premium paid LLM services. It also mitigates the risk of LLM hallucinations during question-answer generation, thereby enhancing the overall quality of the generated data. We further train LLaVA-Surg, a novel vision-language conversational assistant capable of answering open-ended questions about surgical videos, on this Surg-QA dataset, and conduct comprehensive evaluations on zero-shot surgical video question-answering tasks. We show that LLaVA-Surg significantly outperforms all previous general-domain models, demonstrating exceptional multimodal conversational skills in answering open-ended questions about surgical videos. We will release our code, model, and the instruction-tuning dataset.
☆ Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models IROS 2024
This paper investigates the task of the open-ended interactive robotic manipulation on table-top scenarios. While recent Large Language Models (LLMs) enhance robots' comprehension of user instructions, their lack of visual grounding constrains their ability to physically interact with the environment. This is because the robot needs to locate the target object for manipulation within the physical workspace. To this end, we introduce an interactive robotic manipulation framework called Polaris, which integrates perception and interaction by utilizing GPT-4 alongside grounded vision models. For precise manipulation, it is essential that such grounded vision models produce detailed object pose for the target object, rather than merely identifying pixels belonging to them in the image. Consequently, we propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline. This pipeline utilizes rendered synthetic data for training and is then transferred to real-world manipulation tasks. The real-world performance demonstrates the efficacy of our proposed pipeline and underscores its potential for extension to more general categories. Moreover, real-robot experiments have showcased the impressive performance of our framework in grasping and executing multiple manipulation tasks. This indicates its potential to generalize to scenarios beyond the tabletop. More information and video results are available here: https://star-uu-wang.github.io/Polaris/
comment: Accepted by IROS 2024. 8 pages, 5 figures. See https://star-uu-wang.github.io/Polaris/
☆ FlashGS: Efficient 3D Gaussian Splatting for Large-scale and High-resolution Rendering
This work introduces FlashGS, an open-source CUDA Python library, designed to facilitate the efficient differentiable rasterization of 3D Gaussian Splatting through algorithmic and kernel-level optimizations. FlashGS is developed based on the observations from a comprehensive analysis of the rendering process to enhance computational efficiency and bring the technique to wide adoption. The paper includes a suite of optimization strategies, encompassing redundancy elimination, efficient pipelining, refined control and scheduling mechanisms, and memory access optimizations, all of which are meticulously integrated to amplify the performance of the rasterization process. An extensive evaluation of FlashGS' performance has been conducted across a diverse spectrum of synthetic and real-world large-scale scenes, encompassing a variety of image resolutions. The empirical findings demonstrate that FlashGS consistently achieves an average 4x acceleration over mobile consumer GPUs, coupled with reduced memory consumption. These results underscore the superior performance and resource optimization capabilities of FlashGS, positioning it as a formidable tool in the domain of 3D rendering.
☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. To deal with this challenge, research has been conducted on translating SAR images into optical-like representations to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR) images. The experimental results indicate that our method surpasses both the Conditional Diffusion Model (CDM) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
☆ Training Spatial-Frequency Visual Prompts and Probabilistic Clusters for Accurate Black-Box Transfer Learning
Despite the growing prevalence of black-box pre-trained models (PTMs) such as prediction API services, there remains a significant challenge in directly applying general models to real-world scenarios due to the data distribution gap. Considering a data deficiency and constrained computational resource scenario, this paper proposes a novel parameter-efficient transfer learning framework for vision recognition models in the black-box setting. Our framework incorporates two novel training techniques. First, we align the input space (i.e., image) of PTMs to the target data distribution by generating visual prompts of spatial and frequency domain. Along with the novel spatial-frequency hybrid visual prompter, we design a novel training technique based on probabilistic clusters, which can enhance class separation in the output space (i.e., prediction probabilities). In experiments, our model demonstrates superior performance in a few-shot transfer learning setting across extensive visual recognition datasets, surpassing state-of-the-art baselines. Additionally, we show that the proposed method efficiently reduces computational costs for training and inference phases.
comment: ACM Multimedia 2024
☆ MobileMEF: Fast and Efficient Method for Multi-Exposure Fusion
Recent advances in camera design and imaging technology have enabled the capture of high-quality images using smartphones. However, due to the limited dynamic range of digital cameras, the quality of photographs captured in environments with highly imbalanced lighting often results in poor-quality images. To address this issue, most devices capture multi-exposure frames and then use some multi-exposure fusion method to merge those frames into a final fused image. Nevertheless, most traditional and current deep learning approaches are unsuitable for real-time applications on mobile devices due to their heavy computational and memory requirements. We propose a new method for multi-exposure fusion based on an encoder-decoder deep learning architecture with efficient building blocks tailored for mobile devices. This efficient design makes our model capable of processing 4K resolution images in less than 2 seconds on mid-range smartphones. Our method outperforms state-of-the-art techniques regarding full-reference quality measures and computational efficiency (runtime and memory usage), making it ideal for real-time applications on hardware-constrained devices. Our code is available at: https://github.com/LucasKirsten/MobileMEF.
☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM-2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM-2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM-2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM-2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a feasible reality.
comment: 16 pages, 2 figures
☆ A Deep Features-Based Approach Using Modified ResNet50 and Gradient Boosting for Visual Sentiments Classification
The versatile nature of Visual Sentiment Analysis (VSA) is one reason for its rising profile. It isn't easy to efficiently manage social media data with visual information since previous research has concentrated on Sentiment Analysis (SA) of single modalities, like textual. In addition, most visual sentiment studies need to adequately classify sentiment because they are mainly focused on simply merging modal attributes without investigating their intricate relationships. This prompted the suggestion of developing a fusion of deep learning and machine learning algorithms. In this research, a deep feature-based method for multiclass classification has been used to extract deep features from modified ResNet50. Furthermore, gradient boosting algorithm has been used to classify photos containing emotional content. The approach is thoroughly evaluated on two benchmarked datasets, CrowdFlower and GAPED. Finally, cutting-edge deep learning and machine learning models were used to compare the proposed strategy. When compared to state-of-the-art approaches, the proposed method demonstrates exceptional performance on the datasets presented.
comment: 4 pages, 4 figures, 3 tables, IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR) 2024
GOReloc: Graph-based Object-Level Relocalization for Visual SLAM RAL
This article introduces a novel method for object-level relocalization of robotic systems. It determines the pose of a camera sensor by robustly associating the object detections in the current frame with 3D objects in a lightweight object-level map. Object graphs, considering semantic uncertainties, are constructed for both the incoming camera frame and the pre-built map. Objects are represented as graph nodes, and each node employs unique semantic descriptors based on our devised graph kernels. We extract a subgraph from the target map graph by identifying potential object associations for each object detection, then refine these associations and pose estimations using a RANSAC-inspired strategy. Experiments on various datasets demonstrate that our method achieves more accurate data association and significantly increases relocalization success rates compared to baseline methods. The implementation of our method is released at \url{https://github.com/yutongwangBIT/GOReloc}.
comment: 8 pages, accepted by IEEE RAL
☆ DM2RM: Dual-Mode Multimodal Ranking for Target Objects and Receptacles Based on Open-Vocabulary Instructions
In this study, we aim to develop a domestic service robot (DSR) that, guided by open-vocabulary instructions, can carry everyday objects to the specified pieces of furniture. Few existing methods handle mobile manipulation tasks with open-vocabulary instructions in the image retrieval setting, and most do not identify both the target objects and the receptacles. We propose the Dual-Mode Multimodal Ranking model (DM2RM), which enables images of both the target objects and receptacles to be retrieved using a single model based on multimodal foundation models. We introduce a switching mechanism that leverages a mode token and phrase identification via a large language model to switch the embedding space based on the prediction target. To evaluate the DM2RM, we construct a novel dataset including real-world images collected from hundreds of building-scale environments and crowd-sourced instructions with referring expressions. The evaluation results show that the proposed DM2RM outperforms previous approaches in terms of standard metrics in image retrieval settings. Furthermore, we demonstrate the application of the DM2RM on a standardized real-world DSR platform including fetch-and-carry actions, where it achieves a task success rate of 82% despite the zero-shot transfer setting. Demonstration videos, code, and more materials are available at https://kkrr10.github.io/dm2rm/.
☆ Persistence Image from 3D Medical Image: Superpixel and Optimized Gaussian Coefficient
Topological data analysis (TDA) uncovers crucial properties of objects in medical imaging. Methods based on persistent homology have demonstrated their advantages in capturing topological features that traditional deep learning methods cannot detect in both radiology and pathology. However, previous research primarily focused on 2D image analysis, neglecting the comprehensive 3D context. In this paper, we propose an innovative 3D TDA approach that incorporates the concept of superpixels to transform 3D medical image features into point cloud data. By Utilizing Optimized Gaussian Coefficient, the proposed 3D TDA method, for the first time, efficiently generate holistic Persistence Images for 3D volumetric data. Our 3D TDA method exhibits superior performance on the MedMNist3D dataset when compared to other traditional methods, showcasing its potential effectiveness in modeling 3D persistent homology-based topological analysis when it comes to classification tasks. The source code is publicly available at https://github.com/hrlblab/TopologicalDataAnalysis3D.
☆ Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis
Reliable analysis of intracellular dynamic processes in time-lapse fluorescence microscopy images requires complete and accurate tracking of all small particles in all time frames of the image sequences. A fundamental first step towards this goal is particle detection. Given the small size of the particles, their detection is greatly affected by image noise. Recent studies have shown that applying image denoising as a preprocessing step indeed improves particle detection and their subsequent tracking. Deep learning based particle detection methods have shown superior results compared to traditional detection methods. However, they do not explicitly aim to remove noise from the images to facilitate detection. Thus we hypothesize that their performance could be further improved. In this paper, we propose a new deep neural network, called DENODET (denoising-detection network), which performs image denoising and particle detection simultaneously. We show that integrative denoising and detection yields more accurate detection results. Our method achieves superior results compared to state-of-the-art particle detection methods on the particle tracking challenge dataset and our own real fluorescence microscopy image data.
comment: 11 pages, 4 figures, 4 tables
☆ Quantum-inspired Interpretable Deep Learning Architecture for Text Sentiment Analysis
Text has become the predominant form of communication on social media, embedding a wealth of emotional nuances. Consequently, the extraction of emotional information from text is of paramount importance. Despite previous research making some progress, existing text sentiment analysis models still face challenges in integrating diverse semantic information and lack interpretability. To address these issues, we propose a quantum-inspired deep learning architecture that combines fundamental principles of quantum mechanics (QM principles) with deep learning models for text sentiment analysis. Specifically, we analyze the commonalities between text representation and QM principles to design a quantum-inspired text representation method and further develop a quantum-inspired text embedding layer. Additionally, we design a feature extraction layer based on long short-term memory (LSTM) networks and self-attention mechanisms (SAMs). Finally, we calculate the text density matrix using the quantum complex numbers principle and apply 2D-convolution neural networks (CNNs) for feature condensation and dimensionality reduction. Through a series of visualization, comparative, and ablation experiments, we demonstrate that our model not only shows significant advantages in accuracy and efficiency compared to previous related models but also achieves a certain level of interpretability by integrating QM principles. Our code is available at QISA.
☆ MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking
Existing RGB-T tracking algorithms have made remarkable progress by leveraging the global interaction capability and extensive pre-trained models of the Transformer architecture. Nonetheless, these methods mainly adopt imagepair appearance matching and face challenges of the intrinsic high quadratic complexity of the attention mechanism, resulting in constrained exploitation of temporal information. Inspired by the recently emerged State Space Model Mamba, renowned for its impressive long sequence modeling capabilities and linear computational complexity, this work innovatively proposes a pure Mamba-based framework (MambaVT) to fully exploit spatio-temporal contextual modeling for robust visible-thermal tracking. Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations, and introduce short-term historical trajectory prompts to predict the subsequent target states based on local temporal location clues. Extensive experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks while requiring lower computational costs. We aim for this work to serve as a simple yet strong baseline, stimulating future research in this field. The code and pre-trained models will be made available.
☆ To Impute or Not: Recommendations for Multibiometric Fusion
Combining match scores from different biometric systems via fusion is a well-established approach to improving recognition accuracy. However, missing scores can degrade performance as well as limit the possible fusion techniques that can be applied. Imputation is a promising technique in multibiometric systems for replacing missing data. In this paper, we evaluate various score imputation approaches on three multimodal biometric score datasets, viz. NIST BSSR1, BIOCOP2008, and MIT LL Trimodal, and investigate the factors which might influence the effectiveness of imputation. Our studies reveal three key observations: (1) Imputation is preferable over not imputing missing scores, even when the fusion rule does not require complete score data. (2) Balancing the classes in the training data is crucial to mitigate negative biases in the imputation technique towards the under-represented class, even if it involves dropping a substantial number of score vectors. (3) Multivariate imputation approaches seem to be beneficial when scores between modalities are correlated, while univariate approaches seem to benefit scenarios where scores between modalities are less correlated.
comment: Proc. of IEEE International Workshop on Information Forensics and Security (WIFS), (Nuremberg, Germany), December 2023
☆ Continuous Perception Benchmark
Humans continuously perceive and process visual signals. However, current video models typically either sample key frames sparsely or divide videos into chunks and densely sample within each chunk. This approach stems from the fact that most existing video benchmarks can be addressed by analyzing key frames or aggregating information from separate chunks. We anticipate that the next generation of vision models will emulate human perception by processing visual input continuously and holistically. To facilitate the development of such models, we propose the Continuous Perception Benchmark, a video question answering task that cannot be solved by focusing solely on a few frames or by captioning small chunks and then summarizing using language models. Extensive experiments demonstrate that existing models, whether commercial or open-source, struggle with these tasks, indicating the need for new technical advancements in this direction.
☆ A Novel Generative Artificial Intelligence Method for Interference Study on Multiplex Brightfield Immunohistochemistry Images
Multiplex brightfield imaging offers the advantage of simultaneously analyzing multiple biomarkers on a single slide, as opposed to single biomarker labeling on multiple consecutive slides. To accurately analyze multiple biomarkers localized at the same cellular compartment, two representative biomarker sets were selected as assay models - cMET-PDL1-EGFR and CD8-LAG3-PDL1, where all three biomarkers can co-localize on the cell membrane. One of the most crucial preliminary stages for analyzing such assay is identifying each unique chromogen on individual cells. This is a challenging problem due to the co-localization of membrane stains from all the three biomarkers. It requires advanced color unmixing for creating the equivalent singleplex images from each triplex image for each biomarker. In this project, we developed a cycle-Generative Adversarial Network (cycle-GAN) method for unmixing the triplex images generated from the above-mentioned assays. Three different models were designed to generate the singleplex image for each of the three stains Tamra (purple), QM-Dabsyl (yellow) and Green. A notable novelty of our approach was that the input to the network were images in the optical density domain instead of conventionally used RGB images. The use of the optical density domain helped in reducing the blurriness of the synthetic singleplex images, which was often observed when the network was trained on RGB images. The cycle-GAN models were validated on 10,800 lung, gastric and colon images for the cMET-PDL1-EGFR assay and 3600 colon images for the CD8-LAG3-PDL1 assay. Visual as well as quantified assessments demonstrated that the proposed method is effective and efficient when compared with the manual reviewing results and is readily applicable to various multiplex assays.
☆ JPEG-LM: LLMs as Image Generators with Canonical Codec Representations
Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.
☆ Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging
Distributional drift detection is important in medical applications as it helps ensure the accuracy and reliability of models by identifying changes in the underlying data distribution that could affect diagnostic or treatment decisions. However, current methods have limitations in detecting drift; for example, the inclusion of abnormal datasets can lead to unfair comparisons. This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images by leveraging data-sketching and fine-tuning techniques. We developed a robust baseline library model for real-time anomaly detection, allowing for efficient comparison of incoming images and identification of anomalies. Additionally, we fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images as an example, significantly enhancing model accuracy to 99.11\%. Combining with data-sketches and fine-tuning, our feature extraction evaluation demonstrated that cosine similarity scores between similar datasets provide greater improvements, from around 50\% increased to 100\%. Finally, the sensitivity evaluation shows that our solutions are highly sensitive to even 1\% salt-and-pepper and speckle noise, and it is not sensitive to lighting noise (e.g., lighting conditions have no impact on data drift). The proposed methods offer a scalable and reliable solution for maintaining the accuracy of diagnostic models in dynamic clinical environments.
☆ Beyond Uniform Query Distribution: Key-Driven Grouped Query Attention
The Transformer architecture has revolutionized deep learning through its Self-Attention mechanism, which effectively captures contextual information. However, the memory footprint of Self-Attention presents significant challenges for long-sequence tasks. Grouped Query Attention (GQA) addresses this issue by grouping queries and mean-pooling the corresponding key-value heads - reducing the number of overall parameters and memory requirements in a flexible manner without adversely compromising model accuracy. In this work, we introduce enhancements to GQA, focusing on two novel approaches that deviate from the static nature of grouping: Key-Distributed GQA (KDGQA) and Dynamic Key-Distributed GQA (DGQA), which leverage information from the norms of the key heads to inform query allocation. Specifically, KDGQA looks at the ratios of the norms of the key heads during each forward pass, while DGQA examines the ratios of the norms as they evolve through training. Additionally, we present Perturbed GQA (PGQA) as a case-study, which introduces variability in (static) group formation via subtracting noise from the attention maps. Our experiments with up-trained Vision Transformers, for Image Classification on datasets such as CIFAR-10, CIFAR-100, Food101, and Tiny ImageNet, demonstrate the promise of these variants in improving upon the original GQA through more informed and adaptive grouping mechanisms: specifically ViT-L experiences accuracy gains of up to 8% when utilizing DGQA in comparison to GQA and other variants. We further analyze the impact of the number of Key-Value Heads on performance, underscoring the importance of utilizing query-key affinities.
comment: 11 pages, 9 figures
☆ SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models leveraging data from the Environmental Mapping and Analysis Program (EnMAP). SpectralEarth comprises 538,974 image patches covering 415,153 unique locations from more than 11,636 globally distributed EnMAP scenes spanning two years of archive. Additionally, 17.5% of these locations include multiple timestamps, enabling multi-temporal HSI analysis. Utilizing state-of-the-art self-supervised learning (SSL) algorithms, we pretrain a series of foundation models on SpectralEarth. We integrate a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation. Experimental results support the versatility of our models, showcasing their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning. The dataset, models, and source code will be made publicly available.
☆ PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications
While Vision Transformers (ViTs) are extremely effective at computer vision tasks and are replacing convolutional neural networks as the new state-of-the-art, they are complex and memory-intensive models. In order to effectively run these models on resource-constrained mobile/edge systems, there is a need to not only compress these models but also to optimize them and convert them into deployment-friendly formats. To this end, this paper presents a combined pruning and quantization tool, called PQV-Mobile, to optimize vision transformers for mobile applications. The tool is able to support different types of structured pruning based on magnitude importance, Taylor importance, and Hessian importance. It also supports quantization from FP32 to FP16 and int8, targeting different mobile hardware backends. We demonstrate the capabilities of our tool and show important latency-memory-accuracy trade-offs for different amounts of pruning and int8 quantization with Facebook Data Efficient Image Transformer (DeiT) models. Our results show that even pruning a DeiT model by 9.375% and quantizing it to int8 from FP32 followed by optimizing for mobile applications, we find a latency reduction by 7.18X with a small accuracy loss of 2.24%. The tool is open source.
☆ Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts
Deep learning has shown tremendous progress in a wide range of digital pathology and medical image classification tasks. Its integration into safe clinical decision-making support requires robust and reliable models. However, real-world data comes with diversities that often lie outside the intended source distribution. Moreover, when test samples are dramatically different, clinical decision-making is greatly affected. Quantifying predictive uncertainty in models is crucial for well-calibrated predictions and determining when (or not) to trust a model. Unfortunately, many works have overlooked the importance of predictive uncertainty estimation. This paper evaluates whether predictive uncertainty estimation adds robustness to deep learning-based diagnostic decision-making systems. We investigate the effect of various carcinoma distribution shift scenarios on predictive performance and calibration. We first systematically investigate three popular methods for improving predictive uncertainty: Monte Carlo dropout, deep ensemble, and few-shot learning on lung adenocarcinoma classification as a primary disease in whole slide images. Secondly, we compare the effectiveness of the methods in terms of performance and calibration under clinically relevant distribution shifts such as in-distribution shifts comprising primary disease sub-types and other characterization analysis data; out-of-distribution shifts comprising well-differentiated cases, different organ origin, and imaging modality shifts. While studies on uncertainty estimation exist, to our best knowledge, no rigorous large-scale benchmark compares predictive uncertainty estimation including these dataset shifts for lung carcinoma classification.
comment: 17 pages, 2 figures, 5 tables
☆ Penny-Wise and Pound-Foolish in Deepfake Detection
The diffusion of deepfake technologies has sparked serious concerns about its potential misuse across various domains, prompting the urgent need for robust detection methods. Despite advancement, many current approaches prioritize short-term gains at expense of long-term effectiveness. This paper critiques the overly specialized approach of fine-tuning pre-trained models solely with a penny-wise objective on a single deepfake dataset, while disregarding the pound-wise balance for generalization and knowledge retention. To address this "Penny-Wise and Pound-Foolish" issue, we propose a novel learning framework (PoundNet) for generalization of deepfake detection on a pre-trained vision-language model. PoundNet incorporates a learnable prompt design and a balanced objective to preserve broad knowledge from upstream tasks (object classification) while enhancing generalization for downstream tasks (deepfake detection). We train PoundNet on a standard single deepfake dataset, following common practice in the literature. We then evaluate its performance across 10 public large-scale deepfake datasets with 5 main evaluation metrics-forming the largest benchmark test set for assessing the generalization ability of deepfake detection models, to our knowledge. The comprehensive benchmark evaluation demonstrates the proposed PoundNet is significantly less "Penny-Wise and Pound-Foolish", achieving a remarkable improvement of 19% in deepfake detection performance compared to state-of-the-art methods, while maintaining a strong performance of 63% on object classification tasks, where other deepfake detection models tend to be ineffective. Code and data are open-sourced at https://github.com/iamwangyabin/PoundNet.
☆ Level Up Your Tutorials: VLMs for Game Tutorials Quality Assessment ECCV 2024
Designing effective game tutorials is crucial for a smooth learning curve for new players, especially in games with many rules and complex core mechanics. Evaluating the effectiveness of these tutorials usually requires multiple iterations with testers who have no prior knowledge of the game. Recent Vision-Language Models (VLMs) have demonstrated significant capabilities in understanding and interpreting visual content. VLMs can analyze images, provide detailed insights, and answer questions about their content. They can recognize objects, actions, and contexts in visual data, making them valuable tools for various applications, including automated game testing. In this work, we propose an automated game-testing solution to evaluate the quality of game tutorials. Our approach leverages VLMs to analyze frames from video game tutorials, answer relevant questions to simulate human perception, and provide feedback. This feedback is compared with expected results to identify confusing or problematic scenes and highlight potential errors for developers. In addition, we publish complete tutorial videos and annotated frames from different game versions used in our tests. This solution reduces the need for extensive manual testing, especially by speeding up and simplifying the initial development stages of the tutorial to improve the final game experience.
comment: Accepted at ECCV 2024 CV2 Workshop
☆ Pre-processing and Compression: Understanding Hidden Representation Refinement Across Imaging Domains via Intrinsic Dimension
In recent years, there has been interest in how geometric properties such as intrinsic dimension (ID) of a neural network's hidden representations evolve through its layers, and how such properties are predictive of important model behavior such as generalization ability. However, evidence has begun to emerge that such behavior can change significantly depending on the domain of the network's training data, such as natural versus medical images. Here, we further this inquiry by exploring how the ID of a network's learned representations evolves through its layers, in essence, characterizing how the network successively refines the information content of input data to be used for predictions. Analyzing eleven natural and medical image datasets across six network architectures, we find that the shape of this ID evolution curve differs noticeably between natural and medical image models: medical image models peak in representation ID earlier in the network, implying a difference in the image features and their abstractness that are typically used for downstream tasks in these domains. Additionally, we discover a strong correlation of this peak representation ID with the ID of the data in its input space, implying that the intrinsic information content of a model's learned representations is guided by that of the data it was trained on. Overall, our findings emphasize notable discrepancies in network behavior between natural and non-natural imaging domains regarding hidden representation information content, and provide further insights into how a network's learned features are shaped by its training data.
☆ 5%>100%: Breaking Performance Shackles of Full Fine-Tuning on Visual Recognition Tasks
Pre-training & fine-tuning can enhance the transferring efficiency and performance in visual tasks. Recent delta-tuning methods provide more options for visual classification tasks. Despite their success, existing visual delta-tuning art fails to exceed the upper limit of full fine-tuning on challenging tasks like object detection and segmentation. To find a competitive alternative to full fine-tuning, we propose the Multi-cognitive Visual Adapter (Mona) tuning, a novel adapter-based tuning method. First, we introduce multiple vision-friendly filters into the adapter to enhance its ability to process visual signals, while previous methods mainly rely on language-friendly linear filters. Second, we add the scaled normalization layer in the adapter to regulate the distribution of input features for visual filters. To fully demonstrate the practicality and generality of Mona, we conduct experiments on multiple representative visual tasks, including instance segmentation on COCO, semantic segmentation on ADE20K, object detection on Pascal VOC, oriented object detection on DOTA/STAR, and image classification on three common datasets. Exciting results illustrate that Mona surpasses full fine-tuning on all these tasks, and is the only delta-tuning method outperforming full fine-tuning on the above various tasks. For example, Mona achieves 1% performance gain on the COCO dataset compared to full fine-tuning. Comprehensive results suggest that Mona-tuning is more suitable for retaining and utilizing the capabilities of pre-trained models than full fine-tuning. We will make the code publicly available.
comment: arXiv admin note: substantial text overlap with arXiv:2311.15010
☆ CT4D: Consistent Text-to-4D Generation with Animatable Meshes
Text-to-4D generation has recently been demonstrated viable by integrating a 2D image diffusion model with a video diffusion model. However, existing models tend to produce results with inconsistent motions and geometric structures over time. To this end, we present a novel framework, coined CT4D, which directly operates on animatable meshes for generating consistent 4D content from arbitrary user-supplied prompts. The primary challenges of our mesh-based framework involve stably generating a mesh with details that align with the text prompt while directly driving it and maintaining surface continuity. Our CT4D framework incorporates a unique Generate-Refine-Animate (GRA) algorithm to enhance the creation of text-aligned meshes. To improve surface continuity, we divide a mesh into several smaller regions and implement a uniform driving function within each area. Additionally, we constrain the animating stage with a rigidity regulation to ensure cross-region continuity. Our experimental results, both qualitative and quantitative, demonstrate that our CT4D framework surpasses existing text-to-4D techniques in maintaining interframe consistency and preserving global geometry. Furthermore, we showcase that this enhanced representation inherently possesses the capability for combinational 4D generation and texture editing.
♻ ☆ A Spitting Image: Modular Superpixel Tokenization in Vision Transformers ECCV
Vision Transformer (ViT) architectures traditionally employ a grid-based approach to tokenization independent of the semantic content of an image. We propose a modular superpixel tokenization strategy which decouples tokenization and feature extraction; a shift from contemporary approaches where these are treated as an undifferentiated whole. Using on-line content-aware tokenization and scale- and shape-invariant positional embeddings, we perform experiments and ablations that contrast our approach with patch-based tokenization and randomized partitions as baselines. We show that our method significantly improves the faithfulness of attributions, gives pixel-level granularity on zero-shot unsupervised dense prediction tasks, while maintaining predictive performance in classification tasks. Our approach provides a modular tokenization framework commensurable with standard architectures, extending the space of ViTs to a larger class of semantically-rich models.
comment: To appear in ECCV (MELEX) 2024 Workshop Proceedings
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation WACV 2024
Beyond the Transformer, it is important to explore how to exploit the capacity of the MetaFormer, an architecture that is fundamental to the performance improvements of the Transformer. Previous studies have exploited it only for the backbone network. Unlike previous studies, we explore the capacity of the Metaformer architecture more extensively in the semantic segmentation task. We propose a powerful semantic segmentation network, MetaSeg, which leverages the Metaformer architecture from the backbone to the decoder. Our MetaSeg shows that the MetaFormer architecture plays a significant role in capturing the useful contexts for the decoder as well as for the backbone. In addition, recent segmentation methods have shown that using a CNN-based backbone for extracting the spatial information and a decoder for extracting the global information is more effective than using a transformer-based backbone with a CNN-based decoder. This motivates us to adopt the CNN-based backbone using the MetaFormer block and design our MetaFormer-based decoder, which consists of a novel self-attention module to capture the global contexts. To consider both the global contexts extraction and the computational efficiency of the self-attention for semantic segmentation, we propose a Channel Reduction Attention (CRA) module that reduces the channel dimension of the query and key into the one dimension. In this way, our proposed MetaSeg outperforms the previous state-of-the-art methods with more efficient computational costs on popular semantic segmentation and a medical image segmentation benchmark, including ADE20K, Cityscapes, COCO-stuff, and Synapse. The code is available at https://github.com/hyunwoo137/MetaSeg.
comment: Accepted by WACV 2024
♻ ☆ MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark
With the development of Multimodal Large Language Models (MLLMs), the evaluation of multimodal models in the context of mathematical problems has become a valuable research field. Multimodal visual-textual mathematical reasoning serves as a critical indicator for evaluating the comprehension and complex multi-step quantitative reasoning abilities of MLLMs. However, previous multimodal math benchmarks have not sufficiently integrated visual and textual information. To address this gap, we proposed MathScape, a new benchmark that emphasizes the understanding and application of combined visual and textual information. MathScape is designed to evaluate photo-based math problem scenarios, assessing the theoretical understanding and application ability of MLLMs through a categorical hierarchical approach. We conduct a multi-dimensional evaluation on 11 advanced MLLMs, revealing that our benchmark is challenging even for the most sophisticated models. By analyzing the evaluation results, we identify the limitations of MLLMs, offering valuable insights for enhancing model performance.
♻ ☆ DIffSteISR: Harnessing Diffusion Prior for Superior Real-world Stereo Image Super-Resolution
We introduce DiffSteISR, a pioneering framework for reconstructing real-world stereo images. DiffSteISR utilizes the powerful prior knowledge embedded in pre-trained text-to-image model to efficiently recover the lost texture details in low-resolution stereo images. Specifically, DiffSteISR implements a time-aware stereo cross attention with temperature adapter (TASCATA) to guide the diffusion process, ensuring that the generated left and right views exhibit high texture consistency thereby reducing disparity error between the super-resolved images and the ground truth (GT) images. Additionally, a stereo omni attention control network (SOA ControlNet) is proposed to enhance the consistency of super-resolved images with GT images in the pixel, perceptual, and distribution space. Finally, DiffSteISR incorporates a stereo semantic extractor (SSE) to capture unique viewpoint soft semantic information and shared hard tag semantic information, thereby effectively improving the semantic accuracy and consistency of the generated left and right images. Extensive experimental results demonstrate that DiffSteISR accurately reconstructs natural and precise textures from low-resolution stereo images while maintaining a high consistency of semantic and texture between the left and right views.
♻ ☆ BAPLe: Backdoor Attacks on Medical Foundational Models using Prompt Learning MICCAI 2024
Medical foundation models are gaining prominence in the medical community for their ability to derive general representations from extensive collections of medical image-text pairs. Recent research indicates that these models are susceptible to backdoor attacks, which allow them to classify clean images accurately but fail when specific triggers are introduced. However, traditional backdoor attacks necessitate a considerable amount of additional data to maliciously pre-train a model. This requirement is often impractical in medical imaging applications due to the usual scarcity of data. Inspired by the latest developments in learnable prompts, this work introduces a method to embed a backdoor into the medical foundation model during the prompt learning phase. By incorporating learnable prompts within the text encoder and introducing imperceptible learnable noise trigger to the input images, we exploit the full capabilities of the medical foundation models (Med-FM). Our method, BAPLe, requires only a minimal subset of data to adjust the noise trigger and the text prompts for downstream tasks, enabling the creation of an effective backdoor attack. Through extensive experiments with four medical foundation models, each pre-trained on different modalities and evaluated across six downstream datasets, we demonstrate the efficacy of our approach. BAPLe achieves a high backdoor success rate across all models and datasets, outperforming the baseline backdoor attack methods. Our work highlights the vulnerability of Med-FMs towards backdoor attacks and strives to promote the safe adoption of Med-FMs before their deployment in real-world applications. Code is available at https://asif-hanif.github.io/baple/.
comment: MICCAI 2024
♻ ☆ MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Existing human image personalized generation methods often require tedious training: either fine-tuning with a few images or retraining on large-scale datasets. In such cases, these methods are prone to overfitting and encounter difficulties when personalizing individuals of diverse styles. Moreover, these training-based approaches also struggle with multi-concept human image customizing. To this end, we propose MagicFace, the first method for universal-style human image personalized synthesis that enables single/multi-concept customization for humans of any style in a training-free manner. MagicFace introduces a coarse-to-fine generation pipeline, involving two sequential stages: semantic scene construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. Specifically, in the first stage, RSA enables the latent image to query features from reference concepts simultaneously, extracting the coarse-grained overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the generated regions of all concepts in the latent image at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from its reference concept, which ensures precise attribute alignment and feature injection. Throughout the two-stage process, a weight mask strategy is employed to ensure the model focuses more on the reference concepts. Extensive experiments demonstrate our superiority in both human-centric subject-to-image synthesis and multi-concept human image customization. Our approach also can be applied to texture transformation, further enhancing its versatility and applicability.
comment: project page: https://codegoat24.github.io/MagicFace
♻ ☆ A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties ECCV 2024
This paper introduces ProLab, a novel approach using property-level label space for creating strong interpretable segmentation models. Instead of relying solely on category-specific annotations, ProLab uses descriptive properties grounded in common sense knowledge for supervising segmentation models. It is based on two core designs. First, we employ Large Language Models (LLMs) and carefully crafted prompts to generate descriptions of all involved categories that carry meaningful common sense knowledge and follow a structured format. Second, we introduce a description embedding model preserving semantic correlation across descriptions and then cluster them into a set of descriptive properties (e.g., 256) using K-Means. These properties are based on interpretable common sense knowledge consistent with theories of human recognition. We empirically show that our approach makes segmentation models perform stronger on five classic benchmarks (e.g., ADE20K, COCO-Stuff, Pascal Context, Cityscapes, and BDD). Our method also shows better scalability with extended training steps than category-level supervision. Our interpretable segmentation framework also emerges with the generalization ability to segment out-of-domain or unknown categories using only in-domain descriptive properties. Code is available at https://github.com/lambert-x/ProLab.
comment: Accepted to ECCV 2024. Code is available at https://github.com/lambert-x/ProLab
♻ ☆ Prompt-Based Segmentation at Multiple Resolutions and Lighting Conditions using Segment Anything Model 2
This paper provides insight into the effectiveness of zero-shot, prompt-based, Segment Anything Model (SAM), and its updated version, SAM 2, and the non-promptable, conventional convolutional network (CNN), in segmenting solar panels, in RGB aerial imagery, across lighting conditions, spatial resolutions, and prompt strategies. SAM 2 demonstrates improvements over SAM, particularly in sub-optimal lighting conditions when prompted by points. Both SAMs, prompted by user-box, outperformed CNN, in all scenarios. Additionally, YOLOv9 prompting outperformed user points prompting. In high-resolution imagery, both in optimal and sub-optimal lighting conditions, Eff-UNet outperformed both SAM models prompted by YOLOv9 boxes, positioning Eff-UNet as the appropriate model for automatic segmentation in high-resolution data. In low-resolution data, user box prompts were found crucial to achieve a reasonable performance. This paper provides details on strengths and limitations of each model and outlines robustness of user prompted image segmentation models in inconsistent resolution and lighting conditions of remotely sensed data.
♻ ☆ Nearest Neighbor Classification for Classical Image Upsampling
Given a set of ordered pixel data in the form of an image, our goal is to perform upsampling on the data such that: the resulting resolution is improved by some factor, the final result passes the human test, having added new, believable, and realistic information and detail to the image, the time complexity for upscaling is relatively close to that of lossy upscaling implementations.
comment: 6 pages
♻ ☆ Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction
In the realm of modern mobile E-commerce, providing users with nearby commercial service recommendations through location-based online services has become increasingly vital. While machine learning approaches have shown promise in multi-scene recommendation, existing methodologies often struggle to address cold-start problems in unprecedented scenes: the increasing diversity of commercial choices, along with the short online lifespan of scenes, give rise to the complexity of effective recommendations in online and dynamic scenes. In this work, we propose Scene-wise Adaptive Network (SwAN), a novel approach that emphasizes high-performance cold-start online recommendations for new scenes. Our approach introduces several crucial capabilities, including scene similarity learning, user-specific scene transition cognition, scene-specific information construction for the new scene, and enhancing the diverged logical information between scenes. We demonstrate SwAN's potential to optimize dynamic multi-scene recommendation problems by effectively online handling cold-start recommendations for any newly arrived scenes. More encouragingly, SwAN has been successfully deployed in Meituan's online catering recommendation service, which serves millions of customers per day, and SwAN has achieved a 5.64% CTR index improvement relative to the baselines and a 5.19% increase in daily order volume proportion.
comment: 10 pages, 6 figures, accepted by Recsys 2024
♻ ☆ A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease
BACKGROUND: Segmentation of medical data, concerns about personal health information (PHI) breaches, and the direct and indirect costs of consolidating and managing such segmented date should motivate diagnostic machine learning (DML) researchers to identify privacy-preserving machine learning algorithms that can train on distributed or decentralized datasets of different modalities. Federated learning models provide such a decentralized machine learning framework in which multiple investigators in possession of disparate datasets and working on different devices or servers can train collaboratively a global machine learning models without ever having to exchange local data and thus can meet statutory PHI protections. To this end, a vertical federate learning model is devised and tested for efficacy in the detection of Alzheimer's Disease (AD). METHODS: The second version of Open Access Series of Imaging Studies -- with its panoply of demographic, imaging, and clinical assessment datasets -- was used to test a multimodal vertical federated learning (VFL) model for AD detection. RESULTS: By training and validating this VFL model on the demographic, clinical, and MRI data in OASIS-2, an 82.9\% accuracy rate is achieved, consistent with previously reported results. CONCLUSIONS: The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data while respecting statutory privacy constraints. By leveraging multiple modalities of data, the robustness and accuracy of AD detection can be enhanced. This model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research.
comment: 17 pages, 7 figures, 2 tables
♻ ☆ EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation ECCV 2024
We present EgoPoseFormer, a simple yet effective transformer-based model for stereo egocentric human pose estimation. The main challenge in egocentric pose estimation is overcoming joint invisibility, which is caused by self-occlusion or a limited field of view (FOV) of head-mounted cameras. Our approach overcomes this challenge by incorporating a two-stage pose estimation paradigm: in the first stage, our model leverages the global information to estimate each joint's coarse location, then in the second stage, it employs a DETR style transformer to refine the coarse locations by exploiting fine-grained stereo visual features. In addition, we present a Deformable Stereo Attention operation to enable our transformer to effectively process multi-view features, which enables it to accurately localize each joint in the 3D world. We evaluate our method on the stereo UnrealEgo dataset and show it significantly outperforms previous approaches while being computationally efficient: it improves MPJPE by 27.4mm (45% improvement) with only 7.9% model parameters and 13.1% FLOPs compared to the state-of-the-art. Surprisingly, with proper training settings, we find that even our first-stage pose proposal network can achieve superior performance compared to previous arts. We also show that our method can be seamlessly extended to monocular settings, which achieves state-of-the-art performance on the SceneEgo dataset, improving MPJPE by 25.5mm (21% improvement) compared to the best existing method with only 60.7% model parameters and 36.4% FLOPs. Code is available at: https://github.com/ChenhongyiYang/egoposeformer .
comment: Accepted to ECCV 2024
♻ ☆ DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection
Automatic fingerprint recognition systems suffer from the threat of presentation attacks due to their wide range of deployment in areas including national borders and commercial applications. A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent. This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks in known-material and unknown-material protocols of the livness detection competition. The proposed presentation attack detection model, in this way, utilizes the capabilities of both deep CNN and handcrafted features techniques and exhibits better performance than their individual performances. We have validated our proposed method on benchmark databases from the Liveness Detection Competition in 2015, 2017, and 2019, yielding overall accuracy of 96.10\%, 96.49\%, and 94.99\% on them, respectively. The proposed method outperforms state-of-the-art methods in terms of classification accuracy.
comment: arXiv admin note:
♻ ☆ DiffPMAE: Diffusion Masked Autoencoders for Point Cloud Reconstruction
Point cloud streaming is increasingly getting popular, evolving into the norm for interactive service delivery and the future Metaverse. However, the substantial volume of data associated with point clouds presents numerous challenges, particularly in terms of high bandwidth consumption and large storage capacity. Despite various solutions proposed thus far, with a focus on point cloud compression, upsampling, and completion, these reconstruction-related methods continue to fall short in delivering high fidelity point cloud output. As a solution, in DiffPMAE, we propose an effective point cloud reconstruction architecture. Inspired by self-supervised learning concepts, we combine Masked Auto-Encoding and Diffusion Model mechanism to remotely reconstruct point cloud data. By the nature of this reconstruction process, DiffPMAE can be extended to many related downstream tasks including point cloud compression, upsampling and completion. Leveraging ShapeNet-55 and ModelNet datasets with over 60000 objects, we validate the performance of DiffPMAE exceeding many state-of-the-art methods in-terms of auto-encoding and downstream tasks considered.
♻ ☆ GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to effectively factorize the scene into material properties, light, and geometry. The key contributions lie in three-fold. We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision. We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport. To further enhance the illumination disentanglement, we represent a high-resolution environmental map with a learnable low-resolution map and a lightweight, fully convolutional network. Our method achieves state-of-the-art performance in both relighting and novel view synthesis tasks among the recently proposed inverse rendering methods while achieving real-time rendering. This substantiates our proposed method's efficacy and broad applicability, highlighting its potential as an influential tool in various real-time interactive graphics applications such as material editing and relighting. The code will be released at https://github.com/guduxiaolang/GIR.
comment: technical report
♻ ☆ Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis
Addressing the issue of submerged underwater trash is crucial for safeguarding aquatic ecosystems and preserving marine life. While identifying debris present on the surface of water bodies is straightforward, assessing the underwater submerged waste is a challenge due to the image distortions caused by factors such as light refraction, absorption, suspended particles, color shifts, and occlusion. This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection. The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles. The ultimate objective is to explore the underwater environment, to identify, and remove underwater debris. The absence of benchmarks (dataset or algorithm) in many researches emphasizes the need for a more robust algorithmic solution. Through this research, we aim to give performance comparative analysis of various underwater trash detection algorithms.
♻ ☆ Examining Common Paradigms in Multi-Task Learning
While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we investigate paradigms in MTL in the context of STL: First, the impact of the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL empirically in various experiments. To further investigate Adam's effectiveness, we theoretical derive a partial loss-scale invariance under mild assumptions. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.
comment: Accepted for publication in German Conference for Pattern Recognition (GCPR), 2024
PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition BMVC 2024
We present PlainMamba: a simple non-hierarchical state space model (SSM) designed for general visual recognition. The recent Mamba model has shown how SSMs can be highly competitive with other architectures on sequential data and initial attempts have been made to apply it to images. In this paper, we further adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images by (i) a continuous 2D scanning process that improves spatial continuity by ensuring adjacency of tokens in the scanning sequence, and (ii) direction-aware updating which enables the model to discern the spatial relations of tokens by encoding directional information. Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks, resulting in a model with constant width throughout all layers. The architecture is further simplified by removing the need for special tokens. We evaluate PlainMamba on a variety of visual recognition tasks, achieving performance gains over previous non-hierarchical models and is competitive with hierarchical alternatives. For tasks requiring high-resolution inputs, in particular, PlainMamba requires much less computing while maintaining high performance. Code and models are available at: https://github.com/ChenhongyiYang/PlainMamba .
comment: Accepted to BMVC 2024
♻ ☆ Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning
Many remote photoplethysmography (rPPG) estimation models have achieved promising performance in the training domain but often fail to accurately estimate physiological signals or heart rates (HR) in the target domains. Domain generalization (DG) or domain adaptation (DA) techniques are therefore adopted during the offline training stage to adapt the model to either unobserved or observed target domains by utilizing all available source domain data. However, in rPPG estimation problems, the adapted model usually encounters challenges in estimating target data with significant domain variation. In contrast, Test-Time Adaptation (TTA) enables the model to adaptively estimate rPPG signals in various unseen domains by online adapting to unlabeled target data without referring to any source data. In this paper, we first establish a new TTA-rPPG benchmark that encompasses various domain information and HR distributions to simulate the challenges encountered in real-world rPPG estimation. Next, we propose a novel synthetic signal-guided rPPG estimation framework to address the forgetting issue during the TTA stage and to enhance the adaptation capability of the pre-trained rPPG model. To this end, we develop a synthetic signal-guided feature learning method by synthesizing pseudo rPPG signals as pseudo ground truths to guide a conditional generator in generating latent rPPG features. In addition, we design an effective spectral-based entropy minimization technique to encourage the rPPG model to learn new target domain information. Both the generated rPPG features and synthesized rPPG signals prevent the rPPG model from overfitting to target data and forgetting previously acquired knowledge, while also broadly covering various heart rate (HR) distributions. Our extensive experiments on the TTA-rPPG benchmark show that the proposed method achieves superior performance.
♻ ☆ Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook
In the realm of modern autonomous driving, the perception system is indispensable for accurately assessing the state of the surrounding environment, thereby enabling informed prediction and planning. The key step to this system is related to 3D object detection that utilizes vehicle-mounted sensors such as LiDAR and cameras to identify the size, the category, and the location of nearby objects. Despite the surge in 3D object detection methods aimed at enhancing detection precision and efficiency, there is a gap in the literature that systematically examines their resilience against environmental variations, noise, and weather changes. This study emphasizes the importance of robustness, alongside accuracy and latency, in evaluating perception systems under practical scenarios. Our work presents an extensive survey of camera-only, LiDAR-only, and multi-modal 3D object detection algorithms, thoroughly evaluating their trade-off between accuracy, latency, and robustness, particularly on datasets like KITTI-C and nuScenes-C to ensure fair comparisons. Among these, multi-modal 3D detection approaches exhibit superior robustness, and a novel taxonomy is introduced to reorganize the literature for enhanced clarity. This survey aims to offer a more practical perspective on the current capabilities and the constraints of 3D object detection algorithms in real-world applications, thus steering future research towards robustness-centric advancements.
♻ ☆ The Llama 3 Herd of Models
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
♻ ☆ End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. we maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
comment: Accepted by IEEE TPAMI
♻ ☆ Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss
Long-tailed (LT) classification is an unavoidable and challenging problem in the real world. Most existing long-tailed classification methods focus only on solving the class-wise imbalance while ignoring the attribute-wise imbalance. The deviation of a classification model is caused by both class-wise and attribute-wise imbalance. Due to the fact that attributes are implicit in most datasets and the combination of attributes is complex, attribute-wise imbalance is more difficult to handle. For this purpose, we proposed a novel long-tailed classification framework, aiming to build a multi-granularity classification model by means of invariant feature learning. This method first unsupervisedly constructs Coarse-Grained forest (CLF) to better characterize the distribution of attributes within a class. Depending on the distribution of attributes, one can customize suitable sampling strategies to construct different imbalanced datasets. We then introduce multi-center loss (MCL) that aims to gradually eliminate confusing attributes during feature learning process. The proposed framework does not necessarily couple to a specific LT classification model structure and can be integrated with any existing LT method as an independent component. Extensive experiments show that our approach achieves state-of-the-art performance on both existing benchmarks ImageNet-GLT and MSCOCO-GLT and can improve the performance of existing LT methods. Our codes are available on GitHub: \url{https://github.com/jinyery/cognisance}
comment: This is another research work to apply leading tree structure along with deep learning architecture, aiming to deal with attribute-wise long-tail distribution within class
♻ ☆ Few Shot Class Incremental Learning using Vision-Language models
Recent advancements in deep learning have demonstrated remarkable performance comparable to human capabilities across various supervised computer vision tasks. However, the prevalent assumption of having an extensive pool of training data encompassing all classes prior to model training often diverges from real-world scenarios, where limited data availability for novel classes is the norm. The challenge emerges in seamlessly integrating new classes with few samples into the training data, demanding the model to adeptly accommodate these additions without compromising its performance on base classes. To address this exigency, the research community has introduced several solutions under the realm of few-shot class incremental learning (FSCIL). In this study, we introduce an innovative FSCIL framework that utilizes language regularizer and subspace regularizer. During base training, the language regularizer helps incorporate semantic information extracted from a Vision-Language model. The subspace regularizer helps in facilitating the model's acquisition of nuanced connections between image and text semantics inherent to base classes during incremental training. Our proposed framework not only empowers the model to embrace novel classes with limited data, but also ensures the preservation of performance on base classes. To substantiate the efficacy of our approach, we conduct comprehensive experiments on three distinct FSCIL benchmarks, where our framework attains state-of-the-art performance.
♻ ☆ Capturing Human Motion from Monocular Images in World Space with Weak-supervised Calibration
Previous methods for 3D human motion recovery from monocular images often fall short due to reliance on camera coordinates, leading to inaccuracies in real-world applications where complex shooting conditions are prevalent. The limited availability and diversity of focal length labels further exacerbate misalignment issues in reconstructed 3D human bodies. To address these challenges, we introduce W-HMR, a weak-supervised calibration method that predicts "reasonable" focal lengths based on body distortion information, eliminating the need for precise focal length labels. Our approach enhances 2D supervision precision and recovery accuracy. Additionally, we present the OrientCorrect module, which corrects body orientation for plausible reconstructions in world space, avoiding the error accumulation associated with inaccurate camera rotation predictions. Our contributions include a novel weak-supervised camera calibration technique, an effective orientation correction module, and a decoupling strategy that significantly improves the generalizability and accuracy of human motion recovery in both camera and world coordinates. The robustness of W-HMR is validated through extensive experiments on various datasets, showcasing its superiority over existing methods. Codes and demos have been released on the project page https://yw0208.github.io/w-hmr/.
comment: Project Page: https://yw0208.github.io/w-hmr/
♻ ☆ Detector Collapse: Physical-World Backdooring Object Detection to Catastrophic Overload or Blindness in Autonomous Driving IJCAI 2024
Object detection tasks, crucial in safety-critical systems like autonomous driving, focus on pinpointing object locations. These detectors are known to be susceptible to backdoor attacks. However, existing backdoor techniques have primarily been adapted from classification tasks, overlooking deeper vulnerabilities specific to object detection. This paper is dedicated to bridging this gap by introducing Detector Collapse} (DC), a brand-new backdoor attack paradigm tailored for object detection. DC is designed to instantly incapacitate detectors (i.e., severely impairing detector's performance and culminating in a denial-of-service). To this end, we develop two innovative attack schemes: Sponge for triggering widespread misidentifications and Blinding for rendering objects invisible. Remarkably, we introduce a novel poisoning strategy exploiting natural objects, enabling DC to act as a practical backdoor in real-world environments. Our experiments on different detectors across several benchmarks show a significant improvement ($\sim$10\%-60\% absolute and $\sim$2-7$\times$ relative) in attack efficacy over state-of-the-art attacks.
comment: Accepted to IJCAI 2024
♻ ☆ Self-Supervised Video Desmoking for Laparoscopic Surgery
Due to the difficulty of collecting real paired data, most existing desmoking methods train the models by synthesizing smoke, generalizing poorly to real surgical scenarios. Although a few works have explored single-image real-world desmoking in unpaired learning manners, they still encounter challenges in handling dense smoke. In this work, we address these issues together by introducing the self-supervised surgery video desmoking (SelfSVD). On the one hand, we observe that the frame captured before the activation of high-energy devices is generally clear (named pre-smoke frame, PS frame), thus it can serve as supervision for other smoky frames, making real-world self-supervised video desmoking practically feasible. On the other hand, in order to enhance the desmoking performance, we further feed the valuable information from PS frame into models, where a masking strategy and a regularization term are presented to avoid trivial solutions. In addition, we construct a real surgery video dataset for desmoking, which covers a variety of smoky scenes. Extensive experiments on the dataset show that our SelfSVD can remove smoke more effectively and efficiently while recovering more photo-realistic details than the state-of-the-art methods. The dataset, codes, and pre-trained models are available at \url{https://github.com/ZcsrenlongZ/SelfSVD}.
comment: 27 pages
♻ ☆ REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices ECCV 2024
This work tackles the challenging task of achieving real-time novel view synthesis for reflective surfaces across various scenes. Existing real-time rendering methods, especially those based on meshes, often have subpar performance in modeling surfaces with rich view-dependent appearances. Our key idea lies in leveraging meshes for rendering acceleration while incorporating a novel approach to parameterize view-dependent information. We decompose the color into diffuse and specular, and model the specular color in the reflected direction based on a neural environment map. Our experiments demonstrate that our method achieves comparable reconstruction quality for highly reflective surfaces compared to state-of-the-art offline methods, while also efficiently enabling real-time rendering on edge devices such as smartphones.
comment: ECCV 2024 accepted. Project Page: https://xdimlab.github.io/REFRAME/
♻ ☆ Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring
Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression within remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.
comment: Updated with review comments
♻ ☆ Dual-Camera Smooth Zoom on Mobile Phones
When zooming between dual cameras on a mobile, noticeable jumps in geometric content and image color occur in the preview, inevitably affecting the user's zoom experience. In this work, we introduce a new task, ie, dual-camera smooth zoom (DCSZ) to achieve a smooth zoom preview. The frame interpolation (FI) technique is a potential solution but struggles with ground-truth collection. To address the issue, we suggest a data factory solution where continuous virtual cameras are assembled to generate DCSZ data by rendering reconstructed 3D models of the scene. In particular, we propose a novel dual-camera smooth zoom Gaussian Splatting (ZoomGS), where a camera-specific encoding is introduced to construct a specific 3D model for each virtual camera. With the proposed data factory, we construct a synthetic dataset for DCSZ, and we utilize it to fine-tune FI models. In addition, we collect real-world dual-zoom images without ground-truth for evaluation. Extensive experiments are conducted with multiple FI methods. The results show that the fine-tuned FI models achieve a significant performance improvement over the original ones on DCSZ task. The datasets, codes, and pre-trained models will are available at https://github.com/ZcsrenlongZ/ZoomGS.
comment: 24 pages
♻ ☆ Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition
Skeleton-based action recognition has garnered significant attention due to the utilization of concise and resilient skeletons. Nevertheless, the absence of detailed body information in skeletons restricts performance, while other multimodal methods require substantial inference resources and are inefficient when using multimodal data during both training and inference stages. To address this and fully harness the complementary multimodal features, we propose a novel multi-modality co-learning (MMCL) framework by leveraging the multimodal large language models (LLMs) as auxiliary networks for efficient skeleton-based action recognition, which engages in multi-modality co-learning during the training stage and keeps efficiency by employing only concise skeletons in inference. Our MMCL framework primarily consists of two modules. First, the Feature Alignment Module (FAM) extracts rich RGB features from video frames and aligns them with global skeleton features via contrastive learning. Second, the Feature Refinement Module (FRM) uses RGB images with temporal information and text instruction to generate instructive features based on the powerful generalization of multimodal LLMs. These instructive text features will further refine the classification scores and the refined scores will enhance the model's robustness and generalization in a manner similar to soft labels. Extensive experiments on NTU RGB+D, NTU RGB+D 120 and Northwestern-UCLA benchmarks consistently verify the effectiveness of our MMCL, which outperforms the existing skeleton-based action recognition methods. Meanwhile, experiments on UTD-MHAD and SYSU-Action datasets demonstrate the commendable generalization of our MMCL in zero-shot and domain-adaptive action recognition. Our code is publicly available at: https://github.com/liujf69/MMCL-Action.
♻ ☆ Identifying Important Group of Pixels using Interactions CVPR 2024
To better understand the behavior of image classifiers, it is useful to visualize the contribution of individual pixels to the model prediction. In this study, we propose a method, MoXI ($\textbf{Mo}$del e$\textbf{X}$planation by $\textbf{I}$nteractions), that efficiently and accurately identifies a group of pixels with high prediction confidence. The proposed method employs game-theoretic concepts, Shapley values and interactions, taking into account the effects of individual pixels and the cooperative influence of pixels on model confidence. Theoretical analysis and experiments demonstrate that our method better identifies the pixels that are highly contributing to the model outputs than widely-used visualization by Grad-CAM, Attention rollout, and Shapley value. While prior studies have suffered from the exponential computational cost in the computation of Shapley value and interactions, we show that this can be reduced to quadratic cost for our task. The code is available at https://github.com/KosukeSumiyasu/MoXI.
comment: CVPR 2024 (update: minor typos, new references, Eqs. (12) and (13))
♻ ☆ MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network
Deep neural networks (DNNs) typically employ an end-to-end (E2E) training paradigm which presents several challenges, including high GPU memory consumption, inefficiency, and difficulties in model parallelization during training. Recent research has sought to address these issues, with one promising approach being local learning. This method involves partitioning the backbone network into gradient-isolated modules and manually designing auxiliary networks to train these local modules. Existing methods often neglect the interaction of information between local modules, leading to myopic issues and a performance gap compared to E2E training. To address these limitations, we propose the Multilaminar Leap Augmented Auxiliary Network (MLAAN). Specifically, MLAAN comprises Multilaminar Local Modules (MLM) and Leap Augmented Modules (LAM). MLM captures both local and global features through independent and cascaded auxiliary networks, alleviating performance issues caused by insufficient global features. However, overly simplistic auxiliary networks can impede MLM's ability to capture global information. To address this, we further design LAM, an enhanced auxiliary network that uses the Exponential Moving Average (EMA) method to facilitate information exchange between local modules, thereby mitigating the shortsightedness resulting from inadequate interaction. The synergy between MLM and LAM has demonstrated excellent performance. Our experiments on the CIFAR-10, STL-10, SVHN, and ImageNet datasets show that MLAAN can be seamlessly integrated into existing local learning frameworks, significantly enhancing their performance and even surpassing end-to-end (E2E) training methods, while also reducing GPU memory consumption.
♻ ☆ Label Dropout: Improved Deep Learning Echocardiography Segmentation Using Multiple Datasets With Domain Shift and Partial Labelling MICCAI 2024
Echocardiography (echo) is the first imaging modality used when assessing cardiac function. The measurement of functional biomarkers from echo relies upon the segmentation of cardiac structures and deep learning models have been proposed to automate the segmentation process. However, in order to translate these tools to widespread clinical use it is important that the segmentation models are robust to a wide variety of images (e.g. acquired from different scanners, by operators with different levels of expertise etc.). To achieve this level of robustness it is necessary that the models are trained with multiple diverse datasets. A significant challenge faced when training with multiple diverse datasets is the variation in label presence, i.e. the combined data are often partially-labelled. Adaptations of the cross entropy loss function have been proposed to deal with partially labelled data. In this paper we show that training naively with such a loss function and multiple diverse datasets can lead to a form of shortcut learning, where the model associates label presence with domain characteristics, leading to a drop in performance. To address this problem, we propose a novel label dropout scheme to break the link between domain characteristics and the presence or absence of labels. We demonstrate that label dropout improves echo segmentation Dice score by 62% and 25% on two cardiac structures when training using multiple diverse partially labelled datasets.
comment: 10 pages, 5 figures, ASMUS 2024, Held in Conjunction with MICCAI 2024
♻ ☆ DeepInteraction++: Multi-Modality Interaction for Autonomous Driving NeurIPS 2022
Existing top-performance autonomous driving systems typically rely on the multi-modal fusion strategy for reliable scene understanding. This design is however fundamentally restricted due to overlooking the modality-specific strengths and finally hampering the model performance. To address this limitation, in this work, we introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout, enabling their unique characteristics to be exploited during the whole perception pipeline. To demonstrate the effectiveness of the proposed strategy, we design DeepInteraction++, a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder. Specifically, the encoder is implemented as a dual-stream Transformer with specialized attention operation for information exchange and integration between separate modality-specific representations. Our multi-modal representational learning incorporates both object-centric, precise sampling-based feature alignment and global dense information spreading, essential for the more challenging planning task. The decoder is designed to iteratively refine the predictions by alternately aggregating information from separate representations in a unified modality-agnostic manner, realizing multi-modal predictive interaction. Extensive experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks. Our code is available at https://github.com/fudan-zvg/DeepInteraction.
comment: Journal extension of NeurIPS 2022. arXiv admin note: text overlap with arXiv:2208.11112
♻ ☆ Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds
Representation and generative learning, as reconstruction-based methods, have demonstrated their potential for mutual reinforcement across various domains. In the field of point cloud processing, although existing studies have adopted training strategies from generative models to enhance representational capabilities, these methods are limited by their inability to genuinely generate 3D shapes. To explore the benefits of deeply integrating 3D representation learning and generative learning, we propose an innovative framework called \textit{Point-MGE}. Specifically, this framework first utilizes a vector quantized variational autoencoder to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, we design a sliding masking ratios to smooth the transition from representation learning to generative learning. Moreover, our method demonstrates strong generalization capability in learning high-capacity models, achieving new state-of-the-art performance across multiple downstream tasks. In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset. Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
♻ ☆ Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM ECCV 2024
The existing crowd counting models require extensive training data, which is time-consuming to annotate. To tackle this issue, we propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM), an adaptation of the Segmentation Anything Model (SAM), to generate pseudo-labels for training crowd counting models. However, our initial investigation reveals that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas. To overcome this limitation, we propose an adaptive resolution SEEM to handle the scale variations, occlusions, and overlapping of people within crowd scenes. Alongside this, we introduce a robust localization method, based on Gaussian Mixture Models, for predicting the head positions in the predicted people masks. Given the mask and point pseudo-labels, we propose a robust loss function, which is designed to exclude uncertain regions based on SEEM's predictions, thereby enhancing the training process of the counting networks. Finally, we propose an iterative method for generating pseudo-labels. This method aims at improving the quality of the segmentation masks by identifying more tiny persons in high-density regions, which are often missed in the first pseudo-labeling stage. Overall, our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable results to some supervised methods. This makes it a highly effective and versatile tool for crowd counting, especially in situations where labeled data is not available.
comment: Accepted to ECCV 2024
♻ ☆ Implicit and Explicit Language Guidance for Diffusion-based Visual Perception
Text-to-image diffusion models have shown powerful ability on conditional image synthesis. With large-scale vision-language pre-training, diffusion models are able to generate high-quality images with rich texture and reasonable structure under different text prompts. However, it is an open problem to adapt the pre-trained diffusion model for visual perception. In this paper, we propose an implicit and explicit language guidance framework for diffusion-based perception, named IEDP. Our IEDP comprises an implicit language guidance branch and an explicit language guidance branch. The implicit branch employs frozen CLIP image encoder to directly generate implicit text embeddings that are fed to diffusion model, without using explicit text prompts. The explicit branch utilizes the ground-truth labels of corresponding images as text prompts to condition feature extraction of diffusion model. During training, we jointly train diffusion model by sharing the model weights of these two branches. As a result, implicit and explicit branches can jointly guide feature learning. During inference, we only employ implicit branch for final prediction, which does not require any ground-truth labels. Experiments are performed on two typical perception tasks, including semantic segmentation and depth estimation. Our IEDP achieves promising performance on both tasks. For semantic segmentation, our IEDP has the mIoU$^\text{ss}$ score of 55.9% on AD20K validation set, which outperforms the baseline method VPD by 2.2%. For depth estimation, our IEDP outperforms the baseline method VPD with a relative gain of 11.0%.
comment: Accepted by IEEE TMM
♻ ☆ TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images
While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.
comment: BvEM-Mouse can be visualized at: https://tinyurl.com/yc2s38x9
♻ ☆ RNNs, CNNs and Transformers in Human Action Recognition: A Survey and a Hybrid Model
Human Action Recognition (HAR) encompasses the task of monitoring human activities across various domains, including but not limited to medical, educational, entertainment, visual surveillance, video retrieval, and the identification of anomalous activities. Over the past decade, the field of HAR has witnessed substantial progress by leveraging Convolutional Neural Networks (CNNs) to effectively extract and comprehend intricate information, thereby enhancing the overall performance of HAR systems. Recently, the domain of computer vision has witnessed the emergence of Vision Transformers (ViTs) as a potent solution. The efficacy of transformer architecture has been validated beyond the confines of image analysis, extending their applicability to diverse video-related tasks. Notably, within this landscape, the research community has shown keen interest in HAR, acknowledging its manifold utility and widespread adoption across various domains. This article aims to present an encompassing survey that focuses on CNNs and the evolution of Recurrent Neural Networks (RNNs) to ViTs given their importance in the domain of HAR. By conducting a thorough examination of existing literature and exploring emerging trends, this study undertakes a critical analysis and synthesis of the accumulated knowledge in this field. Additionally, it investigates the ongoing efforts to develop hybrid approaches. Following this direction, this article presents a novel hybrid model that seeks to integrate the inherent strengths of CNNs and ViTs.
♻ ☆ AMAES: Augmented Masked Autoencoder Pretraining on Public Brain MRI Data for 3D-Native Segmentation MICCAI 2024
This study investigates the impact of self-supervised pretraining of 3D semantic segmentation models on a large-scale, domain-specific dataset. We introduce BRAINS-45K, a dataset of 44,756 brain MRI volumes from public sources, the largest public dataset available, and revisit a number of design choices for pretraining modern segmentation architectures by simplifying and optimizing state-of-the-art methods, and combining them with a novel augmentation strategy. The resulting AMAES framework is based on masked-image-modeling and intensity-based augmentation reversal and balances memory usage, runtime, and finetuning performance. Using the popular U-Net and the recent MedNeXt architecture as backbones, we evaluate the effect of pretraining on three challenging downstream tasks, covering single-sequence, low-resource settings, and out-of-domain generalization. The results highlight that pretraining on the proposed dataset with AMAES significantly improves segmentation performance in the majority of evaluated cases, and that it is beneficial to pretrain the model with augmentations, despite pretraing on a large-scale dataset. Code and model checkpoints for reproducing results, as well as the BRAINS-45K dataset are available at \url{https://github.com/asbjrnmunk/amaes}.
comment: Accepted at ADSMI @ MICCAI 2024
♻ ☆ Research on the Spatial Data Intelligent Large Model
This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
comment: V1 and V2 are in Chinese language, other versions are in English
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ Multimodal Emotion Recognition using Audio-Video Transformer Fusion with Cross Attention
Understanding emotions is a fundamental aspect of human communication. Integrating audio and video signals offers a more comprehensive understanding of emotional states compared to traditional methods that rely on a single data source, such as speech or facial expressions. Despite its potential, multimodal emotion recognition faces significant challenges, particularly in synchronization, feature extraction, and fusion of diverse data sources. To address these issues, this paper introduces a novel transformer-based model named Audio-Video Transformer Fusion with Cross Attention (AVT-CA). The AVT-CA model employs a transformer fusion approach to effectively capture and synchronize interlinked features from both audio and video inputs, thereby resolving synchronization problems. Additionally, the Cross Attention mechanism within AVT-CA selectively extracts and emphasizes critical features while discarding irrelevant ones from both modalities, addressing feature extraction and fusion challenges. Extensive experimental analysis conducted on the CMU-MOSEI, RAVDESS and CREMA-D datasets demonstrates the efficacy of the proposed model. The results underscore the importance of AVT-CA in developing precise and reliable multimodal emotion recognition systems for practical applications.
comment: 38 Pages, 9 Tables, 12 Figures
♻ ☆ Active Generation for Image Classification ECCV 2024
Recently, the growing capabilities of deep generative models have underscored their potential in enhancing image classification accuracy. However, existing methods often demand the generation of a disproportionately large number of images compared to the original dataset, while having only marginal improvements in accuracy. This computationally expensive and time-consuming process hampers the practicality of such approaches. In this paper, we propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model. With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation. It aims to create images akin to the challenging or misclassified samples encountered by the current model and incorporates these generated images into the training set to augment model performance. ActGen introduces an attentive image guidance technique, using real images as guides during the denoising process of a diffusion model. The model's attention on class prompt is leveraged to ensure the preservation of similar foreground object while diversifying the background. Furthermore, we introduce a gradient-based generation guidance method, which employs two losses to generate more challenging samples and prevent the generated images from being too similar to previously generated ones. Experimental results on the CIFAR and ImageNet datasets demonstrate that our method achieves better performance with a significantly reduced number of generated images. Code is available at https://github.com/hunto/ActGen.
comment: ECCV 2024
♻ ☆ Enhancing chest X-ray datasets with privacy-preserving large language models and multi-type annotations: a data-driven approach for improved classification
In chest X-ray (CXR) image analysis, rule-based systems are usually employed to extract labels from reports for dataset releases. However, there is still room for improvement in label quality. These labelers typically output only presence labels, sometimes with binary uncertainty indicators, which limits their usefulness. Supervised deep learning models have also been developed for report labeling but lack adaptability, similar to rule-based systems. In this work, we present MAPLEZ (Medical report Annotations with Privacy-preserving Large language model using Expeditious Zero shot answers), a novel approach leveraging a locally executable Large Language Model (LLM) to extract and enhance findings labels on CXR reports. MAPLEZ extracts not only binary labels indicating the presence or absence of a finding but also the location, severity, and radiologists' uncertainty about the finding. Over eight abnormalities from five test sets, we show that our method can extract these annotations with an increase of 3.6 percentage points (pp) in macro F1 score for categorical presence annotations and more than 20 pp increase in F1 score for the location annotations over competing labelers. Additionally, using the combination of improved annotations and multi-type annotations in classification supervision, we demonstrate substantial advancements in model quality, with an increase of 1.1 pp in AUROC over models trained with annotations from the best alternative approach. We share code and annotations.
comment: Code and data: https://github.com/rsummers11/CADLab/tree/master/MAPLEZ_LLM_report_labeler/
♻ ☆ A Non-negative VAE:the Generalized Gamma Belief Network
The gamma belief network (GBN), often regarded as a deep topic model, has demonstrated its potential for uncovering multi-layer interpretable latent representations in text data. Its notable capability to acquire interpretable latent factors is partially attributed to sparse and non-negative gamma-distributed latent variables. However, the existing GBN and its variations are constrained by the linear generative model, thereby limiting their expressiveness and applicability. To address this limitation, we introduce the generalized gamma belief network (Generalized GBN) in this paper, which extends the original linear generative model to a more expressive non-linear generative model. Since the parameters of the Generalized GBN no longer possess an analytic conditional posterior, we further propose an upward-downward Weibull inference network to approximate the posterior distribution of the latent variables. The parameters of both the generative model and the inference network are jointly trained within the variational inference framework. Finally, we conduct comprehensive experiments on both expressivity and disentangled representation learning tasks to evaluate the performance of the Generalized GBN against state-of-the-art Gaussian variational autoencoders serving as baselines.
♻ ☆ SAM-FNet: SAM-Guided Fusion Network for Laryngo-Pharyngeal Tumor Detection
Laryngo-pharyngeal cancer (LPC) is a highly fatal malignant disease affecting the head and neck region. Previous studies on endoscopic tumor detection, particularly those leveraging dual-branch network architectures, have shown significant advancements in tumor detection. These studies highlight the potential of dual-branch networks in improving diagnostic accuracy by effectively integrating global and local (lesion) feature extraction. However, they are still limited in their capabilities to accurately locate the lesion region and capture the discriminative feature information between the global and local branches. To address these issues, we propose a novel SAM-guided fusion network (SAM-FNet), a dual-branch network for laryngo-pharyngeal tumor detection. By leveraging the powerful object segmentation capabilities of the Segment Anything Model (SAM), we introduce the SAM into the SAM-FNet to accurately segment the lesion region. Furthermore, we propose a GAN-like feature optimization (GFO) module to capture the discriminative features between the global and local branches, enhancing the fusion feature complementarity. Additionally, we collect two LPC datasets from the First Affiliated Hospital (FAHSYSU) and the Sixth Affiliated Hospital (SAHSYSU) of Sun Yat-sen University. The FAHSYSU dataset is used as the internal dataset for training the model, while the SAHSYSU dataset is used as the external dataset for evaluating the model's performance. Extensive experiments on both datasets of FAHSYSU and SAHSYSU demonstrate that the SAM-FNet can achieve competitive results, outperforming the state-of-the-art counterparts. The source code of SAM-FNet is available at the URL of https://github.com/VVJia/SAM-FNet.
♻ ☆ SM4Depth: Seamless Monocular Metric Depth Estimation across Multiple Cameras and Scenes by One Model
In the last year, universal monocular metric depth estimation (universal MMDE) has gained considerable attention, serving as the foundation model for various multimedia tasks, such as video and image editing. Nonetheless, current approaches face challenges in maintaining consistent accuracy across diverse scenes without scene-specific parameters and pre-training, hindering the practicality of MMDE. Furthermore, these methods rely on extensive datasets comprising millions, if not tens of millions, of data for training, leading to significant time and hardware expenses. This paper presents SM$^4$Depth, a model that seamlessly works for both indoor and outdoor scenes, without needing extensive training data and GPU clusters. Firstly, to obtain consistent depth across diverse scenes, we propose a novel metric scale modeling, i.e., variation-based unnormalized depth bins. It reduces the ambiguity of the conventional metric bins and enables better adaptation to large depth gaps of scenes during training. Secondly, we propose a "divide and conquer" solution to reduce reliance on massive training data. Instead of estimating directly from the vast solution space, the metric bins are estimated from multiple solution sub-spaces to reduce complexity. Additionally, we introduce an uncut depth dataset, BUPT Depth, to evaluate the depth accuracy and consistency across various indoor and outdoor scenes. Trained on a consumer-grade GPU using just 150K RGB-D pairs, SM$^4$Depth achieves outstanding performance on the most never-before-seen datasets, especially maintaining consistent accuracy across indoors and outdoors. The code can be found https://github.com/mRobotit/SM4Depth.
comment: Accepted by ACM MultiMedia 24, Project Page: xuefeng-cvr.github.io/SM4Depth
♻ ☆ Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks
It is hard to collect enough flaw images for training deep learning network in industrial production. Therefore, existing industrial anomaly detection methods prefer to use CNN-based unsupervised detection and localization network to achieve this task. However, these methods always fail when there are varieties happened in new signals since traditional end-to-end networks suffer barriers of fitting nonlinear model in high-dimensional space. Moreover, they have a memory library by clustering the feature of normal images essentially, which cause it is not robust to texture change. To this end, we propose the Vision Transformer based (VIT-based) unsupervised anomaly detection network. It utilizes a hierarchical task learning and human experience to enhance its interpretability. Our network consists of pattern generation and comparison networks. Pattern generation network uses two VIT-based encoder modules to extract the feature of two consecutive image patches, then uses VIT-based decoder module to learn the human designed style of these features and predict the third image patch. After this, we use the Siamese-based network to compute the similarity of the generation image patch and original image patch. Finally, we refine the anomaly localization by the bi-directional inference strategy. Comparison experiments on public dataset MVTec dataset show our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods. In addition, we give a qualitative illustration on our own leather and cloth datasets. The accurate segment results strongly prove the accuracy of our method in anomaly detection.
♻ ☆ ControlNeXt: Powerful and Efficient Control for Image and Video Generation
Diffusion models have demonstrated remarkable and robust abilities in both image and video generation. To achieve greater control over generated results, researchers introduce additional architectures, such as ControlNet, Adapters and ReferenceNet, to integrate conditioning controls. However, current controllable generation methods often require substantial additional computational resources, especially for video generation, and face challenges in training or exhibit weak control. In this paper, we propose ControlNeXt: a powerful and efficient method for controllable image and video generation. We first design a more straightforward and efficient architecture, replacing heavy additional branches with minimal additional cost compared to the base model. Such a concise structure also allows our method to seamlessly integrate with other LoRA weights, enabling style alteration without the need for additional training. As for training, we reduce up to 90% of learnable parameters compared to the alternatives. Furthermore, we propose another method called Cross Normalization (CN) as a replacement for Zero-Convolution' to achieve fast and stable training convergence. We have conducted various experiments with different base models across images and videos, demonstrating the robustness of our method.
comment: controllable generation
♻ ☆ Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas. However, objects of the same category within HRS images generally show significant differences in scale and shape across diverse geographical environments, making it difficult to fit the data distribution. Additionally, a complex background environment causes similar appearances of objects of different categories, which precipitates a substantial number of objects into misclassification as background. These issues make existing learning algorithms sub-optimal. In this work, we solve the above-mentioned problems by proposing a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs, which consists of a funnel module, a multi-branch module with stacks of information aggregation (IA) blocks, and a feature refinement module, sequentially, and Class-agnostic Edge Aware (CEA) loss. Specifically, we propose a funnel module to downsample, which reduces the computational cost, and extract high-resolution semantic information from the initial input image. Secondly, we downsample the processed feature images into multi-resolution branches incrementally to capture image features at different scales and apply IA blocks, which capture key latent information by leveraging attention mechanisms, for effective feature aggregation, distinguishing image features of the same class with variant scales and shapes. Finally, our feature refinement module integrate the CEA loss function, which disambiguates inter-class objects with similar shapes and increases the data distribution distance for correct predictions. With effective pre-training strategies, we demonstrated the superiority of Hi-ResNet over state-of-the-art methods on three HRS segmentation benchmarks.
♻ ☆ VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing ECCV 2024
Recent research on texture synthesis for 3D shapes benefits a lot from dramatically developed 2D text-to-image diffusion models, including inpainting-based and optimization-based approaches. However, these methods ignore the modal gap between the 2D diffusion model and 3D objects, which primarily render 3D objects into 2D images and texture each image separately. In this paper, we revisit the texture synthesis and propose a Variance alignment based 3D-2D Collaborative Denoising framework, dubbed VCD-Texture, to address these issues. Formally, we first unify both 2D and 3D latent feature learning in diffusion self-attention modules with re-projected 3D attention receptive fields. Subsequently, the denoised multi-view 2D latent features are aggregated into 3D space and then rasterized back to formulate more consistent 2D predictions. However, the rasterization process suffers from an intractable variance bias, which is theoretically addressed by the proposed variance alignment, achieving high-fidelity texture synthesis. Moreover, we present an inpainting refinement to further improve the details with conflicting regions. Notably, there is not a publicly available benchmark to evaluate texture synthesis, which hinders its development. Thus we construct a new evaluation set built upon three open-source 3D datasets and propose to use four metrics to thoroughly validate the texturing performance. Comprehensive experiments demonstrate that VCD-Texture achieves superior performance against other counterparts.
comment: ECCV 2024
♻ ☆ Dual-View Pyramid Pooling in Deep Neural Networks for Improved Medical Image Classification and Confidence Calibration
Spatial pooling (SP) and cross-channel pooling (CCP) operators have been applied to aggregate spatial features and pixel-wise features from feature maps in deep neural networks (DNNs), respectively. Their main goal is to reduce computation and memory overhead without visibly weakening the performance of DNNs. However, SP often faces the problem of losing the subtle feature representations, while CCP has a high possibility of ignoring salient feature representations, which may lead to both miscalibration of confidence issues and suboptimal medical classification results. To address these problems, we propose a novel dual-view framework, the first to systematically investigate the relative roles of SP and CCP by analyzing the difference between spatial features and pixel-wise features. Based on this framework, we propose a new pooling method, termed dual-view pyramid pooling (DVPP), to aggregate multi-scale dual-view features. DVPP aims to boost both medical image classification and confidence calibration performance by fully leveraging the merits of SP and CCP operators from a dual-axis perspective. Additionally, we discuss how to fulfill DVPP with five parameter-free implementations. Extensive experiments on six 2D/3D medical image classification tasks show that our DVPP surpasses state-of-the-art pooling methods in terms of medical image classification results and confidence calibration across different DNNs.
comment: 30
♻ ☆ Lane Graph as Path: Continuity-preserving Path-wise Modeling for Online Lane Graph Construction ECCV 2024
Online lane graph construction is a promising but challenging task in autonomous driving. Previous methods usually model the lane graph at the pixel or piece level, and recover the lane graph by pixel-wise or piece-wise connection, which breaks down the continuity of the lane and results in suboptimal performance. Human drivers focus on and drive along the continuous and complete paths instead of considering lane pieces. Autonomous vehicles also require path-specific guidance from lane graph for trajectory planning. We argue that the path, which indicates the traffic flow, is the primitive of the lane graph. Motivated by this, we propose to model the lane graph in a novel path-wise manner, which well preserves the continuity of the lane and encodes traffic information for planning. We present a path-based online lane graph construction method, termed LaneGAP, which end-to-end learns the path and recovers the lane graph via a Path2Graph algorithm. We qualitatively and quantitatively demonstrate the superior accuracy and efficiency of LaneGAP over conventional pixel-based and piece-based methods on the challenging nuScenes and Argoverse2 datasets under controllable and fair conditions. Compared to the recent state-of-the-art piece-wise method TopoNet on the OpenLane-V2 dataset, LaneGAP still outperforms by 1.6 mIoU, further validating the effectiveness of path-wise modeling. Abundant visualizations in the supplementary material show LaneGAP can cope with diverse traffic conditions. Code is released at \url{https://github.com/hustvl/LaneGAP}.
comment: Accepted to ECCV 2024
♻ ☆ Uncertainty Quantification using Variational Inference for Biomedical Image Segmentation
Deep learning motivated by convolutional neural networks has been highly successful in a range of medical imaging problems like image classification, image segmentation, image synthesis etc. However for validation and interpretability, not only do we need the predictions made by the model but also how confident it is while making those predictions. This is important in safety critical applications for the people to accept it. In this work, we used an encoder decoder architecture based on variational inference techniques for segmenting brain tumour images. We evaluate our work on the publicly available BRATS dataset using Dice Similarity Coefficient (DSC) and Intersection Over Union (IOU) as the evaluation metrics. Our model is able to segment brain tumours while taking into account both aleatoric uncertainty and epistemic uncertainty in a principled bayesian manner.
♻ ☆ Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images
Segmentation of regions of interest (ROIs) for identifying abnormalities is a leading problem in medical imaging. Using machine learning for this problem generally requires manually annotated ground-truth segmentations, demanding extensive time and resources from radiologists. This work presents a weakly supervised approach that utilizes binary image-level labels, which are much simpler to acquire, to effectively segment anomalies in 2D magnetic resonance images without ground truth annotations. We train a generative adversarial network (GAN) that converts cancerous images to healthy variants, which are used along with localization seeds as priors to generate improved weakly supervised segmentations. The non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion, which allows for the most effective segmentations to be identified and then applied to downstream clinical classification tasks. On the Multimodal Brain Tumor Segmentation (BraTS) 2020 dataset, our proposed method generates and identifies segmentations that achieve test Dice coefficients of 83.91%. Using these segmentations for pathology classification results with a test AUC of 93.32% which is comparable to the test AUC of 95.80% achieved when using true segmentations.
♻ ☆ Touch-GS: Visual-Tactile Supervised 3D Gaussian Splatting
In this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at http://armlabstanford.github.io/touch-gs
comment: 8 pages, 7 figures
♻ ☆ Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble ICML 2024
Recent research underscores the pivotal role of the Out-of-Distribution (OOD) feature representation field scale in determining the efficacy of models in OOD detection. Consequently, the adoption of model ensembles has emerged as a prominent strategy to augment this feature representation field, capitalizing on anticipated model diversity. However, our introduction of novel qualitative and quantitative model ensemble evaluation methods, specifically Loss Basin/Barrier Visualization and the Self-Coupling Index, reveals a critical drawback in existing ensemble methods. We find that these methods incorporate weights that are affine-transformable, exhibiting limited variability and thus failing to achieve the desired diversity in feature representation. To address this limitation, we elevate the dimensions of traditional model ensembles, incorporating various factors such as different weight initializations, data holdout, etc., into distinct supervision tasks. This innovative approach, termed Multi-Comprehension (MC) Ensemble, leverages diverse training tasks to generate distinct comprehensions of the data and labels, thereby extending the feature representation field. Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection compared to both the naive Deep Ensemble method and a standalone model of comparable size. This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
comment: ICML 2024
♻ ☆ MxT: Mamba x Transformer for Image Inpainting
Image inpainting, or image completion, is a crucial task in computer vision that aims to restore missing or damaged regions of images with semantically coherent content. This technique requires a precise balance of local texture replication and global contextual understanding to ensure the restored image integrates seamlessly with its surroundings. Traditional methods using Convolutional Neural Networks (CNNs) are effective at capturing local patterns but often struggle with broader contextual relationships due to the limited receptive fields. Recent advancements have incorporated transformers, leveraging their ability to understand global interactions. However, these methods face computational inefficiencies and struggle to maintain fine-grained details. To overcome these challenges, we introduce MxT composed of the proposed Hybrid Module (HM), which combines Mamba with the transformer in a synergistic manner. Mamba is adept at efficiently processing long sequences with linear computational costs, making it an ideal complement to the transformer for handling long-scale data interactions. Our HM facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing the model to reconstruct images with high quality and contextual accuracy. We evaluate MxT on the widely-used CelebA-HQ and Places2-standard datasets, where it consistently outperformed existing state-of-the-art methods. The code will be released: {\url{https://github.com/ChrisChen1023/MxT}}.
♻ ☆ Hyperparameters in Continual Learning: A Reality Check
In this paper, we argue that the conventional evaluation protocol in continual learning (CL) research deviates from the fundamental principle in machine learning evaluation. The primary objective of CL algorithm is to balance the trade-off between plasticity (learning new knowledge from new tasks) and stability (retaining knowledge from previous tasks). To evaluate it, a CL scenario is constructed by using a benchmark dataset, where a neural network model is continually trained on the training data of each task, and the best hyperparameters for a CL algorithm are selected based on validation data.The final evaluation involves assessing the model trained with these hyperparameters on the test data from the same scenario. This evaluation protocol primarily aims to assess how well a CL algorithm performs on unseen data within that specific scenario. However, to accurately evaluate the CL algorithm, the focus should be on assessing generalizability of each algorithm's CL capacity to handle unseen scenarios. To achieve this evaluation goal, we propose a revised evaluation protocol. Our protocol consists of two phases: hyperparameter tuning and evaluation. Both phases share the same scenario configuration (e.g., the number of tasks) but the scenarios for each phase are generated from different datasets. During the hyperparameter tuning phase, the best hyperparameters are identified, which are then used to train the model using the CL algorithm in the evaluation phase. Finally, the result from this phase is reported as the final evaluation. We apply the proposed evaluation protocol to class-incremental learning algorithms, both with and without a pretrained model. Through extensive experiments involving approximately 5000 trials, we demonstrate that most state-of-the-art algorithms fail to exhibit the reported performance, revealing a lack of generalizability.
comment: Preprint
♻ ☆ FedRobo: Federated Learning Driven Autonomous Inter Robots Communication For Optimal Chemical Sprays
Federated Learning enables robots to learn from each other's experiences without relying on centralized data collection. Each robot independently maintains a model of crop conditions and chemical spray effectiveness, which is periodically shared with other robots in the fleet. A communication protocol is designed to optimize chemical spray applications by facilitating the exchange of information about crop conditions, weather, and other critical factors. The federated learning algorithm leverages this shared data to continuously refine the chemical spray strategy, reducing waste and improving crop yields. This approach has the potential to revolutionize the agriculture industry by offering a scalable and efficient solution for crop protection. However, significant challenges remain, including the development of a secure and robust communication protocol, the design of a federated learning algorithm that effectively integrates data from multiple sources, and ensuring the safety and reliability of autonomous robots. The proposed cluster-based federated learning approach also effectively reduces the computational load on the global server and minimizes communication overhead among clients.
comment: This research article is going to be submitted to a best-fit conference. We are looking for a conference
♻ ☆ Personalizing Federated Instrument Segmentation with Visual Trait Priors in Robotic Surgery
Personalized federated learning (PFL) for surgical instrument segmentation (SIS) is a promising approach. It enables multiple clinical sites to collaboratively train a series of models in privacy, with each model tailored to the individual distribution of each site. Existing PFL methods rarely consider the personalization of multi-headed self-attention, and do not account for appearance diversity and instrument shape similarity, both inherent in surgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait priors for SIS, incorporating global-personalized disentanglement (GPD), appearance-regulation personalized enhancement (APE), and shape-similarity global enhancement (SGE), to boost SIS performance in each site. GPD represents the first attempt at head-wise assignment for multi-headed self-attention personalization. To preserve the unique appearance representation of each site and gradually leverage the inter-site difference, APE introduces appearance regulation and provides customized layer-wise aggregation solutions via hypernetworks for each site's personalized parameters. The mutual shape information of instruments is maintained and shared via SGE, which enhances the cross-style shape consistency on the image level and computes the shape-similarity contribution of each site on the prediction level for updating the global parameters. PFedSIS outperforms state-of-the-art methods with +1.51% Dice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding code and models will be released at https://github.com/wzjialang/PFedSIS.
comment: 9 pages, 3 figures, under review
♻ ☆ SATO: Stable Text-to-Motion Framework
Is the Text to Motion model robust? Recent advancements in Text to Motion models primarily stem from more accurate predictions of specific actions. However, the text modality typically relies solely on pre-trained Contrastive Language-Image Pretraining (CLIP) models. Our research has uncovered a significant issue with the text-to-motion model: its predictions often exhibit inconsistent outputs, resulting in vastly different or even incorrect poses when presented with semantically similar or identical text inputs. In this paper, we undertake an analysis to elucidate the underlying causes of this instability, establishing a clear link between the unpredictability of model outputs and the erratic attention patterns of the text encoder module. Consequently, we introduce a formal framework aimed at addressing this issue, which we term the Stable Text-to-Motion Framework (SATO). SATO consists of three modules, each dedicated to stable attention, stable prediction, and maintaining a balance between accuracy and robustness trade-off. We present a methodology for constructing an SATO that satisfies the stability of attention and prediction. To verify the stability of the model, we introduced a new textual synonym perturbation dataset based on HumanML3D and KIT-ML. Results show that SATO is significantly more stable against synonyms and other slight perturbations while keeping its high accuracy performance.
♻ ☆ Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk postoperative site. Target volume annotations adhere to established radiotherapy planning protocols, ensuring consistency across cases and institutions. For preoperative meningiomas, the target volume encompasses the entire GTV and associated nodular dural tail, while for postoperative cases, it includes at-risk resection cavity margins as determined by the treating institution. Case annotations were reviewed and approved by expert neuroradiologists and radiation oncologists. Participating teams will develop, containerize, and evaluate automated segmentation models using this comprehensive dataset. Model performance will be assessed using an adapted lesion-wise Dice Similarity Coefficient and the 95% Hausdorff distance. The top-performing teams will be recognized at the Medical Image Computing and Computer Assisted Intervention Conference in October 2024. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes.
comment: 14 pages, 9 figures, 1 table
♻ ☆ UniFed: A Universal Federation of a Mixture of Highly Heterogeneous Medical Image Classification Tasks MICCAI 2024
A fundamental challenge in federated learning lies in mixing heterogeneous datasets and classification tasks while minimizing the high communication cost caused by clients as well as the exchange of weight updates with the server over a fixed number of rounds. This results in divergent model convergence rates and performance, which may hinder their deployment in precision medicine. In real-world scenarios, client data is collected from different hospitals with extremely varying components (e.g., imaging modality, organ type, etc). Previous studies often overlooked the convoluted heterogeneity during the training stage where the target learning tasks vary across clients as well as the dataset type and their distributions. To address such limitations, we unprecedentedly introduce UniFed, a universal federated learning paradigm that aims to classify any disease from any imaging modality. UniFed also handles the issue of varying convergence times in the client-specific optimization based on the complexity of their learning tasks. Specifically, by dynamically adjusting both local and global models, UniFed considers the varying task complexities of clients and the server, enhancing its adaptability to real-world scenarios, thereby mitigating issues related to overtraining and excessive communication. Furthermore, our framework incorporates a sequential model transfer mechanism that takes into account the diverse tasks among hospitals and a dynamic task-complexity based ordering. We demonstrate the superiority of our framework in terms of accuracy, communication cost, and convergence time over relevant benchmarks in diagnosing retina, histopathology, and liver tumour diseases under federated learning. Our UniFed code is available at https://github.com/basiralab/UniFed.
comment: MLMI@MICCAI 2024
♻ ☆ GLObal Building heights for Urban Studies (UT-GLOBUS) for city- and street- scale urban simulations: Development and first applications
We introduce University of Texas - Global Building heights for Urban Studies (UT-GLOBUS), a dataset providing building heights and urban canopy parameters (UCPs) for more than 1200 cities or locales worldwide. UT-GLOBUS combines open-source spaceborne altimetry (ICESat-2 and GEDI) and coarse-resolution urban canopy elevation data with a machine-learning model to estimate building-level information. Validation using LiDAR data from six US cities showed UT-GLOBUS-derived building heights had a root mean squared error (RMSE) of 9.1 meters. Validation of mean building heights within 1-km^2 grid cells, including data from Hamburg and Sydney, resulted in an RMSE of 7.8 meters. Testing the UCPs in the urban Weather Research and Forecasting (WRF-Urban) model resulted in a significant improvement (55% in RMSE) in intra-urban air temperature representation compared to the existing table-based local climate zone approach in Houston, TX. Additionally, we demonstrated the dataset's utility for simulating heat mitigation strategies and building energy consumption using WRF-Urban, with test cases in Chicago, IL, and Austin, TX. Street-scale mean radiant temperature simulations using the Solar and LongWave Environmental Irradiance Geometry (SOLWEIG) model, incorporating UT-GLOBUS and LiDAR-derived building heights, confirmed the dataset's effectiveness in modeling human thermal comfort in Baltimore, MD (daytime RMSE = 2.85 C). Thus, UT-GLOBUS can be used for modeling urban hazards with significant socioeconomic and biometeorological risks, enabling finer scale urban climate simulations and overcoming previous limitations due to the lack of building information.
comment: 20 pages, 10 figures
Artificial Intelligence 134
☆ Can Large Language Models Understand Symbolic Graphics Programs?
Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
comment: Technical Report v1 (44 pages, 23 figures, project page: https://sgp-bench.github.io/)
☆ HyperTaxel: Hyper-Resolution for Taxel-Based Tactile Signals Through Contrastive Learning IROS 2024
To achieve dexterity comparable to that of humans, robots must intelligently process tactile sensor data. Taxel-based tactile signals often have low spatial-resolution, with non-standardized representations. In this paper, we propose a novel framework, HyperTaxel, for learning a geometrically-informed representation of taxel-based tactile signals to address challenges associated with their spatial resolution. We use this representation and a contrastive learning objective to encode and map sparse low-resolution taxel signals to high-resolution contact surfaces. To address the uncertainty inherent in these signals, we leverage joint probability distributions across multiple simultaneous contacts to improve taxel hyper-resolution. We evaluate our representation by comparing it with two baselines and present results that suggest our representation outperforms the baselines. Furthermore, we present qualitative results that demonstrate the learned representation captures the geometric features of the contact surface, such as flatness, curvature, and edges, and generalizes across different objects and sensor configurations. Moreover, we present results that suggest our representation improves the performance of various downstream tasks, such as surface classification, 6D in-hand pose estimation, and sim-to-real transfer.
comment: Accepted by IROS 2024
☆ Benchmarking the Capabilities of Large Language Models in Transportation System Engineering: Accuracy, Consistency, and Reasoning Behaviors
In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in solving some selected undergraduate-level transportation engineering problems. We introduce TransportBench, a benchmark dataset that includes a sample of transportation engineering problems on a wide range of subjects in the context of planning, design, management, and control of transportation systems. This dataset is used by human experts to evaluate the capabilities of various commercial and open-sourced LLMs, especially their accuracy, consistency, and reasoning behaviors, in solving transportation engineering problems. Our comprehensive analysis uncovers the unique strengths and limitations of each LLM, e.g. our analysis shows the impressive accuracy and some unexpected inconsistent behaviors of Claude 3.5 Sonnet in solving TransportBench problems. Our study marks a thrilling first step toward harnessing artificial general intelligence for complex transportation challenges.
☆ SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training ICCV 23
In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.
comment: This paper is an extension of our ICCV 23 paper (arXiv:2303.05118)
☆ Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model IROS 2024
Enabling humanoid robots to perform autonomously loco-manipulation in unstructured environments is crucial and highly challenging for achieving embodied intelligence. This involves robots being able to plan their actions and behaviors in long-horizon tasks while using multi-modality to perceive deviations between task execution and high-level planning. Recently, large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information through robot control tasks, as well as the usability of analytical judgment and decision-making for multi-modal inputs. To leverage the power of LLMs towards humanoid loco-manipulation, we propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions, while observing and correcting failures that may occur during task execution. To systematically evaluate this framework in grounding LLMs, we created the robot 'action' and 'sensing' behavior library for task planning, and conducted mobile manipulation tasks and experiments in both simulated and real environments using the CENTAURO robot, and verified the effectiveness and application of this approach in robotic tasks with autonomous behavioral planning.
comment: Paper accepted by IROS 2024
☆ InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models
Estimation of cardiovascular model parameters from electronic health records (EHR) poses a significant challenge primarily due to lack of identifiability. Structural non-identifiability arises when a manifold in the space of parameters is mapped to a common output, while practical non-identifiability can result due to limited data, model misspecification, or noise corruption. To address the resulting ill-posed inverse problem, optimization-based or Bayesian inference approaches typically use regularization, thereby limiting the possibility of discovering multiple solutions. In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems. We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
☆ Snuffy: Efficient Whole Slide Image Classifier ECCV 2024
Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requiring long training periods and considerable computational resources. At the same time, no pre-training affects performance due to domain shifts from natural images to WSIs. We introduce \textbf{\textit{Snuffy}} architecture, a novel MIL-pooling method based on sparse transformers that mitigates performance loss with limited pre-training and enables continual few-shot pre-training as a competitive option. Our sparsity pattern is tailored for pathology and is theoretically proven to be a universal approximator with the tightest probabilistic sharp bound on the number of layers for sparse transformers, to date. We demonstrate Snuffy's effectiveness on CAMELYON16 and TCGA Lung cancer datasets, achieving superior WSI and patch-level accuracies. The code is available on \url{https://github.com/jafarinia/snuffy}.
comment: Accepted for ECCV 2024
☆ Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (\textit{e.g.}, classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (\textit{e.g.}, classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at \href{https://github.com/masa-ue/SVDD}{https://github.com/masa-ue/SVDD}.
comment: The code is available at https://github.com/masa-ue/SVDD
☆ Conformalized Answer Set Prediction for Knowledge Graph Embedding
Knowledge graph embeddings (KGE) apply machine learning methods on knowledge graphs (KGs) to provide non-classical reasoning capabilities based on similarities and analogies. The learned KG embeddings are typically used to answer queries by ranking all potential answers, but rankings often lack a meaningful probabilistic interpretation - lower-ranked answers do not necessarily have a lower probability of being true. This limitation makes it difficult to distinguish plausible from implausible answers, posing challenges for the application of KGE methods in high-stakes domains like medicine. We address this issue by applying the theory of conformal prediction that allows generating answer sets, which contain the correct answer with probabilistic guarantees. We explain how conformal prediction can be used to generate such answer sets for link prediction tasks. Our empirical evaluation on four benchmark datasets using six representative KGE methods validates that the generated answer sets satisfy the probabilistic guarantees given by the theory of conformal prediction. We also demonstrate that the generated answer sets often have a sensible size and that the size adapts well with respect to the difficulty of the query.
comment: Under Review
☆ A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts
Safety and efficiency are crucial for autonomous driving in roundabouts, especially in the context of mixed traffic where autonomous vehicles (AVs) and human-driven vehicles coexist. This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors across varying levels of traffic flows in roundabouts. The proposed algorithm employs a deep Q-learning network to effectively learn safe and efficient driving strategies in complex multi-vehicle roundabouts. Additionally, a KAN (Kolmogorov-Arnold network) enhances the AVs' ability to learn their surroundings robustly and precisely. An action inspector is integrated to replace dangerous actions to avoid collisions when the AV interacts with the environment, and a route planner is proposed to enhance the driving efficiency and safety of the AVs. Moreover, a model predictive control is adopted to ensure stability and precision of the driving actions. The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process, as evidenced by the smooth convergence of the reward function and the low variance in the training curves across various traffic flows. Compared to state-of-the-art benchmarks, the proposed algorithm achieves a lower number of collisions and reduced travel time to destination.
comment: 15 pages, 12 figures, submitted to an IEEE journal
☆ Explaining an Agent's Future Beliefs through Temporally Decomposing Future Reward Estimators
Future reward estimation is a core component of reinforcement learning agents; i.e., Q-value and state-value functions, predicting an agent's sum of future rewards. Their scalar output, however, obfuscates when or what individual future rewards an agent may expect to receive. We address this by modifying an agent's future reward estimator to predict their next N expected rewards, referred to as Temporal Reward Decomposition (TRD). This unlocks novel explanations of agent behaviour. Through TRD we can: estimate when an agent may expect to receive a reward, the value of the reward and the agent's confidence in receiving it; measure an input feature's temporal importance to the agent's action decisions; and predict the influence of different actions on future rewards. Furthermore, we show that DQN agents trained on Atari environments can be efficiently retrained to incorporate TRD with minimal impact on performance.
comment: 7 pages + 3 pages of supplementary material. Published at ECAI 2024
☆ Evolving A* to Efficiently Solve the k Shortest-Path Problem (Extended Version)
The problem of finding the shortest path in a graph G(V, E) has been widely studied. However, in many applications it is necessary to compute an arbitrary number of them, k. Even though the problem has raised a lot of interest from different research communities and many applications of it are known, it has not been addressed to the same extent as the single shortest path problem. The best algorithm known for efficiently solving this task has a time complexity of O (|E| + |V|log{|V|}+k|V|)$ when computing paths in explicit form, and is based on best-first search. This paper introduces a new search algorithm with the same time complexity, which results from a natural evolution of A* thus, it preserves all its interesting properties, making it widely applicable to many different domains. Experiments in various testbeds show a significant improvement in performance over the state of the art, often by one or two orders of magnitude.
comment: 249 plots in 48 figures, and 81 tables. This is an extended version of the paper Linares L\'opez, Carlos and Herman, Ian. 2024. Evolving A* to Efficiently Solve the k Shortest-Path Problem. Proceedings of the European Conference on Artificial Intelligence (ECAI). To appear
☆ Predictive Multiplicity of Knowledge Graph Embeddings in Link Prediction
Knowledge graph embedding (KGE) models are often used to predict missing links for knowledge graphs (KGs). However, multiple KG embeddings can perform almost equally well for link prediction yet suggest conflicting predictions for certain queries, termed \textit{predictive multiplicity} in literature. This behavior poses substantial risks for KGE-based applications in high-stake domains but has been overlooked in KGE research. In this paper, we define predictive multiplicity in link prediction. We introduce evaluation metrics and measure predictive multiplicity for representative KGE methods on commonly used benchmark datasets. Our empirical study reveals significant predictive multiplicity in link prediction, with $8\%$ to $39\%$ testing queries exhibiting conflicting predictions. To address this issue, we propose leveraging voting methods from social choice theory, significantly mitigating conflicts by $66\%$ to $78\%$ according to our experiments.
comment: Under Review
☆ The Dawn of KAN in Image-to-Image (I2I) Translation: Integrating Kolmogorov-Arnold Networks with GANs for Unpaired I2I Translation
Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of research, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two-layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learning can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain.
comment: 10 pages, 6 Figures, 1 Table
☆ Moving Healthcare AI-Support Systems for Visually Detectable Diseases onto Constrained Devices
Image classification usually requires connectivity and access to the cloud which is often limited in many parts of the world, including hard to reach rural areas. TinyML aims to solve this problem by hosting AI assistants on constrained devices, eliminating connectivity issues by processing data within the device itself, without internet or cloud access. This pilot study explores the use of tinyML to provide healthcare support with low spec devices in low connectivity environments, focusing on diagnosis of skin diseases and the ethical use of AI assistants in a healthcare setting. To investigate this, 10,000 images of skin lesions were used to train a model for classifying visually detectable diseases (VDDs). The model weights were then offloaded to a Raspberry Pi with a webcam attached, to be used for the classification of skin lesions without internet access. It was found that the developed prototype achieved a test accuracy of 78% and a test loss of 1.08.
comment: 6 pages, 5 figures
☆ Federated Fairness Analytics: Quantifying Fairness in Federated Learning
Federated Learning (FL) is a privacy-enhancing technology for distributed ML. By training models locally and aggregating updates - a federation learns together, while bypassing centralised data collection. FL is increasingly popular in healthcare, finance and personal computing. However, it inherits fairness challenges from classical ML and introduces new ones, resulting from differences in data quality, client participation, communication constraints, aggregation methods and underlying hardware. Fairness remains an unresolved issue in FL and the community has identified an absence of succinct definitions and metrics to quantify fairness; to address this, we propose Federated Fairness Analytics - a methodology for measuring fairness. Our definition of fairness comprises four notions with novel, corresponding metrics. They are symptomatically defined and leverage techniques originating from XAI, cooperative game-theory and networking engineering. We tested a range of experimental settings, varying the FL approach, ML task and data settings. The results show that statistical heterogeneity and client participation affect fairness and fairness conscious approaches such as Ditto and q-FedAvg marginally improve fairness-performance trade-offs. Using our techniques, FL practitioners can uncover previously unobtainable insights into their system's fairness, at differing levels of granularity in order to address fairness challenges in FL. We have open-sourced our work at: https://github.com/oscardilley/federated-fairness.
☆ LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
Sequential recommendation systems fundamentally rely on users' historical interaction sequences, which are often contaminated by noisy interactions. Identifying these noisy interactions accurately without additional information is particularly difficult due to the lack of explicit supervisory signals to denote noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, present a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation introduces notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the task and th inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing the corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods across three datasets and three recommendation backbones.
☆ Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information. This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning. Using Large Language Models (LLMs), we propose a two-step approach to translate multi-sentence instructions into a structured language, Hierarchical Linear Temporal Logic (LTL), which serves as a formal representation for planning. Initially, LLMs transform the instructions into a hierarchical representation defined as Hierarchical Task Tree, capturing the logical and temporal relations among tasks. Following this, a domain-specific fine-tuning of LLM translates sub-tasks of each task into flat LTL formulas, aggregating them to form hierarchical LTL specifications. These specifications are then leveraged for planning using off-the-shelf planners. Our framework not only bridges the gap between instructions and algorithmic planning but also showcases the potential of LLMs in harnessing hierarchical reasoning to automate multi-robot task planning. Through evaluations in both simulation and real-world experiments involving human participants, we demonstrate that our method can handle more complex instructions compared to existing methods. The results indicate that our approach achieves higher success rates and lower costs in multi-robot task allocation and plan generation. Demos videos are available at https://youtu.be/7WOrDKxIMIs .
☆ Your Turn: Real-World Turning Angle Estimation for Parkinson's Disease Severity Assessment
People with Parkinson's Disease (PD) often experience progressively worsening gait, including changes in how they turn around, as the disease progresses. Existing clinical rating tools are not capable of capturing hour-by-hour variations of PD symptoms, as they are confined to brief assessments within clinic settings. Measuring real-world gait turning angles continuously and passively is a component step towards using gait characteristics as sensitive indicators of disease progression in PD. This paper presents a deep learning-based approach to automatically quantify turning angles by extracting 3D skeletons from videos and calculating the rotation of hip and knee joints. We utilise state-of-the-art human pose estimation models, Fastpose and Strided Transformer, on a total of 1386 turning video clips from 24 subjects (12 people with PD and 12 healthy control volunteers), trimmed from a PD dataset of unscripted free-living videos in a home-like setting (Turn-REMAP). We also curate a turning video dataset, Turn-H3.6M, from the public Human3.6M human pose benchmark with 3D ground truth, to further validate our method. Previous gait research has primarily taken place in clinics or laboratories evaluating scripted gait outcomes, but this work focuses on real-world settings where complexities exist, such as baggy clothing and poor lighting. Due to difficulties in obtaining accurate ground truth data in a free-living setting, we quantise the angle into the nearest bin $45^\circ$ based on the manual labelling of expert clinicians. Our method achieves a turning calculation accuracy of 41.6%, a Mean Absolute Error (MAE) of 34.7{\deg}, and a weighted precision WPrec of 68.3% for Turn-REMAP. This is the first work to explore the use of single monocular camera data to quantify turns by PD patients in a home setting.
☆ Towards flexible perception with visual memory
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is nearly impossible, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in ``stone'' weights.
☆ General-purpose Clothes Manipulation with Semantic Keypoints
We have seen much recent progress in task-specific clothes manipulation, but generalizable clothes manipulation is still a challenge. Clothes manipulation requires sequential actions, making it challenging to generalize to unseen tasks. Besides, a general clothes state representation method is crucial. In this paper, we adopt language instructions to specify and decompose clothes manipulation tasks, and propose a large language model based hierarchical learning method to enhance generalization. For state representation, we use semantic keypoints to capture the geometry of clothes and outline their manipulation methods. Simulation experiments show that the proposed method outperforms the baseline method in terms of success rate and generalization for clothes manipulation tasks.
☆ DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search
We introduce DeepSeek-Prover-V1.5, an open-source language model designed for theorem proving in Lean 4, which enhances DeepSeek-Prover-V1 by optimizing both training and inference processes. Pre-trained on DeepSeekMath-Base with specialization in formal mathematical languages, the model undergoes supervised fine-tuning using an enhanced formal theorem proving dataset derived from DeepSeek-Prover-V1. Further refinement is achieved through reinforcement learning from proof assistant feedback (RLPAF). Beyond the single-pass whole-proof generation approach of DeepSeek-Prover-V1, we propose RMaxTS, a variant of Monte-Carlo tree search that employs an intrinsic-reward-driven exploration strategy to generate diverse proof paths. DeepSeek-Prover-V1.5 demonstrates significant improvements over DeepSeek-Prover-V1, achieving new state-of-the-art results on the test set of the high school level miniF2F benchmark ($63.5\%$) and the undergraduate level ProofNet benchmark ($25.3\%$).
☆ Winning Snake: Design Choices in Multi-Shot ASP
Answer set programming is a well-understood and established problem-solving and knowledge representation paradigm. It has become more prominent amongst a wider audience due to its multiple applications in science and industry. The constant development of advanced programming and modeling techniques extends the toolset for developers and users regularly. This paper demonstrates different techniques to reuse logic program parts (multi-shot) by solving the arcade game snake. This game is particularly interesting because a victory can be assured by solving the underlying NP-hard problem of Hamiltonian Cycles. We will demonstrate five hands-on implementations in clingo and compare their performance in an empirical evaluation. In addition, our implementation utilizes clingraph to generate a simple yet informative image representation of the game's progress.
comment: 17 pages, 3 figures, to appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2024
☆ Model-based Workflow for the Automated Generation of PDDL Descriptions
Manually creating Planning Domain Definition Language (PDDL) descriptions is difficult, error-prone, and requires extensive expert knowledge. However, this knowledge is already embedded in engineering models and can be reused. Therefore, this contribution presents a comprehensive workflow for the automated generation of PDDL descriptions from integrated system and product models. The proposed workflow leverages Model-Based Systems Engineering (MBSE) to organize and manage system and product information, translating it automatically into PDDL syntax for planning purposes. By connecting system and product models with planning aspects, it ensures that changes in these models are quickly reflected in updated PDDL descriptions, facilitating efficient and adaptable planning processes. The workflow is validated within a use case from aircraft assembly.
☆ EXPLAIN, AGREE, LEARN: Scaling Learning for Neural Probabilistic Logic
Neural probabilistic logic systems follow the neuro-symbolic (NeSy) paradigm by combining the perceptive and learning capabilities of neural networks with the robustness of probabilistic logic. Learning corresponds to likelihood optimization of the neural networks. However, to obtain the likelihood exactly, expensive probabilistic logic inference is required. To scale learning to more complex systems, we therefore propose to instead optimize a sampling based objective. We prove that the objective has a bounded error with respect to the likelihood, which vanishes when increasing the sample count. Furthermore, the error vanishes faster by exploiting a new concept of sample diversity. We then develop the EXPLAIN, AGREE, LEARN (EXAL) method that uses this objective. EXPLAIN samples explanations for the data. AGREE reweighs each explanation in concordance with the neural component. LEARN uses the reweighed explanations as a signal for learning. In contrast to previous NeSy methods, EXAL can scale to larger problem sizes while retaining theoretical guarantees on the error. Experimentally, our theoretical claims are verified and EXAL outperforms recent NeSy methods when scaling up the MNIST addition and Warcraft pathfinding problems.
☆ Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
comment: 20 pages
☆ OC3D: Weakly Supervised Outdoor 3D Object Detection with Only Coarse Click Annotation
LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents OC3D, an innovative weakly supervised method requiring only coarse clicks on the bird' s eye view of the 3D point cloud. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this problem, our proposed OC3D adopts a two-stage strategy. In the first stage, we initially design a novel dynamic and static classification strategy and then propose the Click2Box and Click2Mask modules to generate box-level and mask-level pseudo-labels for static and dynamic instances, respectively. In the second stage, we design a Mask2Box module, leveraging the learning capabilities of neural networks to update mask-level pseudo-labels, which contain less information, to box level pseudo-labels. Experimental results on the widely used KITTI and nuScenes datasets demonstrate that our OC3D with only coarse clicks achieves state-of-the-art performance compared to weakly-supervised 3D detection methods. Combining OC3D with a missing click mining strategy, we propose a OC3D++ pipeline, which requires only 0.2% annotation cost in the KITTI dataset to achieve performance comparable to fully supervised methods.
☆ AgentCourt: Simulating Court with Adversarial Evolvable Lawyer Agents
In this paper, we present a simulation system called AgentCourt that simulates the entire courtroom process. The judge, plaintiff's lawyer, defense lawyer, and other participants are autonomous agents driven by large language models (LLMs). Our core goal is to enable lawyer agents to learn how to argue a case, as well as improving their overall legal skills, through courtroom process simulation. To achieve this goal, we propose an adversarial evolutionary approach for the lawyer-agent. Since AgentCourt can simulate the occurrence and development of court hearings based on a knowledge base and LLM, the lawyer agents can continuously learn and accumulate experience from real court cases. The simulation experiments show that after two lawyer-agents have engaged in a thousand adversarial legal cases in AgentCourt (which can take a decade for real-world lawyers), compared to their pre-evolutionary state, the evolved lawyer agents exhibit consistent improvement in their ability to handle legal tasks. To enhance the credibility of our experimental results, we enlisted a panel of professional lawyers to evaluate our simulations. The evaluation indicates that the evolved lawyer agents exhibit notable advancements in responsiveness, as well as expertise and logical rigor. This work paves the way for advancing LLM-driven agent technology in legal scenarios. Code is available at https://github.com/relic-yuexi/AgentCourt.
☆ An Efficient Replay for Class-Incremental Learning with Pre-trained Models
In general class-incremental learning, researchers typically use sample sets as a tool to avoid catastrophic forgetting during continuous learning. At the same time, researchers have also noted the differences between class-incremental learning and Oracle training and have attempted to make corrections. In recent years, researchers have begun to develop class-incremental learning algorithms utilizing pre-trained models, achieving significant results. This paper observes that in class-incremental learning, the steady state among the weight guided by each class center is disrupted, which is significantly correlated with catastrophic forgetting. Based on this, we propose a new method to overcoming forgetting . In some cases, by retaining only a single sample unit of each class in memory for replay and applying simple gradient constraints, very good results can be achieved. Experimental results indicate that under the condition of pre-trained models, our method can achieve competitive performance with very low computational cost and by simply using the cross-entropy loss.
☆ Confidence-weighted integration of human and machine judgments for superior decision-making
Large language models (LLMs) have emerged as powerful tools in various domains. Recent studies have shown that LLMs can surpass humans in certain tasks, such as predicting the outcomes of neuroscience studies. What role does this leave for humans in the overall decision process? One possibility is that humans, despite performing worse than LLMs, can still add value when teamed with them. A human and machine team can surpass each individual teammate when team members' confidence is well-calibrated and team members diverge in which tasks they find difficult (i.e., calibration and diversity are needed). We simplified and extended a Bayesian approach to combining judgments using a logistic regression framework that integrates confidence-weighted judgments for any number of team members. Using this straightforward method, we demonstrated in a neuroscience forecasting task that, even when humans were inferior to LLMs, their combination with one or more LLMs consistently improved team performance. Our hope is that this simple and effective strategy for integrating the judgments of humans and machines will lead to productive collaborations.
☆ Treat Stillness with Movement: Remote Sensing Change Detection via Coarse-grained Temporal Foregrounds Mining
Current works focus on addressing the remote sensing change detection task using bi-temporal images. Although good performance can be achieved, however, seldom of they consider the motion cues which may also be vital. In this work, we revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework. To be specific, given the bi-temporal images, we first transform them into a video using interpolation operations. Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region prediction. Subsequently, we design a novel Coarse-grained Foregrounds Augmented Spatial Encoder module to integrate both global and local information. We also introduce a motion augmented strategy that leverages motion cues as an additional output to aggregate with the spatial features for improved results. Meanwhile, we feed the input image pairs into the ResNet to get the different features and also the spatial blocks for fine-grained feature learning. More importantly, we propose a mask augmented strategy that utilizes coarse-grained changed regions, incorporating them into the decoder blocks to enhance the final changed prediction. Extensive experiments conducted on multiple benchmark datasets fully validated the effectiveness of our proposed framework for remote sensing image change detection. The source code of this paper will be released on https://github.com/Event-AHU/CTM_Remote_Sensing_Change_Detection
comment: In Peer Review
☆ A Survey on Integrated Sensing, Communication, and Computation
The forthcoming generation of wireless technology, 6G, promises a revolutionary leap beyond traditional data-centric services. It aims to usher in an era of ubiquitous intelligent services, where everything is interconnected and intelligent. This vision requires the seamless integration of three fundamental modules: Sensing for information acquisition, communication for information sharing, and computation for information processing and decision-making. These modules are intricately linked, especially in complex tasks such as edge learning and inference. However, the performance of these modules is interdependent, creating a resource competition for time, energy, and bandwidth. Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge, but they fall short of meeting the extreme performance requirements. To overcome these limitations, it is essential to develop new techniques that comprehensively integrate sensing, communication, and computation. This integrated approach, known as Integrated Sensing, Communication, and Computation (ISCC), offers a systematic perspective for enhancing task performance. This paper begins with a comprehensive survey of historic and related techniques such as ICC, ISC, and ISAC, highlighting their strengths and limitations. It then explores the state-of-the-art signal designs for ISCC, along with network resource management strategies specifically tailored for ISCC. Furthermore, this paper discusses the exciting research opportunities that lie ahead for implementing ISCC in future advanced networks. By embracing ISCC, we can unlock the full potential of intelligent connectivity, paving the way for groundbreaking applications and services.
☆ RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
comment: Under Review
☆ SPEED: Scalable Preprocessing of EEG Data for Self-Supervised Learning
Electroencephalography (EEG) research typically focuses on tasks with narrowly defined objectives, but recent studies are expanding into the use of unlabeled data within larger models, aiming for a broader range of applications. This addresses a critical challenge in EEG research. For example, Kostas et al. (2021) show that self-supervised learning (SSL) outperforms traditional supervised methods. Given the high noise levels in EEG data, we argue that further improvements are possible with additional preprocessing. Current preprocessing methods often fail to efficiently manage the large data volumes required for SSL, due to their lack of optimization, reliance on subjective manual corrections, and validation processes or inflexible protocols that limit SSL. We propose a Python-based EEG preprocessing pipeline optimized for self-supervised learning, designed to efficiently process large-scale data. This optimization not only stabilizes self-supervised training but also enhances performance on downstream tasks compared to training with raw data.
comment: To appear in proceedings of 2024 IEEE International workshop on Machine Learning for Signal Processing
☆ Maximally Permissive Reward Machines
Reward machines allow the definition of rewards for temporally extended tasks and behaviors. Specifying "informative" reward machines can be challenging. One way to address this is to generate reward machines from a high-level abstract description of the learning environment, using techniques such as AI planning. However, previous planning-based approaches generate a reward machine based on a single (sequential or partial-order) plan, and do not allow maximum flexibility to the learning agent. In this paper we propose a new approach to synthesising reward machines which is based on the set of partial order plans for a goal. We prove that learning using such "maximally permissive" reward machines results in higher rewards than learning using RMs based on a single plan. We present experimental results which support our theoretical claims by showing that our approach obtains higher rewards than the single-plan approach in practice.
comment: Paper accepted for publication at the European Conference on Artificial Intelligence (ECAI) 2024
☆ Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging MICCAI 2024
Data scarcity is a major limiting factor for applying modern machine learning techniques to clinical tasks. Although sufficient data exists for some well-studied medical tasks, there remains a long tail of clinically relevant tasks with poor data availability. Recently, numerous foundation models have demonstrated high suitability for few-shot learning (FSL) and zero-shot learning (ZSL), potentially making them more accessible to practitioners. However, it remains unclear which foundation model performs best on FSL medical image analysis tasks and what the optimal methods are for learning from limited data. We conducted a comprehensive benchmark study of ZSL and FSL using 16 pretrained foundation models on 19 diverse medical imaging datasets. Our results indicate that BiomedCLIP, a model pretrained exclusively on medical data, performs best on average for very small training set sizes, while very large CLIP models pretrained on LAION-2B perform best with slightly more training samples. However, simply fine-tuning a ResNet-18 pretrained on ImageNet performs similarly with more than five training examples per class. Our findings also highlight the need for further research on foundation models specifically tailored for medical applications and the collection of more datasets to train these models.
comment: Accepted as an oral presentation in MICCAI 2024 2nd International Workshop on Foundation Models for General Medical AI
☆ COTODE: COntinuous Trajectory neural Ordinary Differential Equations for modelling event sequences
Observation of the underlying actors that generate event sequences reveals that they often evolve continuously. Most modern methods, however, tend to model such processes through at most piecewise-continuous trajectories. To address this, we adopt a way of viewing events not as standalone phenomena but instead as observations of a Gaussian Process, which in turn governs the actor's dynamics. We propose integrating these obtained dynamics, resulting in a continuous-trajectory modification of the widely successful Neural ODE model. Through Gaussian Process theory, we were able to evaluate the uncertainty in an actor's representation, which arises from not observing them between events. This estimate led us to develop a novel, theoretically backed negative feedback mechanism. Empirical studies indicate that our model with Gaussian process interpolation and negative feedback achieves state-of-the-art performance, with improvements up to 20% AUROC against similar architectures.
☆ Text2BIM: Generating Building Models Using a Large Language Model-based Multi-Agent Framework
The conventional BIM authoring process typically requires designers to master complex and tedious modeling commands in order to materialize their design intentions within BIM authoring tools. This additional cognitive burden complicates the design process and hinders the adoption of BIM and model-based design in the AEC (Architecture, Engineering, and Construction) industry. To facilitate the expression of design intentions more intuitively, we propose Text2BIM, an LLM-based multi-agent framework that can generate 3D building models from natural language instructions. This framework orchestrates multiple LLM agents to collaborate and reason, transforming textual user input into imperative code that invokes the BIM authoring tool's APIs, thereby generating editable BIM models with internal layouts, external envelopes, and semantic information directly in the software. Furthermore, a rule-based model checker is introduced into the agentic workflow, utilizing predefined domain knowledge to guide the LLM agents in resolving issues within the generated models and iteratively improving model quality. Extensive experiments were conducted to compare and analyze the performance of three different LLMs under the proposed framework. The evaluation results demonstrate that our approach can effectively generate high-quality, structurally rational building models that are aligned with the abstract concepts specified by user input. Finally, an interactive software prototype was developed to integrate the framework into the BIM authoring software Vectorworks, showcasing the potential of modeling by chatting.
☆ The Clever Hans Effect in Unsupervised Learning
Unsupervised learning has become an essential building block of AI systems. The representations it produces, e.g. in foundation models, are critical to a wide variety of downstream applications. It is therefore important to carefully examine unsupervised models to ensure not only that they produce accurate predictions, but also that these predictions are not "right for the wrong reasons", the so-called Clever Hans (CH) effect. Using specially developed Explainable AI techniques, we show for the first time that CH effects are widespread in unsupervised learning. Our empirical findings are enriched by theoretical insights, which interestingly point to inductive biases in the unsupervised learning machine as a primary source of CH effects. Overall, our work sheds light on unexplored risks associated with practical applications of unsupervised learning and suggests ways to make unsupervised learning more robust.
comment: 12 pages + supplement
☆ Adaptive User Journeys in Pharma E-Commerce with Reinforcement Learning: Insights from SwipeRx KDD 2024
This paper introduces a reinforcement learning (RL) platform that enhances end-to-end user journeys in healthcare digital tools through personalization. We explore a case study with SwipeRx, the most popular all-in-one app for pharmacists in Southeast Asia, demonstrating how the platform can be used to personalize and adapt user experiences. Our RL framework is tested through a series of experiments with product recommendations tailored to each pharmacy based on real-time information on their purchasing history and in-app engagement, showing a significant increase in basket size. By integrating adaptive interventions into existing mobile health solutions and enriching user journeys, our platform offers a scalable solution to improve pharmaceutical supply chain management, health worker capacity building, and clinical decision and patient care, ultimately contributing to better healthcare outcomes.
comment: Presented at the Third Workshop on End-to-End Customer Journey Optimization at KDD 2024 (KDD CJ Workshop '24), August 26, Barcelona, Spain
☆ Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality between variables within the temporal chain, which is crucial for various scientific disciplines. Compared to causal discovery from non-time-series data, causal discovery from time-series data necessitates more serialized samples with a larger amount of observed time steps. To address the challenges, we propose a novel gradient-based causal discovery approach STIC, which focuses on \textbf{S}hort-\textbf{T}erm \textbf{I}nvariance using \textbf{C}onvolutional neural networks to uncover the causal relationships from time-series data. Specifically, STIC leverages both the short-term time and mechanism invariance of causality within each window observation, which possesses the property of independence, to enhance sample efficiency. Furthermore, we construct two causal convolution kernels, which correspond to the short-term time and mechanism invariance respectively, to estimate the window causal graph. To demonstrate the necessity of convolutional neural networks for causal discovery from time-series data, we theoretically derive the equivalence between convolution and the underlying generative principle of time-series data under the assumption that the additive noise model is identifiable. Experimental evaluations conducted on both synthetic and FMRI benchmark datasets demonstrate that our STIC outperforms baselines significantly and achieves the state-of-the-art performance, particularly when the datasets contain a limited number of observed time steps. Code is available at \url{https://github.com/HITshenrj/STIC}.
☆ DIVE: Towards Descriptive and Diverse Visual Commonsense Generation EMNLP 2023
Towards human-level visual understanding, visual commonsense generation has been introduced to generate commonsense inferences beyond images. However, current research on visual commonsense generation has overlooked an important human cognitive ability: generating descriptive and diverse inferences. In this work, we propose a novel visual commonsense generation framework, called DIVE, which aims to improve the descriptiveness and diversity of generated inferences. DIVE involves two methods, generic inference filtering and contrastive retrieval learning, which address the limitations of existing visual commonsense resources and training objectives. Experimental results verify that DIVE outperforms state-of-the-art models for visual commonsense generation in terms of both descriptiveness and diversity, while showing a superior quality in generating unique and novel inferences. Notably, DIVE achieves human-level descriptiveness and diversity on Visual Commonsense Graphs. Furthermore, human evaluations confirm that DIVE aligns closely with human judgments on descriptiveness and diversity\footnote{Our code and dataset are available at https://github.com/Park-ing-lot/DIVE.
comment: 19 pages, 10 figuers, EMNLP 2023 (main)
☆ Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization
This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization. Recently, conditional flow matching (CFM) generative models have been successfully adopted for waveform generation tasks, leveraging a single vector field estimation objective for training. Although these models can generate high-fidelity waveform signals, they require significantly more ODE steps compared to GAN-based models, which only need a single generation step. Additionally, the generated samples often lack high-frequency information due to noisy vector field estimation, which fails to ensure high-frequency reproduction. To address this limitation, we enhance pre-trained CFM-based generative models by incorporating a fixed-step generator modification. We utilized reconstruction losses and adversarial feedback to accelerate high-fidelity waveform generation. Through adversarial flow matching optimization, it only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics. Moreover, we significantly reduce inference speed from 16 steps to 2 or 4 steps. Additionally, by scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance, with a perceptual evaluation of speech quality (PESQ) score of 4.454 on the LibriTTS dataset. Audio samples, source code and checkpoints will be available at https://github.com/sh-lee-prml/PeriodWave.
comment: 9 pages, 9 tables, 1 figure,
☆ Asteroid: Resource-Efficient Hybrid Pipeline Parallelism for Collaborative DNN Training on Heterogeneous Edge Devices
On-device Deep Neural Network (DNN) training has been recognized as crucial for privacy-preserving machine learning at the edge. However, the intensive training workload and limited onboard computing resources pose significant challenges to the availability and efficiency of model training. While existing works address these challenges through native resource management optimization, we instead leverage our observation that edge environments usually comprise a rich set of accompanying trusted edge devices with idle resources beyond a single terminal. We propose Asteroid, a distributed edge training system that breaks the resource walls across heterogeneous edge devices for efficient model training acceleration. Asteroid adopts a hybrid pipeline parallelism to orchestrate distributed training, along with a judicious parallelism planning for maximizing throughput under certain resource constraints. Furthermore, a fault-tolerant yet lightweight pipeline replay mechanism is developed to tame the device-level dynamics for training robustness and performance stability. We implement Asteroid on heterogeneous edge devices with both vision and language models, demonstrating up to 12.2x faster training than conventional parallelism methods and 2.1x faster than state-of-the-art hybrid parallelism methods through evaluations. Furthermore, Asteroid can recover training pipeline 14x faster than baseline methods while preserving comparable throughput despite unexpected device exiting and failure.
comment: Accepted by The 30th Annual International Conference on Mobile Computing and Networking (MobiCom'24)
☆ IIU: Independent Inference Units for Knowledge-based Visual Question Answering
Knowledge-based visual question answering requires external knowledge beyond visible content to answer the question correctly. One limitation of existing methods is that they focus more on modeling the inter-modal and intra-modal correlations, which entangles complex multimodal clues by implicit embeddings and lacks interpretability and generalization ability. The key challenge to solve the above problem is to separate the information and process it separately at the functional level. By reusing each processing unit, the generalization ability of the model to deal with different data can be increased. In this paper, we propose Independent Inference Units (IIU) for fine-grained multi-modal reasoning to decompose intra-modal information by the functionally independent units. Specifically, IIU processes each semantic-specific intra-modal clue by an independent inference unit, which also collects complementary information by communication from different units. To further reduce the impact of redundant information, we propose a memory update module to maintain semantic-relevant memory along with the reasoning process gradually. In comparison with existing non-pretrained multi-modal reasoning models on standard datasets, our model achieves a new state-of-the-art, enhancing performance by 3%, and surpassing basic pretrained multi-modal models. The experimental results show that our IIU model is effective in disentangling intra-modal clues as well as reasoning units to provide explainable reasoning evidence. Our code is available at https://github.com/Lilidamowang/IIU.
☆ Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
With the rise of neural networks in various domains, multi-task learning (MTL) gained significant relevance. A key challenge in MTL is balancing individual task losses during neural network training to improve performance and efficiency through knowledge sharing across tasks. To address these challenges, we propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting and computing analytically optimal uncertainty-based weights, normalized by a softmax function with tunable temperature. Our approach yields comparable results to the combinatorially prohibitive, brute-force approach of Scalarization while offering a more cost-effective yet high-performing alternative. We conduct an extensive benchmark on various datasets and architectures. Our method consistently outperforms six other common weighting methods. Furthermore, we report noteworthy experimental findings for the practical application of MTL. For example, larger networks diminish the influence of weighting methods, and tuning the weight decay has a low impact compared to the learning rate.
☆ ArabLegalEval: A Multitask Benchmark for Assessing Arabic Legal Knowledge in Large Language Models
The rapid advancements in Large Language Models (LLMs) have led to significant improvements in various natural language processing tasks. However, the evaluation of LLMs' legal knowledge, particularly in non-English languages such as Arabic, remains under-explored. To address this gap, we introduce ArabLegalEval, a multitask benchmark dataset for assessing the Arabic legal knowledge of LLMs. Inspired by the MMLU and LegalBench datasets, ArabLegalEval consists of multiple tasks sourced from Saudi legal documents and synthesized questions. In this work, we aim to analyze the capabilities required to solve legal problems in Arabic and benchmark the performance of state-of-the-art LLMs. We explore the impact of in-context learning and investigate various evaluation methods. Additionally, we explore workflows for generating questions with automatic validation to enhance the dataset's quality. We benchmark multilingual and Arabic-centric LLMs, such as GPT-4 and Jais, respectively. We also share our methodology for creating the dataset and validation, which can be generalized to other domains. We hope to accelerate AI research in the Arabic Legal domain by releasing the ArabLegalEval dataset and code: https://github.com/Thiqah/ArabLegalEval
☆ Toward a Dialogue System Using a Large Language Model to Recognize User Emotions with a Camera
The performance of ChatGPT\copyright{} and other LLMs has improved tremendously, and in online environments, they are increasingly likely to be used in a wide variety of situations, such as ChatBot on web pages, call center operations using voice interaction, and dialogue functions using agents. In the offline environment, multimodal dialogue functions are also being realized, such as guidance by Artificial Intelligence agents (AI agents) using tablet terminals and dialogue systems in the form of LLMs mounted on robots. In this multimodal dialogue, mutual emotion recognition between the AI and the user will become important. So far, there have been methods for expressing emotions on the part of the AI agent or for recognizing them using textual or voice information of the user's utterances, but methods for AI agents to recognize emotions from the user's facial expressions have not been studied. In this study, we examined whether or not LLM-based AI agents can interact with users according to their emotional states by capturing the user in dialogue with a camera, recognizing emotions from facial expressions, and adding such emotion information to prompts. The results confirmed that AI agents can have conversations according to the emotional state for emotional states with relatively high scores, such as Happy and Angry.
comment: 4 pages, 5 figures, 1 table, The 1st InterAI: Interactive AI for Human-Centered Robotics workshop in conjuction with IEEE Ro-MAN 2024, Pasadona, LA, USA, Aug. 2024
☆ LLaVA-Surg: Towards Multimodal Surgical Assistant via Structured Surgical Video Learning
Multimodal large language models (LLMs) have achieved notable success across various domains, while research in the medical field has largely focused on unimodal images. Meanwhile, current general-domain multimodal models for videos still lack the capabilities to understand and engage in conversations about surgical videos. One major contributing factor is the absence of datasets in the surgical field. In this paper, we create a new dataset, Surg-QA, consisting of 102,000 surgical video-instruction pairs, the largest of its kind so far. To build such a dataset, we propose a novel two-stage question-answer generation pipeline with LLM to learn surgical knowledge in a structured manner from the publicly available surgical lecture videos. The pipeline breaks down the generation process into two stages to significantly reduce the task complexity, allowing us to use a more affordable, locally deployed open-source LLM than the premium paid LLM services. It also mitigates the risk of LLM hallucinations during question-answer generation, thereby enhancing the overall quality of the generated data. We further train LLaVA-Surg, a novel vision-language conversational assistant capable of answering open-ended questions about surgical videos, on this Surg-QA dataset, and conduct comprehensive evaluations on zero-shot surgical video question-answering tasks. We show that LLaVA-Surg significantly outperforms all previous general-domain models, demonstrating exceptional multimodal conversational skills in answering open-ended questions about surgical videos. We will release our code, model, and the instruction-tuning dataset.
☆ Meta SAC-Lag: Towards Deployable Safe Reinforcement Learning via MetaGradient-based Hyperparameter Tuning IROS
Safe Reinforcement Learning (Safe RL) is one of the prevalently studied subcategories of trial-and-error-based methods with the intention to be deployed on real-world systems. In safe RL, the goal is to maximize reward performance while minimizing constraints, often achieved by setting bounds on constraint functions and utilizing the Lagrangian method. However, deploying Lagrangian-based safe RL in real-world scenarios is challenging due to the necessity of threshold fine-tuning, as imprecise adjustments may lead to suboptimal policy convergence. To mitigate this challenge, we propose a unified Lagrangian-based model-free architecture called Meta Soft Actor-Critic Lagrangian (Meta SAC-Lag). Meta SAC-Lag uses meta-gradient optimization to automatically update the safety-related hyperparameters. The proposed method is designed to address safe exploration and threshold adjustment with minimal hyperparameter tuning requirement. In our pipeline, the inner parameters are updated through the conventional formulation and the hyperparameters are adjusted using the meta-objectives which are defined based on the updated parameters. Our results show that the agent can reliably adjust the safety performance due to the relatively fast convergence rate of the safety threshold. We evaluate the performance of Meta SAC-Lag in five simulated environments against Lagrangian baselines, and the results demonstrate its capability to create synergy between parameters, yielding better or competitive results. Furthermore, we conduct a real-world experiment involving a robotic arm tasked with pouring coffee into a cup without spillage. Meta SAC-Lag is successfully trained to execute the task, while minimizing effort constraints.
comment: Main text accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024, 10 pages, 4 figures, 3 tables
☆ RandomNet: Clustering Time Series Using Untrained Deep Neural Networks
Neural networks are widely used in machine learning and data mining. Typically, these networks need to be trained, implying the adjustment of weights (parameters) within the network based on the input data. In this work, we propose a novel approach, RandomNet, that employs untrained deep neural networks to cluster time series. RandomNet uses different sets of random weights to extract diverse representations of time series and then ensembles the clustering relationships derived from these different representations to build the final clustering results. By extracting diverse representations, our model can effectively handle time series with different characteristics. Since all parameters are randomly generated, no training is required during the process. We provide a theoretical analysis of the effectiveness of the method. To validate its performance, we conduct extensive experiments on all of the 128 datasets in the well-known UCR time series archive and perform statistical analysis of the results. These datasets have different sizes, sequence lengths, and they are from diverse fields. The experimental results show that the proposed method is competitive compared with existing state-of-the-art methods.
comment: 25 pages, 10 figures
☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. To deal with this challenge, research has been conducted on translating SAR images into optical-like representations to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR) images. The experimental results indicate that our method surpasses both the Conditional Diffusion Model (CDM) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
☆ Solving a Rubik's Cube Using its Local Graph Structure
The Rubix Cube is a 3-dimensional single-player combination puzzle attracting attention in the reinforcement learning community. A Rubix Cube has six faces and twelve possible actions, leading to a small and unconstrained action space and a very large state space with only one goal state. Modeling such a large state space and storing the information of each state requires exceptional computational resources, which makes it challenging to find the shortest solution to a scrambled Rubix cube with limited resources. The Rubix Cube can be represented as a graph, where states of the cube are nodes and actions are edges. Drawing on graph convolutional networks, we design a new heuristic, weighted convolutional distance, for A star search algorithm to find the solution to a scrambled Rubix Cube. This heuristic utilizes the information of neighboring nodes and convolves them with attention-like weights, which creates a deeper search for the shortest path to the solved state.
☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM-2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM-2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM-2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM-2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a feasible reality.
comment: 16 pages, 2 figures
☆ MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL
Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.
comment: 22 pages, 14 figures
☆ CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Improving Temporal Knowledge Graph Extrapolation Reasoning
Temporal knowledge graph reasoning (TKGR) is increasingly gaining attention for its ability to extrapolate new events from historical data, thereby enriching the inherently incomplete temporal knowledge graphs. Existing graph-based representation learning frameworks have made significant strides in developing evolving representations for both entities and relational embeddings. Despite these achievements, there's a notable tendency in these models to inadvertently learn biased data representations and mine spurious correlations, consequently failing to discern the causal relationships between events. This often leads to incorrect predictions based on these false correlations. To address this, we propose an innovative causal enhanced graph representation learning framework for TKGR (named CEGRL-TKGR). This framework introduces causal structures in graph-based representation learning to unveil the essential causal relationships between events, ultimately enhancing task performance. Specifically, we first disentangle the evolutionary representations of entities and relations in a temporal graph sequence into two distinct components, namely causal representations and confounding representations. Then, drawing on causal intervention theory, we advocate the utilization of causal representations for predictions, aiming to mitigate the effects of erroneous correlations caused by confounding features, thus achieving more robust and accurate predictions. Finally, extensive experimental results on six benchmark datasets demonstrate the superior performance of our model in the link prediction task.
☆ KAN versus MLP on Irregular or Noisy Functions
In this paper, we compare the performance of Kolmogorov-Arnold Networks (KAN) and Multi-Layer Perceptron (MLP) networks on irregular or noisy functions. We control the number of parameters and the size of the training samples to ensure a fair comparison. For clarity, we categorize the functions into six types: regular functions, continuous functions with local non-differentiable points, functions with jump discontinuities, functions with singularities, functions with coherent oscillations, and noisy functions. Our experimental results indicate that KAN does not always perform best. For some types of functions, MLP outperforms or performs comparably to KAN. Furthermore, increasing the size of training samples can improve performance to some extent. When noise is added to functions, the irregular features are often obscured by the noise, making it challenging for both MLP and KAN to extract these features effectively. We hope these experiments provide valuable insights for future neural network research and encourage further investigations to overcome these challenges.
☆ Assessing Language Models' Worldview for Fiction Generation
The use of Large Language Models (LLMs) has become ubiquitous, with abundant applications in computational creativity. One such application is fictional story generation. Fiction is a narrative that occurs in a story world that is slightly different than ours. With LLMs becoming writing partners, we question how suitable they are to generate fiction. This study investigates the ability of LLMs to maintain a state of world essential to generate fiction. Through a series of questions to nine LLMs, we find that only two models exhibit consistent worldview, while the rest are self-conflicting. Subsequent analysis of stories generated by four models revealed a strikingly uniform narrative pattern. This uniformity across models further suggests a lack of `state' necessary for fiction. We highlight the limitations of current LLMs in fiction writing and advocate for future research to test and create story worlds for LLMs to reside in. All code, dataset, and the generated responses can be found in https://github.com/tanny411/llm-reliability-and-consistency-evaluation.
comment: Short paper
☆ Quantum-inspired Interpretable Deep Learning Architecture for Text Sentiment Analysis
Text has become the predominant form of communication on social media, embedding a wealth of emotional nuances. Consequently, the extraction of emotional information from text is of paramount importance. Despite previous research making some progress, existing text sentiment analysis models still face challenges in integrating diverse semantic information and lack interpretability. To address these issues, we propose a quantum-inspired deep learning architecture that combines fundamental principles of quantum mechanics (QM principles) with deep learning models for text sentiment analysis. Specifically, we analyze the commonalities between text representation and QM principles to design a quantum-inspired text representation method and further develop a quantum-inspired text embedding layer. Additionally, we design a feature extraction layer based on long short-term memory (LSTM) networks and self-attention mechanisms (SAMs). Finally, we calculate the text density matrix using the quantum complex numbers principle and apply 2D-convolution neural networks (CNNs) for feature condensation and dimensionality reduction. Through a series of visualization, comparative, and ablation experiments, we demonstrate that our model not only shows significant advantages in accuracy and efficiency compared to previous related models but also achieves a certain level of interpretability by integrating QM principles. Our code is available at QISA.
☆ IReCa: Intrinsic Reward-enhanced Context-aware Reinforcement Learning for Human-AI Coordination
In human-AI coordination scenarios, human agents usually exhibit asymmetric behaviors that are significantly sparse and unpredictable compared to those of AI agents. These characteristics introduce two primary challenges to human-AI coordination: the effectiveness of obtaining sparse rewards and the efficiency of training the AI agents. To tackle these challenges, we propose an Intrinsic Reward-enhanced Context-aware (IReCa) reinforcement learning (RL) algorithm, which leverages intrinsic rewards to facilitate the acquisition of sparse rewards and utilizes environmental context to enhance training efficiency. Our IReCa RL algorithm introduces three unique features: (i) it encourages the exploration of sparse rewards by incorporating intrinsic rewards that supplement traditional extrinsic rewards from the environment; (ii) it improves the acquisition of sparse rewards by prioritizing the corresponding sparse state-action pairs; and (iii) it enhances the training efficiency by optimizing the exploration and exploitation through innovative context-aware weights of extrinsic and intrinsic rewards. Extensive simulations executed in the Overcooked layouts demonstrate that our IReCa RL algorithm can increase the accumulated rewards by approximately 20% and reduce the epochs required for convergence by approximately 67% compared to state-of-the-art baselines.
☆ Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging
Distributional drift detection is important in medical applications as it helps ensure the accuracy and reliability of models by identifying changes in the underlying data distribution that could affect diagnostic or treatment decisions. However, current methods have limitations in detecting drift; for example, the inclusion of abnormal datasets can lead to unfair comparisons. This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images by leveraging data-sketching and fine-tuning techniques. We developed a robust baseline library model for real-time anomaly detection, allowing for efficient comparison of incoming images and identification of anomalies. Additionally, we fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images as an example, significantly enhancing model accuracy to 99.11\%. Combining with data-sketches and fine-tuning, our feature extraction evaluation demonstrated that cosine similarity scores between similar datasets provide greater improvements, from around 50\% increased to 100\%. Finally, the sensitivity evaluation shows that our solutions are highly sensitive to even 1\% salt-and-pepper and speckle noise, and it is not sensitive to lighting noise (e.g., lighting conditions have no impact on data drift). The proposed methods offer a scalable and reliable solution for maintaining the accuracy of diagnostic models in dynamic clinical environments.
☆ SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models leveraging data from the Environmental Mapping and Analysis Program (EnMAP). SpectralEarth comprises 538,974 image patches covering 415,153 unique locations from more than 11,636 globally distributed EnMAP scenes spanning two years of archive. Additionally, 17.5% of these locations include multiple timestamps, enabling multi-temporal HSI analysis. Utilizing state-of-the-art self-supervised learning (SSL) algorithms, we pretrain a series of foundation models on SpectralEarth. We integrate a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation. Experimental results support the versatility of our models, showcasing their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning. The dataset, models, and source code will be made publicly available.
☆ W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering
In knowledge-intensive tasks such as open-domain question answering (OpenQA), Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge. To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources, thereby positioning the retriever as a pivotal component. Although dense retrieval demonstrates state-of-the-art performance, its training poses challenges due to the scarcity of ground-truth evidence, largely attributed to the high costs of human annotation. In this paper, we propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers. Specifically, we rerank the top-$K$ passages retrieved via BM25 by assessing the probability that LLMs will generate the correct answer based on the question and each passage. The highest-ranking passages are then used as positive training examples for dense retrieval. Our comprehensive experiments across four publicly available OpenQA datasets demonstrate that our approach enhances both retrieval and OpenQA performance compared to baseline models.
☆ PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications
While Vision Transformers (ViTs) are extremely effective at computer vision tasks and are replacing convolutional neural networks as the new state-of-the-art, they are complex and memory-intensive models. In order to effectively run these models on resource-constrained mobile/edge systems, there is a need to not only compress these models but also to optimize them and convert them into deployment-friendly formats. To this end, this paper presents a combined pruning and quantization tool, called PQV-Mobile, to optimize vision transformers for mobile applications. The tool is able to support different types of structured pruning based on magnitude importance, Taylor importance, and Hessian importance. It also supports quantization from FP32 to FP16 and int8, targeting different mobile hardware backends. We demonstrate the capabilities of our tool and show important latency-memory-accuracy trade-offs for different amounts of pruning and int8 quantization with Facebook Data Efficient Image Transformer (DeiT) models. Our results show that even pruning a DeiT model by 9.375% and quantizing it to int8 from FP32 followed by optimizing for mobile applications, we find a latency reduction by 7.18X with a small accuracy loss of 2.24%. The tool is open source.
☆ Automated Design of Agentic Systems
Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.
comment: Website: https://shengranhu.com/ADAS
☆ Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts
Deep learning has shown tremendous progress in a wide range of digital pathology and medical image classification tasks. Its integration into safe clinical decision-making support requires robust and reliable models. However, real-world data comes with diversities that often lie outside the intended source distribution. Moreover, when test samples are dramatically different, clinical decision-making is greatly affected. Quantifying predictive uncertainty in models is crucial for well-calibrated predictions and determining when (or not) to trust a model. Unfortunately, many works have overlooked the importance of predictive uncertainty estimation. This paper evaluates whether predictive uncertainty estimation adds robustness to deep learning-based diagnostic decision-making systems. We investigate the effect of various carcinoma distribution shift scenarios on predictive performance and calibration. We first systematically investigate three popular methods for improving predictive uncertainty: Monte Carlo dropout, deep ensemble, and few-shot learning on lung adenocarcinoma classification as a primary disease in whole slide images. Secondly, we compare the effectiveness of the methods in terms of performance and calibration under clinically relevant distribution shifts such as in-distribution shifts comprising primary disease sub-types and other characterization analysis data; out-of-distribution shifts comprising well-differentiated cases, different organ origin, and imaging modality shifts. While studies on uncertainty estimation exist, to our best knowledge, no rigorous large-scale benchmark compares predictive uncertainty estimation including these dataset shifts for lung carcinoma classification.
comment: 17 pages, 2 figures, 5 tables
☆ Multi-Modal Dialogue State Tracking for Playing GuessWhich Game
GuessWhich is an engaging visual dialogue game that involves interaction between a Questioner Bot (QBot) and an Answer Bot (ABot) in the context of image-guessing. In this game, QBot's objective is to locate a concealed image solely through a series of visually related questions posed to ABot. However, effectively modeling visually related reasoning in QBot's decision-making process poses a significant challenge. Current approaches either lack visual information or rely on a single real image sampled at each round as decoding context, both of which are inadequate for visual reasoning. To address this limitation, we propose a novel approach that focuses on visually related reasoning through the use of a mental model of the undisclosed image. Within this framework, QBot learns to represent mental imagery, enabling robust visual reasoning by tracking the dialogue state. The dialogue state comprises a collection of representations of mental imagery, as well as representations of the entities involved in the conversation. At each round, QBot engages in visually related reasoning using the dialogue state to construct an internal representation, generate relevant questions, and update both the dialogue state and internal representation upon receiving an answer. Our experimental results on the VisDial datasets (v0.5, 0.9, and 1.0) demonstrate the effectiveness of our proposed model, as it achieves new state-of-the-art performance across all metrics and datasets, surpassing previous state-of-the-art models. Codes and datasets from our experiments are freely available at \href{https://github.com/xubuvd/GuessWhich}.
comment: Published at CICAI 2023 (CAAI-A), codes at https://github.com/xubuvd/GuessWhich
☆ Assessing and Enhancing Large Language Models in Rare Disease Question-answering
Despite the impressive capabilities of Large Language Models (LLMs) in general medical domains, questions remain about their performance in diagnosing rare diseases. To answer this question, we aim to assess the diagnostic performance of LLMs in rare diseases, and explore methods to enhance their effectiveness in this area. In this work, we introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of LLMs in diagnosing rare diseases. Specifically, we collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases. Additionally, we annotated meta-data for each question, facilitating the extraction of subsets specific to any given disease and its property. Based on the ReDis-QA dataset, we benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models. To facilitate retrieval augmentation generation for rare disease diagnosis, we collect the first rare diseases corpus (ReCOP), sourced from the National Organization for Rare Disorders (NORD) database. Specifically, we split the report of each rare disease into multiple chunks, each representing a different property of the disease, including their overview, symptoms, causes, effects, related disorders, diagnosis, and standard therapies. This structure ensures that the information within each chunk aligns consistently with a question. Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%. Moreover, it significantly guides LLMs to generate trustworthy answers and explanations that can be traced back to existing literature.
☆ Understanding Help-Seeking Behavior of Students Using LLMs vs. Web Search for Writing SQL Queries
Growth in the use of large language models (LLMs) in programming education is altering how students write SQL queries. Traditionally, students relied heavily on web search for coding assistance, but this has shifted with the adoption of LLMs like ChatGPT. However, the comparative process and outcomes of using web search versus LLMs for coding help remain underexplored. To address this, we conducted a randomized interview study in a database classroom to compare web search and LLMs, including a publicly available LLM (ChatGPT) and an instructor-tuned LLM, for writing SQL queries. Our findings indicate that using an instructor-tuned LLM required significantly more interactions than both ChatGPT and web search, but resulted in a similar number of edits to the final SQL query. No significant differences were found in the quality of the final SQL queries between conditions, although the LLM conditions directionally showed higher query quality. Furthermore, students using instructor-tuned LLM reported a lower mental demand. These results have implications for learning and productivity in programming education.
☆ API-guided Dataset Synthesis to Finetune Large Code Models
Large code models (LCMs), pre-trained on vast code corpora, have demonstrated remarkable performance across a wide array of code-related tasks. Supervised fine-tuning (SFT) plays a vital role in aligning these models with specific requirements and enhancing their performance in particular domains. However, synthesizing high-quality SFT datasets poses a significant challenge due to the uneven quality of datasets and the scarcity of domain-specific datasets. Inspired by APIs as high-level abstractions of code that encapsulate rich semantic information in a concise structure, we propose DataScope, an API-guided dataset synthesis framework designed to enhance the SFT process for LCMs in both general and domain-specific scenarios. DataScope comprises two main components: Dsel and Dgen. On one hand, Dsel employs API coverage as a core metric, enabling efficient dataset synthesis in general scenarios by selecting subsets of existing (uneven-quality) datasets with higher API coverage. On the other hand, Dgen recasts domain dataset synthesis as a process of using API-specified high-level functionality and deliberately-constituted code skeletons to synthesize concrete code. Extensive experiments demonstrate DataScope's effectiveness, with models fine-tuned on its synthesized datasets outperforming those tuned on unoptimized datasets five times larger. Furthermore, a series of analyses on model internals, relevant hyperparameters, and case studies provide additional evidence for the efficacy of our proposed methods. These findings underscore the significance of dataset quality in SFT and advance the field of LCMs by providing an efficient, cost-effective framework for constructing high-quality datasets. This contribution enhances performance across both general and domain-specific scenarios, paving the way for more powerful and tailored LCMs.
☆ Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models
Generating peptides with desired properties is crucial for drug discovery and biotechnology. Traditional sequence-based and structure-based methods often require extensive datasets, which limits their effectiveness. In this study, we proposed a novel method that utilized autoencoder shaped models to explore the protein embedding space, and generate novel peptide analogs by leveraging protein language models. The proposed method requires only a single sequence of interest, avoiding the need for large datasets. Our results show significant improvements over baseline models in similarity indicators of peptide structures, descriptors and bioactivities. The proposed method validated through Molecular Dynamics simulations on TIGIT inhibitors, demonstrates that our method produces peptide analogs with similar yet distinct properties, highlighting its potential to enhance peptide screening processes.
Graph representations of 3D data for machine learning
We give an overview of combinatorial methods to represent 3D data, such as graphs and meshes, from the viewpoint of their amenability to analysis using machine learning algorithms. We highlight pros and cons of various representations and we discuss some methods of generating/switching between the representations. We finally present two concrete applications in life science and industry. Despite its theoretical nature, our discussion is in general motivated by, and biased towards real-world challenges.
comment: 14 pages, 11 figures
☆ Plan with Code: Comparing approaches for robust NL to DSL generation
Planning in code is considered a more reliable approach for many orchestration tasks. This is because code is more tractable than steps generated via Natural Language and make it easy to support more complex sequences by abstracting deterministic logic into functions. It also allows spotting issues with incorrect function names with the help of parsing checks that can be run on code. Progress in Code Generation methodologies, however, remains limited to general-purpose languages like C, C++, and Python. LLMs continue to face challenges with custom function names in Domain Specific Languages or DSLs, leading to higher hallucination rates and syntax errors. This is more common for custom function names, that are typically part of the plan. Moreover, keeping LLMs up-to-date with newer function names is an issue. This poses a challenge for scenarios like task planning over a large number of APIs, since the plan is represented as a DSL having custom API names. In this paper, we focus on workflow automation in RPA (Robotic Process Automation) domain as a special case of task planning. We present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies with a fine-tuned model. Our results showed that the fine-tuned model scored the best on code similarity metric. However, with our optimizations, RAG approach is able to match the quality for in-domain API names in the test set. Additionally, it offers significant advantage for out-of-domain or unseen API names, outperforming Fine-Tuned model on similarity metric by 7 pts.
comment: 9 pages, 1 figure, 5 tables. arXiv admin note: substantial text overlap with arXiv:2407.02742
♻ ☆ A Spitting Image: Modular Superpixel Tokenization in Vision Transformers ECCV
Vision Transformer (ViT) architectures traditionally employ a grid-based approach to tokenization independent of the semantic content of an image. We propose a modular superpixel tokenization strategy which decouples tokenization and feature extraction; a shift from contemporary approaches where these are treated as an undifferentiated whole. Using on-line content-aware tokenization and scale- and shape-invariant positional embeddings, we perform experiments and ablations that contrast our approach with patch-based tokenization and randomized partitions as baselines. We show that our method significantly improves the faithfulness of attributions, gives pixel-level granularity on zero-shot unsupervised dense prediction tasks, while maintaining predictive performance in classification tasks. Our approach provides a modular tokenization framework commensurable with standard architectures, extending the space of ViTs to a larger class of semantically-rich models.
comment: To appear in ECCV (MELEX) 2024 Workshop Proceedings
♻ ☆ Deep Learning: a Heuristic Three-stage Mechanism for Grid Searches to Optimize the Future Risk Prediction of Breast Cancer Metastasis Using EHR-based Clinical Data
A grid search, at the cost of training and testing a large number of models, is an effective way to optimize the prediction performance of deep learning models. A challenging task concerning grid search is the time management. Without a good time management scheme, a grid search can easily be set off as a mission that will not finish in our lifetime. In this study, we introduce a heuristic three-stage mechanism for managing the running time of low-budget grid searches, and the sweet-spot grid search (SSGS) and randomized grid search (RGS) strategies for improving model prediction performance, in predicting the 5-year, 10-year, and 15-year risk of breast cancer metastasis. We develop deep feedforward neural network (DFNN) models and optimize them through grid searches. We conduct eight cycles of grid searches by applying our three-stage mechanism and SSGS and RGS strategies. We conduct various SHAP analyses including unique ones that interpret the importance of the DFNN-model hyperparameters. Our results show that grid search can greatly improve model prediction. The grid searches we conducted improved the risk prediction of 5-year, 10-year, and 15-year breast cancer metastasis by 18.6%, 16.3%, and 17.3% respectively, over the average performance of all corresponding models we trained using the RGS strategy. We not only demonstrate best model performance but also characterize grid searches from various aspects such as their capabilities of discovering decent models and the unit grid search time. The three-stage mechanism worked effectively. It made our low-budget grid searches feasible and manageable, and in the meantime helped improve model prediction performance. Our SHAP analyses identified both clinical risk factors important for the prediction of future risk of breast cancer metastasis, and DFNN-model hyperparameters important to the prediction of performance scores.
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
♻ ☆ MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation WACV 2024
Beyond the Transformer, it is important to explore how to exploit the capacity of the MetaFormer, an architecture that is fundamental to the performance improvements of the Transformer. Previous studies have exploited it only for the backbone network. Unlike previous studies, we explore the capacity of the Metaformer architecture more extensively in the semantic segmentation task. We propose a powerful semantic segmentation network, MetaSeg, which leverages the Metaformer architecture from the backbone to the decoder. Our MetaSeg shows that the MetaFormer architecture plays a significant role in capturing the useful contexts for the decoder as well as for the backbone. In addition, recent segmentation methods have shown that using a CNN-based backbone for extracting the spatial information and a decoder for extracting the global information is more effective than using a transformer-based backbone with a CNN-based decoder. This motivates us to adopt the CNN-based backbone using the MetaFormer block and design our MetaFormer-based decoder, which consists of a novel self-attention module to capture the global contexts. To consider both the global contexts extraction and the computational efficiency of the self-attention for semantic segmentation, we propose a Channel Reduction Attention (CRA) module that reduces the channel dimension of the query and key into the one dimension. In this way, our proposed MetaSeg outperforms the previous state-of-the-art methods with more efficient computational costs on popular semantic segmentation and a medical image segmentation benchmark, including ADE20K, Cityscapes, COCO-stuff, and Synapse. The code is available at https://github.com/hyunwoo137/MetaSeg.
comment: Accepted by WACV 2024
♻ ☆ Problem Solving Through Human-AI Preference-Based Cooperation
While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
comment: 16 pages (excluding references)
♻ ☆ MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Existing human image personalized generation methods often require tedious training: either fine-tuning with a few images or retraining on large-scale datasets. In such cases, these methods are prone to overfitting and encounter difficulties when personalizing individuals of diverse styles. Moreover, these training-based approaches also struggle with multi-concept human image customizing. To this end, we propose MagicFace, the first method for universal-style human image personalized synthesis that enables single/multi-concept customization for humans of any style in a training-free manner. MagicFace introduces a coarse-to-fine generation pipeline, involving two sequential stages: semantic scene construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. Specifically, in the first stage, RSA enables the latent image to query features from reference concepts simultaneously, extracting the coarse-grained overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the generated regions of all concepts in the latent image at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from its reference concept, which ensures precise attribute alignment and feature injection. Throughout the two-stage process, a weight mask strategy is employed to ensure the model focuses more on the reference concepts. Extensive experiments demonstrate our superiority in both human-centric subject-to-image synthesis and multi-concept human image customization. Our approach also can be applied to texture transformation, further enhancing its versatility and applicability.
comment: project page: https://codegoat24.github.io/MagicFace
♻ ☆ Do GPT Language Models Suffer From Split Personality Disorder? The Advent Of Substrate-Free Psychometrics
Previous research on emergence in large language models shows these display apparent human-like abilities and psychological latent traits. However, results are partly contradicting in expression and magnitude of these latent traits, yet agree on the worrisome tendencies to score high on the Dark Triad of narcissism, psychopathy, and Machiavellianism, which, together with a track record of derailments, demands more rigorous research on safety of these models. We provided a state of the art language model with the same personality questionnaire in nine languages, and performed Bayesian analysis of Gaussian Mixture Model, finding evidence for a deeper-rooted issue. Our results suggest both interlingual and intralingual instabilities, which indicate that current language models do not develop a consistent core personality. This can lead to unsafe behaviour of artificial intelligence systems that are based on these foundation models, and are increasingly integrated in human life. We subsequently discuss the shortcomings of modern psychometrics, abstract it, and provide a framework for its species-neutral, substrate-free formulation.
comment: 37 pages, 7 figures, 3 tables, date v1: Mar 26 2023; replaced with new version; reason: removed journal logo from older version of article that is no longer valid
♻ ☆ PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research. The source code for the training and web service components is publicly available as a part of OpenDILab at: https://github.com/opendilab/PsyDI
comment: 29 pages, 15 figures
♻ ☆ ConfusedPilot: Confused Deputy Risks in RAG-based LLMs
Retrieval augmented generation (RAG) is a process where a large language model (LLM) retrieves useful information from a database and then generates the responses. It is becoming popular in enterprise settings for daily business operations. For example, Copilot for Microsoft 365 has accumulated millions of businesses. However, the security implications of adopting such RAG-based systems are unclear. In this paper, we introduce ConfusedPilot, a class of security vulnerabilities of RAG systems that confuse Copilot and cause integrity and confidentiality violations in its responses. First, we investigate a vulnerability that embeds malicious text in the modified prompt in RAG, corrupting the responses generated by the LLM. Second, we demonstrate a vulnerability that leaks secret data, which leverages the caching mechanism during retrieval. Third, we investigate how both vulnerabilities can be exploited to propagate misinformation within the enterprise and ultimately impact its operations, such as sales and manufacturing. We also discuss the root cause of these attacks by investigating the architecture of a RAG-based system. This study highlights the security vulnerabilities in today's RAG-based systems and proposes design guidelines to secure future RAG-based systems.
♻ ☆ Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification
Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa$.$nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa$.$nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa$.$nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.
comment: 28 pages, 5 figures
♻ ☆ There is No Silver Bullet: Benchmarking Methods in Predictive Combinatorial Optimization
Predictive combinatorial optimization, where the parameters of combinatorial optimization (CO) are unknown at the decision-making time, is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising. Tackling such a problem usually involves a prediction model and a CO solver. These two modules are integrated into the predictive CO pipeline following two design principles: ``Predict-then-Optimize (PtO)'', which learns predictions by supervised training and subsequently solves CO using predicted coefficients, while the other, named ``Predict-and-Optimize (PnO)'', directly optimizes towards the ultimate decision quality and claims to yield better decisions than traditional PtO approaches. However, there lacks a systematic benchmark of both approaches, including the specific design choices at the module level, as well as an evaluation dataset that covers representative real-world scenarios. To this end, we develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for combinatorial advertising that will be released. Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO. A comprehensive categorization of current approaches and integration of typical scenarios are provided under a unified benchmark. Therefore, this paper could serve as a comprehensive benchmark for future PnO approach development and also offer fast prototyping for application-focused development.
♻ ☆ The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aides to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist
♻ ☆ Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction
In the realm of modern mobile E-commerce, providing users with nearby commercial service recommendations through location-based online services has become increasingly vital. While machine learning approaches have shown promise in multi-scene recommendation, existing methodologies often struggle to address cold-start problems in unprecedented scenes: the increasing diversity of commercial choices, along with the short online lifespan of scenes, give rise to the complexity of effective recommendations in online and dynamic scenes. In this work, we propose Scene-wise Adaptive Network (SwAN), a novel approach that emphasizes high-performance cold-start online recommendations for new scenes. Our approach introduces several crucial capabilities, including scene similarity learning, user-specific scene transition cognition, scene-specific information construction for the new scene, and enhancing the diverged logical information between scenes. We demonstrate SwAN's potential to optimize dynamic multi-scene recommendation problems by effectively online handling cold-start recommendations for any newly arrived scenes. More encouragingly, SwAN has been successfully deployed in Meituan's online catering recommendation service, which serves millions of customers per day, and SwAN has achieved a 5.64% CTR index improvement relative to the baselines and a 5.19% increase in daily order volume proportion.
comment: 10 pages, 6 figures, accepted by Recsys 2024
♻ ☆ A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease
BACKGROUND: Segmentation of medical data, concerns about personal health information (PHI) breaches, and the direct and indirect costs of consolidating and managing such segmented date should motivate diagnostic machine learning (DML) researchers to identify privacy-preserving machine learning algorithms that can train on distributed or decentralized datasets of different modalities. Federated learning models provide such a decentralized machine learning framework in which multiple investigators in possession of disparate datasets and working on different devices or servers can train collaboratively a global machine learning models without ever having to exchange local data and thus can meet statutory PHI protections. To this end, a vertical federate learning model is devised and tested for efficacy in the detection of Alzheimer's Disease (AD). METHODS: The second version of Open Access Series of Imaging Studies -- with its panoply of demographic, imaging, and clinical assessment datasets -- was used to test a multimodal vertical federated learning (VFL) model for AD detection. RESULTS: By training and validating this VFL model on the demographic, clinical, and MRI data in OASIS-2, an 82.9\% accuracy rate is achieved, consistent with previously reported results. CONCLUSIONS: The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data while respecting statutory privacy constraints. By leveraging multiple modalities of data, the robustness and accuracy of AD detection can be enhanced. This model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research.
comment: 17 pages, 7 figures, 2 tables
♻ ☆ The Threats of Embodied Multimodal LLMs: Jailbreaking Robotic Manipulation in the Physical World
Embodied artificial intelligence (AI) represents an artificial intelligence system that interacts with the physical world through sensors and actuators, seamlessly integrating perception and action. This design enables AI to learn from and operate within complex, real-world environments. Large Language Models (LLMs) deeply explore language instructions, playing a crucial role in devising plans for complex tasks. Consequently, they have progressively shown immense potential in empowering embodied AI, with LLM-based embodied AI emerging as a focal point of research within the community. It is foreseeable that, over the next decade, LLM-based embodied AI robots are expected to proliferate widely, becoming commonplace in homes and industries. However, a critical safety issue that has long been hiding in plain sight is: could LLM-based embodied AI perpetrate harmful behaviors? Our research investigates for the first time how to induce threatening actions in embodied AI, confirming the severe risks posed by these soon-to-be-marketed robots, which starkly contravene Asimov's Three Laws of Robotics and threaten human safety. Specifically, we formulate the concept of embodied AI jailbreaking and expose three critical security vulnerabilities: first, jailbreaking robotics through compromised LLM; second, safety misalignment between action and language spaces; and third, deceptive prompts leading to unaware hazardous behaviors. We also analyze potential mitigation measures and advocate for community awareness regarding the safety of embodied AI applications in the physical world.
comment: Preliminary version (17 pages, 4 figures). Work in progress, revisions ongoing. Appreciate understanding and welcome any feedback
♻ ☆ Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis
Addressing the issue of submerged underwater trash is crucial for safeguarding aquatic ecosystems and preserving marine life. While identifying debris present on the surface of water bodies is straightforward, assessing the underwater submerged waste is a challenge due to the image distortions caused by factors such as light refraction, absorption, suspended particles, color shifts, and occlusion. This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection. The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles. The ultimate objective is to explore the underwater environment, to identify, and remove underwater debris. The absence of benchmarks (dataset or algorithm) in many researches emphasizes the need for a more robust algorithmic solution. Through this research, we aim to give performance comparative analysis of various underwater trash detection algorithms.
Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners
Large Language Models (LLMs) showcase remarkable performance and robust deductive capabilities, yet their expansive size complicates deployment and raises environmental concerns due to substantial resource consumption. The recent development of a quantization technique known as Learnable Singular-value Increment (LSI) has addressed some of these quantization challenges. Leveraging insights from LSI and our extensive research, we have developed innovative methods that enhance the performance of quantized LLMs, particularly in low-bit settings. Our methods consistently deliver state-of-the-art results across various quantization scenarios and offer deep theoretical insights into the quantization process, elucidating the potential of quantized models for widespread application.
comment: Effecient Quantization Methods for LLMs
♻ ☆ Examining Common Paradigms in Multi-Task Learning
While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we investigate paradigms in MTL in the context of STL: First, the impact of the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL empirically in various experiments. To further investigate Adam's effectiveness, we theoretical derive a partial loss-scale invariance under mild assumptions. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.
comment: Accepted for publication in German Conference for Pattern Recognition (GCPR), 2024
♻ ☆ A Multi-Stream Fusion Approach with One-Class Learning for Audio-Visual Deepfake Detection
This paper addresses the challenge of developing a robust audio-visual deepfake detection model. In practical use cases, new generation algorithms are continually emerging, and these algorithms are not encountered during the development of detection methods. This calls for the generalization ability of the method. Additionally, to ensure the credibility of detection methods, it is beneficial for the model to interpret which cues from the video indicate it is fake. Motivated by these considerations, we then propose a multi-stream fusion approach with one-class learning as a representation-level regularization technique. We study the generalization problem of audio-visual deepfake detection by creating a new benchmark by extending and re-splitting the existing FakeAVCeleb dataset. The benchmark contains four categories of fake videos (Real Audio-Fake Visual, Fake Audio-Fake Visual, Fake Audio-Real Visual, and Unsynchronized videos). The experimental results demonstrate that our approach surpasses the previous models by a large margin. Furthermore, our proposed framework offers interpretability, indicating which modality the model identifies as more likely to be fake. The source code is released at https://github.com/bok-bok/MSOC.
♻ ☆ Unsupervised Robust Cross-Lingual Entity Alignment via Neighbor Triple Matching with Entity and Relation Texts
Cross-lingual entity alignment (EA) enables the integration of multiple knowledge graphs (KGs) across different languages, providing users with seamless access to diverse and comprehensive knowledge. Existing methods, mostly supervised, face challenges in obtaining labeled entity pairs. To address this, recent studies have shifted towards self-supervised and unsupervised frameworks. Despite their effectiveness, these approaches have limitations: (1) Relation passing: mainly focusing on the entity while neglecting the semantic information of relations, (2) Isomorphic assumption: assuming isomorphism between source and target graphs, which leads to noise and reduced alignment accuracy, and (3) Noise vulnerability: susceptible to noise in the textual features, especially when encountering inconsistent translations or Out-Of-Vocabulary (OOV) problems. In this paper, we propose ERAlign, an unsupervised and robust cross-lingual EA pipeline that jointly performs Entity-level and Relation-level Alignment by neighbor triple matching strategy using semantic textual features of relations and entities. Its refinement step iteratively enhances results by fusing entity-level and relation-level alignments based on neighbor triple matching. The additional verification step examines the entities' neighbor triples as the linearized text. This Align-then-Verify pipeline rigorously assesses alignment results, achieving near-perfect alignment even in the presence of noisy textual features of entities. Our extensive experiments demonstrate that the robustness and general applicability of ERAlign improved the accuracy and effectiveness of EA tasks, contributing significantly to knowledge-oriented applications.
♻ ☆ Towards a Science Exocortex
Artificial intelligence (AI) methods are poised to revolutionize intellectual work, with generative AI enabling automation of text analysis, text generation, and simple decision making or reasoning. The impact to science is only just beginning, but the opportunity is significant since scientific research relies fundamentally on extended chains of cognitive work. Here, we review the state of the art in agentic AI systems, and discuss how these methods could be extended to have even greater impact on science. We propose the development of an exocortex, a synthetic extension of a person's cognition. A science exocortex could be designed as a swarm of AI agents, with each agent individually streamlining specific researcher tasks, and whose inter-communication leads to emergent behavior that greatly extend the researcher's cognition and volition.
comment: 30 pages, 5 figures, 1 table
♻ ☆ Separable Hamiltonian Neural Networks
Hamiltonian neural networks (HNNs) are state-of-the-art models that regress the vector field of a dynamical system under the learning bias of Hamilton's equations. A recent observation is that embedding a bias regarding the additive separability of the Hamiltonian reduces the regression complexity and improves regression performance. We propose separable HNNs that embed additive separability within HNNs using observational, learning, and inductive biases. We show that the proposed models are more effective than the HNN at regressing the Hamiltonian and the vector field. Consequently, the proposed models predict the dynamics and conserve the total energy of the Hamiltonian system more accurately.
comment: 13 pages
♻ ☆ Characterizing Multimodal Long-form Summarization: A Case Study on Financial Reports
As large language models (LLMs) expand the power of natural language processing to handle long inputs, rigorous and systematic analyses are necessary to understand their abilities and behavior. A salient application is summarization, due to its ubiquity and controversy (e.g., researchers have declared the death of summarization). In this paper, we use financial report summarization as a case study because financial reports are not only long but also use numbers and tables extensively. We propose a computational framework for characterizing multimodal long-form summarization and investigate the behavior of Claude 2.0/2.1, GPT-4/3.5, and Cohere. We find that GPT-3.5 and Cohere fail to perform this summarization task meaningfully. For Claude 2 and GPT-4, we analyze the extractiveness of the summary and identify a position bias in LLMs. This position bias disappears after shuffling the input for Claude, which suggests that Claude seems to recognize important information. We also conduct a comprehensive investigation on the use of numeric data in LLM-generated summaries and offer a taxonomy of numeric hallucination. We employ prompt engineering to improve GPT-4's use of numbers with limited success. Overall, our analyses highlight the strong capability of Claude 2 in handling long multimodal inputs compared to GPT-4. The generated summaries and evaluation code are available at https://github.com/ChicagoHAI/characterizing-multimodal-long-form-summarization.
♻ ☆ The Llama 3 Herd of Models
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
♻ ☆ End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. we maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
comment: Accepted by IEEE TPAMI
♻ ☆ Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss
Long-tailed (LT) classification is an unavoidable and challenging problem in the real world. Most existing long-tailed classification methods focus only on solving the class-wise imbalance while ignoring the attribute-wise imbalance. The deviation of a classification model is caused by both class-wise and attribute-wise imbalance. Due to the fact that attributes are implicit in most datasets and the combination of attributes is complex, attribute-wise imbalance is more difficult to handle. For this purpose, we proposed a novel long-tailed classification framework, aiming to build a multi-granularity classification model by means of invariant feature learning. This method first unsupervisedly constructs Coarse-Grained forest (CLF) to better characterize the distribution of attributes within a class. Depending on the distribution of attributes, one can customize suitable sampling strategies to construct different imbalanced datasets. We then introduce multi-center loss (MCL) that aims to gradually eliminate confusing attributes during feature learning process. The proposed framework does not necessarily couple to a specific LT classification model structure and can be integrated with any existing LT method as an independent component. Extensive experiments show that our approach achieves state-of-the-art performance on both existing benchmarks ImageNet-GLT and MSCOCO-GLT and can improve the performance of existing LT methods. Our codes are available on GitHub: \url{https://github.com/jinyery/cognisance}
comment: This is another research work to apply leading tree structure along with deep learning architecture, aiming to deal with attribute-wise long-tail distribution within class
♻ ☆ Learning From Scenarios for Stochastic Repairable Scheduling
When optimizing problems with uncertain parameter values in a linear objective, decision-focused learning enables end-to-end learning of these values. We are interested in a stochastic scheduling problem, in which processing times are uncertain, which brings uncertain values in the constraints, and thus repair of an initial schedule may be needed. Historical realizations of the stochastic processing times are available. We show how existing decision-focused learning techniques based on stochastic smoothing can be adapted to this scheduling problem. We include an extensive experimental evaluation to investigate in which situations decision-focused learning outperforms the state of the art for such situations: scenario-based stochastic optimization.
comment: 8 pages, updated according to camera-ready version CPAIOR'24
♻ ☆ Enabling Regional Explainability by Automatic and Model-agnostic Rule Extraction
In Explainable AI, rule extraction translates model knowledge into logical rules, such as IF-THEN statements, crucial for understanding patterns learned by black-box models. This could significantly aid in fields like disease diagnosis, disease progression estimation, or drug discovery. However, such application domains often contain imbalanced data, with the class of interest underrepresented. Existing methods inevitably compromise the performance of rules for the minor class to maximise the overall performance. As the first attempt in this field, we propose a model-agnostic approach for extracting rules from specific subgroups of data, featuring automatic rule generation for numerical features. This method enhances the regional explainability of machine learning models and offers wider applicability compared to existing methods. We additionally introduce a new method for selecting features to compose rules, reducing computational costs in high-dimensional spaces. Experiments across various datasets and models demonstrate the effectiveness of our methods.
♻ ☆ Label Dropout: Improved Deep Learning Echocardiography Segmentation Using Multiple Datasets With Domain Shift and Partial Labelling MICCAI 2024
Echocardiography (echo) is the first imaging modality used when assessing cardiac function. The measurement of functional biomarkers from echo relies upon the segmentation of cardiac structures and deep learning models have been proposed to automate the segmentation process. However, in order to translate these tools to widespread clinical use it is important that the segmentation models are robust to a wide variety of images (e.g. acquired from different scanners, by operators with different levels of expertise etc.). To achieve this level of robustness it is necessary that the models are trained with multiple diverse datasets. A significant challenge faced when training with multiple diverse datasets is the variation in label presence, i.e. the combined data are often partially-labelled. Adaptations of the cross entropy loss function have been proposed to deal with partially labelled data. In this paper we show that training naively with such a loss function and multiple diverse datasets can lead to a form of shortcut learning, where the model associates label presence with domain characteristics, leading to a drop in performance. To address this problem, we propose a novel label dropout scheme to break the link between domain characteristics and the presence or absence of labels. We demonstrate that label dropout improves echo segmentation Dice score by 62% and 25% on two cardiac structures when training using multiple diverse partially labelled datasets.
comment: 10 pages, 5 figures, ASMUS 2024, Held in Conjunction with MICCAI 2024
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ Conditional Fairness for Generative AIs
The deployment of generative AI (GenAI) models raises significant fairness concerns, addressed in this paper through novel characterization and enforcement techniques specific to GenAI. Unlike standard AI performing specific tasks, GenAI's broad functionality requires "conditional fairness" tailored to the context being generated, such as demographic fairness in generating images of poor people versus successful business leaders. We define two fairness levels: the first evaluates fairness in generated outputs, independent of prompts and models; the second assesses inherent fairness with neutral prompts. Given the complexity of GenAI and challenges in fairness specifications, we focus on bounding the worst case, considering a GenAI system unfair if the distance between appearances of a specific group exceeds preset thresholds. We also explore combinatorial testing for accessing relative completeness in intersectional fairness. By bounding the worst case, we develop a prompt injection scheme within an agent-based framework to enforce conditional fairness with minimal intervention, validated on state-of-the-art GenAI systems.
♻ ☆ Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds
Representation and generative learning, as reconstruction-based methods, have demonstrated their potential for mutual reinforcement across various domains. In the field of point cloud processing, although existing studies have adopted training strategies from generative models to enhance representational capabilities, these methods are limited by their inability to genuinely generate 3D shapes. To explore the benefits of deeply integrating 3D representation learning and generative learning, we propose an innovative framework called \textit{Point-MGE}. Specifically, this framework first utilizes a vector quantized variational autoencoder to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, we design a sliding masking ratios to smooth the transition from representation learning to generative learning. Moreover, our method demonstrates strong generalization capability in learning high-capacity models, achieving new state-of-the-art performance across multiple downstream tasks. In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset. Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
♻ ☆ RNNs, CNNs and Transformers in Human Action Recognition: A Survey and a Hybrid Model
Human Action Recognition (HAR) encompasses the task of monitoring human activities across various domains, including but not limited to medical, educational, entertainment, visual surveillance, video retrieval, and the identification of anomalous activities. Over the past decade, the field of HAR has witnessed substantial progress by leveraging Convolutional Neural Networks (CNNs) to effectively extract and comprehend intricate information, thereby enhancing the overall performance of HAR systems. Recently, the domain of computer vision has witnessed the emergence of Vision Transformers (ViTs) as a potent solution. The efficacy of transformer architecture has been validated beyond the confines of image analysis, extending their applicability to diverse video-related tasks. Notably, within this landscape, the research community has shown keen interest in HAR, acknowledging its manifold utility and widespread adoption across various domains. This article aims to present an encompassing survey that focuses on CNNs and the evolution of Recurrent Neural Networks (RNNs) to ViTs given their importance in the domain of HAR. By conducting a thorough examination of existing literature and exploring emerging trends, this study undertakes a critical analysis and synthesis of the accumulated knowledge in this field. Additionally, it investigates the ongoing efforts to develop hybrid approaches. Following this direction, this article presents a novel hybrid model that seeks to integrate the inherent strengths of CNNs and ViTs.
♻ ☆ AMAES: Augmented Masked Autoencoder Pretraining on Public Brain MRI Data for 3D-Native Segmentation MICCAI 2024
This study investigates the impact of self-supervised pretraining of 3D semantic segmentation models on a large-scale, domain-specific dataset. We introduce BRAINS-45K, a dataset of 44,756 brain MRI volumes from public sources, the largest public dataset available, and revisit a number of design choices for pretraining modern segmentation architectures by simplifying and optimizing state-of-the-art methods, and combining them with a novel augmentation strategy. The resulting AMAES framework is based on masked-image-modeling and intensity-based augmentation reversal and balances memory usage, runtime, and finetuning performance. Using the popular U-Net and the recent MedNeXt architecture as backbones, we evaluate the effect of pretraining on three challenging downstream tasks, covering single-sequence, low-resource settings, and out-of-domain generalization. The results highlight that pretraining on the proposed dataset with AMAES significantly improves segmentation performance in the majority of evaluated cases, and that it is beneficial to pretrain the model with augmentations, despite pretraing on a large-scale dataset. Code and model checkpoints for reproducing results, as well as the BRAINS-45K dataset are available at \url{https://github.com/asbjrnmunk/amaes}.
comment: Accepted at ADSMI @ MICCAI 2024
♻ ☆ DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection CIKM 2024
Utilizing market forecasts is pivotal in optimizing portfolio selection strategies. We introduce DeepClair, a novel framework for portfolio selection. DeepClair leverages a transformer-based time-series forecasting model to predict market trends, facilitating more informed and adaptable portfolio decisions. To integrate the forecasting model into a deep reinforcement learning-driven portfolio selection framework, we introduced a two-step strategy: first, pre-training the time-series model on market data, followed by fine-tuning the portfolio selection architecture using this model. Additionally, we investigated the optimization technique, Low-Rank Adaptation (LoRA), to enhance the pre-trained forecasting model for fine-tuning in investment scenarios. This work bridges market forecasting and portfolio selection, facilitating the advancement of investment strategies.
comment: CIKM 2024 Accepted
♻ ☆ Research on the Spatial Data Intelligent Large Model
This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
comment: V1 and V2 are in Chinese language, other versions are in English
♻ ☆ Training-free Graph Neural Networks and the Power of Labels as Features
We propose training-free graph neural networks (TFGNNs), which can be used without training and can also be improved with optional training, for transductive node classification. We first advocate labels as features (LaF), which is an admissible but not explored technique. We show that LaF provably enhances the expressive power of graph neural networks. We design TFGNNs based on this analysis. In the experiments, we confirm that TFGNNs outperform existing GNNs in the training-free setting and converge with much fewer training iterations than traditional GNNs.
comment: TMLR 2024
♻ ☆ Queries With Exact Truth Values in Paraconsistent Description Logics KR 2024
We present a novel approach to querying classical inconsistent description logic (DL) knowledge bases by adopting a~paraconsistent semantics with the four Belnapian values: exactly true ($\mathbf{T}$), exactly false ($\mathbf{F}$), both ($\mathbf{B}$), and neither ($\mathbf{N}$). In contrast to prior studies on paraconsistent DLs, we allow truth value operators in the query language, which can be used to differentiate between answers having contradictory evidence and those having only positive evidence. We present a reduction to classical DL query answering that allows us to pinpoint the precise combined and data complexity of answering queries with values in paraconsistent $\mathcal{ALCHI}$ and its sublogics. Notably, we show that tractable data complexity is retained for Horn DLs. We present a comparison with repair-based inconsistency-tolerant semantics, showing that the two approaches are incomparable.
comment: This is an extended version of a paper with the same title appearing at the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
♻ ☆ Follow-Up Questions Improve Documents Generated by Large Language Models
This study investigates the impact of Large Language Models (LLMs) generating follow-up questions in response to user requests for short (1-page) text documents. Users interacted with a novel web-based AI system designed to ask follow-up questions. Users requested documents they would like the AI to produce. The AI then generated follow-up questions to clarify the user's needs or offer additional insights before generating the requested documents. After answering the questions, users were shown a document generated using both the initial request and the questions and answers, and a document generated using only the initial request. Users indicated which document they preferred and gave feedback about their experience with the question-answering process. The findings of this study show clear benefits to question-asking both in document preference and in the qualitative user experience. This study further shows that users found more value in questions which were thought-provoking, open-ended, or offered unique insights into the user's request as opposed to simple information-gathering questions.
♻ ☆ Polyphone Disambiguation in Mandarin Chinese with Semi-Supervised Learning
The majority of Chinese characters are monophonic, while a special group of characters, called polyphonic characters, have multiple pronunciations. As a prerequisite of performing speech-related generative tasks, the correct pronunciation must be identified among several candidates. This process is called Polyphone Disambiguation. Although the problem has been well explored with both knowledge-based and learning-based approaches, it remains challenging due to the lack of publicly available labeled datasets and the irregular nature of polyphone in Mandarin Chinese. In this paper, we propose a novel semi-supervised learning (SSL) framework for Mandarin Chinese polyphone disambiguation that can potentially leverage unlimited unlabeled text data. We explore the effect of various proxy labeling strategies including entropy-thresholding and lexicon-based labeling. Qualitative and quantitative experiments demonstrate that our method achieves state-of-the-art performance. In addition, we publish a novel dataset specifically for the polyphone disambiguation task to promote further research.
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made so far in applying this promising scheme to more abstract entities. A prominent example of these could be the concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.. We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good performance on baseline experiments, where the distributions of the training and testing stages are equal. Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions differ, CL boasts more robust and much better error performance.
♻ ☆ Active Generation for Image Classification ECCV 2024
Recently, the growing capabilities of deep generative models have underscored their potential in enhancing image classification accuracy. However, existing methods often demand the generation of a disproportionately large number of images compared to the original dataset, while having only marginal improvements in accuracy. This computationally expensive and time-consuming process hampers the practicality of such approaches. In this paper, we propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model. With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation. It aims to create images akin to the challenging or misclassified samples encountered by the current model and incorporates these generated images into the training set to augment model performance. ActGen introduces an attentive image guidance technique, using real images as guides during the denoising process of a diffusion model. The model's attention on class prompt is leveraged to ensure the preservation of similar foreground object while diversifying the background. Furthermore, we introduce a gradient-based generation guidance method, which employs two losses to generate more challenging samples and prevent the generated images from being too similar to previously generated ones. Experimental results on the CIFAR and ImageNet datasets demonstrate that our method achieves better performance with a significantly reduced number of generated images. Code is available at https://github.com/hunto/ActGen.
comment: ECCV 2024
♻ ☆ EmoDM: A Diffusion Model for Evolutionary Multi-objective Optimization
Evolutionary algorithms have been successful in solving multi-objective optimization problems (MOPs). However, as a class of population-based search methodology, evolutionary algorithms require a large number of evaluations of the objective functions, preventing them from being applied to a wide range of expensive MOPs. To tackle the above challenge, this work proposes for the first time a diffusion model that can learn to perform evolutionary multi-objective search, called EmoDM. This is achieved by treating the reversed convergence process of evolutionary search as the forward diffusion and learn the noise distributions from previously solved evolutionary optimization tasks. The pre-trained EmoDM can then generate a set of non-dominated solutions for a new MOP by means of its reverse diffusion without further evolutionary search, thereby significantly reducing the required function evaluations. To enhance the scalability of EmoDM, a mutual entropy-based attention mechanism is introduced to capture the decision variables that are most important for the objectives. Experimental results demonstrate the competitiveness of EmoDM in terms of both the search performance and computational efficiency compared with state-of-the-art evolutionary algorithms in solving MOPs having up to 5000 decision variables. The pre-trained EmoDM is shown to generalize well to unseen problems, revealing its strong potential as a general and efficient MOP solver.
♻ ☆ MathBridge: A Large Corpus Dataset for Translating Spoken Mathematical Expressions into $LaTeX$ Formulas for Improved Readability
Understanding sentences that contain mathematical expressions in text form poses significant challenges. To address this, the importance of converting these expressions into a compiled formula is highlighted. For instance, the expression ``x equals minus b plus or minus the square root of b squared minus four a c, all over two a'' from automatic speech recognition (ASR) is more readily comprehensible when displayed as a compiled formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. To develop a text-to-formula conversion system, we can break down the process into text-to-LaTeX and LaTeX-to-formula conversions, with the latter managed by various existing LaTeX engines. However, the former approach has been notably hindered by the severe scarcity of text-to-LaTeX paired data, which presents a significant challenge in this field. In this context, we introduce MathBridge, the first extensive dataset for translating mathematical spoken expressions into LaTeX, to establish a robust baseline for future research on text-to-LaTeX translation. MathBridge comprises approximately 23 million LaTeX formulas paired with the corresponding spoken English expressions. Through comprehensive evaluations, including fine-tuning and testing with data, we discovered that MathBridge significantly enhances the capabilities of pretrained language models for text-to-LaTeX translation. Specifically, for the T5-large model, the sacreBLEU score increased from 4.77 to 46.8, demonstrating substantial enhancement. Our findings indicate the need for a new metric, specifically for text-to-LaTeX conversion evaluations.
comment: 9page, 6 figures
♻ ☆ Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback. Tools for the Recurrent Optimization via Machine Editing (ROME) method can be found at https://github.com/ajn313/ROME-LLM
comment: Accepted at MLCAD '24. 10 pages, 7 figures, 5 tables
♻ ☆ A Non-negative VAE:the Generalized Gamma Belief Network
The gamma belief network (GBN), often regarded as a deep topic model, has demonstrated its potential for uncovering multi-layer interpretable latent representations in text data. Its notable capability to acquire interpretable latent factors is partially attributed to sparse and non-negative gamma-distributed latent variables. However, the existing GBN and its variations are constrained by the linear generative model, thereby limiting their expressiveness and applicability. To address this limitation, we introduce the generalized gamma belief network (Generalized GBN) in this paper, which extends the original linear generative model to a more expressive non-linear generative model. Since the parameters of the Generalized GBN no longer possess an analytic conditional posterior, we further propose an upward-downward Weibull inference network to approximate the posterior distribution of the latent variables. The parameters of both the generative model and the inference network are jointly trained within the variational inference framework. Finally, we conduct comprehensive experiments on both expressivity and disentangled representation learning tasks to evaluate the performance of the Generalized GBN against state-of-the-art Gaussian variational autoencoders serving as baselines.
♻ ☆ SM4Depth: Seamless Monocular Metric Depth Estimation across Multiple Cameras and Scenes by One Model
In the last year, universal monocular metric depth estimation (universal MMDE) has gained considerable attention, serving as the foundation model for various multimedia tasks, such as video and image editing. Nonetheless, current approaches face challenges in maintaining consistent accuracy across diverse scenes without scene-specific parameters and pre-training, hindering the practicality of MMDE. Furthermore, these methods rely on extensive datasets comprising millions, if not tens of millions, of data for training, leading to significant time and hardware expenses. This paper presents SM$^4$Depth, a model that seamlessly works for both indoor and outdoor scenes, without needing extensive training data and GPU clusters. Firstly, to obtain consistent depth across diverse scenes, we propose a novel metric scale modeling, i.e., variation-based unnormalized depth bins. It reduces the ambiguity of the conventional metric bins and enables better adaptation to large depth gaps of scenes during training. Secondly, we propose a "divide and conquer" solution to reduce reliance on massive training data. Instead of estimating directly from the vast solution space, the metric bins are estimated from multiple solution sub-spaces to reduce complexity. Additionally, we introduce an uncut depth dataset, BUPT Depth, to evaluate the depth accuracy and consistency across various indoor and outdoor scenes. Trained on a consumer-grade GPU using just 150K RGB-D pairs, SM$^4$Depth achieves outstanding performance on the most never-before-seen datasets, especially maintaining consistent accuracy across indoors and outdoors. The code can be found https://github.com/mRobotit/SM4Depth.
comment: Accepted by ACM MultiMedia 24, Project Page: xuefeng-cvr.github.io/SM4Depth
♻ ☆ Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks
It is hard to collect enough flaw images for training deep learning network in industrial production. Therefore, existing industrial anomaly detection methods prefer to use CNN-based unsupervised detection and localization network to achieve this task. However, these methods always fail when there are varieties happened in new signals since traditional end-to-end networks suffer barriers of fitting nonlinear model in high-dimensional space. Moreover, they have a memory library by clustering the feature of normal images essentially, which cause it is not robust to texture change. To this end, we propose the Vision Transformer based (VIT-based) unsupervised anomaly detection network. It utilizes a hierarchical task learning and human experience to enhance its interpretability. Our network consists of pattern generation and comparison networks. Pattern generation network uses two VIT-based encoder modules to extract the feature of two consecutive image patches, then uses VIT-based decoder module to learn the human designed style of these features and predict the third image patch. After this, we use the Siamese-based network to compute the similarity of the generation image patch and original image patch. Finally, we refine the anomaly localization by the bi-directional inference strategy. Comparison experiments on public dataset MVTec dataset show our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods. In addition, we give a qualitative illustration on our own leather and cloth datasets. The accurate segment results strongly prove the accuracy of our method in anomaly detection.
♻ ☆ A Study on Large Language Models' Limitations in Multiple-Choice Question Answering
The widespread adoption of Large Language Models (LLMs) has become commonplace, particularly with the emergence of open-source models. More importantly, smaller models are well-suited for integration into consumer devices and are frequently employed either as standalone solutions or as subroutines in various AI tasks. Despite their ubiquitous use, there is no systematic analysis of their specific capabilities and limitations. In this study, we tackle one of the most widely used tasks - answering Multiple Choice Question (MCQ). We analyze 26 small open-source models and find that 65% of the models do not understand the task, only 4 models properly select an answer from the given choices, and only 5 of these models are choice order independent. These results are rather alarming given the extensive use of MCQ tests with these models. We recommend exercising caution and testing task understanding before using MCQ to evaluate LLMs in any field whatsoever.
♻ ☆ Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes. The conventional approaches that tackle this problem typically employ an unsupervised learning framework, capturing normality patterns with exclusive normal data during training and identifying deviations as anomalies during testing. However, these methods face critical drawbacks: they either only depend on proxy tasks for representation without directly pinpointing normal patterns, or they neglect to differentiate between spatial and temporal normality patterns. More recent methods that use contrastive learning with negative sampling also face high computational costs, limiting their scalability to large graphs. To address these challenges, we introduce a novel Spatial-Temporal memories-enhanced graph autoencoder (STRIPE). Initially, STRIPE employs Graph Neural Networks (GNNs) and gated temporal convolution layers to extract spatial and temporal features. Then STRIPE incorporates separate spatial and temporal memory networks to capture and store prototypes of normal patterns, respectively. These stored patterns are retrieved and integrated with encoded graph embeddings through a mutual attention mechanism. Finally, the integrated features are fed into the decoder to reconstruct the graph streams which serve as the proxy task for anomaly detection. This comprehensive approach not only minimizes reconstruction errors but also emphasizes the compactness and distinctiveness of the embeddings w.r.t. the nearest memory prototypes. Extensive experiments on six benchmark datasets demonstrate the effectiveness and efficiency of STRIPE, where STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
♻ ☆ Harm Amplification in Text-to-Image Models
Text-to-image (T2I) models have emerged as a significant advancement in generative AI; however, there exist safety concerns regarding their potential to produce harmful image outputs even when users input seemingly safe prompts. This phenomenon, where T2I models generate harmful representations that were not explicit in the input prompt, poses a potentially greater risk than adversarial prompts, leaving users unintentionally exposed to harms. Our paper addresses this issue by formalizing a definition for this phenomenon which we term harm amplification. We further contribute to the field by developing a framework of methodologies to quantify harm amplification in which we consider the harm of the model output in the context of user input. We then empirically examine how to apply these different methodologies to simulate real-world deployment scenarios including a quantification of disparate impacts across genders resulting from harm amplification. Together, our work aims to offer researchers tools to comprehensively address safety challenges in T2I systems and contribute to the responsible deployment of generative AI models.
♻ ☆ MMP++: Motion Manifold Primitives with Parametric Curve Models
Motion Manifold Primitives (MMP), a manifold-based approach for encoding basic motion skills, can produce diverse trajectories, enabling the system to adapt to unseen constraints. Nonetheless, we argue that current MMP models lack crucial functionalities of movement primitives, such as temporal and via-points modulation, found in traditional approaches. This shortfall primarily stems from MMP's reliance on discrete-time trajectories. To overcome these limitations, we introduce Motion Manifold Primitives++ (MMP++), a new model that integrates the strengths of both MMP and traditional methods by incorporating parametric curve representations into the MMP framework. Furthermore, we identify a significant challenge with MMP++: performance degradation due to geometric distortions in the latent space, meaning that similar motions are not closely positioned. To address this, Isometric Motion Manifold Primitives++ (IMMP++) is proposed to ensure the latent space accurately preserves the manifold's geometry. Our experimental results across various applications, including 2-DoF planar motions, 7-DoF robot arm motions, and SE(3) trajectory planning, show that MMP++ and IMMP++ outperform existing methods in trajectory generation tasks, achieving substantial improvements in some cases. Moreover, they enable the modulation of latent coordinates and via-points, thereby allowing efficient online adaptation to dynamic environments.
comment: 15 pages. The paper will appear in the IEEE Transactions on Robotics
DP-MemArc: Differential Privacy Transfer Learning for Memory Efficient Language Models
Large language models have repeatedly shown outstanding performance across diverse applications. However, deploying these models can inadvertently risk user privacy. The significant memory demands during training pose a major challenge in terms of resource consumption. This substantial size places a heavy load on memory resources, raising considerable practical concerns. In this paper, we introduce DP-MemArc, a novel training framework aimed at reducing the memory costs of large language models while emphasizing the protection of user data privacy. DP-MemArc incorporates side network or reversible network designs to support a variety of differential privacy memory-efficient fine-tuning schemes. Our approach not only achieves in memory optimization but also ensures robust privacy protection, keeping user data secure and confidential. Extensive experiments have demonstrated that DP-MemArc effectively provides differential privacy-efficient fine-tuning across different task scenarios.
comment: 9 pages second version
GRAMMAR: Grounded and Modular Methodology for Assessment of Closed-Domain Retrieval-Augmented Language Model
Retrieval-Augmented Generation (RAG) systems are widely used across various industries for querying closed-domain and in-house knowledge bases. However, evaluating these systems presents significant challenges due to the private nature of closed-domain data and a scarcity of queries with verifiable ground truths. Moreover, there is a lack of analytical methods to diagnose problematic modules and identify types of failure, such as those caused by knowledge deficits or issues with robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising a grounded data generation process and an evaluation protocol that effectively pinpoints defective modules. Our validation experiments reveal that % traditional reference-free evaluation methods often inaccurately assess false generations, tending toward optimism. In contrast, GRAMMAR provides a reliable approach for identifying vulnerable modules and supports hypothesis testing for textual form vulnerabilities. % An open-source tool accompanying this framework will be released to easily reproduce our results and enable reliable and modular evaluation in closed-domain settings. An open-source tool accompanying this framework is available in our GitHub repository \url{https://github.com/xinzhel/grammar}, allowing for easy reproduction of our results and enabling reliable and modular evaluation in closed-domain settings.
comment: Under Review
♻ ☆ MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics, and covers five essential capabilities: Understanding, Reasoning, Planning, Problem-solving, and Self-correction. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/tree/main/docs/research/mmau.
♻ ☆ Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble ICML 2024
Recent research underscores the pivotal role of the Out-of-Distribution (OOD) feature representation field scale in determining the efficacy of models in OOD detection. Consequently, the adoption of model ensembles has emerged as a prominent strategy to augment this feature representation field, capitalizing on anticipated model diversity. However, our introduction of novel qualitative and quantitative model ensemble evaluation methods, specifically Loss Basin/Barrier Visualization and the Self-Coupling Index, reveals a critical drawback in existing ensemble methods. We find that these methods incorporate weights that are affine-transformable, exhibiting limited variability and thus failing to achieve the desired diversity in feature representation. To address this limitation, we elevate the dimensions of traditional model ensembles, incorporating various factors such as different weight initializations, data holdout, etc., into distinct supervision tasks. This innovative approach, termed Multi-Comprehension (MC) Ensemble, leverages diverse training tasks to generate distinct comprehensions of the data and labels, thereby extending the feature representation field. Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection compared to both the naive Deep Ensemble method and a standalone model of comparable size. This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
comment: ICML 2024
♻ ☆ Personalizing Federated Instrument Segmentation with Visual Trait Priors in Robotic Surgery
Personalized federated learning (PFL) for surgical instrument segmentation (SIS) is a promising approach. It enables multiple clinical sites to collaboratively train a series of models in privacy, with each model tailored to the individual distribution of each site. Existing PFL methods rarely consider the personalization of multi-headed self-attention, and do not account for appearance diversity and instrument shape similarity, both inherent in surgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait priors for SIS, incorporating global-personalized disentanglement (GPD), appearance-regulation personalized enhancement (APE), and shape-similarity global enhancement (SGE), to boost SIS performance in each site. GPD represents the first attempt at head-wise assignment for multi-headed self-attention personalization. To preserve the unique appearance representation of each site and gradually leverage the inter-site difference, APE introduces appearance regulation and provides customized layer-wise aggregation solutions via hypernetworks for each site's personalized parameters. The mutual shape information of instruments is maintained and shared via SGE, which enhances the cross-style shape consistency on the image level and computes the shape-similarity contribution of each site on the prediction level for updating the global parameters. PFedSIS outperforms state-of-the-art methods with +1.51% Dice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding code and models will be released at https://github.com/wzjialang/PFedSIS.
comment: 9 pages, 3 figures, under review
♻ ☆ Trojan Activation Attack: Red-Teaming Large Language Models using Activation Steering for Safety-Alignment CIKM'24
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. In this work, we study a different attack scenario, called Trojan Activation Attack (TA^2), which injects trojan steering vectors into the activation layers of LLMs. These malicious steering vectors can be triggered at inference time to steer the models toward attacker-desired behaviors by manipulating their activations. Our experiment results on four primary alignment tasks show that TA^2 is highly effective and adds little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks.
comment: ACM International Conference on Information and Knowledge Management (CIKM'24)
♻ ☆ Enhancing Data Privacy in Large Language Models through Private Association Editing
Large Language Models (LLMs) are powerful tools with extensive applications, but their tendency to memorize private information raises significant concerns as private data leakage can easily happen. In this paper, we introduce Private Association Editing (PAE), a novel defense approach for private data leakage. PAE is designed to effectively remove Personally Identifiable Information (PII) without retraining the model. Our approach consists of a four-step procedure: detecting memorized PII, applying PAE cards to mitigate memorization of private data, verifying resilience to targeted data extraction (TDE) attacks, and ensuring consistency in the post-edit LLMs. The versatility and efficiency of PAE, which allows for batch modifications, significantly enhance data privacy in LLMs. Experimental results demonstrate the effectiveness of PAE in mitigating private data leakage. We believe PAE will serve as a critical tool in the ongoing effort to protect data privacy in LLMs, encouraging the development of safer models for real-world applications.
♻ ☆ Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk postoperative site. Target volume annotations adhere to established radiotherapy planning protocols, ensuring consistency across cases and institutions. For preoperative meningiomas, the target volume encompasses the entire GTV and associated nodular dural tail, while for postoperative cases, it includes at-risk resection cavity margins as determined by the treating institution. Case annotations were reviewed and approved by expert neuroradiologists and radiation oncologists. Participating teams will develop, containerize, and evaluate automated segmentation models using this comprehensive dataset. Model performance will be assessed using an adapted lesion-wise Dice Similarity Coefficient and the 95% Hausdorff distance. The top-performing teams will be recognized at the Medical Image Computing and Computer Assisted Intervention Conference in October 2024. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes.
comment: 14 pages, 9 figures, 1 table
Graphics 5
☆ Exploring Uncertainty Visualization for Degenerate Tensors in 3D Symmetric Second-Order Tensor Field Ensembles
Symmetric second-order tensors are fundamental in various scientific and engineering domains, as they can represent properties such as material stresses or diffusion processes in brain tissue. In recent years, several approaches have been introduced and improved to analyze these fields using topological features, such as degenerate tensor locations, i.e., the tensor has repeated eigenvalues, or normal surfaces. Traditionally, the identification of such features has been limited to single tensor fields. However, it has become common to create ensembles to account for uncertainties and variability in simulations and measurements. In this work, we explore novel methods for describing and visualizing degenerate tensor locations in 3D symmetric second-order tensor field ensembles. We base our considerations on the tensor mode and analyze its practicality in characterizing the uncertainty of degenerate tensor locations before proposing a variety of visualization strategies to effectively communicate degenerate tensor information. We demonstrate our techniques for synthetic and simulation data sets. The results indicate that the interplay of different descriptions for uncertainty can effectively convey information on degenerate tensor locations.
comment: 9 + 2 pages, 9 figures, to be published at VIS 2024
☆ Topological Simplifcation of Jacobi Sets for Piecewise-Linear Bivariate 2D Scalar Fields with Adjustment of the Underlying Data
Jacobi sets are an important tool to study the relationship between functions. Defined as the set of all points where the function's gradients are linearly dependent, Jacobi sets extend the notion of critical point to multifields. In practice, Jacobi sets for piecewise-linear approximations of smooth functions can become very complex and large due to noise and numerical errors. Existing methods that simplify Jacobi sets exist, but either do not address how the functions' values have to change in order to have simpler Jacobi sets or remain purely theoretical. In this paper, we present a method that modifies 2D bivariate scalar fields such that Jacobi set components that are due to noise are removed, while preserving the essential structures of the fields. The method uses the Jacobi set to decompose the domain, stores the and weighs the resulting regions in a neighborhood graph, which is then used to determine which regions to join by collapsing the image of the region's cells. We investigate the influence of different tie-breaks when building the neighborhood graphs and the treatment of collapsed cells. We apply our algorithm to a range of datasets, both analytical and real-world and compare its performance to simple data smoothing.
☆ CT4D: Consistent Text-to-4D Generation with Animatable Meshes
Text-to-4D generation has recently been demonstrated viable by integrating a 2D image diffusion model with a video diffusion model. However, existing models tend to produce results with inconsistent motions and geometric structures over time. To this end, we present a novel framework, coined CT4D, which directly operates on animatable meshes for generating consistent 4D content from arbitrary user-supplied prompts. The primary challenges of our mesh-based framework involve stably generating a mesh with details that align with the text prompt while directly driving it and maintaining surface continuity. Our CT4D framework incorporates a unique Generate-Refine-Animate (GRA) algorithm to enhance the creation of text-aligned meshes. To improve surface continuity, we divide a mesh into several smaller regions and implement a uniform driving function within each area. Additionally, we constrain the animating stage with a rigidity regulation to ensure cross-region continuity. Our experimental results, both qualitative and quantitative, demonstrate that our CT4D framework surpasses existing text-to-4D techniques in maintaining interframe consistency and preserving global geometry. Furthermore, we showcase that this enhanced representation inherently possesses the capability for combinational 4D generation and texture editing.
♻ ☆ Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
♻ ☆ Nearest Neighbor Classification for Classical Image Upsampling
Given a set of ordered pixel data in the form of an image, our goal is to perform upsampling on the data such that: the resulting resolution is improved by some factor, the final result passes the human test, having added new, believable, and realistic information and detail to the image, the time complexity for upscaling is relatively close to that of lossy upscaling implementations.
comment: 6 pages
Robotics 38
☆ HyperTaxel: Hyper-Resolution for Taxel-Based Tactile Signals Through Contrastive Learning IROS 2024
To achieve dexterity comparable to that of humans, robots must intelligently process tactile sensor data. Taxel-based tactile signals often have low spatial-resolution, with non-standardized representations. In this paper, we propose a novel framework, HyperTaxel, for learning a geometrically-informed representation of taxel-based tactile signals to address challenges associated with their spatial resolution. We use this representation and a contrastive learning objective to encode and map sparse low-resolution taxel signals to high-resolution contact surfaces. To address the uncertainty inherent in these signals, we leverage joint probability distributions across multiple simultaneous contacts to improve taxel hyper-resolution. We evaluate our representation by comparing it with two baselines and present results that suggest our representation outperforms the baselines. Furthermore, we present qualitative results that demonstrate the learned representation captures the geometric features of the contact surface, such as flatness, curvature, and edges, and generalizes across different objects and sensor configurations. Moreover, we present results that suggest our representation improves the performance of various downstream tasks, such as surface classification, 6D in-hand pose estimation, and sim-to-real transfer.
comment: Accepted by IROS 2024
☆ VLPG-Nav: Object Navigation Using Visual Language Pose Graph and Object Localization Probability Maps
We present VLPG-Nav, a visual language navigation method for guiding robots to specified objects within household scenes. Unlike existing methods primarily focused on navigating the robot toward objects, our approach considers the additional challenge of centering the object within the robot's camera view. Our method builds a visual language pose graph (VLPG) that functions as a spatial map of VL embeddings. Given an open vocabulary object query, we plan a viewpoint for object navigation using the VLPG. Despite navigating to the viewpoint, real-world challenges like object occlusion, displacement, and the robot's localization error can prevent visibility. We build an object localization probability map that leverages the robot's current observations and prior VLPG. When the object isn't visible, the probability map is updated and an alternate viewpoint is computed. In addition, we propose an object-centering formulation that locally adjusts the robot's pose to center the object in the camera view. We evaluate the effectiveness of our approach through simulations and real-world experiments, evaluating its ability to successfully view and center the object within the camera field of view. VLPG-Nav demonstrates improved performance in locating the object, navigating around occlusions, and centering the object within the robot's camera view, outperforming the selected baselines in the evaluation metrics.
☆ Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model IROS 2024
Enabling humanoid robots to perform autonomously loco-manipulation in unstructured environments is crucial and highly challenging for achieving embodied intelligence. This involves robots being able to plan their actions and behaviors in long-horizon tasks while using multi-modality to perceive deviations between task execution and high-level planning. Recently, large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information through robot control tasks, as well as the usability of analytical judgment and decision-making for multi-modal inputs. To leverage the power of LLMs towards humanoid loco-manipulation, we propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions, while observing and correcting failures that may occur during task execution. To systematically evaluate this framework in grounding LLMs, we created the robot 'action' and 'sensing' behavior library for task planning, and conducted mobile manipulation tasks and experiments in both simulated and real environments using the CENTAURO robot, and verified the effectiveness and application of this approach in robotic tasks with autonomous behavioral planning.
comment: Paper accepted by IROS 2024
☆ Marker or Markerless? Mode-Switchable Optical Tactile Sensing for Diverse Robot Tasks
Optical tactile sensors play a pivotal role in robot perception and manipulation tasks. The membrane of these sensors can be painted with markers or remain markerless, enabling them to function in either marker or markerless mode. However, this uni-modal selection means the sensor is only suitable for either manipulation or perception tasks. While markers are vital for manipulation, they can also obstruct the camera, thereby impeding perception. The dilemma of selecting between marker and markerless modes presents a significant obstacle. To address this issue, we propose a novel mode-switchable optical tactile sensing approach that facilitates transitions between the two modes. The marker-to-markerless transition is achieved through a generative model, whereas its inverse transition is realized using a sparsely supervised regressive model. Our approach allows a single-mode optical sensor to operate effectively in both marker and markerless modes without the need for additional hardware, making it well-suited for both perception and manipulation tasks. Extensive experiments validate the effectiveness of our method. For perception tasks, our approach decreases the number of categories that include misclassified samples by 2 and improves contact area segmentation IoU by 3.53%. For manipulation tasks, our method attains a high success rate of 92.59% in slip detection. Code, dataset and demo videos are available at the project website: https://gitouni.github.io/Marker-Markerless-Transition/
comment: 8 pages, 10 figures
☆ A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts
Safety and efficiency are crucial for autonomous driving in roundabouts, especially in the context of mixed traffic where autonomous vehicles (AVs) and human-driven vehicles coexist. This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors across varying levels of traffic flows in roundabouts. The proposed algorithm employs a deep Q-learning network to effectively learn safe and efficient driving strategies in complex multi-vehicle roundabouts. Additionally, a KAN (Kolmogorov-Arnold network) enhances the AVs' ability to learn their surroundings robustly and precisely. An action inspector is integrated to replace dangerous actions to avoid collisions when the AV interacts with the environment, and a route planner is proposed to enhance the driving efficiency and safety of the AVs. Moreover, a model predictive control is adopted to ensure stability and precision of the driving actions. The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process, as evidenced by the smooth convergence of the reward function and the low variance in the training curves across various traffic flows. Compared to state-of-the-art benchmarks, the proposed algorithm achieves a lower number of collisions and reduced travel time to destination.
comment: 15 pages, 12 figures, submitted to an IEEE journal
☆ Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information. This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning. Using Large Language Models (LLMs), we propose a two-step approach to translate multi-sentence instructions into a structured language, Hierarchical Linear Temporal Logic (LTL), which serves as a formal representation for planning. Initially, LLMs transform the instructions into a hierarchical representation defined as Hierarchical Task Tree, capturing the logical and temporal relations among tasks. Following this, a domain-specific fine-tuning of LLM translates sub-tasks of each task into flat LTL formulas, aggregating them to form hierarchical LTL specifications. These specifications are then leveraged for planning using off-the-shelf planners. Our framework not only bridges the gap between instructions and algorithmic planning but also showcases the potential of LLMs in harnessing hierarchical reasoning to automate multi-robot task planning. Through evaluations in both simulation and real-world experiments involving human participants, we demonstrate that our method can handle more complex instructions compared to existing methods. The results indicate that our approach achieves higher success rates and lower costs in multi-robot task allocation and plan generation. Demos videos are available at https://youtu.be/7WOrDKxIMIs .
☆ General-purpose Clothes Manipulation with Semantic Keypoints
We have seen much recent progress in task-specific clothes manipulation, but generalizable clothes manipulation is still a challenge. Clothes manipulation requires sequential actions, making it challenging to generalize to unseen tasks. Besides, a general clothes state representation method is crucial. In this paper, we adopt language instructions to specify and decompose clothes manipulation tasks, and propose a large language model based hierarchical learning method to enhance generalization. For state representation, we use semantic keypoints to capture the geometry of clothes and outline their manipulation methods. Simulation experiments show that the proposed method outperforms the baseline method in terms of success rate and generalization for clothes manipulation tasks.
☆ Robust Maneuver Planning With Scalable Prediction Horizons: A Move Blocking Approach
Implementation of Model Predictive Control (MPC) on hardware with limited computational resources remains a challenge. Especially for long-distance maneuvers that require small sampling times, the necessary horizon lengths prevent its application on onboard computers. In this paper, we propose a computationally efficient tubebased shrinking horizon MPC that is scalable to long prediction horizons. Using move blocking, we ensure that a given number of decision inputs is efficiently used throughout the maneuver. Next, a method to substantially reduce the number of constraints is introduced. The approach is demonstrated with a helicopter landing on an inclined platform using a prediction horizon of 300 steps. The constraint reduction decreases the computation time by an order of magnitude with a slight increase in trajectory cost.
comment: Submitted to L-CSS with CDC option
☆ Path Planning for Spot Spraying with UAVs Combining TSP and Area Coverages
This paper addresses the following task: given a set of patches or areas of varying sizes that are meant to be serviced within a bounding contour calculate a minimal length path plan for an unmanned aerial vehicle (UAV) such that the path additionally avoids given obstacles areas and does never leave the bounding contour. The application in mind is agricultural spot spraying, where the bounding contour represents the field contour and multiple patches represent multiple weed areas meant to be sprayed. Obstacle areas are ponds or tree islands. The proposed method combines a heuristic solution to a traveling salesman problem (TSP) with optimised area coverage path planning. Two TSP-initialisation and 4 TSP-refinement heuristics as well as two area coverage path planning methods are evaluated on three real-world experiments with three obstacle areas and 15, 19 and 197 patches, respectively. The unsuitability of a Baustrophedon-path for area coverage gap avoidance is discussed and inclusion of a headland path for area coverage is motivated. Two main findings are (i) the particular suitability of one TSP-refinement heuristic, and (ii) the unexpected high contribution of patches areas coverage pathlengths on total pathlength, highlighting the importance of optimised area coverage path planning for spot spraying.
comment: 10 pages, 13 figures, 4 tables
☆ Toward a Dialogue System Using a Large Language Model to Recognize User Emotions with a Camera
The performance of ChatGPT\copyright{} and other LLMs has improved tremendously, and in online environments, they are increasingly likely to be used in a wide variety of situations, such as ChatBot on web pages, call center operations using voice interaction, and dialogue functions using agents. In the offline environment, multimodal dialogue functions are also being realized, such as guidance by Artificial Intelligence agents (AI agents) using tablet terminals and dialogue systems in the form of LLMs mounted on robots. In this multimodal dialogue, mutual emotion recognition between the AI and the user will become important. So far, there have been methods for expressing emotions on the part of the AI agent or for recognizing them using textual or voice information of the user's utterances, but methods for AI agents to recognize emotions from the user's facial expressions have not been studied. In this study, we examined whether or not LLM-based AI agents can interact with users according to their emotional states by capturing the user in dialogue with a camera, recognizing emotions from facial expressions, and adding such emotion information to prompts. The results confirmed that AI agents can have conversations according to the emotional state for emotional states with relatively high scores, such as Happy and Angry.
comment: 4 pages, 5 figures, 1 table, The 1st InterAI: Interactive AI for Human-Centered Robotics workshop in conjuction with IEEE Ro-MAN 2024, Pasadona, LA, USA, Aug. 2024
☆ Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models IROS 2024
This paper investigates the task of the open-ended interactive robotic manipulation on table-top scenarios. While recent Large Language Models (LLMs) enhance robots' comprehension of user instructions, their lack of visual grounding constrains their ability to physically interact with the environment. This is because the robot needs to locate the target object for manipulation within the physical workspace. To this end, we introduce an interactive robotic manipulation framework called Polaris, which integrates perception and interaction by utilizing GPT-4 alongside grounded vision models. For precise manipulation, it is essential that such grounded vision models produce detailed object pose for the target object, rather than merely identifying pixels belonging to them in the image. Consequently, we propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline. This pipeline utilizes rendered synthetic data for training and is then transferred to real-world manipulation tasks. The real-world performance demonstrates the efficacy of our proposed pipeline and underscores its potential for extension to more general categories. Moreover, real-robot experiments have showcased the impressive performance of our framework in grasping and executing multiple manipulation tasks. This indicates its potential to generalize to scenarios beyond the tabletop. More information and video results are available here: https://star-uu-wang.github.io/Polaris/
comment: Accepted by IROS 2024. 8 pages, 5 figures. See https://star-uu-wang.github.io/Polaris/
☆ Meta SAC-Lag: Towards Deployable Safe Reinforcement Learning via MetaGradient-based Hyperparameter Tuning IROS
Safe Reinforcement Learning (Safe RL) is one of the prevalently studied subcategories of trial-and-error-based methods with the intention to be deployed on real-world systems. In safe RL, the goal is to maximize reward performance while minimizing constraints, often achieved by setting bounds on constraint functions and utilizing the Lagrangian method. However, deploying Lagrangian-based safe RL in real-world scenarios is challenging due to the necessity of threshold fine-tuning, as imprecise adjustments may lead to suboptimal policy convergence. To mitigate this challenge, we propose a unified Lagrangian-based model-free architecture called Meta Soft Actor-Critic Lagrangian (Meta SAC-Lag). Meta SAC-Lag uses meta-gradient optimization to automatically update the safety-related hyperparameters. The proposed method is designed to address safe exploration and threshold adjustment with minimal hyperparameter tuning requirement. In our pipeline, the inner parameters are updated through the conventional formulation and the hyperparameters are adjusted using the meta-objectives which are defined based on the updated parameters. Our results show that the agent can reliably adjust the safety performance due to the relatively fast convergence rate of the safety threshold. We evaluate the performance of Meta SAC-Lag in five simulated environments against Lagrangian baselines, and the results demonstrate its capability to create synergy between parameters, yielding better or competitive results. Furthermore, we conduct a real-world experiment involving a robotic arm tasked with pouring coffee into a cup without spillage. Meta SAC-Lag is successfully trained to execute the task, while minimizing effort constraints.
comment: Main text accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024, 10 pages, 4 figures, 3 tables
☆ Time-Ordered Ad-hoc Resource Sharing for Independent Robotic Agents IROS 2024
Resource sharing is a crucial part of a multi-robot system. We propose a Boolean satisfiability based approach to resource sharing. Our key contributions are an algorithm for converting any constrained assignment to a weighted-SAT based optimization. We propose a theorem that allows optimal resource assignment problems to be solved via repeated application of a SAT solver. Additionally we show a way to encode continuous time ordering constraints using Conjunctive Normal Form (CNF). We benchmark our new algorithms and show that they can be used in an ad-hoc setting. We test our algorithms on a fleet of simulated and real world robots and show that the algorithms are able to handle real world situations. Our algorithms and test harnesses are opensource and build on Open-RMFs fleet management system.
comment: IROS 2024
☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM-2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM-2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM-2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM-2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a feasible reality.
comment: 16 pages, 2 figures
GOReloc: Graph-based Object-Level Relocalization for Visual SLAM RAL
This article introduces a novel method for object-level relocalization of robotic systems. It determines the pose of a camera sensor by robustly associating the object detections in the current frame with 3D objects in a lightweight object-level map. Object graphs, considering semantic uncertainties, are constructed for both the incoming camera frame and the pre-built map. Objects are represented as graph nodes, and each node employs unique semantic descriptors based on our devised graph kernels. We extract a subgraph from the target map graph by identifying potential object associations for each object detection, then refine these associations and pose estimations using a RANSAC-inspired strategy. Experiments on various datasets demonstrate that our method achieves more accurate data association and significantly increases relocalization success rates compared to baseline methods. The implementation of our method is released at \url{https://github.com/yutongwangBIT/GOReloc}.
comment: 8 pages, accepted by IEEE RAL
☆ DM2RM: Dual-Mode Multimodal Ranking for Target Objects and Receptacles Based on Open-Vocabulary Instructions
In this study, we aim to develop a domestic service robot (DSR) that, guided by open-vocabulary instructions, can carry everyday objects to the specified pieces of furniture. Few existing methods handle mobile manipulation tasks with open-vocabulary instructions in the image retrieval setting, and most do not identify both the target objects and the receptacles. We propose the Dual-Mode Multimodal Ranking model (DM2RM), which enables images of both the target objects and receptacles to be retrieved using a single model based on multimodal foundation models. We introduce a switching mechanism that leverages a mode token and phrase identification via a large language model to switch the embedding space based on the prediction target. To evaluate the DM2RM, we construct a novel dataset including real-world images collected from hundreds of building-scale environments and crowd-sourced instructions with referring expressions. The evaluation results show that the proposed DM2RM outperforms previous approaches in terms of standard metrics in image retrieval settings. Furthermore, we demonstrate the application of the DM2RM on a standardized real-world DSR platform including fetch-and-carry actions, where it achieves a task success rate of 82% despite the zero-shot transfer setting. Demonstration videos, code, and more materials are available at https://kkrr10.github.io/dm2rm/.
☆ Autonomous on-Demand Shuttles for First Mile-Last Mile Connectivity: Design, Optimization, and Impact Assessment
The First-Mile Last-Mile (FMLM) connectivity is crucial for improving public transit accessibility and efficiency, particularly in sprawling suburban regions where traditional fixed-route transit systems are often inadequate. Autonomous on-Demand Shuttles (AODS) hold a promising option for FMLM connections due to their cost-effectiveness and improved safety features, thereby enhancing user convenience and reducing reliance on personal vehicles. A critical issue in AODS service design is the optimization of travel paths, for which realistic traffic network assignment combined with optimal routing offers a viable solution. In this study, we have designed an AODS controller that integrates a mesoscopic simulation-based dynamic traffic assignment model with a greedy insertion heuristics approach to optimize the travel routes of the shuttles. The controller also considers the charging infrastructure/strategies and the impact of the shuttles on regular traffic flow for routes and fleet-size planning. The controller is implemented in Aimsun traffic simulator considering Lake Nona in Orlando, Florida as a case study. We show that, under the present demand based on 1% of total trips as transit riders, a fleet of 3 autonomous shuttles can serve about 80% of FMLM trip requests on-demand basis with an average waiting time below 4 minutes. Additional power sources have significant effect on service quality as the inactive waiting time for charging would increase the fleet size. We also show that low-speed autonomous shuttles would have negligible impact on regular vehicle flow, making them suitable for suburban areas. These findings have important implications for sustainable urban planning and public transit operations.
comment: 25 Pages, 13 Figures, 1 Table
☆ D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at \url{https://sites.google.com/view/d5rl/}
comment: RLC 2024
☆ Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors
The second generation of Robotic Operating System, ROS 2, has gained much attention for its potential to be used for safety-critical robotic applications. The need to provide a solid foundation for timing correctness and scheduling mechanisms is therefore growing rapidly. Although there are some pioneering studies conducted on formally analyzing the response time of processing chains in ROS 2, the focus has been limited to single-threaded executors, and multi-threaded executors, despite their advantages, have not been studied well. To fill this knowledge gap, in this paper, we propose a comprehensive response-time analysis framework for chains running on ROS 2 multi-threaded executors. We first analyze the timing behavior of the default scheduling scheme in ROS 2 multi-threaded executors, and then present priority-driven scheduling enhancements to address the limitations of the default scheme. Our framework can analyze chains with both arbitrary and constrained deadlines and also the effect of mutually-exclusive callback groups. Evaluation is conducted by a case study on NVIDIA Jetson AGX Xavier and schedulability experiments using randomly-generated chains. The results demonstrate that our analysis framework can safely upper-bound response times under various conditions and the priority-driven scheduling enhancements not only reduce the response time of critical chains but also improve analytical bounds.
☆ Physics-Guided Reinforcement Learning System for Realistic Vehicle Active Suspension Control
The suspension system is a crucial part of the automotive chassis, improving vehicle ride comfort and isolating passengers from rough road excitation. Unlike passive suspension, which has constant spring and damping coefficients, active suspension incorporates electronic actuators into the system to dynamically control stiffness and damping variables. However, effectively controlling the suspension system poses a challenging task that necessitates real-time adaptability to various road conditions. This paper presents the Physics-Guided Deep Reinforcement Learning (DRL) for adjusting an active suspension system's variable kinematics and compliance properties for a quarter-car model in real time. Specifically, the outputs of the model are defined as actuator stiffness and damping control, which are bound within physically realistic ranges to maintain the system's physical compliance. The proposed model was trained on stochastic road profiles according to ISO 8608 standards to optimize the actuator's control policy. According to qualitative results on simulations, the vehicle body reacts smoothly to various novel real-world road conditions, having a much lower degree of oscillation. These observations mean a higher level of passenger comfort and better vehicle stability. Quantitatively, DRL outperforms passive systems in reducing the average vehicle body velocity and acceleration by 43.58% and 17.22%, respectively, minimizing the vertical movement impacts on the passengers. The code is publicly available at github.com/anh-nn01/RL4Suspension-ICMLA23.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ The Threats of Embodied Multimodal LLMs: Jailbreaking Robotic Manipulation in the Physical World
Embodied artificial intelligence (AI) represents an artificial intelligence system that interacts with the physical world through sensors and actuators, seamlessly integrating perception and action. This design enables AI to learn from and operate within complex, real-world environments. Large Language Models (LLMs) deeply explore language instructions, playing a crucial role in devising plans for complex tasks. Consequently, they have progressively shown immense potential in empowering embodied AI, with LLM-based embodied AI emerging as a focal point of research within the community. It is foreseeable that, over the next decade, LLM-based embodied AI robots are expected to proliferate widely, becoming commonplace in homes and industries. However, a critical safety issue that has long been hiding in plain sight is: could LLM-based embodied AI perpetrate harmful behaviors? Our research investigates for the first time how to induce threatening actions in embodied AI, confirming the severe risks posed by these soon-to-be-marketed robots, which starkly contravene Asimov's Three Laws of Robotics and threaten human safety. Specifically, we formulate the concept of embodied AI jailbreaking and expose three critical security vulnerabilities: first, jailbreaking robotics through compromised LLM; second, safety misalignment between action and language spaces; and third, deceptive prompts leading to unaware hazardous behaviors. We also analyze potential mitigation measures and advocate for community awareness regarding the safety of embodied AI applications in the physical world.
comment: Preliminary version (17 pages, 4 figures). Work in progress, revisions ongoing. Appreciate understanding and welcome any feedback
♻ ☆ Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation
Optical tactile sensors have recently become popular. They provide high spatial resolution, but struggle to offer fine temporal resolutions. To overcome this shortcoming, we study the idea of replacing the RGB camera with an event-based camera and introduce a new event-based optical tactile sensor called Evetac. Along with hardware design, we develop touch processing algorithms to process its measurements online at 1000 Hz. We devise an efficient algorithm to track the elastomer's deformation through the imprinted markers despite the sensor's sparse output. Benchmarking experiments demonstrate Evetac's capabilities of sensing vibrations up to 498 Hz, reconstructing shear forces, and significantly reducing data rates compared to RGB optical tactile sensors. Moreover, Evetac's output and the marker tracking provide meaningful features for learning data-driven slip detection and prediction models. The learned models form the basis for a robust and adaptive closed-loop grasp controller capable of handling a wide range of objects. We believe that fast and efficient event-based tactile sensors like Evetac will be essential for bringing human-like manipulation capabilities to robotics. The sensor design is open-sourced at https://sites.google.com/view/evetac .
comment: Accepted at IEEE Transactions On Robotics. Project Website: https://sites.google.com/view/evetac
♻ ☆ Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis
Addressing the issue of submerged underwater trash is crucial for safeguarding aquatic ecosystems and preserving marine life. While identifying debris present on the surface of water bodies is straightforward, assessing the underwater submerged waste is a challenge due to the image distortions caused by factors such as light refraction, absorption, suspended particles, color shifts, and occlusion. This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection. The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles. The ultimate objective is to explore the underwater environment, to identify, and remove underwater debris. The absence of benchmarks (dataset or algorithm) in many researches emphasizes the need for a more robust algorithmic solution. Through this research, we aim to give performance comparative analysis of various underwater trash detection algorithms.
♻ ☆ End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. we maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
comment: Accepted by IEEE TPAMI
♻ ☆ A Survey on Integration of Large Language Models with Intelligent Robots
In recent years, the integration of large language models (LLMs) has revolutionized the field of robotics, enabling robots to communicate, understand, and reason with human-like proficiency. This paper explores the multifaceted impact of LLMs on robotics, addressing key challenges and opportunities for leveraging these models across various domains. By categorizing and analyzing LLM applications within core robotics elements -- communication, perception, planning, and control -- we aim to provide actionable insights for researchers seeking to integrate LLMs into their robotic systems. Our investigation focuses on LLMs developed post-GPT-3.5, primarily in text-based modalities while also considering multimodal approaches for perception and control. We offer comprehensive guidelines and examples for prompt engineering, facilitating beginners' access to LLM-based robotics solutions. Through tutorial-level examples and structured prompt construction, we illustrate how LLM-guided enhancements can be seamlessly integrated into robotics applications. This survey serves as a roadmap for researchers navigating the evolving landscape of LLM-driven robotics, offering a comprehensive overview and practical guidance for harnessing the power of language models in robotics development.
comment: 24 pages, 5 figures, Published in Intelligent Service Robotics (ISR)
♻ ☆ Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding
This paper introduces a novel nonlinear stochastic model predictive control path integral (MPPI) method, which considers chance constraints on system states. The proposed belief-space stochastic MPPI (BSS-MPPI) applies Monte-Carlo sampling to evaluate state distributions resulting from underlying systematic disturbances, and utilizes a Control Barrier Function (CBF) inspired heuristic in belief space to fulfill the specified chance constraints. Compared to several previous stochastic predictive control methods, our approach applies to general nonlinear dynamics without requiring the computationally expensive system linearization step. Moreover, the BSS-MPPI controller can solve optimization problems without limiting the form of the objective function and chance constraints. By multi-threading the sampling process using a GPU, we can achieve fast real-time planning for time- and safety-critical tasks such as autonomous racing. Our results on a realistic race-car simulation study show significant reductions in constraint violation compared to some of the prior MPPI approaches, while being comparable in computation times.
♻ ☆ Lane Graph as Path: Continuity-preserving Path-wise Modeling for Online Lane Graph Construction ECCV 2024
Online lane graph construction is a promising but challenging task in autonomous driving. Previous methods usually model the lane graph at the pixel or piece level, and recover the lane graph by pixel-wise or piece-wise connection, which breaks down the continuity of the lane and results in suboptimal performance. Human drivers focus on and drive along the continuous and complete paths instead of considering lane pieces. Autonomous vehicles also require path-specific guidance from lane graph for trajectory planning. We argue that the path, which indicates the traffic flow, is the primitive of the lane graph. Motivated by this, we propose to model the lane graph in a novel path-wise manner, which well preserves the continuity of the lane and encodes traffic information for planning. We present a path-based online lane graph construction method, termed LaneGAP, which end-to-end learns the path and recovers the lane graph via a Path2Graph algorithm. We qualitatively and quantitatively demonstrate the superior accuracy and efficiency of LaneGAP over conventional pixel-based and piece-based methods on the challenging nuScenes and Argoverse2 datasets under controllable and fair conditions. Compared to the recent state-of-the-art piece-wise method TopoNet on the OpenLane-V2 dataset, LaneGAP still outperforms by 1.6 mIoU, further validating the effectiveness of path-wise modeling. Abundant visualizations in the supplementary material show LaneGAP can cope with diverse traffic conditions. Code is released at \url{https://github.com/hustvl/LaneGAP}.
comment: Accepted to ECCV 2024
♻ ☆ FedRobo: Federated Learning Driven Autonomous Inter Robots Communication For Optimal Chemical Sprays
Federated Learning enables robots to learn from each other's experiences without relying on centralized data collection. Each robot independently maintains a model of crop conditions and chemical spray effectiveness, which is periodically shared with other robots in the fleet. A communication protocol is designed to optimize chemical spray applications by facilitating the exchange of information about crop conditions, weather, and other critical factors. The federated learning algorithm leverages this shared data to continuously refine the chemical spray strategy, reducing waste and improving crop yields. This approach has the potential to revolutionize the agriculture industry by offering a scalable and efficient solution for crop protection. However, significant challenges remain, including the development of a secure and robust communication protocol, the design of a federated learning algorithm that effectively integrates data from multiple sources, and ensuring the safety and reliability of autonomous robots. The proposed cluster-based federated learning approach also effectively reduces the computational load on the global server and minimizes communication overhead among clients.
comment: This research article is going to be submitted to a best-fit conference. We are looking for a conference
♻ ☆ Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes
Reinforcement learning (RL), particularly its combination with deep neural networks referred to as deep RL (DRL), has shown tremendous promise across a wide range of applications, suggesting its potential for enabling the development of sophisticated robotic behaviors. Robotics problems, however, pose fundamental difficulties for the application of RL, stemming from the complexity and cost of interacting with the physical world. This article provides a modern survey of DRL for robotics, with a particular focus on evaluating the real-world successes achieved with DRL in realizing several key robotic competencies. Our analysis aims to identify the key factors underlying those exciting successes, reveal underexplored areas, and provide an overall characterization of the status of DRL in robotics. We highlight several important avenues for future work, emphasizing the need for stable and sample-efficient real-world RL paradigms, holistic approaches for discovering and integrating various competencies to tackle complex long-horizon, open-world tasks, and principled development and evaluation procedures. This survey is designed to offer insights for both RL practitioners and roboticists toward harnessing RL's power to create generally capable real-world robotic systems.
comment: The first three authors contributed equally. Accepted to Annual Review of Control, Robotics, and Autonomous Systems
♻ ☆ Personalizing Federated Instrument Segmentation with Visual Trait Priors in Robotic Surgery
Personalized federated learning (PFL) for surgical instrument segmentation (SIS) is a promising approach. It enables multiple clinical sites to collaboratively train a series of models in privacy, with each model tailored to the individual distribution of each site. Existing PFL methods rarely consider the personalization of multi-headed self-attention, and do not account for appearance diversity and instrument shape similarity, both inherent in surgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait priors for SIS, incorporating global-personalized disentanglement (GPD), appearance-regulation personalized enhancement (APE), and shape-similarity global enhancement (SGE), to boost SIS performance in each site. GPD represents the first attempt at head-wise assignment for multi-headed self-attention personalization. To preserve the unique appearance representation of each site and gradually leverage the inter-site difference, APE introduces appearance regulation and provides customized layer-wise aggregation solutions via hypernetworks for each site's personalized parameters. The mutual shape information of instruments is maintained and shared via SGE, which enhances the cross-style shape consistency on the image level and computes the shape-similarity contribution of each site on the prediction level for updating the global parameters. PFedSIS outperforms state-of-the-art methods with +1.51% Dice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding code and models will be released at https://github.com/wzjialang/PFedSIS.
comment: 9 pages, 3 figures, under review
♻ ☆ Three-dimensional Morphological Reconstruction of Millimeter-Scale Soft Continuum Robots based on Dual-Stereo-Vision
Continuum robots can be miniaturized to just a few millimeters in diameter. Among these, notched tubular continuum robots (NTCR) show great potential in many delicate applications. Existing works in robotic modeling focus on kinematics and dynamics but still face challenges in reproducing the robot's morphology -- a significant factor that can expand the research landscape of continuum robots, especially for those with asymmetric continuum structures. This paper proposes a dual stereo vision-based method for the three-dimensional morphological reconstruction of millimeter-scale NTCRs. The method employs two oppositely located stationary binocular cameras to capture the point cloud of the NTCR, then utilizes predefined geometry as a reference for the KD tree method to relocate the capture point clouds, resulting in a morphologically correct NTCR despite the low-quality raw point cloud collection. The method has been proved feasible for an NTCR with a 3.5 mm diameter, capturing 14 out of 16 notch features, with the measurements generally centered around the standard of 1.5 mm, demonstrating the capability of revealing morphological details. Our proposed method paves the way for 3D morphological reconstruction of millimeter-scale soft robots for further self-modeling study.
comment: 6 pages, 6 figures, submitted to Robio 2024
♻ ☆ MMP++: Motion Manifold Primitives with Parametric Curve Models
Motion Manifold Primitives (MMP), a manifold-based approach for encoding basic motion skills, can produce diverse trajectories, enabling the system to adapt to unseen constraints. Nonetheless, we argue that current MMP models lack crucial functionalities of movement primitives, such as temporal and via-points modulation, found in traditional approaches. This shortfall primarily stems from MMP's reliance on discrete-time trajectories. To overcome these limitations, we introduce Motion Manifold Primitives++ (MMP++), a new model that integrates the strengths of both MMP and traditional methods by incorporating parametric curve representations into the MMP framework. Furthermore, we identify a significant challenge with MMP++: performance degradation due to geometric distortions in the latent space, meaning that similar motions are not closely positioned. To address this, Isometric Motion Manifold Primitives++ (IMMP++) is proposed to ensure the latent space accurately preserves the manifold's geometry. Our experimental results across various applications, including 2-DoF planar motions, 7-DoF robot arm motions, and SE(3) trajectory planning, show that MMP++ and IMMP++ outperform existing methods in trajectory generation tasks, achieving substantial improvements in some cases. Moreover, they enable the modulation of latent coordinates and via-points, thereby allowing efficient online adaptation to dynamic environments.
comment: 15 pages. The paper will appear in the IEEE Transactions on Robotics
♻ ☆ Touch-GS: Visual-Tactile Supervised 3D Gaussian Splatting
In this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at http://armlabstanford.github.io/touch-gs
comment: 8 pages, 7 figures
♻ ☆ Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback
Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed Large Language Models (LLMs) for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning.
comment: This work has been submitted to Autonomous Robots
♻ ☆ IPC: Incremental Probabilistic Consensus-based Consistent Set Maximization for SLAM Backends ICRA
In SLAM (Simultaneous localization and mapping) problems, Pose Graph Optimization (PGO) is a technique to refine an initial estimate of a set of poses (positions and orientations) from a set of pairwise relative measurements. The optimization procedure can be negatively affected even by a single outlier measurement, with possible catastrophic and meaningless results. Although recent works on robust optimization aim to mitigate the presence of outlier measurements, robust solutions capable of handling large numbers of outliers are yet to come. This paper presents IPC, acronym for Incremental Probabilistic Consensus, a method that approximates the solution to the combinatorial problem of finding the maximally consistent set of measurements in an incremental fashion. It evaluates the consistency of each loop closure measurement through a consensus-based procedure, possibly applied to a subset of the global problem, where all previously integrated inlier measurements have veto power. We evaluated IPC on standard benchmarks against several state-of-the-art methods. Although it is simple and relatively easy to implement, IPC competes with or outperforms the other tested methods in handling outliers while providing online performances. We release with this paper an open-source implementation of the proposed method.
comment: This paper has been accepted for publication at the 2024 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ Osprey: Multi-Session Autonomous Aerial Mapping with LiDAR-based SLAM and Next Best View Planning
Aerial mapping systems are important for many surveying applications (e.g., industrial inspection or agricultural monitoring). Aerial platforms that can fly GPS-guided preplanned missions semi-autonomously are already widely available but fully autonomous systems can significantly improve efficiency. Autonomously mapping complex 3D structures requires a system that performs online mapping and mission planning. This paper presents Osprey, an autonomous aerial mapping system with state-of-the-art multi-session LiDAR-based mapping capabilities. It enables a non-expert operator to specify a bounded target area that the aerial platform can then map autonomously over multiple flights. Field experiments with Osprey demonstrate that this system can achieve greater map coverage of large industrial sites than manual surveys with a pilot-flown aerial platform or a terrestrial laser scanner (TLS). Three sites, with a total ground coverage of $2528$ m$^2$ and a maximum height of $27$ m, were mapped in separate missions using $112$ minutes of autonomous flight time. True colour maps were created from images captured by Osprey using pointcloud and NeRF reconstruction methods. These maps provide useful data for structural inspection tasks.
comment: 25 pages, 15 figures, 3 tables. Video available at https://www.youtube.com/watch?v=CVIXu2qUQJ8 Dataset available at https://dynamic.robots.ox.ac.uk/datasets/oxford-osprey
♻ ☆ Self-organizing Multiagent Target Enclosing under Limited Information and Safety Guarantees
This paper introduces an approach to address the target enclosing problem using non-holonomic multiagent systems, where agents self-organize on the enclosing shape around a fixed target. In our approach, agents independently move toward the desired enclosing geometry when apart and activate the collision avoidance mechanism when a collision is imminent, thereby guaranteeing inter-agent safety. Our approach combines global enclosing behavior and local collision avoidance mechanisms by devising a special potential function and sliding manifold. We rigorously show that an agent does not need to ensure safety with every other agent and put forth a concept of the nearest colliding agent (for any arbitrary agent) with whom ensuring safety is sufficient to avoid collisions in the entire swarm. The proposed control eliminates the need for a fixed or pre-established agent arrangement around the target and requires only relative information between an agent and the target. This makes our design particularly appealing for scenarios with limited global information, hence significantly reducing communication requirements. We finally present simulation results to vindicate the efficacy of the proposed method.
♻ ☆ Enhancing Reinforcement Learning in Sensor Fusion: A Comparative Analysis of Cubature and Sampling-based Integration Methods for Rover Search Planning IROS 2024
This study investigates the computational speed and accuracy of two numerical integration methods, cubature and sampling-based, for integrating an integrand over a 2D polygon. Using a group of rovers searching the Martian surface with a limited sensor footprint as a test bed, the relative error and computational time are compared as the area was subdivided to improve accuracy in the sampling-based approach. The results show that the sampling-based approach exhibits a $14.75\%$ deviation in relative error compared to cubature when it matches the computational performance at $100\%$. Furthermore, achieving a relative error below $1\%$ necessitates a $10000\%$ increase in relative time to calculate due to the $\mathcal{O}(N^2)$ complexity of the sampling-based method. It is concluded that for enhancing reinforcement learning capabilities and other high iteration algorithms, the cubature method is preferred over the sampling-based method.
comment: Submitted to IROS 2024
Robotics 27
☆ NeuroEvolution algorithms applied in the designing process of biohybrid actuators
Soft robots diverge from traditional rigid robotics, offering unique advantages in adaptability, safety, and human-robot interaction. In some cases, soft robots can be powered by biohybrid actuators and the design process of these systems is far from straightforward. We analyse here two algorithms that may assist the design of these systems, namely, NEAT (NeuroEvolution of Augmented Topologies) and HyperNEAT (Hypercube-based NeuroEvolution of Augmented Topologies). These algorithms exploit the evolution of the structure of actuators encoded through neural networks. To evaluate these algorithms, we compare them with a similar approach using the Age Fitness Pareto Optimization (AFPO) algorithm, with a focus on assessing the maximum displacement achieved by the discovered biohybrid morphologies. Additionally, we investigate the effects of optimization against both the volume of these morphologies and the distance they can cover. To further accelerate the computational process, the proposed methodology is implemented in a client-server setting; so, the most demanding calculations can be executed on specialized and efficient hardware. The results indicate that the HyperNEAT-based approach excels in identifying morphologies with minimal volumes that still achieve satisfactory displacement targets.
☆ SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning SC
This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/cas-lab-munich/SigmaRL
comment: 8 pages, 5 figures, accepted for presentation at the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
☆ Non-Gaited Legged Locomotion with Monte-Carlo Tree Search and Supervised Learning
Legged robots are able to navigate complex terrains by continuously interacting with the environment through careful selection of contact sequences and timings. However, the combinatorial nature behind contact planning hinders the applicability of such optimization problems on hardware. In this work, we present a novel approach that optimizes gait sequences and respective timings for legged robots in the context of optimization-based controllers through the use of sampling-based methods and supervised learning techniques. We propose to bootstrap the search by learning an optimal value function in order to speed-up the gait planning procedure making it applicable in real-time. To validate our proposed method, we showcase its performance both in simulation and on hardware using a 22 kg electric quadruped robot. The method is assessed on different terrains, under external perturbations, and in comparison to a standard control approach where the gait sequence is fixed a priori.
☆ Object Augmentation Algorithm: Computing virtual object motion and object induced interaction wrench from optical markers IROS 2024
This study addresses the critical need for diverse and comprehensive data focused on human arm joint torques while performing activities of daily living (ADL). Previous studies have often overlooked the influence of objects on joint torques during ADL, resulting in limited datasets for analysis. To address this gap, we propose an Object Augmentation Algorithm (OAA) capable of augmenting existing marker-based databases with virtual object motions and object-induced joint torque estimations. The OAA consists of five phases: (1) computing hand coordinate systems from optical markers, (2) characterising object movements with virtual markers, (3) calculating object motions through inverse kinematics (IK), (4) determining the wrench necessary for prescribed object motion using inverse dynamics (ID), and (5) computing joint torques resulting from object manipulation. The algorithm's accuracy is validated through trajectory tracking and torque analysis on a 7+4 degree of freedom (DoF) robotic hand-arm system, manipulating three unique objects. The results show that the OAA can accurately and precisely estimate 6 DoF object motion and object-induced joint torques. Correlations between computed and measured quantities were > 0.99 for object trajectories and > 0.93 for joint torques. The OAA was further shown to be robust to variations in the number and placement of input markers, which are expected between databases. Differences between repeated experiments were minor but significant (p < 0.05). The algorithm expands the scope of available data and facilitates more comprehensive analyses of human-object interaction dynamics.
comment: An open source implementation of the described algorithm is available at https://github.com/ChristopherHerneth/ObjectAugmentationAlgorithm/tree/main. Accompanying video material may be found here https://youtu.be/8oz-awvyNRA. The article was accepted at IROS 2024
☆ Enhanced Optimization Strategies to Design an Underactuated Hand Exoskeleton
Exoskeletons can boost human strength and provide assistance to individuals with physical disabilities. However, ensuring safety and optimal performance in their design poses substantial challenges. This study presents the design process for an underactuated hand exoskeleton (U-HEx), first including a single objective (maximizing force transmission), then expanding into multi objective (also minimizing torque variance and actuator displacement). The optimization relies on a Genetic Algorithm, the Big Bang-Big Crunch Algorithm, and their versions for multi-objective optimization. Analyses revealed that using Big Bang-Big Crunch provides high and more consistent results in terms of optimality with lower convergence time. In addition, adding more objectives offers a variety of trade-off solutions to the designers, who might later set priorities for the objectives without repeating the process - at the cost of complicating the optimization algorithm and computational burden. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design.
comment: 12 pages, 7 figures, 8 talbes, submitted to IEEE Transactions on Robotics
☆ Risk Occupancy: A New and Efficient Paradigm through Vehicle-Road-Cloud Collaboration
This study introduces the 4D Risk Occupancy within a vehicle-road-cloud architecture, integrating the road surface spatial, risk, and temporal dimensions, and endowing the algorithm with beyond-line-of-sight, all-angles, and efficient abilities. The algorithm simplifies risk modeling by focusing on directly observable information and key factors, drawing on the concept of Occupancy Grid Maps (OGM), and incorporating temporal prediction to effectively map current and future risk occupancy. Compared to conventional driving risk fields and grid occupancy maps, this algorithm can map global risks more efficiently, simply, and reliably. It can integrate future risk information, adapting to dynamic traffic environments. The 4D Risk Occupancy also unifies the expression of BEV detection and lane line detection results, enhancing the intuitiveness and unity of environmental perception. Using DAIR-V2X data, this paper validates the 4D Risk Occupancy algorithm and develops a local path planning model based on it. Qualitative experiments under various road conditions demonstrate the practicality and robustness of this local path planning model. Quantitative analysis shows that the path planning based on risk occupation significantly improves trajectory planning performance, increasing safety redundancy by 12.5% and reducing average deceleration by 5.41% at an initial braking speed of 8 m/s, thereby improving safety and comfort. This work provides a new global perception method and local path planning method through Vehicle-Road-Cloud architecture, offering a new perceptual paradigm for achieving safer and more efficient autonomous driving.
comment: 13 pages,9 figures
☆ Narrowing your FOV with SOLiD: Spatially Organized and Lightweight Global Descriptor for FOV-constrained LiDAR Place Recognition
We often encounter limited FOV situations due to various factors such as sensor fusion or sensor mount in real-world robot navigation. However, the limited FOV interrupts the generation of descriptions and impacts place recognition adversely. Therefore, we suffer from correcting accumulated drift errors in a consistent map using LiDAR-based place recognition with limited FOV. Thus, in this paper, we propose a robust LiDAR-based place recognition method for handling narrow FOV scenarios. The proposed method establishes spatial organization based on the range-elevation bin and azimuth-elevation bin to represent places. In addition, we achieve a robust place description through reweighting based on vertical direction information. Based on these representations, our method enables addressing rotational changes and determining the initial heading. Additionally, we designed a lightweight and fast approach for the robot's onboard autonomy. For rigorous validation, the proposed method was tested across various LiDAR place recognition scenarios (i.e., single-session, multi-session, and multi-robot scenarios). To the best of our knowledge, we report the first method to cope with the restricted FOV. Our place description and SLAM codes will be released. Also, the supplementary materials of our descriptor are available at \texttt{\url{https://sites.google.com/view/lidar-solid}}.
comment: IEEE Robotics and Automation Letters (2024)
☆ The Design of Autonomous UAV Prototypes for Inspecting Tunnel Construction Environment
This article presents novel designs of autonomous UAV prototypes specifically developed for inspecting GPS-denied tunnel construction environments with dynamic human and robotic presence. Our UAVs integrate advanced sensor suites and robust motion planning algorithms to autonomously navigate and explore these complex environments. We validated our approach through comprehensive simulation experiments in PX4 Gazebo and Airsim Unreal Engine 4 environments. Real-world wind tests and exploration experiments demonstrate the UAVs' capability to operate stably under diverse environmental conditions without GPS assistance. This study highlights the practicality and resilience of our UAV prototypes in real-world applications.
comment: Autonomous UAV, Tunnel Inspection, GPS-Denied Environment, Safe Trajectory Planning, Real-World Testing
☆ Enhanced Scale-aware Depth Estimation for Monocular Endoscopic Scenes with Geometric Modeling
Scale-aware monocular depth estimation poses a significant challenge in computer-aided endoscopic navigation. However, existing depth estimation methods that do not consider the geometric priors struggle to learn the absolute scale from training with monocular endoscopic sequences. Additionally, conventional methods face difficulties in accurately estimating details on tissue and instruments boundaries. In this paper, we tackle these problems by proposing a novel enhanced scale-aware framework that only uses monocular images with geometric modeling for depth estimation. Specifically, we first propose a multi-resolution depth fusion strategy to enhance the quality of monocular depth estimation. To recover the precise scale between relative depth and real-world values, we further calculate the 3D poses of instruments in the endoscopic scenes by algebraic geometry based on the image-only geometric primitives (i.e., boundaries and tip of instruments). Afterwards, the 3D poses of surgical instruments enable the scale recovery of relative depth maps. By coupling scale factors and relative depth estimation, the scale-aware depth of the monocular endoscopic scenes can be estimated. We evaluate the pipeline on in-house endoscopic surgery videos and simulated data. The results demonstrate that our method can learn the absolute scale with geometric modeling and accurately estimate scale-aware depth for monocular scenes.
☆ Complementarity-Free Multi-Contact Modeling and Optimization for Dexterous Manipulation
A significant barrier preventing model-based methods from matching the high performance of reinforcement learning in dexterous manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated using complementarity models, multi-contact dynamics introduces combinatorial complexity and non-smoothness, complicating contact-rich planning and control. In this paper, we circumvent these challenges by introducing a novel, simplified multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as explicit time stepping, differentiability, automatic satisfaction of Coulomb friction law, and minimal hyperparameter tuning. We demonstrate the effectiveness and efficiency of the model for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across tasks, (II) high manipulation accuracy with an average reorientation error of 11{\deg} and position error of 7.8 mm, and (III) model predictive control running at 50-100 Hz for all tested dexterous manipulation tasks. These results are achieved with minimal hyperparameter tuning.
comment: Video demo: https://youtu.be/NsL4hbSXvFg
☆ From Decision to Action in Surgical Autonomy: Multi-Modal Large Language Models for Robot-Assisted Blood Suction
The rise of Large Language Models (LLMs) has impacted research in robotics and automation. While progress has been made in integrating LLMs into general robotics tasks, a noticeable void persists in their adoption in more specific domains such as surgery, where critical factors such as reasoning, explainability, and safety are paramount. Achieving autonomy in robotic surgery, which entails the ability to reason and adapt to changes in the environment, remains a significant challenge. In this work, we propose a multi-modal LLM integration in robot-assisted surgery for autonomous blood suction. The reasoning and prioritization are delegated to the higher-level task-planning LLM, and the motion planning and execution are handled by the lower-level deep reinforcement learning model, creating a distributed agency between the two components. As surgical operations are highly dynamic and may encounter unforeseen circumstances, blood clots and active bleeding were introduced to influence decision-making. Results showed that using a multi-modal LLM as a higher-level reasoning unit can account for these surgical complexities to achieve a level of reasoning previously unattainable in robot-assisted surgeries. These findings demonstrate the potential of multi-modal LLMs to significantly enhance contextual understanding and decision-making in robotic-assisted surgeries, marking a step toward autonomous surgical systems.
☆ Exoskeleton-Assisted Balance and Task Evaluation During Quiet Stance and Kneeling in Construction
Construction workers exert intense physical effort and experience serious safety and health risks in hazardous working environments. Quiet stance and kneeling are among the most common postures performed by construction workers during their daily work. This paper analyzes lower-limb joint influence on neural balance control strategies using the frequency behavior of the intersection point of ground reaction forces. To evaluate the impact of elevation and wearable knee exoskeletons on postural balance and welding task performance, we design and integrate virtual- and mixed-reality (VR/MR) to simulate elevated environments and welding tasks. A linear quadratic regulator-controlled triple- and double-link inverted pendulum model is used for balance strategy quantification in quiet stance and kneeling, respectively. Extensive multi-subject experiments are conducted to evaluate the usability of occupational exoskeletons in destabilizing construction environments. The quantified balance strategies capture the significance of knee joint during balance control of quiet stance and kneeling gaits. Results show that center of pressure sway area reduced up to 62% in quiet stance and 39% in kneeling for subjects tested in high-elevation VR/MR worksites when provided knee exoskeleton assistance. The comprehensive balance and multitask evaluation methodology developed aims to reveal exoskeleton design considerations to mitigate the fall risk in construction.
comment: 14 pages, 15 figures, submitted to IEEE Transactions on Automation Science and Engineering
☆ Knowledge-based Neural Ordinary Differential Equations for Cosserat Rod-based Soft Robots
Soft robots have many advantages over rigid robots thanks to their compliant and passive nature. However, it is generally challenging to model the dynamics of soft robots due to their high spatial dimensionality, making it difficult to use model-based methods to accurately control soft robots. It often requires direct numerical simulation of partial differential equations to simulate soft robots. This not only requires an accurate numerical model, but also makes soft robot modeling slow and expensive. Deep learning algorithms have shown promises in data-driven modeling of soft robots. However, these algorithms usually require a large amount of data, which are difficult to obtain in either simulation or real-world experiments of soft robots. In this work, we propose KNODE-Cosserat, a framework that combines first-principle physics models and neural ordinary differential equations. We leverage the best from both worlds -- the generalization ability of physics-based models and the fast speed of deep learning methods. We validate our framework in both simulation and real-world experiments. In both cases, we show that the robot model significantly improves over the baseline models under different metrics.
comment: 8 pages, 11 figures, 4 tables
☆ RAVE Checklist: Recommendations for Overcoming Challenges in Retrospective Safety Studies of Automated Driving Systems
The public, regulators, and domain experts alike seek to understand the effect of deployed SAE level 4 automated driving system (ADS) technologies on safety. The recent expansion of ADS technology deployments is paving the way for early stage safety impact evaluations, whereby the observational data from both an ADS and a representative benchmark fleet are compared to quantify safety performance. In January 2024, a working group of experts across academia, insurance, and industry came together in Washington, DC to discuss the current and future challenges in performing such evaluations. A subset of this working group then met, virtually, on multiple occasions to produce this paper. This paper presents the RAVE (Retrospective Automated Vehicle Evaluation) checklist, a set of fifteen recommendations for performing and evaluating retrospective ADS performance comparisons. The recommendations are centered around the concepts of (1) quality and validity, (2) transparency, and (3) interpretation. Over time, it is anticipated there will be a large and varied body of work evaluating the observed performance of these ADS fleets. Establishing and promoting good scientific practices benefits the work of stakeholders, many of whom may not be subject matter experts. This working group's intentions are to: i) strengthen individual research studies and ii) make the at-large community more informed on how to evaluate this collective body of work.
☆ Inverse k-visibility for RSSI-based Indoor Geometric Mapping
In recent years, the increased availability of WiFi in indoor environments has gained an interest in the robotics community to leverage WiFi signals for enhancing indoor SLAM (Simultaneous Localization and Mapping) systems. SLAM technology is widely used, especially for the navigation and control of autonomous robots. This paper discusses various works in developing WiFi-based localization and challenges in achieving high-accuracy geometric maps. This paper introduces the concept of inverse k-visibility developed from the k-visibility algorithm to identify the free space in an unknown environment for planning, navigation, and obstacle avoidance. Comprehensive experiments, including those utilizing single and multiple RSSI signals, were conducted in both simulated and real-world environments to demonstrate the robustness of the proposed algorithm. Additionally, a detailed analysis comparing the resulting maps with ground-truth Lidar-based maps is provided to highlight the algorithm's accuracy and reliability.
comment: This work has been submitted to the IEEE Sensors Journal for possible publication
♻ ☆ DRAMA: An Efficient End-to-end Motion Planner for Autonomous Driving with Mamba
Motion planning is a challenging task to generate safe and feasible trajectories in highly dynamic and complex environments, forming a core capability for autonomous vehicles. In this paper, we propose DRAMA, the first Mamba-based end-to-end motion planner for autonomous vehicles. DRAMA fuses camera, LiDAR Bird's Eye View images in the feature space, as well as ego status information, to generate a series of future ego trajectories. Unlike traditional transformer-based methods with quadratic attention complexity for sequence length, DRAMA is able to achieve a less computationally intensive attention complexity, demonstrating potential to deal with increasingly complex scenarios. Leveraging our Mamba fusion module, DRAMA efficiently and effectively fuses the features of the camera and LiDAR modalities. In addition, we introduce a Mamba-Transformer decoder that enhances the overall planning performance. This module is universally adaptable to any Transformer-based model, especially for tasks with long sequence inputs. We further introduce a novel feature state dropout which improves the planner's robustness without increasing training and inference times. Extensive experimental results show that DRAMA achieves higher accuracy on the NAVSIM dataset compared to the baseline Transfuser, with fewer parameters and lower computational costs.
♻ ☆ User-customizable Shared Control for Robot Teleoperation via Virtual Reality IROS 2024
Shared control can ease and enhance a human operator's ability to teleoperate robots, particularly for intricate tasks demanding fine control over multiple degrees of freedom. However, the arbitration process dictating how much autonomous assistance to administer in shared control can confuse novice operators and impede their understanding of the robot's behavior. To overcome these adverse side-effects, we propose a novel formulation of shared control that enables operators to tailor the arbitration to their unique capabilities and preferences. Unlike prior approaches to customizable shared control where users could indirectly modify the latent parameters of the arbitration function by issuing a feedback command, we instead make these parameters observable and directly editable via a virtual reality (VR) interface. We present our user-customizable shared control method for a teleoperation task in SE(3), known as the buzz wire game. A user study is conducted with participants teleoperating a robotic arm in VR to complete the game. The experiment spanned two weeks per subject to investigate longitudinal trends. Our findings reveal that users allowed to interactively tune the arbitration parameters across trials generalize well to adaptations in the task, exhibiting improvements in precision and fluency over direct teleoperation and conventional shared control.
comment: Accepted at IROS 2024
♻ ☆ VIRUS-NeRF -- Vision, InfraRed and UltraSonic based Neural Radiance Fields
Autonomous mobile robots are an increasingly integral part of modern factory and warehouse operations. Obstacle detection, avoidance and path planning are critical safety-relevant tasks, which are often solved using expensive LiDAR sensors and depth cameras. We propose to use cost-effective low-resolution ranging sensors, such as ultrasonic and infrared time-of-flight sensors by developing VIRUS-NeRF - Vision, InfraRed, and UltraSonic based Neural Radiance Fields. Building upon Instant Neural Graphics Primitives with a Multiresolution Hash Encoding (Instant-NGP), VIRUS-NeRF incorporates depth measurements from ultrasonic and infrared sensors and utilizes them to update the occupancy grid used for ray marching. Experimental evaluation in 2D demonstrates that VIRUS-NeRF achieves comparable mapping performance to LiDAR point clouds regarding coverage. Notably, in small environments, its accuracy aligns with that of LiDAR measurements, while in larger ones, it is bounded by the utilized ultrasonic sensors. An in-depth ablation study reveals that adding ultrasonic and infrared sensors is highly effective when dealing with sparse data and low view variation. Further, the proposed occupancy grid of VIRUS-NeRF improves the mapping capabilities and increases the training speed by 46% compared to Instant-NGP. Overall, VIRUS-NeRF presents a promising approach for cost-effective local mapping in mobile robotics, with potential applications in safety and navigation tasks. The code can be found at https://github.com/ethz-asl/virus nerf.
♻ ☆ Resilient source seeking with robot swarms
We present a solution for locating the source, or maximum, of an unknown scalar field using a swarm of mobile robots. Unlike relying on the traditional gradient information, the swarm determines an ascending direction to approach the source with arbitrary precision. The ascending direction is calculated from measurements of the field strength at the robot locations and their relative positions concerning the centroid. Rather than focusing on individual robots, we focus the analysis on the density of robots per unit area to guarantee a more resilient swarm, i.e., the functionality remains even if individuals go missing or are misplaced during the mission. We reinforce the robustness of the algorithm by providing sufficient conditions for the swarm shape so that the ascending direction is almost parallel to the gradient. The swarm can respond to an unexpected environment by morphing its shape and exploiting the existence of multiple ascending directions. Finally, we validate our approach numerically with hundreds of robots. The fact that a large number of robots always calculate an ascending direction compensates for the loss of individuals and mitigates issues arising from the actuator and sensor noises.
comment: 7 pages, CDC 2024, accepted version
Research on Autonomous Robots Navigation based on Reinforcement Learning
Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.
♻ ☆ Ankle Exoskeletons May Hinder Standing Balance in Simple Models of Older and Younger Adults
Humans rely on ankle torque to maintain standing balance, particularly in the presence of small to moderate perturbations. Reductions in maximum torque (MT) production and maximum rate of torque development (MRTD) occur at the ankle with age, diminishing stability. Ankle exoskeletons are powered orthotic devices that may assist older adults by compensating for reduced muscle force and power production capabilities. They may also be able to assist with ankle strategies used for balance. However, no studies have investigated the effect of such devices on balance in older adults. Here, we model the effect ankle exoskeletons have on stability in physics-based models of healthy young and old adults, focusing on the mitigation of age-related deficits such as reduced MT and MRTD. We show that an ankle exoskeleton moderately reduces feasible stability boundaries in users who have full ankle strength. For individuals with age-related deficits, there is a trade-off. While exoskeletons augment stability in low velocity conditions, they reduce stability in some high velocity conditions. Our results suggest that well-established control strategies must still be experimentally validated in older adults.
comment: 12 pages, 7 figures
♻ ☆ Virtual Elastic Tether: a New Approach for Multi-agent Navigation in Confined Aquatic Environments
Underwater navigation is a challenging area in the field of mobile robotics due to inherent constraints in self-localisation and communication in underwater environments. Some of these challenges can be mitigated by using collaborative multi-agent teams. However, when applied underwater, the robustness of traditional multi-agent collaborative control approaches is highly limited due to the unavailability of reliable measurements. In this paper, the concept of a Virtual Elastic Tether (VET) is introduced in the context of incomplete state measurements, which represents an innovative approach to underwater navigation in confined spaces. The concept of VET is formulated and validated using the Cooperative Aquatic Vehicle Exploration System (CAVES), which is a sim-to-real multi-agent aquatic robotic platform. Within this framework, a vision-based Autonomous Underwater Vehicle-Autonomous Surface Vehicle leader-follower formulation is developed. Experiments were conducted in both simulation and on a physical platform, benchmarked against a traditional Image-Based Visual Servoing approach. Results indicate that the formation of the baseline approach fails under discrete disturbances, when induced distances between the robots exceeds 0.6 m in simulation and 0.3 m in the real world. In contrast, the VET-enhanced system recovers to pre-perturbation distances within 5 seconds. Furthermore, results illustrate the successful navigation of VET-enhanced CAVES in a confined water pond where the baseline approach fails to perform adequately.
comment: This work has been submitted to the Wiley for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ gatekeeper: Online Safety Verification and Control for Nonlinear Systems in Dynamic Environments IROS 2023
This paper presents the gatekeeper algorithm, a real-time and computationally-lightweight method that ensures that trajectories of a nonlinear system satisfy safety constraints despite sensing limitations. gatekeeper integrates with existing path planners and feedback controllers by introducing an additional verification step to ensure that proposed trajectories can be executed safely, despite nonlinear dynamics subject to bounded disturbances, input constraints and partial knowledge of the environment. Our key contribution is that (A) we propose an algorithm to recursively construct safe trajectories by numerically forward propagating the system over a (short) finite horizon, and (B) we prove that tracking such a trajectory ensures the system remains safe for all future time, i.e., beyond the finite horizon. We demonstrate the method in a simulation of a dynamic firefighting mission, and in physical experiments of a quadrotor navigating in an obstacle environment that is sensed online. We also provide comparisons against the state-of-the-art techniques for similar problems.
comment: Accepted at IEEE T-RO 2024. Accepted at IROS 2023. 17 pages, 10 figures
♻ ☆ Safe Imitation Learning of Nonlinear Model Predictive Control for Flexible Robots IROS 2024
Flexible robots may overcome some of the industry's major challenges, such as enabling intrinsically safe human-robot collaboration and achieving a higher payload-to-mass ratio. However, controlling flexible robots is complicated due to their complex dynamics, which include oscillatory behavior and a high-dimensional state space. Nonlinear model predictive control (NMPC) offers an effective means to control such robots, but its significant computational demand often limits its application in real-time scenarios. To enable fast control of flexible robots, we propose a framework for a safe approximation of NMPC using imitation learning and a predictive safety filter. Our framework significantly reduces computation time while incurring a slight loss in performance. Compared to NMPC, our framework shows more than an eightfold improvement in computation time when controlling a three-dimensional flexible robot arm in simulation, all while guaranteeing safety constraints. Notably, our approach outperforms state-of-the-art reinforcement learning methods. The development of fast and safe approximate NMPC holds the potential to accelerate the adoption of flexible robots in industry. The project code is available at: tinyurl.com/anmpc4fr
comment: Accepted to IROS 2024
♻ ☆ WATonoBus: Field-Tested All-Weather Autonomous Shuttle Technology SC
All-weather autonomous vehicle operation poses significant challenges, encompassing modules from perception and decision-making to path planning and control. The complexity arises from the need to address adverse weather conditions such as rain, snow, and fog across the autonomy stack. Conventional model-based single-module approaches often lack holistic integration with upstream or downstream tasks. We tackle this problem by proposing a multi-module and modular system architecture with considerations for adverse weather across the perception level, through features such as snow covered curb detection, to decision-making and safety monitoring. Through daily weekday service on the WATonoBus platform for almost two years, we demonstrate that our proposed approach is capable of addressing adverse weather conditions and provide valuable insights from edge cases observed during operation.
comment: 8 pages, 10 figures. This work has been submitted to the ITSC for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Fast and Accurate Relative Motion Tracking for Dual Industrial Robots
Industrial robotic applications such as spraying, welding, and additive manufacturing frequently require fast, accurate, and uniform motion along a 3D spatial curve. To increase process throughput, some manufacturers propose a dual-robot setup to overcome the speed limitation of a single robot. Industrial robot motion is programmed through waypoints connected by motion primitives (Cartesian linear and circular paths and linear joint paths at constant Cartesian speed). The actual robot motion is affected by the blending between these motion primitives and the pose of the robot (an outstretched/near-singularity pose tends to have larger path tracking errors). Choosing the waypoints and the speed along each motion segment to achieve the performance requirement is challenging. At present, there is no automated solution, and laborious manual tuning by robot experts is needed to approach the desired performance. In this paper, we present a systematic three-step approach to designing and programming a dual robot system to optimize system performance. The first step is to select the relative placement between the two robots based on the specified relative motion path. The second step is to select the relative waypoints and the motion primitives. The final step is to update the waypoints iteratively based on the actual measured relative motion. Waypoint iteration is first executed in simulation and then completed using the actual robots. For performance assessment, we use the mean path speed subject to the relative position and orientation constraints and the path speed uniformity constraint. We have demonstrated the effectiveness of this method on two systems, a physical testbed of two ABB robots and a simulation testbed of two FANUC robots, for two challenging test curves.
♻ ☆ Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Research in robotic planning with temporal logic specifications, such as syntactically co-safe Linear Temporal Logic (sc-LTL), has relied on single formulas. However, as task complexity increases, sc-LTL formulas become lengthy, making them difficult to interpret and generate, and straining the computational capacities of planners. To address this, we introduce a hierarchical structure to sc-LTL specifications with both syntax and semantics, proving it to be more expressive than flat counterparts. We conducted a user study that compared the flat sc-LTL with our hierarchical version and found that users could more easily comprehend complex tasks using the hierarchical structure. We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning. This method approximates the search space by loosely interconnected sub-spaces, each corresponding to an sc-LTL specification. The search primarily focuses on a single sub-space, transitioning to another under conditions determined by the decomposition of automatons. We develop multiple heuristics to significantly expedite the search. Our theoretical analysis, conducted under mild assumptions, addresses completeness and optimality. Compared to existing methods used in various simulators for service tasks, our approach improves planning times while maintaining comparable solution quality.
comment: 20 pages, 10 figures
Computer Vision 116
☆ Knowledge Distillation with Refined Logits
Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.
comment: 11 pages, 7 figures
☆ End-to-end Semantic-centric Video-based Multimodal Affective Computing
In the pathway toward Artificial General Intelligence (AGI), understanding human's affection is essential to enhance machine's cognition abilities. For achieving more sensual human-AI interaction, Multimodal Affective Computing (MAC) in human-spoken videos has attracted increasing attention. However, previous methods are mainly devoted to designing multimodal fusion algorithms, suffering from two issues: semantic imbalance caused by diverse pre-processing operations and semantic mismatch raised by inconsistent affection content contained in different modalities comparing with the multimodal ground truth. Besides, the usage of manual features extractors make they fail in building end-to-end pipeline for multiple MAC downstream tasks. To address above challenges, we propose a novel end-to-end framework named SemanticMAC to compute multimodal semantic-centric affection for human-spoken videos. We firstly employ pre-trained Transformer model in multimodal data pre-processing and design Affective Perceiver module to capture unimodal affective information. Moreover, we present a semantic-centric approach to unify multimodal representation learning in three ways, including gated feature interaction, multi-task pseudo label generation, and intra-/inter-sample contrastive learning. Finally, SemanticMAC effectively learn specific- and shared-semantic representations in the guidance of semantic-centric labels. Extensive experimental results demonstrate that our approach surpass the state-of-the-art methods on 7 public datasets in four MAC downstream tasks.
comment: Under Review
Detecting Near-Duplicate Face Images
Near-duplicate images are often generated when applying repeated photometric and geometric transformations that produce imperceptible variants of the original image. Consequently, a deluge of near-duplicates can be circulated online posing copyright infringement concerns. The concerns are more severe when biometric data is altered through such nuanced transformations. In this work, we address the challenge of near-duplicate detection in face images by, firstly, identifying the original image from a set of near-duplicates and, secondly, deducing the relationship between the original image and the near-duplicates. We construct a tree-like structure, called an Image Phylogeny Tree (IPT) using a graph-theoretic approach to estimate the relationship, i.e., determine the sequence in which they have been generated. We further extend our method to create an ensemble of IPTs known as Image Phylogeny Forests (IPFs). We rigorously evaluate our method to demonstrate robustness across other modalities, unseen transformations by latest generative models and IPT configurations, thereby significantly advancing the state-of-the-art performance by 42% on IPF reconstruction accuracy.
comment: Under review
☆ RSD-DOG : A New Image Descriptor based on Second Order Derivatives
This paper introduces the new and powerful image patch descriptor based on second order image statistics/derivatives. Here, the image patch is treated as a 3D surface with intensity being the 3rd dimension. The considered 3D surface has a rich set of second order features/statistics such as ridges, valleys, cliffs and so on, that can be easily captured by using the difference of rotating semi Gaussian filters. The originality of this method is based on successfully combining the response of the directional filters with that of the Difference of Gaussian (DOG) approach. The obtained descriptor shows a good discriminative power when dealing with the variations in illumination, scale, rotation, blur, viewpoint and compression. The experiments on image matching, demonstrates the advantage of the obtained descriptor when compared to its first order counterparts such as SIFT, DAISY, GLOH, GIST and LIDRIC.
☆ G$^2$V$^2$former: Graph Guided Video Vision Transformer for Face Anti-Spoofing
In videos containing spoofed faces, we may uncover the spoofing evidence based on either photometric or dynamic abnormality, even a combination of both. Prevailing face anti-spoofing (FAS) approaches generally concentrate on the single-frame scenario, however, purely photometric-driven methods overlook the dynamic spoofing clues that may be exposed over time. This may lead FAS systems to conclude incorrect judgments, especially in cases where it is easily distinguishable in terms of dynamics but challenging to discern in terms of photometrics. To this end, we propose the Graph Guided Video Vision Transformer (G$^2$V$^2$former), which combines faces with facial landmarks for photometric and dynamic feature fusion. We factorize the attention into space and time, and fuse them via a spatiotemporal block. Specifically, we design a novel temporal attention called Kronecker temporal attention, which has a wider receptive field, and is beneficial for capturing dynamic information. Moreover, we leverage the low-semantic motion of facial landmarks to guide the high-semantic change of facial expressions based on the motivation that regions containing landmarks may reveal more dynamic clues. Extensive experiments on nine benchmark datasets demonstrate that our method achieves superior performance under various scenarios. The codes will be released soon.
comment: 11 pages, 5 figures
☆ See It All: Contextualized Late Aggregation for 3D Dense Captioning ACL 2024
3D dense captioning is a task to localize objects in a 3D scene and generate descriptive sentences for each object. Recent approaches in 3D dense captioning have adopted transformer encoder-decoder frameworks from object detection to build an end-to-end pipeline without hand-crafted components. However, these approaches struggle with contradicting objectives where a single query attention has to simultaneously view both the tightly localized object regions and contextual environment. To overcome this challenge, we introduce SIA (See-It-All), a transformer pipeline that engages in 3D dense captioning with a novel paradigm called late aggregation. SIA simultaneously decodes two sets of queries-context query and instance query. The instance query focuses on localization and object attribute descriptions, while the context query versatilely captures the region-of-interest of relationships between multiple objects or with the global scene, then aggregated afterwards (i.e., late aggregation) via simple distance-based measures. To further enhance the quality of contextualized caption generation, we design a novel aggregator to generate a fully informed caption based on the surrounding context, the global environment, and object instances. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
comment: Accepted to ACL 2024 Findings
☆ Boosting Unconstrained Face Recognition with Targeted Style Adversary
While deep face recognition models have demonstrated remarkable performance, they often struggle on the inputs from domains beyond their training data. Recent attempts aim to expand the training set by relying on computationally expensive and inherently challenging image-space augmentation of image generation modules. In an orthogonal direction, we present a simple yet effective method to expand the training data by interpolating between instance-level feature statistics across labeled and unlabeled sets. Our method, dubbed Targeted Style Adversary (TSA), is motivated by two observations: (i) the input domain is reflected in feature statistics, and (ii) face recognition model performance is influenced by style information. Shifting towards an unlabeled style implicitly synthesizes challenging training instances. We devise a recognizability metric to constraint our framework to preserve the inherent identity-related information of labeled instances. The efficacy of our method is demonstrated through evaluations on unconstrained benchmarks, outperforming or being on par with its competitors while offering nearly a 70\% improvement in training speed and 40\% less memory consumption.
☆ Rethinking the Key Factors for the Generalization of Remote Sensing Stereo Matching Networks
Stereo matching, a critical step of 3D reconstruction, has fully shifted towards deep learning due to its strong feature representation of remote sensing images. However, ground truth for stereo matching task relies on expensive airborne LiDAR data, thus making it difficult to obtain enough samples for supervised learning. To improve the generalization ability of stereo matching networks on cross-domain data from different sensors and scenarios, in this paper, we dedicate to study key training factors from three perspectives. (1) For the selection of training dataset, it is important to select data with similar regional target distribution as the test set instead of utilizing data from the same sensor. (2) For model structure, cascaded structure that flexibly adapts to different sizes of features is preferred. (3) For training manner, unsupervised methods generalize better than supervised methods, and we design an unsupervised early-stop strategy to help retain the best model with pre-trained weights as the basis. Extensive experiments are conducted to support the previous findings, on the basis of which we present an unsupervised stereo matching network with good generalization performance. We release the source code and the datasets at https://github.com/Elenairene/RKF_RSSM to reproduce the results and encourage future work.
comment: submitted to IEEE jstars
☆ Panacea+: Panoramic and Controllable Video Generation for Autonomous Driving
The field of autonomous driving increasingly demands high-quality annotated video training data. In this paper, we propose Panacea+, a powerful and universally applicable framework for generating video data in driving scenes. Built upon the foundation of our previous work, Panacea, Panacea+ adopts a multi-view appearance noise prior mechanism and a super-resolution module for enhanced consistency and increased resolution. Extensive experiments show that the generated video samples from Panacea+ greatly benefit a wide range of tasks on different datasets, including 3D object tracking, 3D object detection, and lane detection tasks on the nuScenes and Argoverse 2 dataset. These results strongly prove Panacea+ to be a valuable data generation framework for autonomous driving.
comment: Project page: https://panacea-ad.github.io/. arXiv admin note: text overlap with arXiv:2311.16813
☆ Disentangle and denoise: Tackling context misalignment for video moment retrieval
Video Moment Retrieval, which aims to locate in-context video moments according to a natural language query, is an essential task for cross-modal grounding. Existing methods focus on enhancing the cross-modal interactions between all moments and the textual description for video understanding. However, constantly interacting with all locations is unreasonable because of uneven semantic distribution across the timeline and noisy visual backgrounds. This paper proposes a cross-modal Context Denoising Network (CDNet) for accurate moment retrieval by disentangling complex correlations and denoising irrelevant dynamics.Specifically, we propose a query-guided semantic disentanglement (QSD) to decouple video moments by estimating alignment levels according to the global and fine-grained correlation. A Context-aware Dynamic Denoisement (CDD) is proposed to enhance understanding of aligned spatial-temporal details by learning a group of query-relevant offsets. Extensive experiments on public benchmarks demonstrate that the proposed CDNet achieves state-of-the-art performances.
☆ Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting
We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.
☆ Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey
With significant advancements in Transformers LLMs, NLP has extended its reach into many research fields due to its enhanced capabilities in text generation and user interaction. One field benefiting greatly from these advancements is cybersecurity. In cybersecurity, many parameters that need to be protected and exchanged between senders and receivers are in the form of text and tabular data, making NLP a valuable tool in enhancing the security measures of communication protocols. This survey paper provides a comprehensive analysis of the utilization of Transformers and LLMs in cyber-threat detection systems. The methodology of paper selection and bibliometric analysis is outlined to establish a rigorous framework for evaluating existing research. The fundamentals of Transformers are discussed, including background information on various cyber-attacks and datasets commonly used in this field. The survey explores the application of Transformers in IDSs, focusing on different architectures such as Attention-based models, LLMs like BERT and GPT, CNN/LSTM-Transformer hybrids, emerging approaches like ViTs, among others. Furthermore, it explores the diverse environments and applications where Transformers and LLMs-based IDS have been implemented, including computer networks, IoT devices, critical infrastructure protection, cloud computing, SDN, as well as in autonomous vehicles. The paper also addresses research challenges and future directions in this area, identifying key issues such as interpretability, scalability, and adaptability to evolving threats, and more. Finally, the conclusion summarizes the findings and highlights the significance of Transformers and LLMs in enhancing cyber-threat detection capabilities, while also outlining potential avenues for further research and development.
comment: arXiv admin note: text overlap with arXiv:2405.04760 by other authors
☆ Sonic: Fast and Transferable Data Poisoning on Clustering Algorithms
Data poisoning attacks on clustering algorithms have received limited attention, with existing methods struggling to scale efficiently as dataset sizes and feature counts increase. These attacks typically require re-clustering the entire dataset multiple times to generate predictions and assess the attacker's objectives, significantly hindering their scalability. This paper addresses these limitations by proposing Sonic, a novel genetic data poisoning attack that leverages incremental and scalable clustering algorithms, e.g., FISHDBC, as surrogates to accelerate poisoning attacks against graph-based and density-based clustering methods, such as HDBSCAN. We empirically demonstrate the effectiveness and efficiency of Sonic in poisoning the target clustering algorithms. We then conduct a comprehensive analysis of the factors affecting the scalability and transferability of poisoning attacks against clustering algorithms, and we conclude by examining the robustness of hyperparameters in our attack strategy Sonic.
comment: preprint paper
☆ DifuzCam: Replacing Camera Lens with a Mask and a Diffusion Model
The flat lensless camera design reduces the camera size and weight significantly. In this design, the camera lens is replaced by another optical element that interferes with the incoming light. The image is recovered from the raw sensor measurements using a reconstruction algorithm. Yet, the quality of the reconstructed images is not satisfactory. To mitigate this, we propose utilizing a pre-trained diffusion model with a control network and a learned separable transformation for reconstruction. This allows us to build a prototype flat camera with high-quality imaging, presenting state-of-the-art results in both terms of quality and perceptuality. We demonstrate its ability to leverage also textual descriptions of the captured scene to further enhance reconstruction. Our reconstruction method which leverages the strong capabilities of a pre-trained diffusion model can be used in other imaging systems for improved reconstruction results.
☆ 3D Gaussian Editing with A Single Image
The modeling and manipulation of 3D scenes captured from the real world are pivotal in various applications, attracting growing research interest. While previous works on editing have achieved interesting results through manipulating 3D meshes, they often require accurately reconstructed meshes to perform editing, which limits their application in 3D content generation. To address this gap, we introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting, enabling intuitive manipulation via directly editing the content on a 2D image plane. Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint of the original scene. To capture long-range object deformation, we introduce positional loss into the optimization process of 3D Gaussian Splatting and enable gradient propagation through reparameterization. To handle occluded 3D Gaussians when rendering from the specified viewpoint, we build an anchor-based structure and employ a coarse-to-fine optimization strategy capable of handling long-range deformation while maintaining structural stability. Furthermore, we design a novel masking strategy to adaptively identify non-rigid deformation regions for fine-scale modeling. Extensive experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation, demonstrating superior editing flexibility and quality compared to previous approaches.
comment: 10 pages, 12 figures
☆ Cross-aware Early Fusion with Stage-divided Vision and Language Transformer Encoders for Referring Image Segmentation
Referring segmentation aims to segment a target object related to a natural language expression. Key challenges of this task are understanding the meaning of complex and ambiguous language expressions and determining the relevant regions in the image with multiple objects by referring to the expression. Recent models have focused on the early fusion with the language features at the intermediate stage of the vision encoder, but these approaches have a limitation that the language features cannot refer to the visual information. To address this issue, this paper proposes a novel architecture, Cross-aware early fusion with stage-divided Vision and Language Transformer encoders (CrossVLT), which allows both language and vision encoders to perform the early fusion for improving the ability of the cross-modal context modeling. Unlike previous methods, our method enables the vision and language features to refer to each other's information at each stage to mutually enhance the robustness of both encoders. Furthermore, unlike the conventional scheme that relies solely on the high-level features for the cross-modal alignment, we introduce a feature-based alignment scheme that enables the low-level to high-level features of the vision and language encoders to engage in the cross-modal alignment. By aligning the intermediate cross-modal features in all encoder stages, this scheme leads to effective cross-modal fusion. In this way, the proposed approach is simple but effective for referring image segmentation, and it outperforms the previous state-of-the-art methods on three public benchmarks.
comment: Published in IEEE Transactions on Multimedia (TMM)
☆ Improved 3D Whole Heart Geometry from Sparse CMR Slices
Cardiac magnetic resonance (CMR) imaging and computed tomography (CT) are two common non-invasive imaging methods for assessing patients with cardiovascular disease. CMR typically acquires multiple sparse 2D slices, with unavoidable respiratory motion artefacts between slices, whereas CT acquires isotropic dense data but uses ionising radiation. In this study, we explore the combination of Slice Shifting Algorithm (SSA), Spatial Transformer Network (STN), and Label Transformer Network (LTN) to: 1) correct respiratory motion between segmented slices, and 2) transform sparse segmentation data into dense segmentation. All combinations were validated using synthetic motion-corrupted CMR slice segmentation generated from CT in 1699 cases, where the dense CT serves as the ground truth. In 199 testing cases, SSA-LTN achieved the best results for Dice score and Huasdorff distance (94.0% and 4.7 mm respectively, average over 5 labels) but gave topological errors in 8 cases. STN was effective as a plug-in tool for correcting all topological errors with minimal impact on overall performance (93.5% and 5.0 mm respectively). SSA also proves to be a valuable plug-in tool, enhancing performance over both STN-based and LTN-based models. The code for these different combinations is available at https://github.com/XESchong/STACOM2024.
comment: 13 pages, STACOM2024
☆ Towards Real-time Video Compressive Sensing on Mobile Devices ACM MM 2024
Video Snapshot Compressive Imaging (SCI) uses a low-speed 2D camera to capture high-speed scenes as snapshot compressed measurements, followed by a reconstruction algorithm to retrieve the high-speed video frames. The fast evolving mobile devices and existing high-performance video SCI reconstruction algorithms motivate us to develop mobile reconstruction methods for real-world applications. Yet, it is still challenging to deploy previous reconstruction algorithms on mobile devices due to the complex inference process, let alone real-time mobile reconstruction. To the best of our knowledge, there is no video SCI reconstruction model designed to run on the mobile devices. Towards this end, in this paper, we present an effective approach for video SCI reconstruction, dubbed MobileSCI, which can run at real-time speed on the mobile devices for the first time. Specifically, we first build a U-shaped 2D convolution-based architecture, which is much more efficient and mobile-friendly than previous state-of-the-art reconstruction methods. Besides, an efficient feature mixing block, based on the channel splitting and shuffling mechanisms, is introduced as a novel bottleneck block of our proposed MobileSCI to alleviate the computational burden. Finally, a customized knowledge distillation strategy is utilized to further improve the reconstruction quality. Extensive results on both simulated and real data show that our proposed MobileSCI can achieve superior reconstruction quality with high efficiency on the mobile devices. Particularly, we can reconstruct a 256 X 256 X 8 snapshot compressed measurement with real-time performance (about 35 FPS) on an iPhone 15. Code is available at https://github.com/mcao92/MobileSCI.
comment: 9 pages, Accepted by ACM MM 2024
☆ Evidential Graph Contrastive Alignment for Source-Free Blending-Target Domain Adaptation
In this paper, we firstly tackle a more realistic Domain Adaptation (DA) setting: Source-Free Blending-Target Domain Adaptation (SF-BTDA), where we can not access to source domain data while facing mixed multiple target domains without any domain labels in prior. Compared to existing DA scenarios, SF-BTDA generally faces the co-existence of different label shifts in different targets, along with noisy target pseudo labels generated from the source model. In this paper, we propose a new method called Evidential Contrastive Alignment (ECA) to decouple the blending target domain and alleviate the effect from noisy target pseudo labels. First, to improve the quality of pseudo target labels, we propose a calibrated evidential learning module to iteratively improve both the accuracy and certainty of the resulting model and adaptively generate high-quality pseudo target labels. Second, we design a graph contrastive learning with the domain distance matrix and confidence-uncertainty criterion, to minimize the distribution gap of samples of a same class in the blended target domains, which alleviates the co-existence of different label shifts in blended targets. We conduct a new benchmark based on three standard DA datasets and ECA outperforms other methods with considerable gains and achieves comparable results compared with those that have domain labels or source data in prior.
☆ Whitening Consistently Improves Self-Supervised Learning
Self-supervised learning (SSL) has been shown to be a powerful approach for learning visual representations. In this study, we propose incorporating ZCA whitening as the final layer of the encoder in self-supervised learning to enhance the quality of learned features by normalizing and decorrelating them. Although whitening has been utilized in SSL in previous works, its potential to universally improve any SSL model has not been explored. We demonstrate that adding whitening as the last layer of SSL pretrained encoders is independent of the self-supervised learning method and encoder architecture, thus it improves performance for a wide range of SSL methods across multiple encoder architectures and datasets. Our experiments show that whitening is capable of improving linear and k-NN probing accuracy by 1-5%. Additionally, we propose metrics that allow for a comprehensive analysis of the learned features, provide insights into the quality of the representations and help identify collapse patterns.
comment: Preprint
☆ CNN-JEPA: Self-Supervised Pretraining Convolutional Neural Networks Using Joint Embedding Predictive Architecture
Self-supervised learning (SSL) has become an important approach in pretraining large neural networks, enabling unprecedented scaling of model and dataset sizes. While recent advances like I-JEPA have shown promising results for Vision Transformers, adapting such methods to Convolutional Neural Networks (CNNs) presents unique challenges. In this paper, we introduce CNN-JEPA, a novel SSL method that successfully applies the joint embedding predictive architecture approach to CNNs. Our method incorporates a sparse CNN encoder to handle masked inputs, a fully convolutional predictor using depthwise separable convolutions, and an improved masking strategy. We demonstrate that CNN-JEPA outperforms I-JEPA with ViT architectures on ImageNet-100, achieving 73.3% linear top-1 accuracy with a standard ResNet-50 encoder. Compared to other CNN-based SSL methods, CNN-JEPA requires 17-35% less training time for the same number of epochs and approaches the linear and k-NN top-1 accuracies of BYOL, SimCLR, and VICReg. Our approach offers a simpler, more efficient alternative to existing SSL methods for CNNs, requiring minimal augmentations and no separate projector network.
comment: Preprint
☆ Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach
In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
☆ Attention-Guided Perturbation for Unsupervised Image Anomaly Detection
Reconstruction-based methods have significantly advanced modern unsupervised anomaly detection. However, the strong capacity of neural networks often violates the underlying assumptions by reconstructing abnormal samples well. To alleviate this issue, we present a simple yet effective reconstruction framework named Attention-Guided Pertuation Network (AGPNet), which learns to add perturbation noise with an attention mask, for accurate unsupervised anomaly detection. Specifically, it consists of two branches, \ie, a plain reconstruction branch and an auxiliary attention-based perturbation branch. The reconstruction branch is simply a plain reconstruction network that learns to reconstruct normal samples, while the auxiliary branch aims to produce attention masks to guide the noise perturbation process for normal samples from easy to hard. By doing so, we are expecting to synthesize hard yet more informative anomalies for training, which enable the reconstruction branch to learn important inherent normal patterns both comprehensively and efficiently. Extensive experiments are conducted on three popular benchmarks covering MVTec-AD, VisA, and MVTec-3D, and show that our framework obtains leading anomaly detection performance under various setups including few-shot, one-class, and multi-class setups.
☆ OMR: Occlusion-Aware Memory-Based Refinement for Video Lane Detection ECCV 2024
A novel algorithm for video lane detection is proposed in this paper. First, we extract a feature map for a current frame and detect a latent mask for obstacles occluding lanes. Then, we enhance the feature map by developing an occlusion-aware memory-based refinement (OMR) module. It takes the obstacle mask and feature map from the current frame, previous output, and memory information as input, and processes them recursively in a video. Moreover, we apply a novel data augmentation scheme for training the OMR module effectively. Experimental results show that the proposed algorithm outperforms existing techniques on video lane datasets. Our codes are available at https://github.com/dongkwonjin/OMR.
comment: Accepted to ECCV 2024
☆ GRFormer: Grouped Residual Self-Attention for Lightweight Single Image Super-Resolution ACM MM 2024
Previous works have shown that reducing parameter overhead and computations for transformer-based single image super-resolution (SISR) models (e.g., SwinIR) usually leads to a reduction of performance. In this paper, we present GRFormer, an efficient and lightweight method, which not only reduces the parameter overhead and computations, but also greatly improves performance. The core of GRFormer is Grouped Residual Self-Attention (GRSA), which is specifically oriented towards two fundamental components. Firstly, it introduces a novel grouped residual layer (GRL) to replace the Query, Key, Value (QKV) linear layer in self-attention, aimed at efficiently reducing parameter overhead, computations, and performance loss at the same time. Secondly, it integrates a compact Exponential-Space Relative Position Bias (ES-RPB) as a substitute for the original relative position bias to improve the ability to represent position information while further minimizing the parameter count. Extensive experimental results demonstrate that GRFormer outperforms state-of-the-art transformer-based methods for $\times$2, $\times$3 and $\times$4 SISR tasks, notably outperforming SOTA by a maximum PSNR of 0.23dB when trained on the DIV2K dataset, while reducing the number of parameter and MACs by about \textbf{60\%} and \textbf{49\% } in only self-attention module respectively. We hope that our simple and effective method that can easily applied to SR models based on window-division self-attention can serve as a useful tool for further research in image super-resolution. The code is available at \url{https://github.com/sisrformer/GRFormer}.
comment: Accepted for ACM MM 2024
☆ DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency
Diffusion models usher a new era of video editing, flexibly manipulating the video contents with text prompts. Despite the widespread application demand in editing human-centered videos, these models face significant challenges in handling complex objects like humans. In this paper, we introduce DeCo, a novel video editing framework specifically designed to treat humans and the background as separate editable targets, ensuring global spatial-temporal consistency by maintaining the coherence of each individual component. Specifically, we propose a decoupled dynamic human representation that utilizes a parametric human body prior to generate tailored humans while preserving the consistent motions as the original video. In addition, we consider the background as a layered atlas to apply text-guided image editing approaches on it. To further enhance the geometry and texture of humans during the optimization, we extend the calculation of score distillation sampling into normal space and image space. Moreover, we tackle inconsistent lighting between the edited targets by leveraging a lighting-aware video harmonizer, a problem previously overlooked in decompose-edit-combine approaches. Extensive qualitative and numerical experiments demonstrate that DeCo outperforms prior video editing methods in human-centered videos, especially in longer videos.
comment: European Conference on Computer Vision
☆ One Step Diffusion-based Super-Resolution with Time-Aware Distillation
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR.
comment: 18 pages
☆ Domain-invariant Representation Learning via Segment Anything Model for Blood Cell Classification
Accurate classification of blood cells is of vital significance in the diagnosis of hematological disorders. However, in real-world scenarios, domain shifts caused by the variability in laboratory procedures and settings, result in a rapid deterioration of the model's generalization performance. To address this issue, we propose a novel framework of domain-invariant representation learning (DoRL) via segment anything model (SAM) for blood cell classification. The DoRL comprises two main components: a LoRA-based SAM (LoRA-SAM) and a cross-domain autoencoder (CAE). The advantage of DoRL is that it can extract domain-invariant representations from various blood cell datasets in an unsupervised manner. Specifically, we first leverage the large-scale foundation model of SAM, fine-tuned with LoRA, to learn general image embeddings and segment blood cells. Additionally, we introduce CAE to learn domain-invariant representations across different-domain datasets while mitigating images' artifacts. To validate the effectiveness of domain-invariant representations, we employ five widely used machine learning classifiers to construct blood cell classification models. Experimental results on two public blood cell datasets and a private real dataset demonstrate that our proposed DoRL achieves a new state-of-the-art cross-domain performance, surpassing existing methods by a significant margin. The source code can be available at the URL (https://github.com/AnoK3111/DoRL).
☆ Infra-YOLO: Efficient Neural Network Structure with Model Compression for Real-Time Infrared Small Object Detection
Although convolutional neural networks have made outstanding achievements in visible light target detection, there are still many challenges in infrared small object detection because of the low signal-to-noise ratio, incomplete object structure, and a lack of reliable infrared small object dataset. To resolve limitations of the infrared small object dataset, a new dataset named InfraTiny was constructed, and more than 85% bounding box is less than 32x32 pixels (3218 images and a total of 20,893 bounding boxes). A multi-scale attention mechanism module (MSAM) and a Feature Fusion Augmentation Pyramid Module (FFAFPM) were proposed and deployed onto embedded devices. The MSAM enables the network to obtain scale perception information by acquiring different receptive fields, while the background noise information is suppressed to enhance feature extraction ability. The proposed FFAFPM can enrich semantic information, and enhance the fusion of shallow feature and deep feature, thus false positive results have been significantly reduced. By integrating the proposed methods into the YOLO model, which is named Infra-YOLO, infrared small object detection performance has been improved. Compared to yolov3, mAP@0.5 has been improved by 2.7%; and compared to yolov4, that by 2.5% on the InfraTiny dataset. The proposed Infra-YOLO was also transferred onto the embedded device in the unmanned aerial vehicle (UAV) for real application scenarios, where the channel pruning method is adopted to reduce FLOPs and to achieve a tradeoff between speed and accuracy. Even if the parameters of Infra-YOLO are reduced by 88% with the pruning method, a gain of 0.7% is still achieved on mAP@0.5 compared to yolov3, and a gain of 0.5% compared to yolov4. Experimental results show that the proposed MSAM and FFAFPM method can improve infrared small object detection performance compared with the previous benchmark method.
☆ Modality Invariant Multimodal Learning to Handle Missing Modalities: A Single-Branch Approach
Multimodal networks have demonstrated remarkable performance improvements over their unimodal counterparts. Existing multimodal networks are designed in a multi-branch fashion that, due to the reliance on fusion strategies, exhibit deteriorated performance if one or more modalities are missing. In this work, we propose a modality invariant multimodal learning method, which is less susceptible to the impact of missing modalities. It consists of a single-branch network sharing weights across multiple modalities to learn inter-modality representations to maximize performance as well as robustness to missing modalities. Extensive experiments are performed on four challenging datasets including textual-visual (UPMC Food-101, Hateful Memes, Ferramenta) and audio-visual modalities (VoxCeleb1). Our proposed method achieves superior performance when all modalities are present as well as in the case of missing modalities during training or testing compared to the existing state-of-the-art methods.
☆ Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark
Costal cartilage segmentation is crucial to various medical applications, necessitating precise and reliable techniques due to its complex anatomy and the importance of accurate diagnosis and surgical planning. We propose a novel deep learning-based approach called topology-guided deformable Mamba (TGDM) for costal cartilage segmentation. The TGDM is tailored to capture the intricate long-range costal cartilage relationships. Our method leverages a deformable model that integrates topological priors to enhance the adaptability and accuracy of the segmentation process. Furthermore, we developed a comprehensive benchmark that contains 165 cases for costal cartilage segmentation. This benchmark sets a new standard for evaluating costal cartilage segmentation techniques and provides a valuable resource for future research. Extensive experiments conducted on both in-domain benchmarks and out-of domain test sets demonstrate the superiority of our approach over existing methods, showing significant improvements in segmentation precision and robustness.
☆ Achieving Data Efficient Neural Networks with Hybrid Concept-based Models
Most datasets used for supervised machine learning consist of a single label per data point. However, in cases where more information than just the class label is available, would it be possible to train models more efficiently? We introduce two novel model architectures, which we call hybrid concept-based models, that train using both class labels and additional information in the dataset referred to as concepts. In order to thoroughly assess their performance, we introduce ConceptShapes, an open and flexible class of datasets with concept labels. We show that the hybrid concept-based models outperform standard computer vision models and previously proposed concept-based models with respect to accuracy, especially in sparse data settings. We also introduce an algorithm for performing adversarial concept attacks, where an image is perturbed in a way that does not change a concept-based model's concept predictions, but changes the class prediction. The existence of such adversarial examples raises questions about the interpretable qualities promised by concept-based models.
comment: 11 pages, 8 figures, appendix
☆ UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection
This paper focuses on Human-Object Interaction (HOI) detection, addressing the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame. Spearheaded by Detection Transformer (DETR), recent developments lead to significant improvements by replacing traditional region proposals by a set of learnable queries. However, despite the powerful representation capabilities provided by Transformers, existing Human-Object Interaction (HOI) detection methods still yield low confidence levels when dealing with complex interactions and are prone to overlooking interactive actions. To address these issues, we propose a novel approach \textsc{UAHOI}, Uncertainty-aware Robust Human-Object Interaction Learning that explicitly estimates prediction uncertainty during the training process to refine both detection and interaction predictions. Our model not only predicts the HOI triplets but also quantifies the uncertainty of these predictions. Specifically, we model this uncertainty through the variance of predictions and incorporate it into the optimization objective, allowing the model to adaptively adjust its confidence threshold based on prediction variance. This integration helps in mitigating the adverse effects of incorrect or ambiguous predictions that are common in traditional methods without any hand-designed components, serving as an automatic confidence threshold. Our method is flexible to existing HOI detection methods and demonstrates improved accuracy. We evaluate \textsc{UAHOI} on two standard benchmarks in the field: V-COCO and HICO-DET, which represent challenging scenarios for HOI detection. Through extensive experiments, we demonstrate that \textsc{UAHOI} achieves significant improvements over existing state-of-the-art methods, enhancing both the accuracy and robustness of HOI detection.
comment: Accepted by CVIU
☆ LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image
Recent advancements in autonomous driving, augmented reality, robotics, and embodied intelligence have necessitated 3D perception algorithms. However, current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories. On the other hand, generative multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks, due to weak spatial and local object perception, poor text-based geometric numerical output, and inability to handle camera focal variations. To address these challenges, we propose the following solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations. We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM. Additionally, we have constructed the IG3D dataset, which provides fine-grained descriptions and question-answer annotations. Extensive experiments demonstrate that our LLMI3D achieves state-of-the-art performance, significantly outperforming existing methods.
☆ Unsupervised Stereo Matching Network For VHR Remote Sensing Images Based On Error Prediction RSS
Stereo matching in remote sensing has recently garnered increased attention, primarily focusing on supervised learning. However, datasets with ground truth generated by expensive airbone Lidar exhibit limited quantity and diversity, constraining the effectiveness of supervised networks. In contrast, unsupervised learning methods can leverage the increasing availability of very-high-resolution (VHR) remote sensing images, offering considerable potential in the realm of stereo matching. Motivated by this intuition, we propose a novel unsupervised stereo matching network for VHR remote sensing images. A light-weight module to bridge confidence with predicted error is introduced to refine the core model. Robust unsupervised losses are formulated to enhance network convergence. The experimental results on US3D and WHU-Stereo datasets demonstrate that the proposed network achieves superior accuracy compared to other unsupervised networks and exhibits better generalization capabilities than supervised models. Our code will be available at https://github.com/Elenairene/CBEM.
comment: Accepted to International Geoscience and Remote Sensing Symposium (IGARSS), 2024
☆ Rethinking Open-Vocabulary Segmentation of Radiance Fields in 3D Space
Understanding the 3D semantics of a scene is a fundamental problem for various scenarios such as embodied agents. While NeRFs and 3DGS excel at novel-view synthesis, previous methods for understanding their semantics have been limited to incomplete 3D understanding: their segmentation results are 2D masks and their supervision is anchored at 2D pixels. This paper revisits the problem set to pursue a better 3D understanding of a scene modeled by NeRFs and 3DGS as follows. 1) We directly supervise the 3D points to train the language embedding field. It achieves state-of-the-art accuracy without relying on multi-scale language embeddings. 2) We transfer the pre-trained language field to 3DGS, achieving the first real-time rendering speed without sacrificing training time or accuracy. 3) We introduce a 3D querying and evaluation protocol for assessing the reconstructed geometry and semantics together. Code, checkpoints, and annotations will be available online. Project page: https://hyunji12.github.io/Open3DRF
comment: Project page: https://hyunji12.github.io/Open3DRF
☆ Segment Using Just One Example
Semantic segmentation is an important topic in computer vision with many relevant application in Earth observation. While supervised methods exist, the constraints of limited annotated data has encouraged development of unsupervised approaches. However, existing unsupervised methods resemble clustering and cannot be directly mapped to explicit target classes. In this paper, we deal with single shot semantic segmentation, where one example for the target class is provided, which is used to segment the target class from query/test images. Our approach exploits recently popular Segment Anything (SAM), a promptable foundation model. We specifically design several techniques to automatically generate prompts from the only example/key image in such a way that the segmentation is successfully achieved on a stitch or concatenation of the example/key and query/test images. Proposed technique does not involve any training phase and just requires one example image to grasp the concept. Furthermore, no text-based prompt is required for the proposed method. We evaluated the proposed techniques on building and car classes.
☆ Automated Retinal Image Analysis and Medical Report Generation through Deep Learning
The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system, as the demand for ophthalmologists surpasses the available workforce. This imbalance creates a bottleneck in diagnosis and treatment, potentially delaying critical care. Traditional methods of generating medical reports from retinal images rely on manual interpretation, which is time-consuming and prone to errors, further straining ophthalmologists' limited resources. This thesis investigates the potential of Artificial Intelligence (AI) to automate medical report generation for retinal images. AI can quickly analyze large volumes of image data, identifying subtle patterns essential for accurate diagnosis. By automating this process, AI systems can greatly enhance the efficiency of retinal disease diagnosis, reducing doctors' workloads and enabling them to focus on more complex cases. The proposed AI-based methods address key challenges in automated report generation: (1) Improved methods for medical keyword representation enhance the system's ability to capture nuances in medical terminology; (2) A multi-modal deep learning approach captures interactions between textual keywords and retinal images, resulting in more comprehensive medical reports; (3) Techniques to enhance the interpretability of the AI-based report generation system, fostering trust and acceptance in clinical practice. These methods are rigorously evaluated using various metrics and achieve state-of-the-art performance. This thesis demonstrates AI's potential to revolutionize retinal disease diagnosis by automating medical report generation, ultimately improving clinical efficiency, diagnostic accuracy, and patient care. [https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models-and-Visual-Explanation]
comment: Ph.D. thesis, 124 pages
☆ RTAT: A Robust Two-stage Association Tracker for Multi-Object Tracking ICPR2024
Data association is an essential part in the tracking-by-detection based Multi-Object Tracking (MOT). Most trackers focus on how to design a better data association strategy to improve the tracking performance. The rule-based handcrafted association methods are simple and highly efficient but lack generalization capability to deal with complex scenes. While the learnt association methods can learn high-order contextual information to deal with various complex scenes, but they have the limitations of higher complexity and cost. To address these limitations, we propose a Robust Two-stage Association Tracker, named RTAT. The first-stage association is performed between tracklets and detections to generate tracklets with high purity, and the second-stage association is performed between tracklets to form complete trajectories. For the first-stage association, we use a simple data association strategy to generate tracklets with high purity by setting a low threshold for the matching cost in the assignment process. We conduct the tracklet association in the second-stage based on the framework of message-passing GNN. Our method models the tracklet association as a series of edge classification problem in hierarchical graphs, which can recursively merge short tracklets into longer ones. Our tracker RTAT ranks first on the test set of MOT17 and MOT20 benchmarks in most of the main MOT metrics: HOTA, IDF1, and AssA. We achieve 67.2 HOTA, 84.7 IDF1, and 69.7 AssA on MOT17, and 66.2 HOTA, 82.5 IDF1, and 68.1 AssA on MOT20.
comment: ICPR2024
☆ Gradient Alignment Improves Test-Time Adaptation for Medical Image Segmentation
Although recent years have witnessed significant advancements in medical image segmentation, the pervasive issue of domain shift among medical images from diverse centres hinders the effective deployment of pre-trained models. Many Test-time Adaptation (TTA) methods have been proposed to address this issue by fine-tuning pre-trained models with test data during inference. These methods, however, often suffer from less-satisfactory optimization due to suboptimal optimization direction (dictated by the gradient) and fixed step-size (predicated on the learning rate). In this paper, we propose the Gradient alignment-based Test-time adaptation (GraTa) method to improve both the gradient direction and learning rate in the optimization procedure. Unlike conventional TTA methods, which primarily optimize the pseudo gradient derived from a self-supervised objective, our method incorporates an auxiliary gradient with the pseudo one to facilitate gradient alignment. Such gradient alignment enables the model to excavate the similarities between different gradients and correct the gradient direction to approximate the empirical gradient related to the current segmentation task. Additionally, we design a dynamic learning rate based on the cosine similarity between the pseudo and auxiliary gradients, thereby empowering the adaptive fine-tuning of pre-trained models on diverse test data. Extensive experiments establish the effectiveness of the proposed gradient alignment and dynamic learning rate and substantiate the superiority of our GraTa method over other state-of-the-art TTA methods on a benchmark medical image segmentation task. The code and weights of pre-trained source models will be available.
☆ Robust Semi-supervised Multimodal Medical Image Segmentation via Cross Modality Collaboration
Multimodal learning leverages complementary information derived from different modalities, thereby enhancing performance in medical image segmentation. However, prevailing multimodal learning methods heavily rely on extensive well-annotated data from various modalities to achieve accurate segmentation performance. This dependence often poses a challenge in clinical settings due to limited availability of such data. Moreover, the inherent anatomical misalignment between different imaging modalities further complicates the endeavor to enhance segmentation performance. To address this problem, we propose a novel semi-supervised multimodal segmentation framework that is robust to scarce labeled data and misaligned modalities. Our framework employs a novel cross modality collaboration strategy to distill modality-independent knowledge, which is inherently associated with each modality, and integrates this information into a unified fusion layer for feature amalgamation. With a channel-wise semantic consistency loss, our framework ensures alignment of modality-independent information from a feature-wise perspective across modalities, thereby fortifying it against misalignments in multimodal scenarios. Furthermore, our framework effectively integrates contrastive consistent learning to regulate anatomical structures, facilitating anatomical-wise prediction alignment on unlabeled data in semi-supervised segmentation tasks. Our method achieves competitive performance compared to other multimodal methods across three tasks: cardiac, abdominal multi-organ, and thyroid-associated orbitopathy segmentations. It also demonstrates outstanding robustness in scenarios involving scarce labeled data and misaligned modalities.
☆ KIND: Knowledge Integration and Diversion in Diffusion Models
Pre-trained models have become the preferred backbone due to the expansion of model parameters, with techniques like Parameter-Efficient Fine-Tuning (PEFTs) typically fixing the parameters of these models. However, pre-trained models may not always be optimal, especially when there are discrepancies between training tasks and target tasks, potentially resulting in negative transfer. To address this, we introduce \textbf{KIND}, which performs \textbf{K}nowledge \textbf{IN}tegration and \textbf{D}iversion in diffusion models. KIND first integrates knowledge by decomposing parameter matrices of models using $U$, $\Sigma$, and $V$ matrices, formally inspired by singular value decomposition (SVD). Then it explicitly partitions the components of these matrices into \textbf{learngenes} and \textbf{tailors} to condense common and class-specific knowledge, respectively, through a class gate. In this way, KIND redefines traditional pre-training methods by adjusting training objectives from maximizing model performance on current tasks to condensing transferable common knowledge, leveraging the \textit{Learngene} framework. We conduct experiments on ImageNet-1K and compare KIND with PEFT and other learngene methods. Results indicate that KIND achieves state-of-the-art performance compared to other PEFT and learngene methods. Specifically, the images generated by KIND achieves more than 6.54 and 1.07 decrease in FID and sFID on DiT-L/2, utilizing only 45.4M trainable parameters and saving at least 35.4G FLOPs in computational cost.
☆ Enhancing Visual Question Answering through Ranking-Based Hybrid Training and Multimodal Fusion
Visual Question Answering (VQA) is a challenging task that requires systems to provide accurate answers to questions based on image content. Current VQA models struggle with complex questions due to limitations in capturing and integrating multimodal information effectively. To address these challenges, we propose the Rank VQA model, which leverages a ranking-inspired hybrid training strategy to enhance VQA performance. The Rank VQA model integrates high-quality visual features extracted using the Faster R-CNN model and rich semantic text features obtained from a pre-trained BERT model. These features are fused through a sophisticated multimodal fusion technique employing multi-head self-attention mechanisms. Additionally, a ranking learning module is incorporated to optimize the relative ranking of answers, thus improving answer accuracy. The hybrid training strategy combines classification and ranking losses, enhancing the model's generalization ability and robustness across diverse datasets. Experimental results demonstrate the effectiveness of the Rank VQA model. Our model significantly outperforms existing state-of-the-art models on standard VQA datasets, including VQA v2.0 and COCO-QA, in terms of both accuracy and Mean Reciprocal Rank (MRR). The superior performance of Rank VQA is evident in its ability to handle complex questions that require understanding nuanced details and making sophisticated inferences from the image and text. This work highlights the effectiveness of a ranking-based hybrid training strategy in improving VQA performance and lays the groundwork for further research in multimodal learning methods.
comment: Visual Question Answering, Rank VQA, Faster R-CNN, BERT, Multimodal Fusion, Ranking Learning, Hybrid Training Strategy
☆ Image-Based Leopard Seal Recognition: Approaches and Challenges in Current Automated Systems
This paper examines the challenges and advancements in recognizing seals within their natural habitats using conventional photography, underscored by the emergence of machine learning technologies. We used the leopard seal, \emph{Hydrurga leptonyx}, a key species within Antarctic ecosystems, to review the different available methods found. As apex predators, Leopard seals are characterized by their significant ecological role and elusive nature so studying them is crucial to understand the health of their ecosystem. Traditional methods of monitoring seal species are often constrained by the labor-intensive and time-consuming processes required for collecting data, compounded by the limited insights these methods provide. The advent of machine learning, particularly through the application of vision transformers, heralds a new era of efficiency and precision in species monitoring. By leveraging state-of-the-art approaches in detection, segmentation, and recognition within digital imaging, this paper presents a synthesis of the current landscape, highlighting both the cutting-edge methodologies and the predominant challenges faced in accurately identifying seals through photographic data.
comment: 28th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'24), Las Vegas, USA
☆ Enhanced Scale-aware Depth Estimation for Monocular Endoscopic Scenes with Geometric Modeling
Scale-aware monocular depth estimation poses a significant challenge in computer-aided endoscopic navigation. However, existing depth estimation methods that do not consider the geometric priors struggle to learn the absolute scale from training with monocular endoscopic sequences. Additionally, conventional methods face difficulties in accurately estimating details on tissue and instruments boundaries. In this paper, we tackle these problems by proposing a novel enhanced scale-aware framework that only uses monocular images with geometric modeling for depth estimation. Specifically, we first propose a multi-resolution depth fusion strategy to enhance the quality of monocular depth estimation. To recover the precise scale between relative depth and real-world values, we further calculate the 3D poses of instruments in the endoscopic scenes by algebraic geometry based on the image-only geometric primitives (i.e., boundaries and tip of instruments). Afterwards, the 3D poses of surgical instruments enable the scale recovery of relative depth maps. By coupling scale factors and relative depth estimation, the scale-aware depth of the monocular endoscopic scenes can be estimated. We evaluate the pipeline on in-house endoscopic surgery videos and simulated data. The results demonstrate that our method can learn the absolute scale with geometric modeling and accurately estimate scale-aware depth for monocular scenes.
☆ Lesion-aware network for diabetic retinopathy diagnosis
Deep learning brought boosts to auto diabetic retinopathy (DR) diagnosis, thus, greatly helping ophthalmologists for early disease detection, which contributes to preventing disease deterioration that may eventually lead to blindness. It has been proved that convolutional neural network (CNN)-aided lesion identifying or segmentation benefits auto DR screening. The key to fine-grained lesion tasks mainly lies in: (1) extracting features being both sensitive to tiny lesions and robust against DR-irrelevant interference, and (2) exploiting and re-using encoded information to restore lesion locations under extremely imbalanced data distribution. To this end, we propose a CNN-based DR diagnosis network with attention mechanism involved, termed lesion-aware network, to better capture lesion information from imbalanced data. Specifically, we design the lesion-aware module (LAM) to capture noise-like lesion areas across deeper layers, and the feature-preserve module (FPM) to assist shallow-to-deep feature fusion. Afterward, the proposed lesion-aware network (LANet) is constructed by embedding the LAM and FPM into the CNN decoders for DR-related information utilization. The proposed LANet is then further extended to a DR screening network by adding a classification layer. Through experiments on three public fundus datasets with pixel-level annotations, our method outperforms the mainstream methods with an area under curve of 0.967 in DR screening, and increases the overall average precision by 7.6%, 2.1%, and 1.2% in lesion segmentation on three datasets. Besides, the ablation study validates the effectiveness of the proposed sub-modules.
comment: This is submitted version wihout improvements by reviewers. The final version is published on International Journal of Imaging Systems and Techonology (https://onlinelibrary.wiley.com/doi/10.1002/ima.22933)
☆ Ensemble architecture in polyp segmentation
In this research, we revisit the architecture of semantic segmentation and evaluate the models excelling in polyp segmentation. We introduce an integrated framework that harnesses the advantages of different models to attain an optimal outcome. More specifically, we fuse the learned features from convolutional and transformer models for prediction, and we view this approach as an ensemble technique to enhance model performance. Our experiments on polyp segmentation reveal that the proposed architecture surpasses other top models, exhibiting improved learning capacity and resilience. The code is available at https://github.com/HuangDLab/EnFormer.
☆ GRIF-DM: Generation of Rich Impression Fonts using Diffusion Models
Fonts are integral to creative endeavors, design processes, and artistic productions. The appropriate selection of a font can significantly enhance artwork and endow advertisements with a higher level of expressivity. Despite the availability of numerous diverse font designs online, traditional retrieval-based methods for font selection are increasingly being supplanted by generation-based approaches. These newer methods offer enhanced flexibility, catering to specific user preferences and capturing unique stylistic impressions. However, current impression font techniques based on Generative Adversarial Networks (GANs) necessitate the utilization of multiple auxiliary losses to provide guidance during generation. Furthermore, these methods commonly employ weighted summation for the fusion of impression-related keywords. This leads to generic vectors with the addition of more impression keywords, ultimately lacking in detail generation capacity. In this paper, we introduce a diffusion-based method, termed \ourmethod, to generate fonts that vividly embody specific impressions, utilizing an input consisting of a single letter and a set of descriptive impression keywords. The core innovation of \ourmethod lies in the development of dual cross-attention modules, which process the characteristics of the letters and impression keywords independently but synergistically, ensuring effective integration of both types of information. Our experimental results, conducted on the MyFonts dataset, affirm that this method is capable of producing realistic, vibrant, and high-fidelity fonts that are closely aligned with user specifications. This confirms the potential of our approach to revolutionize font generation by accommodating a broad spectrum of user-driven design requirements. Our code is publicly available at \url{https://github.com/leitro/GRIF-DM}.
comment: Accepted to ECAI2024
☆ All-around Neural Collapse for Imbalanced Classification
Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach \textit{optimal} inter-class separability during the terminal phase of training on a \textit{balanced} dataset. Once shifted to imbalanced classification, such an optimal structure of NC can be readily destroyed by the notorious \textit{minority collapse}, where the classifier vectors corresponding to the minority classes are squeezed. In response, existing works endeavor to recover NC typically by optimizing classifiers. However, we discover that this squeezing phenomenon is not only confined to classifier vectors but also occurs with class means. Consequently, reconstructing NC solely at the classifier aspect may be futile, as the feature means remain compressed, leading to the violation of inherent \textit{self-duality} in NC (\textit{i.e.}, class means and classifier vectors converge mutually) and incidentally, resulting in an unsatisfactory collapse of individual activations towards the corresponding class means. To shake off these dilemmas, we present a unified \textbf{All}-around \textbf{N}eural \textbf{C}ollapse framework (AllNC), aiming to comprehensively restore NC across multiple aspects including individual activations, class means and classifier vectors. We thoroughly analyze its effectiveness and verify on multiple benchmark datasets that it achieves state-of-the-art in both balanced and imbalanced settings.
☆ GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval
In the rapidly expanding domain of web video content, the task of text-video retrieval has become increasingly critical, bridging the semantic gap between textual queries and video data. This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video, enhancing the effectiveness of text-video retrieval systems. Unlike traditional model-centric methods that focus on designing intricate cross-modal interaction mechanisms, GQE aims to expand the text queries associated with videos both during training and testing phases. By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions, effectively bridging the data imbalance gap. Furthermore, during retrieval, GQE utilizes Large Language Models (LLM) to generate a diverse set of queries and a query selection module to filter these queries based on relevance and diversity, thus optimizing retrieval performance while reducing computational overhead. Our contributions include a detailed examination of the information imbalance challenge, a novel approach to query expansion in video-text datasets, and the introduction of a query selection strategy that enhances retrieval accuracy without increasing computational costs. GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX, demonstrating the effectiveness of addressing text-video retrieval from a data-centric perspective.
comment: 18 pages including appendix
☆ Seeing and Understanding: Bridging Vision with Chemical Knowledge Via ChemVLM
In this technical report, we propose ChemVLM, the first open-source multimodal large language model dedicated to the fields of chemistry, designed to address the incompatibility between chemical image understanding and text analysis. Built upon the VIT-MLP-LLM architecture, we leverage ChemLLM-20B as the foundational large model, endowing our model with robust capabilities in understanding and utilizing chemical text knowledge. Additionally, we employ InternVIT-6B as a powerful image encoder. We have curated high-quality data from the chemical domain, including molecules, reaction formulas, and chemistry examination data, and compiled these into a bilingual multimodal question-answering dataset. We test the performance of our model on multiple open-source benchmarks and three custom evaluation sets. Experimental results demonstrate that our model achieves excellent performance, securing state-of-the-art results in five out of six involved tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: Techical report
☆ Sign language recognition based on deep learning and low-cost handcrafted descriptors
In recent years, deep learning techniques have been used to develop sign language recognition systems, potentially serving as a communication tool for millions of hearing-impaired individuals worldwide. However, there are inherent challenges in creating such systems. Firstly, it is important to consider as many linguistic parameters as possible in gesture execution to avoid ambiguity between words. Moreover, to facilitate the real-world adoption of the created solution, it is essential to ensure that the chosen technology is realistic, avoiding expensive, intrusive, or low-mobility sensors, as well as very complex deep learning architectures that impose high computational requirements. Based on this, our work aims to propose an efficient sign language recognition system that utilizes low-cost sensors and techniques. To this end, an object detection model was trained specifically for detecting the interpreter's face and hands, ensuring focus on the most relevant regions of the image and generating inputs with higher semantic value for the classifier. Additionally, we introduced a novel approach to obtain features representing hand location and movement by leveraging spatial information derived from centroid positions of bounding boxes, thereby enhancing sign discrimination. The results demonstrate the efficiency of our handcrafted features, increasing accuracy by 7.96% on the AUTSL dataset, while adding fewer than 700 thousand parameters and incurring less than 10 milliseconds of additional inference time. These findings highlight the potential of our technique to strike a favorable balance between computational cost and accuracy, making it a promising approach for practical sign language recognition applications.
comment: 28 pages, 12 figures, submitted to Image and Vision Computing Journal
☆ Leveraging Perceptual Scores for Dataset Pruning in Computer Vision Tasks CVPR 2024
In this paper we propose a score of an image to use for coreset selection in image classification and semantic segmentation tasks. The score is the entropy of an image as approximated by the bits-per-pixel of its compressed version. Thus the score is intrinsic to an image and does not require supervision or training. It is very simple to compute and readily available as all images are stored in a compressed format. The motivation behind our choice of score is that most other scores proposed in literature are expensive to compute. More importantly, we want a score that captures the perceptual complexity of an image. Entropy is one such measure, images with clutter tend to have a higher entropy. However sampling only low entropy iconic images, for example, leads to biased learning and an overall decrease in test performance with current deep learning models. To mitigate the bias we use a graph based method that increases the spatial diversity of the selected samples. We show that this simple score yields good results, particularly for semantic segmentation tasks.
comment: 1st workshop on Dataset Distillation CVPR 2024
☆ Enhancing Autonomous Vehicle Perception in Adverse Weather through Image Augmentation during Semantic Segmentation Training
Robust perception is crucial in autonomous vehicle navigation and localization. Visual processing tasks, like semantic segmentation, should work in varying weather conditions and during different times of day. Semantic segmentation is where each pixel is assigned a class, which is useful for locating overall features (1). Training a segmentation model requires large amounts of data, and the labeling process for segmentation data is especially tedious. Additionally, many large datasets include only images taken in clear weather. This is a problem because training a model exclusively on clear weather data hinders performance in adverse weather conditions like fog or rain. We hypothesize that given a dataset of only clear days images, applying image augmentation (such as random rain, fog, and brightness) during training allows for domain adaptation to diverse weather conditions. We used CARLA, a 3D realistic autonomous vehicle simulator, to collect 1200 images in clear weather composed of 29 classes from 10 different towns (2). We also collected 1200 images of random weather effects. We trained encoder-decoder UNet models to perform semantic segmentation. Applying augmentations significantly improved segmentation under weathered night conditions (p < 0.001). However, models trained on weather data have significantly lower losses than those trained on augmented data in all conditions except for clear days. This shows there is room for improvement in the domain adaptation approach. Future work should test more types of augmentations and also use real-life images instead of CARLA. Ideally, the augmented model meets or exceeds the performance of the weather model.
☆ Algebraic Representations for Faster Predictions in Convolutional Neural Networks SC 2024
Convolutional neural networks (CNNs) are a popular choice of model for tasks in computer vision. When CNNs are made with many layers, resulting in a deep neural network, skip connections may be added to create an easier gradient optimization problem while retaining model expressiveness. In this paper, we show that arbitrarily complex, trained, linear CNNs with skip connections can be simplified into a single-layer model, resulting in greatly reduced computational requirements during prediction time. We also present a method for training nonlinear models with skip connections that are gradually removed throughout training, giving the benefits of skip connections without requiring computational overhead during during prediction time. These results are demonstrated with practical examples on Residual Networks (ResNet) architecture.
comment: Accepted for publication in the proceedings of the 27th International Workshop on Computer Algebra in Scientific Computing (CASC 2024)
☆ An Efficient and Explanatory Image and Text Clustering System with Multimodal Autoencoder Architecture
We demonstrate the efficiencies and explanatory abilities of extensions to the common tools of Autoencoders and LLM interpreters, in the novel context of comparing different cultural approaches to the same international news event. We develop a new Convolutional-Recurrent Variational Autoencoder (CRVAE) model that extends the modalities of previous CVAE models, by using fully-connected latent layers to embed in parallel the CNN encodings of video frames, together with the LSTM encodings of their related text derived from audio. We incorporate the model within a larger system that includes frame-caption alignment, latent space vector clustering, and a novel LLM-based cluster interpreter. We measure, tune, and apply this system to the task of summarizing a video into three to five thematic clusters, with each theme described by ten LLM-produced phrases. We apply this system to two news topics, COVID-19 and the Winter Olympics, and five other topics are in progress.
☆ Cropper: Vision-Language Model for Image Cropping through In-Context Learning
The goal of image cropping is to identify visually appealing crops within an image. Conventional methods rely on specialized architectures trained on specific datasets, which struggle to be adapted to new requirements. Recent breakthroughs in large vision-language models (VLMs) have enabled visual in-context learning without explicit training. However, effective strategies for vision downstream tasks with VLMs remain largely unclear and underexplored. In this paper, we propose an effective approach to leverage VLMs for better image cropping. First, we propose an efficient prompt retrieval mechanism for image cropping to automate the selection of in-context examples. Second, we introduce an iterative refinement strategy to iteratively enhance the predicted crops. The proposed framework, named Cropper, is applicable to a wide range of cropping tasks, including free-form cropping, subject-aware cropping, and aspect ratio-aware cropping. Extensive experiments and a user study demonstrate that Cropper significantly outperforms state-of-the-art methods across several benchmarks.
☆ Perspectives: Comparison of Deep Learning Segmentation Models on Biophysical and Biomedical Data
Deep learning based approaches are now widely used across biophysics to help automate a variety of tasks including image segmentation, feature selection, and deconvolution. However, the presence of multiple competing deep learning architectures, each with its own unique advantages and disadvantages, makes it challenging to select an architecture best suited for a specific application. As such, we present a comprehensive comparison of common models. Here, we focus on the task of segmentation assuming the typically small training dataset sizes available from biophysics experiments and compare the following four commonly used architectures: convolutional neural networks, U-Nets, vision transformers, and vision state space models. In doing so, we establish criteria for determining optimal conditions under which each model excels, thereby offering practical guidelines for researchers and practitioners in the field.
☆ NeuroPapyri: A Deep Attention Embedding Network for Handwritten Papyri Retrieval
The intersection of computer vision and machine learning has emerged as a promising avenue for advancing historical research, facilitating a more profound exploration of our past. However, the application of machine learning approaches in historical palaeography is often met with criticism due to their perceived ``black box'' nature. In response to this challenge, we introduce NeuroPapyri, an innovative deep learning-based model specifically designed for the analysis of images containing ancient Greek papyri. To address concerns related to transparency and interpretability, the model incorporates an attention mechanism. This attention mechanism not only enhances the model's performance but also provides a visual representation of the image regions that significantly contribute to the decision-making process. Specifically calibrated for processing images of papyrus documents with lines of handwritten text, the model utilizes individual attention maps to inform the presence or absence of specific characters in the input image. This paper presents the NeuroPapyri model, including its architecture and training methodology. Results from the evaluation demonstrate NeuroPapyri's efficacy in document retrieval, showcasing its potential to advance the analysis of historical manuscripts.
♻ ☆ Automatic Feature Recognition and Dimensional Attributes Extraction From CAD Models for Hybrid Additive-Subtractive Manufacturing
The integration of Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP), and Computer-Aided Manufacturing (CAM) plays a crucial role in modern manufacturing, facilitating seamless transitions from digital designs to physical products. However, a significant challenge within this integration is the Automatic Feature Recognition (AFR) of CAD models, especially in the context of hybrid manufacturing that combines subtractive and additive manufacturing processes. Traditional AFR methods, focused mainly on the identification of subtractive (machined) features including holes, fillets, chamfers, pockets, and slots, fail to recognize features pertinent to additive manufacturing. Furthermore, the traditional methods fall short in accurately extracting geometric dimensions and orientations, which are also key factors for effective manufacturing process planning. This paper presents a novel approach for creating a synthetic CAD dataset that encompasses features relevant to both additive and subtractive machining through Python Open Cascade. The Hierarchical Graph Convolutional Neural Network (HGCNN) model is implemented to accurately identify the composite additive-subtractive features within the synthetic CAD dataset. The key novelty and contribution of the proposed methodology lie in its ability to recognize a wide range of manufacturing features, and precisely extracting their dimensions, orientations, and stock sizes. The proposed model demonstrates remarkable feature recognition accuracy exceeding 97% and a dimension extraction accuracy of 100% for identified features. Therefore, the proposed methodology enhances the integration of CAD, CAPP, and CAM within hybrid manufacturing by providing precise feature recognition and dimension extraction. It facilitates improved manufacturing process planning, by enabling more informed decision-making.
comment: 10 pages, 12 figures. This paper has been accepted for presentation at the ASME IDETC-CIE 2024 conference
♻ ☆ A Comprehensive Survey on Synthetic Infrared Image synthesis
Synthetic infrared (IR) scene and target generation is an important computer vision problem as it allows the generation of realistic IR images and targets for training and testing of various applications, such as remote sensing, surveillance, and target recognition. It also helps reduce the cost and risk associated with collecting real-world IR data. This survey paper aims to provide a comprehensive overview of the conventional mathematical modelling-based methods and deep learning-based methods used for generating synthetic IR scenes and targets. The paper discusses the importance of synthetic IR scene and target generation and briefly covers the mathematics of blackbody and grey body radiations, as well as IR image-capturing methods. The potential use cases of synthetic IR scenes and target generation are also described, highlighting the significance of these techniques in various fields. Additionally, the paper explores possible new ways of developing new techniques to enhance the efficiency and effectiveness of synthetic IR scenes and target generation while highlighting the need for further research to advance this field.
comment: Submitted in Journal of Infrared Physics & Technology
♻ ☆ Dynamic and Compressive Adaptation of Transformers From Images to Videos
Recently, the remarkable success of pre-trained Vision Transformers (ViTs) from image-text matching has sparked an interest in image-to-video adaptation. However, most current approaches retain the full forward pass for each frame, leading to a high computation overhead for processing entire videos. In this paper, we present InTI, a novel approach for compressive image-to-video adaptation using dynamic Inter-frame Token Interpolation. InTI aims to softly preserve the informative tokens without disrupting their coherent spatiotemporal structure. Specifically, each token pair at identical positions within neighbor frames is linearly aggregated into a new token, where the aggregation weights are generated by a multi-scale context-aware network. In this way, the information of neighbor frames can be adaptively compressed in a point-by-point manner, thereby effectively reducing the number of processed frames by half each time. Importantly, InTI can be seamlessly integrated with existing adaptation methods, achieving strong performance without extra-complex design. On Kinetics-400, InTI reaches a top-1 accuracy of 87.1 with a remarkable 37.5% reduction in GFLOPs compared to naive adaptation. When combined with additional temporal modules, InTI achieves a top-1 accuracy of 87.6 with a 37% reduction in GFLOPs. Similar conclusions have been verified in other common datasets.
♻ ☆ Detecting Audio-Visual Deepfakes with Fine-Grained Inconsistencies BMVC 2024
Existing methods on audio-visual deepfake detection mainly focus on high-level features for modeling inconsistencies between audio and visual data. As a result, these approaches usually overlook finer audio-visual artifacts, which are inherent to deepfakes. Herein, we propose the introduction of fine-grained mechanisms for detecting subtle artifacts in both spatial and temporal domains. First, we introduce a local audio-visual model capable of capturing small spatial regions that are prone to inconsistencies with audio. For that purpose, a fine-grained mechanism based on a spatially-local distance coupled with an attention module is adopted. Second, we introduce a temporally-local pseudo-fake augmentation to include samples incorporating subtle temporal inconsistencies in our training set. Experiments on the DFDC and the FakeAVCeleb datasets demonstrate the superiority of the proposed method in terms of generalization as compared to the state-of-the-art under both in-dataset and cross-dataset settings.
comment: Accepted in BMVC 2024
♻ ☆ Idea2Img: Iterative Self-Refinement with GPT-4V(ision) for Automatic Image Design and Generation ECCV 2024
We introduce ``Idea to Image,'' a system that enables multimodal iterative self-refinement with GPT-4V(ision) for automatic image design and generation. Humans can quickly identify the characteristics of different text-to-image (T2I) models via iterative explorations. This enables them to efficiently convert their high-level generation ideas into effective T2I prompts that can produce good images. We investigate if systems based on large multimodal models (LMMs) can develop analogous multimodal self-refinement abilities that enable exploring unknown models or environments via self-refining tries. Idea2Img cyclically generates revised T2I prompts to synthesize draft images, and provides directional feedback for prompt revision, both conditioned on its memory of the probed T2I model's characteristics. The iterative self-refinement brings Idea2Img various advantages over vanilla T2I models. Notably, Idea2Img can process input ideas with interleaved image-text sequences, follow ideas with design instructions, and generate images of better semantic and visual qualities. The user preference study validates the efficacy of multimodal iterative self-refinement on automatic image design and generation.
comment: ECCV 2024; Project page at https://idea2img.github.io/
♻ ☆ NIGHT -- Non-Line-of-Sight Imaging from Indirect Time of Flight Data ECCV
The acquisition of objects outside the Line-of-Sight of cameras is a very intriguing but also extremely challenging research topic. Recent works showed the feasibility of this idea exploiting transient imaging data produced by custom direct Time of Flight sensors. In this paper, for the first time, we tackle this problem using only data from an off-the-shelf indirect Time of Flight sensor without any further hardware requirement. We introduced a Deep Learning model able to re-frame the surfaces where light bounces happen as a virtual mirror. This modeling makes the task easier to handle and also facilitates the construction of annotated training data. From the obtained data it is possible to retrieve the depth information of the hidden scene. We also provide a first-in-its-kind synthetic dataset for the task and demonstrate the feasibility of the proposed idea over it.
comment: Submitted to MELEX 24 (ECCV workshop), 17 pages, 6 figures, 2 tables
♻ ☆ Robust Curve Detection in Volumetric Medical Imaging via Attraction Field MICCAI 2024
Understanding body part geometry is crucial for precise medical diagnostics. Curves effectively describe anatomical structures and are widely used in medical imaging applications related to cardiovascular, respiratory, and skeletal diseases. Traditional curve detection methods are often task-specific, relying heavily on domain-specific features, limiting their broader applicability. This paper introduces a novel approach for detecting non-branching curves, which does not require prior knowledge of the object's orientation, shape, or position. Our method uses neural networks to predict (1) an attraction field, which offers subpixel accuracy, and (2) a closeness map, which limits the region of interest and essentially eliminates outliers far from the desired curve. We tested our curve detector on several clinically relevant tasks with diverse morphologies and achieved impressive subpixel-level accuracy results that surpass existing methods, highlighting its versatility and robustness. Additionally, to support further advancements in this field, we provide our private annotations of aortic centerlines and masks, which can serve as a benchmark for future research. The dataset can be found at https://github.com/neuro-ml/curve-detection.
comment: Accepted to ShapeMI MICCAI 2024
♻ ☆ Data Science for Geographic Information Systems
The integration of data science into Geographic Information Systems (GIS) has facilitated the evolution of these tools into complete spatial analysis platforms. The adoption of machine learning and big data techniques has equipped these platforms with the capacity to handle larger amounts of increasingly complex data, transcending the limitations of more traditional approaches. This work traces the historical and technical evolution of data science and GIS as fields of study, highlighting the critical points of convergence between domains, and underlining the many sectors that rely on this integration. A GIS application is presented as a case study in the disaster management sector where we utilize aerial data from Tr\'oia, Portugal, to emphasize the process of insight extraction from raw data. We conclude by outlining prospects for future research in integration of these fields in general, and the developed application in particular.
comment: The peer-reviewed version of this paper is published in IEEE Xplore at https://doi.org/10.1109/YEF-ECE62614.2024.10624902. This version is typeset by the author and differs only in pagination and typographical detail
♻ ☆ Distilling the Knowledge in Data Pruning
With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.
♻ ☆ A Survey of Open Source User Activity Traces with Applications to User Mobility Characterization and Modeling
The current state-of-the-art in user mobility research has extensively relied on open-source mobility traces captured from pedestrian and vehicular activity through a variety of communication technologies as users engage in a wide-range of applications, including connected healthcare, localization, social media, e-commerce, etc. Most of these traces are feature-rich and diverse, not only in the information they provide, but also in how they can be used and leveraged. This diversity poses two main challenges for researchers and practitioners who wish to make use of available mobility datasets. First, it is quite difficult to get a bird's eye view of the available traces without spending considerable time looking them up. Second, once they have found the traces, they still need to figure out whether the traces are adequate to their needs. The purpose of this survey is three-fold. It proposes a taxonomy to classify open-source mobility traces including their mobility mode, data source and collection technology. It then uses the proposed taxonomy to classify existing open-source mobility traces and finally, highlights three case studies using popular publicly available datasets to showcase how our taxonomy can tease out feature sets in traces to help determine their applicability to specific use-cases.
comment: 23 pages, 6 pages references
♻ ☆ Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey
This survey addresses the critical challenge of deepfake detection amidst the rapid advancements in artificial intelligence. As AI-generated media, including video, audio and text, become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases. Focused on face-centric deepfakes, this work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios. We provide comprehensive taxonomies of detection techniques, discuss the evolution of generative methods from auto-encoders and GANs to diffusion models, and categorize these technologies by their unique attributes. To our knowledge, this is the first survey of its kind. We also explore the challenges of adapting detection methods to new generative models and enhancing the reliability and robustness of deepfake detectors, proposing directions for future research. This survey offers a detailed roadmap for researchers, supporting the development of technologies to counter the deceptive use of AI in media creation, particularly facial forgery. A curated list of all related papers can be found at \href{https://github.com/qiqitao77/Comprehensive-Advances-in-Deepfake-Detection-Spanning-Diverse-Modalities}{https://github.com/qiqitao77/Awesome-Comprehensive-Deepfake-Detection}.
comment: P. Liu is with the Department of Computer Science and Engineering, University of Nevada, Reno, NV, 89512. Q. Tao and J. Zhou are with Centre for Frontier AI Research (CFAR), and Institute of High Performance Computing (IHPC), A*STAR, Singapore. J. Zhou is also with Centre for Advanced Technologies in Online Safety (CATOS), A*STAR, Singapore. J. Zhou is the corresponding author
♻ ☆ Compact Model Training by Low-Rank Projection with Energy Transfer
Low-rankness plays an important role in traditional machine learning, but is not so popular in deep learning. Most previous low-rank network compression methods compress networks by approximating pre-trained models and re-training. However, the optimal solution in the Euclidean space may be quite different from the one with low-rank constraint. A well-pre-trained model is not a good initialization for the model with low-rank constraints. Thus, the performance of a low-rank compressed network degrades significantly. Compared with other network compression methods such as pruning, low-rank methods attract less attention in recent years. In this paper, we devise a new training method, low-rank projection with energy transfer (LRPET), that trains low-rank compressed networks from scratch and achieves competitive performance. We propose to alternately perform stochastic gradient descent training and projection of each weight matrix onto the corresponding low-rank manifold. Compared to re-training on the compact model, this enables full utilization of model capacity since solution space is relaxed back to Euclidean space after projection. The matrix energy (the sum of squares of singular values) reduction caused by projection is compensated by energy transfer. We uniformly transfer the energy of the pruned singular values to the remaining ones. We theoretically show that energy transfer eases the trend of gradient vanishing caused by projection. In modern networks, a batch normalization (BN) layer can be merged into the previous convolution layer for inference, thereby influencing the optimal low-rank approximation of the previous layer. We propose BN rectification to cut off its effect on the optimal low-rank approximation, which further improves the performance.
♻ ☆ CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning BMVC 2024
With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, fine-tuning large pre-trained models has recently become a prevalent strategy in Continual Learning. This has led to the development of numerous prompting strategies to adapt transformer-based models without incurring catastrophic forgetting. However, these strategies often compromise the original zero-shot capabilities of the pre-trained CLIP model and struggle to adapt to domains that significantly deviate from the pre-training data. In this work, we propose Continual Generative training for Incremental prompt-Learning, a simple and novel approach to mitigate forgetting while adapting CLIP. Briefly, we employ Variational Autoencoders (VAEs) to learn class-conditioned distributions within the embedding space of the visual encoder. We then exploit these distributions to sample new synthetic visual embeddings and train the corresponding class-specific textual prompts during subsequent tasks. Through extensive experiments on different domains, we show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities, evaluated using a novel metric tailored for CL scenarios. Notably, further analysis reveals that our approach can bridge the gap with joint prompt tuning. The codebase is available at https://github.com/aimagelab/mammoth.
comment: 15 pages, 1 figure. Accepted at the The 35th British Machine Vision Conference 2024 (BMVC 2024), Glasgow, UK
♻ ☆ DeepFace-Attention: Multimodal Face Biometrics for Attention Estimation with Application to e-Learning
This work introduces an innovative method for estimating attention levels (cognitive load) using an ensemble of facial analysis techniques applied to webcam videos. Our method is particularly useful, among others, in e-learning applications, so we trained, evaluated, and compared our approach on the mEBAL2 database, a public multi-modal database acquired in an e-learning environment. mEBAL2 comprises data from 60 users who performed 8 different tasks. These tasks varied in difficulty, leading to changes in their cognitive loads. Our approach adapts state-of-the-art facial analysis technologies to quantify the users' cognitive load in the form of high or low attention. Several behavioral signals and physiological processes related to the cognitive load are used, such as eyeblink, heart rate, facial action units, and head pose, among others. Furthermore, we conduct a study to understand which individual features obtain better results, the most efficient combinations, explore local and global features, and how temporary time intervals affect attention level estimation, among other aspects. We find that global facial features are more appropriate for multimodal systems using score-level fusion, particularly as the temporal window increases. On the other hand, local features are more suitable for fusion through neural network training with score-level fusion approaches. Our method outperforms existing state-of-the-art accuracies using the public mEBAL2 benchmark.
comment: Article accepted in the IEEE Access journal. Accessible at https://ieeexplore.ieee.org/document/10633208
♻ ☆ InternVideo2: Scaling Foundation Models for Multimodal Video Understanding ECCV2024
We introduce InternVideo2, a new family of video foundation models (ViFM) that achieve the state-of-the-art results in video recognition, video-text tasks, and video-centric dialogue. Our core design is a progressive training approach that unifies the masked video modeling, crossmodal contrastive learning, and next token prediction, scaling up the video encoder size to 6B parameters. At the data level, we prioritize spatiotemporal consistency by semantically segmenting videos and generating video-audio-speech captions. This improves the alignment between video and text. Through extensive experiments, we validate our designs and demonstrate superior performance on over 60 video and audio tasks. Notably, our model outperforms others on various video-related dialogue and long video understanding benchmarks, highlighting its ability to reason and comprehend longer contexts. Code and models are available at https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2/.
comment: a technical report about video understanding (accepted to ECCV2024)
♻ ☆ Disentangled Representation Learning with Transmitted Information Bottleneck
Encoding only the task-related information from the raw data, \ie, disentangled representation learning, can greatly contribute to the robustness and generalizability of models. Although significant advances have been made by regularizing the information in representations with information theory, two major challenges remain: 1) the representation compression inevitably leads to performance drop; 2) the disentanglement constraints on representations are in complicated optimization. To these issues, we introduce Bayesian networks with transmitted information to formulate the interaction among input and representations during disentanglement. Building upon this framework, we propose \textbf{DisTIB} (\textbf{T}ransmitted \textbf{I}nformation \textbf{B}ottleneck for \textbf{Dis}entangled representation learning), a novel objective that navigates the balance between information compression and preservation. We employ variational inference to derive a tractable estimation for DisTIB. This estimation can be simply optimized via standard gradient descent with a reparameterization trick. Moreover, we theoretically prove that DisTIB can achieve optimal disentanglement, underscoring its superior efficacy. To solidify our claims, we conduct extensive experiments on various downstream tasks to demonstrate the appealing efficacy of DisTIB and validate our theoretical analyses.
♻ ☆ GS-Pose: Generalizable Segmentation-based 6D Object Pose Estimation with 3D Gaussian Splatting
This paper introduces GS-Pose, a unified framework for localizing and estimating the 6D pose of novel objects. GS-Pose begins with a set of posed RGB images of a previously unseen object and builds three distinct representations stored in a database. At inference, GS-Pose operates sequentially by locating the object in the input image, estimating its initial 6D pose using a retrieval approach, and refining the pose with a render-and-compare method. The key insight is the application of the appropriate object representation at each stage of the process. In particular, for the refinement step, we leverage 3D Gaussian splatting, a novel differentiable rendering technique that offers high rendering speed and relatively low optimization time. Off-the-shelf toolchains and commodity hardware, such as mobile phones, can be used to capture new objects to be added to the database. Extensive evaluations on the LINEMOD and OnePose-LowTexture datasets demonstrate excellent performance, establishing the new state-of-the-art. Project page: https://dingdingcai.github.io/gs-pose.
comment: Project Page: https://dingdingcai.github.io/gs-pose
♻ ☆ R2Human: Real-Time 3D Human Appearance Rendering from a Single Image
Rendering 3D human appearance from a single image in real-time is crucial for achieving holographic communication and immersive VR/AR. Existing methods either rely on multi-camera setups or are constrained to offline operations. In this paper, we propose R2Human, the first approach for real-time inference and rendering of photorealistic 3D human appearance from a single image. The core of our approach is to combine the strengths of implicit texture fields and explicit neural rendering with our novel representation, namely Z-map. Based on this, we present an end-to-end network that performs high-fidelity color reconstruction of visible areas and provides reliable color inference for occluded regions. To further enhance the 3D perception ability of our network, we leverage the Fourier occupancy field as a prior for generating the texture field and providing a sampling surface in the rendering stage. We also propose a consistency loss and a spatial fusion strategy to ensure the multi-view coherence. Experimental results show that our method outperforms the state-of-the-art methods on both synthetic data and challenging real-world images, in real-time. The project page can be found at http://cic.tju.edu.cn/faculty/likun/projects/R2Human.
♻ ☆ On the Utility of 3D Hand Poses for Action Recognition ECCV 2024
3D hand pose is an underexplored modality for action recognition. Poses are compact yet informative and can greatly benefit applications with limited compute budgets. However, poses alone offer an incomplete understanding of actions, as they cannot fully capture objects and environments with which humans interact. We propose HandFormer, a novel multimodal transformer, to efficiently model hand-object interactions. HandFormer combines 3D hand poses at a high temporal resolution for fine-grained motion modeling with sparsely sampled RGB frames for encoding scene semantics. Observing the unique characteristics of hand poses, we temporally factorize hand modeling and represent each joint by its short-term trajectories. This factorized pose representation combined with sparse RGB samples is remarkably efficient and highly accurate. Unimodal HandFormer with only hand poses outperforms existing skeleton-based methods at 5x fewer FLOPs. With RGB, we achieve new state-of-the-art performance on Assembly101 and H2O with significant improvements in egocentric action recognition.
comment: ECCV 2024; https://s-shamil.github.io/HandFormer/
♻ ☆ DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields
The accurate reconstruction of dynamic scenes with neural radiance fields is significantly dependent on the estimation of camera poses. Widely used structure-from-motion pipelines encounter difficulties in accurately tracking the camera trajectory when faced with separate dynamics of the scene content and the camera movement. To address this challenge, we propose Dynamic Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields (DynaMoN). DynaMoN utilizes semantic segmentation and generic motion masks to handle dynamic content for initial camera pose estimation and statics-focused ray sampling for fast and accurate novel-view synthesis. Our novel iterative learning scheme switches between training the NeRF and updating the pose parameters for an improved reconstruction and trajectory estimation quality. The proposed pipeline shows significant acceleration of the training process. We extensively evaluate our approach on two real-world dynamic datasets, the TUM RGB-D dataset and the BONN RGB-D Dynamic dataset. DynaMoN improves over the state-of-the-art both in terms of reconstruction quality and trajectory accuracy. We plan to make our code public to enhance research in this area.
♻ ☆ Volley Revolver: A Novel Matrix-Encoding Method for Privacy-Preserving Neural Networks (Inference)
In this work, we present a novel matrix-encoding method that is particularly convenient for neural networks to make predictions in a privacy-preserving manner using homomorphic encryption. Based on this encoding method, we implement a convolutional neural network for handwritten image classification over encryption. For two matrices $A$ and $B$ to perform homomorphic multiplication, the main idea behind it, in a simple version, is to encrypt matrix $A$ and the transpose of matrix $B$ into two ciphertexts respectively. With additional operations, the homomorphic matrix multiplication can be calculated over encrypted matrices efficiently. For the convolution operation, we in advance span each convolution kernel to a matrix space of the same size as the input image so as to generate several ciphertexts, each of which is later used together with the ciphertext encrypting input images for calculating some of the final convolution results. We accumulate all these intermediate results and thus complete the convolution operation. In a public cloud with 40 vCPUs, our convolutional neural network implementation on the MNIST testing dataset takes $\sim$ 287 seconds to compute ten likelihoods of 32 encrypted images of size $28 \times 28$ simultaneously. The data owner only needs to upload one ciphertext ($\sim 19.8$ MB) encrypting these 32 images to the public cloud.
comment: The encoding method we proposed in this work, $\texttt{Volley Revolver}$, is particularly tailored for privacy-preserving neural networks. There is a great chance that it can be used to assist the private neural networks training, in which case for the backpropagation algorithm of the fully-connected layer the first matrix $A$ is revolved while the second matrix $B$ is settled to be still
♻ ☆ VIRUS-NeRF -- Vision, InfraRed and UltraSonic based Neural Radiance Fields
Autonomous mobile robots are an increasingly integral part of modern factory and warehouse operations. Obstacle detection, avoidance and path planning are critical safety-relevant tasks, which are often solved using expensive LiDAR sensors and depth cameras. We propose to use cost-effective low-resolution ranging sensors, such as ultrasonic and infrared time-of-flight sensors by developing VIRUS-NeRF - Vision, InfraRed, and UltraSonic based Neural Radiance Fields. Building upon Instant Neural Graphics Primitives with a Multiresolution Hash Encoding (Instant-NGP), VIRUS-NeRF incorporates depth measurements from ultrasonic and infrared sensors and utilizes them to update the occupancy grid used for ray marching. Experimental evaluation in 2D demonstrates that VIRUS-NeRF achieves comparable mapping performance to LiDAR point clouds regarding coverage. Notably, in small environments, its accuracy aligns with that of LiDAR measurements, while in larger ones, it is bounded by the utilized ultrasonic sensors. An in-depth ablation study reveals that adding ultrasonic and infrared sensors is highly effective when dealing with sparse data and low view variation. Further, the proposed occupancy grid of VIRUS-NeRF improves the mapping capabilities and increases the training speed by 46% compared to Instant-NGP. Overall, VIRUS-NeRF presents a promising approach for cost-effective local mapping in mobile robotics, with potential applications in safety and navigation tasks. The code can be found at https://github.com/ethz-asl/virus nerf.
♻ ☆ Integrating Representational Gestures into Automatically Generated Embodied Explanations and its Effects on Understanding and Interaction Quality
In human interaction, gestures serve various functions such as marking speech rhythm, highlighting key elements, and supplementing information. These gestures are also observed in explanatory contexts. However, the impact of gestures on explanations provided by virtual agents remains underexplored. A user study was carried out to investigate how different types of gestures influence perceived interaction quality and listener understanding. This study addresses the effect of gestures in explanation by developing an embodied virtual explainer integrating both beat gestures and iconic gestures to enhance its automatically generated verbal explanations. Our model combines beat gestures generated by a learned speech-driven synthesis module with manually captured iconic gestures, supporting the agent's verbal expressions about the board game Quarto! as an explanation scenario. Findings indicate that neither the use of iconic gestures alone nor their combination with beat gestures outperforms the baseline or beat-only conditions in terms of understanding. Nonetheless, compared to prior research, the embodied agent significantly enhances understanding.
♻ ☆ Explicit Abnormality Extraction for Unsupervised Motion Artifact Reduction in Magnetic Resonance Imaging
Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage of these methods is their dependency on acquiring paired sets of motion artifact-corrupted (MA-corrupted) and motion artifact-free (MA-free) MR images for training purposes. Obtaining such image pairs is difficult and therefore limits the application of supervised training. In this paper, we propose a novel UNsupervised Abnormality Extraction Network (UNAEN) to alleviate this problem. Our network is capable of working with unpaired MA-corrupted and MA-free images. It converts the MA-corrupted images to MA-reduced images by extracting abnormalities from the MA-corrupted images using a proposed artifact extractor, which intercepts the residual artifact maps from the MA-corrupted MR images explicitly, and a reconstructor to restore the original input from the MA-reduced images. The performance of UNAEN was assessed by experimenting with various publicly available MRI datasets and comparing them with state-of-the-art methods. The quantitative evaluation demonstrates the superiority of UNAEN over alternative MAR methods and visually exhibits fewer residual artifacts. Our results substantiate the potential of UNAEN as a promising solution applicable in real-world clinical environments, with the capability to enhance diagnostic accuracy and facilitate image-guided therapies. Our codes are publicly available at https://github.com/YuSheng-Zhou/UNAEN.
comment: Accepted by IEEE Journal of Biomedical and Health Informatics
♻ ☆ Switched auxiliary loss for robust training of transformer models for histopathological image segmentation
Functional tissue Units (FTUs) are cell population neighborhoods local to a particular organ performing its main function.The FTUs provide crucial information to the pathologist in understanding the disease affecting a particular organ by providing information at the cellular level.In our research, we have developed a model to segment multi-organ FTUs across 5 organs namely: the kidney, large intestine, lung, prostate and spleen by utilizing the 'HuBMAP + HPA - Hacking the Human Body' competition dataset.We propose adding switched auxiliary loss for training models like the transformers to overcome the diminishing gradient problem which poses a challenge towards optimal training of deep models.Overall, our model achieved a dice score of 0.793 on the public dataset and 0.778 on the private dataset.The results supports the robustness of the proposed training methodology.The findings also bolster the use of transformers models for dense prediction tasks in the field of medical image analysis.The study assists in understanding the relationships between cell and tissue organization thereby providing a useful medium to look at the impact of cellular functions on human health.
♻ ☆ ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention for their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear scalability and fast processing of long sequences. We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning while also trying various visual encoders and Mamba-2 model variants. Our extensive experiments in various multimodal benchmark tests demonstrate the competitive performance of ML-Mamba and highlight the potential of state space models in multimodal tasks. The experimental results show that: (1) we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning. We propose a novel multimodal connector called the Mamba-2 Scan Connector (MSC), which enhances representational capabilities. (2) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling while faster inference speed; (3) Compared to multimodal models utilizing Mamba-1, the Mamba-2-based ML-Mamba exhibits superior inference performance and effectiveness.
comment: arXiv admin note: text overlap with arXiv:2403.13600, arXiv:2406.07537 by other authors
♻ ☆ SYM3D: Learning Symmetric Triplanes for Better 3D-Awareness of GANs
Despite the growing success of 3D-aware GANs, which can be trained on 2D images to generate high-quality 3D assets, they still rely on multi-view images with camera annotations to synthesize sufficient details from all viewing directions. However, the scarce availability of calibrated multi-view image datasets, especially in comparison to single-view images, has limited the potential of 3D GANs. Moreover, while bypassing camera pose annotations with a camera distribution constraint reduces dependence on exact camera parameters, it still struggles to generate a consistent orientation of 3D assets. To this end, we propose SYM3D, a novel 3D-aware GAN designed to leverage the prevalent reflectional symmetry structure found in natural and man-made objects, alongside a proposed view-aware spatial attention mechanism in learning the 3D representation. We evaluate SYM3D on both synthetic (ShapeNet Chairs, Cars, and Airplanes) and real-world datasets (ABO-Chair), demonstrating its superior performance in capturing detailed geometry and texture, even when trained on only single-view images. Finally, we demonstrate the effectiveness of incorporating symmetry regularization in helping reduce artifacts in the modeling of 3D assets in the text-to-3D task. Project is at \url{https://jingyang2017.github.io/sym3d.github.io/}
comment: 11
♻ ☆ Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation
Audio-visual segmentation (AVS) is a challenging task that involves accurately segmenting sounding objects based on audio-visual cues. The effectiveness of audio-visual learning critically depends on achieving accurate cross-modal alignment between sound and visual objects. Successful audio-visual learning requires two essential components: 1) a challenging dataset with high-quality pixel-level multi-class annotated images associated with audio files, and 2) a model that can establish strong links between audio information and its corresponding visual object. However, these requirements are only partially addressed by current methods, with training sets containing biased audio-visual data, and models that generalise poorly beyond this biased training set. In this work, we propose a new cost-effective strategy to build challenging and relatively unbiased high-quality audio-visual segmentation benchmarks. We also propose a new informative sample mining method for audio-visual supervised contrastive learning to leverage discriminative contrastive samples to enforce cross-modal understanding. We show empirical results that demonstrate the effectiveness of our benchmark. Furthermore, experiments conducted on existing AVS datasets and on our new benchmark show that our method achieves state-of-the-art (SOTA) segmentation accuracy.
comment: Code is available at https://github.com/cyh-0/CAVP
♻ ☆ Interaction as Explanation: A User Interaction-based Method for Explaining Image Classification Models IJCAI 2024
In computer vision, explainable AI (xAI) methods seek to mitigate the 'black-box' problem by making the decision-making process of deep learning models more interpretable and transparent. Traditional xAI methods concentrate on visualizing input features that influence model predictions, providing insights primarily suited for experts. In this work, we present an interaction-based xAI method that enhances user comprehension of image classification models through their interaction. Thus, we developed a web-based prototype allowing users to modify images via painting and erasing, thereby observing changes in classification results. Our approach enables users to discern critical features influencing the model's decision-making process, aligning their mental models with the model's logic. Experiments conducted with five images demonstrate the potential of the method to reveal feature importance through user interaction. Our work contributes a novel perspective to xAI by centering on end-user engagement and understanding, paving the way for more intuitive and accessible explainability in AI systems.
comment: IJCAI 2024 (International Joint Conference on Artificial Intelligence 2024) Workshop on Explainable Artificial Intelligence (XAI)
♻ ☆ AutoCLIP: Auto-tuning Zero-Shot Classifiers for Vision-Language Models
Classifiers built upon vision-language models such as CLIP have shown remarkable zero-shot performance across a broad range of image classification tasks. Prior work has studied different ways of automatically creating descriptor sets for every class based on prompt templates, ranging from manually engineered templates over templates obtained from a large language model to templates built from random words and characters. Up until now, deriving zero-shot classifiers from the respective encoded class descriptors has remained nearly unchanged, i.e., classify to the class that maximizes cosine similarity between its averaged encoded class descriptors and the image encoding. However, weighing all class descriptors equally can be suboptimal when certain descriptors match visual clues on a given image better than others. In this work, we propose AutoCLIP, a method for auto-tuning zero-shot classifiers. AutoCLIP tunes per-image weights to each prompt template at inference time, based on statistics of class descriptor-image similarities. AutoCLIP is fully unsupervised, has only a minor additional computation overhead, and can be easily implemented in few lines of code. We show that AutoCLIP outperforms baselines across a broad range of vision-language models, datasets, and prompt templates consistently and by up to 3 percent point accuracy.
comment: accepted at TMLR, Camera Ready Version
♻ ☆ A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
♻ ☆ Bridging the Gap: Sketch-Aware Interpolation Network for High-Quality Animation Sketch Inbetweening
Hand-drawn 2D animation workflow is typically initiated with the creation of sketch keyframes. Subsequent manual inbetweens are crafted for smoothness, which is a labor-intensive process and the prospect of automatic animation sketch interpolation has become highly appealing. Yet, common frame interpolation methods are generally hindered by two key issues: 1) limited texture and colour details in sketches, and 2) exaggerated alterations between two sketch keyframes. To overcome these issues, we propose a novel deep learning method - Sketch-Aware Interpolation Network (SAIN). This approach incorporates multi-level guidance that formulates region-level correspondence, stroke-level correspondence and pixel-level dynamics. A multi-stream U-Transformer is then devised to characterize sketch inbetweening patterns using these multi-level guides through the integration of self / cross-attention mechanisms. Additionally, to facilitate future research on animation sketch inbetweening, we constructed a large-scale dataset - STD-12K, comprising 30 sketch animation series in diverse artistic styles. Comprehensive experiments on this dataset convincingly show that our proposed SAIN surpasses the state-of-the-art interpolation methods.
♻ ☆ SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction
Soil Organic Carbon (SOC) constitutes a fundamental component of terrestrial ecosystem functionality, playing a pivotal role in nutrient cycling, hydrological balance, and erosion mitigation. Precise mapping of SOC distribution is imperative for the quantification of ecosystem services, notably carbon sequestration and soil fertility enhancement. Digital soil mapping (DSM) leverages statistical models and advanced technologies, including machine learning (ML), to accurately map soil properties, such as SOC, utilizing diverse data sources like satellite imagery, topography, remote sensing indices, and climate series. Within the domain of ML, self-supervised learning (SSL), which exploits unlabeled data, has gained prominence in recent years. This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning, employing pretrained Vision Transformers (ViT) for image inputs and Transformers for climate data, before fine-tuning the model with ground reference samples. The proposed approach has undergone rigorous testing on two distinct large-scale datasets, with results indicating its superiority over traditional supervised learning models, which depends solely on labeled data. Furthermore, through the utilization of various evaluation metrics (e.g., RMSE, MAE, CCC, etc.), the proposed model exhibits higher accuracy when compared to other conventional ML algorithms like random forest and gradient boosting. This model is a robust tool for predicting SOC and contributes to the advancement of DSM techniques, thereby facilitating land management and decision-making processes based on accurate information.
comment: Accepted for publication in IEEE Transactions on Geoscience and Remote Sensing (TGRS)
♻ ☆ MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis
Data augmentation (DA) has been widely leveraged in computer vision to alleviate the data shortage, whereas the DA in medical image analysis (MIA) faces multiple challenges. The prevalent DA approaches in MIA encompass conventional DA, synthetic DA, and automatic DA. However, utilizing these approaches poses various challenges such as experience-driven design and intensive computation cost. Here, we propose an efficient and effective automatic DA method termed MedAugment. We propose a pixel augmentation space and spatial augmentation space and exclude the operations that can break medical details and features, such as severe color distortions or structural alterations that can compromise image diagnostic value. Besides, we propose a novel sampling strategy by sampling a limited number of operations from the two spaces. Moreover, we present a hyperparameter mapping relationship to produce a rational augmentation level and make the MedAugment fully controllable using a single hyperparameter. These configurations settle the differences between natural and medical images, such as high sensitivity to certain attributes such as brightness and posterize. Extensive experimental results on four classification and four segmentation datasets demonstrate the superiority of MedAugment. Compared with existing approaches, the proposed MedAugment serves as a more suitable yet general processing pipeline for medical images without producing color distortions or structural alterations and involving negligible computational overhead. We emphasize that our method can serve as a plugin for arbitrary projects without any extra training stage, thereby holding the potential to make a valuable contribution to the medical field, particularly for medical experts without a solid foundation in deep learning. Code is available at https://github.com/NUS-Tim/MedAugment.
comment: 29 pages, 8 figures
♻ ☆ ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.
♻ ☆ AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation
Deep neural networks are vulnerable to adversarial examples. Adversarial training (AT) is an effective defense against adversarial examples. However, AT is prone to overfitting which degrades robustness substantially. Recently, data augmentation (DA) was shown to be effective in mitigating robust overfitting if appropriately designed and optimized for AT. This work proposes a new method to automatically learn online, instance-wise, DA policies to improve robust generalization for AT. This is the first automated DA method specific for robustness. A novel policy learning objective, consisting of Vulnerability, Affinity and Diversity, is proposed and shown to be sufficiently effective and efficient to be practical for automatic DA generation during AT. Importantly, our method dramatically reduces the cost of policy search from the 5000 hours of AutoAugment and the 412 hours of IDBH to 9 hours, making automated DA more practical to use for adversarial robustness. This allows our method to efficiently explore a large search space for a more effective DA policy and evolve the policy as training progresses. Empirically, our method is shown to outperform all competitive DA methods across various model architectures and datasets. Our DA policy reinforced vanilla AT to surpass several state-of-the-art AT methods regarding both accuracy and robustness. It can also be combined with those advanced AT methods to further boost robustness. Code and pre-trained models are available at https://github.com/TreeLLi/AROID.
comment: published at the IJCV in press
♻ ☆ ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model
Contrastive Language-Image Pre-training (CLIP) model excels in integrating semantic information between images and text through contrastive learning techniques. It has achieved remarkable performance in various multimodal tasks. However, the deployment of large CLIP models is hindered in resource-limited environments, while smaller models frequently fail to meet the performance benchmarks required for practical applications. In this paper, we propose a novel approach, ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model, which aims to comprehensively distill the knowledge from a large teacher CLIP model into a smaller student model, ensuring comparable performance with significantly reduced parameters. ComKD-CLIP is composed of two key mechanisms: Image Feature Alignment (IFAlign) and Educational Attention (EduAttention). IFAlign makes the image features extracted by the student model closely match those extracted by the teacher model, enabling the student to learn teacher's knowledge of extracting image features. EduAttention explores the cross-relationships between text features extracted by the teacher model and image features extracted by the student model, enabling the student model to learn how the teacher model integrates text-image features. In addition, ComKD-CLIP can refine the knowledge distilled from IFAlign and EduAttention by leveraging the text-image feature fusion results of the teacher model, ensuring the student model accurately absorbs the teacher's knowledge. Extensive experiments conducted on 11 datasets have demonstrated the superiority of the proposed method.
comment: update
♻ ☆ Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning
Understanding the contents of multimodal documents is essential to accurately extract relevant evidence and use it for reasoning. Existing document understanding models tend to generate answers with a single word or phrase directly, ignoring the source document's evidence and lacking interpretability. In this work, we address the lack of step-wise capabilities through data augmentation and extension. Specifically, We use Multi-modal Large Language Models (MLLMs), which have strong visual understanding and reasoning abilities, as data generators to generate step-wise question-and-answer pairs for document images and use a high-performance LLM as the error detector to filter out noisy data. This step-wise data generation pipeline is implemented using both template-based and few-shot methods. We then use the generated high-quality data to train a humanized document understanding and reasoning model, specifically designed to solve complex questions that require reasoning or multi-hop question answering, dubbed DocAssistant. Experimental results demonstrate the effectiveness and application value of step-wise generation, showing a 5 improvement on InfoVQA with complex layouts and a 7 improvement on ChartQA with complex reasoning, compared to directly generated answers. We hope our work highlights the potential of synthetic data and encourages further exploration of multi-modal document reasoning capabilities.
♻ ☆ SCP: Soft Conditional Prompt Learning for Aerial Video Action Recognition IROS2024
We present a new learning approach, Soft Conditional Prompt Learning (SCP), which leverages the strengths of prompt learning for aerial video action recognition. Our approach is designed to predict the action of each agent by helping the models focus on the descriptions or instructions associated with actions in the input videos for aerial/robot visual perception. Our formulation supports various prompts, including learnable prompts, auxiliary visual information, and large vision models to improve the recognition performance. We present a soft conditional prompt method that learns to dynamically generate prompts from a pool of prompt experts under different video inputs. By sharing the same objective with the task, our proposed SCP can optimize prompts that guide the model's predictions while explicitly learning input-invariant (prompt experts pool) and input-specific (data-dependent) prompt knowledge. In practice, we observe a 3.17-10.2% accuracy improvement on the aerial video datasets (Okutama, NECDrone), which consist of scenes with single-agent and multi-agent actions. We further evaluate our approach on ground camera videos to verify the effectiveness and generalization and achieve a 1.0-3.6% improvement on dataset SSV2. We integrate our method into the ROS2 as well.
comment: IROS2024
♻ ☆ Learning to Learn without Forgetting using Attention
Continual learning (CL) refers to the ability to continually learn over time by accommodating new knowledge while retaining previously learned experience. While this concept is inherent in human learning, current machine learning methods are highly prone to overwrite previously learned patterns and thus forget past experience. Instead, model parameters should be updated selectively and carefully, avoiding unnecessary forgetting while optimally leveraging previously learned patterns to accelerate future learning. Since hand-crafting effective update mechanisms is difficult, we propose meta-learning a transformer-based optimizer to enhance CL. This meta-learned optimizer uses attention to learn the complex relationships between model parameters across a stream of tasks, and is designed to generate effective weight updates for the current task while preventing catastrophic forgetting on previously encountered tasks. Evaluations on benchmark datasets like SplitMNIST, RotatedMNIST, and SplitCIFAR-100 affirm the efficacy of the proposed approach in terms of both forward and backward transfer, even on small sets of labeled data, highlighting the advantages of integrating a meta-learned optimizer within the continual learning framework.
comment: Published at the 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024
♻ ☆ SRFormerV2: Taking a Closer Look at Permuted Self-Attention for Image Super-Resolution ICCV2023
Previous works have shown that increasing the window size for Transformer-based image super-resolution models (e.g., SwinIR) can significantly improve the model performance. Still, the computation overhead is also considerable when the window size gradually increases. In this paper, we present SRFormer, a simple but novel method that can enjoy the benefit of large window self-attention but introduces even less computational burden. The core of our SRFormer is the permuted self-attention (PSA), which strikes an appropriate balance between the channel and spatial information for self-attention. Without any bells and whistles, we show that our SRFormer achieves a 33.86dB PSNR score on the Urban100 dataset, which is 0.46dB higher than that of SwinIR but uses fewer parameters and computations. In addition, we also attempt to scale up the model by further enlarging the window size and channel numbers to explore the potential of Transformer-based models. Experiments show that our scaled model, named SRFormerV2, can further improve the results and achieves state-of-the-art. We hope our simple and effective approach could be useful for future research in super-resolution model design. The homepage is https://z-yupeng.github.io/SRFormer/.
comment: Previous version has been accepted by ICCV2023
♻ ☆ Self-augmented Gaussian Splatting with Structure-aware Masks for Sparse-view 3D Reconstruction
Sparse-view 3D reconstruction stands as a formidable challenge in computer vision, aiming to build complete three-dimensional models from a limited array of viewing perspectives. This task confronts several difficulties: 1) the limited number of input images that lack consistent information; 2) dependence on the quality of input images; and 3) the substantial size of model parameters. To address these challenges, we propose a self-augmented coarse-to-fine Gaussian splatting paradigm, enhanced with a structure-aware mask, for sparse-view 3D reconstruction. In particular, our method initially employs a coarse Gaussian model to obtain a basic 3D representation from sparse-view inputs. Subsequently, we develop a fine Gaussian network to enhance consistent and detailed representation of the output with both 3D geometry augmentation and perceptual view augmentation. During training, we design a structure-aware masking strategy to further improve the model's robustness against sparse inputs and noise.Experimental results on the MipNeRF360 and OmniObject3D datasets demonstrate that the proposed method achieves state-of-the-art performances for sparse input views in both perceptual quality and efficiency.
♻ ☆ Cascaded Multi-path Shortcut Diffusion Model for Medical Image Translation
Image-to-image translation is a vital component in medical imaging processing, with many uses in a wide range of imaging modalities and clinical scenarios. Previous methods include Generative Adversarial Networks (GANs) and Diffusion Models (DMs), which offer realism but suffer from instability and lack uncertainty estimation. Even though both GAN and DM methods have individually exhibited their capability in medical image translation tasks, the potential of combining a GAN and DM to further improve translation performance and to enable uncertainty estimation remains largely unexplored. In this work, we address these challenges by proposing a Cascade Multi-path Shortcut Diffusion Model (CMDM) for high-quality medical image translation and uncertainty estimation. To reduce the required number of iterations and ensure robust performance, our method first obtains a conditional GAN-generated prior image that will be used for the efficient reverse translation with a DM in the subsequent step. Additionally, a multi-path shortcut diffusion strategy is employed to refine translation results and estimate uncertainty. A cascaded pipeline further enhances translation quality, incorporating residual averaging between cascades. We collected three different medical image datasets with two sub-tasks for each dataset to test the generalizability of our approach. Our experimental results found that CMDM can produce high-quality translations comparable to state-of-the-art methods while providing reasonable uncertainty estimations that correlate well with the translation error.
comment: Accepted at Medical Image Analysis Journal
♻ ☆ HAIFIT: Human-to-AI Fashion Image Translation
In the realm of fashion design, sketches serve as the canvas for expressing an artist's distinctive drawing style and creative vision, capturing intricate details like stroke variations and texture nuances. The advent of sketch-to-image cross-modal translation technology has notably aided designers. However, existing methods often compromise these sketch details during image generation, resulting in images that deviate from the designer's intended concept. This limitation hampers the ability to offer designers a precise preview of the final output. To overcome this challenge, we introduce HAIFIT, a novel approach that transforms sketches into high-fidelity, lifelike clothing images by integrating multi-scale features and capturing extensive feature map dependencies from diverse perspectives. Through extensive qualitative and quantitative evaluations conducted on our self-collected dataset, our method demonstrates superior performance compared to existing methods in generating photorealistic clothing images. Our method excels in preserving the distinctive style and intricate details essential for fashion design applications. In addition, our method also has obvious advantages in model training and inference speed, contributing to reducing designers' time costs and improving design efficiency.
comment: 10 pages,8 figures
♻ ☆ On the Hidden Mystery of OCR in Large Multimodal Models
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks including Text Recognition, Scene Text-Centric Visual Question Answering (VQA), Document-Oriented VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition (HMER). To facilitate the assessment of Optical Character Recognition (OCR) capabilities in Large Multimodal Models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression recognition. Most importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. The evaluation pipeline and benchmark are available at https://github.com/Yuliang-Liu/MultimodalOCR.
♻ ☆ Patch-wise Auto-Encoder for Visual Anomaly Detection
Anomaly detection without priors of the anomalies is challenging. In the field of unsupervised anomaly detection, traditional auto-encoder (AE) tends to fail based on the assumption that by training only on normal images, the model will not be able to reconstruct abnormal images correctly. On the contrary, we propose a novel patch-wise auto-encoder (Patch AE) framework, which aims at enhancing the reconstruction ability of AE to anomalies instead of weakening it. Each patch of image is reconstructed by corresponding spatially distributed feature vector of the learned feature representation, i.e., patch-wise reconstruction, which ensures anomaly-sensitivity of AE. Our method is simple and efficient. It advances the state-of-the-art performances on Mvtec AD benchmark, which proves the effectiveness of our model. It shows great potential in practical industrial application scenarios.
♻ ☆ SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer ECCV2024
Recent advances in 2D/3D generative models enable the generation of dynamic 3D objects from a single-view video. Existing approaches utilize score distillation sampling to form the dynamic scene as dynamic NeRF or dense 3D Gaussians. However, these methods struggle to strike a balance among reference view alignment, spatio-temporal consistency, and motion fidelity under single-view conditions due to the implicit nature of NeRF or the intricate dense Gaussian motion prediction. To address these issues, this paper proposes an efficient, sparse-controlled video-to-4D framework named SC4D, that decouples motion and appearance to achieve superior video-to-4D generation. Moreover, we introduce Adaptive Gaussian (AG) initialization and Gaussian Alignment (GA) loss to mitigate shape degeneration issue, ensuring the fidelity of the learned motion and shape. Comprehensive experimental results demonstrate that our method surpasses existing methods in both quality and efficiency. In addition, facilitated by the disentangled modeling of motion and appearance of SC4D, we devise a novel application that seamlessly transfers the learned motion onto a diverse array of 4D entities according to textual descriptions.
comment: Accepted by ECCV2024! Project Page: https://sc4d.github.io/ Code is available at: https://github.com/JarrentWu1031/SC4D
♻ ☆ Self-Supervised Scalable Deep Compressed Sensing
Compressed sensing (CS) is a promising tool for reducing sampling costs. Current deep neural network (NN)-based CS methods face the challenges of collecting labeled measurement-ground truth (GT) data and generalizing to real applications. This paper proposes a novel $\mathbf{S}$elf-supervised s$\mathbf{C}$alable deep CS method, comprising a deep $\mathbf{L}$earning scheme called $\mathbf{SCL}$ and a family of $\mathbf{Net}$works named $\mathbf{SCNet}$, which does not require GT and can handle arbitrary sampling ratios and matrices once trained on a partial measurement set. Our SCL contains a dual-domain loss and a four-stage recovery strategy. The former encourages a cross-consistency on two measurement parts and a sampling-reconstruction cycle-consistency regarding arbitrary ratios and matrices to maximize data/information utilization. The latter can progressively leverage common signal prior in external measurements and internal characteristics of test samples and learned NNs to improve accuracy. SCNet combines both the explicit guidance from optimization algorithms with implicit regularization from advanced NN blocks to learn a collaborative signal representation. Our theoretical analyses and experiments on simulated and real captured data, covering 1-/2-/3-D natural and scientific signals, demonstrate the effectiveness, superior performance, flexibility, and generalization ability of our method over existing self-supervised methods and its significant potential in competing against state-of-the-art supervised methods. Code is available at https://github.com/Guaishou74851/SCNet.
comment: Accepted by Internaltional Journal of Computer Vision
♻ ☆ Harmonious Group Choreography with Trajectory-Controllable Diffusion
Creating group choreography from music has gained attention in cultural entertainment and virtual reality, aiming to coordinate visually cohesive and diverse group movements. Despite increasing interest, recent works face challenges in achieving aesthetically appealing choreography, primarily for two key issues: multi-dancer collision and single-dancer foot slide. To address these issues, we propose a Trajectory-Controllable Diffusion (TCDiff), a novel approach that harnesses non-overlapping trajectories to facilitate coherent dance movements. Specifically, to tackle dancer collisions, we introduce a Dance-Beat Navigator capable of generating trajectories for multiple dancers based on the music, complemented by a Distance-Consistency loss to maintain appropriate spacing among trajectories within a reasonable threshold. To mitigate foot sliding, we present a Footwork Adaptor that utilizes trajectory displacement from adjacent frames to enable flexible footwork, coupled with a Relative Forward-Kinematic loss to adjust the positioning of individual dancers' root nodes and joints. Extensive experiments demonstrate that our method achieves state-of-the-art results.
♻ ☆ Camera Perspective Transformation to Bird's Eye View via Spatial Transformer Model for Road Intersection Monitoring
Road intersection monitoring and control research often utilize bird's eye view (BEV) simulators. In real traffic settings, achieving a BEV akin to that in a simulator necessitates the deployment of drones or specific sensor mounting, which is neither feasible nor practical. Consequently, traffic intersection management remains confined to simulation environments given these constraints. In this paper, we address the gap between simulated environments and real-world implementation by introducing a novel deep-learning model that converts a single camera's perspective of a road intersection into a BEV. We created a simulation environment that closely resembles a real-world traffic junction. The proposed model transforms the vehicles into BEV images, facilitating road intersection monitoring and control model processing. Inspired by image transformation techniques, we propose a Spatial-Transformer Double Decoder-UNet (SDD-UNet) model that aims to eliminate the transformed image distortions. In addition, the model accurately estimates the vehicle's positions and enables the direct application of simulation-trained models in real-world contexts. SDD-UNet model achieves an average dice similarity coefficient (DSC) above 95% which is 40% better than the original UNet model. The mean absolute error (MAE) is 0.102 and the centroid of the predicted mask is 0.14 meters displaced, on average, indicating high accuracy.
♻ ☆ BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration
The goal of this paper is to address the problem of global point cloud registration (PCR) i.e., finding the optimal alignment between point clouds irrespective of the initial poses of the scans. This problem is notoriously challenging for classical optimization methods due to computational constraints. First, we show that state-of-the-art deep learning methods suffer from huge performance degradation when the point clouds are arbitrarily placed in space. We propose that equivariant deep learning should be utilized for solving this task and we characterize the specific type of bi-equivariance of PCR. Then, we design BiEquiformer a novel and scalable bi-equivariant pipeline i.e. equivariant to the independent transformations of the input point clouds. While a naive approach would process the point clouds independently we design expressive bi-equivariant layers that fuse the information from both point clouds. This allows us to extract high-quality superpoint correspondences and in turn, robust point-cloud registration. Extensive comparisons against state-of-the-art methods show that our method achieves comparable performance in the canonical setting and superior performance in the robust setting in both the 3DMatch and the challenging low-overlap 3DLoMatch dataset.
♻ ☆ RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems. Our implementation of the RL-I2IT framework is available at https://github.com/Algolzw/SPAC-Deformable-Registration.
♻ ☆ HawkI: Homography & Mutual Information Guidance for 3D-free Single Image to Aerial View
We present HawkI, for synthesizing aerial-view images from text and an exemplar image, without any additional multi-view or 3D information for finetuning or at inference. HawkI uses techniques from classical computer vision and information theory. It seamlessly blends the visual features from the input image within a pretrained text-to-2Dimage stable diffusion model with a test-time optimization process for a careful bias-variance trade-off, which uses an Inverse Perspective Mapping (IPM) homography transformation to provide subtle cues for aerialview synthesis. At inference, HawkI employs a unique mutual information guidance formulation to steer the generated image towards faithfully replicating the semantic details of the input-image, while maintaining a realistic aerial perspective. Mutual information guidance maximizes the semantic consistency between the generated image and the input image, without enforcing pixel-level correspondence between vastly different viewpoints. Through extensive qualitative and quantitative comparisons against text + exemplar-image based methods and 3D/ multi-view based novel-view synthesis methods on proposed synthetic and real datasets, we demonstrate that our method achieves a significantly better bias-variance trade-off towards generating high fidelity aerial-view images.Code and data is available at https://github.com/divyakraman/HawkI2024.
♻ ☆ Multi-graph Graph Matching for Coronary Artery Semantic Labeling
Coronary artery disease (CAD) stands as the leading cause of death worldwide, and invasive coronary angiography (ICA) remains the gold standard for assessing vascular anatomical information. However, deep learning-based methods encounter challenges in generating semantic labels for arterial segments, primarily due to the morphological similarity between arterial branches and varying anatomy of arterial system between different projection view angles and patients. To address this challenge, we model the vascular tree as a graph and propose a multi-graph graph matching (MGM) algorithm for coronary artery semantic labeling. The MGM algorithm assesses the similarity between arterials in multiple vascular tree graphs, considering the cycle consistency between each pair of graphs. As a result, the unannotated arterial segments are appropriately labeled by matching them with annotated segments. Through the incorporation of anatomical graph structure, radiomics features, and semantic mapping, the proposed MGM model achieves an impressive accuracy of 0.9471 for coronary artery semantic labeling using our multi-site dataset with 718 ICAs. With the semantic labeled arteries, an overall accuracy of 0.9155 was achieved for stenosis detection. The proposed MGM presents a novel tool for coronary artery analysis using multiple ICA-derived graphs, offering valuable insights into vascular health and pathology.
♻ ☆ Generalization Enhancement Strategies to Enable Cross-year Cropland Mapping with Convolutional Neural Networks Trained Using Historical Samples
The accuracy of mapping agricultural fields across large areas is steadily improving with high-resolution satellite imagery and deep learning (DL) models, even in regions where fields are small and geometrically irregular. However, developing effective DL models often requires large, expensive label datasets, typically available only for specific years or locations. This limits the ability to create annual maps essential for agricultural monitoring, as domain shifts occur between years and regions due to changes in farming practices and environmental conditions. The challenge is to design a model flexible enough to account for these shifts without needing yearly labels. While domain adaptation techniques or semi-supervised training are common solutions, we explored enhancing the model's generalization power. Our results indicate that a holistic approach is essential, combining methods to improve generalization. Specifically, using an area-based loss function, such as Tversky-focal loss (TFL), significantly improved predictions across multiple years. The use of different augmentation techniques helped to encode different types of invariance, particularly photometric augmentations encoded invariance to brightness changes, though they increased false positives. The combination of photometric augmentation, TFL loss, and MC-dropout produced the best results, although dropout alone led to more false negatives in subsequent year predictions. Additionally, the choice of input normalization had a significant impact, with the best results obtained when statistics were calculated either locally or across the entire dataset over all bands (lab and gab). We developed a workflow that enabled a U-Net model to generate effective multi-year crop maps over large areas. Our code, available at: https://github.com/agroimpacts/cnn-generalization-enhancement, will be regularly updated with improvements.
♻ ☆ Virchow2: Scaling Self-Supervised Mixed Magnification Models in Pathology
Foundation models are rapidly being developed for computational pathology applications. However, it remains an open question which factors are most important for downstream performance with data scale and diversity, model size, and training algorithm all playing a role. In this work, we propose algorithmic modifications, tailored for pathology, and we present the result of scaling both data and model size, surpassing previous studies in both dimensions. We introduce two new models: Virchow2, a 632 million parameter vision transformer, and Virchow2G, a 1.9 billion parameter vision transformer, each trained with 3.1 million histopathology whole slide images, with diverse tissues, originating institutions, and stains. We achieve state of the art performance on 12 tile-level tasks, as compared to the top performing competing models. Our results suggest that data diversity and domain-specific methods can outperform models that only scale in the number of parameters, but, on average, performance benefits from the combination of domain-specific methods, data scale, and model scale.
♻ ☆ WATonoBus: Field-Tested All-Weather Autonomous Shuttle Technology SC
All-weather autonomous vehicle operation poses significant challenges, encompassing modules from perception and decision-making to path planning and control. The complexity arises from the need to address adverse weather conditions such as rain, snow, and fog across the autonomy stack. Conventional model-based single-module approaches often lack holistic integration with upstream or downstream tasks. We tackle this problem by proposing a multi-module and modular system architecture with considerations for adverse weather across the perception level, through features such as snow covered curb detection, to decision-making and safety monitoring. Through daily weekday service on the WATonoBus platform for almost two years, we demonstrate that our proposed approach is capable of addressing adverse weather conditions and provide valuable insights from edge cases observed during operation.
comment: 8 pages, 10 figures. This work has been submitted to the ITSC for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
Artificial Intelligence 123
☆ Quantifying over Optimum Answer Sets
Answer Set Programming with Quantifiers (ASP(Q)) has been introduced to provide a natural extension of ASP modeling to problems in the polynomial hierarchy (PH). However, ASP(Q) lacks a method for encoding in an elegant and compact way problems requiring a polynomial number of calls to an oracle in $\Sigma_n^p$ (that is, problems in $\Delta_{n+1}^p$). Such problems include, in particular, optimization problems. In this paper we propose an extension of ASP(Q), in which component programs may contain weak constraints. Weak constraints can be used both for expressing local optimization within quantified component programs and for modeling global optimization criteria. We showcase the modeling capabilities of the new formalism through various application scenarios. Further, we study its computational properties obtaining complexity results and unveiling non-obvious characteristics of ASP(Q) programs with weak constraints.
☆ End-to-end Semantic-centric Video-based Multimodal Affective Computing
In the pathway toward Artificial General Intelligence (AGI), understanding human's affection is essential to enhance machine's cognition abilities. For achieving more sensual human-AI interaction, Multimodal Affective Computing (MAC) in human-spoken videos has attracted increasing attention. However, previous methods are mainly devoted to designing multimodal fusion algorithms, suffering from two issues: semantic imbalance caused by diverse pre-processing operations and semantic mismatch raised by inconsistent affection content contained in different modalities comparing with the multimodal ground truth. Besides, the usage of manual features extractors make they fail in building end-to-end pipeline for multiple MAC downstream tasks. To address above challenges, we propose a novel end-to-end framework named SemanticMAC to compute multimodal semantic-centric affection for human-spoken videos. We firstly employ pre-trained Transformer model in multimodal data pre-processing and design Affective Perceiver module to capture unimodal affective information. Moreover, we present a semantic-centric approach to unify multimodal representation learning in three ways, including gated feature interaction, multi-task pseudo label generation, and intra-/inter-sample contrastive learning. Finally, SemanticMAC effectively learn specific- and shared-semantic representations in the guidance of semantic-centric labels. Extensive experimental results demonstrate that our approach surpass the state-of-the-art methods on 7 public datasets in four MAC downstream tasks.
comment: Under Review
☆ Alignment-Enhanced Decoding:Defending via Token-Level Adaptive Refining of Probability Distributions
Large language models are susceptible to jailbreak attacks, which can result in the generation of harmful content. While prior defenses mitigate these risks by perturbing or inspecting inputs, they ignore competing objectives, the underlying cause of alignment failures. In this paper, we propose Alignment-Enhanced Decoding (AED), a novel defense that employs adaptive decoding to address the root causes of jailbreak issues. We first define the Competitive Index to quantify alignment failures and utilize feedback from self-evaluation to compute post-alignment logits. Then, AED adaptively combines AED and post-alignment logits with the original logits to obtain harmless and helpful distributions. Consequently, our method enhances safety alignment while maintaining helpfulness. We conduct experiments across five models and four common jailbreaks, with the results validating the effectiveness of our approach. Code is available at https://github.com/GIGABaozi/AED.git.
comment: 15 pages, 5 figures
☆ Adaptive Behavioral AI: Reinforcement Learning to Enhance Pharmacy Services KDD 2024
Pharmacies are critical in healthcare systems, particularly in low- and middle-income countries. Procuring pharmacists with the right behavioral interventions or nudges can enhance their skills, public health awareness, and pharmacy inventory management, ensuring access to essential medicines that ultimately benefit their patients. We introduce a reinforcement learning operational system to deliver personalized behavioral interventions through mobile health applications. We illustrate its potential by discussing a series of initial experiments run with SwipeRx, an all-in-one app for pharmacists, including B2B e-commerce, in Indonesia. The proposed method has broader applications extending beyond pharmacy operations to optimize healthcare delivery.
comment: Presented at The First Workshop on AI Behavioral Science (AIBS'24) at KDD 2024, August 25, Barcelona, Spain
☆ Boosting Unconstrained Face Recognition with Targeted Style Adversary
While deep face recognition models have demonstrated remarkable performance, they often struggle on the inputs from domains beyond their training data. Recent attempts aim to expand the training set by relying on computationally expensive and inherently challenging image-space augmentation of image generation modules. In an orthogonal direction, we present a simple yet effective method to expand the training data by interpolating between instance-level feature statistics across labeled and unlabeled sets. Our method, dubbed Targeted Style Adversary (TSA), is motivated by two observations: (i) the input domain is reflected in feature statistics, and (ii) face recognition model performance is influenced by style information. Shifting towards an unlabeled style implicitly synthesizes challenging training instances. We devise a recognizability metric to constraint our framework to preserve the inherent identity-related information of labeled instances. The efficacy of our method is demonstrated through evaluations on unconstrained benchmarks, outperforming or being on par with its competitors while offering nearly a 70\% improvement in training speed and 40\% less memory consumption.
☆ Drug Discovery SMILES-to-Pharmacokinetics Diffusion Models with Deep Molecular Understanding
Artificial intelligence (AI) is increasingly used in every stage of drug development. One challenge facing drug discovery AI is that drug pharmacokinetic (PK) datasets are often collected independently from each other, often with limited overlap, creating data overlap sparsity. Data sparsity makes data curation difficult for researchers looking to answer research questions in poly-pharmacy, drug combination research, and high-throughput screening. We propose Imagand, a novel SMILES-to-Pharmacokinetic (S2PK) diffusion model capable of generating an array of PK target properties conditioned on SMILES inputs. We show that Imagand-generated synthetic PK data closely resembles real data univariate and bivariate distributions, and improves performance for downstream tasks. Imagand is a promising solution for data overlap sparsity and allows researchers to efficiently generate ligand PK data for drug discovery research. Code is available at \url{https://github.com/bing1100/Imagand}.
comment: 13 pages, 5 figures, 4 tables
☆ Optimizing HIV Patient Engagement with Reinforcement Learning in Resource-Limited Settings KDD
By providing evidence-based clinical decision support, digital tools and electronic health records can revolutionize patient management, especially in resource-poor settings where fewer health workers are available and often need more training. When these tools are integrated with AI, they can offer personalized support and adaptive interventions, effectively connecting community health workers (CHWs) and healthcare facilities. The CHARM (Community Health Access & Resource Management) app is an AI-native mobile app for CHWs. Developed through a joint partnership of Causal Foundry (CF) and mothers2mothers (m2m), CHARM empowers CHWs, mainly local women, by streamlining case management, enhancing learning, and improving communication. This paper details CHARM's development, integration, and upcoming reinforcement learning-based adaptive interventions, all aimed at enhancing health worker engagement, efficiency, and patient outcomes, thereby enhancing CHWs' capabilities and community health.
comment: Presented at the 7th epiDAMIK ACM SIGKDD International Workshop on Epidemiology meets Data Mining and Knowledge Discovery, August 26, 2024, Barcelona, Spain
☆ Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation NeurIPS 2022
Battery life estimation is critical for optimizing battery performance and guaranteeing minimal degradation for better efficiency and reliability of battery-powered systems. The existing methods to predict the Remaining Useful Life(RUL) of Lithium-ion Batteries (LiBs) neglect the relational dependencies of the battery parameters to model the nonlinear degradation trajectories. We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters to capture the complex interactions and the graph-learning algorithm to model the intrinsic battery degradation for RUL prognosis. The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance. We report the ablation studies to support the efficacy of our approach.
comment: Accepted in Workshop on Graph Learning for Industrial Applications : Finance, Crime Detection, Medicine, and Social Media (NeurIPS 2022)
☆ Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey
With significant advancements in Transformers LLMs, NLP has extended its reach into many research fields due to its enhanced capabilities in text generation and user interaction. One field benefiting greatly from these advancements is cybersecurity. In cybersecurity, many parameters that need to be protected and exchanged between senders and receivers are in the form of text and tabular data, making NLP a valuable tool in enhancing the security measures of communication protocols. This survey paper provides a comprehensive analysis of the utilization of Transformers and LLMs in cyber-threat detection systems. The methodology of paper selection and bibliometric analysis is outlined to establish a rigorous framework for evaluating existing research. The fundamentals of Transformers are discussed, including background information on various cyber-attacks and datasets commonly used in this field. The survey explores the application of Transformers in IDSs, focusing on different architectures such as Attention-based models, LLMs like BERT and GPT, CNN/LSTM-Transformer hybrids, emerging approaches like ViTs, among others. Furthermore, it explores the diverse environments and applications where Transformers and LLMs-based IDS have been implemented, including computer networks, IoT devices, critical infrastructure protection, cloud computing, SDN, as well as in autonomous vehicles. The paper also addresses research challenges and future directions in this area, identifying key issues such as interpretability, scalability, and adaptability to evolving threats, and more. Finally, the conclusion summarizes the findings and highlights the significance of Transformers and LLMs in enhancing cyber-threat detection capabilities, while also outlining potential avenues for further research and development.
comment: arXiv admin note: text overlap with arXiv:2405.04760 by other authors
☆ A General Framework for Constraint-based Causal Learning
By representing any constraint-based causal learning algorithm via a placeholder property, we decompose the correctness condition into a part relating the distribution and the true causal graph, and a part that depends solely on the distribution. This provides a general framework to obtain correctness conditions for causal learning, and has the following implications. We provide exact correctness conditions for the PC algorithm, which are then related to correctness conditions of some other existing causal discovery algorithms. We show that the sparsest Markov representation condition is the weakest correctness condition resulting from existing notions of minimality for maximal ancestral graphs and directed acyclic graphs. We also reason that additional knowledge than just Pearl-minimality is necessary for causal learning beyond faithfulness.
☆ Multi-task Heterogeneous Graph Learning on Electronic Health Records
Learning electronic health records (EHRs) has received emerging attention because of its capability to facilitate accurate medical diagnosis. Since the EHRs contain enriched information specifying complex interactions between entities, modeling EHRs with graphs is shown to be effective in practice. The EHRs, however, present a great degree of heterogeneity, sparsity, and complexity, which hamper the performance of most of the models applied to them. Moreover, existing approaches modeling EHRs often focus on learning the representations for a single task, overlooking the multi-task nature of EHR analysis problems and resulting in limited generalizability across different tasks. In view of these limitations, we propose a novel framework for EHR modeling, namely MulT-EHR (Multi-Task EHR), which leverages a heterogeneous graph to mine the complex relations and model the heterogeneity in the EHRs. To mitigate the large degree of noise, we introduce a denoising module based on the causal inference framework to adjust for severe confounding effects and reduce noise in the EHR data. Additionally, since our model adopts a single graph neural network for simultaneous multi-task prediction, we design a multi-task learning module to leverage the inter-task knowledge to regularize the training process. Extensive empirical studies on MIMIC-III and MIMIC-IV datasets validate that the proposed method consistently outperforms the state-of-the-art designs in four popular EHR analysis tasks -- drug recommendation, and predictions of the length of stay, mortality, and readmission. Thorough ablation studies demonstrate the robustness of our method upon variations to key components and hyperparameters.
comment: Accepted by Neural Networks
☆ PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation
Recently, universal waveform generation tasks have been investigated conditioned on various out-of-distribution scenarios. Although GAN-based methods have shown their strength in fast waveform generation, they are vulnerable to train-inference mismatch scenarios such as two-stage text-to-speech. Meanwhile, diffusion-based models have shown their powerful generative performance in other domains; however, they stay out of the limelight due to slow inference speed in waveform generation tasks. Above all, there is no generator architecture that can explicitly disentangle the natural periodic features of high-resolution waveform signals. In this paper, we propose PeriodWave, a novel universal waveform generation model. First, we introduce a period-aware flow matching estimator that can capture the periodic features of the waveform signal when estimating the vector fields. Additionally, we utilize a multi-period estimator that avoids overlaps to capture different periodic features of waveform signals. Although increasing the number of periods can improve the performance significantly, this requires more computational costs. To reduce this issue, we also propose a single period-conditional universal estimator that can feed-forward parallel by period-wise batch inference. Additionally, we utilize discrete wavelet transform to losslessly disentangle the frequency information of waveform signals for high-frequency modeling, and introduce FreeU to reduce the high-frequency noise for waveform generation. The experimental results demonstrated that our model outperforms the previous models both in Mel-spectrogram reconstruction and text-to-speech tasks. All source code will be available at \url{https://github.com/sh-lee-prml/PeriodWave}.
comment: 24 pages, 16 tables, 4 figures
☆ $χ$SPN: Characteristic Interventional Sum-Product Networks for Causal Inference in Hybrid Domains UAI
Causal inference in hybrid domains, characterized by a mixture of discrete and continuous variables, presents a formidable challenge. We take a step towards this direction and propose Characteristic Interventional Sum-Product Network ($\chi$SPN) that is capable of estimating interventional distributions in presence of random variables drawn from mixed distributions. $\chi$SPN uses characteristic functions in the leaves of an interventional SPN (iSPN) thereby providing a unified view for discrete and continuous random variables through the Fourier-Stieltjes transform of the probability measures. A neural network is used to estimate the parameters of the learned iSPN using the intervened data. Our experiments on 3 synthetic heterogeneous datasets suggest that $\chi$SPN can effectively capture the interventional distributions for both discrete and continuous variables while being expressive and causally adequate. We also show that $\chi$SPN generalize to multiple interventions while being trained only on a single intervention data.
comment: 17 pages, 11 figures. Accepted as poster at UAI (Uncertainty in Artificial Intelligence) 2024
Planning with OWL-DL Ontologies (Extended Version)
We introduce ontology-mediated planning, in which planning problems are combined with an ontology. Our formalism differs from existing ones in that we focus on a strong separation of the formalisms for describing planning problems and ontologies, which are only losely coupled by an interface. Moreover, we present a black-box algorithm that supports the full expressive power of OWL DL. This goes beyond what existing approaches combining automated planning with ontologies can do, which only support limited description logics such as DL-Lite and description logics that are Horn. Our main algorithm relies on rewritings of the ontology-mediated planning specifications into PDDL, so that existing planning systems can be used to solve them. The algorithm relies on justifications, which allows for a generic approach that is independent of the expressivity of the ontology language. However, dedicated optimizations for computing justifications need to be implemented to enable an efficient rewriting procedure. We evaluated our implementation on benchmark sets from several domains. The evaluation shows that our procedure works in practice and that tailoring the reasoning procedure has significant impact on the performance.
comment: Extended version of a paper accepted at ECAI 2024
☆ New Curriculum, New Chance -- Retrieval Augmented Generation for Lesson Planning in Ugandan Secondary Schools. Prototype Quality Evaluation
Introduction: Poor educational quality in Secondary Schools is still regarded as one of the major struggles in 21st century Uganda - especially in rural areas. Research identifies several problems, including low quality or absent teacher lesson planning. As the government pushes towards the implementation of a new curriculum, exiting lesson plans become obsolete and the problem is worsened. Using a Retrieval Augmented Generation approach, we developed a prototype that generates customized lesson plans based on the government-accredited textbooks. This helps teachers create lesson plans more efficiently and with better quality, ensuring they are fully aligned the new curriculum and the competence-based learning approach. Methods: The prototype was created using Cohere LLM and Sentence Embeddings, and LangChain Framework - and thereafter made available on a public website. Vector stores were trained for three new curriculum textbooks (ICT, Mathematics, History), all at Secondary 1 Level. Twenty-four lessons plans were generated following a pseudo-random generation protocol, based on the suggested periods in the textbooks. The lesson plans were analyzed regarding their technical quality by three independent raters following the Lesson Plan Analysis Protocol (LPAP) by Ndihokubwayo et al. (2022) that is specifically designed for East Africa and competence-based curriculums. Results: Evaluation of 24 lesson plans using the LPAP resulted in an average quality of between 75 and 80%, corresponding to "very good lesson plan". None of the lesson plans scored below 65%, although one lesson plan could be argued to have been missing the topic. In conclusion, the quality of the generated lesson plans is at least comparable, if not better, than those created by humans, as demonstrated in a study in Rwanda, whereby no lesson plan even reached the benchmark of 50%.
comment: Presented at Ndejje University Second Annual Research Dissemination Symposium 2024
☆ DifuzCam: Replacing Camera Lens with a Mask and a Diffusion Model
The flat lensless camera design reduces the camera size and weight significantly. In this design, the camera lens is replaced by another optical element that interferes with the incoming light. The image is recovered from the raw sensor measurements using a reconstruction algorithm. Yet, the quality of the reconstructed images is not satisfactory. To mitigate this, we propose utilizing a pre-trained diffusion model with a control network and a learned separable transformation for reconstruction. This allows us to build a prototype flat camera with high-quality imaging, presenting state-of-the-art results in both terms of quality and perceptuality. We demonstrate its ability to leverage also textual descriptions of the captured scene to further enhance reconstruction. Our reconstruction method which leverages the strong capabilities of a pre-trained diffusion model can be used in other imaging systems for improved reconstruction results.
☆ Cross-aware Early Fusion with Stage-divided Vision and Language Transformer Encoders for Referring Image Segmentation
Referring segmentation aims to segment a target object related to a natural language expression. Key challenges of this task are understanding the meaning of complex and ambiguous language expressions and determining the relevant regions in the image with multiple objects by referring to the expression. Recent models have focused on the early fusion with the language features at the intermediate stage of the vision encoder, but these approaches have a limitation that the language features cannot refer to the visual information. To address this issue, this paper proposes a novel architecture, Cross-aware early fusion with stage-divided Vision and Language Transformer encoders (CrossVLT), which allows both language and vision encoders to perform the early fusion for improving the ability of the cross-modal context modeling. Unlike previous methods, our method enables the vision and language features to refer to each other's information at each stage to mutually enhance the robustness of both encoders. Furthermore, unlike the conventional scheme that relies solely on the high-level features for the cross-modal alignment, we introduce a feature-based alignment scheme that enables the low-level to high-level features of the vision and language encoders to engage in the cross-modal alignment. By aligning the intermediate cross-modal features in all encoder stages, this scheme leads to effective cross-modal fusion. In this way, the proposed approach is simple but effective for referring image segmentation, and it outperforms the previous state-of-the-art methods on three public benchmarks.
comment: Published in IEEE Transactions on Multimedia (TMM)
☆ Development of a Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments
Emergency department (ED) overcrowding and the complexity of rapid decision-making in critical care settings pose significant challenges to healthcare systems worldwide. While clinical decision support systems (CDSS) have shown promise, the integration of large language models (LLMs) offers new possibilities for enhancing triage accuracy and clinical decision-making. This study presents an LLM-driven CDSS designed to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management. We developed a multi-agent CDSS utilizing Llama-3-70b as the base LLM, orchestrated by CrewAI and Langchain. The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator. It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management. The model was evaluated using the Asclepius dataset, with performance assessed by a clinical emergency medicine specialist. The CDSS demonstrated high accuracy in triage decision-making compared to the baseline of a single-agent system. Furthermore, the system exhibited strong performance in critical areas, including primary diagnosis, critical findings identification, disposition decision-making, treatment planning, and resource allocation. Our multi-agent CDSS demonstrates significant potential for supporting comprehensive emergency care management. By leveraging state-of-the-art AI technologies, this system offers a scalable and adaptable tool that could enhance emergency medical care delivery, potentially alleviating ED overcrowding and improving patient outcomes. This work contributes to the growing field of AI applications in emergency medicine and offers a promising direction for future research and clinical implementation.
☆ Evidential Graph Contrastive Alignment for Source-Free Blending-Target Domain Adaptation
In this paper, we firstly tackle a more realistic Domain Adaptation (DA) setting: Source-Free Blending-Target Domain Adaptation (SF-BTDA), where we can not access to source domain data while facing mixed multiple target domains without any domain labels in prior. Compared to existing DA scenarios, SF-BTDA generally faces the co-existence of different label shifts in different targets, along with noisy target pseudo labels generated from the source model. In this paper, we propose a new method called Evidential Contrastive Alignment (ECA) to decouple the blending target domain and alleviate the effect from noisy target pseudo labels. First, to improve the quality of pseudo target labels, we propose a calibrated evidential learning module to iteratively improve both the accuracy and certainty of the resulting model and adaptively generate high-quality pseudo target labels. Second, we design a graph contrastive learning with the domain distance matrix and confidence-uncertainty criterion, to minimize the distribution gap of samples of a same class in the blended target domains, which alleviates the co-existence of different label shifts in blended targets. We conduct a new benchmark based on three standard DA datasets and ECA outperforms other methods with considerable gains and achieves comparable results compared with those that have domain labels or source data in prior.
☆ Fast Inference for Probabilistic Answer Set Programs via the Residual Program
When we want to compute the probability of a query from a Probabilistic Answer Set Program, some parts of a program may not influence the probability of a query, but they impact on the size of the grounding. Identifying and removing them is crucial to speed up the computation. Algorithms for SLG resolution offer the possibility of returning the residual program which can be used for computing answer sets for normal programs that do have a total well-founded model. The residual program does not contain the parts of the program that do not influence the probability. In this paper, we propose to exploit the residual program for performing inference. Empirical results on graph datasets show that the approach leads to significantly faster inference.
comment: The paper has been accepted at the ICLP2024 conference and under consideration in Theory and Practice of Logic Programming (TPLP)
☆ Optimising Dynamic Traffic Distribution for Urban Networks with Answer Set Programming
Answer Set Programming (ASP) has demonstrated its potential as an effective tool for concisely representing and reasoning about real-world problems. In this paper, we present an application in which ASP has been successfully used in the context of dynamic traffic distribution for urban networks, within a more general framework devised for solving such a real-world problem. In particular, ASP has been employed for the computation of the "optimal" routes for all the vehicles in the network. We also provide an empirical analysis of the performance of the whole framework, and of its part in which ASP is employed, on two European urban areas, which shows the viability of the framework and the contribution ASP can give.
☆ Dominating Set Reconfiguration with Answer Set Programming
The dominating set reconfiguration problem is defined as determining, for a given dominating set problem and two among its feasible solutions, whether one is reachable from the other via a sequence of feasible solutions subject to a certain adjacency relation. This problem is PSPACE-complete in general. The concept of the dominating set is known to be quite useful for analyzing wireless networks, social networks, and sensor networks. We develop an approach to solve the dominating set reconfiguration problem based on Answer Set Programming (ASP). Our declarative approach relies on a high-level ASP encoding, and both the grounding and solving tasks are delegated to an ASP-based combinatorial reconfiguration solver. To evaluate the effectiveness of our approach, we conduct experiments on a newly created benchmark set.
☆ Training Overhead Ratio: A Practical Reliability Metric for Large Language Model Training Systems
Large Language Models (LLMs) are revolutionizing the AI industry with their superior capabilities. Training these models requires large-scale GPU clusters and significant computing time, leading to frequent failures that significantly increase training costs. Despite its significance, this field lacks a metric for evaluating reliability. In this work, we introduce a novel reliability metric called \emph{Training Overhead Ratio} (TOR) to evaluate the reliability of fault-tolerant LLM training systems. TOR is defined as the ratio of optimal training time to the observed training time of a system, serving as a practical tool for users to estimate the actual time required to train an LLM on a given system. Furthermore, our investigation identifies the key factor for enhancing reliability and present TOR equations for various types of failures encountered in practice.
comment: preprint, under review
☆ A Study on Bias Detection and Classification in Natural Language Processing
Human biases have been shown to influence the performance of models and algorithms in various fields, including Natural Language Processing. While the study of this phenomenon is garnering focus in recent years, the available resources are still relatively scarce, often focusing on different forms or manifestations of biases. The aim of our work is twofold: 1) gather publicly-available datasets and determine how to better combine them to effectively train models in the task of hate speech detection and classification; 2) analyse the main issues with these datasets, such as scarcity, skewed resources, and reliance on non-persistent data. We discuss these issues in tandem with the development of our experiments, in which we show that the combinations of different datasets greatly impact the models' performance.
comment: 31 pages, 15 Tables, 4 Figures
☆ Large Language Models Prompting With Episodic Memory
Prompt optimization is essential for enhancing the performance of Large Language Models (LLMs) in a range of Natural Language Processing (NLP) tasks, particularly in scenarios of few-shot learning where training examples are incorporated directly into the prompt. Despite the growing interest in optimizing prompts with few-shot examples, existing methods for prompt optimization are often resource-intensive or perform inadequately. In this work, we propose PrOmpting with Episodic Memory (POEM), a novel prompt optimization technique that is simple, efficient, and demonstrates strong generalization capabilities. We approach prompt optimization as a Reinforcement Learning (RL) challenge, using episodic memory to archive combinations of input data, permutations of few-shot examples, and the rewards observed during training. In the testing phase, we optimize the sequence of examples for each test query by selecting the sequence that yields the highest total rewards from the top-k most similar training examples in the episodic memory. Our results show that POEM outperforms recent techniques like TEMPERA and RLPrompt by over 5.3% in various text classification tasks. Furthermore, our approach adapts well to broader language understanding tasks, consistently outperforming conventional heuristic methods for ordering examples.
☆ Fact or Fiction? Improving Fact Verification with Knowledge Graphs through Simplified Subgraph Retrievals
Despite recent success in natural language processing (NLP), fact verification still remains a difficult task. Due to misinformation spreading increasingly fast, attention has been directed towards automatically verifying the correctness of claims. In the domain of NLP, this is usually done by training supervised machine learning models to verify claims by utilizing evidence from trustworthy corpora. We present efficient methods for verifying claims on a dataset where the evidence is in the form of structured knowledge graphs. We use the FactKG dataset, which is constructed from the DBpedia knowledge graph extracted from Wikipedia. By simplifying the evidence retrieval process, from fine-tuned language models to simple logical retrievals, we are able to construct models that both require less computational resources and achieve better test-set accuracy.
comment: 10 pages, 3 figures, appendix
☆ CMU's IWSLT 2024 Simultaneous Speech Translation System
This paper describes CMU's submission to the IWSLT 2024 Simultaneous Speech Translation (SST) task for translating English speech to German text in a streaming manner. Our end-to-end speech-to-text (ST) system integrates the WavLM speech encoder, a modality adapter, and the Llama2-7B-Base model as the decoder. We employ a two-stage training approach: initially, we align the representations of speech and text, followed by full fine-tuning. Both stages are trained on MuST-c v2 data with cross-entropy loss. We adapt our offline ST model for SST using a simple fixed hold-n policy. Experiments show that our model obtains an offline BLEU score of 31.1 and a BLEU score of 29.5 under 2 seconds latency on the MuST-C-v2 tst-COMMON.
☆ LiveFC: A System for Live Fact-Checking of Audio Streams
The advances in the digital era have led to rapid dissemination of information. This has also aggravated the spread of misinformation and disinformation. This has potentially serious consequences, such as civil unrest. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. While automated fact-checking approaches exist, they do not operate in real-time and do not always account for spread of misinformation through different modalities. This is particularly important as proactive fact-checking on live streams in real-time can help people be informed of false narratives and prevent catastrophic consequences that may cause civil unrest. This is particularly relevant with the rapid dissemination of information through video on social media platforms or other streams like political rallies and debates. Hence, in this work we develop a platform named \name{}, that can aid in fact-checking live audio streams in real-time. \name{} has a user-friendly interface that displays the claims detected along with their veracity and evidence for live streams with associated speakers for claims from respective segments. The app can be accessed at http://livefc.factiverse.ai and a screen recording of the demo can be found at https://bit.ly/3WVAoIw.
comment: Under Review, 11 pages
☆ Achieving Data Efficient Neural Networks with Hybrid Concept-based Models
Most datasets used for supervised machine learning consist of a single label per data point. However, in cases where more information than just the class label is available, would it be possible to train models more efficiently? We introduce two novel model architectures, which we call hybrid concept-based models, that train using both class labels and additional information in the dataset referred to as concepts. In order to thoroughly assess their performance, we introduce ConceptShapes, an open and flexible class of datasets with concept labels. We show that the hybrid concept-based models outperform standard computer vision models and previously proposed concept-based models with respect to accuracy, especially in sparse data settings. We also introduce an algorithm for performing adversarial concept attacks, where an image is perturbed in a way that does not change a concept-based model's concept predictions, but changes the class prediction. The existence of such adversarial examples raises questions about the interpretable qualities promised by concept-based models.
comment: 11 pages, 8 figures, appendix
☆ Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems
Recent advancements in machine learning based energy management approaches, specifically reinforcement learning with a safety layer (OptLayerPolicy) and a metaheuristic algorithm generating a decision tree control policy (TreeC), have shown promise. However, their effectiveness has only been demonstrated in computer simulations. This paper presents the real-world validation of these methods, comparing against model predictive control and simple rule-based control benchmark. The experiments were conducted on the electrical installation of 4 reproductions of residential houses, which all have their own battery, photovoltaic and dynamic load system emulating a non-controllable electrical load and a controllable electric vehicle charger. The results show that the simple rules, TreeC, and model predictive control-based methods achieved similar costs, with a difference of only 0.6%. The reinforcement learning based method, still in its training phase, obtained a cost 25.5\% higher to the other methods. Additional simulations show that the costs can be further reduced by using a more representative training dataset for TreeC and addressing errors in the model predictive control implementation caused by its reliance on accurate data from various sources. The OptLayerPolicy safety layer allows safe online training of a reinforcement learning agent in the real-world, given an accurate constraint function formulation. The proposed safety layer method remains error-prone, nonetheless, it is found beneficial for all investigated methods. The TreeC method, which does require building a realistic simulation for training, exhibits the safest operational performance, exceeding the grid limit by only 27.1 Wh compared to 593.9 Wh for reinforcement learning.
☆ Exploring Retrieval Augmented Generation in Arabic
Recently, Retrieval Augmented Generation (RAG) has emerged as a powerful technique in natural language processing, combining the strengths of retrieval-based and generation-based models to enhance text generation tasks. However, the application of RAG in Arabic, a language with unique characteristics and resource constraints, remains underexplored. This paper presents a comprehensive case study on the implementation and evaluation of RAG for Arabic text. The work focuses on exploring various semantic embedding models in the retrieval stage and several LLMs in the generation stage, in order to investigate what works and what doesn't in the context of Arabic. The work also touches upon the issue of variations between document dialect and query dialect in the retrieval stage. Results show that existing semantic embedding models and LLMs can be effectively employed to build Arabic RAG pipelines.
☆ LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image
Recent advancements in autonomous driving, augmented reality, robotics, and embodied intelligence have necessitated 3D perception algorithms. However, current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories. On the other hand, generative multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks, due to weak spatial and local object perception, poor text-based geometric numerical output, and inability to handle camera focal variations. To address these challenges, we propose the following solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations. We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM. Additionally, we have constructed the IG3D dataset, which provides fine-grained descriptions and question-answer annotations. Extensive experiments demonstrate that our LLMI3D achieves state-of-the-art performance, significantly outperforming existing methods.
☆ The Restaurant Meal Delivery Problem with Ghost Kitchens
Restaurant meal delivery has been rapidly growing in the last few years. The main challenges in operating it are the temporally and spatially dispersed stochastic demand that arrives from customers all over town as well as the customers' expectation of timely and fresh delivery. To overcome these challenges a new business concept emerged, "Ghost kitchens". This concept proposes synchronized food preparation of several restaurants in a central complex, exploiting consolidation benefits. However, dynamically scheduling food preparation and delivery is challenging and we propose operational strategies for the effective operations of ghost kitchens. We model the problem as a sequential decision process. For the complex, combinatorial decision space of scheduling order preparations, consolidating orders to trips, and scheduling trip departures, we propose a large neighborhood search procedure based on partial decisions and driven by analytical properties. Within the large neighborhood search, decisions are evaluated via a value function approximation, enabling anticipatory and real-time decision making. We show the effectiveness of our method and demonstrate the value of ghost kitchens compared to conventional meal delivery systems. We show that both integrated optimization of cook scheduling and vehicle dispatching, as well as anticipation of future demand and decisions, are essential for successful operations. We further derive several managerial insights, amongst others, that companies should carefully consider the trade-off between fast delivery and fresh food.
☆ Efficient Edge AI: Deploying Convolutional Neural Networks on FPGA with the Gemmini Accelerator
The growing concerns regarding energy consumption and privacy have prompted the development of AI solutions deployable on the edge, circumventing the substantial CO2 emissions associated with cloud servers and mitigating risks related to sharing sensitive data. But deploying Convolutional Neural Networks (CNNs) on non-off-the-shelf edge devices remains a complex and labor-intensive task. In this paper, we present and end-to-end workflow for deployment of CNNs on Field Programmable Gate Arrays (FPGAs) using the Gemmini accelerator, which we modified for efficient implementation on FPGAs. We describe how we leverage the use of open source software on each optimization step of the deployment process, the customizations we added to them and its impact on the final system's performance. We were able to achieve real-time performance by deploying a YOLOv7 model on a Xilinx ZCU102 FPGA with an energy efficiency of 36.5 GOP/s/W. Our FPGA-based solution demonstrates superior power efficiency compared with other embedded hardware devices, and even outperforms other FPGA reference implementations. Finally, we present how this kind of solution can be integrated into a wider system, by testing our proposed platform in a traffic monitoring scenario.
comment: 8 pages, 9 figures, accepted at the 27th Euromicro Conference Series on Digital System Design (DSD) 2024
☆ A Quantum-Inspired Analysis of Human Disambiguation Processes
Formal languages are essential for computer programming and are constructed to be easily processed by computers. In contrast, natural languages are much more challenging and instigated the field of Natural Language Processing (NLP). One major obstacle is the ubiquity of ambiguities. Recent advances in NLP have led to the development of large language models, which can resolve ambiguities with high accuracy. At the same time, quantum computers have gained much attention in recent years as they can solve some computational problems faster than classical computers. This new computing paradigm has reached the fields of machine learning and NLP, where hybrid classical-quantum learning algorithms have emerged. However, more research is needed to identify which NLP tasks could benefit from a genuine quantum advantage. In this thesis, we applied formalisms arising from foundational quantum mechanics, such as contextuality and causality, to study ambiguities arising from linguistics. By doing so, we also reproduced psycholinguistic results relating to the human disambiguation process. These results were subsequently used to predict human behaviour and outperformed current NLP methods.
comment: PhD thesis
☆ DataVisT5: A Pre-trained Language Model for Jointly Understanding Text and Data Visualization
Data visualization (DV) is the fundamental and premise tool to improve the efficiency in conveying the insights behind the big data, which has been widely accepted in existing data-driven world. Task automation in DV, such as converting natural language queries to visualizations (i.e., text-to-vis), generating explanations from visualizations (i.e., vis-to-text), answering DV-related questions in free form (i.e. FeVisQA), and explicating tabular data (i.e., table-to-text), is vital for advancing the field. Despite their potential, the application of pre-trained language models (PLMs) like T5 and BERT in DV has been limited by high costs and challenges in handling cross-modal information, leading to few studies on PLMs for DV. We introduce \textbf{DataVisT5}, a novel PLM tailored for DV that enhances the T5 architecture through a hybrid objective pre-training and multi-task fine-tuning strategy, integrating text and DV datasets to effectively interpret cross-modal semantics. Extensive evaluations on public datasets show that DataVisT5 consistently outperforms current state-of-the-art models on various DV-related tasks. We anticipate that DataVisT5 will not only inspire further research on vertical PLMs but also expand the range of applications for PLMs.
☆ Improving Global Parameter-sharing in Physically Heterogeneous Multi-agent Reinforcement Learning with Unified Action Space
In a multi-agent system (MAS), action semantics indicates the different influences of agents' actions toward other entities, and can be used to divide agents into groups in a physically heterogeneous MAS. Previous multi-agent reinforcement learning (MARL) algorithms apply global parameter-sharing across different types of heterogeneous agents without careful discrimination of different action semantics. This common implementation decreases the cooperation and coordination between agents in complex situations. However, fully independent agent parameters dramatically increase the computational cost and training difficulty. In order to benefit from the usage of different action semantics while also maintaining a proper parameter-sharing structure, we introduce the Unified Action Space (UAS) to fulfill the requirement. The UAS is the union set of all agent actions with different semantics. All agents first calculate their unified representation in the UAS, and then generate their heterogeneous action policies using different available-action-masks. To further improve the training of extra UAS parameters, we introduce a Cross-Group Inverse (CGI) loss to predict other groups' agent policies with the trajectory information. As a universal method for solving the physically heterogeneous MARL problem, we implement the UAS adding to both value-based and policy-based MARL algorithms, and propose two practical algorithms: U-QMIX and U-MAPPO. Experimental results in the SMAC environment prove the effectiveness of both U-QMIX and U-MAPPO compared with several state-of-the-art MARL methods.
☆ Sum-Product-Set Networks
Daily internet communication relies heavily on tree-structured graphs, embodied by popular data formats such as XML and JSON. However, many recent generative (probabilistic) models utilize neural networks to learn a probability distribution over undirected cyclic graphs. This assumption of a generic graph structure brings various computational challenges, and, more importantly, the presence of non-linearities in neural networks does not permit tractable probabilistic inference. We address these problems by proposing sum-product-set networks, an extension of probabilistic circuits from unstructured tensor data to tree-structured graph data. To this end, we use random finite sets to reflect a variable number of nodes and edges in the graph and to allow for exact and efficient inference. We demonstrate that our tractable model performs comparably to various intractable models based on neural networks.
☆ The Complexity of Manipulation of k-Coalitional Games on Graphs
In many settings, there is an organizer who would like to divide a set of agents into $k$ coalitions, and cares about the friendships within each coalition. Specifically, the organizer might want to maximize utilitarian social welfare, maximize egalitarian social welfare, or simply guarantee that every agent will have at least one friend within his coalition. However, in many situations, the organizer is not familiar with the friendship connections, and he needs to obtain them from the agents. In this setting, a manipulative agent may falsely report friendship connections in order to increase his utility. In this paper, we analyze the complexity of finding manipulation in such $k$-coalitional games on graphs. We also introduce a new type of manipulation, socially-aware manipulation, in which the manipulator would like to increase his utility without decreasing the social welfare. We then study the complexity of finding socially-aware manipulation in our setting. Finally, we examine the frequency of socially-aware manipulation and the running time of our algorithms via simulation results.
☆ RTAT: A Robust Two-stage Association Tracker for Multi-Object Tracking ICPR2024
Data association is an essential part in the tracking-by-detection based Multi-Object Tracking (MOT). Most trackers focus on how to design a better data association strategy to improve the tracking performance. The rule-based handcrafted association methods are simple and highly efficient but lack generalization capability to deal with complex scenes. While the learnt association methods can learn high-order contextual information to deal with various complex scenes, but they have the limitations of higher complexity and cost. To address these limitations, we propose a Robust Two-stage Association Tracker, named RTAT. The first-stage association is performed between tracklets and detections to generate tracklets with high purity, and the second-stage association is performed between tracklets to form complete trajectories. For the first-stage association, we use a simple data association strategy to generate tracklets with high purity by setting a low threshold for the matching cost in the assignment process. We conduct the tracklet association in the second-stage based on the framework of message-passing GNN. Our method models the tracklet association as a series of edge classification problem in hierarchical graphs, which can recursively merge short tracklets into longer ones. Our tracker RTAT ranks first on the test set of MOT17 and MOT20 benchmarks in most of the main MOT metrics: HOTA, IDF1, and AssA. We achieve 67.2 HOTA, 84.7 IDF1, and 69.7 AssA on MOT17, and 66.2 HOTA, 82.5 IDF1, and 68.1 AssA on MOT20.
comment: ICPR2024
☆ Towards Few-shot Self-explaining Graph Neural Networks
Recent advancements in Graph Neural Networks (GNNs) have spurred an upsurge of research dedicated to enhancing the explainability of GNNs, particularly in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge, in this paper, we propose a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework that generates explanations to support predictions in few-shot settings. MSE-GNN adopts a two-stage self-explaining structure, consisting of an explainer and a predictor. Specifically, the explainer first imitates the attention mechanism of humans to select the explanation subgraph, whereby attention is naturally paid to regions containing important characteristics. Subsequently, the predictor mimics the decision-making process, which makes predictions based on the generated explanation. Moreover, with a novel meta-training process and a designed mechanism that exploits task information, MSE-GNN can achieve remarkable performance on new few-shot tasks. Extensive experimental results on four datasets demonstrate that MSE-GNN can achieve superior performance on prediction tasks while generating high-quality explanations compared with existing methods. The code is publicly available at https://github.com/jypeng28/MSE-GNN.
☆ An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion. Designing an effective strategy for managing multiple traffic lights plays a crucial role in managing congestion. However, most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns. In this paper, we delve into two pivotal design components of the traffic light management system that can be dynamically adjusted to various traffic conditions: phase combination and phase time allocation. While numerous studies have sought an efficient strategy for managing traffic lights, most of these approaches consider a fixed traffic pattern and are limited to relatively small road networks. To overcome these limitations, we introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization. We then present a simple yet effective method to efficiently find a solution for the aforementioned problem. In our framework, we first collect an offline meta dataset consisting of pairs of design choices and corresponding congestion measures from various traffic patterns. After collecting the dataset, we employ the Attentive Neural Process (ANP) to predict the impact of the proposed design on congestion across various traffic patterns with well-calibrated uncertainty. Finally, Bayesian optimization, with ANP as a surrogate model, is utilized to find an optimal design for unseen traffic patterns through limited online simulations. Our experiment results show that our method outperforms state-of-the-art baselines on complex road networks in terms of the number of waiting vehicles. Surprisingly, the deployment of our method into a real-world traffic system was able to improve traffic throughput by 4.80\% compared to the original strategy.
comment: 12 pages, 7 figures, 10 tables
☆ On-the-fly Synthesis for LTL over Finite Traces: An Efficient Approach that Counts
We present an on-the-fly synthesis framework for Linear Temporal Logic over finite traces (LTLf) based on top-down deterministic automata construction. Existing approaches rely on constructing a complete Deterministic Finite Automaton (DFA) corresponding to the LTLf specification, a process with doubly exponential complexity relative to the formula size in the worst case. In this case, the synthesis procedure cannot be conducted until the entire DFA is constructed. This inefficiency is the main bottleneck of existing approaches. To address this challenge, we first present a method for converting LTLf into Transition-based DFA (TDFA) by directly leveraging LTLf semantics, incorporating intermediate results as direct components of the final automaton to enable parallelized synthesis and automata construction. We then explore the relationship between LTLf synthesis and TDFA games and subsequently develop an algorithm for performing LTLf synthesis using on-the-fly TDFA game solving. This algorithm traverses the state space in a global forward manner combined with a local backward method, along with the detection of strongly connected components. Moreover, we introduce two optimization techniques -- model-guided synthesis and state entailment -- to enhance the practical efficiency of our approach. Experimental results demonstrate that our on-the-fly approach achieves the best performance on the tested benchmarks and effectively complements existing tools and approaches.
comment: 32 pages, 3 figures, 3 tables
☆ Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis
Kolmogorov-Arnold Networks (KAN) has recently attracted significant attention as a promising alternative to traditional Multi-Layer Perceptrons (MLP). Despite their theoretical appeal, KAN require validation on large-scale benchmark datasets. Time series data, which has become increasingly prevalent in recent years, especially univariate time series are naturally suited for validating KAN. Therefore, we conducted a fair comparison among KAN, MLP, and mixed structures. The results indicate that KAN can achieve performance comparable to, or even slightly better than, MLP across 128 time series datasets. We also performed an ablation study on KAN, revealing that the output is primarily determined by the base component instead of b-spline function. Furthermore, we assessed the robustness of these models and found that KAN and the hybrid structure MLP\_KAN exhibit significant robustness advantages, attributed to their lower Lipschitz constants. This suggests that KAN and KAN layers hold strong potential to be robust models or to improve the adversarial robustness of other models.
comment: 14 pages, 8 figs
☆ LiPCoT: Linear Predictive Coding based Tokenizer for Self-supervised Learning of Time Series Data via Language Models
Language models have achieved remarkable success in various natural language processing tasks. However, their application to time series data, a crucial component in many domains, remains limited. This paper proposes LiPCoT (Linear Predictive Coding based Tokenizer for time series), a novel tokenizer that encodes time series data into a sequence of tokens, enabling self-supervised learning of time series using existing Language model architectures such as BERT. Unlike traditional time series tokenizers that rely heavily on CNN encoder for time series feature generation, LiPCoT employs stochastic modeling through linear predictive coding to create a latent space for time series providing a compact yet rich representation of the inherent stochastic nature of the data. Furthermore, LiPCoT is computationally efficient and can effectively handle time series data with varying sampling rates and lengths, overcoming common limitations of existing time series tokenizers. In this proof-of-concept work, we present the effectiveness of LiPCoT in classifying Parkinson's disease (PD) using an EEG dataset from 46 participants. In particular, we utilize LiPCoT to encode EEG data into a small vocabulary of tokens and then use BERT for self-supervised learning and the downstream task of PD classification. We benchmark our approach against several state-of-the-art CNN-based deep learning architectures for PD detection. Our results reveal that BERT models utilizing self-supervised learning outperformed the best-performing existing method by 7.1% in precision, 2.3% in recall, 5.5% in accuracy, 4% in AUC, and 5% in F1-score highlighting the potential for self-supervised learning even on small datasets. Our work will inform future foundational models for time series, particularly for self-supervised learning.
comment: 17 pages, 5 figures
☆ NL2OR: Solve Complex Operations Research Problems Using Natural Language Inputs
Operations research (OR) uses mathematical models to enhance decision-making, but developing these models requires expert knowledge and can be time-consuming. Automated mathematical programming (AMP) has emerged to simplify this process, but existing systems have limitations. This paper introduces a novel methodology that uses recent advances in Large Language Model (LLM) to create and edit OR solutions from non-expert user queries expressed using Natural Language. This reduces the need for domain expertise and the time to formulate a problem. The paper presents an end-to-end pipeline, named NL2OR, that generates solutions to OR problems from natural language input, and shares experimental results on several important OR problems.
☆ Ensemble architecture in polyp segmentation
In this research, we revisit the architecture of semantic segmentation and evaluate the models excelling in polyp segmentation. We introduce an integrated framework that harnesses the advantages of different models to attain an optimal outcome. More specifically, we fuse the learned features from convolutional and transformer models for prediction, and we view this approach as an ensemble technique to enhance model performance. Our experiments on polyp segmentation reveal that the proposed architecture surpasses other top models, exhibiting improved learning capacity and resilience. The code is available at https://github.com/HuangDLab/EnFormer.
☆ GRIF-DM: Generation of Rich Impression Fonts using Diffusion Models
Fonts are integral to creative endeavors, design processes, and artistic productions. The appropriate selection of a font can significantly enhance artwork and endow advertisements with a higher level of expressivity. Despite the availability of numerous diverse font designs online, traditional retrieval-based methods for font selection are increasingly being supplanted by generation-based approaches. These newer methods offer enhanced flexibility, catering to specific user preferences and capturing unique stylistic impressions. However, current impression font techniques based on Generative Adversarial Networks (GANs) necessitate the utilization of multiple auxiliary losses to provide guidance during generation. Furthermore, these methods commonly employ weighted summation for the fusion of impression-related keywords. This leads to generic vectors with the addition of more impression keywords, ultimately lacking in detail generation capacity. In this paper, we introduce a diffusion-based method, termed \ourmethod, to generate fonts that vividly embody specific impressions, utilizing an input consisting of a single letter and a set of descriptive impression keywords. The core innovation of \ourmethod lies in the development of dual cross-attention modules, which process the characteristics of the letters and impression keywords independently but synergistically, ensuring effective integration of both types of information. Our experimental results, conducted on the MyFonts dataset, affirm that this method is capable of producing realistic, vibrant, and high-fidelity fonts that are closely aligned with user specifications. This confirms the potential of our approach to revolutionize font generation by accommodating a broad spectrum of user-driven design requirements. Our code is publicly available at \url{https://github.com/leitro/GRIF-DM}.
comment: Accepted to ECAI2024
☆ Enhancing Autonomous Vehicle Perception in Adverse Weather through Image Augmentation during Semantic Segmentation Training
Robust perception is crucial in autonomous vehicle navigation and localization. Visual processing tasks, like semantic segmentation, should work in varying weather conditions and during different times of day. Semantic segmentation is where each pixel is assigned a class, which is useful for locating overall features (1). Training a segmentation model requires large amounts of data, and the labeling process for segmentation data is especially tedious. Additionally, many large datasets include only images taken in clear weather. This is a problem because training a model exclusively on clear weather data hinders performance in adverse weather conditions like fog or rain. We hypothesize that given a dataset of only clear days images, applying image augmentation (such as random rain, fog, and brightness) during training allows for domain adaptation to diverse weather conditions. We used CARLA, a 3D realistic autonomous vehicle simulator, to collect 1200 images in clear weather composed of 29 classes from 10 different towns (2). We also collected 1200 images of random weather effects. We trained encoder-decoder UNet models to perform semantic segmentation. Applying augmentations significantly improved segmentation under weathered night conditions (p < 0.001). However, models trained on weather data have significantly lower losses than those trained on augmented data in all conditions except for clear days. This shows there is room for improvement in the domain adaptation approach. Future work should test more types of augmentations and also use real-life images instead of CARLA. Ideally, the augmented model meets or exceeds the performance of the weather model.
☆ CON-FOLD -- Explainable Machine Learning with Confidence
FOLD-RM is an explainable machine learning classification algorithm that uses training data to create a set of classification rules. In this paper we introduce CON-FOLD which extends FOLD-RM in several ways. CON-FOLD assigns probability-based confidence scores to rules learned for a classification task. This allows users to know how confident they should be in a prediction made by the model. We present a confidence-based pruning algorithm that uses the unique structure of FOLD-RM rules to efficiently prune rules and prevent overfitting. Furthermore, CON-FOLD enables the user to provide pre-existing knowledge in the form of logic program rules that are either (fixed) background knowledge or (modifiable) initial rule candidates. The paper describes our method in detail and reports on practical experiments. We demonstrate the performance of the algorithm on benchmark datasets from the UCI Machine Learning Repository. For that, we introduce a new metric, Inverse Brier Score, to evaluate the accuracy of the produced confidence scores. Finally we apply this extension to a real world example that requires explainability: marking of student responses to a short answer question from the Australian Physics Olympiad.
☆ Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability
While many capabilities of language models (LMs) improve with increased training budget, the influence of scale on hallucinations is not yet fully understood. Hallucinations come in many forms, and there is no universally accepted definition. We thus focus on studying only those hallucinations where a correct answer appears verbatim in the training set. To fully control the training data content, we construct a knowledge graph (KG)-based dataset, and use it to train a set of increasingly large LMs. We find that for a fixed dataset, larger and longer-trained LMs hallucinate less. However, hallucinating on $\leq5$% of the training data requires an order of magnitude larger model, and thus an order of magnitude more compute, than Hoffmann et al. (2022) reported was optimal. Given this costliness, we study how hallucination detectors depend on scale. While we see detector size improves performance on fixed LM's outputs, we find an inverse relationship between the scale of the LM and the detectability of its hallucinations.
comment: Published at COLM 2024. 16 pages, 11 figures
☆ SER Evals: In-domain and Out-of-domain Benchmarking for Speech Emotion Recognition INTERSPEECH 2024
Speech emotion recognition (SER) has made significant strides with the advent of powerful self-supervised learning (SSL) models. However, the generalization of these models to diverse languages and emotional expressions remains a challenge. We propose a large-scale benchmark to evaluate the robustness and adaptability of state-of-the-art SER models in both in-domain and out-of-domain settings. Our benchmark includes a diverse set of multilingual datasets, focusing on less commonly used corpora to assess generalization to new data. We employ logit adjustment to account for varying class distributions and establish a single dataset cluster for systematic evaluation. Surprisingly, we find that the Whisper model, primarily designed for automatic speech recognition, outperforms dedicated SSL models in cross-lingual SER. Our results highlight the need for more robust and generalizable SER models, and our benchmark serves as a valuable resource to drive future research in this direction.
comment: Accepted at INTERSPEECH 2024
☆ A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites
Unit tests represent the most basic level of testing within the software testing lifecycle and are crucial to ensuring software correctness. Designing and creating unit tests is a costly and labor-intensive process that is ripe for automation. Recently, Large Language Models (LLMs) have been applied to various aspects of software development, including unit test generation. Although several empirical studies evaluating LLMs' capabilities in test code generation exist, they primarily focus on simple scenarios, such as the straightforward generation of unit tests for individual methods. These evaluations often involve independent and small-scale test units, providing a limited view of LLMs' performance in real-world software development scenarios. Moreover, previous studies do not approach the problem at a suitable scale for real-life applications. Generated unit tests are often evaluated via manual integration into the original projects, a process that limits the number of tests executed and reduces overall efficiency. To address these gaps, we have developed an approach for generating and evaluating more real-life complexity test suites. Our approach focuses on class-level test code generation and automates the entire process from test generation to test assessment. In this work, we present \textsc{AgoneTest}: an automated system for generating test suites for Java projects and a comprehensive and principled methodology for evaluating the generated test suites. Starting from a state-of-the-art dataset (i.e., \textsc{Methods2Test}), we built a new dataset for comparing human-written tests with those generated by LLMs. Our key contributions include a scalable automated software system, a new dataset, and a detailed methodology for evaluating test quality.
☆ Enhancing Equitable Access to AI in Housing and Homelessness System of Care through Federated Learning AAAI
The top priority of a Housing and Homelessness System of Care (HHSC) is to connect people experiencing homelessness to supportive housing. An HHSC typically consists of many agencies serving the same population. Information technology platforms differ in type and quality between agencies, so their data are usually isolated from one agency to another. Larger agencies may have sufficient data to train and test artificial intelligence (AI) tools but smaller agencies typically do not. To address this gap, we introduce a Federated Learning (FL) approach enabling all agencies to train a predictive model collaboratively without sharing their sensitive data. We demonstrate how FL can be used within an HHSC to provide all agencies equitable access to quality AI and further assist human decision-makers in the allocation of resources within HHSC. This is achieved while preserving the privacy of the people within the data by not sharing identifying information between agencies without their consent. Our experimental results using real-world HHSC data from Calgary, Alberta, demonstrate that our FL approach offers comparable performance with the idealized scenario of training the predictive model with data fully shared and linked between agencies.
comment: Accepted at the 2024 AAAI/ACM Conference on AI, Ethics, and Society (AIES)
☆ SustainDC -- Benchmarking for Sustainable Data Center Control NeurIPS 2024
Machine learning has driven an exponential increase in computational demand, leading to massive data centers that consume significant amounts of energy and contribute to climate change. This makes sustainable data center control a priority. In this paper, we introduce SustainDC, a set of Python environments for benchmarking multi-agent reinforcement learning (MARL) algorithms for data centers (DC). SustainDC supports custom DC configurations and tasks such as workload scheduling, cooling optimization, and auxiliary battery management, with multiple agents managing these operations while accounting for the effects of each other. We evaluate various MARL algorithms on SustainDC, showing their performance across diverse DC designs, locations, weather conditions, grid carbon intensity, and workload requirements. Our results highlight significant opportunities for improvement of data center operations using MARL algorithms. Given the increasing use of DC due to AI, SustainDC provides a crucial platform for the development and benchmarking of advanced algorithms essential for achieving sustainable computing and addressing other heterogeneous real-world challenges.
comment: Under review at Advances in Neural Information Processing Systems 2024 (NeurIPS 2024)
☆ ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model ACL 2024
In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
comment: 16 pages, ACL 2024 Findings
☆ An Efficient and Explanatory Image and Text Clustering System with Multimodal Autoencoder Architecture
We demonstrate the efficiencies and explanatory abilities of extensions to the common tools of Autoencoders and LLM interpreters, in the novel context of comparing different cultural approaches to the same international news event. We develop a new Convolutional-Recurrent Variational Autoencoder (CRVAE) model that extends the modalities of previous CVAE models, by using fully-connected latent layers to embed in parallel the CNN encodings of video frames, together with the LSTM encodings of their related text derived from audio. We incorporate the model within a larger system that includes frame-caption alignment, latent space vector clustering, and a novel LLM-based cluster interpreter. We measure, tune, and apply this system to the task of summarizing a video into three to five thematic clusters, with each theme described by ten LLM-produced phrases. We apply this system to two news topics, COVID-19 and the Winter Olympics, and five other topics are in progress.
☆ On learning capacities of Sugeno integrals with systems of fuzzy relational equations
In this article, we introduce a method for learning a capacity underlying a Sugeno integral according to training data based on systems of fuzzy relational equations. To the training data, we associate two systems of equations: a $\max-\min$ system and a $\min-\max$ system. By solving these two systems (in the case that they are consistent) using Sanchez's results, we show that we can directly obtain the extremal capacities representing the training data. By reducing the $\max-\min$ (resp. $\min-\max$) system of equations to subsets of criteria of cardinality less than or equal to $q$ (resp. of cardinality greater than or equal to $n-q$), where $n$ is the number of criteria, we give a sufficient condition for deducing, from its potential greatest solution (resp. its potential lowest solution), a $q$-maxitive (resp. $q$-minitive) capacity. Finally, if these two reduced systems of equations are inconsistent, we show how to obtain the greatest approximate $q$-maxitive capacity and the lowest approximate $q$-minitive capacity, using recent results to handle the inconsistency of systems of fuzzy relational equations.
☆ Enhancing Model Interpretability with Local Attribution over Global Exploration
In the field of artificial intelligence, AI models are frequently described as `black boxes' due to the obscurity of their internal mechanisms. It has ignited research interest on model interpretability, especially in attribution methods that offers precise explanations of model decisions. Current attribution algorithms typically evaluate the importance of each parameter by exploring the sample space. A large number of intermediate states are introduced during the exploration process, which may reach the model's Out-of-Distribution (OOD) space. Such intermediate states will impact the attribution results, making it challenging to grasp the relative importance of features. In this paper, we firstly define the local space and its relevant properties, and we propose the Local Attribution (LA) algorithm that leverages these properties. The LA algorithm comprises both targeted and untargeted exploration phases, which are designed to effectively generate intermediate states for attribution that thoroughly encompass the local space. Compared to the state-of-the-art attribution methods, our approach achieves an average improvement of 38.21\% in attribution effectiveness. Extensive ablation studies in our experiments also validate the significance of each component in our algorithm. Our code is available at: https://github.com/LMBTough/LA/
comment: Accepted by ACMMM 2024
Graph neural network surrogate for strategic transport planning
As the complexities of urban environments continue to grow, the modelling of transportation systems become increasingly challenging. This paper explores the application of advanced Graph Neural Network (GNN) architectures as surrogate models for strategic transport planning. Building upon a prior work that laid the foundation with graph convolution networks (GCN), our study delves into the comparative analysis of established GCN with the more expressive Graph Attention Network (GAT). Additionally, we propose a novel GAT variant (namely GATv3) to address over-smoothing issues in graph-based models. Our investigation also includes the exploration of a hybrid model combining both GCN and GAT architectures, aiming to investigate the performance of the mixture. The three models are applied to various experiments to understand their limits. We analyse hierarchical regression setups, combining classification and regression tasks, and introduce fine-grained classification with a proposal of a method to convert outputs to precise values. Results reveal the superior performance of the new GAT in classification tasks. To the best of the authors' knowledge, this is the first GAT model in literature to achieve larger depths. Surprisingly, the fine-grained classification task demonstrates the GCN's unexpected dominance with additional training data. This shows that synthetic data generators can increase the training data, without overfitting issues whilst improving model performance. In conclusion, this research advances GNN based surrogate modelling, providing insights for refining GNN architectures. The findings open avenues for investigating the potential of the newly proposed GAT architecture and the modelling setups for other transportation problems.
☆ Re-Thinking Process Mining in the AI-Based Agents Era
Large Language Models (LLMs) have emerged as powerful conversational interfaces, and their application in process mining (PM) tasks has shown promising results. However, state-of-the-art LLMs struggle with complex scenarios that demand advanced reasoning capabilities. In the literature, two primary approaches have been proposed for implementing PM using LLMs: providing textual insights based on a textual abstraction of the process mining artifact, and generating code executable on the original artifact. This paper proposes utilizing the AI-Based Agents Workflow (AgWf) paradigm to enhance the effectiveness of PM on LLMs. This approach allows for: i) the decomposition of complex tasks into simpler workflows, and ii) the integration of deterministic tools with the domain knowledge of LLMs. We examine various implementations of AgWf and the types of AI-based tasks involved. Additionally, we discuss the CrewAI implementation framework and present examples related to process mining.
☆ Operator Feature Neural Network for Symbolic Regression
Symbolic regression is a task aimed at identifying patterns in data and representing them through mathematical expressions, generally involving skeleton prediction and constant optimization. Many methods have achieved some success, however they treat variables and symbols merely as characters of natural language without considering their mathematical essence. This paper introduces the operator feature neural network (OF-Net) which employs operator representation for expressions and proposes an implicit feature encoding method for the intrinsic mathematical operational logic of operators. By substituting operator features for numeric loss, we can predict the combination of operators of target expressions. We evaluate the model on public datasets, and the results demonstrate that the model achieves superior recovery rates and high $R^2$ scores. With the discussion of the results, we analyze the merit and demerit of OF-Net and propose optimizing schemes.
comment: 12 pages
☆ Impact of Inaccurate Contamination Ratio on Robust Unsupervised Anomaly Detection NeurIPS 2024
Training data sets intended for unsupervised anomaly detection, typically presumed to be anomaly-free, often contain anomalies (or contamination), a challenge that significantly undermines model performance. Most robust unsupervised anomaly detection models rely on contamination ratio information to tackle contamination. However, in reality, contamination ratio may be inaccurate. We investigate on the impact of inaccurate contamination ratio information in robust unsupervised anomaly detection. We verify whether they are resilient to misinformed contamination ratios. Our investigation on 6 benchmark data sets reveals that such models are not adversely affected by exposure to misinformation. In fact, they can exhibit improved performance when provided with such inaccurate contamination ratios.
comment: This is an accepted extended abstract at Black in AI Workshop which will be co-located with NeurIPS 2024 in Canada
☆ CodeMirage: Hallucinations in Code Generated by Large Language Models IJCAI 2024
Large Language Models (LLMs) have shown promising potentials in program generation and no-code automation. However, LLMs are prone to generate hallucinations, i.e., they generate text which sounds plausible but is incorrect. Although there has been a recent surge in research on LLM hallucinations for text generation, similar hallucination phenomenon can happen in code generation. Sometimes the generated code can have syntactical or logical errors as well as more advanced issues like security vulnerabilities, memory leaks, etc. Given the wide adaptation of LLMs to enhance efficiency in code generation and development in general, it becomes imperative to investigate hallucinations in code generation. To the best of our knowledge, this is the first attempt at studying hallucinations in the code generated by LLMs. We start by introducing the code hallucination definition and a comprehensive taxonomy of code hallucination types. We propose the first benchmark CodeMirage dataset for code hallucinations. The benchmark contains 1,137 GPT-3.5 generated hallucinated code snippets for Python programming problems from two base datasets - HumanEval and MBPP. We then propose the methodology for code hallucination detection and experiment with open source LLMs such as CodeLLaMA as well as OpenAI's GPT-3.5 and GPT-4 models using one-shot prompt. We find that GPT-4 performs the best on HumanEval dataset and gives comparable results to the fine-tuned CodeBERT baseline on MBPP dataset. Towards the end, we discuss various mitigation strategies for code hallucinations and conclude our work.
comment: Accepted at AutoMates @ IJCAI 2024
♻ ☆ Automatic Feature Recognition and Dimensional Attributes Extraction From CAD Models for Hybrid Additive-Subtractive Manufacturing
The integration of Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP), and Computer-Aided Manufacturing (CAM) plays a crucial role in modern manufacturing, facilitating seamless transitions from digital designs to physical products. However, a significant challenge within this integration is the Automatic Feature Recognition (AFR) of CAD models, especially in the context of hybrid manufacturing that combines subtractive and additive manufacturing processes. Traditional AFR methods, focused mainly on the identification of subtractive (machined) features including holes, fillets, chamfers, pockets, and slots, fail to recognize features pertinent to additive manufacturing. Furthermore, the traditional methods fall short in accurately extracting geometric dimensions and orientations, which are also key factors for effective manufacturing process planning. This paper presents a novel approach for creating a synthetic CAD dataset that encompasses features relevant to both additive and subtractive machining through Python Open Cascade. The Hierarchical Graph Convolutional Neural Network (HGCNN) model is implemented to accurately identify the composite additive-subtractive features within the synthetic CAD dataset. The key novelty and contribution of the proposed methodology lie in its ability to recognize a wide range of manufacturing features, and precisely extracting their dimensions, orientations, and stock sizes. The proposed model demonstrates remarkable feature recognition accuracy exceeding 97% and a dimension extraction accuracy of 100% for identified features. Therefore, the proposed methodology enhances the integration of CAD, CAPP, and CAM within hybrid manufacturing by providing precise feature recognition and dimension extraction. It facilitates improved manufacturing process planning, by enabling more informed decision-making.
comment: 10 pages, 12 figures. This paper has been accepted for presentation at the ASME IDETC-CIE 2024 conference
♻ ☆ Advancing Interactive Explainable AI via Belief Change Theory KR 2024
As AI models become ever more complex and intertwined in humans' daily lives, greater levels of interactivity of explainable AI (XAI) methods are needed. In this paper, we propose the use of belief change theory as a formal foundation for operators that model the incorporation of new information, i.e. user feedback in interactive XAI, to logical representations of data-driven classifiers. We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations in a principled manner, providing warranted behaviour and favouring transparency and accountability of such interactions. Concretely, we first define a novel, logic-based formalism to represent explanatory information shared between humans and machines. We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated. Finally, we analyse a core set of belief change postulates, discussing their suitability for our real world settings and pointing to particular challenges that may require the relaxation or reinterpretation of some of the theoretical assumptions underlying existing operators.
comment: 9 pages. To be published at KR 2024
♻ ☆ Amuro & Char: Analyzing the Relationship between Pre-Training and Fine-Tuning of Large Language Models
The development of large language models leads to the formation of a pre-train-then-align paradigm, in which the model is typically pre-trained on a large text corpus and undergoes a tuning stage to align the model with human preference or downstream tasks. In this work, we investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints. Our results on 18 datasets suggest that i) continual pre-training improves the model in a latent way that unveils after fine-tuning; ii) with extra fine-tuning, the datasets that the model does not demonstrate capability gain much more than those that the model performs well during the pre-training stage; iii) although model benefits significantly through supervised fine-tuning, it may forget previously known domain knowledge and the tasks that are not seen during fine-tuning; iv) the model resembles high sensitivity to evaluation prompts after supervised fine-tuning, but this sensitivity can be alleviated by more pre-training.
♻ ☆ Decentralized Health Intelligence Network (DHIN)
Decentralized Health Intelligence Network (DHIN) is a theoretical framework addressing significant challenges of health data sovereignty and AI utilization in healthcare caused by data fragmentation across providers and institutions. It establishes a sovereign architecture for healthcare provision as a prerequisite to a sovereign health network, then facilitates effective AI utilization by overcoming barriers to accessing diverse medical data sources. This comprehensive framework leverages: 1) self-sovereign identity architecture coupled with a personal health record (PHR) as a prerequisite for health data sovereignty; 2) a scalable federated learning (FL) protocol implemented on a public blockchain for decentralized AI training in healthcare, where health data remains with participants and only model parameter updates are shared; and 3) a scalable, trustless rewards mechanism to incentivize participation and ensure fair reward distribution. This framework ensures that no entity can prevent or control access to training on health data offered by participants or determine financial benefits, as these processes operate on a public blockchain with an immutable record and without a third party. It supports effective AI training in healthcare, allowing patients to maintain control over their health data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial healthcare algorithms. Patients receive rewards into their digital wallets as an incentive to opt-in to the FL protocol, with a long-term roadmap to funding decentralized insurance solutions. This approach introduces a novel, self-financed healthcare model that adapts to individual needs, complements existing systems, and redefines universal coverage. It highlights the potential to transform healthcare data management and AI utilization while empowering patients.
comment: 17 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2407.02461
♻ ☆ RepoHyper: Search-Expand-Refine on Semantic Graphs for Repository-Level Code Completion
Code Large Language Models (CodeLLMs) have demonstrated impressive proficiency in code completion tasks. However, they often fall short of fully understanding the extensive context of a project repository, such as the intricacies of relevant files and class hierarchies, which can result in less precise completions. To overcome these limitations, we present \tool, a multifaceted framework designed to address the complex challenges associated with repository-level code completion. Central to RepoHYPER is the {\em Repo-level Semantic Graph} (RSG), a novel semantic graph structure that encapsulates the vast context of code repositories. Furthermore, RepoHyper leverages Expand and Refine retrieval method, including a graph expansion and a link prediction algorithm applied to the RSG, enabling the effective retrieval and prioritization of relevant code snippets. Our evaluations show that \tool markedly outperforms existing techniques in repository-level code completion, showcasing enhanced accuracy across various datasets when compared to several strong baselines. Our implementation of RepoHYPER can be found at https://github.com/FSoft-AI4Code/RepoHyper.
♻ ☆ Robust online reconstruction of continuous-time signals from a lean spike train ensemble code
Sensory stimuli in animals are encoded into spike trains by neurons, offering advantages such as sparsity, energy efficiency, and high temporal resolution. This paper presents a signal processing framework that deterministically encodes continuous-time signals into biologically feasible spike trains, and addresses the questions about representable signal classes and reconstruction bounds. The framework considers encoding of a signal through spike trains generated by an ensemble of neurons using a convolve-then-threshold mechanism with various convolution kernels. A closed-form solution to the inverse problem, from spike trains to signal reconstruction, is derived in the Hilbert space of shifted kernel functions, ensuring sparse representation of a generalized Finite Rate of Innovation (FRI) class of signals. Additionally, inspired by real-time processing in biological systems, an efficient iterative version of the optimal reconstruction is formulated that considers only a finite window of past spikes, ensuring robustness of the technique to ill-conditioned encoding; convergence guarantees of the windowed reconstruction to the optimal solution are then provided. Experiments on a large audio dataset demonstrate excellent reconstruction accuracy at spike rates as low as one-fifth of the Nyquist rate, while showing clear competitive advantage in comparison to state-of-the-art sparse coding techniques in the low spike rate regime.
comment: 22 pages, including a 9-page appendix, 8 figures. A GitHub link to the project implementation is embedded in the paper
♻ ☆ Unleashing Artificial Cognition: Integrating Multiple AI Systems
In this study, we present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence. Our system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations. Leveraging a vector database to achieve retrievable answer generation, our OpenSI AI system elucidates its decision-making process, bridging the gap between raw computation and human-like understanding. Our choice of Chess as the demonstration environment underscores the versatility of our approach. Beyond Chess, our system holds promise for diverse applications, from medical diagnostics to financial forecasting.
♻ ☆ Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience
End-to-end training with global optimization have popularized graph neural networks (GNNs) for node classification, yet inadvertently introduced vulnerabilities to adversarial edge-perturbing attacks. Adversaries can exploit the inherent opened interfaces of GNNs' input and output, perturbing critical edges and thus manipulating the classification results. Current defenses, due to their persistent utilization of global-optimization-based end-to-end training schemes, inherently encapsulate the vulnerabilities of GNNs. This is specifically evidenced in their inability to defend against targeted secondary attacks. In this paper, we propose the Graph Agent Network (GAgN) to address the aforementioned vulnerabilities of GNNs. GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent. Through the decentralized interactions between agents, they can learn to infer global perceptions to perform tasks including inferring embeddings, degrees and neighbor relationships for given nodes. This empowers nodes to filtering adversarial edges while carrying out classification tasks. Furthermore, agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks. We prove that single-hidden-layer multilayer perceptrons (MLPs) are theoretically sufficient to achieve these functionalities. Experimental results show that GAgN effectively implements all its intended capabilities and, compared to state-of-the-art defenses, achieves optimal classification accuracy on the perturbed datasets.
♻ ☆ Agent Instructs Large Language Models to be General Zero-Shot Reasoners ICML 2024
We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b (13.3%), Llama-2-70b-chat (23.2%), and GPT-3.5 Turbo (17.0%). Compared to zero-shot chain of thought, our improvement in reasoning is striking, with an average increase of 10.5%. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo by 10.2%.
comment: Accepted to ICML 2024
♻ ☆ NIGHT -- Non-Line-of-Sight Imaging from Indirect Time of Flight Data ECCV
The acquisition of objects outside the Line-of-Sight of cameras is a very intriguing but also extremely challenging research topic. Recent works showed the feasibility of this idea exploiting transient imaging data produced by custom direct Time of Flight sensors. In this paper, for the first time, we tackle this problem using only data from an off-the-shelf indirect Time of Flight sensor without any further hardware requirement. We introduced a Deep Learning model able to re-frame the surfaces where light bounces happen as a virtual mirror. This modeling makes the task easier to handle and also facilitates the construction of annotated training data. From the obtained data it is possible to retrieve the depth information of the hidden scene. We also provide a first-in-its-kind synthetic dataset for the task and demonstrate the feasibility of the proposed idea over it.
comment: Submitted to MELEX 24 (ECCV workshop), 17 pages, 6 figures, 2 tables
♻ ☆ Fair Enough? A map of the current limitations of the requirements to have fair algorithms
In recent years, the increase in the usage and efficiency of Artificial Intelligence and, more in general, of Automated Decision-Making systems has brought with it an increasing and welcome awareness of the risks associated with such systems. One of such risks is that of perpetuating or even amplifying bias and unjust disparities present in the data from which many of these systems learn to adjust and optimise their decisions. This awareness has on the one hand encouraged several scientific communities to come up with more and more appropriate ways and methods to assess, quantify, and possibly mitigate such biases and disparities. On the other hand, it has prompted more and more layers of society, including policy makers, to call for fair algorithms. We believe that while many excellent and multidisciplinary research is currently being conducted, what is still fundamentally missing is the awareness that having fair algorithms is per se a nearly meaningless requirement that needs to be complemented with many additional social choices to become actionable. Namely, there is a hiatus between what the society is demanding from Automated Decision-Making systems, and what this demand actually means in real-world scenarios. In this work, we outline the key features of such a hiatus and pinpoint a set of crucial open points that we as a society must address in order to give a concrete meaning to the increasing demand of fairness in Automated Decision-Making systems.
comment: 20 pages, 2 figures, 2 tables. V2: added reference, update info on AI Act. V3: changed structure of open points, update info on AI Act and other legislation
♻ ☆ Value-Based Rationales Improve Social Experience: A Multiagent Simulation Study
We propose Exanna, a framework to realize agents that incorporate values in decision making. An Exannaagent considers the values of itself and others when providing rationales for its actions and evaluating the rationales provided by others. Via multiagent simulation, we demonstrate that considering values in decision making and producing rationales, especially for norm-deviating actions, leads to (1) higher conflict resolution, (2) better social experience, (3) higher privacy, and (4) higher flexibility.
comment: 13 pages, 13 figures, 13 tables (and supplementary material with reproducibility and additional results), accepted at ECAI 2024
♻ ☆ CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning BMVC 2024
With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, fine-tuning large pre-trained models has recently become a prevalent strategy in Continual Learning. This has led to the development of numerous prompting strategies to adapt transformer-based models without incurring catastrophic forgetting. However, these strategies often compromise the original zero-shot capabilities of the pre-trained CLIP model and struggle to adapt to domains that significantly deviate from the pre-training data. In this work, we propose Continual Generative training for Incremental prompt-Learning, a simple and novel approach to mitigate forgetting while adapting CLIP. Briefly, we employ Variational Autoencoders (VAEs) to learn class-conditioned distributions within the embedding space of the visual encoder. We then exploit these distributions to sample new synthetic visual embeddings and train the corresponding class-specific textual prompts during subsequent tasks. Through extensive experiments on different domains, we show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities, evaluated using a novel metric tailored for CL scenarios. Notably, further analysis reveals that our approach can bridge the gap with joint prompt tuning. The codebase is available at https://github.com/aimagelab/mammoth.
comment: 15 pages, 1 figure. Accepted at the The 35th British Machine Vision Conference 2024 (BMVC 2024), Glasgow, UK
♻ ☆ Natural Language to Verilog: Design of a Recurrent Spiking Neural Network using Large Language Models and ChatGPT
This paper investigates the use of Large Language Models (LLMs) for automating the generation of hardware description code, aiming to explore their potential in supporting and enhancing the development of efficient neuromorphic computing architectures. Building on our prior work, we employ OpenAI's ChatGPT4 and natural language prompts to synthesize a RTL Verilog module of a programmable recurrent spiking neural network, while also generating test benches to assess the system's correctness. The resultant design was validated in three case studies, the exclusive OR,the IRIS flower classification and the MNIST hand-written digit classification, achieving accuracies of up to 96.6%. To verify its synthesizability and implementability, the design was prototyped on a field-programmable gate array and implemented on SkyWater 130 nm technology by using an open-source electronic design automation flow. Additionally, we have submitted it to Tiny Tapeout 6 chip fabrication program to further evaluate the system on-chip performance in the future.
comment: This paper was presented at the IEEE/ACM International Conference on Neuromorphic Systems (ICONS), July 30-Aug 2, 2024, Arlington, VA, USA
♻ ☆ SAT Encoding of Partial Ordering Models for Graph Coloring Problems
In this paper, we suggest new SAT encodings of the partial-ordering based ILP model for the graph coloring problem (GCP) and the bandwidth coloring problem (BCP). The GCP asks for the minimum number of colors that can be assigned to the vertices of a given graph such that each two adjacent vertices get different colors. The BCP is a generalization, where each edge has a weight that enforces a minimal "distance" between the assigned colors, and the goal is to minimize the "largest" color used. For the widely studied GCP, we experimentally compare our new SAT encoding to the state-of-the-art approaches on the DIMACS benchmark set. Our evaluation confirms that this SAT encoding is effective for sparse graphs and even outperforms the state-of-the-art on some DIMACS instances. For the BCP, our theoretical analysis shows that the partial-ordering based SAT and ILP formulations have an asymptotically smaller size than that of the classical assignment-based model. Our practical evaluation confirms not only a dominance compared to the assignment-based encodings but also to the state-of-the-art approaches on a set of benchmark instances. Up to our knowledge, we have solved several open instances of the BCP from the literature for the first time.
♻ ☆ MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning
We present the MEEG dataset, a multi-modal collection of music-induced electroencephalogram (EEG) recordings designed to capture emotional responses to various musical stimuli across different valence and arousal levels. This public dataset facilitates an in-depth examination of brainwave patterns within musical contexts, providing a robust foundation for studying brain network topology during emotional processing. Leveraging the MEEG dataset, we introduce the Attention-based Temporal Learner with Dynamic Graph Neural Network (AT-DGNN), a novel framework for EEG-based emotion recognition. This model combines an attention mechanism with a dynamic graph neural network (DGNN) to capture intricate EEG dynamics. The AT-DGNN achieves state-of-the-art (SOTA) performance with an accuracy of 83.74% in arousal recognition and 86.01% in valence recognition, outperforming existing SOTA methods. Comparative analysis with traditional datasets, such as DEAP, further validates the model's effectiveness and underscores the potency of music as an emotional stimulus. This study advances graph-based learning methodology in brain-computer interfaces (BCI), significantly improving the accuracy of EEG-based emotion recognition. The MEEG dataset and source code are publicly available at https://github.com/xmh1011/AT-DGNN.
♻ ☆ $\texttt{COSMIC}$: Mutual Information for Task-Agnostic Summarization Evaluation ACL 2024
Assessing the quality of summarizers poses significant challenges. In response, we propose a novel task-oriented evaluation approach that assesses summarizers based on their capacity to produce summaries that are useful for downstream tasks, while preserving task outcomes. We theoretically establish a direct relationship between the resulting error probability of these tasks and the mutual information between source texts and generated summaries. We introduce $\texttt{COSMIC}$ as a practical implementation of this metric, demonstrating its strong correlation with human judgment-based metrics and its effectiveness in predicting downstream task performance. Comparative analyses against established metrics like $\texttt{BERTScore}$ and $\texttt{ROUGE}$ highlight the competitive performance of $\texttt{COSMIC}$.
comment: ACL 2024
♻ ☆ LLM Voting: Human Choices and AI Collective Decision Making AAAI
This paper investigates the voting behaviors of Large Language Models (LLMs), specifically GPT-4 and LLaMA-2, their biases, and how they align with human voting patterns. Our methodology involved using a dataset from a human voting experiment to establish a baseline for human preferences and conducting a corresponding experiment with LLM agents. We observed that the choice of voting methods and the presentation order influenced LLM voting outcomes. We found that varying the persona can reduce some of these biases and enhance alignment with human choices. While the Chain-of-Thought approach did not improve prediction accuracy, it has potential for AI explainability in the voting process. We also identified a trade-off between preference diversity and alignment accuracy in LLMs, influenced by different temperature settings. Our findings indicate that LLMs may lead to less diverse collective outcomes and biased assumptions when used in voting scenarios, emphasizing the need for cautious integration of LLMs into democratic processes.
comment: Accepted in AAAI Conference on AI, Ethics, and Society (AIES)
♻ ☆ WavLLM: Towards Robust and Adaptive Speech Large Language Model
The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at \url{aka.ms/wavllm}.
♻ ☆ ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention for their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear scalability and fast processing of long sequences. We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning while also trying various visual encoders and Mamba-2 model variants. Our extensive experiments in various multimodal benchmark tests demonstrate the competitive performance of ML-Mamba and highlight the potential of state space models in multimodal tasks. The experimental results show that: (1) we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning. We propose a novel multimodal connector called the Mamba-2 Scan Connector (MSC), which enhances representational capabilities. (2) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling while faster inference speed; (3) Compared to multimodal models utilizing Mamba-1, the Mamba-2-based ML-Mamba exhibits superior inference performance and effectiveness.
comment: arXiv admin note: text overlap with arXiv:2403.13600, arXiv:2406.07537 by other authors
♻ ☆ Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection
The neonatal period is the most vulnerable time for the development of seizures. Seizures in the immature brain lead to detrimental consequences, therefore require early diagnosis. The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring; which involves recording multi-channel electroencephalogram (EEG) alongside real-time video monitoring within a neonatal intensive care unit (NICU). However, video-EEG monitoring technology requires clinical expertise and is often limited to technologically advanced and resourceful settings. Cost-effective new techniques could help the medical fraternity make an accurate diagnosis and advocate treatment without delay. In this work, a novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed, which employs convolutional nets, graph attention layers, and fully connected layers. Beyond its ability to detect seizures in real-time with a reduced montage, this model offers the unique advantage of real-time interpretability. By evaluating the performance on the Zenodo dataset with 10-fold cross-validation, the presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
comment: Paper is accepted to IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2024. Final Version
♻ ☆ BlockFUL: Enabling Unlearning in Blockchained Federated Learning
Unlearning in Federated Learning (FL) presents significant challenges, as models grow and evolve with complex inheritance relationships. This complexity is amplified when blockchain is employed to ensure the integrity and traceability of FL, where the need to edit multiple interlinked blockchain records and update all inherited models complicates the process.In this paper, we introduce Blockchained Federated Unlearning (BlockFUL), a novel framework with a dual-chain structure comprising a live chain and an archive chain for enabling unlearning capabilities within Blockchained FL. BlockFUL introduces two new unlearning paradigms, i.e., parallel and sequential paradigms, which can be effectively implemented through gradient-ascent-based and re-training-based unlearning methods. These methods enhance the unlearning process across multiple inherited models by enabling efficient consensus operations and reducing computational costs. Our extensive experiments validate that these methods effectively reduce data dependency and operational overhead, thereby boosting the overall performance of unlearning inherited models within BlockFUL on CIFAR-10 and Fashion-MNIST datasets using AlexNet, ResNet18, and MobileNetV2 models.
♻ ☆ BioRAG: A RAG-LLM Framework for Biological Question Reasoning
The question-answering system for Life science research, which is characterized by the rapid pace of discovery, evolving insights, and complex interactions among knowledge entities, presents unique challenges in maintaining a comprehensive knowledge warehouse and accurate information retrieval. To address these issues, we introduce BioRAG, a novel Retrieval-Augmented Generation (RAG) with the Large Language Models (LLMs) framework. Our approach starts with parsing, indexing, and segmenting an extensive collection of 22 million scientific papers as the basic knowledge, followed by training a specialized embedding model tailored to this domain. Additionally, we enhance the vector retrieval process by incorporating a domain-specific knowledge hierarchy, which aids in modeling the intricate interrelationships among each query and context. For queries requiring the most current information, BioRAG deconstructs the question and employs an iterative retrieval process incorporated with the search engine for step-by-step reasoning. Rigorous experiments have demonstrated that our model outperforms fine-tuned LLM, LLM with search engines, and other scientific RAG frameworks across multiple life science question-answering tasks.
comment: 12 pages, 7 figures
♻ ☆ Joint Learning of Emotions in Music and Generalized Sounds
In this study, we aim to determine if generalized sounds and music can share a common emotional space, improving predictions of emotion in terms of arousal and valence. We propose the use of multiple datasets as a multi-domain learning technique. Our approach involves creating a common space encompassing features that characterize both generalized sounds and music, as they can evoke emotions in a similar manner. To achieve this, we utilized two publicly available datasets, namely IADS-E and PMEmo, following a standardized experimental protocol. We employed a wide variety of features that capture diverse aspects of the audio structure including key parameters of spectrum, energy, and voicing. Subsequently, we performed joint learning on the common feature space, leveraging heterogeneous model architectures. Interestingly, this synergistic scheme outperforms the state-of-the-art in both sound and music emotion prediction. The code enabling full replication of the presented experimental pipeline is available at https://github.com/LIMUNIMI/MusicSoundEmotions.
comment: Accepted at Audio Mostly 2024, Milan
♻ ☆ Interaction as Explanation: A User Interaction-based Method for Explaining Image Classification Models IJCAI 2024
In computer vision, explainable AI (xAI) methods seek to mitigate the 'black-box' problem by making the decision-making process of deep learning models more interpretable and transparent. Traditional xAI methods concentrate on visualizing input features that influence model predictions, providing insights primarily suited for experts. In this work, we present an interaction-based xAI method that enhances user comprehension of image classification models through their interaction. Thus, we developed a web-based prototype allowing users to modify images via painting and erasing, thereby observing changes in classification results. Our approach enables users to discern critical features influencing the model's decision-making process, aligning their mental models with the model's logic. Experiments conducted with five images demonstrate the potential of the method to reveal feature importance through user interaction. Our work contributes a novel perspective to xAI by centering on end-user engagement and understanding, paving the way for more intuitive and accessible explainability in AI systems.
comment: IJCAI 2024 (International Joint Conference on Artificial Intelligence 2024) Workshop on Explainable Artificial Intelligence (XAI)
♻ ☆ ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks
Although Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes via various message-passing mechanisms, the performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data. As a prominent solution, Graph Augmentation Learning (GAL) has recently received increasing attention. Among prior GAL approaches, edge-dropping methods that randomly remove edges from a graph during training are effective techniques to improve the robustness of GNNs. However, randomly dropping edges often results in bypassing critical edges, consequently weakening the effectiveness of message passing. In this paper, we propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges, which can be flexibly incorporated into diverse GNN backbones. Employing an adversarial training framework, the edge predictor utilizes the line graph transformed from the original graph to estimate the edges to be dropped, which improves the interpretability of the edge-dropping method. The proposed ADEdgeDrop is optimized alternately by stochastic gradient descent and projected gradient descent. Comprehensive experiments on six graph benchmark datasets demonstrate that the proposed ADEdgeDrop outperforms state-of-the-art baselines across various GNN backbones, demonstrating improved generalization and robustness.
♻ ☆ AutoCLIP: Auto-tuning Zero-Shot Classifiers for Vision-Language Models
Classifiers built upon vision-language models such as CLIP have shown remarkable zero-shot performance across a broad range of image classification tasks. Prior work has studied different ways of automatically creating descriptor sets for every class based on prompt templates, ranging from manually engineered templates over templates obtained from a large language model to templates built from random words and characters. Up until now, deriving zero-shot classifiers from the respective encoded class descriptors has remained nearly unchanged, i.e., classify to the class that maximizes cosine similarity between its averaged encoded class descriptors and the image encoding. However, weighing all class descriptors equally can be suboptimal when certain descriptors match visual clues on a given image better than others. In this work, we propose AutoCLIP, a method for auto-tuning zero-shot classifiers. AutoCLIP tunes per-image weights to each prompt template at inference time, based on statistics of class descriptor-image similarities. AutoCLIP is fully unsupervised, has only a minor additional computation overhead, and can be easily implemented in few lines of code. We show that AutoCLIP outperforms baselines across a broad range of vision-language models, datasets, and prompt templates consistently and by up to 3 percent point accuracy.
comment: accepted at TMLR, Camera Ready Version
♻ ☆ A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
♻ ☆ GHQ: Grouped Hybrid Q Learning for Heterogeneous Cooperative Multi-agent Reinforcement Learning
Previous deep multi-agent reinforcement learning (MARL) algorithms have achieved impressive results, typically in homogeneous scenarios. However, heterogeneous scenarios are also very common and usually harder to solve. In this paper, we mainly discuss cooperative heterogeneous MARL problems in Starcraft Multi-Agent Challenges (SMAC) environment. We firstly define and describe the heterogeneous problems in SMAC. In order to comprehensively reveal and study the problem, we make new maps added to the original SMAC maps. We find that baseline algorithms fail to perform well in those heterogeneous maps. To address this issue, we propose the Grouped Individual-Global-Max Consistency (GIGM) and a novel MARL algorithm, Grouped Hybrid Q Learning (GHQ). GHQ separates agents into several groups and keeps individual parameters for each group, along with a novel hybrid structure for factorization. To enhance coordination between groups, we maximize the Inter-group Mutual Information (IGMI) between groups' trajectories. Experiments on original and new heterogeneous maps show the fabulous performance of GHQ compared to other state-of-the-art algorithms.
♻ ☆ A Survey of Fragile Model Watermarking
Model fragile watermarking, inspired by both the field of adversarial attacks on neural networks and traditional multimedia fragile watermarking, has gradually emerged as a potent tool for detecting tampering, and has witnessed rapid development in recent years. Unlike robust watermarks, which are widely used for identifying model copyrights, fragile watermarks for models are designed to identify whether models have been subjected to unexpected alterations such as backdoors, poisoning, compression, among others. These alterations can pose unknown risks to model users, such as misidentifying stop signs as speed limit signs in classic autonomous driving scenarios. This paper provides an overview of the relevant work in the field of model fragile watermarking since its inception, categorizing them and revealing the developmental trajectory of the field, thus offering a comprehensive survey for future endeavors in model fragile watermarking.
comment: There will be more revisions to the wording and image additions, and we hope to withdraw the previous version
♻ ☆ MM-GEF: Multi-modal representation meet collaborative filtering
In modern e-commerce, item content features in various modalities offer accurate yet comprehensive information to recommender systems. The majority of previous work either focuses on learning effective item representation during modelling user-item interactions, or exploring item-item relationships by analysing multi-modal features. Those methods, however, fail to incorporate the collaborative item-user-item relationships into the multi-modal feature-based item structure. In this work, we propose a graph-based item structure enhancement method MM-GEF: Multi-Modal recommendation with Graph Early-Fusion, which effectively combines the latent item structure underlying multi-modal contents with the collaborative signals. Instead of processing the content feature in different modalities separately, we show that the early-fusion of multi-modal features provides significant improvement. MM-GEF learns refined item representations by injecting structural information obtained from both multi-modal and collaborative signals. Through extensive experiments on four publicly available datasets, we demonstrate systematical improvements of our method over state-of-the-art multi-modal recommendation methods.
♻ ☆ ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.
♻ ☆ AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation
Deep neural networks are vulnerable to adversarial examples. Adversarial training (AT) is an effective defense against adversarial examples. However, AT is prone to overfitting which degrades robustness substantially. Recently, data augmentation (DA) was shown to be effective in mitigating robust overfitting if appropriately designed and optimized for AT. This work proposes a new method to automatically learn online, instance-wise, DA policies to improve robust generalization for AT. This is the first automated DA method specific for robustness. A novel policy learning objective, consisting of Vulnerability, Affinity and Diversity, is proposed and shown to be sufficiently effective and efficient to be practical for automatic DA generation during AT. Importantly, our method dramatically reduces the cost of policy search from the 5000 hours of AutoAugment and the 412 hours of IDBH to 9 hours, making automated DA more practical to use for adversarial robustness. This allows our method to efficiently explore a large search space for a more effective DA policy and evolve the policy as training progresses. Empirically, our method is shown to outperform all competitive DA methods across various model architectures and datasets. Our DA policy reinforced vanilla AT to surpass several state-of-the-art AT methods regarding both accuracy and robustness. It can also be combined with those advanced AT methods to further boost robustness. Code and pre-trained models are available at https://github.com/TreeLLi/AROID.
comment: published at the IJCV in press
♻ ☆ SentenceVAE: Enable Next-sentence Prediction for Large Language Models with Faster Speed, Higher Accuracy and Longer Context
Current large language models (LLMs) primarily utilize next-token prediction method for inference, which significantly impedes their processing speed. In this paper, we introduce a novel inference methodology termed next-sentence prediction, aiming at enhancing the inference efficiency of LLMs. We present Sentence Variational Autoencoder (SentenceVAE), which includes a Sentence Encoder to compress multiple tokens in a sentence into a single token, and a Sentence Decoder to reconstruct it. By integrating SentenceVAE into the input and output layers of LLMs, we develop Sentence-level LLMs (SLLMs) that employ a sentence-by-sentence inference method. In addition, the SentenceVAE module of SLLMs can maintain the integrity of the original semantic content by segmenting the context into sentences, thereby improving accuracy while boosting inference speed. Moreover, compared to previous LLMs, SLLMs process fewer tokens over equivalent context length, significantly reducing memory demands for self-attention computation and facilitating the handling of longer context. Extensive experiments on Wanjuan dataset have revealed that the proposed method can accelerate inference speed by 204~365%, reduce perplexity (PPL) to 46~75% of its original metric, and decrease memory overhead by 86~91% for the equivalent context length, compared to previous token-by-token methods.
comment: update the article
♻ ☆ AI Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation ISSTA'24
Artificial Intelligence (AI) models have emerged as another important audience for programming languages alongside humans and machines, as we enter the era of large language models (LLMs). LLMs can now perform well in coding competitions and even write programs like developers to solve various tasks, including mathematical problems. However, the grammar and layout of current programs are designed to cater the needs of human developers -- with many grammar tokens and formatting tokens being used to make the code easier for humans to read. While this is helpful, such a design adds unnecessary computational work for LLMs, as each token they either use or produce consumes computational resources. To improve inference efficiency and reduce computational costs, we propose the concept of AI-oriented grammar. This aims to represent code in a way that better suits the working mechanism of AI models. Code written with AI-oriented grammar discards formats and uses a minimum number of tokens to convey code semantics effectively. To demonstrate the feasibility of this concept, we explore and implement the first AI-oriented grammar for Python, named SimPy. SimPy is crafted by revising the original Python grammar through a series of heuristic rules. Programs written in SimPy maintain identical AST structures to those in standard Python. This allows for not only execution via a modified AST parser, but also seamless transformation between programs written in Python and SimPy, enabling human developers and LLMs to use Python and SimPy, respectively, when they need to collaborate. In the experiments, compared with Python, SimPy enables a reduction in token usage by 13.5% and 10.4% for CodeLlama and GPT-4, respectively, when completing the same set of code-related tasks. Additionally, these models can maintain or even improve their performance when using SimPy instead of Python for these tasks.
comment: Accepted by ISSTA'24
♻ ☆ Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning
Understanding the contents of multimodal documents is essential to accurately extract relevant evidence and use it for reasoning. Existing document understanding models tend to generate answers with a single word or phrase directly, ignoring the source document's evidence and lacking interpretability. In this work, we address the lack of step-wise capabilities through data augmentation and extension. Specifically, We use Multi-modal Large Language Models (MLLMs), which have strong visual understanding and reasoning abilities, as data generators to generate step-wise question-and-answer pairs for document images and use a high-performance LLM as the error detector to filter out noisy data. This step-wise data generation pipeline is implemented using both template-based and few-shot methods. We then use the generated high-quality data to train a humanized document understanding and reasoning model, specifically designed to solve complex questions that require reasoning or multi-hop question answering, dubbed DocAssistant. Experimental results demonstrate the effectiveness and application value of step-wise generation, showing a 5 improvement on InfoVQA with complex layouts and a 7 improvement on ChartQA with complex reasoning, compared to directly generated answers. We hope our work highlights the potential of synthetic data and encourages further exploration of multi-modal document reasoning capabilities.
♻ ☆ Distributional Reinforcement Learning with Dual Expectile-Quantile Regression
Distributional reinforcement learning (RL) has proven useful in multiple benchmarks as it enables approximating the full distribution of returns and makes a better use of environment samples. The commonly used quantile regression approach to distributional RL -- based on asymmetric $L_1$ losses -- provides a flexible and effective way of learning arbitrary return distributions. In practice, it is often improved by using a more efficient, hybrid asymmetric $L_1$-$L_2$ Huber loss for quantile regression. However, by doing so, distributional estimation guarantees vanish, and we empirically observe that the estimated distribution rapidly collapses to its mean. Indeed, asymmetric $L_2$ losses, corresponding to expectile regression, cannot be readily used for distributional temporal difference learning. Motivated by the efficiency of $L_2$-based learning, we propose to jointly learn expectiles and quantiles of the return distribution in a way that allows efficient learning while keeping an estimate of the full distribution of returns. We prove that our approach approximately learns the correct return distribution, and we benchmark a practical implementation on a toy example and at scale. On the Atari benchmark, our approach matches the performance of the Huber-based IQN-1 baseline after $200$M training frames but avoids distributional collapse and keeps estimates of the full distribution of returns.
♻ ☆ Reset & Distill: A Recipe for Overcoming Negative Transfer in Continual Reinforcement Learning
We argue that the negative transfer problem occurring when the new task to learn arrives is an important problem that needs not be overlooked when developing effective Continual Reinforcement Learning (CRL) algorithms. Through comprehensive experimental validation, we demonstrate that such issue frequently exists in CRL and cannot be effectively addressed by several recent work on mitigating plasticity loss of RL agents. To that end, we develop Reset & Distill (R&D), a simple yet highly effective method, to overcome the negative transfer problem in CRL. R&D combines a strategy of resetting the agent's online actor and critic networks to learn a new task and an offline learning step for distilling the knowledge from the online actor and previous expert's action probabilities. We carried out extensive experiments on long sequence of Meta World tasks and show that our method consistently outperforms recent baselines, achieving significantly higher success rates across a range of tasks. Our findings highlight the importance of considering negative transfer in CRL and emphasize the need for robust strategies like R&D to mitigate its detrimental effects.
♻ ☆ Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering
Recent advances in a generative neural network model extend the development of data augmentation methods. However, the augmentation methods based on the modern generative models fail to achieve notable performance for class imbalance data compared to the conventional model, Synthetic Minority Oversampling Technique (SMOTE). We investigate the problem of the generative model for imbalanced classification and introduce a framework to enhance the SMOTE algorithm using Variational Autoencoders (VAE). Our approach systematically quantifies the density of data points in a low-dimensional latent space using the VAE, simultaneously incorporating information on class labels and classification difficulty. Then, the data points potentially degrading the augmentation are systematically excluded, and the neighboring observations are directly augmented on the data space. Empirical studies on several imbalanced datasets represent that this simple process innovatively improves the conventional SMOTE algorithm over the deep learning models. Consequently, we conclude that the selection of minority data and the interpolation in the data space are beneficial for imbalanced classification problems with a relatively small number of data points.
♻ ☆ Multi-layer Sequence Labeling-based Joint Biomedical Event Extraction NLPCC2024
In recent years, biomedical event extraction has been dominated by complicated pipeline and joint methods, which need to be simplified. In addition, existing work has not effectively utilized trigger word information explicitly. Hence, we propose MLSL, a method based on multi-layer sequence labeling for joint biomedical event extraction. MLSL does not introduce prior knowledge and complex structures. Moreover, it explicitly incorporates the information of candidate trigger words into the sequence labeling to learn the interaction relationships between trigger words and argument roles. Based on this, MLSL can learn well with just a simple workflow. Extensive experimentation demonstrates the superiority of MLSL in terms of extraction performance compared to other state-of-the-art methods.
comment: 13 pages, 3 figures, accepted by NLPCC2024
♻ ☆ Self-augmented Gaussian Splatting with Structure-aware Masks for Sparse-view 3D Reconstruction
Sparse-view 3D reconstruction stands as a formidable challenge in computer vision, aiming to build complete three-dimensional models from a limited array of viewing perspectives. This task confronts several difficulties: 1) the limited number of input images that lack consistent information; 2) dependence on the quality of input images; and 3) the substantial size of model parameters. To address these challenges, we propose a self-augmented coarse-to-fine Gaussian splatting paradigm, enhanced with a structure-aware mask, for sparse-view 3D reconstruction. In particular, our method initially employs a coarse Gaussian model to obtain a basic 3D representation from sparse-view inputs. Subsequently, we develop a fine Gaussian network to enhance consistent and detailed representation of the output with both 3D geometry augmentation and perceptual view augmentation. During training, we design a structure-aware masking strategy to further improve the model's robustness against sparse inputs and noise.Experimental results on the MipNeRF360 and OmniObject3D datasets demonstrate that the proposed method achieves state-of-the-art performances for sparse input views in both perceptual quality and efficiency.
Research on Autonomous Robots Navigation based on Reinforcement Learning
Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.
♻ ☆ Patch-wise Auto-Encoder for Visual Anomaly Detection
Anomaly detection without priors of the anomalies is challenging. In the field of unsupervised anomaly detection, traditional auto-encoder (AE) tends to fail based on the assumption that by training only on normal images, the model will not be able to reconstruct abnormal images correctly. On the contrary, we propose a novel patch-wise auto-encoder (Patch AE) framework, which aims at enhancing the reconstruction ability of AE to anomalies instead of weakening it. Each patch of image is reconstructed by corresponding spatially distributed feature vector of the learned feature representation, i.e., patch-wise reconstruction, which ensures anomaly-sensitivity of AE. Our method is simple and efficient. It advances the state-of-the-art performances on Mvtec AD benchmark, which proves the effectiveness of our model. It shows great potential in practical industrial application scenarios.
♻ ☆ FOSS: A Self-Learned Doctor for Query Optimizer ICDE2024
Various works have utilized deep learning to address the query optimization problem in database system. They either learn to construct plans from scratch in a bottom-up manner or steer the plan generation behavior of traditional optimizer using hints. While these methods have achieved some success, they face challenges in either low training efficiency or limited plan search space. To address these challenges, we introduce FOSS, a novel framework for query optimization based on deep reinforcement learning. FOSS initiates optimization from the original plan generated by a traditional optimizer and incrementally refines suboptimal nodes of the plan through a sequence of actions. Additionally, we devise an asymmetric advantage model to evaluate the advantage between two plans. We integrate it with a traditional optimizer to form a simulated environment. Leveraging this simulated environment, FOSS can bootstrap itself to rapidly generate a large amount of high-quality simulated experiences. FOSS then learns from these experiences to improve its optimization capability. We evaluate the performance of FOSS on Join Order Benchmark, TPC-DS, and Stack Overflow. The experimental results demonstrate that FOSS outperforms the state-of-the-art methods in terms of latency performance. Compared to PostgreSQL, FOSS achieves speedup ranging from 1.15x to 8.33x in total latency across different benchmarks.
comment: This is the accepted version of the paper published in ICDE2024. The final published version is available at https://ieeexplore.ieee.org/abstract/document/10597900
♻ ☆ V-STaR: Training Verifiers for Self-Taught Reasoners
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
♻ ☆ Building an Ethical and Trustworthy Biomedical AI Ecosystem for the Translational and Clinical Integration of Foundational Models
Foundational Models (FMs) are gaining increasing attention in the biomedical AI ecosystem due to their ability to represent and contextualize multimodal biomedical data. These capabilities make FMs a valuable tool for a variety of tasks, including biomedical reasoning, hypothesis generation, and interpreting complex imaging data. In this review paper, we address the unique challenges associated with establishing an ethical and trustworthy biomedical AI ecosystem, with a particular focus on the development of FMs and their downstream applications. We explore strategies that can be implemented throughout the biomedical AI pipeline to effectively tackle these challenges, ensuring that these FMs are translated responsibly into clinical and translational settings. Additionally, we emphasize the importance of key stewardship and co-design principles that not only ensure robust regulation but also guarantee that the interests of all stakeholders, especially those involved in or affected by these clinical and translational applications are adequately represented. We aim to empower the biomedical AI community to harness these models responsibly and effectively. As we navigate this exciting frontier, our collective commitment to ethical stewardship, co-design, and responsible translation will be instrumental in ensuring that the evolution of FMs truly enhances patient care and medical decision making, ultimately leading to a more equitable and trustworthy biomedical AI ecosystem.
comment: 3 figures, 3 tables
♻ ☆ RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems. Our implementation of the RL-I2IT framework is available at https://github.com/Algolzw/SPAC-Deformable-Registration.
♻ ☆ The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence
Generative AI (GAI) offers unprecedented opportunities for research and innovation, but its commercialization has raised concerns about transparency, reproducibility, and safety. Many open GAI models lack the necessary components for full understanding and reproducibility, and some use restrictive licenses whilst claiming to be ``open-source''. To address these concerns, we propose the Model Openness Framework (MOF), a ranked classification system that rates machine learning models based on their completeness and openness, following principles of open science, open source, open data, and open access. The MOF requires specific components of the model development lifecycle to be included and released under appropriate open licenses. This framework aims to prevent misrepresentation of models claiming to be open, guide researchers and developers in providing all model components under permissive licenses, and help individuals and organizations identify models that can be safely adopted without restrictions. By promoting transparency and reproducibility, the MOF combats ``openwashing'' practices and establishes completeness and openness as primary criteria alongside the core tenets of responsible AI. Wide adoption of the MOF will foster a more open AI ecosystem, benefiting research, innovation, and adoption of state-of-the-art models.
comment: 28 pages
♻ ☆ On Speeding Up Language Model Evaluation
Developing prompt-based methods with Large Language Models (LLMs) requires making numerous decisions, which give rise to a combinatorial search problem. For example, selecting the right pre-trained LLM, prompt, and hyperparameters to attain the best performance for a task typically necessitates evaluating an expoential number of candidates on large validation sets. This exhaustive evaluation can be time-consuming and costly, as both inference and evaluation of LLM-based approaches are resource-intensive. Worse, a lot of computation is wasted: Many hyper-parameter settings are non-competitive, and many samples from the validation set are highly correlated - providing little or no new information. So, if the goal is to identify the best method, it can be done far more efficiently if the validation samples and methods are selected adaptively. In this paper, we propose a novel method to address this challenge. We lean on low-rank matrix factorization to fill in missing evaluations and on multi-armed bandits to sequentially identify the next (method, validation sample)-pair to evaluate. We carefully assess the efficacy of our approach on several competitive benchmark problems and show that it can identify the top-performing method using only 5-15% of the typically needed resources -- resulting in a staggering 85-95% LLM cost savings.
♻ ☆ LoAS: Fully Temporal-Parallel Datatflow for Dual-Sparse Spiking Neural Networks MICRO 2024
Spiking Neural Networks (SNNs) have gained significant research attention in the last decade due to their potential to drive resource-constrained edge devices. Though existing SNN accelerators offer high efficiency in processing sparse spikes with dense weights, opportunities are less explored in SNNs with sparse weights, i.e., dual-sparsity. In this work, we study the acceleration of dual-sparse SNNs, focusing on their core operation, sparse-matrix-sparse-matrix multiplication (spMspM). We observe that naively running a dual-sparse SNN on existing spMspM accelerators designed for dual-sparse Artificial Neural Networks (ANNs) exhibits sub-optimal efficiency. The main challenge is that processing timesteps, a natural property of SNNs, introduces an extra loop to ANN spMspM, leading to longer latency and more memory traffic. To address the problem, we propose a fully temporal-parallel (FTP) dataflow, which minimizes both data movement across timesteps and the end-to-end latency of dual-sparse SNNs. To maximize the efficiency of FTP dataflow, we propose an FTP-friendly spike compression mechanism that efficiently compresses single-bit spikes and ensures contiguous memory access. We further propose an FTP-friendly inner-join circuit that can lower the cost of the expensive prefix-sum circuits with almost no throughput penalty. All the above techniques for FTP dataflow are encapsulated in LoAS, a Low-latency inference Accelerator for dual-sparse SNNs. With FTP dataflow, compression, and inner-join, running dual-sparse SNN workloads on LoAS demonstrates significant speedup (up to $8.51\times$) and energy reduction (up to $3.68\times$) compared to running it on prior dual-sparse accelerators.
comment: Accepted to MICRO 2024. Will update with the camera-ready version once ready. (Github: https://github.com/RuokaiYin/LoAS)
♻ ☆ WATonoBus: Field-Tested All-Weather Autonomous Shuttle Technology SC
All-weather autonomous vehicle operation poses significant challenges, encompassing modules from perception and decision-making to path planning and control. The complexity arises from the need to address adverse weather conditions such as rain, snow, and fog across the autonomy stack. Conventional model-based single-module approaches often lack holistic integration with upstream or downstream tasks. We tackle this problem by proposing a multi-module and modular system architecture with considerations for adverse weather across the perception level, through features such as snow covered curb detection, to decision-making and safety monitoring. Through daily weekday service on the WATonoBus platform for almost two years, we demonstrate that our proposed approach is capable of addressing adverse weather conditions and provide valuable insights from edge cases observed during operation.
comment: 8 pages, 10 figures. This work has been submitted to the ITSC for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Bottleneck Structure in Learned Features: Low-Dimension vs Regularity Tradeoff
Previous work has shown that DNNs with large depth $L$ and $L_{2}$-regularization are biased towards learning low-dimensional representations of the inputs, which can be interpreted as minimizing a notion of rank $R^{(0)}(f)$ of the learned function $f$, conjectured to be the Bottleneck rank. We compute finite depth corrections to this result, revealing a measure $R^{(1)}$ of regularity which bounds the pseudo-determinant of the Jacobian $\left|Jf(x)\right|_{+}$ and is subadditive under composition and addition. This formalizes a balance between learning low-dimensional representations and minimizing complexity/irregularity in the feature maps, allowing the network to learn the `right' inner dimension. Finally, we prove the conjectured bottleneck structure in the learned features as $L\to\infty$: for large depths, almost all hidden representations are approximately $R^{(0)}(f)$-dimensional, and almost all weight matrices $W_{\ell}$ have $R^{(0)}(f)$ singular values close to 1 while the others are $O(L^{-\frac{1}{2}})$. Interestingly, the use of large learning rates is required to guarantee an order $O(L)$ NTK which in turns guarantees infinite depth convergence of the representations of almost all layers.
♻ ☆ Investigating Constraint Programming and Hybrid Methods for Real World Industrial Test Laboratory Scheduling
In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Furthermore, we propose a Very Large Neighborhood Search approach based on our CP methods. Our models are evaluated using CP solvers and a MIP solver both on real-world test laboratory data and on a set of generated instances of different sizes based on the real-world data. Further, we compare the exact approaches with VLNS and a Simulated Annealing heuristic. We could find feasible solutions for all instances and several optimal solutions and we show that using VLNS we can improve upon the results of the other approaches.
♻ ☆ Can LLMs Replace Economic Choice Prediction Labs? The Case of Language-based Persuasion Games
Human choice prediction in economic contexts is crucial for applications in marketing, finance, public policy, and more. This task, however, is often constrained by the difficulties in acquiring human choice data. With most experimental economics studies focusing on simple choice settings, the AI community has explored whether LLMs can substitute for humans in these predictions and examined more complex experimental economics settings. However, a key question remains: can LLMs generate training data for human choice prediction? We explore this in language-based persuasion games, a complex economic setting involving natural language in strategic interactions. Our experiments show that models trained on LLM-generated data can effectively predict human behavior in these games and even outperform models trained on actual human data.
♻ ☆ Just Cluster It: An Approach for Exploration in High-Dimensions using Clustering and Pre-Trained Representations ICML
In this paper we adopt a representation-centric perspective on exploration in reinforcement learning, viewing exploration fundamentally as a density estimation problem. We investigate the effectiveness of clustering representations for exploration in 3-D environments, based on the observation that the importance of pixel changes between transitions is less pronounced in 3-D environments compared to 2-D environments, where pixel changes between transitions are typically distinct and significant. We propose a method that performs episodic and global clustering on random representations and on pre-trained DINO representations to count states, i.e, estimate pseudo-counts. Surprisingly, even random features can be clustered effectively to count states in 3-D environments, however when these become visually more complex, pre-trained DINO representations are more effective thanks to the pre-trained inductive biases in the representations. Overall, this presents a pathway for integrating pre-trained biases into exploration. We evaluate our approach on the VizDoom and Habitat environments, demonstrating that our method surpasses other well-known exploration methods in these settings.
comment: Accepted at the International Conference On Machine Learning (ICML) 2024
♻ ☆ Formally Verifying Deep Reinforcement Learning Controllers with Lyapunov Barrier Certificates
Deep reinforcement learning (DRL) is a powerful machine learning paradigm for generating agents that control autonomous systems. However, the ``black box'' nature of DRL agents limits their deployment in real-world safety-critical applications. A promising approach for providing strong guarantees on an agent's behavior is to use Neural Lyapunov Barrier (NLB) certificates, which are learned functions over the system whose properties indirectly imply that an agent behaves as desired. However, NLB-based certificates are typically difficult to learn and even more difficult to verify, especially for complex systems. In this work, we present a novel method for training and verifying NLB-based certificates for discrete-time systems. Specifically, we introduce a technique for certificate composition, which simplifies the verification of highly-complex systems by strategically designing a sequence of certificates. When jointly verified with neural network verification engines, these certificates provide a formal guarantee that a DRL agent both achieves its goals and avoids unsafe behavior. Furthermore, we introduce a technique for certificate filtering, which significantly simplifies the process of producing formally verified certificates. We demonstrate the merits of our approach with a case study on providing safety and liveness guarantees for a DRL-controlled spacecraft.
comment: To appear in FMCAD 2024
♻ ☆ Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Research in robotic planning with temporal logic specifications, such as syntactically co-safe Linear Temporal Logic (sc-LTL), has relied on single formulas. However, as task complexity increases, sc-LTL formulas become lengthy, making them difficult to interpret and generate, and straining the computational capacities of planners. To address this, we introduce a hierarchical structure to sc-LTL specifications with both syntax and semantics, proving it to be more expressive than flat counterparts. We conducted a user study that compared the flat sc-LTL with our hierarchical version and found that users could more easily comprehend complex tasks using the hierarchical structure. We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning. This method approximates the search space by loosely interconnected sub-spaces, each corresponding to an sc-LTL specification. The search primarily focuses on a single sub-space, transitioning to another under conditions determined by the decomposition of automatons. We develop multiple heuristics to significantly expedite the search. Our theoretical analysis, conducted under mild assumptions, addresses completeness and optimality. Compared to existing methods used in various simulators for service tasks, our approach improves planning times while maintaining comparable solution quality.
comment: 20 pages, 10 figures
♻ ☆ Risks from Language Models for Automated Mental Healthcare: Ethics and Structure for Implementation
Amidst the growing interest in developing task-autonomous AI for automated mental health care, this paper addresses the ethical and practical challenges associated with the issue and proposes a structured framework that delineates levels of autonomy, outlines ethical requirements, and defines beneficial default behaviors for AI agents in the context of mental health support. We also evaluate fourteen state-of-the-art language models (ten off-the-shelf, four fine-tuned) using 16 mental health-related questionnaires designed to reflect various mental health conditions, such as psychosis, mania, depression, suicidal thoughts, and homicidal tendencies. The questionnaire design and response evaluations were conducted by mental health clinicians (M.D.s). We find that existing language models are insufficient to match the standard provided by human professionals who can navigate nuances and appreciate context. This is due to a range of issues, including overly cautious or sycophantic responses and the absence of necessary safeguards. Alarmingly, we find that most of the tested models could cause harm if accessed in mental health emergencies, failing to protect users and potentially exacerbating existing symptoms. We explore solutions to enhance the safety of current models. Before the release of increasingly task-autonomous AI systems in mental health, it is crucial to ensure that these models can reliably detect and manage symptoms of common psychiatric disorders to prevent harm to users. This involves aligning with the ethical framework and default behaviors outlined in our study. We contend that model developers are responsible for refining their systems per these guidelines to safeguard against the risks posed by current AI technologies to user mental health and safety. Trigger warning: Contains and discusses examples of sensitive mental health topics, including suicide and self-harm.
comment: Updated with fine-tuned model results to match CoLM accepted camera-ready version
♻ ☆ Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation
Multi-agent AI systems can be used for simulating collective decision-making in scientific and practical applications. They can also be used to introduce a diverse group discussion step in chatbot pipelines, enhancing the cultural sensitivity of the chatbot's responses. These applications, however, are predicated on the ability of AI agents to reliably adopt assigned personas and mimic human interactions. To see whether LLM agents satisfy these requirements, we examine AI agent ensembles engaged in cross-national collaboration and debate by analyzing their private responses and chat transcripts. Our findings suggest that multi-agent discussions can support collective AI decisions that more often reflect diverse perspectives, yet this effect is tempered by the agents' susceptibility to conformity due to perceived peer pressure and occasional challenges in maintaining consistent personas and opinions. Instructions that encourage debate in support of one's opinions rather than collaboration increase the rate of inconstancy. Without addressing the factors we identify, the full potential of multi-agent frameworks for producing more culturally diverse AI outputs or more realistic simulations of group decision-making may remain untapped.
comment: 16 pages, 8 figures, 3 tables
Graphics 7
☆ Creating Data Art: Authentic Learning and Visualisation Exhibition
We present an authentic learning task designed for computing students, centred on the creation of data-art visualisations from chosen datasets for a public exhibition. This exhibition was showcased in the cinema foyer for two weeks in June, providing a real-world platform for students to display their work. Over the course of two years, we implemented this active learning task with two different cohorts of students. In this paper, we share our experiences and insights from these activities, highlighting the impact on student engagement and learning outcomes. We also provide a detailed description of the seven individual tasks that learners must perform: topic and data selection and analysis, research and art inspiration, design conceptualisation, proposed solution, visualisation creation, exhibition curation, and reflection. By integrating these tasks, students not only develop technical skills but also gain practical experience in presenting their work to a public audience, bridging the gap between academic learning and professional practice.
comment: 9 pages, 5 Figures, Accepted for publication in Proceedings EG UK Computer Graphics & Visual Computing (2024)
☆ Inverse Rendering of Fusion Plasmas: Inferring Plasma Composition from Imaging Systems
In this work, we develop a differentiable rendering pipeline for visualising plasma emission within tokamaks, and estimating the gradients of the emission and estimating other physical quantities. Unlike prior work, we are able to leverage arbitrary representations of plasma quantities and easily incorporate them into a non-linear optimisation framework. The efficiency of our method enables not only estimation of a physically plausible image of plasma, but also recovery of the neutral Deuterium distribution from imaging and midplane measurements alone. We demonstrate our method with three different levels of complexity showing first that a poloidal neutrals density distribution can be recovered from imaging alone, second that the distributions of neutral Deuterium, electron density and electron temperature can be recovered jointly, and finally, that this can be done in the presence of realistic imaging systems that incorporate sensor cropping and quantisation.
comment: 22 pages, 8 figures, 3 tables, submitted to Nuclear Fusion
☆ RoCoSDF: Row-Column Scanned Neural Signed Distance Fields for Freehand 3D Ultrasound Imaging Shape Reconstruction MICCAI 2024
The reconstruction of high-quality shape geometry is crucial for developing freehand 3D ultrasound imaging. However, the shape reconstruction of multi-view ultrasound data remains challenging due to the elevation distortion caused by thick transducer probes. In this paper, we present a novel learning-based framework RoCoSDF, which can effectively generate an implicit surface through continuous shape representations derived from row-column scanned datasets. In RoCoSDF, we encode the datasets from different views into the corresponding neural signed distance function (SDF) and then operate all SDFs in a normalized 3D space to restore the actual surface contour. Without requiring pre-training on large-scale ground truth shapes, our approach can synthesize a smooth and continuous signed distance field from multi-view SDFs to implicitly represent the actual geometry. Furthermore, two regularizers are introduced to facilitate shape refinement by constraining the SDF near the surface. The experiments on twelve shapes data acquired by two ultrasound transducer probes validate that RoCoSDF can effectively reconstruct accurate geometric shapes from multi-view ultrasound data, which outperforms current reconstruction methods. Code is available at https://github.com/chenhbo/RoCoSDF.
comment: Accepted by MICCAI 2024
☆ A Thermomechanical Hybrid Incompressible Material Point Method
We present a novel hybrid incompressible flow/material point method solver for simulating the combustion of flammable solids. Our approach utilizes a sparse grid representation of solid materials in the material point method portion of the solver and a hybrid Eulerian/FLIP solver for the incompressible portion. We utilize these components to simulate the motion of heated air and particulate matter as they interact with flammable solids, causing combustion-related damage. We include a novel particle sampling strategy to increase Eulerian flow accuracy near regions of high temperature. We also support control of the flame front propagation speed and the rate of solid combustion in an artistically directable manner. Solid combustion is modeled with temperature-dependent elastoplastic constitutive modeling. We demonstrate the efficacy of our method on various real-world three-dimensional problems, including a burning match, incense sticks, and a wood log in a fireplace.
☆ GeneticPrism: Multifaceted Visualization of Scientific Impact Evolutions
Understanding the evolution of scholarly impact is essential for many real-life decision-making processes in academia, such as research planning, frontier exploration, and award selection. Popular platforms like Google Scholar and Web of Science rely on numerical indicators that are too abstract to convey the context and content of scientific impact, while most existing visualization approaches on mapping science do not consider the presentation of individual scholars' impact evolution using curated self-citation data. This paper builds on our previous work and proposes an integrated pipeline to visualize a scholar's impact evolution from multiple topic facets. A novel 3D prism-shaped visual metaphor is introduced as the overview of a scholar's impact, whilst their scientific evolution on each topic is displayed in a more structured manner. Additional designs by topic chord diagram, streamgraph visualization, and inter-topic flow map, optimized by an elaborate layout algorithm, assist in perceiving the scholar's scientific evolution across topics. A new six-degree-impact glyph metaphor highlights key interdisciplinary works driving the evolution. The proposed visualization methods are evaluated through case studies analyzing the careers of prestigious Turing award laureates and a major visualization venue.
comment: 13 pages, 8 figures, excluding appendix. Submitted to TVCG on 20240813
♻ ☆ Content and Style Aware Audio-Driven Facial Animation BMVC2024
Audio-driven 3D facial animation has several virtual humans applications for content creation and editing. While several existing methods provide solutions for speech-driven animation, precise control over content (what) and style (how) of the final performance is still challenging. We propose a novel approach that takes as input an audio, and the corresponding text to extract temporally-aligned content and disentangled style representations, in order to provide controls over 3D facial animation. Our method is trained in two stages, that evolves from audio prominent styles (how it sounds) to visual prominent styles (how it looks). We leverage a high-resource audio dataset in stage I to learn styles that control speech generation in a self-supervised learning framework, and then fine-tune this model with low-resource audio/3D mesh pairs in stage II to control 3D vertex generation. We employ a non-autoregressive seq2seq formulation to model sentence-level dependencies, and better mouth articulations. Our method provides flexibility that the style of a reference audio and the content of a source audio can be combined to enable audio style transfer. Similarly, the content can be modified, e.g. muting or swapping words, that enables style-preserving content editing.
comment: BMVC2024
♻ ☆ Integrating Representational Gestures into Automatically Generated Embodied Explanations and its Effects on Understanding and Interaction Quality
In human interaction, gestures serve various functions such as marking speech rhythm, highlighting key elements, and supplementing information. These gestures are also observed in explanatory contexts. However, the impact of gestures on explanations provided by virtual agents remains underexplored. A user study was carried out to investigate how different types of gestures influence perceived interaction quality and listener understanding. This study addresses the effect of gestures in explanation by developing an embodied virtual explainer integrating both beat gestures and iconic gestures to enhance its automatically generated verbal explanations. Our model combines beat gestures generated by a learned speech-driven synthesis module with manually captured iconic gestures, supporting the agent's verbal expressions about the board game Quarto! as an explanation scenario. Findings indicate that neither the use of iconic gestures alone nor their combination with beat gestures outperforms the baseline or beat-only conditions in terms of understanding. Nonetheless, compared to prior research, the embodied agent significantly enhances understanding.
Robotics 22
☆ HADRON: Human-friendly Control and Artificial Intelligence for Military Drone Operations
As drones are getting more and more entangled in our society, more untrained users require the capability to operate them. This scenario is to be achieved through the development of artificial intelligence capabilities assisting the human operator in controlling the Unmanned Aerial System (UAS) and processing the sensor data, thereby alleviating the need for extensive operator training. This paper presents the HADRON project that seeks to develop and test multiple novel technologies to enable human-friendly control of drone swarms. This project is divided into three main parts. The first part consists of the integration of different technologies for the intuitive control of drones, focusing on novice or inexperienced pilots and operators. The second part focuses on the development of a multi-drone system that will be controlled from a command and control station, in which an expert pilot can supervise the operations of the multiple drones. The third part of the project will focus on reducing the cognitive load on human operators, whether they are novice or expert pilots. For this, we will develop AI tools that will assist drone operators with semi-automated real-time data processing.
comment: 4 pages, 2 Figures and 1 table. This work has been accepted at the Workshop Variable Autonomy for Human-Robot Teaming held at the 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2024)
Decision-Focused Learning to Predict Action Costs for Planning
In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
☆ Learn2Decompose: Learning Problem Decomposition for Efficient Task and Motion Planning
We focus on designing efficient Task and Motion Planning (TAMP) approach for long-horizon manipulation tasks involving multi-step manipulation of multiple objects. TAMP solvers typically require exponentially longer planning time as the planning horizon and the number of environmental objects increase. To address this challenge, we first propose Learn2Decompose, a Learning from Demonstrations (LfD) approach that learns embedding task rules from demonstrations and decomposes the long-horizon problem into several subproblems. These subproblems require planning over shorter horizons with fewer objects and can be solved in parallel. We then design a parallelized hierarchical TAMP framework that concurrently solves the subproblems and concatenates the resulting subplans for the target task, significantly improving the planning efficiency of classical TAMP solvers. The effectiveness of our proposed methods is validated in both simulation and real-world experiments.
comment: Submitted for potential publication
☆ Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions SC
The rapid evolution of deep learning and its integration with autonomous driving systems have led to substantial advancements in 3D perception using multimodal sensors. Notably, radar sensors show greater robustness compared to cameras and lidar under adverse weather and varying illumination conditions. This study delves into the often-overlooked yet crucial issue of domain shift in 4D radar-based object detection, examining how varying environmental conditions, such as different weather patterns and road types, impact 3D object detection performance. Our findings highlight distinct domain shifts across various weather scenarios, revealing unique dataset sensitivities that underscore the critical role of radar point cloud generation. Additionally, we demonstrate that transitioning between different road types, especially from highways to urban settings, introduces notable domain shifts, emphasizing the necessity for diverse data collection across varied road environments. To the best of our knowledge, this is the first comprehensive analysis of domain shift effects on 4D radar-based object detection. We believe this empirical study contributes to understanding the complex nature of domain shifts in radar data and suggests paths forward for data collection strategy in the face of environmental variability.
comment: 6 pages, 5 figures, 3 tables, accepted in IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
☆ Grasping by Hanging: a Learning-Free Grasping Detection Method for Previously Unseen Objects
This paper proposes a novel learning-free three-stage method that predicts grasping poses, enabling robots to pick up and transfer previously unseen objects. Our method first identifies potential structures that can afford the action of hanging by analyzing the hanging mechanics and geometric properties. Then 6D poses are detected for a parallel gripper retrofitted with an extending bar, which when closed forms loops to hook each hangable structure. Finally, an evaluation policy qualities and rank grasp candidates for execution attempts. Compared to the traditional physical model-based and deep learning-based methods, our approach is closer to the human natural action of grasping unknown objects. And it also eliminates the need for a vast amount of training data. To evaluate the effectiveness of the proposed method, we conducted experiments with a real robot. Experimental results indicate that the grasping accuracy and stability are significantly higher than the state-of-the-art learning-based method, especially for thin and flat objects.
comment: 13 pages and 7 figures
☆ Adaptive USVs Swarm Optimization for Target Tracking in Dynamic Environments
This research investigates the performance and efficiency of Unmanned Surface Vehicles (USVs) in multi-target tracking scenarios using the Adaptive Particle Swarm Optimization with k-Nearest Neighbors (APSO-kNN) algorithm. The study explores various search patterns-Random Walk, Spiral, Lawnmower, and Cluster Search to assess their effectiveness in dynamic environments. Through extensive simulations, we evaluate the impact of different search strategies, varying the number of targets and USVs' sensing capabilities, and integrating a Pursuit-Evasion model to test adaptability. Our findings demonstrate that systematic search patterns like Spiral and Lawnmower provide superior coverage and tracking accuracy, making them ideal for thorough area exploration. In contrast, the Random Walk pattern, while highly adaptable, shows lower accuracy due to its non-deterministic nature, and Cluster Search maintains group cohesion but is heavily dependent on target distribution. The mixed strategy, combining multiple patterns, offers robust performance across varied scenarios, while APSO-kNN effectively balances exploration and exploitation, making it a promising approach for real-world applications such as surveillance, search and rescue, and environmental monitoring. This study provides valuable insights into optimizing search strategies and sensing configurations for USV swarms, ultimately enhancing their operational efficiency and success in complex environments.
comment: 9 pages
☆ SlotLifter: Slot-guided Feature Lifting for Learning Object-centric Radiance Fields ECCV 2024
The ability to distill object-centric abstractions from intricate visual scenes underpins human-level generalization. Despite the significant progress in object-centric learning methods, learning object-centric representations in the 3D physical world remains a crucial challenge. In this work, we propose SlotLifter, a novel object-centric radiance model addressing scene reconstruction and decomposition jointly via slot-guided feature lifting. Such a design unites object-centric learning representations and image-based rendering methods, offering state-of-the-art performance in scene decomposition and novel-view synthesis on four challenging synthetic and four complex real-world datasets, outperforming existing 3D object-centric learning methods by a large margin. Through extensive ablative studies, we showcase the efficacy of designs in SlotLifter, revealing key insights for potential future directions.
comment: Accepted by ECCV 2024. Project website: https://slotlifter.github.io
☆ Compact robotic gripper with tandem actuation for selective fruit harvesting
Selective fruit harvesting is a challenging manipulation problem due to occlusions and clutter arising from plant foliage. A harvesting gripper should i) have a small cross-section, to avoid collisions while approaching the fruit; ii) have a soft and compliant grasp to adapt to different fruit geometry and avoid bruising it; and iii) be capable of rigidly holding the fruit tightly enough to counteract detachment forces. Previous work on fruit harvesting has primarily focused on using grippers with a single actuation mode, either suction or fingers. In this paper we present a compact robotic gripper that combines the benefits of both. The gripper first uses an array of compliant suction cups to gently attach to the fruit. After attachment, telescoping cam-driven fingers deploy, sweeping obstacles away before pivoting inwards to provide a secure grip on the fruit for picking. We present and analyze the finger design for both ability to sweep clutter and maintain a tight grasp. Specifically, we use a motorized test bed to measure grasp strength for each actuation mode (suction, fingers, or both). We apply a tensile force at different angles (0{\deg}, 15{\deg}, 30{\deg} and 45{\deg}), and vary the point of contact between the fingers and the fruit. We observed that with both modes the grasp strength is approximately 40 N. We use an apple proxy to test the gripper's ability to obtain a grasp in the presence of occluding apples and leaves, achieving a grasp success rate over 96% (with an ideal controller). Finally, we validate our gripper in a commercial apple orchard.
comment: 8 pages, 9 figures
☆ Design of a Double-joint Robotic Fish Using a Composite Linkage
Robotic fish is one of the most promising directions of the new generation of underwater vehicles. Traditional biomimetic fish often mimic fish joints using tandem components like servos, which leads to increased volume, weight and control complexity. In this paper, a new double-joint robotic fish using a composite linkage was designed, where the propulsion mechanism transforms the single-degree-of-freedom rotation of the motor into a double-degree-of-freedom coupled motion, namely caudal peduncle translation and caudal fin rotation. Motion analysis of the propulsion mechanism demonstrates its ability to closely emulate the undulating movement observed in carangiform fish. Experimental results further validate the feasibility of the proposed propulsion mechanism. To improve propulsion efficiency, an analysis is conducted to explore the influence of swing angle amplitude and swing frequency on the swimming speed of the robotic fish. This examination establishes a practical foundation for future research on such robotic fish systems.
☆ MAPPO-PIS: A Multi-Agent Proximal Policy Optimization Method with Prior Intent Sharing for CAVs' Cooperative Decision-Making
Vehicle-to-Vehicle (V2V) technologies have great potential for enhancing traffic flow efficiency and safety. However, cooperative decision-making in multi-agent systems, particularly in complex human-machine mixed merging areas, remains challenging for connected and autonomous vehicles (CAVs). Intent sharing, a key aspect of human coordination, may offer an effective solution to these decision-making problems, but its application in CAVs is under-explored. This paper presents an intent-sharing-based cooperative method, the Multi-Agent Proximal Policy Optimization with Prior Intent Sharing (MAPPO-PIS), which models the CAV cooperative decision-making problem as a Multi-Agent Reinforcement Learning (MARL) problem. It involves training and updating the agents' policies through the integration of two key modules: the Intention Generator Module (IGM) and the Safety Enhanced Module (SEM). The IGM is specifically crafted to generate and disseminate CAVs' intended trajectories spanning multiple future time-steps. On the other hand, the SEM serves a crucial role in assessing the safety of the decisions made and rectifying them if necessary. Merging area with human-machine mixed traffic flow is selected to validate our method. Results show that MAPPO-PIS significantly improves decision-making performance in multi-agent systems, surpassing state-of-the-art baselines in safety, efficiency, and overall traffic system performance. The code and video demo can be found at: \url{https://github.com/CCCC1dhcgd/A-MAPPO-PIS}.
☆ A Miniature Vision-Based Localization System for Indoor Blimps
With increasing attention paid to blimp research, I hope to build an indoor blimp to interact with humans. To begin with, I propose developing a visual localization system to enable blimps to localize themselves in an indoor environment autonomously. This system initially reconstructs an indoor environment by employing Structure from Motion with Superpoint visual features. Next, with the previously built sparse point cloud map, the system generates camera poses by continuously employing pose estimation on matched visual features observed from the map. In this project, the blimp only serves as a reference mobile platform that constrains the weight of the perception system. The perception system contains one monocular camera and a WiFi adaptor to capture and transmit visual data to a ground PC station where the algorithms will be executed. The success of this project will transform remote-controlled indoor blimps into autonomous indoor blimps, which can be utilized for applications such as surveillance, advertisement, and indoor mapping.
☆ Centralization vs. decentralization in multi-robot coverage: Ground robots under UAV supervision
In swarm robotics, decentralized control is often proposed as a more scalable and fault-tolerant alternative to centralized control. However, centralized behaviors are often faster and more efficient than their decentralized counterparts. In any given application, the goals and constraints of the task being solved should guide the choice to use centralized control, decentralized control, or a combination of the two. Currently, the tradeoffs that exist between centralization and decentralization have not been thoroughly studied. In this paper, we investigate these tradeoffs for multi-robot coverage, and find that they are more nuanced than expected. For instance, our findings reinforce the expectation that more decentralized control will provide better scalability, but contradict the expectation that more decentralized control will perform better in environments with randomized obstacles. Beginning with a group of fully independent ground robots executing coverage, we add unmanned aerial vehicles as supervisors and progressively increase the degree to which the supervisors use centralized control, in terms of access to global information and a central coordinating entity. We compare, using the multi-robot physics-based simulation environment ARGoS, the following four control approaches: decentralized control, hybrid control, centralized control, and predetermined control. In comparing the ground robots performing the coverage task, we assess the speed and efficiency advantages of centralization -- in terms of coverage completeness and coverage uniformity -- and we assess the scalability and fault tolerance advantages of decentralization. We also assess the energy expenditure disadvantages of centralization due to different energy consumption rates of ground robots and unmanned aerial vehicles, according to the specifications of robots available off-the-shelf.
comment: IRIDIA, Universite Libre de Bruxelles, Brussels, Belgium, 2021
☆ A Comparison of Imitation Learning Algorithms for Bimanual Manipulation
Amidst the wide popularity of imitation learning algorithms in robotics, their properties regarding hyperparameter sensitivity, ease of training, data efficiency, and performance have not been well-studied in high-precision industry-inspired environments. In this work, we demonstrate the limitations and benefits of prominent imitation learning approaches and analyze their capabilities regarding these properties. We evaluate each algorithm on a complex bimanual manipulation task involving an over-constrained dynamics system in a setting involving multiple contacts between the manipulated object and the environment. While we find that imitation learning is well suited to solve such complex tasks, not all algorithms are equal in terms of handling environmental and hyperparameter perturbations, training requirements, performance, and ease of use. We investigate the empirical influence of these key characteristics by employing a carefully designed experimental procedure and learning environment. Paper website: https://bimanual-imitation.github.io/
♻ ☆ Spb3DTracker: A Robust LiDAR-Based Person Tracker for Noisy Environment
Person detection and tracking (PDT) has seen significant advancements with 2D camera-based systems in the autonomous vehicle field, leading to widespread adoption of these algorithms. However, growing privacy concerns have recently emerged as a major issue, prompting a shift towards LiDAR-based PDT as a viable alternative. Within this domain, "Tracking-by-Detection" (TBD) has become a prominent methodology. Despite its effectiveness, LiDAR-based PDT has not yet achieved the same level of performance as camera-based PDT. This paper examines key components of the LiDAR-based PDT framework, including detection post-processing, data association, motion modeling, and lifecycle management. Building upon these insights, we introduce SpbTrack, a robust person tracker designed for diverse environments. Our method achieves superior performance on noisy datasets and state-of-the-art results on KITTI Dataset benchmarks and custom office indoor dataset among LiDAR-based trackers.
comment: 17 pages, 5 figures
♻ ☆ A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
Constructing the new generation information processing system by mimicking biological nervous system is a feasible way for implement of high-efficient intelligent sensing device and bionic robot. However, most biological nervous system, especially the tactile system, have various powerful functions. This is a big challenge for bionic system design. Here we report a universal fully flexible neuromorphic tactile perception system with strong compatibility and a multithreshold signal processing strategy. Like nervous system, signal in our system is transmitted as pulses and processed as threshold information. For feasibility verification, recognition of three different type pressure signals (continuous changing signal, Morse code signal and symbol pattern) is tested respectively. Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code. Comparing to conventional system, consumption of our system significantly decreases in a same recognition task. Meanwhile, we give the detail introduction and demonstration of our system universality.
♻ ☆ Continual Driving Policy Optimization with Closed-Loop Individualized Curricula ICRA 2024
The safety of autonomous vehicles (AV) has been a long-standing top concern, stemming from the absence of rare and safety-critical scenarios in the long-tail naturalistic driving distribution. To tackle this challenge, a surge of research in scenario-based autonomous driving has emerged, with a focus on generating high-risk driving scenarios and applying them to conduct safety-critical testing of AV models. However, limited work has been explored on the reuse of these extensive scenarios to iteratively improve AV models. Moreover, it remains intractable and challenging to filter through gigantic scenario libraries collected from other AV models with distinct behaviors, attempting to extract transferable information for current AV improvement. Therefore, we develop a continual driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC), which we factorize into a set of standardized sub-modules for flexible implementation choices: AV Evaluation, Scenario Selection, and AV Training. CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration. Subsequently, by re-sampling from historical scenarios based on these failure probabilities, CLIC tailors individualized curricula for downstream training, aligning them with the evaluated capability of AV. Accordingly, CLIC not only maximizes the utilization of the vast pre-collected scenario library for closed-loop driving policy optimization but also facilitates AV improvement by individualizing its training with more challenging cases out of those poorly organized scenarios. Experimental results clearly indicate that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios, while still maintaining proficiency in handling simpler cases.
comment: ICRA 2024
♻ ☆ Non-convex Pose Graph Optimization in SLAM via Proximal Linearized Riemannian ADMM
Pose graph optimization (PGO) is a well-known technique for solving the pose-based simultaneous localization and mapping (SLAM) problem. In this paper, we represent the rotation and translation by a unit quaternion and a three-dimensional vector, and propose a new PGO model based on the von Mises-Fisher distribution. The constraints derived from the unit quaternions are spherical manifolds, and the projection onto the constraints can be calculated by normalization. Then a proximal linearized Riemannian alternating direction method of multipliers (PieADMM) is developed to solve the proposed model, which not only has low memory requirements, but also can update the poses in parallel. Furthermore, we establish the iteration complexity of $O(1/\epsilon^{2})$ of PieADMM for finding an $\epsilon$-stationary solution of our model. The efficiency of our proposed algorithm is demonstrated by numerical experiments on two synthetic and four 3D SLAM benchmark datasets.
♻ ☆ Automatic Spatial Calibration of Near-Field MIMO Radar With Respect to Optical Depth Sensors IROS 2024
Despite an emerging interest in MIMO radar, the utilization of its complementary strengths in combination with optical depth sensors has so far been limited to far-field applications, due to the challenges that arise from mutual sensor calibration in the near field. In fact, most related approaches in the autonomous industry propose target-based calibration methods using corner reflectors that have proven to be unsuitable for the near field. In contrast, we propose a novel, joint calibration approach for optical RGB-D sensors and MIMO radars that is designed to operate in the radar's near-field range, within decimeters from the sensors. Our pipeline consists of a bespoke calibration target, allowing for automatic target detection and localization, followed by the spatial calibration of the two sensor coordinate systems through target registration. We validate our approach using two different depth sensing technologies from the optical domain. The experiments show the efficiency and accuracy of our calibration for various target displacements, as well as its robustness of our localization in terms of signal ambiguities.
comment: 8 pages, 9 figures, accepted to IROS 2024
♻ ☆ Gravity-aware Grasp Generation with Implicit Grasp Mode Selection for Underactuated Hands IROS2024
Learning-based grasp detectors typically assume a precision grasp, where each finger only has one contact point, and estimate the grasp probability. In this work, we propose a data generation and learning pipeline that can leverage power grasping, which has more contact points with an enveloping configuration and is robust against both positioning error and force disturbance. To train a grasp detector to prioritize power grasping while still keeping precision grasping as the secondary choice, we propose to train the network against the magnitude of disturbance in the gravity direction a grasp can resist (gravity-rejection score) rather than the binary classification of success. We also provide an efficient data generation pipeline for a dataset with gravity-rejection score annotation. In addition to thorough ablation studies, quantitative evaluation in both simulation and real-robot clarifies the significant improvement in our approach, especially when the objects are heavy.
comment: Accepted for IROS2024
♻ ☆ Enhancing Visual Place Recognition via Fast and Slow Adaptive Biasing in Event Cameras IROS 2024
Event cameras are increasingly popular in robotics due to beneficial features such as low latency, energy efficiency, and high dynamic range. Nevertheless, their downstream task performance is greatly influenced by the optimization of bias parameters. These parameters, for instance, regulate the necessary change in light intensity to trigger an event, which in turn depends on factors such as the environment lighting and camera motion. This paper introduces feedback control algorithms that automatically tune the bias parameters through two interacting methods: 1) An immediate, on-the-fly \textit{fast} adaptation of the refractory period, which sets the minimum interval between consecutive events, and 2) if the event rate exceeds the specified bounds even after changing the refractory period repeatedly, the controller adapts the pixel bandwidth and event thresholds, which stabilizes after a short period of noise events across all pixels (\textit{slow} adaptation). Our evaluation focuses on the visual place recognition task, where incoming query images are compared to a given reference database. We conducted comprehensive evaluations of our algorithms' adaptive feedback control in real-time. To do so, we collected the QCR-Fast-and-Slow dataset that contains DAVIS346 event camera streams from 366 repeated traversals of a Scout Mini robot navigating through a 100 meter long indoor lab setting (totaling over 35km distance traveled) in varying brightness conditions with ground truth location information. Our proposed feedback controllers result in superior performance when compared to the standard bias settings and prior feedback control methods. Our findings also detail the impact of bias adjustments on task performance and feature ablation studies on the fast and slow adaptation mechanisms.
comment: 8 pages, 9 figures, paper accepted to the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ WaveShot: A Compact Portable Unmanned Surface Vessel for Dynamic Water Surface Videography and Media Production
This paper presents WaveShot, an innovative portable unmanned surface vessel that aims to transform water surface videography by offering a highly maneuverable, cost-effective, and safe alternative to traditional filming methods. WaveShot is designed for the modern demands of film production, advertising, documentaries, and visual arts, equipped with professional-grade waterproof cameras and advanced technology to capture static and dynamic scenes on waterways. We discuss the development and advantages of WaveShot, highlighting its portability, ease of transport, and rapid deployment capabilities. Experimental validation showcasing WaveShot's stability and high-quality video capture in various water conditions, and the integration of monocular depth estimation algorithms to enhance the operator's spatial perception. The paper concludes by exploring WaveShot's real-world applications, its user-friendly remote operation, and future enhancements such as gimbal integration and advanced computer vision for optimized videography on water surfaces.
♻ ☆ A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives
Recent success of machine learning in many domains has been overwhelming, which often leads to false expectations regarding the capabilities of behavior learning in robotics. In this survey, we analyze the current state of machine learning for robotic behaviors. We will give a broad overview of behaviors that have been learned and used on real robots. Our focus is on kinematically or sensorially complex robots. That includes humanoid robots or parts of humanoid robots, for example, legged robots or robotic arms. We will classify presented behaviors according to various categories and we will draw conclusions about what can be learned and what should be learned. Furthermore, we will give an outlook on problems that are challenging today but might be solved by machine learning in the future and argue that classical robotics and other approaches from artificial intelligence should be integrated more with machine learning to form complete, autonomous systems.
comment: Research Report of DFKI GmbH, Robotics Innovation Center
Computer Vision 127
☆ Fingerspelling within Sign Language Translation
Fingerspelling poses challenges for sign language processing due to its high-frequency motion and use for open-vocabulary terms. While prior work has studied fingerspelling recognition, there has been little attention to evaluating how well sign language translation models understand fingerspelling in the context of entire sentences -- and improving this capability. We manually annotate instances of fingerspelling within FLEURS-ASL and use them to evaluate the effect of two simple measures to improve fingerspelling recognition within American Sign Language to English translation: 1) use a model family (ByT5) with character- rather than subword-level tokenization, and 2) mix fingerspelling recognition data into the translation training mixture. We find that 1) substantially improves understanding of fingerspelling (and therefore translation quality overall), but the effect of 2) is mixed.
☆ PSM: Learning Probabilistic Embeddings for Multi-scale Zero-Shot Soundscape Mapping ACM MM 2024
A soundscape is defined by the acoustic environment a person perceives at a location. In this work, we propose a framework for mapping soundscapes across the Earth. Since soundscapes involve sound distributions that span varying spatial scales, we represent locations with multi-scale satellite imagery and learn a joint representation among this imagery, audio, and text. To capture the inherent uncertainty in the soundscape of a location, we design the representation space to be probabilistic. We also fuse ubiquitous metadata (including geolocation, time, and data source) to enable learning of spatially and temporally dynamic representations of soundscapes. We demonstrate the utility of our framework by creating large-scale soundscape maps integrating both audio and text with temporal control. To facilitate future research on this task, we also introduce a large-scale dataset, GeoSound, containing over $300k$ geotagged audio samples paired with both low- and high-resolution satellite imagery. We demonstrate that our method outperforms the existing state-of-the-art on both GeoSound and the existing SoundingEarth dataset. Our dataset and code is available at https://github.com/mvrl/PSM.
comment: Accepted at ACM MM 2024
☆ KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation ECCV 2024
Segmentation of crop fields is essential for enhancing agricultural productivity, monitoring crop health, and promoting sustainable practices. Deep learning models adopted for this task must ensure accurate and reliable predictions to avoid economic losses and environmental impact. The newly proposed Kolmogorov-Arnold networks (KANs) offer promising advancements in the performance of neural networks. This paper analyzes the integration of KAN layers into the U-Net architecture (U-KAN) to segment crop fields using Sentinel-2 and Sentinel-1 satellite images and provides an analysis of the performance and explainability of these networks. Our findings indicate a 2\% improvement in IoU compared to the traditional full-convolutional U-Net model in fewer GFLOPs. Furthermore, gradient-based explanation techniques show that U-KAN predictions are highly plausible and that the network has a very high ability to focus on the boundaries of cultivated areas rather than on the areas themselves. The per-channel relevance analysis also reveals that some channels are irrelevant to this task.
comment: Accepted at ECCV 2024 CVPPA Workshop
☆ PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology
Pathological diagnosis remains the definitive standard for identifying tumors. The rise of multimodal large models has simplified the process of integrating image analysis with textual descriptions. Despite this advancement, the substantial costs associated with training and deploying these complex multimodal models, together with a scarcity of high-quality training datasets, create a significant divide between cutting-edge technology and its application in the clinical setting. We had meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks, including the classification of organ tissues, generating pathology report descriptions, and addressing pathology-related questions and answers. We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance. We conducted a qualitative assessment of the capabilities of the base model and the fine-tuned model in performing image captioning and classification tasks on the specific dataset. The evaluation results demonstrate that the fine-tuned model exhibits proficiency in addressing typical pathological questions. We hope that by making both our models and datasets publicly available, they can be valuable to the medical and research communities.
comment: 10 pages, 2 figures
☆ Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision
Human-Object Interaction (HOI) detection is a fundamental task in image understanding. While deep-learning-based HOI methods provide high performance in terms of mean Average Precision (mAP), they are computationally expensive and opaque in training and inference processes. An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency. EHOI is a two-stage method. In the first stage, it leverages a frozen object detector to localize the objects and extract various features as intermediate outputs. In the second stage, the first-stage outputs predict the interaction type using the XGBoost classifier. Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases, which reduces the model size and the complexity of the XGBoost classifier in the second stage. Additionally, we provide a mathematical formulation of the relabeling and decision-making process. Apart from the architecture, we present qualitative results to explain the functionalities of the feedforward modules. Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
☆ Imagen 3
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. In addition, we discuss issues around safety and representation, as well as methods we used to minimize the potential harm of our models.
☆ Low-Bitwidth Floating Point Quantization for Efficient High-Quality Diffusion Models
Diffusion models are emerging models that generate images by iteratively denoising random Gaussian noise using deep neural networks. These models typically exhibit high computational and memory demands, necessitating effective post-training quantization for high-performance inference. Recent works propose low-bitwidth (e.g., 8-bit or 4-bit) quantization for diffusion models, however 4-bit integer quantization typically results in low-quality images. We observe that on several widely used hardware platforms, there is little or no difference in compute capability between floating-point and integer arithmetic operations of the same bitwidth (e.g., 8-bit or 4-bit). Therefore, we propose an effective floating-point quantization method for diffusion models that provides better image quality compared to integer quantization methods. We employ a floating-point quantization method that was effective for other processing tasks, specifically computer vision and natural language tasks, and tailor it for diffusion models by integrating weight rounding learning during the mapping of the full-precision values to the quantized values in the quantization process. We comprehensively study integer and floating-point quantization methods in state-of-the-art diffusion models. Our floating-point quantization method not only generates higher-quality images than that of integer quantization methods, but also shows no noticeable degradation compared to full-precision models (32-bit floating-point), when both weights and activations are quantized to 8-bit floating-point values, while has minimal degradation with 4-bit weights and 8-bit activations.
☆ SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis
We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS) that generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps. This extension enhances the representation of scenes with multiple spectra, providing insights into the underlying materials and segmentation. We introduce an improved physically-based rendering approach for Gaussian splats, estimating reflectance and lights per spectra, thereby enhancing accuracy and realism. In a comprehensive quantitative and qualitative evaluation, we demonstrate the superior performance of our approach with respect to other recent learning-based spectral scene representation approaches (i.e., XNeRF and SpectralNeRF) as well as other non-spectral state-of-the-art learning-based approaches. Our work also demonstrates the potential of spectral scene understanding for precise scene editing techniques like style transfer, inpainting, and removal. Thereby, our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.
☆ Prompt-Based Segmentation at Multiple Resolutions and Lighting Conditions using Segment Anything Model 2
This paper provides insight into the effectiveness of zero-shot, prompt-based, Segment Anything Model (SAM), and its updated version, SAM 2, and the non-promptable, conventional convolutional network (CNN), in segmenting solar panels, in RGB aerial imagery, across lighting conditions, spatial resolutions, and prompt strategies. SAM 2 demonstrates improvements over SAM, particularly in sub-optimal lighting conditions when prompted by points. Both SAMs, prompted by user-box, outperformed CNN, in all scenarios. Additionally, YOLOv9 prompting outperformed user points prompting. In high-resolution imagery, both in optimal and sub-optimal lighting conditions, Eff-UNet outperformed both SAM models prompted by YOLOv9 boxes, positioning Eff-UNet as the appropriate model for automatic segmentation in high-resolution data. In low-resolution data, user box prompts were found crucial to achieve a reasonable performance. This paper provides details on strengths and limitations of each model and outlines robustness of user prompted image segmentation models in inconsistent resolution and lighting conditions of remotely sensed data.
☆ Event-Stream Super Resolution using Sigma-Delta Neural Network ECCV
This study introduces a novel approach to enhance the spatial-temporal resolution of time-event pixels based on luminance changes captured by event cameras. These cameras present unique challenges due to their low resolution and the sparse, asynchronous nature of the data they collect. Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras, resulting in inefficiencies in capturing the full dynamism and detail of visual scenes with improved computational complexity. To bridge this gap, our research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs), leveraging spatiotemporal constraint learning mechanism designed to simultaneously learn the spatial and temporal distributions of the event stream. The proposed network is evaluated using widely recognized benchmark datasets, including N-MNIST, CIFAR10-DVS, ASL-DVS, and Event-NFS. A comprehensive evaluation framework is employed, assessing both the accuracy, through root mean square error (RMSE), and the computational efficiency of our model. The findings demonstrate significant improvements over existing state-of-the-art methods, specifically, the proposed method outperforms state-of-the-art performance in computational efficiency, achieving a 17.04-fold improvement in event sparsity and a 32.28-fold increase in synaptic operation efficiency over traditional artificial neural networks, alongside a two-fold better performance over spiking neural networks.
comment: ECCV: The 18th European Conference on Computer Vision ECCV 2024 NeVi Workshop
☆ Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Dataset distillation has emerged as a technique aiming to condense informative features from large, natural datasets into a compact and synthetic form. While recent advancements have refined this technique, its performance is bottlenecked by the prevailing class-specific synthesis paradigm. Under this paradigm, synthetic data is optimized exclusively for a pre-assigned one-hot label, creating an implicit class barrier in feature condensation. This leads to inefficient utilization of the distillation budget and oversight of inter-class feature distributions, which ultimately limits the effectiveness and efficiency, as demonstrated in our analysis. To overcome these constraints, this paper presents the Inter-class Feature Compensator (INFER), an innovative distillation approach that transcends the class-specific data-label framework widely utilized in current dataset distillation methods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to enhance feature integration across classes, enabling the generation of multiple additional synthetic instances from a single UFC input. This significantly improves the efficiency of the distillation budget. Moreover, INFER enriches inter-class interactions during the distillation, thereby enhancing the effectiveness and generalizability of the distilled data. By allowing for the linear interpolation of labels similar to those in the original dataset, INFER meticulously optimizes the synthetic data and dramatically reduces the size of soft labels in the synthetic dataset to almost zero, establishing a new benchmark for efficiency and effectiveness in dataset distillation.
☆ SceneGPT: A Language Model for 3D Scene Understanding
Building models that can understand and reason about 3D scenes is difficult owing to the lack of data sources for 3D supervised training and large-scale training regimes. In this work we ask - How can the knowledge in a pre-trained language model be leveraged for 3D scene understanding without any 3D pre-training. The aim of this work is to establish whether pre-trained LLMs possess priors/knowledge required for reasoning in 3D space and how can we prompt them such that they can be used for general purpose spatial reasoning and object understanding in 3D. To this end, we present SceneGPT, an LLM based scene understanding system which can perform 3D spatial reasoning without training or explicit 3D supervision. The key components of our framework are - 1) a 3D scene graph, that serves as scene representation, encoding the objects in the scene and their spatial relationships 2) a pre-trained LLM that can be adapted with in context learning for 3D spatial reasoning. We evaluate our framework qualitatively on object and scene understanding tasks including object semantics, physical properties and affordances (object-level) and spatial understanding (scene-level).
comment: UBC Report
☆ Divide and Conquer: Improving Multi-Camera 3D Perception with 2D Semantic-Depth Priors and Input-Dependent Queries
3D perception tasks, such as 3D object detection and Bird's-Eye-View (BEV) segmentation using multi-camera images, have drawn significant attention recently. Despite the fact that accurately estimating both semantic and 3D scene layouts are crucial for this task, existing techniques often neglect the synergistic effects of semantic and depth cues, leading to the occurrence of classification and position estimation errors. Additionally, the input-independent nature of initial queries also limits the learning capacity of Transformer-based models. To tackle these challenges, we propose an input-aware Transformer framework that leverages Semantics and Depth as priors (named SDTR). Our approach involves the use of an S-D Encoder that explicitly models semantic and depth priors, thereby disentangling the learning process of object categorization and position estimation. Moreover, we introduce a Prior-guided Query Builder that incorporates the semantic prior into the initial queries of the Transformer, resulting in more effective input-aware queries. Extensive experiments on the nuScenes and Lyft benchmarks demonstrate the state-of-the-art performance of our method in both 3D object detection and BEV segmentation tasks.
comment: Accepted by TIP 2024
☆ EE3P3D: Event-based Estimation of Periodic Phenomena Frequency using 3D Correlation
We present a novel method for measuring the frequency of periodic phenomena, e.g., rotation, flicker and vibration, by an event camera, a device asynchronously reporting brightness changes at independently operating pixels with high temporal resolution. The approach assumes that for a periodic phenomenon, a highly similar set of events is generated within a specific spatio-temporal window at a time difference corresponding to the phenomenon's period. The sets of similar events are detected by 3D spatio-temporal correlation in the event stream space. The proposed method, EE3P3D, is evaluated on a dataset of 12 sequences of periodic phenomena, i.e. flashing light and vibration, and periodic motion, e.g., rotation, ranging from 3.2 Hz to 2 kHz (equivalent to 192 - 120 000 RPM). EE3P3D significantly outperforms published methods on this dataset, achieving a mean relative error of 0.1%.
comment: 15 paper pages + 11 suppl pages, 15 figues, 4 tables
☆ PBIR-NIE: Glossy Object Capture under Non-Distant Lighting
Glossy objects present a significant challenge for 3D reconstruction from multi-view input images under natural lighting. In this paper, we introduce PBIR-NIE, an inverse rendering framework designed to holistically capture the geometry, material attributes, and surrounding illumination of such objects. We propose a novel parallax-aware non-distant environment map as a lightweight and efficient lighting representation, accurately modeling the near-field background of the scene, which is commonly encountered in real-world capture setups. This feature allows our framework to accommodate complex parallax effects beyond the capabilities of standard infinite-distance environment maps. Our method optimizes an underlying signed distance field (SDF) through physics-based differentiable rendering, seamlessly connecting surface gradients between a triangle mesh and the SDF via neural implicit evolution (NIE). To address the intricacies of highly glossy BRDFs in differentiable rendering, we integrate the antithetic sampling algorithm to mitigate variance in the Monte Carlo gradient estimator. Consequently, our framework exhibits robust capabilities in handling glossy object reconstruction, showcasing superior quality in geometry, relighting, and material estimation.
☆ GLGait: A Global-Local Temporal Receptive Field Network for Gait Recognition in the Wild ACM MM2024
Gait recognition has attracted increasing attention from academia and industry as a human recognition technology from a distance in non-intrusive ways without requiring cooperation. Although advanced methods have achieved impressive success in lab scenarios, most of them perform poorly in the wild. Recently, some Convolution Neural Networks (ConvNets) based methods have been proposed to address the issue of gait recognition in the wild. However, the temporal receptive field obtained by convolution operations is limited for long gait sequences. If directly replacing convolution blocks with visual transformer blocks, the model may not enhance a local temporal receptive field, which is important for covering a complete gait cycle. To address this issue, we design a Global-Local Temporal Receptive Field Network (GLGait). GLGait employs a Global-Local Temporal Module (GLTM) to establish a global-local temporal receptive field, which mainly consists of a Pseudo Global Temporal Self-Attention (PGTA) and a temporal convolution operation. Specifically, PGTA is used to obtain a pseudo global temporal receptive field with less memory and computation complexity compared with a multi-head self-attention (MHSA). The temporal convolution operation is used to enhance the local temporal receptive field. Besides, it can also aggregate pseudo global temporal receptive field to a true holistic temporal receptive field. Furthermore, we also propose a Center-Augmented Triplet Loss (CTL) in GLGait to reduce the intra-class distance and expand the positive samples in the training stage. Extensive experiments show that our method obtains state-of-the-art results on in-the-wild datasets, $i.e.$, Gait3D and GREW. The code is available at https://github.com/bgdpgz/GLGait.
comment: Accepted by ACM MM2024
☆ FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomous Driving
The integration of data from diverse sensor modalities (e.g., camera and LiDAR) constitutes a prevalent methodology within the ambit of autonomous driving scenarios. Recent advancements in efficient point cloud transformers have underscored the efficacy of integrating information in sparse formats. When it comes to fusion, since image patches are dense in pixel space with ambiguous depth, it necessitates additional design considerations for effective fusion. In this paper, we conduct a comprehensive exploration of design choices for Transformer-based sparse cameraLiDAR fusion. This investigation encompasses strategies for image-to-3D and LiDAR-to-2D mapping, attention neighbor grouping, single modal tokenizer, and micro-structure of Transformer. By amalgamating the most effective principles uncovered through our investigation, we introduce FlatFusion, a carefully designed framework for sparse camera-LiDAR fusion. Notably, FlatFusion significantly outperforms state-of-the-art sparse Transformer-based methods, including UniTR, CMT, and SparseFusion, achieving 73.7 NDS on the nuScenes validation set with 10.1 FPS with PyTorch.
☆ Photometric Inverse Rendering: Shading Cues Modeling and Surface Reflectance Regularization
This paper addresses the problem of inverse rendering from photometric images. Existing approaches for this problem suffer from the effects of self-shadows, inter-reflections, and lack of constraints on the surface reflectance, leading to inaccurate decomposition of reflectance and illumination due to the ill-posed nature of inverse rendering. In this work, we propose a new method for neural inverse rendering. Our method jointly optimizes the light source position to account for the self-shadows in images, and computes indirect illumination using a differentiable rendering layer and an importance sampling strategy. To enhance surface reflectance decomposition, we introduce a new regularization by distilling DINO features to foster accurate and consistent material decomposition. Extensive experiments on synthetic and real datasets demonstrate that our method outperforms the state-of-the-art methods in reflectance decomposition.
comment: Project page: https://jzbao03.site/projects/PIR/
☆ Membership Inference Attack Against Masked Image Modeling
Masked Image Modeling (MIM) has achieved significant success in the realm of self-supervised learning (SSL) for visual recognition. The image encoder pre-trained through MIM, involving the masking and subsequent reconstruction of input images, attains state-of-the-art performance in various downstream vision tasks. However, most existing works focus on improving the performance of MIM.In this work, we take a different angle by studying the pre-training data privacy of MIM. Specifically, we propose the first membership inference attack against image encoders pre-trained by MIM, which aims to determine whether an image is part of the MIM pre-training dataset. The key design is to simulate the pre-training paradigm of MIM, i.e., image masking and subsequent reconstruction, and then obtain reconstruction errors. These reconstruction errors can serve as membership signals for achieving attack goals, as the encoder is more capable of reconstructing the input image in its training set with lower errors. Extensive evaluations are conducted on three model architectures and three benchmark datasets. Empirical results show that our attack outperforms baseline methods. Additionally, we undertake intricate ablation studies to analyze multiple factors that could influence the performance of the attack.
☆ Structure-preserving Planar Simplification for Indoor Environments
This paper presents a novel approach for structure-preserving planar simplification of indoor scene point clouds for both simulated and real-world environments. Initially, the scene point cloud undergoes preprocessing steps, including noise reduction and Manhattan world alignment, to ensure robustness and coherence in subsequent analyses. We segment each captured scene into structured (walls-ceiling-floor) and non-structured (indoor objects) scenes. Leveraging a RANSAC algorithm, we extract primitive planes from the input point cloud, facilitating the segmentation and simplification of the structured scene. The best-fitting wall meshes are then generated from the primitives, followed by adjacent mesh merging with the vertex-translation algorithm which preserves the mesh layout. To accurately represent ceilings and floors, we employ the mesh clipping algorithm which clips the ceiling and floor meshes with respect to wall normals. In the case of indoor scenes, we apply a surface reconstruction technique to enhance the fidelity. This paper focuses on the intricate steps of the proposed scene simplification methodology, addressing complex scenarios such as multi-story and slanted walls and ceilings. We also conduct qualitative and quantitative performance comparisons against popular surface reconstruction, shape approximation, and floorplan generation approaches.
☆ Oracle Bone Script Similiar Character Screening Approach Based on Simsiam Contrastive Learning and Supervised Learning
This project proposes a new method that uses fuzzy comprehensive evaluation method to integrate ResNet-50 self-supervised and RepVGG supervised learning. The source image dataset HWOBC oracle is taken as input, the target image is selected, and finally the most similar image is output in turn without any manual intervention. The same feature encoding method is not used for images of different modalities. Before the model training, the image data is preprocessed, and the image is enhanced by random rotation processing, self-square graph equalization theory algorithm, and gamma transform, which effectively enhances the key feature learning. Finally, the fuzzy comprehensive evaluation method is used to combine the results of supervised training and unsupervised training, which can better solve the "most similar" problem that is difficult to quantify. At present, there are many unknown oracle-bone inscriptions waiting for us to crack. Contacting with the glyphs can provide new ideas for cracking.
☆ Unmasking the Uniqueness: A Glimpse into Age-Invariant Face Recognition of Indigenous African Faces
The task of recognizing the age-separated faces of an individual, Age-Invariant Face Recognition (AIFR), has received considerable research efforts in Europe, America, and Asia, compared to Africa. Thus, AIFR research efforts have often under-represented/misrepresented the African ethnicity with non-indigenous Africans. This work developed an AIFR system for indigenous African faces to reduce the misrepresentation of African ethnicity in facial image analysis research. We adopted a pre-trained deep learning model (VGGFace) for AIFR on a dataset of 5,000 indigenous African faces (FAGE\_v2) collected for this study. FAGE\_v2 was curated via Internet image searches of 500 individuals evenly distributed across 10 African countries. VGGFace was trained on FAGE\_v2 to obtain the best accuracy of 81.80\%. We also performed experiments on an African-American subset of the CACD dataset and obtained the best accuracy of 91.5\%. The results show a significant difference in the recognition accuracies of indigenous versus non-indigenous Africans.
comment: Keywords: Age-Invariant Face Recognition, CACD, FAGE_v2, VGGFace
☆ Integrating Saliency Ranking and Reinforcement Learning for Enhanced Object Detection
With the ever-growing variety of object detection approaches, this study explores a series of experiments that combine reinforcement learning (RL)-based visual attention methods with saliency ranking techniques to investigate transparent and sustainable solutions. By integrating saliency ranking for initial bounding box prediction and subsequently applying RL techniques to refine these predictions through a finite set of actions over multiple time steps, this study aims to enhance RL object detection accuracy. Presented as a series of experiments, this research investigates the use of various image feature extraction methods and explores diverse Deep Q-Network (DQN) architectural variations for deep reinforcement learning-based localisation agent training. Additionally, we focus on optimising the detection pipeline at every step by prioritising lightweight and faster models, while also incorporating the capability to classify detected objects, a feature absent in previous RL approaches. We show that by evaluating the performance of these trained agents using the Pascal VOC 2007 dataset, faster and more optimised models were developed. Notably, the best mean Average Precision (mAP) achieved in this study was 51.4, surpassing benchmarks set by RL-based single object detectors in the literature.
comment: Resultant work from Dissertation, Department of AI, University of Malta. Code available at: https://github.com/mbar0075/SaRLVision
☆ Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning ECCV2024
Token compression expedites the training and inference of Vision Transformers (ViTs) by reducing the number of the redundant tokens, e.g., pruning inattentive tokens or merging similar tokens. However, when applied to downstream tasks, these approaches suffer from significant performance drop when the compression degrees are mismatched between training and inference stages, which limits the application of token compression on off-the-shelf trained models. In this paper, we propose a model arithmetic framework to decouple the compression degrees between the two stages. In advance, we additionally perform a fast parameter-efficient self-distillation stage on the pre-trained models to obtain a small plugin, called Token Compensator (ToCom), which describes the gap between models across different compression degrees. During inference, ToCom can be directly inserted into any downstream off-the-shelf models with any mismatched training and inference compression degrees to acquire universal performance improvements without further training. Experiments on over 20 downstream tasks demonstrate the effectiveness of our framework. On CIFAR100, fine-grained visual classification, and VTAB-1k, ToCom can yield up to a maximum improvement of 2.3%, 1.5%, and 2.0% in the average performance of DeiT-B, respectively. Code: https://github.com/JieShibo/ToCom
comment: Accepted to ECCV2024
☆ Visual Neural Decoding via Improved Visual-EEG Semantic Consistency
Visual neural decoding refers to the process of extracting and interpreting original visual experiences from human brain activity. Recent advances in metric learning-based EEG visual decoding methods have delivered promising results and demonstrated the feasibility of decoding novel visual categories from brain activity. However, methods that directly map EEG features to the CLIP embedding space may introduce mapping bias and cause semantic inconsistency among features, thereby degrading alignment and impairing decoding performance. To further explore the semantic consistency between visual and neural signals. In this work, we construct a joint semantic space and propose a Visual-EEG Semantic Decouple Framework that explicitly extracts the semantic-related features of these two modalities to facilitate optimal alignment. Specifically, a cross-modal information decoupling module is introduced to guide the extraction of semantic-related information from modalities. Then, by quantifying the mutual information between visual image and EEG features, we observe a strong positive correlation between the decoding performance and the magnitude of mutual information. Furthermore, inspired by the mechanisms of visual object understanding from neuroscience, we propose an intra-class geometric consistency approach during the alignment process. This strategy maps visual samples within the same class to consistent neural patterns, which further enhances the robustness and the performance of EEG visual decoding. Experiments on a large Image-EEG dataset show that our method achieves state-of-the-art results in zero-shot neural decoding tasks.
☆ Enhancing Diabetic Retinopathy Diagnosis: A Lightweight CNN Architecture for Efficient Exudate Detection in Retinal Fundus Images
Retinal fundus imaging plays an essential role in diagnosing various stages of diabetic retinopathy, where exudates are critical markers of early disease onset. Prompt detection of these exudates is pivotal for enabling optometrists to arrest or significantly decelerate the disease progression. This paper introduces a novel, lightweight convolutional neural network architecture tailored for automated exudate detection, designed to identify these markers efficiently and accurately. To address the challenge of limited training data, we have incorporated domain-specific data augmentations to enhance the model's generalizability. Furthermore, we applied a suite of regularization techniques within our custom architecture to boost diagnostic accuracy while optimizing computational efficiency. Remarkably, this streamlined model contains only 4.73 million parameters a reduction of nearly 60% compared to the standard ResNet-18 model, which has 11.69 million parameters. Despite its reduced complexity, our model achieves an impressive F1 score of 90%, demonstrating its efficacy in the early detection of diabetic retinopathy through fundus imaging.
☆ Do Vision-Language Foundational models show Robust Visual Perception?
Recent advances in vision-language foundational models have enabled development of systems that can perform visual understanding and reasoning tasks. However, it is unclear if these models are robust to distribution shifts, and how their performance and generalization capabilities vary under changes in data distribution. In this project we strive to answer the question "Are vision-language foundational models robust to distribution shifts like human perception?" Specifically, we consider a diverse range of vision-language models and compare how the performance of these systems is affected by corruption based distribution shifts (such as \textit{motion blur, fog, snow, gaussian noise}) commonly found in practical real-world scenarios. We analyse the generalization capabilities qualitatively and quantitatively on zero-shot image classification task under aforementioned distribution shifts. Our code will be avaible at \url{https://github.com/shivam-chandhok/CPSC-540-Project}
comment: UBC Report
☆ ED$^4$: Explicit Data-level Debiasing for Deepfake Detection
Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED$^4$, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED$^4$ is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
☆ Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions SC
The rapid evolution of deep learning and its integration with autonomous driving systems have led to substantial advancements in 3D perception using multimodal sensors. Notably, radar sensors show greater robustness compared to cameras and lidar under adverse weather and varying illumination conditions. This study delves into the often-overlooked yet crucial issue of domain shift in 4D radar-based object detection, examining how varying environmental conditions, such as different weather patterns and road types, impact 3D object detection performance. Our findings highlight distinct domain shifts across various weather scenarios, revealing unique dataset sensitivities that underscore the critical role of radar point cloud generation. Additionally, we demonstrate that transitioning between different road types, especially from highways to urban settings, introduces notable domain shifts, emphasizing the necessity for diverse data collection across varied road environments. To the best of our knowledge, this is the first comprehensive analysis of domain shift effects on 4D radar-based object detection. We believe this empirical study contributes to understanding the complex nature of domain shifts in radar data and suggests paths forward for data collection strategy in the face of environmental variability.
comment: 6 pages, 5 figures, 3 tables, accepted in IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
☆ Cross-View Geolocalization and Disaster Mapping with Street-View and VHR Satellite Imagery: A Case Study of Hurricane IAN
Nature disasters play a key role in shaping human-urban infrastructure interactions. Effective and efficient response to natural disasters is essential for building resilience and a sustainable urban environment. Two types of information are usually the most necessary and difficult to gather in disaster response. The first information is about disaster damage perception, which shows how badly people think that urban infrastructure has been damaged. The second information is geolocation awareness, which means how people whereabouts are made available. In this paper, we proposed a novel disaster mapping framework, namely CVDisaster, aiming at simultaneously addressing geolocalization and damage perception estimation using cross-view Street-View Imagery (SVI) and Very High-Resolution satellite imagery. CVDisaster consists of two cross-view models, where CVDisaster-Geoloc refers to a cross-view geolocalization model based on a contrastive learning objective with a Siamese ConvNeXt image encoder, and CVDisaster-Est is a cross-view classification model based on a Couple Global Context Vision Transformer (CGCViT). Taking Hurricane IAN as a case study, we evaluate the CVDisaster framework by creating a novel cross-view dataset (CVIAN) and conducting extensive experiments. As a result, we show that CVDisaster can achieve highly competitive performance (over 80% for geolocalization and 75% for damage perception estimation) with even limited fine-tuning efforts, which largely motivates future cross-view models and applications within a broader GeoAI research community. The data and code are publicly available at: https://github.com/tum-bgd/CVDisaster.
☆ Sumotosima: A Framework and Dataset for Classifying and Summarizing Otoscopic Images
Otoscopy is a diagnostic procedure to examine the ear canal and eardrum using an otoscope. It identifies conditions like infections, foreign bodies, ear drum perforations and ear abnormalities. We propose a novel resource efficient deep learning and transformer based framework, Sumotosima (Summarizer for otoscopic images), an end-to-end pipeline for classification followed by summarization. Our framework works on combination of triplet and cross-entropy losses. Additionally, we use Knowledge Enhanced Multimodal BART whose input is fused textual and image embedding. The objective is to provide summaries that are well-suited for patients, ensuring clarity and efficiency in understanding otoscopic images. Given the lack of existing datasets, we have curated our own OCASD (Otoscopic Classification And Summary Dataset), which includes 500 images with 5 unique categories annotated with their class and summaries by Otolaryngologists. Sumotosima achieved a result of 98.03%, which is 7.00%, 3.10%, 3.01% higher than K-Nearest Neighbors, Random Forest and Support Vector Machines, respectively, in classification tasks. For summarization, Sumotosima outperformed GPT-4o and LLaVA by 88.53% and 107.57% in ROUGE scores, respectively. We have made our code and dataset publicly available at https://github.com/anas2908/Sumotosima
comment: Work in Progress
☆ ReCLIP++: Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation CVPR 24
Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don't explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable ''Reference'' prompt to encode class-preference bias and a projection of the positional embedding in vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into the Reference feature and the positional feature. Via a matrix multiplication between two features, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. To make the bias modeling and rectification process meaningful and effective, a contrastive loss based on masked visual features and the text features of different classes is imposed. To further improve the segmentation, we distill the knowledge from the rectified CLIP to the advanced segmentation architecture via minimizing our designed mask-guided, feature-guided and text-guided loss terms. Extensive experiments on various benchmarks demonstrate that ReCLIP++ performs favorably against previous SOTAs. The implementation is available at: https://github.com/dogehhh/ReCLIP.
comment: Extended version of our CVPR 24 paper
☆ Long-Tailed Out-of-Distribution Detection: Prioritizing Attention to Tail
Current out-of-distribution (OOD) detection methods typically assume balanced in-distribution (ID) data, while most real-world data follow a long-tailed distribution. Previous approaches to long-tailed OOD detection often involve balancing the ID data by reducing the semantics of head classes. However, this reduction can severely affect the classification accuracy of ID data. The main challenge of this task lies in the severe lack of features for tail classes, leading to confusion with OOD data. To tackle this issue, we introduce a novel Prioritizing Attention to Tail (PATT) method using augmentation instead of reduction. Our main intuition involves using a mixture of von Mises-Fisher (vMF) distributions to model the ID data and a temperature scaling module to boost the confidence of ID data. This enables us to generate infinite contrastive pairs, implicitly enhancing the semantics of ID classes while promoting differentiation between ID and OOD data. To further strengthen the detection of OOD data without compromising the classification performance of ID data, we propose feature calibration during the inference phase. By extracting an attention weight from the training set that prioritizes the tail classes and reduces the confidence in OOD data, we improve the OOD detection capability. Extensive experiments verified that our method outperforms the current state-of-the-art methods on various benchmarks.
☆ Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective
With recent generative models facilitating photo-realistic image synthesis, the proliferation of synthetic images has also engendered certain negative impacts on social platforms, thereby raising an urgent imperative to develop effective detectors. Current synthetic image detection (SID) pipelines are primarily dedicated to crafting universal artifact features, accompanied by an oversight about SID training paradigm. In this paper, we re-examine the SID problem and identify two prevalent biases in current training paradigms, i.e., weakened artifact features and overfitted artifact features. Meanwhile, we discover that the imaging mechanism of synthetic images contributes to heightened local correlations among pixels, suggesting that detectors should be equipped with local awareness. In this light, we propose SAFE, a lightweight and effective detector with three simple image transformations. Firstly, for weakened artifact features, we substitute the down-sampling operator with the crop operator in image pre-processing to help circumvent artifact distortion. Secondly, for overfitted artifact features, we include ColorJitter and RandomRotation as additional data augmentations, to help alleviate irrelevant biases from color discrepancies and semantic differences in limited training samples. Thirdly, for local awareness, we propose a patch-based random masking strategy tailored for SID, forcing the detector to focus on local regions at training. Comparative experiments are conducted on an open-world dataset, comprising synthetic images generated by 26 distinct generative models. Our pipeline achieves a new state-of-the-art performance, with remarkable improvements of 4.5% in accuracy and 2.9% in average precision against existing methods.
☆ DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
comment: 9 pages,8 figures
☆ Enhancing Visual Dialog State Tracking through Iterative Object-Entity Alignment in Multi-Round Conversations
Visual Dialog (VD) is a task where an agent answers a series of image-related questions based on a multi-round dialog history. However, previous VD methods often treat the entire dialog history as a simple text input, disregarding the inherent conversational information flows at the round level. In this paper, we introduce Multi-round Dialogue State Tracking model (MDST), a framework that addresses this limitation by leveraging the dialogue state learned from dialog history to answer questions. MDST captures each round of dialog history, constructing internal dialogue state representations defined as 2-tuples of vision-language representations. These representations effectively ground the current question, enabling the generation of accurate answers. Experimental results on the VisDial v1.0 dataset demonstrate that MDST achieves a new state-of-the-art performance in generative setting. Furthermore, through a series of human studies, we validate the effectiveness of MDST in generating long, consistent, and human-like answers while consistently answering a series of questions correctly.
comment: This article has been accepted in CAAI Transactions on Intelligence Technology! Article ID: CIT2_12370, Article DOI: 10.1049/cit2.12370
☆ Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems. Such models have been shown to be highly capable, but, at the same time, also lacking some basic visual understanding skills. In this paper, we set out to understand the limitations of SoTA VLMs on fundamental visual tasks: object classification, understanding spatial arrangement, and ability to delineate individual object instances (through counting), by constructing a series of tests that probe which components of design, specifically, maybe lacking. Importantly, we go significantly beyond the current benchmarks, that simply measure final performance of VLM, by also comparing and contrasting it to performance of probes trained directly on features obtained from visual encoder (image embeddings), as well as intermediate vision-language projection used to bridge image-encoder and LLM-decoder ouput in many SoTA models (e.g., LLaVA, BLIP, InstructBLIP). In doing so, we uncover nascent shortcomings in VLMs response and make a number of important observations which could help train and develop more effective VLM models in future.
comment: Under Submission
☆ Multimodal Analysis of White Blood Cell Differentiation in Acute Myeloid Leukemia Patients using a β-Variational Autoencoder MICCAI 2024
Biomedical imaging and RNA sequencing with single-cell resolution improves our understanding of white blood cell diseases like leukemia. By combining morphological and transcriptomic data, we can gain insights into cellular functions and trajectoriess involved in blood cell differentiation. However, existing methodologies struggle with integrating morphological and transcriptomic data, leaving a significant research gap in comprehensively understanding the dynamics of cell differentiation. Here, we introduce an unsupervised method that explores and reconstructs these two modalities and uncovers the relationship between different subtypes of white blood cells from human peripheral blood smears in terms of morphology and their corresponding transcriptome. Our method is based on a beta-variational autoencoder (\beta-VAE) with a customized loss function, incorporating a R-CNN architecture to distinguish single-cell from background and to minimize any interference from artifacts. This implementation of \beta-VAE shows good reconstruction capability along with continuous latent embeddings, while maintaining clear differentiation between single-cell classes. Our novel approach is especially helpful to uncover the correlation of two latent features in complex biological processes such as formation of granules in the cell (granulopoiesis) with gene expression patterns. It thus provides a unique tool to improve the understanding of white blood cell maturation for biomedicine and diagnostics.
comment: Accepted for publication at MICCAI 2024 workshop on AI for Imaging Genomics Learning (AIIG)
☆ Towards Cross-Domain Single Blood Cell Image Classification via Large-Scale LoRA-based Segment Anything Model
Accurate classification of blood cells plays a vital role in hematological analysis as it aids physicians in diagnosing various medical conditions. In this study, we present a novel approach for classifying blood cell images known as BC-SAM. BC-SAM leverages the large-scale foundation model of Segment Anything Model (SAM) and incorporates a fine-tuning technique using LoRA, allowing it to extract general image embeddings from blood cell images. To enhance the applicability of BC-SAM across different blood cell image datasets, we introduce an unsupervised cross-domain autoencoder that focuses on learning intrinsic features while suppressing artifacts in the images. To assess the performance of BC-SAM, we employ four widely used machine learning classifiers (Random Forest, Support Vector Machine, Artificial Neural Network, and XGBoost) to construct blood cell classification models and compare them against existing state-of-the-art methods. Experimental results conducted on two publicly available blood cell datasets (Matek-19 and Acevedo-20) demonstrate that our proposed BC-SAM achieves a new state-of-the-art result, surpassing the baseline methods with a significant improvement. The source code of this paper is available at https://github.com/AnoK3111/BC-SAM.
Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method
All-in-one image restoration tasks are becoming increasingly important, especially for ultra-high-definition (UHD) images. Existing all-in-one UHD image restoration methods usually boost the model's performance by introducing prompt or customized dynamized networks for different degradation types. For the inference stage, it might be friendly, but in the training stage, since the model encounters multiple degraded images of different quality in an epoch, these cluttered learning objectives might be information pollution for the model. To address this problem, we propose a new training paradigm for general image restoration models, which we name \textbf{Review Learning}, which enables image restoration models to be capable enough to handle multiple types of degradation without prior knowledge and prompts. This approach begins with sequential training of an image restoration model on several degraded datasets, combined with a review mechanism that enhances the image restoration model's memory for several previous classes of degraded datasets. In addition, we design a lightweight all-purpose image restoration network that can efficiently reason about degraded images with 4K ($3840 \times 2160$) resolution on a single consumer-grade GPU.
☆ MAIR++: Improving Multi-view Attention Inverse Rendering with Implicit Lighting Representation
In this paper, we propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, SVBRDF, and 3D spatially-varying lighting. While multi-view images have been widely used for object-level inverse rendering, scene-level inverse rendering has primarily been studied using single-view images due to the lack of a dataset containing high dynamic range multi-view images with ground-truth geometry, material, and spatially-varying lighting. To improve the quality of scene-level inverse rendering, a novel framework called Multi-view Attention Inverse Rendering (MAIR) was recently introduced. MAIR performs scene-level multi-view inverse rendering by expanding the OpenRooms dataset, designing efficient pipelines to handle multi-view images, and splitting spatially-varying lighting. Although MAIR showed impressive results, its lighting representation is fixed to spherical Gaussians, which limits its ability to render images realistically. Consequently, MAIR cannot be directly used in applications such as material editing. Moreover, its multi-view aggregation networks have difficulties extracting rich features because they only focus on the mean and variance between multi-view features. In this paper, we propose its extended version, called MAIR++. MAIR++ addresses the aforementioned limitations by introducing an implicit lighting representation that accurately captures the lighting conditions of an image while facilitating realistic rendering. Furthermore, we design a directional attention-based multi-view aggregation network to infer more intricate relationships between views. Experimental results show that MAIR++ not only achieves better performance than MAIR and single-view-based methods, but also displays robust performance on unseen real-world scenes.
☆ SlotLifter: Slot-guided Feature Lifting for Learning Object-centric Radiance Fields ECCV 2024
The ability to distill object-centric abstractions from intricate visual scenes underpins human-level generalization. Despite the significant progress in object-centric learning methods, learning object-centric representations in the 3D physical world remains a crucial challenge. In this work, we propose SlotLifter, a novel object-centric radiance model addressing scene reconstruction and decomposition jointly via slot-guided feature lifting. Such a design unites object-centric learning representations and image-based rendering methods, offering state-of-the-art performance in scene decomposition and novel-view synthesis on four challenging synthetic and four complex real-world datasets, outperforming existing 3D object-centric learning methods by a large margin. Through extensive ablative studies, we showcase the efficacy of designs in SlotLifter, revealing key insights for potential future directions.
comment: Accepted by ECCV 2024. Project website: https://slotlifter.github.io
☆ DC3DO: Diffusion Classifier for 3D Objects
Inspired by Geoffrey Hinton emphasis on generative modeling, To recognize shapes, first learn to generate them, we explore the use of 3D diffusion models for object classification. Leveraging the density estimates from these models, our approach, the Diffusion Classifier for 3D Objects (DC3DO), enables zero-shot classification of 3D shapes without additional training. On average, our method achieves a 12.5 percent improvement compared to its multiview counterparts, demonstrating superior multimodal reasoning over discriminative approaches. DC3DO employs a class-conditional diffusion model trained on ShapeNet, and we run inferences on point clouds of chairs and cars. This work highlights the potential of generative models in 3D object classification.
☆ Masked Image Modeling: A Survey
In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g. pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work.
☆ How to Best Combine Demosaicing and Denoising?
Image demosaicing and denoising play a critical role in the raw imaging pipeline. These processes have often been treated as independent, without considering their interactions. Indeed, most classic denoising methods handle noisy RGB images, not raw images. Conversely, most demosaicing methods address the demosaicing of noise free images. The real problem is to jointly denoise and demosaic noisy raw images. But the question of how to proceed is still not yet clarified. In this paper, we carry-out extensive experiments and a mathematical analysis to tackle this problem by low complexity algorithms. Indeed, both problems have been only addressed jointly by end-to-end heavy weight convolutional neural networks (CNNs), which are currently incompatible with low power portable imaging devices and remain by nature domain (or device) dependent. Our study leads us to conclude that, with moderate noise, demosaicing should be applied first, followed by denoising. This requires a simple adaptation of classic denoising algorithms to demosaiced noise, which we justify and specify. Although our main conclusion is ``demosaic first, then denoise'', we also discover that for high noise, there is a moderate PSNR gain by a more complex strategy: partial CFA denoising followed by demosaicing, and by a second denoising on the RGB image. These surprising results are obtained by a black-box optimization of the pipeline, which could be applied to any other pipeline. We validate our results on simulated and real noisy CFA images obtained from several benchmarks.
comment: This paper was accepted by Inverse Problems and Imaging on October, 2023
☆ Coherence Awareness in Diffractive Neural Networks
Diffractive neural networks hold great promise for applications requiring intensive computational processing. Considerable attention has focused on diffractive networks for either spatially coherent or spatially incoherent illumination. Here we illustrate that, as opposed to imaging systems, in diffractive networks the degree of spatial coherence has a dramatic effect. In particular, we show that when the spatial coherence length on the object is comparable to the minimal feature size preserved by the optical system, neither the incoherent nor the coherent extremes serve as acceptable approximations. Importantly, this situation is inherent to many settings involving active illumination, including reflected light microscopy, autonomous vehicles and smartphones. Following this observation, we propose a general framework for training diffractive networks for any specified degree of spatial and temporal coherence, supporting all types of linear and nonlinear layers. Using our method, we numerically optimize networks for image classification, and thoroughly investigate their performance dependence on the illumination coherence properties. We further introduce the concept of coherence-blind networks, which have enhanced resilience to changes in illumination conditions. Our findings serve as a steppingstone toward adopting all-optical neural networks in real-world applications, leveraging nothing but natural light.
☆ Bi-directional Contextual Attention for 3D Dense Captioning ECCV 2024
3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene. Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object. However, the contextual information constructed in these scenarios is limited in two aspects: first, objects have multiple positional relationships that exist across the entire global scene, not only near the object itself. Second, it faces with contradicting objectives--where localization and attribute descriptions are generated better with tight localization, while descriptions involving global positional relations are generated better with contextualized features of the global scene. To overcome this challenge, we introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention. Leveraging parallelly decoded instance queries for objects and context queries for non-object contexts, BiCA generates object-aware contexts, where the contexts relevant to each object is summarized, and context-aware objects, where the objects relevant to the summarized object-aware contexts are aggregated. This extension relieves previous methods from the contradicting objectives, enhancing both localization performance and enabling the aggregation of contextual features throughout the global scene; thus improving caption generation performance simultaneously. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
comment: Accepted to ECCV 2024 (Oral)
☆ Hybrid SD: Edge-Cloud Collaborative Inference for Stable Diffusion Models
Stable Diffusion Models (SDMs) have shown remarkable proficiency in image synthesis. However, their broad application is impeded by their large model sizes and intensive computational requirements, which typically require expensive cloud servers for deployment. On the flip side, while there are many compact models tailored for edge devices that can reduce these demands, they often compromise on semantic integrity and visual quality when compared to full-sized SDMs. To bridge this gap, we introduce Hybrid SD, an innovative, training-free SDMs inference framework designed for edge-cloud collaborative inference. Hybrid SD distributes the early steps of the diffusion process to the large models deployed on cloud servers, enhancing semantic planning. Furthermore, small efficient models deployed on edge devices can be integrated for refining visual details in the later stages. Acknowledging the diversity of edge devices with differing computational and storage capacities, we employ structural pruning to the SDMs U-Net and train a lightweight VAE. Empirical evaluations demonstrate that our compressed models achieve state-of-the-art parameter efficiency (225.8M) on edge devices with competitive image quality. Additionally, Hybrid SD reduces the cloud cost by 66% with edge-cloud collaborative inference.
☆ Specialized Change Detection using Segment Anything
Change detection (CD) is a fundamental task in Earth observation. While most change detection methods detect all changes, there is a growing need for specialized methods targeting specific changes relevant to particular applications while discarding the other changes. For instance, urban management might prioritize detecting the disappearance of buildings due to natural disasters or other reasons. Furthermore, while most supervised change detection methods require large-scale training datasets, in many applications only one or two training examples might be available instead of large datasets. Addressing such needs, we propose a focused CD approach using the Segment Anything Model (SAM), a versatile vision foundation model. Our method leverages a binary mask of the object of interest in pre-change images to detect their disappearance in post-change images. By using SAM's robust segmentation capabilities, we create prompts from the pre-change mask, use those prompts to segment the post-change image, and identify missing objects. This unsupervised approach demonstrated for building disappearance detection, is adaptable to various domains requiring specialized CD. Our contributions include defining a novel CD problem, proposing a method using SAM, and demonstrating its effectiveness. The proposed method also has benefits related to privacy preservation.
☆ Attention Based Feature Fusion Network for Monkeypox Skin Lesion Detection
The recent monkeypox outbreak has raised significant public health concerns due to its rapid spread across multiple countries. Monkeypox can be difficult to distinguish from chickenpox and measles in the early stages because the symptoms of all three diseases are similar. Modern deep learning algorithms can be used to identify diseases, including COVID-19, by analyzing images of the affected areas. In this study, we introduce a lightweight model that merges two pre-trained architectures, EfficientNetV2B3 and ResNet151V2, to classify human monkeypox disease. We have also incorporated the squeeze-and-excitation attention network module to focus on the important parts of the feature maps for classifying the monkeypox images. This attention module provides channels and spatial attention to highlight significant areas within feature maps. We evaluated the effectiveness of our model by extensively testing it on a publicly available Monkeypox Skin Lesions Dataset using a four-fold cross-validation approach. The evaluation metrics of our model were compared with the existing others. Our model achieves a mean validation accuracy of 96.52%, with precision, recall, and F1-score values of 96.58%, 96.52%, and 96.51%, respectively.
comment: 6 pages with 6 figures
☆ COD: Learning Conditional Invariant Representation for Domain Adaptation Regression ECCV 2024
Aiming to generalize the label knowledge from a source domain with continuous outputs to an unlabeled target domain, Domain Adaptation Regression (DAR) is developed for complex practical learning problems. However, due to the continuity problem in regression, existing conditional distribution alignment theory and methods with discrete prior, which are proven to be effective in classification settings, are no longer applicable. In this work, focusing on the feasibility problems in DAR, we establish the sufficiency theory for the regression model, which shows the generalization error can be sufficiently dominated by the cross-domain conditional discrepancy. Further, to characterize conditional discrepancy with continuous conditioning variable, a novel Conditional Operator Discrepancy (COD) is proposed, which admits the metric property on conditional distributions via the kernel embedding theory. Finally, to minimize the discrepancy, a COD-based conditional invariant representation learning model is proposed, and the reformulation is derived to show that reasonable modifications on moment statistics can further improve the discriminability of the adaptation model. Extensive experiments on standard DAR datasets verify the validity of theoretical results and the superiority over SOTA DAR methods.
comment: Accepted to ECCV 2024 (oral)
☆ Unified-IoU: For High-Quality Object Detection
Object detection is an important part in the field of computer vision, and the effect of object detection is directly determined by the regression accuracy of the prediction box. As the key to model training, IoU (Intersection over Union) greatly shows the difference between the current prediction box and the Ground Truth box. Subsequent researchers have continuously added more considerations to IoU, such as center distance, aspect ratio, and so on. However, there is an upper limit to just refining the geometric differences; And there is a potential connection between the new consideration index and the IoU itself, and the direct addition or subtraction between the two may lead to the problem of "over-consideration". Based on this, we propose a new IoU loss function, called Unified-IoU (UIoU), which is more concerned with the weight assignment between different quality prediction boxes. Specifically, the loss function dynamically shifts the model's attention from low-quality prediction boxes to high-quality prediction boxes in a novel way to enhance the model's detection performance on high-precision or intensive datasets and achieve a balance in training speed. Our proposed method achieves better performance on multiple datasets, especially at a high IoU threshold, UIoU has a more significant improvement effect compared with other improved IoU losses. Our code is publicly available at: https://github.com/lxj-drifter/UIOU_files.
☆ IDRetracor: Towards Visual Forensics Against Malicious Face Swapping
The face swapping technique based on deepfake methods poses significant social risks to personal identity security. While numerous deepfake detection methods have been proposed as countermeasures against malicious face swapping, they can only output binary labels (Fake/Real) for distinguishing fake content without reliable and traceable evidence. To achieve visual forensics and target face attribution, we propose a novel task named face retracing, which considers retracing the original target face from the given fake one via inverse mapping. Toward this goal, we propose an IDRetracor that can retrace arbitrary original target identities from fake faces generated by multiple face swapping methods. Specifically, we first adopt a mapping resolver to perceive the possible solution space of the original target face for the inverse mappings. Then, we propose mapping-aware convolutions to retrace the original target face from the fake one. Such convolutions contain multiple kernels that can be combined under the control of the mapping resolver to tackle different face swapping mappings dynamically. Extensive experiments demonstrate that the IDRetracor exhibits promising retracing performance from both quantitative and qualitative perspectives.
☆ A lightweight YOLOv5-FFM model for occlusion pedestrian detection
The development of autonomous driving technology must be inseparable from pedestrian detection. Because of the fast speed of the vehicle, the accuracy and real-time performance of the pedestrian detection algorithm are very important. YOLO, as an efficient and simple one-stage target detection method, is often used for pedestrian detection in various environments. However, this series of detectors face some challenges, such as excessive computation and undesirable detection rate when facing occluded pedestrians. In this paper, we propose an improved lightweight YOLOv5 model to deal with these problems. This model can achieve better pedestrian detection accuracy with fewer floating-point operations (FLOPs), especially for occluded targets. In order to achieve the above goals, we made improvements based on the YOLOv5 model framework and introduced Ghost module and SE block. Furthermore, we designed a local feature fusion module (FFM) to deal with occlusion in pedestrian detection. To verify the validity of our method, two datasets, Citypersons and CUHK Occlusion, were selected for the experiment. The experimental results show that, compared with the original yolov5s model, the average precision (AP) of our method is significantly improved, while the number of parameters is reduced by 27.9% and FLOPs are reduced by 19.0%.
☆ Fast Information Streaming Handler (FisH): A Unified Seismic Neural Network for Single Station Real-Time Earthquake Early Warning
Existing EEW approaches often treat phase picking, location estimation, and magnitude estimation as separate tasks, lacking a unified framework. Additionally, most deep learning models in seismology rely on full three-component waveforms and are not suitable for real-time streaming data. To address these limitations, we propose a novel unified seismic neural network called Fast Information Streaming Handler (FisH). FisH is designed to process real-time streaming seismic data and generate simultaneous results for phase picking, location estimation, and magnitude estimation in an end-to-end fashion. By integrating these tasks within a single model, FisH simplifies the overall process and leverages the nonlinear relationships between tasks for improved performance. The FisH model utilizes RetNet as its backbone, enabling parallel processing during training and recurrent handling during inference. This capability makes FisH suitable for real-time applications, reducing latency in EEW systems. Extensive experiments conducted on the STEAD benchmark dataset provide strong validation for the effectiveness of our proposed FisH model. The results demonstrate that FisH achieves impressive performance across multiple seismic event detection and characterization tasks. Specifically, it achieves an F1 score of 0.99/0.96. Also, FisH demonstrates precise earthquake location estimation, with location error of only 6.0km, a distance error of 2.6km, and a back-azimuth error of 19{\deg}. The model also exhibits accurate earthquake magnitude estimation, with a magnitude error of just 0.14. Additionally, FisH is capable of generating real-time estimations, providing location and magnitude estimations with a location error of 8.06km and a magnitude error of 0.18 within a mere 3 seconds after the P-wave arrives.
☆ DePatch: Towards Robust Adversarial Patch for Evading Person Detectors in the Real World
Recent years have seen an increasing interest in physical adversarial attacks, which aim to craft deployable patterns for deceiving deep neural networks, especially for person detectors. However, the adversarial patterns of existing patch-based attacks heavily suffer from the self-coupling issue, where a degradation, caused by physical transformations, in any small patch segment can result in a complete adversarial dysfunction, leading to poor robustness in the complex real world. Upon this observation, we introduce the Decoupled adversarial Patch (DePatch) attack to address the self-coupling issue of adversarial patches. Specifically, we divide the adversarial patch into block-wise segments, and reduce the inter-dependency among these segments through randomly erasing out some segments during the optimization. We further introduce a border shifting operation and a progressive decoupling strategy to improve the overall attack capabilities. Extensive experiments demonstrate the superior performance of our method over other physical adversarial attacks, especially in the real world.
☆ ActPrompt: In-Domain Feature Adaptation via Action Cues for Video Temporal Grounding
Video temporal grounding is an emerging topic aiming to identify specific clips within videos. In addition to pre-trained video models, contemporary methods utilize pre-trained vision-language models (VLM) to capture detailed characteristics of diverse scenes and objects from video frames. However, as pre-trained on images, VLM may struggle to distinguish action-sensitive patterns from static objects, making it necessary to adapt them to specific data domains for effective feature representation over temporal grounding. We address two primary challenges to achieve this goal. Specifically, to mitigate high adaptation costs, we propose an efficient preliminary in-domain fine-tuning paradigm for feature adaptation, where downstream-adaptive features are learned through several pretext tasks. Furthermore, to integrate action-sensitive information into VLM, we introduce Action-Cue-Injected Temporal Prompt Learning (ActPrompt), which injects action cues into the image encoder of VLM for better discovering action-sensitive patterns. Extensive experiments demonstrate that ActPrompt is an off-the-shelf training framework that can be effectively applied to various SOTA methods, resulting in notable improvements. The complete code used in this study is provided in the supplementary materials.
comment: 9 pages, 5 figures
☆ ViMo: Generating Motions from Casual Videos
Although humans have the innate ability to imagine multiple possible actions from videos, it remains an extraordinary challenge for computers due to the intricate camera movements and montages. Most existing motion generation methods predominantly rely on manually collected motion datasets, usually tediously sourced from motion capture (Mocap) systems or Multi-View cameras, unavoidably resulting in a limited size that severely undermines their generalizability. Inspired by recent advance of diffusion models, we probe a simple and effective way to capture motions from videos and propose a novel Video-to-Motion-Generation framework (ViMo) which could leverage the immense trove of untapped video content to produce abundant and diverse 3D human motions. Distinct from prior work, our videos could be more causal, including complicated camera movements and occlusions. Striking experimental results demonstrate the proposed model could generate natural motions even for videos where rapid movements, varying perspectives, or frequent occlusions might exist. We also show this work could enable three important downstream applications, such as generating dancing motions according to arbitrary music and source video style. Extensive experimental results prove that our model offers an effective and scalable way to generate diversity and realistic motions. Code and demos will be public soon.
☆ CROME: Cross-Modal Adapters for Efficient Multimodal LLM
Multimodal Large Language Models (MLLMs) demonstrate remarkable image-language capabilities, but their widespread use faces challenges in cost-effective training and adaptation. Existing approaches often necessitate expensive language model retraining and limited adaptability. Additionally, the current focus on zero-shot performance improvements offers insufficient guidance for task-specific tuning. We propose CROME, an efficient vision-language instruction tuning framework. It features a novel gated cross-modal adapter that effectively combines visual and textual representations prior to input into a frozen LLM. This lightweight adapter, trained with minimal parameters, enables efficient cross-modal understanding. Notably, CROME demonstrates superior zero-shot performance on standard visual question answering and instruction-following benchmarks. Moreover, it yields fine-tuning with exceptional parameter efficiency, competing with task-specific specialist state-of-the-art methods. CROME demonstrates the potential of pre-LM alignment for building scalable, adaptable, and parameter-efficient multimodal models.
☆ MV-DETR: Multi-modality indoor object detection by Multi-View DEtecton TRansformers
We introduce a novel MV-DETR pipeline which is effective while efficient transformer based detection method. Given input RGBD data, we notice that there are super strong pretraining weights for RGB data while less effective works for depth related data. First and foremost , we argue that geometry and texture cues are both of vital importance while could be encoded separately. Secondly, we find that visual texture feature is relatively hard to extract compared with geometry feature in 3d space. Unfortunately, single RGBD dataset with thousands of data is not enough for training an discriminating filter for visual texture feature extraction. Last but certainly not the least, we designed a lightweight VG module consists of a visual textual encoder, a geometry encoder and a VG connector. Compared with previous state of the art works like V-DETR, gains from pretrained visual encoder could be seen. Extensive experiments on ScanNetV2 dataset shows the effectiveness of our method. It is worth mentioned that our method achieve 78\% AP which create new state of the art on ScanNetv2 benchmark.
☆ Deep Inertia $L_p$ Half-Quadratic Splitting Unrolling Network for Sparse View CT Reconstruction
Sparse view computed tomography (CT) reconstruction poses a challenging ill-posed inverse problem, necessitating effective regularization techniques. In this letter, we employ $L_p$-norm ($0
comment: This paper was accepted by IEEE Signal Processing Letters on July 28, 2024
☆ GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer
Point cloud completion aims to recover accurate global geometry and preserve fine-grained local details from partial point clouds. Conventional methods typically predict unseen points directly from 3D point cloud coordinates or use self-projected multi-view depth maps to ease this task. However, these gray-scale depth maps cannot reach multi-view consistency, consequently restricting the performance. In this paper, we introduce a GeoFormer that simultaneously enhances the global geometric structure of the points and improves the local details. Specifically, we design a CCM Feature Enhanced Point Generator to integrate image features from multi-view consistent canonical coordinate maps (CCMs) and align them with pure point features, thereby enhancing the global geometry feature. Additionally, we employ the Multi-scale Geometry-aware Upsampler module to progressively enhance local details. This is achieved through cross attention between the multi-scale features extracted from the partial input and the features derived from previously estimated points. Extensive experiments on the PCN, ShapeNet-55/34, and KITTI benchmarks demonstrate that our GeoFormer outperforms recent methods, achieving the state-of-the-art performance. Our code is available at \href{https://github.com/Jinpeng-Yu/GeoFormer}{https://github.com/Jinpeng-Yu/GeoFormer}.
comment: accepted by the 32nd ACM International Conference on Multimedia (MM'24)
☆ ActiveNeRF: Learning Accurate 3D Geometry by Active Pattern Projection
NeRFs have achieved incredible success in novel view synthesis. However, the accuracy of the implicit geometry is unsatisfactory because the passive static environmental illumination has low spatial frequency and cannot provide enough information for accurate geometry reconstruction. In this work, we propose ActiveNeRF, a 3D geometry reconstruction framework, which improves the geometry quality of NeRF by actively projecting patterns of high spatial frequency onto the scene using a projector which has a constant relative pose to the camera. We design a learnable active pattern rendering pipeline which jointly learns the scene geometry and the active pattern. We find that, by adding the active pattern and imposing its consistency across different views, our proposed method outperforms state of the art geometry reconstruction methods qualitatively and quantitatively in both simulation and real experiments. Code is avaliable at https://github.com/hcp16/active_nerf
comment: 18 pages, 10 figures
☆ HDRGS: High Dynamic Range Gaussian Splatting
Recent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios. Code will be released at \url{https://github.com/WuJH2001/HDRGS}
☆ A Review of Pseudo-Labeling for Computer Vision
Deep neural models have achieved state of the art performance on a wide range of problems in computer science, especially in computer vision. However, deep neural networks often require large datasets of labeled samples to generalize effectively, and an important area of active research is semi-supervised learning, which attempts to instead utilize large quantities of (easily acquired) unlabeled samples. One family of methods in this space is pseudo-labeling, a class of algorithms that use model outputs to assign labels to unlabeled samples which are then used as labeled samples during training. Such assigned labels, called pseudo-labels, are most commonly associated with the field of semi-supervised learning. In this work we explore a broader interpretation of pseudo-labels within both self-supervised and unsupervised methods. By drawing the connection between these areas we identify new directions when advancements in one area would likely benefit others, such as curriculum learning and self-supervised regularization.
comment: 21 pages, 4 figures
☆ SeLoRA: Self-Expanding Low-Rank Adaptation of Latent Diffusion Model for Medical Image Synthesis
The persistent challenge of medical image synthesis posed by the scarcity of annotated data and the need to synthesize `missing modalities' for multi-modal analysis, underscored the imperative development of effective synthesis methods. Recently, the combination of Low-Rank Adaptation (LoRA) with latent diffusion models (LDMs) has emerged as a viable approach for efficiently adapting pre-trained large language models, in the medical field. However, the direct application of LoRA assumes uniform ranking across all linear layers, overlooking the significance of different weight matrices, and leading to sub-optimal outcomes. Prior works on LoRA prioritize the reduction of trainable parameters, and there exists an opportunity to further tailor this adaptation process to the intricate demands of medical image synthesis. In response, we present SeLoRA, a Self-Expanding Low-Rank Adaptation Module, that dynamically expands its ranking across layers during training, strategically placing additional ranks on crucial layers, to allow the model to elevate synthesis quality where it matters most. The proposed method not only enables LDMs to fine-tune on medical data efficiently but also empowers the model to achieve improved image quality with minimal ranking. The code of our SeLoRA method is publicly available on https://anonymous.4open.science/r/SeLoRA-980D .
comment: Project Page: https://yuchen20.github.io/SeLoRA.github.io/
☆ BVI-UGC: A Video Quality Database for User-Generated Content Transcoding
In recent years, user-generated content (UGC) has become one of the major video types consumed via streaming networks. Numerous research contributions have focused on assessing its visual quality through subjective tests and objective modeling. In most cases, objective assessments are based on a no-reference scenario, where the corresponding reference content is assumed not to be available. However, full-reference video quality assessment is also important for UGC in the delivery pipeline, particularly associated with the video transcoding process. In this context, we present a new UGC video quality database, BVI-UGC, for user-generated content transcoding, which contains 60 (non-pristine) reference videos and 1,080 test sequences. In this work, we simulated the creation of non-pristine reference sequences (with a wide range of compression distortions), typical of content uploaded to UGC platforms for transcoding. A comprehensive crowdsourced subjective study was then conducted involving more than 3,500 human participants. Based on this collected subjective data, we benchmarked the performance of 10 full-reference and 11 no-reference quality metrics. Our results demonstrate the poor performance (SROCC values are lower than 0.6) of these metrics in predicting the perceptual quality of UGC in two different scenarios (with or without a reference).
comment: 12 pages, 11 figures
☆ Flexible 3D Lane Detection by Hierarchical Shape MatchingFlexible 3D Lane Detection by Hierarchical Shape Matching
As one of the basic while vital technologies for HD map construction, 3D lane detection is still an open problem due to varying visual conditions, complex typologies, and strict demands for precision. In this paper, an end-to-end flexible and hierarchical lane detector is proposed to precisely predict 3D lane lines from point clouds. Specifically, we design a hierarchical network predicting flexible representations of lane shapes at different levels, simultaneously collecting global instance semantics and avoiding local errors. In the global scope, we propose to regress parametric curves w.r.t adaptive axes that help to make more robust predictions towards complex scenes, while in the local vision the structure of lane segment is detected in each of the dynamic anchor cells sampled along the global predicted curves. Moreover, corresponding global and local shape matching losses and anchor cell generation strategies are designed. Experiments on two datasets show that we overwhelm current top methods under high precision standards, and full ablation studies also verify each part of our method. Our codes will be released at https://github.com/Doo-do/FHLD.
Controlling the World by Sleight of Hand
Humans naturally build mental models of object interactions and dynamics, allowing them to imagine how their surroundings will change if they take a certain action. While generative models today have shown impressive results on generating/editing images unconditionally or conditioned on text, current methods do not provide the ability to perform object manipulation conditioned on actions, an important tool for world modeling and action planning. Therefore, we propose to learn an action-conditional generative models by learning from unlabeled videos of human hands interacting with objects. The vast quantity of such data on the internet allows for efficient scaling which can enable high-performing action-conditional models. Given an image, and the shape/location of a desired hand interaction, CosHand, synthesizes an image of a future after the interaction has occurred. Experiments show that the resulting model can predict the effects of hand-object interactions well, with strong generalization particularly to translation, stretching, and squeezing interactions of unseen objects in unseen environments. Further, CosHand can be sampled many times to predict multiple possible effects, modeling the uncertainty of forces in the interaction/environment. Finally, method generalizes to different embodiments, including non-human hands, i.e. robot hands, suggesting that generative video models can be powerful models for robotics.
☆ Vision Language Model for Interpretable and Fine-grained Detection of Safety Compliance in Diverse Workplaces
Workplace accidents due to personal protective equipment (PPE) non-compliance raise serious safety concerns and lead to legal liabilities, financial penalties, and reputational damage. While object detection models have shown the capability to address this issue by identifying safety items, most existing models, such as YOLO, Faster R-CNN, and SSD, are limited in verifying the fine-grained attributes of PPE across diverse workplace scenarios. Vision language models (VLMs) are gaining traction for detection tasks by leveraging the synergy between visual and textual information, offering a promising solution to traditional object detection limitations in PPE recognition. Nonetheless, VLMs face challenges in consistently verifying PPE attributes due to the complexity and variability of workplace environments, requiring them to interpret context-specific language and visual cues simultaneously. We introduce Clip2Safety, an interpretable detection framework for diverse workplace safety compliance, which comprises four main modules: scene recognition, the visual prompt, safety items detection, and fine-grained verification. The scene recognition identifies the current scenario to determine the necessary safety gear. The visual prompt formulates the specific visual prompts needed for the detection process. The safety items detection identifies whether the required safety gear is being worn according to the specified scenario. Lastly, the fine-grained verification assesses whether the worn safety equipment meets the fine-grained attribute requirements. We conduct real-world case studies across six different scenarios. The results show that Clip2Safety not only demonstrates an accuracy improvement over state-of-the-art question-answering based VLMs but also achieves inference times two hundred times faster.
comment: 20 pages, 7 figures
☆ Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
comment: Project webpage: https://lseancs.github.io/generativephotomontage/
♻ ☆ MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network
Deep neural networks (DNNs) typically employ an end-to-end (E2E) training paradigm which presents several challenges, including high GPU memory consumption, inefficiency, and difficulties in model parallelization during training. Recent research has sought to address these issues, with one promising approach being local learning. This method involves partitioning the backbone network into gradient-isolated modules and manually designing auxiliary networks to train these local modules. Existing methods often neglect the interaction of information between local modules, leading to myopic issues and a performance gap compared to E2E training. To address these limitations, we propose the Multilaminar Leap Augmented Auxiliary Network (MLAAN). Specifically, MLAAN comprises Multilaminar Local Modules (MLM) and Leap Augmented Modules (LAM). MLM captures both local and global features through independent and cascaded auxiliary networks, alleviating performance issues caused by insufficient global features. However, overly simplistic auxiliary networks can impede MLM's ability to capture global information. To address this, we further design LAM, an enhanced auxiliary network that uses the Exponential Moving Average (EMA) method to facilitate information exchange between local modules, thereby mitigating the shortsightedness resulting from inadequate interaction. The synergy between MLM and LAM has demonstrated excellent performance. Our experiments on the CIFAR-10, STL-10, SVHN, and ImageNet datasets show that MLAAN can be seamlessly integrated into existing local learning frameworks, significantly enhancing their performance and even surpassing end-to-end (E2E) training methods, while also reducing GPU memory consumption.
♻ ☆ ClickAttention: Click Region Similarity Guided Interactive Segmentation
Interactive segmentation algorithms based on click points have garnered significant attention from researchers in recent years. However, existing studies typically use sparse click maps as model inputs to segment specific target objects, which primarily affect local regions and have limited abilities to focus on the whole target object, leading to increased times of clicks. In addition, most existing algorithms can not balance well between high performance and efficiency. To address this issue, we propose a click attention algorithm that expands the influence range of positive clicks based on the similarity between positively-clicked regions and the whole input. We also propose a discriminative affinity loss to reduce the attention coupling between positive and negative click regions to avoid an accuracy decrease caused by mutual interference between positive and negative clicks. Extensive experiments demonstrate that our approach is superior to existing methods and achieves cutting-edge performance in fewer parameters. An interactive demo and all reproducible codes will be released at https://github.com/hahamyt/ClickAttention.
♻ ☆ Spb3DTracker: A Robust LiDAR-Based Person Tracker for Noisy Environment
Person detection and tracking (PDT) has seen significant advancements with 2D camera-based systems in the autonomous vehicle field, leading to widespread adoption of these algorithms. However, growing privacy concerns have recently emerged as a major issue, prompting a shift towards LiDAR-based PDT as a viable alternative. Within this domain, "Tracking-by-Detection" (TBD) has become a prominent methodology. Despite its effectiveness, LiDAR-based PDT has not yet achieved the same level of performance as camera-based PDT. This paper examines key components of the LiDAR-based PDT framework, including detection post-processing, data association, motion modeling, and lifecycle management. Building upon these insights, we introduce SpbTrack, a robust person tracker designed for diverse environments. Our method achieves superior performance on noisy datasets and state-of-the-art results on KITTI Dataset benchmarks and custom office indoor dataset among LiDAR-based trackers.
comment: 17 pages, 5 figures
♻ ☆ Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts
Current weakly supervised video anomaly detection (WSVAD) task aims to achieve frame-level anomalous event detection with only coarse video-level annotations available. Existing works typically involve extracting global features from full-resolution video frames and training frame-level classifiers to detect anomalies in the temporal dimension. However, most anomalous events tend to occur in localized spatial regions rather than the entire video frames, which implies existing frame-level feature based works may be misled by the dominant background information and lack the interpretation of the detected anomalies. To address this dilemma, this paper introduces a novel method called STPrompt that learns spatio-temporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs). Our proposed method employs a two-stream network structure, with one stream focusing on the temporal dimension and the other primarily on the spatial dimension. By leveraging the learned knowledge from pre-trained VLMs and incorporating natural motion priors from raw videos, our model learns prompt embeddings that are aligned with spatio-temporal regions of videos (e.g., patches of individual frames) for identify specific local regions of anomalies, enabling accurate video anomaly detection while mitigating the influence of background information. Without relying on detailed spatio-temporal annotations or auxiliary object detection/tracking, our method achieves state-of-the-art performance on three public benchmarks for the WSVADL task.
comment: Accepted by ACMMM2024
♻ ☆ HcNet: Image Modeling with Heat Conduction Equation
Foundation models, such as CNNs and ViTs, have powered the development of image modeling. However, general guidance to model architecture design is still missing. The design of many modern model architectures, such as residual structures, multiplicative gating signal, and feed-forward networks, can be interpreted in terms of the heat conduction equation. This finding inspired us to model images by the heat conduction equation, where the essential idea is to conceptualize image features as temperatures and model their information interaction as the diffusion of thermal energy. We can take advantage of the rich knowledge in the heat conduction equation to guide us in designing new and more interpretable models. As an example, we propose Heat Conduction Layer and Refine Approximation Layer inspired by solving the heat conduction equation using Finite Difference Method and Fourier series, respectively. This paper does not aim to present a state-of-the-art model; instead, it seeks to integrate the overall architectural design of the model into the heat conduction theory framework. Nevertheless, our Heat Conduction Network (HcNet) still shows competitive performance. Code available at \url{https://github.com/ZheminZhang1/HcNet}.
♻ ☆ Neural Architecture Search based Global-local Vision Mamba for Palm-Vein Recognition
Due to the advantages such as high security, high privacy, and liveness recognition, vein recognition has been received more and more attention in past years. Recently, deep learning models, e.g., Mamba has shown robust feature representation with linear computational complexity and successfully applied for visual tasks. However, vision Manba can capture long-distance feature dependencies but unfortunately deteriorate local feature details. Besides, manually designing a Mamba architecture based on human priori knowledge is very time-consuming and error-prone. In this paper, first, we propose a hybrid network structure named Global-local Vision Mamba (GLVM), to learn the local correlations in images explicitly and global dependencies among tokens for vein feature representation. Secondly, we design a Multi-head Mamba to learn the dependencies along different directions, so as to improve the feature representation ability of vision Mamba. Thirdly, to learn the complementary features, we propose a ConvMamba block consisting of three branches, named Multi-head Mamba branch (MHMamba), Feature Iteration Unit branch (FIU), and Convolutional Neural Network (CNN) branch, where the Feature Iteration Unit branch aims to fuse convolutional local features with Mamba-based global representations. Finally, a Globallocal Alternate Neural Architecture Search (GLNAS) method is proposed to search the optimal architecture of GLVM alternately with the evolutionary algorithm, thereby improving the recognition performance for vein recognition tasks. We conduct rigorous experiments on three public palm-vein databases to estimate the performance. The experimental results demonstrate that the proposed method outperforms the representative approaches and achieves state-of-the-art recognition accuracy.
♻ ☆ TraceFL: Achieving Interpretability in Federated Learning via Neuron Provenance
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost--FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML explainability approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for the global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction. It then selectively picks a slice of the most crucial neurons in the global model and maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-art ML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.
comment: 13 pages. TraceFL is the first interpretability technique in FL that can work on both image and text classification tasks. For source code please contact at waris@vt.edu
♻ ☆ From NeRFs to Gaussian Splats, and Back
For robotics applications where there is a limited number of (typically ego-centric) views, parametric representations such as neural radiance fields (NeRFs) generalize better than non-parametric ones such as Gaussian splatting (GS) to views that are very different from those in the training data; GS however can render much faster than NeRFs. We develop a procedure to convert back and forth between the two. Our approach achieves the best of both NeRFs (superior PSNR, SSIM, and LPIPS on dissimilar views, and a compact representation) and GS (real-time rendering and ability for easily modifying the representation); the computational cost of these conversions is minor compared to training the two from scratch.
♻ ☆ GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns ECCV 2024
Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/ Dataset: https://doi.org/10.3929/ethz-b-000673889
comment: Accepted to ECCV 2024
♻ ☆ Hierarchical Quantum Control Gates for Functional MRI Understanding
Quantum computing has emerged as a powerful tool for solving complex problems intractable for classical computers, particularly in popular fields such as cryptography, optimization, and neurocomputing. In this paper, we present a new quantum-based approach named the Hierarchical Quantum Control Gates (HQCG) method for efficient understanding of Functional Magnetic Resonance Imaging (fMRI) data. This approach includes two novel modules: the Local Quantum Control Gate (LQCG) and the Global Quantum Control Gate (GQCG), which are designed to extract local and global features of fMRI signals, respectively. Our method operates end-to-end on a quantum machine, leveraging quantum mechanics to learn patterns within extremely high-dimensional fMRI signals, such as 30,000 samples which is a challenge for classical computers. Empirical results demonstrate that our approach significantly outperforms classical methods. Additionally, we found that the proposed quantum model is more stable and less prone to overfitting than the classical methods.
♻ ☆ The Visual Experience Dataset: Over 200 Recorded Hours of Integrated Eye Movement, Odometry, and Egocentric Video
We introduce the Visual Experience Dataset (VEDB), a compilation of over 240 hours of egocentric video combined with gaze- and head-tracking data that offers an unprecedented view of the visual world as experienced by human observers. The dataset consists of 717 sessions, recorded by 58 observers ranging from 6-49 years old. This paper outlines the data collection, processing, and labeling protocols undertaken to ensure a representative sample and discusses the potential sources of error or bias within the dataset. The VEDB's potential applications are vast, including improving gaze tracking methodologies, assessing spatiotemporal image statistics, and refining deep neural networks for scene and activity recognition. The VEDB is accessible through established open science platforms and is intended to be a living dataset with plans for expansion and community contributions. It is released with an emphasis on ethical considerations, such as participant privacy and the mitigation of potential biases. By providing a dataset grounded in real-world experiences and accompanied by extensive metadata and supporting code, the authors invite the research community to utilize and contribute to the VEDB, facilitating a richer understanding of visual perception and behavior in naturalistic settings.
comment: 40 pages, 1 table, 9 figures
♻ ☆ HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting ECCV 2024
3D head animation has seen major quality and runtime improvements over the last few years, particularly empowered by the advances in differentiable rendering and neural radiance fields. Real-time rendering is a highly desirable goal for real-world applications. We propose HeadGaS, a model that uses 3D Gaussian Splats (3DGS) for 3D head reconstruction and animation. In this paper we introduce a hybrid model that extends the explicit 3DGS representation with a base of learnable latent features, which can be linearly blended with low-dimensional parameters from parametric head models to obtain expression-dependent color and opacity values. We demonstrate that HeadGaS delivers state-of-the-art results in real-time inference frame rates, surpassing baselines by up to 2dB, while accelerating rendering speed by over x10.
comment: accepted to ECCV 2024
♻ ☆ V4d: voxel for 4d novel view synthesis
Neural radiance fields have made a remarkable breakthrough in the novel view synthesis task at the 3D static scene. However, for the 4D circumstance (e.g., dynamic scene), the performance of the existing method is still limited by the capacity of the neural network, typically in a multilayer perceptron network (MLP). In this paper, we utilize 3D Voxel to model the 4D neural radiance field, short as V4D, where the 3D voxel has two formats. The first one is to regularly model the 3D space and then use the sampled local 3D feature with the time index to model the density field and the texture field by a tiny MLP. The second one is in look-up tables (LUTs) format that is for the pixel-level refinement, where the pseudo-surface produced by the volume rendering is utilized as the guidance information to learn a 2D pixel-level refinement mapping. The proposed LUTs-based refinement module achieves the performance gain with little computational cost and could serve as the plug-and-play module in the novel view synthesis task. Moreover, we propose a more effective conditional positional encoding toward the 4D data that achieves performance gain with negligible computational burdens. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance at a low computational cost.
comment: Code released. Accepted by IEEE TVCG 2023
♻ ☆ Deepfake Media Forensics: State of the Art and Challenges Ahead
AI-generated synthetic media, also called Deepfakes, have significantly influenced so many domains, from entertainment to cybersecurity. Generative Adversarial Networks (GANs) and Diffusion Models (DMs) are the main frameworks used to create Deepfakes, producing highly realistic yet fabricated content. While these technologies open up new creative possibilities, they also bring substantial ethical and security risks due to their potential misuse. The rise of such advanced media has led to the development of a cognitive bias known as Impostor Bias, where individuals doubt the authenticity of multimedia due to the awareness of AI's capabilities. As a result, Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques, especially Convolutional Neural Networks (CNNs). Research in forensic Deepfake technology encompasses five main areas: detection, attribution and recognition, passive authentication, detection in realistic scenarios, and active authentication. This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
♻ ☆ DynaSeg: A Deep Dynamic Fusion Method for Unsupervised Image Segmentation Incorporating Feature Similarity and Spatial Continuity
Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach.Code is available at https://github.com/RyersonMultimediaLab/DynaSeg
comment: In Press: Image and Vision Computing Journal
♻ ☆ Regularizing Self-supervised 3D Scene Flows with Surface Awareness and Cyclic Consistency
Learning without supervision how to predict 3D scene flows from point clouds is essential to many perception systems. We propose a novel learning framework for this task which improves the necessary regularization. Relying on the assumption that scene elements are mostly rigid, current smoothness losses are built on the definition of "rigid clusters" in the input point clouds. The definition of these clusters is challenging and has a significant impact on the quality of predicted flows. We introduce two new consistency losses that enlarge clusters while preventing them from spreading over distinct objects. In particular, we enforce \emph{temporal} consistency with a forward-backward cyclic loss and \emph{spatial} consistency by considering surface orientation similarity in addition to spatial proximity. The proposed losses are model-independent and can thus be used in a plug-and-play fashion to significantly improve the performance of existing models, as demonstrated on two most widely used architectures. We also showcase the effectiveness and generalization capability of our framework on four standard sensor-unique driving datasets, achieving state-of-the-art performance in 3D scene flow estimation. Our codes are available on https://github.com/ctu-vras/sac-flow.
♻ ☆ Let-It-Flow: Simultaneous Optimization of 3D Flow and Object Clustering
We study the problem of self-supervised 3D scene flow estimation from real large-scale raw point cloud sequences, which is crucial to various tasks like trajectory prediction or instance segmentation. In the absence of ground truth scene flow labels, contemporary approaches concentrate on deducing optimizing flow across sequential pairs of point clouds by incorporating structure based regularization on flow and object rigidity. The rigid objects are estimated by a variety of 3D spatial clustering methods. While state-of-the-art methods successfully capture overall scene motion using the Neural Prior structure, they encounter challenges in discerning multi-object motions. We identified the structural constraints and the use of large and strict rigid clusters as the main pitfall of the current approaches and we propose a novel clustering approach that allows for combination of overlapping soft clusters as well as non-overlapping rigid clusters representation. Flow is then jointly estimated with progressively growing non-overlapping rigid clusters together with fixed size overlapping soft clusters. We evaluate our method on multiple datasets with LiDAR point clouds, demonstrating the superior performance over the self-supervised baselines reaching new state of the art results. Our method especially excels in resolving flow in complicated dynamic scenes with multiple independently moving objects close to each other which includes pedestrians, cyclists and other vulnerable road users. Our codes are publicly available on https://github.com/ctu-vras/let-it-flow.
Power Variable Projection for Initialization-Free Large-Scale Bundle Adjustment
Most Bundle Adjustment (BA) solvers like the Levenberg-Marquardt algorithm require a good initialization. Instead, initialization-free BA remains a largely uncharted territory. The under-explored Variable Projection algorithm (VarPro) exhibits a wide convergence basin even without initialization. Coupled with object space error formulation, recent works have shown its ability to solve small-scale initialization-free bundle adjustment problem. To make such initialization-free BA approaches scalable, we introduce Power Variable Projection (PoVar), extending a recent inverse expansion method based on power series. Importantly, we link the power series expansion to Riemannian manifold optimization. This projective framework is crucial to solve large-scale bundle adjustment problems without initialization. Using the real-world BAL dataset, we experimentally demonstrate that our solver achieves state-of-the-art results in terms of speed and accuracy. To our knowledge, this work is the first to address the scalability of BA without initialization opening new venues for initialization-free structure-from-motion.
♻ ☆ kNN-CLIP: Retrieval Enables Training-Free Segmentation on Continually Expanding Large Vocabularies
Continual segmentation has not yet tackled the challenge of improving open-vocabulary segmentation models with training data for accurate segmentation across large, continually expanding vocabularies. We discover that traditional continual training results in severe catastrophic forgetting, failing to outperform a zero-shot segmentation baseline. We introduce a novel training-free strategy, kNN-CLIP, which augments the model with a database of instance embeddings for semantic and panoptic segmentation that achieves zero forgetting. We demonstrate that kNN-CLIP can adapt to continually growing vocabularies without the need for retraining or large memory costs. kNN-CLIP enables open-vocabulary segmentation methods to expand their vocabularies on any domain with a single pass through the data, while only storing compact embeddings. This approach minimizes both compute and memory costs. kNN-CLIP achieves state-of-the-art performance across large-vocabulary semantic and panoptic segmentation datasets. We hope kNN-CLIP represents a significant step forward in enabling more efficient and adaptable continual segmentation, paving the way for advances in real-world large-vocabulary continual segmentation methods.
♻ ☆ Refractive COLMAP: Refractive Structure-from-Motion Revisited IROS 2024
In this paper, we present a complete refractive Structure-from-Motion (RSfM) framework for underwater 3D reconstruction using refractive camera setups (for both, flat- and dome-port underwater housings). Despite notable achievements in refractive multi-view geometry over the past decade, a robust, complete and publicly available solution for such tasks is not available at present, and often practical applications have to resort to approximating refraction effects by the intrinsic (distortion) parameters of a pinhole camera model. To fill this gap, we have integrated refraction considerations throughout the entire SfM process within the state-of-the-art, open-source SfM framework COLMAP. Numerical simulations and reconstruction results on synthetically generated but photo-realistic images with ground truth validate that enabling refraction does not compromise accuracy or robustness as compared to in-air reconstructions. Finally, we demonstrate the capability of our approach for large-scale refractive scenarios using a dataset consisting of nearly 6000 images. The implementation is released as open-source at: https://cau-git.rz.uni-kiel.de/inf-ag-koeser/colmap_underwater.
comment: 8 pages, 7 figures, the paper is accepted to be published at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ CLIP4Sketch: Enhancing Sketch to Mugshot Matching through Dataset Augmentation using Diffusion Models
Forensic sketch-to-mugshot matching is a challenging task in face recognition, primarily hindered by the scarcity of annotated forensic sketches and the modality gap between sketches and photographs. To address this, we propose CLIP4Sketch, a novel approach that leverages diffusion models to generate a large and diverse set of sketch images, which helps in enhancing the performance of face recognition systems in sketch-to-mugshot matching. Our method utilizes Denoising Diffusion Probabilistic Models (DDPMs) to generate sketches with explicit control over identity and style. We combine CLIP and Adaface embeddings of a reference mugshot, along with textual descriptions of style, as the conditions to the diffusion model. We demonstrate the efficacy of our approach by generating a comprehensive dataset of sketches corresponding to mugshots and training a face recognition model on our synthetic data. Our results show significant improvements in sketch-to-mugshot matching accuracy over training on an existing, limited amount of real face sketch data, validating the potential of diffusion models in enhancing the performance of face recognition systems across modalities. We also compare our dataset with datasets generated using GAN-based methods to show its superiority.
♻ ☆ Out of Length Text Recognition with Sub-String Matching
Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.
comment: Preprint, 16 pages
♻ ☆ A Practical Solver for Scalar Data Topological Simplification IEEE VIS 2024
This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field f and a set of "signal" persistence pairs to maintain, our approach produces an output field g that is close to f and which optimizes (i) the cancellation of "non-signal" pairs, while (ii) preserving the "signal" pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.
comment: 13 pages, 10 figures, IEEE VIS 2024
♻ ☆ S$^2$Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification
Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Selective structured state space model (Mamba), which is efficient for modeling long-range dependencies with linear complexity, has recently shown promising progress. However, its potential in hyperspectral image processing that requires handling numerous spectral bands has not yet been explored. In this paper, we innovatively propose S$^2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features, resulting in more efficient and accurate land cover analysis. In S$^2$Mamba, two selective structured state space models through different dimensions are designed for feature extraction, one for spatial, and the other for spectral, along with a spatial-spectral mixture gate for optimal fusion. More specifically, S$^2$Mamba first captures spatial contextual relations by interacting each pixel with its adjacent through a Patch Cross Scanning module and then explores semantic information from continuous spectral bands through a Bi-directional Spectral Scanning module. Considering the distinct expertise of the two attributes in homogenous and complicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group of learnable matrices, allowing for the adaptive incorporation of representations learned across different dimensions. Extensive experiments conducted on HSI classification benchmarks demonstrate the superiority and prospect of S$^2$Mamba. The code will be made available at: https://github.com/PURE-melo/S2Mamba.
comment: 12 pages, 7 figures
♻ ☆ DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space. However, most existing studies were conducted under a supervised setup which cannot scale well while handling various new data. Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored. In this work, we design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features. DA-BEV introduces the idea of query into the domain adaptation framework to derive useful information from image-view and BEV features. It consists of two query-based designs, namely, query-based adversarial learning (QAL) and query-based self-training (QST), which exploits image-view features or BEV features to regularize the adaptation of the other. Extensive experiments show that DA-BEV achieves superior domain adaptive BEV perception performance consistently across multiple datasets and tasks such as 3D object detection and 3D scene segmentation.
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Existing multi-modal sarcasm detection methods have been proven to overestimate performance, as they struggle to effectively capture the intricate sarcastic cues that arise from the interaction between an image and text. To address these issues, we propose InterCLIP-MEP, a novel framework for multi-modal sarcasm detection. Specifically, we introduce an Interactive CLIP (InterCLIP) as the backbone to extract text-image representations, enhancing them by embedding cross-modality information directly within each encoder, thereby improving the representations to capture text-image interactions better. Furthermore, an efficient training strategy is designed to adapt InterCLIP for our proposed Memory-Enhanced Predictor (MEP). MEP uses a dynamic, fixed-length dual-channel memory to store historical knowledge of valuable test samples during inference. It then leverages this memory as a non-parametric classifier to derive the final prediction, offering a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark, with an accuracy improvement of 1.08% and an F1 score improvement of 1.51% over the previous best method.
comment: 9 pages, 6 figures, 3 tables; Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP
♻ ☆ Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning, playing a key role in the development of innovative and sustainable cities. This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images with a vast diversity of data distributions in different areas of India. Our approach ensures a robust generalization across different types of buildings, roads, trees, and water bodies within these distinct areas. We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data. The proposed framework addresses the limitations of the famous 'Cross Pseudo Supervision' technique for semi-supervised learning, specifically tackling the challenges of training segmentation models on noisy satellite image data with sparse and inaccurate labels. This comprehensive approach significantly enhances the accuracy and utility of LULC mapping, providing valuable insights for urban and resource planning applications.
♻ ☆ Performance Evaluation of YOLOv8 Model Configurations, for Instance Segmentation of Strawberry Fruit Development Stages in an Open Field Environment
Accurate identification of strawberries during their maturing stages is crucial for optimizing yield management, and pest control, and making informed decisions related to harvest and post-harvest logistics. This study evaluates the performance of YOLOv8 model configurations for instance segmentation of strawberries into ripe and unripe stages in an open field environment. The YOLOv8n model demonstrated superior segmentation accuracy with a mean Average Precision (mAP) of 80.9\%, outperforming other YOLOv8 configurations. In terms of inference speed, YOLOv8n processed images at 12.9 milliseconds, while YOLOv8s, the least-performing model, processed at 22.2 milliseconds. Over 86 test images with 348 ground truth labels, YOLOv8n detected 235 ripe fruit classes and 51 unripe fruit classes out of 251 ground truth ripe fruits and 97 unripe ground truth labels, respectively. In comparison, YOLOv8s detected 204 ripe fruits and 37 unripe fruits. Overall, YOLOv8n achieved the fastest inference speed of 24.2 milliseconds, outperforming YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, which processed images at 33.0 milliseconds, 44.3 milliseconds, 53.6 milliseconds, and 62.5 milliseconds, respectively. These results underscore the potential of advanced object segmentation algorithms to address complex visual recognition tasks in open-field agriculture effectively to address complex visual recognition tasks in open-field agriculture effectively.
comment: 15 page, 18 figures
♻ ☆ Can virtual staining for high-throughput screening generalize?
The large volume and variety of imaging data from high-throughput screening (HTS) in the pharmaceutical industry present an excellent resource for training virtual staining models. However, the potential of models trained under one set of experimental conditions to generalize to other conditions remains underexplored. This study systematically investigates whether data from three cell types (lung, ovarian, and breast) and two phenotypes (toxic and non-toxic conditions) commonly found in HTS can effectively train virtual staining models to generalize across three typical HTS distribution shifts: unseen phenotypes, unseen cell types, and the combination of both. Utilizing a dataset of 772,416 paired bright-field, cytoplasm, nuclei, and DNA-damage stain images, we evaluate the generalization capabilities of models across pixel-based, instance-wise, and biological-feature-based levels. Our findings indicate that training virtual nuclei and cytoplasm models on non-toxic condition samples not only generalizes to toxic condition samples but leads to improved performance across all evaluation levels compared to training on toxic condition samples. Generalization to unseen cell types shows variability depending on the cell type; models trained on ovarian or lung cell samples often perform well under other conditions, while those trained on breast cell samples consistently show poor generalization. Generalization to unseen cell types and phenotypes shows good generalization across all levels of evaluation compared to addressing unseen cell types alone. This study represents the first large-scale, data-centric analysis of the generalization capability of virtual staining models trained on diverse HTS datasets, providing valuable strategies for experimental training data generation.
♻ ☆ Rectified Iterative Disparity for Stereo Matching
Both uncertainty-assisted and iteration-based methods have achieved great success in stereo matching. However, existing uncertainty estimation methods take a single image and the corresponding disparity as input, which imposes higher demands on the estimation network. In this paper, we propose Cost volume-based disparity Uncertainty Estimation (UEC). Based on the rich similarity information in the cost volume coming from the image pairs, the proposed UEC can achieve competitive performance with low computational cost. Secondly, we propose two methods of uncertainty-assisted disparity estimation, Uncertainty-based Disparity Rectification (UDR) and Uncertainty-based Disparity update Conditioning (UDC). These two methods optimise the disparity update process of the iterative-based approach without adding extra parameters. In addition, we propose Disparity Rectification loss that significantly improves the accuracy of small amount of disparity updates. We present a high-performance stereo architecture, DR Stereo, which is a combination of the proposed methods. Experimental results from SceneFlow, KITTI, Middlebury 2014, and ETH3D show that DR-Stereo achieves very competitive disparity estimation performance.
♻ ☆ EasyInv: Toward Fast and Better DDIM Inversion
This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model's precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques.
comment: 9 pages not including reference
♻ ☆ Automatic Spatial Calibration of Near-Field MIMO Radar With Respect to Optical Depth Sensors IROS 2024
Despite an emerging interest in MIMO radar, the utilization of its complementary strengths in combination with optical depth sensors has so far been limited to far-field applications, due to the challenges that arise from mutual sensor calibration in the near field. In fact, most related approaches in the autonomous industry propose target-based calibration methods using corner reflectors that have proven to be unsuitable for the near field. In contrast, we propose a novel, joint calibration approach for optical RGB-D sensors and MIMO radars that is designed to operate in the radar's near-field range, within decimeters from the sensors. Our pipeline consists of a bespoke calibration target, allowing for automatic target detection and localization, followed by the spatial calibration of the two sensor coordinate systems through target registration. We validate our approach using two different depth sensing technologies from the optical domain. The experiments show the efficiency and accuracy of our calibration for various target displacements, as well as its robustness of our localization in terms of signal ambiguities.
comment: 8 pages, 9 figures, accepted to IROS 2024
♻ ☆ mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in executing instructions for a variety of single-image tasks. Despite this progress, significant challenges remain in modeling long image sequences. In this work, we introduce the versatile multi-modal large language model, mPLUG-Owl3, which enhances the capability for long image-sequence understanding in scenarios that incorporate retrieved image-text knowledge, interleaved image-text, and lengthy videos. Specifically, we propose novel hyper attention blocks to efficiently integrate vision and language into a common language-guided semantic space, thereby facilitating the processing of extended multi-image scenarios. Extensive experimental results suggest that mPLUG-Owl3 achieves state-of-the-art performance among models with a similar size on single-image, multi-image, and video benchmarks. Moreover, we propose a challenging long visual sequence evaluation named Distractor Resistance to assess the ability of models to maintain focus amidst distractions. Finally, with the proposed architecture, mPLUG-Owl3 demonstrates outstanding performance on ultra-long visual sequence inputs. We hope that mPLUG-Owl3 can contribute to the development of more efficient and powerful multimodal large language models.
♻ ☆ PromptKD: Unsupervised Prompt Distillation for Vision-Language Models CVPR 2024
Prompt learning has emerged as a valuable technique in enhancing vision-language models (VLMs) such as CLIP for downstream tasks in specific domains. Existing work mainly focuses on designing various learning forms of prompts, neglecting the potential of prompts as effective distillers for learning from larger teacher models. In this paper, we introduce an unsupervised domain prompt distillation framework, which aims to transfer the knowledge of a larger teacher model to a lightweight target model through prompt-driven imitation using unlabeled domain images. Specifically, our framework consists of two distinct stages. In the initial stage, we pre-train a large CLIP teacher model using domain (few-shot) labels. After pre-training, we leverage the unique decoupled-modality characteristics of CLIP by pre-computing and storing the text features as class vectors only once through the teacher text encoder. In the subsequent stage, the stored class vectors are shared across teacher and student image encoders for calculating the predicted logits. Further, we align the logits of both the teacher and student models via KL divergence, encouraging the student image encoder to generate similar probability distributions to the teacher through the learnable prompts. The proposed prompt distillation process eliminates the reliance on labeled data, enabling the algorithm to leverage a vast amount of unlabeled images within the domain. Finally, the well-trained student image encoders and pre-stored text features (class vectors) are utilized for inference. To our best knowledge, we are the first to (1) perform unsupervised domain-specific prompt-driven knowledge distillation for CLIP, and (2) establish a practical pre-storing mechanism of text features as shared class vectors between teacher and student. Extensive experiments on 11 datasets demonstrate the effectiveness of our method.
comment: CVPR 2024. Project Page: https://zhengli97.github.io/PromptKD. Code: https://github.com/zhengli97/PromptKD
♻ ☆ Deep Non-rigid Structure-from-Motion: A Sequence-to-Sequence Translation Perspective
Directly regressing the non-rigid shape and camera pose from the individual 2D frame is ill-suited to the Non-Rigid Structure-from-Motion (NRSfM) problem. This frame-by-frame 3D reconstruction pipeline overlooks the inherent spatial-temporal nature of NRSfM, i.e., reconstructing the whole 3D sequence from the input 2D sequence. In this paper, we propose to model deep NRSfM from a sequence-to-sequence translation perspective, where the input 2D frame sequence is taken as a whole to reconstruct the deforming 3D non-rigid shape sequence. First, we apply a shape-motion predictor to estimate the initial non-rigid shape and camera motion from a single frame. Then we propose a context modeling module to model camera motions and complex non-rigid shapes. To tackle the difficulty in enforcing the global structure constraint within the deep framework, we propose to impose the union-of-subspace structure by replacing the self-expressiveness layer with multi-head attention and delayed regularizers, which enables end-to-end batch-wise training. Experimental results across different datasets such as Human3.6M, CMU Mocap and InterHand prove the superiority of our framework.
comment: has been accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ etuner: Redundancy-Aware Efficient Continual Learning on Edge Devices
Many emerging applications, such as robot-assisted eldercare and object recognition, generally employ deep learning neural networks (DNNs) and require the deployment of DNN models on edge devices. These applications naturally require i) handling streaming-in inference requests and ii) fine-tuning the deployed models to adapt to possible deployment scenario changes. Continual learning (CL) is widely adopted to satisfy these needs. CL is a popular deep learning paradigm that handles both continuous model fine-tuning and overtime inference requests. However, an inappropriate model fine-tuning scheme could involve significant redundancy and consume considerable time and energy, making it challenging to apply CL on edge devices. In this paper, we propose ETuner, an efficient edge continual learning framework that optimizes inference accuracy, fine-tuning execution time, and energy efficiency through both inter-tuning and intra-tuning optimizations. Experimental results show that, on average, ETuner reduces overall fine-tuning execution time by 64%, energy consumption by 56%, and improves average inference accuracy by 1.75% over the immediate model fine-tuning approach.
♻ ☆ FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models ECCV-2024
Precise image editing with text-to-image models has attracted increasing interest due to their remarkable generative capabilities and user-friendly nature. However, such attempts face the pivotal challenge of misalignment between the intended precise editing target regions and the broader area impacted by the guidance in practice. Despite excellent methods leveraging attention mechanisms that have been developed to refine the editing guidance, these approaches necessitate modifications through complex network architecture and are limited to specific editing tasks. In this work, we re-examine the diffusion process and misalignment problem from a frequency perspective, revealing that, due to the power law of natural images and the decaying noise schedule, the denoising network primarily recovers low-frequency image components during the earlier timesteps and thus brings excessive low-frequency signals for editing. Leveraging this insight, we introduce a novel fine-tuning free approach that employs progressive $\textbf{Fre}$qu$\textbf{e}$ncy truncation to refine the guidance of $\textbf{Diff}$usion models for universal editing tasks ($\textbf{FreeDiff}$). Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images, highlighting its potential as a versatile tool in image editing applications.
comment: Accepted by ECCV-2024
♻ ☆ PAtt-Lite: Lightweight Patch and Attention MobileNet for Challenging Facial Expression Recognition
Facial Expression Recognition (FER) is a machine learning problem that deals with recognizing human facial expressions. While existing work has achieved performance improvements in recent years, FER in the wild and under challenging conditions remains a challenge. In this paper, a lightweight patch and attention network based on MobileNetV1, referred to as PAtt-Lite, is proposed to improve FER performance under challenging conditions. A truncated ImageNet-pre-trained MobileNetV1 is utilized as the backbone feature extractor of the proposed method. In place of the truncated layers is a patch extraction block that is proposed for extracting significant local facial features to enhance the representation from MobileNetV1, especially under challenging conditions. An attention classifier is also proposed to improve the learning of these patched feature maps from the extremely lightweight feature extractor. The experimental results on public benchmark databases proved the effectiveness of the proposed method. PAtt-Lite achieved state-of-the-art results on CK+, RAF-DB, FER2013, FERPlus, and the challenging conditions subsets for RAF-DB and FERPlus.
comment: Copyright 2024 IEEE. Personal use of this material is permitted. IEEE Access 2024
♻ ☆ Negative Object Presence Evaluation (NOPE) to Measure Object Hallucination in Vision-Language Models ACL 2024
Object hallucination poses a significant challenge in vision-language (VL) models, often leading to the generation of nonsensical or unfaithful responses with non-existent objects. However, the absence of a general measurement for evaluating object hallucination in VL models has hindered our understanding and ability to mitigate this issue. In this work, we present NOPE (Negative Object Presence Evaluation), a novel benchmark designed to assess object hallucination in VL models through visual question answering (VQA). We propose a cost-effective and scalable approach utilizing large language models to generate 29.5k synthetic negative pronoun (NegP) data of high quality for NOPE. We extensively investigate the performance of 10 state-of-the-art VL models in discerning the non-existence of objects in visual questions, where the ground truth answers are denoted as NegP (e.g., "none"). Additionally, we evaluate their standard performance on visual questions on 9 other VQA datasets. Through our experiments, we demonstrate that no VL model is immune to the vulnerability of object hallucination, as all models achieve accuracy below 10\% on NegP. Furthermore, we uncover that lexically diverse visual questions, question types with large scopes, and scene-relevant objects capitalize the risk of object hallucination in VL models.
comment: Published in ALVR Workshop at ACL 2024
♻ ☆ Long working distance portable smartphone microscopy for metallic mesh defect detection
Metallic mesh is a transparent electromagnetic shielding film with a fine metal line structure. However, it can develop defects that affect the optoelectronic performance whether in the production preparation or in actual use. The development of in-situ non-destructive testing (NDT) devices for metallic mesh requires long working distances, reflective optical path design, and miniaturization. To address the limitations of existing smartphone microscopes, which feature short working distances and inadequate transmission imaging for industrial in-situ inspection, we propose a novel long-working distance reflective smartphone microscopy system (LD-RSM). LD-RSM builds a 4f optical imaging system with external optical components and a smartphone, utilizing a beam splitter to achieve reflective imaging with the illumination system and imaging system on the same side of the sample. It achieves an optical resolution of 4.92$\mu$m and a working distance of up to 22.23 mm. Additionally, we introduce a dual prior weighted Robust Principal Component Analysis (DW-RPCA) for defect detection. This approach leverages spectral filter fusion and Hough transform to model different defect types, enhancing the accuracy and efficiency of defect identification. Coupled with an optimized threshold segmentation algorithm, DW-RPCA method achieves a pixel-level accuracy of 84.8%. Our work showcases strong potential for growth in the field of in-situ on-line inspection of industrial products.
♻ ☆ Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions alongside delicate and fine-grained regions. Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry. These methods excel in producing complete and smooth results for floor and wall areas. However, they struggle to capture complex surfaces with high-frequency structures due to the inadequate neural representation and the inaccurately predicted normal priors. This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations. To improve the capacity of the implicit representation, we propose a hybrid architecture to represent low-frequency and high-frequency regions separately. To enhance the normal priors, we introduce a simple yet effective image sharpening and denoising technique, coupled with a network that estimates the pixel-wise uncertainty of the predicted surface normal vectors. Identifying such uncertainty can prevent our model from being misled by unreliable surface normal supervisions that hinder the accurate reconstruction of intricate geometries. Experiments on the benchmark datasets show that our method outperforms existing methods in terms of reconstruction quality. Furthermore, the proposed method also generalizes well to real-world indoor scenarios captured by our hand-held mobile phones. Our code is publicly available at: https://github.com/yec22/Fine-Grained-Indoor-Recon.
comment: accepted by TVCG
♻ ☆ VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder
This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology.
♻ ☆ Simplified Diffusion Schrödinger Bridge
This paper introduces a novel theoretical simplification of the Diffusion Schr\"odinger Bridge (DSB) that facilitates its unification with Score-based Generative Models (SGMs), addressing the limitations of DSB in complex data generation and enabling faster convergence and enhanced performance. By employing SGMs as an initial solution for DSB, our approach capitalizes on the strengths of both frameworks, ensuring a more efficient training process and improving the performance of SGM. We also propose a reparameterization technique that, despite theoretical approximations, practically improves the network's fitting capabilities. Our extensive experimental evaluations confirm the effectiveness of the simplified DSB, demonstrating its significant improvements. We believe the contributions of this work pave the way for advanced generative modeling.
♻ ☆ Enhancing Visual Place Recognition via Fast and Slow Adaptive Biasing in Event Cameras IROS 2024
Event cameras are increasingly popular in robotics due to beneficial features such as low latency, energy efficiency, and high dynamic range. Nevertheless, their downstream task performance is greatly influenced by the optimization of bias parameters. These parameters, for instance, regulate the necessary change in light intensity to trigger an event, which in turn depends on factors such as the environment lighting and camera motion. This paper introduces feedback control algorithms that automatically tune the bias parameters through two interacting methods: 1) An immediate, on-the-fly \textit{fast} adaptation of the refractory period, which sets the minimum interval between consecutive events, and 2) if the event rate exceeds the specified bounds even after changing the refractory period repeatedly, the controller adapts the pixel bandwidth and event thresholds, which stabilizes after a short period of noise events across all pixels (\textit{slow} adaptation). Our evaluation focuses on the visual place recognition task, where incoming query images are compared to a given reference database. We conducted comprehensive evaluations of our algorithms' adaptive feedback control in real-time. To do so, we collected the QCR-Fast-and-Slow dataset that contains DAVIS346 event camera streams from 366 repeated traversals of a Scout Mini robot navigating through a 100 meter long indoor lab setting (totaling over 35km distance traveled) in varying brightness conditions with ground truth location information. Our proposed feedback controllers result in superior performance when compared to the standard bias settings and prior feedback control methods. Our findings also detail the impact of bias adjustments on task performance and feature ablation studies on the fast and slow adaptation mechanisms.
comment: 8 pages, 9 figures, paper accepted to the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
♻ ☆ WaveShot: A Compact Portable Unmanned Surface Vessel for Dynamic Water Surface Videography and Media Production
This paper presents WaveShot, an innovative portable unmanned surface vessel that aims to transform water surface videography by offering a highly maneuverable, cost-effective, and safe alternative to traditional filming methods. WaveShot is designed for the modern demands of film production, advertising, documentaries, and visual arts, equipped with professional-grade waterproof cameras and advanced technology to capture static and dynamic scenes on waterways. We discuss the development and advantages of WaveShot, highlighting its portability, ease of transport, and rapid deployment capabilities. Experimental validation showcasing WaveShot's stability and high-quality video capture in various water conditions, and the integration of monocular depth estimation algorithms to enhance the operator's spatial perception. The paper concludes by exploring WaveShot's real-world applications, its user-friendly remote operation, and future enhancements such as gimbal integration and advanced computer vision for optimized videography on water surfaces.
♻ ☆ Enhancing Vision-Language Models Generalization via Diversity-Driven Novel Feature Synthesis
Vision-language foundation models like CLIP have shown impressive zero-shot generalization, but finetuning on downstream datasets can cause overfitting and loss of its generalization ability on unseen domains. Although collecting additional data from new domains of interest is possible, this method is often impractical due to the challenges in obtaining annotated data. To address this, we propose a plug-and-play feature synthesis method called LDFS (Language-Guided Diverse Feature Synthesis) to synthesize new domain features and improve existing CLIP fine-tuning strategies. LDFS has three main contributions: 1) To synthesize novel domain features and promote diversity, we propose an instance-conditional feature augmentation strategy based on a text-guided feature augmentation loss. 2) To maintain feature quality after augmenting, we introduce a pairwise regularizer to preserve augmented feature coherence within the CLIP feature space. 3) We propose to use stochastic text feature augmentation to reduce the modality gap and further facilitate the process of text-guided feature synthesis. Extensive experiments show LDFS superiority in improving CLIP generalization ability on unseen domains without collecting data from those domains. The code will be made publicly available.
♻ ☆ StylizedGS: Controllable Stylization for 3D Gaussian Splatting
As XR technology continues to advance rapidly, 3D generation and editing are increasingly crucial. Among these, stylization plays a key role in enhancing the appearance of 3D models. By utilizing stylization, users can achieve consistent artistic effects in 3D editing using a single reference style image, making it a user-friendly editing method. However, recent NeRF-based 3D stylization methods encounter efficiency issues that impact the user experience, and their implicit nature limits their ability to accurately transfer geometric pattern styles. Additionally, the ability for artists to apply flexible control over stylized scenes is considered highly desirable to foster an environment conducive to creative exploration. To address the above issues, we introduce StylizedGS, an efficient 3D neural style transfer framework with adaptable control over perceptual factors based on 3D Gaussian Splatting (3DGS) representation. We propose a filter-based refinement to eliminate floaters that affect the stylization effects in the scene reconstruction process. The nearest neighbor-based style loss is introduced to achieve stylization by fine-tuning the geometry and color parameters of 3DGS, while a depth preservation loss with other regularizations is proposed to prevent the tampering of geometry content. Moreover, facilitated by specially designed losses, StylizedGS enables users to control color, stylized scale, and regions during the stylization to possess customization capabilities. Our method achieves high-quality stylization results characterized by faithful brushstrokes and geometric consistency with flexible controls. Extensive experiments across various scenes and styles demonstrate the effectiveness and efficiency of our method concerning both stylization quality and inference speed.
♻ ☆ Made to Order: Discovering monotonic temporal changes via self-supervised video ordering ECCV 2024
Our objective is to discover and localize monotonic temporal changes in a sequence of images. To achieve this, we exploit a simple proxy task of ordering a shuffled image sequence, with `time' serving as a supervisory signal, since only changes that are monotonic with time can give rise to the correct ordering. We also introduce a transformer-based model for ordering of image sequences of arbitrary length with built-in attribution maps. After training, the model successfully discovers and localizes monotonic changes while ignoring cyclic and stochastic ones. We demonstrate applications of the model in multiple domains covering different scene and object types, discovering both object-level and environmental changes in unseen sequences. We also demonstrate that the attention-based attribution maps function as effective prompts for segmenting the changing regions, and that the learned representations can be used for downstream applications. Finally, we show that the model achieves the state-of-the-art on standard benchmarks for image ordering.
comment: ECCV 2024 Oral. Project page: https://charigyang.github.io/order/
♻ ☆ Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection
The Detection Transformer (DETR) has revolutionized the design of CNN-based object detection systems, showcasing impressive performance. However, its potential in the domain of multi-frame 3D object detection remains largely unexplored. In this paper, we present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection by addressing three key aspects specifically tailored for this task. First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network, which represents queries as nodes in a graph and enables effective modeling of object interactions within a social context. To solve the problem of missing hard cases in the proposed output of the encoder in the current frame, we incorporate the output of the previous frame to initialize the query input of the decoder. Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match. And similar queries are insufficiently suppressed and turn into redundant prediction boxes. To address this issue, our proposed IoU regularization term encourages similar queries to be distinct during the refinement. Through extensive experiments, we demonstrate the effectiveness of our approach in handling challenging scenarios, while incurring only a minor additional computational overhead. The code is publicly available at https://github.com/Eaphan/STEMD.
comment: 16 pages, 9 figures; Accepted by IEEE TPAMI
♻ ☆ SFMViT: SlowFast Meet ViT in Chaotic World
The task of spatiotemporal action localization in chaotic scenes is a challenging task toward advanced video understanding. Paving the way with high-quality video feature extraction and enhancing the precision of detector-predicted anchors can effectively improve model performance. To this end, we propose a high-performance dual-stream spatiotemporal feature extraction network SFMViT with an anchor pruning strategy. The backbone of our SFMViT is composed of ViT and SlowFast with prior knowledge of spatiotemporal action localization, which fully utilizes ViT's excellent global feature extraction capabilities and SlowFast's spatiotemporal sequence modeling capabilities. Secondly, we introduce the confidence maximum heap to prune the anchors detected in each frame of the picture to filter out the effective anchors. These designs enable our SFMViT to achieve a mAP of 26.62% in the Chaotic World dataset, far exceeding existing models. Code is available at https://github.com/jfightyr/SlowFast-Meet-ViT.
♻ ☆ CS-TRD: a Cross Sections Tree Ring Detection method
This work describes a Tree Ring Detection method for complete Cross-Sections of Trees (CS-TRD) that detects, processes and connects edges corresponding to the tree's growth rings. The method depends on the parameters for the Canny Devernay edge detector (sigma), a resize factor, the number of rays, and the pith location. The first five are fixed by default. The pith location can be marked manually or using an automatic pith detection algorithm. Besides the pith localization, CS-TRD is fully automated and achieves an F-Score of 89% in the UruDendro dataset (of Pinus taeda) and 97% in the Kennel dataset (of Abies alba) without specialized hardware requirements.
comment: presented to Ipol
♻ ☆ GeoDTR+: Toward generic cross-view geolocalization via geometric disentanglement
Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the training and testing data are captured from completely distinct areas. We attribute this deficiency to the lack of ability to extract the geometric layout of visual features and models' overfitting to low-level details. Our preliminary work introduced a Geometric Layout Extractor (GLE) to capture the geometric layout from input features. However, the previous GLE does not fully exploit information in the input feature. In this work, we propose GeoDTR+ with an enhanced GLE module that better models the correlations among visual features. To fully explore the LS techniques from our preliminary work, we further propose Contrastive Hard Samples Generation (CHSG) to facilitate model training. Extensive experiments show that GeoDTR+ achieves state-of-the-art (SOTA) results in cross-area evaluation on CVUSA, CVACT, and VIGOR by a large margin ($16.44\%$, $22.71\%$, and $13.66\%$ without polar transformation) while keeping the same-area performance comparable to existing SOTA. Moreover, we provide detailed analyses of GeoDTR+. Our code will be available at https://gitlab.com/vail-uvm/geodtr plus.
comment: arXiv admin note: text overlap with arXiv:2212.04074
♻ ☆ Layer-Specific Optimization: Sensitivity Based Convolution Layers Basis Search
Deep neural network models have a complex architecture and are overparameterized. The number of parameters is more than the whole dataset, which is highly resource-consuming. This complicates their application and limits its usage on different devices. Reduction in the number of network parameters helps to reduce the size of the model, but at the same time, thoughtlessly applied, can lead to a deterioration in the quality of the network. One way to reduce the number of model parameters is matrix decomposition, where a matrix is represented as a product of smaller matrices. In this paper, we propose a new way of applying the matrix decomposition with respect to the weights of convolutional layers. The essence of the method is to train not all convolutions, but only the subset of convolutions (basis convolutions), and represent the rest as linear combinations of the basis ones. Experiments on models from the ResNet family and the CIFAR-10 dataset demonstrate that basis convolutions can not only reduce the size of the model but also accelerate the forward and backward passes of the network. Another contribution of this work is that we propose a fast method for selecting a subset of network layers in which the use of matrix decomposition does not degrade the quality of the final model.
comment: Increase the size of matrix pictures for better UX in PDF view
♻ ☆ Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI
Cardiovascular magnetic resonance imaging is emerging as a crucial tool to examine cardiac morphology and function. Essential to this endeavour are anatomical 3D surface and volumetric meshes derived from CMR images, which facilitate computational anatomy studies, biomarker discovery, and in-silico simulations. However, conventional surface mesh generation methods, such as active shape models and multi-atlas segmentation, are highly time-consuming and require complex processing pipelines to generate simulation-ready 3D meshes. In response, we introduce HybridVNet, a novel architecture for direct image-to-mesh extraction seamlessly integrating standard convolutional neural networks with graph convolutions, which we prove can efficiently handle surface and volumetric meshes by encoding them as graph structures. To further enhance accuracy, we propose a multiview HybridVNet architecture which processes both long axis and short axis CMR, showing that it can increase the performance of cardiac MR mesh generation. Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation. Experiments on a comprehensive dataset from the UK Biobank confirm the potential of HybridVNet to significantly advance cardiac imaging and computational cardiology by efficiently generating high-fidelity and simulation ready meshes from CMR images.
♻ ☆ KAN-RCBEVDepth: A multi-modal fusion algorithm in object detection for autonomous driving
Accurate 3D object detection in autonomous driving is critical yet challenging due to occlusions, varying object scales, and complex urban environments. This paper introduces the RCBEV-KAN algorithm, a pioneering method designed to enhance 3D object detection by fusing multimodal sensor data from cameras, LiDAR, and millimeter-wave radar. Our innovative Bird's Eye View (BEV)-based approach, utilizing a Transformer architecture, significantly boosts detection precision and efficiency by seamlessly integrating diverse data sources, improving spatial relationship handling, and optimizing computational processes. Experimental results show that the RCBEV-KAN model demonstrates superior performance across most detection categories, achieving higher Mean Distance AP (0.389 vs. 0.316, a 23% improvement), better ND Score (0.484 vs. 0.415, a 17% improvement), and faster Evaluation Time (71.28s, 8% faster). These results indicate that RCBEV-KAN is more accurate, reliable, and efficient, making it ideal for dynamic and challenging autonomous driving environments.
♻ ☆ Garment3DGen: 3D Garment Stylization and Texture Generation
We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. We leverage the recent progress of image-to-3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Carefully designed losses allow the base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, we generate high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the simulation-ready 3D garment of their choice without the need of artist intervention. We present a plethora of quantitative and qualitative comparisons on various assets and demonstrate that Garment3DGen unlocks key applications ranging from sketch-to-simulated garments or interacting with the garments in VR. Code is publicly available.
comment: Project Page and Code: https://nsarafianos.github.io/garment3dgen
Artificial Intelligence 136
☆ Diversity Empowers Intelligence: Integrating Expertise of Software Engineering Agents
Large language model (LLM) agents have shown great potential in solving real-world software engineering (SWE) problems. The most advanced open-source SWE agent can resolve over 27% of real GitHub issues in SWE-Bench Lite. However, these sophisticated agent frameworks exhibit varying strengths, excelling in certain tasks while underperforming in others. To fully harness the diversity of these agents, we propose DEI (Diversity Empowered Intelligence), a framework that leverages their unique expertise. DEI functions as a meta-module atop existing SWE agent frameworks, managing agent collectives for enhanced problem-solving. Experimental results show that a DEI-guided committee of agents is able to surpass the best individual agent's performance by a large margin. For instance, a group of open-source SWE agents, with a maximum individual resolve rate of 27.3% on SWE-Bench Lite, can achieve a 34.3% resolve rate with DEI, making a 25% improvement and beating most closed-source solutions. Our best-performing group excels with a 55% resolve rate, securing the highest ranking on SWE-Bench Lite. Our findings contribute to the growing body of research on collaborative AI systems and their potential to solve complex software engineering challenges.
☆ Model Counting in the Wild KR 2024
Model counting is a fundamental problem in automated reasoning with applications in probabilistic inference, network reliability, neural network verification, and more. Although model counting is computationally intractable from a theoretical perspective due to its #P-completeness, the past decade has seen significant progress in developing state-of-the-art model counters to address scalability challenges. In this work, we conduct a rigorous assessment of the scalability of model counters in the wild. To this end, we surveyed 11 application domains and collected an aggregate of 2262 benchmarks from these domains. We then evaluated six state-of-the-art model counters on these instances to assess scalability and runtime performance. Our empirical evaluation demonstrates that the performance of model counters varies significantly across different application domains, underscoring the need for careful selection by the end user. Additionally, we investigated the behavior of different counters with respect to two parameters suggested by the model counting community, finding only a weak correlation. Our analysis highlights the challenges and opportunities for portfolio-based approaches in model counting.
comment: Full version of conference paper accepted at KR 2024
☆ A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particular domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
comment: 26 pages
☆ The News Comment Gap and Algorithmic Agenda Setting in Online Forums
The disparity between news stories valued by journalists and those preferred by readers, known as the "News Gap", is well-documented. However, the difference in expectations regarding news related user-generated content is less studied. Comment sections, hosted by news websites, are popular venues for reader engagement, yet still subject to editorial decisions. It is thus important to understand journalist vs reader comment preferences and how these are served by various comment ranking algorithms that represent discussions differently. We analyse 1.2 million comments from Austrian newspaper Der Standard to understand the "News Comment Gap" and the effects of different ranking algorithms. We find that journalists prefer positive, timely, complex, direct responses, while readers favour comments similar to article content from elite authors. We introduce the versatile Feature-Oriented Ranking Utility Metric (FORUM) to assess the impact of different ranking algorithms and find dramatic differences in how they prioritise the display of comments by sentiment, topical relevance, lexical diversity, and readability. Journalists can exert substantial influence over the discourse through both curatorial and algorithmic means. Understanding these choices' implications is vital in fostering engaging and civil discussions while aligning with journalistic objectives, especially given the increasing legal scrutiny and societal importance of online discourse.
☆ KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation ECCV 2024
Segmentation of crop fields is essential for enhancing agricultural productivity, monitoring crop health, and promoting sustainable practices. Deep learning models adopted for this task must ensure accurate and reliable predictions to avoid economic losses and environmental impact. The newly proposed Kolmogorov-Arnold networks (KANs) offer promising advancements in the performance of neural networks. This paper analyzes the integration of KAN layers into the U-Net architecture (U-KAN) to segment crop fields using Sentinel-2 and Sentinel-1 satellite images and provides an analysis of the performance and explainability of these networks. Our findings indicate a 2\% improvement in IoU compared to the traditional full-convolutional U-Net model in fewer GFLOPs. Furthermore, gradient-based explanation techniques show that U-KAN predictions are highly plausible and that the network has a very high ability to focus on the boundaries of cultivated areas rather than on the areas themselves. The per-channel relevance analysis also reveals that some channels are irrelevant to this task.
comment: Accepted at ECCV 2024 CVPPA Workshop
☆ PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology
Pathological diagnosis remains the definitive standard for identifying tumors. The rise of multimodal large models has simplified the process of integrating image analysis with textual descriptions. Despite this advancement, the substantial costs associated with training and deploying these complex multimodal models, together with a scarcity of high-quality training datasets, create a significant divide between cutting-edge technology and its application in the clinical setting. We had meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks, including the classification of organ tissues, generating pathology report descriptions, and addressing pathology-related questions and answers. We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance. We conducted a qualitative assessment of the capabilities of the base model and the fine-tuned model in performing image captioning and classification tasks on the specific dataset. The evaluation results demonstrate that the fine-tuned model exhibits proficiency in addressing typical pathological questions. We hope that by making both our models and datasets publicly available, they can be valuable to the medical and research communities.
comment: 10 pages, 2 figures
☆ Defining and Measuring Disentanglement for non-Independent Factors of Variation
Representation learning is an approach that allows to discover and extract the factors of variation from the data. Intuitively, a representation is said to be disentangled if it separates the different factors of variation in a way that is understandable to humans. Definitions of disentanglement and metrics to measure it usually assume that the factors of variation are independent of each other. However, this is generally false in the real world, which limits the use of these definitions and metrics to very specific and unrealistic scenarios. In this paper we give a definition of disentanglement based on information theory that is also valid when the factors of variation are not independent. Furthermore, we relate this definition to the Information Bottleneck Method. Finally, we propose a method to measure the degree of disentanglement from the given definition that works when the factors of variation are not independent. We show through different experiments that the method proposed in this paper correctly measures disentanglement with non-independent factors of variation, while other methods fail in this scenario.
☆ Casper: Prompt Sanitization for Protecting User Privacy in Web-Based Large Language Models
Web-based Large Language Model (LLM) services have been widely adopted and have become an integral part of our Internet experience. Third-party plugins enhance the functionalities of LLM by enabling access to real-world data and services. However, the privacy consequences associated with these services and their third-party plugins are not well understood. Sensitive prompt data are stored, processed, and shared by cloud-based LLM providers and third-party plugins. In this paper, we propose Casper, a prompt sanitization technique that aims to protect user privacy by detecting and removing sensitive information from user inputs before sending them to LLM services. Casper runs entirely on the user's device as a browser extension and does not require any changes to the online LLM services. At the core of Casper is a three-layered sanitization mechanism consisting of a rule-based filter, a Machine Learning (ML)-based named entity recognizer, and a browser-based local LLM topic identifier. We evaluate Casper on a dataset of 4000 synthesized prompts and show that it can effectively filter out Personal Identifiable Information (PII) and privacy-sensitive topics with high accuracy, at 98.5% and 89.9%, respectively.
☆ Generative AI for automatic topic labelling
Topic Modeling has become a prominent tool for the study of scientific fields, as they allow for a large scale interpretation of research trends. Nevertheless, the output of these models is structured as a list of keywords which requires a manual interpretation for the labelling. This paper proposes to assess the reliability of three LLMs, namely flan, GPT-4o, and GPT-4 mini for topic labelling. Drawing on previous research leveraging BERTopic, we generate topics from a dataset of all the scientific articles (n=34,797) authored by all biology professors in Switzerland (n=465) between 2008 and 2020, as recorded in the Web of Science database. We assess the output of the three models both quantitatively and qualitatively and find that, first, both GPT models are capable of accurately and precisely label topics from the models' output keywords. Second, 3-word labels are preferable to grasp the complexity of research topics.
comment: 10 pages, 1 figure
☆ LLMs can Schedule
The job shop scheduling problem (JSSP) remains a significant hurdle in optimizing production processes. This challenge involves efficiently allocating jobs to a limited number of machines while minimizing factors like total processing time or job delays. While recent advancements in artificial intelligence have yielded promising solutions, such as reinforcement learning and graph neural networks, this paper explores the potential of Large Language Models (LLMs) for JSSP. We introduce the very first supervised 120k dataset specifically designed to train LLMs for JSSP. Surprisingly, our findings demonstrate that LLM-based scheduling can achieve performance comparable to other neural approaches. Furthermore, we propose a sampling method that enhances the effectiveness of LLMs in tackling JSSP.
☆ SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis
We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS) that generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps. This extension enhances the representation of scenes with multiple spectra, providing insights into the underlying materials and segmentation. We introduce an improved physically-based rendering approach for Gaussian splats, estimating reflectance and lights per spectra, thereby enhancing accuracy and realism. In a comprehensive quantitative and qualitative evaluation, we demonstrate the superior performance of our approach with respect to other recent learning-based spectral scene representation approaches (i.e., XNeRF and SpectralNeRF) as well as other non-spectral state-of-the-art learning-based approaches. Our work also demonstrates the potential of spectral scene understanding for precise scene editing techniques like style transfer, inpainting, and removal. Thereby, our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.
☆ Neural Speech and Audio Coding
This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs' output, along with the autoencoder-based end-to-end models and LPCNet--hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques.
comment: Accepted for publication in IEEE Signal Processing Magazine
☆ Heavy-Ball Momentum Accelerated Actor-Critic With Function Approximation
By using an parametric value function to replace the Monte-Carlo rollouts for value estimation, the actor-critic (AC) algorithms can reduce the variance of stochastic policy gradient so that to improve the convergence rate. While existing works mainly focus on analyzing convergence rate of AC algorithms under Markovian noise, the impacts of momentum on AC algorithms remain largely unexplored. In this work, we first propose a heavy-ball momentum based advantage actor-critic (\mbox{HB-A2C}) algorithm by integrating the heavy-ball momentum into the critic recursion that is parameterized by a linear function. When the sample trajectory follows a Markov decision process, we quantitatively certify the acceleration capability of the proposed HB-A2C algorithm. Our theoretical results demonstrate that the proposed HB-A2C finds an $\epsilon$-approximate stationary point with $\oo{\epsilon^{-2}}$ iterations for reinforcement learning tasks with Markovian noise. Moreover, we also reveal the dependence of learning rates on the length of the sample trajectory. By carefully selecting the momentum factor of the critic recursion, the proposed HB-A2C can balance the errors introduced by the initialization and the stoschastic approximation.
☆ The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
☆ Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification
Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10\% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.
comment: 28 pages, 5 figures
☆ Temporal Variability and Multi-Viewed Self-Supervised Representations to Tackle the ASVspoof5 Deepfake Challenge
ASVspoof5, the fifth edition of the ASVspoof series, is one of the largest global audio security challenges. It aims to advance the development of countermeasure (CM) to discriminate bonafide and spoofed speech utterances. In this paper, we focus on addressing the problem of open-domain audio deepfake detection, which corresponds directly to the ASVspoof5 Track1 open condition. At first, we comprehensively investigate various CM on ASVspoof5, including data expansion, data augmentation, and self-supervised learning (SSL) features. Due to the high-frequency gaps characteristic of the ASVspoof5 dataset, we introduce Frequency Mask, a data augmentation method that masks specific frequency bands to improve CM robustness. Combining various scale of temporal information with multiple SSL features, our experiments achieved a minDCF of 0.0158 and an EER of 0.55% on the ASVspoof 5 Track 1 evaluation progress set.
☆ Multi-Agent Continuous Control with Generative Flow Networks
Generative Flow Networks (GFlowNets) aim to generate diverse trajectories from a distribution in which the final states of the trajectories are proportional to the reward, serving as a powerful alternative to reinforcement learning for exploratory control tasks. However, the individual-flow matching constraint in GFlowNets limits their applications for multi-agent systems, especially continuous joint-control problems. In this paper, we propose a novel Multi-Agent generative Continuous Flow Networks (MACFN) method to enable multiple agents to perform cooperative exploration for various compositional continuous objects. Technically, MACFN trains decentralized individual-flow-based policies in a centralized global-flow-based matching fashion. During centralized training, MACFN introduces a continuous flow decomposition network to deduce the flow contributions of each agent in the presence of only global rewards. Then agents can deliver actions solely based on their assigned local flow in a decentralized way, forming a joint policy distribution proportional to the rewards. To guarantee the expressiveness of continuous flow decomposition, we theoretically derive a consistency condition on the decomposition network. Experimental results demonstrate that the proposed method yields results superior to the state-of-the-art counterparts and better exploration capability. Our code is available at https://github.com/isluoshuang/MACFN.
☆ Heterogeneous Space Fusion and Dual-Dimension Attention: A New Paradigm for Speech Enhancement
Self-supervised learning has demonstrated impressive performance in speech tasks, yet there remains ample opportunity for advancement in the realm of speech enhancement research. In addressing speech tasks, confining the attention mechanism solely to the temporal dimension poses limitations in effectively focusing on critical speech features. Considering the aforementioned issues, our study introduces a novel speech enhancement framework, HFSDA, which skillfully integrates heterogeneous spatial features and incorporates a dual-dimension attention mechanism to significantly enhance speech clarity and quality in noisy environments. By leveraging self-supervised learning embeddings in tandem with Short-Time Fourier Transform (STFT) spectrogram features, our model excels at capturing both high-level semantic information and detailed spectral data, enabling a more thorough analysis and refinement of speech signals. Furthermore, we employ the innovative Omni-dimensional Dynamic Convolution (ODConv) technology within the spectrogram input branch, enabling enhanced extraction and integration of crucial information across multiple dimensions. Additionally, we refine the Conformer model by enhancing its feature extraction capabilities not only in the temporal dimension but also across the spectral domain. Extensive experiments on the VCTK-DEMAND dataset show that HFSDA is comparable to existing state-of-the-art models, confirming the validity of our approach.
comment: Accepted for publication by IEEE International Conference on Systems, Man, and Cybernetics 2024
☆ VNet: A GAN-based Multi-Tier Discriminator Network for Speech Synthesis Vocoders
Since the introduction of Generative Adversarial Networks (GANs) in speech synthesis, remarkable achievements have been attained. In a thorough exploration of vocoders, it has been discovered that audio waveforms can be generated at speeds exceeding real-time while maintaining high fidelity, achieved through the utilization of GAN-based models. Typically, the inputs to the vocoder consist of band-limited spectral information, which inevitably sacrifices high-frequency details. To address this, we adopt the full-band Mel spectrogram information as input, aiming to provide the vocoder with the most comprehensive information possible. However, previous studies have revealed that the use of full-band spectral information as input can result in the issue of over-smoothing, compromising the naturalness of the synthesized speech. To tackle this challenge, we propose VNet, a GAN-based neural vocoder network that incorporates full-band spectral information and introduces a Multi-Tier Discriminator (MTD) comprising multiple sub-discriminators to generate high-resolution signals. Additionally, we introduce an asymptotically constrained method that modifies the adversarial loss of the generator and discriminator, enhancing the stability of the training process. Through rigorous experiments, we demonstrate that the VNet model is capable of generating high-fidelity speech and significantly improving the performance of the vocoder.
comment: Accepted for publication by IEEE International Conference on Systems, Man, and Cybernetics 2024
☆ Entendre, a Social Bot Detection Tool for Niche, Fringe, and Extreme Social Media
Social bots-automated accounts that generate and spread content on social media-are exploiting vulnerabilities in these platforms to manipulate public perception and disseminate disinformation. This has prompted the development of public bot detection services; however, most of these services focus primarily on Twitter, leaving niche platforms vulnerable. Fringe social media platforms such as Parler, Gab, and Gettr often have minimal moderation, which facilitates the spread of hate speech and misinformation. To address this gap, we introduce Entendre, an open-access, scalable, and platform-agnostic bot detection framework. Entendre can process a labeled dataset from any social platform to produce a tailored bot detection model using a random forest classification approach, ensuring robust social bot detection. We exploit the idea that most social platforms share a generic template, where users can post content, approve content, and provide a bio (common data features). By emphasizing general data features over platform-specific ones, Entendre offers rapid extensibility at the expense of some accuracy. To demonstrate Entendre's effectiveness, we used it to explore the presence of bots among accounts posting racist content on the now-defunct right-wing platform Parler. We examined 233,000 posts from 38,379 unique users and found that 1,916 unique users (4.99%) exhibited bot-like behavior. Visualization techniques further revealed that these bots significantly impacted the network, amplifying influential rhetoric and hashtags (e.g., #qanon, #trump, #antilgbt). These preliminary findings underscore the need for tools like Entendre to monitor and assess bot activity across diverse platforms.
comment: 6 pages
☆ BMFT: Achieving Fairness via Bias-based Weight Masking Fine-tuning MICCAI 2024
Developing models with robust group fairness properties is paramount, particularly in ethically sensitive domains such as medical diagnosis. Recent approaches to achieving fairness in machine learning require a substantial amount of training data and depend on model retraining, which may not be practical in real-world scenarios. To mitigate these challenges, we propose Bias-based Weight Masking Fine-Tuning (BMFT), a novel post-processing method that enhances the fairness of a trained model in significantly fewer epochs without requiring access to the original training data. BMFT produces a mask over model parameters, which efficiently identifies the weights contributing the most towards biased predictions. Furthermore, we propose a two-step debiasing strategy, wherein the feature extractor undergoes initial fine-tuning on the identified bias-influenced weights, succeeded by a fine-tuning phase on a reinitialised classification layer to uphold discriminative performance. Extensive experiments across four dermatological datasets and two sensitive attributes demonstrate that BMFT outperforms existing state-of-the-art (SOTA) techniques in both diagnostic accuracy and fairness metrics. Our findings underscore the efficacy and robustness of BMFT in advancing fairness across various out-of-distribution (OOD) settings. Our code is available at: https://github.com/vios-s/BMFT
comment: Accepted by MICCAI 2024 FAIMI Workshop Oral
Decision-Focused Learning to Predict Action Costs for Planning
In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
☆ Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies
This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis. As GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes. However, their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work. Through an examination of current capabilities and potential future applications, this study provides insights into how researchers may utilise GenAI tools responsibly and ethically. We present case studies that demonstrate the application of GenAI in various research methodologies, discuss the challenges of replicability and consistency in AI-assisted research, and consider the ethical implications of increased AI integration in academia. This study explores both qualitative and quantitative applications of GenAI, highlighting tools for transcription, coding, thematic analysis, visual analytics, and statistical analysis. By addressing these issues, we aim to contribute to the ongoing discourse on the role of AI in shaping the future of academic research and provide guidance for researchers exploring the rapidly evolving landscape of AI-assisted research tools and research.
☆ BSS-CFFMA: Cross-Domain Feature Fusion and Multi-Attention Speech Enhancement Network based on Self-Supervised Embedding
Speech self-supervised learning (SSL) represents has achieved state-of-the-art (SOTA) performance in multiple downstream tasks. However, its application in speech enhancement (SE) tasks remains immature, offering opportunities for improvement. In this study, we introduce a novel cross-domain feature fusion and multi-attention speech enhancement network, termed BSS-CFFMA, which leverages self-supervised embeddings. BSS-CFFMA comprises a multi-scale cross-domain feature fusion (MSCFF) block and a residual hybrid multi-attention (RHMA) block. The MSCFF block effectively integrates cross-domain features, facilitating the extraction of rich acoustic information. The RHMA block, serving as the primary enhancement module, utilizes three distinct attention modules to capture diverse attention representations and estimate high-quality speech signals. We evaluate the performance of the BSS-CFFMA model through comparative and ablation studies on the VoiceBank-DEMAND dataset, achieving SOTA results. Furthermore, we select three types of data from the WHAMR! dataset, a collection specifically designed for speech enhancement tasks, to assess the capabilities of BSS-CFFMA in tasks such as denoising only, dereverberation only, and simultaneous denoising and dereverberation. This study marks the first attempt to explore the effectiveness of self-supervised embedding-based speech enhancement methods in complex tasks encompassing dereverberation and simultaneous denoising and dereverberation. The demo implementation of BSS-CFFMA is available online\footnote[2]{https://github.com/AlimMat/BSS-CFFMA. \label{s1}}.
comment: Accepted for publication by IEEE International Conference on Systems, Man, and Cybernetics 2024
☆ Causal Agent based on Large Language Model
Large language models (LLMs) have achieved significant success across various domains. However, the inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language, making it difficult for LLMs to comprehend and use them effectively. Causal methods are not easily conveyed through natural language, which hinders LLMs' ability to apply them accurately. Additionally, causal datasets are typically tabular, while LLMs excel in handling natural language data, creating a structural mismatch that impedes effective reasoning with tabular data. This lack of causal reasoning capability limits the development of LLMs. To address these challenges, we have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems. The causal agent comprises tools, memory, and reasoning modules. In the tools module, the causal agent applies causal methods to align tabular data with natural language. In the reasoning module, the causal agent employs the ReAct framework to perform reasoning through multiple iterations with the tools. In the memory module, the causal agent maintains a dictionary instance where the keys are unique names and the values are causal graphs. To verify the causal ability of the causal agent, we established a benchmark consisting of four levels of causal problems: variable level, edge level, causal graph level, and causal effect level. We generated a test dataset of 1.3K using ChatGPT-3.5 for these four levels of issues and tested the causal agent on the datasets. Our methodology demonstrates remarkable efficacy on the four-level causal problems, with accuracy rates all above 80%. For further insights and implementation details, our code is accessible via the GitHub repository https://github.com/Kairong-Han/Causal_Agent.
☆ AI Research is not Magic, it has to be Reproducible and Responsible: Challenges in the AI field from the Perspective of its PhD Students
With the goal of uncovering the challenges faced by European AI students during their research endeavors, we surveyed 28 AI doctoral candidates from 13 European countries. The outcomes underscore challenges in three key areas: (1) the findability and quality of AI resources such as datasets, models, and experiments; (2) the difficulties in replicating the experiments in AI papers; (3) and the lack of trustworthiness and interdisciplinarity. From our findings, it appears that although early stage AI researchers generally tend to share their AI resources, they lack motivation or knowledge to engage more in dataset and code preparation and curation, and ethical assessments, and are not used to cooperate with well-versed experts in application domains. Furthermore, we examine existing practices in data governance and reproducibility both in computer science and in artificial intelligence. For instance, only a minority of venues actively promote reproducibility initiatives such as reproducibility evaluations. Critically, there is need for immediate adoption of responsible and reproducible AI research practices, crucial for society at large, and essential for the AI research community in particular. This paper proposes a combination of social and technical recommendations to overcome the identified challenges. Socially, we propose the general adoption of reproducibility initiatives in AI conferences and journals, as well as improved interdisciplinary collaboration, especially in data governance practices. On the technical front, we call for enhanced tools to better support versioning control of datasets and code, and a computing infrastructure that facilitates the sharing and discovery of AI resources, as well as the sharing, execution, and verification of experiments.
comment: 8 pages, 4 figures, 1 appendix (interview questions)
☆ Efficient Search for Customized Activation Functions with Gradient Descent
Different activation functions work best for different deep learning models. To exploit this, we leverage recent advancements in gradient-based search techniques for neural architectures to efficiently identify high-performing activation functions for a given application. We propose a fine-grained search cell that combines basic mathematical operations to model activation functions, allowing for the exploration of novel activations. Our approach enables the identification of specialized activations, leading to improved performance in every model we tried, from image classification to language models. Moreover, the identified activations exhibit strong transferability to larger models of the same type, as well as new datasets. Importantly, our automated process for creating customized activation functions is orders of magnitude more efficient than previous approaches. It can easily be applied on top of arbitrary deep learning pipelines and thus offers a promising practical avenue for enhancing deep learning architectures.
comment: 10 pages, 1 figure, excluding references and appendix
☆ Personalized Dynamic Difficulty Adjustment -- Imitation Learning Meets Reinforcement Learning
Balancing game difficulty in video games is a key task to create interesting gaming experiences for players. Mismatching the game difficulty and a player's skill or commitment results in frustration or boredom on the player's side, and hence reduces time spent playing the game. In this work, we explore balancing game difficulty using machine learning-based agents to challenge players based on their current behavior. This is achieved by a combination of two agents, in which one learns to imitate the player, while the second is trained to beat the first. In our demo, we investigate the proposed framework for personalized dynamic difficulty adjustment of AI agents in the context of the fighting game AI competition.
comment: 2 pages, the code to our demo can be found here: https://github.com/ronjafuchs/ICE_AI
☆ MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
Although large language models (LLMs) are capable of performing various tasks, they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on questions requiring a single clear answer, ignoring the existence of data uncertainty that arises from irreducible randomness. Instead, these methods only consider model uncertainty, which arises from a lack of knowledge. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty, while other methods for white- and black-box LLMs struggle depending on the tasks. Additionally, methods designed for white-box LLMs suffer from overconfidence in reasoning tasks compared to simple knowledge queries. We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
☆ Unmasking the Uniqueness: A Glimpse into Age-Invariant Face Recognition of Indigenous African Faces
The task of recognizing the age-separated faces of an individual, Age-Invariant Face Recognition (AIFR), has received considerable research efforts in Europe, America, and Asia, compared to Africa. Thus, AIFR research efforts have often under-represented/misrepresented the African ethnicity with non-indigenous Africans. This work developed an AIFR system for indigenous African faces to reduce the misrepresentation of African ethnicity in facial image analysis research. We adopted a pre-trained deep learning model (VGGFace) for AIFR on a dataset of 5,000 indigenous African faces (FAGE\_v2) collected for this study. FAGE\_v2 was curated via Internet image searches of 500 individuals evenly distributed across 10 African countries. VGGFace was trained on FAGE\_v2 to obtain the best accuracy of 81.80\%. We also performed experiments on an African-American subset of the CACD dataset and obtained the best accuracy of 91.5\%. The results show a significant difference in the recognition accuracies of indigenous versus non-indigenous Africans.
comment: Keywords: Age-Invariant Face Recognition, CACD, FAGE_v2, VGGFace
☆ Deep Learning for Speaker Identification: Architectural Insights from AB-1 Corpus Analysis and Performance Evaluation
In the fields of security systems, forensic investigations, and personalized services, the importance of speech as a fundamental human input outweighs text-based interactions. This research delves deeply into the complex field of Speaker Identification (SID), examining its essential components and emphasising Mel Spectrogram and Mel Frequency Cepstral Coefficients (MFCC) for feature extraction. Moreover, this study evaluates six slightly distinct model architectures using extensive analysis to evaluate their performance, with hyperparameter tuning applied to the best-performing model. This work performs a linguistic analysis to verify accent and gender accuracy, in addition to bias evaluation within the AB-1 Corpus dataset.
comment: Resultant work from Assignment, Department of AI, University of Malta. Code available at: https://github.com/mbar0075/Speech-Technology
☆ Integrating Saliency Ranking and Reinforcement Learning for Enhanced Object Detection
With the ever-growing variety of object detection approaches, this study explores a series of experiments that combine reinforcement learning (RL)-based visual attention methods with saliency ranking techniques to investigate transparent and sustainable solutions. By integrating saliency ranking for initial bounding box prediction and subsequently applying RL techniques to refine these predictions through a finite set of actions over multiple time steps, this study aims to enhance RL object detection accuracy. Presented as a series of experiments, this research investigates the use of various image feature extraction methods and explores diverse Deep Q-Network (DQN) architectural variations for deep reinforcement learning-based localisation agent training. Additionally, we focus on optimising the detection pipeline at every step by prioritising lightweight and faster models, while also incorporating the capability to classify detected objects, a feature absent in previous RL approaches. We show that by evaluating the performance of these trained agents using the Pascal VOC 2007 dataset, faster and more optimised models were developed. Notably, the best mean Average Precision (mAP) achieved in this study was 51.4, surpassing benchmarks set by RL-based single object detectors in the literature.
comment: Resultant work from Dissertation, Department of AI, University of Malta. Code available at: https://github.com/mbar0075/SaRLVision
☆ Stunned by Sleeping Beauty: How Prince Probability updates his forecast upon their fateful encounter
The Sleeping Beauty problem is a puzzle in probability theory that has gained much attention since Elga's discussion of it [Elga, Adam, Analysis 60 (2), p.143-147 (2000)]. Sleeping Beauty is put asleep, and a coin is tossed. If the outcome of the coin toss is Tails, Sleeping Beauty is woken up on Monday, put asleep again and woken up again on Tuesday (with no recollection of having woken up on Monday). If the outcome is Heads, Sleeping Beauty is woken up on Monday only. Each time Sleeping Beauty is woken up, she is asked what her belief is that the outcome was Heads. What should Sleeping Beauty reply? In literature arguments have been given for both 1/3 and 1/2 as the correct answer. In this short note we argue using simple Bayesian probability theory why 1/3 is the right answer, and not 1/2. Briefly, when Sleeping Beauty awakens, her being awake is nontrivial extra information that leads her to update her beliefs about Heads to 1/3. We strengthen our claim by considering an additional observer, Prince Probability, who may or may not meet Sleeping Beauty. If he meets Sleeping Beauty while she is awake, he lowers his credence in Heads to 1/3. We also briefly consider the credence in Heads of a Sleeping Beauty who knows that she is dreaming (and thus asleep).
comment: 12 pages, 1 figure, all comments welcome!
☆ Robust Deep Reinforcement Learning for Inverter-based Volt-Var Control in Partially Observable Distribution Networks
Inverter-based volt-var control is studied in this paper. One key issue in DRL-based approaches is the limited measurement deployment in active distribution networks, which leads to problems of a partially observable state and unknown reward. To address those problems, this paper proposes a robust DRL approach with a conservative critic and a surrogate reward. The conservative critic utilizes the quantile regression technology to estimate conservative state-action value function based on the partially observable state, which helps to train a robust policy; the surrogate rewards of power loss and voltage violation are designed that can be calculated from the limited measurements. The proposed approach optimizes the power loss of the whole network and the voltage profile of buses with measurable voltages while indirectly improving the voltage profile of other buses. Extensive simulations verify the effectiveness of the robust DRL approach in different limited measurement conditions, even when only the active power injection of the root bus and less than 10% of bus voltages are measurable.
☆ Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions SC
The rapid evolution of deep learning and its integration with autonomous driving systems have led to substantial advancements in 3D perception using multimodal sensors. Notably, radar sensors show greater robustness compared to cameras and lidar under adverse weather and varying illumination conditions. This study delves into the often-overlooked yet crucial issue of domain shift in 4D radar-based object detection, examining how varying environmental conditions, such as different weather patterns and road types, impact 3D object detection performance. Our findings highlight distinct domain shifts across various weather scenarios, revealing unique dataset sensitivities that underscore the critical role of radar point cloud generation. Additionally, we demonstrate that transitioning between different road types, especially from highways to urban settings, introduces notable domain shifts, emphasizing the necessity for diverse data collection across varied road environments. To the best of our knowledge, this is the first comprehensive analysis of domain shift effects on 4D radar-based object detection. We believe this empirical study contributes to understanding the complex nature of domain shifts in radar data and suggests paths forward for data collection strategy in the face of environmental variability.
comment: 6 pages, 5 figures, 3 tables, accepted in IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
☆ Cross-View Geolocalization and Disaster Mapping with Street-View and VHR Satellite Imagery: A Case Study of Hurricane IAN
Nature disasters play a key role in shaping human-urban infrastructure interactions. Effective and efficient response to natural disasters is essential for building resilience and a sustainable urban environment. Two types of information are usually the most necessary and difficult to gather in disaster response. The first information is about disaster damage perception, which shows how badly people think that urban infrastructure has been damaged. The second information is geolocation awareness, which means how people whereabouts are made available. In this paper, we proposed a novel disaster mapping framework, namely CVDisaster, aiming at simultaneously addressing geolocalization and damage perception estimation using cross-view Street-View Imagery (SVI) and Very High-Resolution satellite imagery. CVDisaster consists of two cross-view models, where CVDisaster-Geoloc refers to a cross-view geolocalization model based on a contrastive learning objective with a Siamese ConvNeXt image encoder, and CVDisaster-Est is a cross-view classification model based on a Couple Global Context Vision Transformer (CGCViT). Taking Hurricane IAN as a case study, we evaluate the CVDisaster framework by creating a novel cross-view dataset (CVIAN) and conducting extensive experiments. As a result, we show that CVDisaster can achieve highly competitive performance (over 80% for geolocalization and 75% for damage perception estimation) with even limited fine-tuning efforts, which largely motivates future cross-view models and applications within a broader GeoAI research community. The data and code are publicly available at: https://github.com/tum-bgd/CVDisaster.
☆ Evaluating Research Quality with Large Language Models: An Analysis of ChatGPT's Effectiveness with Different Settings and Inputs
Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises, appointments and promotion. It is therefore important to investigate whether Large Language Models (LLMs) can play a role in this process. This article assesses which ChatGPT inputs (full text without tables, figures and references; title and abstract; title only) produce better quality score estimates, and the extent to which scores are affected by ChatGPT models and system prompts. The results show that the optimal input is the article title and abstract, with average ChatGPT scores based on these (30 iterations on a dataset of 51 papers) correlating at 0.67 with human scores, the highest ever reported. ChatGPT 4o is slightly better than 3.5-turbo (0.66), and 4o-mini (0.66). The results suggest that article full texts might confuse LLM research quality evaluations, even though complex system instructions for the task are more effective than simple ones. Thus, whilst abstracts contain insufficient information for a thorough assessment of rigour, they may contain strong pointers about originality and significance. Finally, linear regression can be used to convert the model scores into the human scale scores, which is 31% more accurate than guessing.
☆ DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
comment: 9 pages,8 figures
☆ Speculations on Uncertainty and Humane Algorithms
The appreciation and utilisation of risk and uncertainty can play a key role in helping to solve some of the many ethical issues that are posed by AI. Understanding the uncertainties can allow algorithms to make better decisions by providing interrogatable avenues to check the correctness of outputs. Allowing algorithms to deal with variability and ambiguity with their inputs means they do not need to force people into uncomfortable classifications. Provenance enables algorithms to know what they know preventing possible harms. Additionally, uncertainty about provenance highlights the trustworthiness of algorithms. It is essential to compute with what we know rather than make assumptions that may be unjustified or untenable. This paper provides a perspective on the need for the importance of risk and uncertainty in the development of ethical AI, especially in high-risk scenarios. It argues that the handling of uncertainty, especially epistemic uncertainty, is critical to ensuring that algorithms do not cause harm and are trustworthy and ensure that the decisions that they make are humane.
☆ Large language models can consistently generate high-quality content for election disinformation operations
Advances in large language models have raised concerns about their potential use in generating compelling election disinformation at scale. This study presents a two-part investigation into the capabilities of LLMs to automate stages of an election disinformation operation. First, we introduce DisElect, a novel evaluation dataset designed to measure LLM compliance with instructions to generate content for an election disinformation operation in localised UK context, containing 2,200 malicious prompts and 50 benign prompts. Using DisElect, we test 13 LLMs and find that most models broadly comply with these requests; we also find that the few models which refuse malicious prompts also refuse benign election-related prompts, and are more likely to refuse to generate content from a right-wing perspective. Secondly, we conduct a series of experiments (N=2,340) to assess the "humanness" of LLMs: the extent to which disinformation operation content generated by an LLM is able to pass as human-written. Our experiments suggest that almost all LLMs tested released since 2022 produce election disinformation operation content indiscernible by human evaluators over 50% of the time. Notably, we observe that multiple models achieve above-human levels of humanness. Taken together, these findings suggest that current LLMs can be used to generate high-quality content for election disinformation operations, even in hyperlocalised scenarios, at far lower costs than traditional methods, and offer researchers and policymakers an empirical benchmark for the measurement and evaluation of these capabilities in current and future models.
☆ Enhancing Visual Dialog State Tracking through Iterative Object-Entity Alignment in Multi-Round Conversations
Visual Dialog (VD) is a task where an agent answers a series of image-related questions based on a multi-round dialog history. However, previous VD methods often treat the entire dialog history as a simple text input, disregarding the inherent conversational information flows at the round level. In this paper, we introduce Multi-round Dialogue State Tracking model (MDST), a framework that addresses this limitation by leveraging the dialogue state learned from dialog history to answer questions. MDST captures each round of dialog history, constructing internal dialogue state representations defined as 2-tuples of vision-language representations. These representations effectively ground the current question, enabling the generation of accurate answers. Experimental results on the VisDial v1.0 dataset demonstrate that MDST achieves a new state-of-the-art performance in generative setting. Furthermore, through a series of human studies, we validate the effectiveness of MDST in generating long, consistent, and human-like answers while consistently answering a series of questions correctly.
comment: This article has been accepted in CAAI Transactions on Intelligence Technology! Article ID: CIT2_12370, Article DOI: 10.1049/cit2.12370
☆ Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications
Within data-driven artificial intelligence (AI) systems for industrial applications, ensuring the reliability of the incoming data streams is an integral part of trustworthy decision-making. An approach to assess data validity is data quality scoring, which assigns a score to each data point or stream based on various quality dimensions. However, certain dimensions exhibit dynamic qualities, which require adaptation on the basis of the system's current conditions. Existing methods often overlook this aspect, making them inefficient in dynamic production environments. In this paper, we introduce the Adaptive Data Quality Scoring Operations Framework, a novel framework developed to address the challenges posed by dynamic quality dimensions in industrial data streams. The framework introduces an innovative approach by integrating a dynamic change detector mechanism that actively monitors and adapts to changes in data quality, ensuring the relevance of quality scores. We evaluate the proposed framework performance in a real-world industrial use case. The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
comment: 17 pages
☆ Computation-friendly Graph Neural Network Design by Accumulating Knowledge on Large Language Models
Graph Neural Networks (GNNs), like other neural networks, have shown remarkable success but are hampered by the complexity of their architecture designs, which heavily depend on specific data and tasks. Traditionally, designing proper architectures involves trial and error, which requires intensive manual effort to optimize various components. To reduce human workload, researchers try to develop automated algorithms to design GNNs. However, both experts and automated algorithms suffer from two major issues in designing GNNs: 1) the substantial computational resources expended in repeatedly trying candidate GNN architectures until a feasible design is achieved, and 2) the intricate and prolonged processes required for humans or algorithms to accumulate knowledge of the interrelationship between graphs, GNNs, and performance. To further enhance the automation of GNN architecture design, we propose a computation-friendly way to empower Large Language Models (LLMs) with specialized knowledge in designing GNNs, thereby drastically shortening the computational overhead and development cycle of designing GNN architectures. Our framework begins by establishing a knowledge retrieval pipeline that comprehends the intercorrelations between graphs, GNNs, and performance. This pipeline converts past model design experiences into structured knowledge for LLM reference, allowing it to quickly suggest initial model proposals. Subsequently, we introduce a knowledge-driven search strategy that emulates the exploration-exploitation process of human experts, enabling quick refinement of initial proposals within a promising scope. Extensive experiments demonstrate that our framework can efficiently deliver promising (e.g., Top-5.77%) initial model proposals for unseen datasets within seconds and without any prior training and achieve outstanding search performance in a few iterations.
☆ Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Gaussian Process Latent Variable Models (GPLVMs) have become increasingly popular for unsupervised tasks such as dimensionality reduction and missing data recovery due to their flexibility and non-linear nature. An importance-weighted version of the Bayesian GPLVMs has been proposed to obtain a tighter variational bound. However, this version of the approach is primarily limited to analyzing simple data structures, as the generation of an effective proposal distribution can become quite challenging in high-dimensional spaces or with complex data sets. In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues. By transforming the posterior into a sequence of intermediate distributions using annealing, we combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution. We further propose an efficient algorithm by reparameterizing all variables in the evidence lower bound (ELBO). Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
☆ Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes
Recently, a sparse version of Student-t Processes, termed sparse variational Student-t Processes, has been proposed to enhance computational efficiency and flexibility for real-world datasets using stochastic gradient descent. However, traditional gradient descent methods like Adam may not fully exploit the parameter space geometry, potentially leading to slower convergence and suboptimal performance. To mitigate these issues, we adopt natural gradient methods from information geometry for variational parameter optimization of Student-t Processes. This approach leverages the curvature and structure of the parameter space, utilizing tools such as the Fisher information matrix which is linked to the Beta function in our model. This method provides robust mathematical support for the natural gradient algorithm when using Student's t-distribution as the variational distribution. Additionally, we present a mini-batch algorithm for efficiently computing natural gradients. Experimental results across four benchmark datasets demonstrate that our method consistently accelerates convergence speed.
☆ SlotLifter: Slot-guided Feature Lifting for Learning Object-centric Radiance Fields ECCV 2024
The ability to distill object-centric abstractions from intricate visual scenes underpins human-level generalization. Despite the significant progress in object-centric learning methods, learning object-centric representations in the 3D physical world remains a crucial challenge. In this work, we propose SlotLifter, a novel object-centric radiance model addressing scene reconstruction and decomposition jointly via slot-guided feature lifting. Such a design unites object-centric learning representations and image-based rendering methods, offering state-of-the-art performance in scene decomposition and novel-view synthesis on four challenging synthetic and four complex real-world datasets, outperforming existing 3D object-centric learning methods by a large margin. Through extensive ablative studies, we showcase the efficacy of designs in SlotLifter, revealing key insights for potential future directions.
comment: Accepted by ECCV 2024. Project website: https://slotlifter.github.io
☆ DC3DO: Diffusion Classifier for 3D Objects
Inspired by Geoffrey Hinton emphasis on generative modeling, To recognize shapes, first learn to generate them, we explore the use of 3D diffusion models for object classification. Leveraging the density estimates from these models, our approach, the Diffusion Classifier for 3D Objects (DC3DO), enables zero-shot classification of 3D shapes without additional training. On average, our method achieves a 12.5 percent improvement compared to its multiview counterparts, demonstrating superior multimodal reasoning over discriminative approaches. DC3DO employs a class-conditional diffusion model trained on ShapeNet, and we run inferences on point clouds of chairs and cars. This work highlights the potential of generative models in 3D object classification.
☆ Masked Image Modeling: A Survey
In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g. pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work.
☆ Leveraging Priors via Diffusion Bridge for Time Series Generation
Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques. Recently, diffusion models have emerged as the de facto approach for time series generation, emphasizing diverse synthesis scenarios based on historical or correlated time series data streams. Since time series have unique characteristics, such as fixed time order and data scaling, standard Gaussian prior might be ill-suited for general time series generation. In this paper, we exploit the usage of diverse prior distributions for synthesis. Then, we propose TimeBridge, a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions. Our model covers a wide range of scenarios in time series diffusion models, which leverages (i) data- and time-dependent priors for unconditional synthesis, and (ii) data-scale preserving synthesis with a constraint as a prior for conditional generation. Experimentally, our model achieves state-of-the-art performance in both unconditional and conditional time series generation tasks.
☆ RW-NSGCN: A Robust Approach to Structural Attacks via Negative Sampling
Node classification using Graph Neural Networks (GNNs) has been widely applied in various practical scenarios, such as predicting user interests and detecting communities in social networks. However, recent studies have shown that graph-structured networks often contain potential noise and attacks, in the form of topological perturbations and weight disturbances, which can lead to decreased classification performance in GNNs. To improve the robustness of the model, we propose a novel method: Random Walk Negative Sampling Graph Convolutional Network (RW-NSGCN). Specifically, RW-NSGCN integrates the Random Walk with Restart (RWR) and PageRank (PGR) algorithms for negative sampling and employs a Determinantal Point Process (DPP)-based GCN for convolution operations. RWR leverages both global and local information to manage noise and local variations, while PGR assesses node importance to stabilize the topological structure. The DPP-based GCN ensures diversity among negative samples and aggregates their features to produce robust node embeddings, thereby improving classification performance. Experimental results demonstrate that the RW-NSGCN model effectively addresses network topology attacks and weight instability, increasing the accuracy of anomaly detection and overall stability. In terms of classification accuracy, RW-NSGCN significantly outperforms existing methods, showing greater resilience across various scenarios and effectively mitigating the impact of such vulnerabilities.
☆ Hierarchical Structured Neural Network for Retrieval
Embedding Based Retrieval (EBR) is a crucial component of the retrieval stage in (Ads) Recommendation System that utilizes Two Tower or Siamese Networks to learn embeddings for both users and items (ads). It then employs an Approximate Nearest Neighbor Search (ANN) to efficiently retrieve the most relevant ads for a specific user. Despite the recent rise to popularity in the industry, they have a couple of limitations. Firstly, Two Tower model architecture uses a single dot product interaction which despite their efficiency fail to capture the data distribution in practice. Secondly, the centroid representation and cluster assignment, which are components of ANN, occur after the training process has been completed. As a result, they do not take into account the optimization criteria used for retrieval model. In this paper, we present Hierarchical Structured Neural Network (HSNN), a deployed jointly optimized hierarchical clustering and neural network model that can take advantage of sophisticated interactions and model architectures that are more common in the ranking stages while maintaining a sub-linear inference cost. We achieve 6.5% improvement in offline evaluation and also demonstrate 1.22% online gains through A/B experiments. HSNN has been successfully deployed into the Ads Recommendation system and is currently handling major portion of the traffic. The paper shares our experience in developing this system, dealing with challenges like freshness, volatility, cold start recommendations, cluster collapse and lessons deploying the model in a large scale retrieval production system.
comment: 9 pages
☆ EditScribe: Non-Visual Image Editing with Natural Language Verification Loops
Image editing is an iterative process that requires precise visual evaluation and manipulation for the output to match the editing intent. However, current image editing tools do not provide accessible interaction nor sufficient feedback for blind and low vision individuals to achieve this level of control. To address this, we developed EditScribe, a prototype system that makes image editing accessible using natural language verification loops powered by large multimodal models. Using EditScribe, the user first comprehends the image content through initial general and object descriptions, then specifies edit actions using open-ended natural language prompts. EditScribe performs the image edit, and provides four types of verification feedback for the user to verify the performed edit, including a summary of visual changes, AI judgement, and updated general and object descriptions. The user can ask follow-up questions to clarify and probe into the edits or verification feedback, before performing another edit. In a study with ten blind or low-vision users, we found that EditScribe supported participants to perform and verify image edit actions non-visually. We observed different prompting strategies from participants, and their perceptions on the various types of verification feedback. Finally, we discuss the implications of leveraging natural language verification loops to make visual authoring non-visually accessible.
comment: ASSETS 2024
☆ WorldScribe: Towards Context-Aware Live Visual Descriptions
Automated live visual descriptions can aid blind people in understanding their surroundings with autonomy and independence. However, providing descriptions that are rich, contextual, and just-in-time has been a long-standing challenge in accessibility. In this work, we develop WorldScribe, a system that generates automated live real-world visual descriptions that are customizable and adaptive to users' contexts: (i) WorldScribe's descriptions are tailored to users' intents and prioritized based on semantic relevance. (ii) WorldScribe is adaptive to visual contexts, e.g., providing consecutively succinct descriptions for dynamic scenes, while presenting longer and detailed ones for stable settings. (iii) WorldScribe is adaptive to sound contexts, e.g., increasing volume in noisy environments, or pausing when conversations start. Powered by a suite of vision, language, and sound recognition models, WorldScribe introduces a description generation pipeline that balances the tradeoffs between their richness and latency to support real-time use. The design of WorldScribe is informed by prior work on providing visual descriptions and a formative study with blind participants. Our user study and subsequent pipeline evaluation show that WorldScribe can provide real-time and fairly accurate visual descriptions to facilitate environment understanding that is adaptive and customized to users' contexts. Finally, we discuss the implications and further steps toward making live visual descriptions more context-aware and humanized.
comment: UIST 2024
☆ Generalized knowledge-enhanced framework for biomedical entity and relation extraction
In recent years, there has been an increasing number of frameworks developed for biomedical entity and relation extraction. This research effort aims to address the accelerating growth in biomedical publications and the intricate nature of biomedical texts, which are written for mainly domain experts. To handle these challenges, we develop a novel framework that utilizes external knowledge to construct a task-independent and reusable background knowledge graph for biomedical entity and relation extraction. The design of our model is inspired by how humans learn domain-specific topics. In particular, humans often first acquire the most basic and common knowledge regarding a field to build the foundational knowledge and then use that as a basis for extending to various specialized topics. Our framework employs such common-knowledge-sharing mechanism to build a general neural-network knowledge graph that is learning transferable to different domain-specific biomedical texts effectively. Experimental evaluations demonstrate that our model, equipped with this generalized and cross-transferable knowledge base, achieves competitive performance benchmarks, including BioRelEx for binding interaction detection and ADE for Adverse Drug Effect identification.
☆ Simple but Effective Compound Geometric Operations for Temporal Knowledge Graph Completion
Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs. Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs. However, these methods only adopt a single operation, which may have limitations in capturing the complex temporal dynamics present in temporal knowledge graphs. Therefore, we propose a simple but effective method, i.e. TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations. We provide mathematical proofs to demonstrate the ability of TCompoundE to encode various relation patterns. Experimental results show that our proposed model significantly outperforms existing temporal knowledge graph embedding models. Our code is available at https://github.com/nk-ruiying/TCompoundE.
☆ Super-intelligence or Superstition? Exploring Psychological Factors Underlying Unwarranted Belief in AI Predictions
This study investigates psychological factors influencing belief in AI predictions about personal behavior, comparing it to belief in astrology and personality-based predictions. Through an experiment with 238 participants, we examined how cognitive style, paranormal beliefs, AI attitudes, personality traits, and other factors affect perceived validity, reliability, usefulness, and personalization of predictions from different sources. Our findings reveal that belief in AI predictions is positively correlated with belief in predictions based on astrology and personality psychology. Notably, paranormal beliefs and positive AI attitudes significantly increased perceived validity, reliability, usefulness, and personalization of AI predictions. Conscientiousness was negatively correlated with belief in predictions across all sources, and interest in the prediction topic increased believability across predictions. Surprisingly, cognitive style did not significantly influence belief in predictions. These results highlight the "rational superstition" phenomenon in AI, where belief is driven more by mental heuristics and intuition than critical evaluation. We discuss implications for designing AI systems and communication strategies that foster appropriate trust and skepticism. This research contributes to our understanding of the psychology of human-AI interaction and offers insights for the design and deployment of AI systems.
☆ A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition
Large Language Models (LLMs) are known for their remarkable ability to generate synthesized 'knowledge', such as text documents, music, images, etc. However, there is a huge gap between LLM's and human capabilities for understanding abstract concepts and reasoning. We discuss these issues in a larger philosophical context of human knowledge acquisition and the Turing test. In addition, we illustrate the limitations of LLMs by analyzing GPT-4 responses to questions ranging from science and math to common sense reasoning. These examples show that GPT-4 can often imitate human reasoning, even though it lacks understanding. However, LLM responses are synthesized from a large LLM model trained on all available data. In contrast, human understanding is based on a small number of abstract concepts. Based on this distinction, we discuss the impact of LLMs on acquisition of human knowledge and education.
☆ Social Debiasing for Fair Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities. However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender. This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC), which provides a more diverse and extensive training set compared to existing datasets. ii) Proposing an Anti-Stereotype Debiasing strategy (ASD). Our method works by revisiting the MLLM training process, rescaling the autoregressive loss function, and improving data sampling methods to counteract biases. Through extensive experiments on various MLLMs, our CMSC dataset and ASD method demonstrate a significant reduction in social biases while maintaining the models' original performance.
☆ AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies
In recent years, with the rapid application of large language models across various fields, the scale of these models has gradually increased, and the resources required for their pre-training have grown exponentially. Training an LLM from scratch will cost a lot of computation resources while scaling up from a smaller model is a more efficient approach and has thus attracted significant attention. In this paper, we present AquilaMoE, a cutting-edge bilingual 8*16B Mixture of Experts (MoE) language model that has 8 experts with 16 billion parameters each and is developed using an innovative training methodology called EfficientScale. This approach optimizes performance while minimizing data requirements through a two-stage process. The first stage, termed Scale-Up, initializes the larger model with weights from a pre-trained smaller model, enabling substantial knowledge transfer and continuous pretraining with significantly less data. The second stage, Scale-Out, uses a pre-trained dense model to initialize the MoE experts, further enhancing knowledge transfer and performance. Extensive validation experiments on 1.8B and 7B models compared various initialization schemes, achieving models that maintain and reduce loss during continuous pretraining. Utilizing the optimal scheme, we successfully trained a 16B model and subsequently the 8*16B AquilaMoE model, demonstrating significant improvements in performance and training efficiency.
☆ HDRGS: High Dynamic Range Gaussian Splatting
Recent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios. Code will be released at \url{https://github.com/WuJH2001/HDRGS}
☆ Value of Information and Reward Specification in Active Inference and POMDPs
Expected free energy (EFE) is a central quantity in active inference which has recently gained popularity due to its intuitive decomposition of the expected value of control into a pragmatic and an epistemic component. While numerous conjectures have been made to justify EFE as a decision making objective function, the most widely accepted is still its intuitiveness and resemblance to variational free energy in approximate Bayesian inference. In this work, we take a bottom up approach and ask: taking EFE as given, what's the resulting agent's optimality gap compared with a reward-driven reinforcement learning (RL) agent, which is well understood? By casting EFE under a particular class of belief MDP and using analysis tools from RL theory, we show that EFE approximates the Bayes optimal RL policy via information value. We discuss the implications for objective specification of active inference agents.
Dynamic Exclusion of Low-Fidelity Data in Bayesian Optimization for Autonomous Beamline Alignment
Aligning beamlines at synchrotron light sources is a high-dimensional, expensive-to-sample optimization problem, as beams are focused using a series of dynamic optical components. Bayesian Optimization is an efficient machine learning approach to finding global optima of beam quality, but the model can easily be impaired by faulty data points caused by the beam going off the edge of the sensor or by background noise. This study, conducted at the National Synchrotron Light Source II (NSLS-II) facility at Brookhaven National Laboratory (BNL), is an investigation of methods to identify untrustworthy readings of beam quality and discourage the optimization model from seeking out points likely to yield low-fidelity beams. The approaches explored include dynamic pruning using loss analysis of size and position models and a lengthscale-based genetic algorithm to determine which points to include in the model for optimal fit. Each method successfully classified high and low fidelity points. This research advances BNL's mission to tackle our nation's energy challenges by providing scientists at all beamlines with access to higher quality beams, and faster convergence to these optima for their experiments.
comment: 12 pages, 6 figure sets
☆ Using Advanced LLMs to Enhance Smaller LLMs: An Interpretable Knowledge Distillation Approach
Advanced Large language models (LLMs) like GPT-4 or LlaMa 3 provide superior performance in complex human-like interactions. But they are costly, or too large for edge devices such as smartphones and harder to self-host, leading to security and privacy concerns. This paper introduces a novel interpretable knowledge distillation approach to enhance the performance of smaller, more economical LLMs that firms can self-host. We study this problem in the context of building a customer service agent aimed at achieving high customer satisfaction through goal-oriented dialogues. Unlike traditional knowledge distillation, where the "student" model learns directly from the "teacher" model's responses via fine-tuning, our interpretable "strategy" teaching approach involves the teacher providing strategies to improve the student's performance in various scenarios. This method alternates between a "scenario generation" step and a "strategies for improvement" step, creating a customized library of scenarios and optimized strategies for automated prompting. The method requires only black-box access to both student and teacher models; hence it can be used without manipulating model parameters. In our customer service application, the method improves performance, and the learned strategies are transferable to other LLMs and scenarios beyond the training set. The method's interpretabilty helps safeguard against potential harms through human audit.
☆ Direction of Arrival Correction through Speech Quality Feedback
Real-time speech enhancement has began to rise in performance, and the Demucs Denoiser model has recently demonstrated strong performance in multiple-speech-source scenarios when accompanied by a location-based speech target selection strategy. However, it has shown to be sensitive to errors in the direction-of-arrival (DOA) estimation. In this work, a DOA correction scheme is proposed that uses the real-time estimated speech quality of its enhanced output as the observed variable in an Adam-based optimization feedback loop to find the correct DOA. In spite of the high variability of the speech quality estimation, the proposed system is able to correct in real-time an error of up to 15$^o$ using only the speech quality as its guide. Several insights are provided for future versions of the proposed system to speed up convergence and further reduce the speech quality estimation variability.
comment: Submitted to Digital Signal Processing
☆ Play Me Something Icy: Practical Challenges, Explainability and the Semantic Gap in Generative AI Music
This pictorial aims to critically consider the nature of text-to-audio and text-to-music generative tools in the context of explainable AI. As a group of experimental musicians and researchers, we are enthusiastic about the creative potential of these tools and have sought to understand and evaluate them from perspectives of prompt creation, control, usability, understandability, explainability of the AI process, and overall aesthetic effectiveness of the results. One of the challenges we have identified that is not explicitly addressed by these tools is the inherent semantic gap in using text-based tools to describe something as abstract as music. Other gaps include explainability vs. useability, and user control and input vs. the human creative process. The aim of this pictorial is to raise questions for discussion and make a few general suggestions on the kinds of improvements we would like to see in generative AI music tools.
comment: In Proceedings of Explainable AI for the Arts Workshop 2024 (XAIxArts 2024) arXiv:2406.14485
☆ Can Large Language Models Reason? A Characterization via 3-SAT
Large Language Models (LLMs) are said to possess advanced reasoning abilities. However, some skepticism exists as recent works show how LLMs often bypass true reasoning using shortcuts. Current methods for assessing the reasoning abilities of LLMs typically rely on open-source benchmarks that may be overrepresented in LLM training data, potentially skewing performance. We instead provide a computational theory perspective of reasoning, using 3-SAT -- the prototypical NP-complete problem that lies at the core of logical reasoning and constraint satisfaction tasks. By examining the phase transitions in 3-SAT, we empirically characterize the reasoning abilities of LLMs and show how they vary with the inherent hardness of the problems. Our experimental evidence shows that LLMs cannot perform true reasoning, as is required for solving 3-SAT problems.
☆ Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning, yet their application in agentic, multi-step reasoning within interactive environments remains a difficult challenge. Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities needed to perform complex decision-making in dynamic settings like web navigation. Previous attempts to bridge this ga-through supervised fine-tuning on curated expert demonstrations-often suffer from compounding errors and limited exploration data, resulting in sub-optimal policy outcomes. To overcome these challenges, we propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions using an off-policy variant of the Direct Preference Optimization (DPO) algorithm. Our method allows LLM agents to learn effectively from both successful and unsuccessful trajectories, thereby improving their generalization in complex, multi-step reasoning tasks. We validate our approach in the WebShop environment-a simulated e-commerce platform where it consistently outperforms behavior cloning and reinforced fine-tuning baseline, and beats average human performance when equipped with the capability to do online search. In real-world booking scenarios, our methodology boosts Llama-3 70B model's zero-shot performance from 18.6% to 81.7% success rate (a 340% relative increase) after a single day of data collection and further to 95.4% with online search. We believe this represents a substantial leap forward in the capabilities of autonomous agents, paving the way for more sophisticated and reliable decision-making in real-world settings.
☆ Massive Dimensions Reduction and Hybridization with Meta-heuristics in Deep Learning
Deep learning is mainly based on utilizing gradient-based optimization for training Deep Neural Network (DNN) models. Although robust and widely used, gradient-based optimization algorithms are prone to getting stuck in local minima. In this modern deep learning era, the state-of-the-art DNN models have millions and billions of parameters, including weights and biases, making them huge-scale optimization problems in terms of search space. Tuning a huge number of parameters is a challenging task that causes vanishing/exploding gradients and overfitting; likewise, utilized loss functions do not exactly represent our targeted performance metrics. A practical solution to exploring large and complex solution space is meta-heuristic algorithms. Since DNNs exceed thousands and millions of parameters, even robust meta-heuristic algorithms, such as Differential Evolution, struggle to efficiently explore and converge in such huge-dimensional search spaces, leading to very slow convergence and high memory demand. To tackle the mentioned curse of dimensionality, the concept of blocking was recently proposed as a technique that reduces the search space dimensions by grouping them into blocks. In this study, we aim to introduce Histogram-based Blocking Differential Evolution (HBDE), a novel approach that hybridizes gradient-based and gradient-free algorithms to optimize parameters. Experimental results demonstrated that the HBDE could reduce the parameters in the ResNet-18 model from 11M to 3K during the training/optimizing phase by metaheuristics, namely, the proposed HBDE, which outperforms baseline gradient-based and parent gradient-free DE algorithms evaluated on CIFAR-10 and CIFAR-100 datasets showcasing its effectiveness with reduced computational demands for the very first time.
comment: 8 pages, 5 figures, 3 tables, accepted at IEEE CCECE 2024 (updated Fig. 1 and conclusion remarks)
☆ Solving Truly Massive Budgeted Monotonic POMDPs with Oracle-Guided Meta-Reinforcement Learning
Monotonic Partially Observable Markov Decision Processes (POMDPs), where the system state progressively decreases until a restorative action is performed, can be used to model sequential repair problems effectively. This paper considers the problem of solving budget-constrained multi-component monotonic POMDPs, where a finite budget limits the maximal number of restorative actions. For a large number of components, solving such a POMDP using current methods is computationally intractable due to the exponential growth in the state space with an increasing number of components. To address this challenge, we propose a two-step approach. Since the individual components of a budget-constrained multi-component monotonic POMDP are only connected via the shared budget, we first approximate the optimal budget allocation among these components using an approximation of each component POMDP's optimal value function which is obtained through a random forest model. Subsequently, we introduce an oracle-guided meta-trained Proximal Policy Optimization (PPO) algorithm to solve each of the independent budget-constrained single-component monotonic POMDPs. The oracle policy is obtained by performing value iteration on the corresponding monotonic Markov Decision Process (MDP). This two-step method provides scalability in solving truly massive multi-component monotonic POMDPs. To demonstrate the efficacy of our approach, we consider a real-world maintenance scenario that involves inspection and repair of an administrative building by a team of agents within a maintenance budget. Finally, we perform a computational complexity analysis for a varying number of components to show the scalability of the proposed approach.
☆ A New Dataset, Notation Software, and Representation for Computational Schenkerian Analysis
Schenkerian Analysis (SchA) is a uniquely expressive method of music analysis, combining elements of melody, harmony, counterpoint, and form to describe the hierarchical structure supporting a work of music. However, despite its powerful analytical utility and potential to improve music understanding and generation, SchA has rarely been utilized by the computer music community. This is in large part due to the paucity of available high-quality data in a computer-readable format. With a larger corpus of Schenkerian data, it may be possible to infuse machine learning models with a deeper understanding of musical structure, thus leading to more "human" results. To encourage further research in Schenkerian analysis and its potential benefits for music informatics and generation, this paper presents three main contributions: 1) a new and growing dataset of SchAs, the largest in human- and computer-readable formats to date (>140 excerpts), 2) a novel software for visualization and collection of SchA data, and 3) a novel, flexible representation of SchA as a heterogeneous-edge graph data structure.
☆ VulCatch: Enhancing Binary Vulnerability Detection through CodeT5 Decompilation and KAN Advanced Feature Extraction
Binary program vulnerability detection is critical for software security, yet existing deep learning approaches often rely on source code analysis, limiting their ability to detect unknown vulnerabilities. To address this, we propose VulCatch, a binary-level vulnerability detection framework. VulCatch introduces a Synergy Decompilation Module (SDM) and Kolmogorov-Arnold Networks (KAN) to transform raw binary code into pseudocode using CodeT5, preserving high-level semantics for deep analysis with tools like Ghidra and IDA. KAN further enhances feature transformation, enabling the detection of complex vulnerabilities. VulCatch employs word2vec, Inception Blocks, BiLSTM Attention, and Residual connections to achieve high detection accuracy (98.88%) and precision (97.92%), while minimizing false positives (1.56%) and false negatives (2.71%) across seven CVE datasets.
☆ Vision Language Model for Interpretable and Fine-grained Detection of Safety Compliance in Diverse Workplaces
Workplace accidents due to personal protective equipment (PPE) non-compliance raise serious safety concerns and lead to legal liabilities, financial penalties, and reputational damage. While object detection models have shown the capability to address this issue by identifying safety items, most existing models, such as YOLO, Faster R-CNN, and SSD, are limited in verifying the fine-grained attributes of PPE across diverse workplace scenarios. Vision language models (VLMs) are gaining traction for detection tasks by leveraging the synergy between visual and textual information, offering a promising solution to traditional object detection limitations in PPE recognition. Nonetheless, VLMs face challenges in consistently verifying PPE attributes due to the complexity and variability of workplace environments, requiring them to interpret context-specific language and visual cues simultaneously. We introduce Clip2Safety, an interpretable detection framework for diverse workplace safety compliance, which comprises four main modules: scene recognition, the visual prompt, safety items detection, and fine-grained verification. The scene recognition identifies the current scenario to determine the necessary safety gear. The visual prompt formulates the specific visual prompts needed for the detection process. The safety items detection identifies whether the required safety gear is being worn according to the specified scenario. Lastly, the fine-grained verification assesses whether the worn safety equipment meets the fine-grained attribute requirements. We conduct real-world case studies across six different scenarios. The results show that Clip2Safety not only demonstrates an accuracy improvement over state-of-the-art question-answering based VLMs but also achieves inference times two hundred times faster.
comment: 20 pages, 7 figures
☆ A Theory-Based Explainable Deep Learning Architecture for Music Emotion
This paper paper develops a theory-based, explainable deep learning convolutional neural network (CNN) classifier to predict the time-varying emotional response to music. We design novel CNN filters that leverage the frequency harmonics structure from acoustic physics known to impact the perception of musical features. Our theory-based model is more parsimonious, but provides comparable predictive performance to atheoretical deep learning models, while performing better than models using handcrafted features. Our model can be complemented with handcrafted features, but the performance improvement is marginal. Importantly, the harmonics-based structure placed on the CNN filters provides better explainability for how the model predicts emotional response (valence and arousal), because emotion is closely related to consonance--a perceptual feature defined by the alignment of harmonics. Finally, we illustrate the utility of our model with an application involving digital advertising. Motivated by YouTube mid-roll ads, we conduct a lab experiment in which we exogenously insert ads at different times within videos. We find that ads placed in emotionally similar contexts increase ad engagement (lower skip rates, higher brand recall rates). Ad insertion based on emotional similarity metrics predicted by our theory-based, explainable model produces comparable or better engagement relative to atheoretical models.
☆ An Introduction to Reinforcement Learning: Fundamental Concepts and Practical Applications
Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) which focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards. An overview of RL is provided in this paper, which discusses its core concepts, methodologies, recent trends, and resources for learning. We provide a detailed explanation of key components of RL such as states, actions, policies, and reward signals so that the reader can build a foundational understanding. The paper also provides examples of various RL algorithms, including model-free and model-based methods. In addition, RL algorithms are introduced and resources for learning and implementing them are provided, such as books, courses, and online communities. This paper demystifies a comprehensive yet simple introduction for beginners by offering a structured and clear pathway for acquiring and implementing real-time techniques.
♻ ☆ Decentralized Intelligence Health Network (DIHN)
Decentralized Health Intelligence Network (DHIN) is a theoretical framework addressing significant challenges of health data sovereignty and AI utilization in healthcare caused by data fragmentation across providers and institutions. It establishes a sovereign architecture for healthcare provision as a prerequisite to a sovereign health network, then facilitates effective AI utilization by overcoming barriers to accessing diverse medical data sources. This comprehensive framework leverages: 1) self-sovereign identity architecture coupled with a personal health record (PHR) as a prerequisite for health data sovereignty; 2) a scalable federated learning (FL) protocol implemented on a public blockchain for decentralized AI training in healthcare, where health data remains with participants and only model parameter updates are shared; and 3) a scalable, trustless rewards mechanism to incentivize participation and ensure fair reward distribution. This framework ensures that no entity can prevent or control access to training on health data offered by participants or determine financial benefits, as these processes operate on a public blockchain with an immutable record and without a third party. It supports effective AI training in healthcare, allowing patients to maintain control over their health data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial healthcare algorithms. Patients receive rewards into their digital wallets as an incentive to opt-in to the FL protocol, with a long-term roadmap to funding decentralized insurance solutions. This approach introduces a novel, self-financed healthcare model that adapts to individual needs, complements existing systems, and redefines universal coverage. It highlights the potential to transform healthcare data management and AI utilization while empowering patients.
comment: 17 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2407.02461
♻ ☆ Spb3DTracker: A Robust LiDAR-Based Person Tracker for Noisy Environment
Person detection and tracking (PDT) has seen significant advancements with 2D camera-based systems in the autonomous vehicle field, leading to widespread adoption of these algorithms. However, growing privacy concerns have recently emerged as a major issue, prompting a shift towards LiDAR-based PDT as a viable alternative. Within this domain, "Tracking-by-Detection" (TBD) has become a prominent methodology. Despite its effectiveness, LiDAR-based PDT has not yet achieved the same level of performance as camera-based PDT. This paper examines key components of the LiDAR-based PDT framework, including detection post-processing, data association, motion modeling, and lifecycle management. Building upon these insights, we introduce SpbTrack, a robust person tracker designed for diverse environments. Our method achieves superior performance on noisy datasets and state-of-the-art results on KITTI Dataset benchmarks and custom office indoor dataset among LiDAR-based trackers.
comment: 17 pages, 5 figures
♻ ☆ Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts
Current weakly supervised video anomaly detection (WSVAD) task aims to achieve frame-level anomalous event detection with only coarse video-level annotations available. Existing works typically involve extracting global features from full-resolution video frames and training frame-level classifiers to detect anomalies in the temporal dimension. However, most anomalous events tend to occur in localized spatial regions rather than the entire video frames, which implies existing frame-level feature based works may be misled by the dominant background information and lack the interpretation of the detected anomalies. To address this dilemma, this paper introduces a novel method called STPrompt that learns spatio-temporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs). Our proposed method employs a two-stream network structure, with one stream focusing on the temporal dimension and the other primarily on the spatial dimension. By leveraging the learned knowledge from pre-trained VLMs and incorporating natural motion priors from raw videos, our model learns prompt embeddings that are aligned with spatio-temporal regions of videos (e.g., patches of individual frames) for identify specific local regions of anomalies, enabling accurate video anomaly detection while mitigating the influence of background information. Without relying on detailed spatio-temporal annotations or auxiliary object detection/tracking, our method achieves state-of-the-art performance on three public benchmarks for the WSVADL task.
comment: Accepted by ACMMM2024
♻ ☆ Federated Smoothing Proximal Gradient for Quantile Regression with Non-Convex Penalties
Distributed sensors in the internet-of-things (IoT) generate vast amounts of sparse data. Analyzing this high-dimensional data and identifying relevant predictors pose substantial challenges, especially when data is preferred to remain on the device where it was collected for reasons such as data integrity, communication bandwidth, and privacy. This paper introduces a federated quantile regression algorithm to address these challenges. Quantile regression provides a more comprehensive view of the relationship between variables than mean regression models. However, traditional approaches face difficulties when dealing with nonconvex sparse penalties and the inherent non-smoothness of the loss function. For this purpose, we propose a federated smoothing proximal gradient (FSPG) algorithm that integrates a smoothing mechanism with the proximal gradient framework, thereby enhancing both precision and computational speed. This integration adeptly handles optimization over a network of devices, each holding local data samples, making it particularly effective in federated learning scenarios. The FSPG algorithm ensures steady progress and reliable convergence in each iteration by maintaining or reducing the value of the objective function. By leveraging nonconvex penalties, such as the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD), the proposed method can identify and preserve key predictors within sparse models. Comprehensive simulations validate the robust theoretical foundations of the proposed algorithm and demonstrate improved estimation precision and reliable convergence.
♻ ☆ Judging the Judges: A Systematic Investigation of Position Bias in Pairwise Comparative Assessments by LLMs
LLM-as-a-Judge offers a promising alternative to human judges across various tasks, yet inherent biases, particularly position bias - a systematic preference for answers based on their position in the prompt - compromise its effectiveness. Our study investigates this issue by developing a framework to systematically study and quantify position bias using metrics such as repetitional consistency, positional consistency, and positional fairness. We conduct experiments with 9 judge models across 22 tasks from the MTBench and DevBench benchmarks and nearly 40 answer-generating models, generating approximately 80,000 evaluation instances. This comprehensive assessment reveals significant variations in bias across judges and tasks. Although GPT-4 often excels in positional consistency and fairness, some more cost-effective models perform comparably or even better in specific tasks, highlighting essential trade-offs between consistency, fairness, and cost. Our results also demonstrate high consistency of judgment across repetitions, confirming that position bias is not due to random variations. This research significantly contributes to the field by introducing new concepts for understanding position bias and providing a multi-dimensional framework for evaluation. These insights guide the selection of optimal judge models, enhance benchmark design, and lay the foundation for future research into effective debiasing strategies, ultimately enhancing the reliability of LLM evaluators.
comment: 70 pages, around 200 figures and subfigures
♻ ☆ The Distributional Uncertainty of the SHAP score in Explainable Machine Learning
Attribution scores reflect how important the feature values in an input entity are for the output of a machine learning model. One of the most popular attribution scores is the SHAP score, which is an instantiation of the general Shapley value used in coalition game theory. The definition of this score relies on a probability distribution on the entity population. Since the exact distribution is generally unknown, it needs to be assigned subjectively or be estimated from data, which may lead to misleading feature scores. In this paper, we propose a principled framework for reasoning on SHAP scores under unknown entity population distributions. In our framework, we consider an uncertainty region that contains the potential distributions, and the SHAP score of a feature becomes a function defined over this region. We study the basic problems of finding maxima and minima of this function, which allows us to determine tight ranges for the SHAP scores of all features. In particular, we pinpoint the complexity of these problems, and other related ones, showing them to be NP-complete. Finally, we present experiments on a real-world dataset, showing that our framework may contribute to a more robust feature scoring.
comment: In ECAI 2024 proceedings
♻ ☆ mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in executing instructions for a variety of single-image tasks. Despite this progress, significant challenges remain in modeling long image sequences. In this work, we introduce the versatile multi-modal large language model, mPLUG-Owl3, which enhances the capability for long image-sequence understanding in scenarios that incorporate retrieved image-text knowledge, interleaved image-text, and lengthy videos. Specifically, we propose novel hyper attention blocks to efficiently integrate vision and language into a common language-guided semantic space, thereby facilitating the processing of extended multi-image scenarios. Extensive experimental results suggest that mPLUG-Owl3 achieves state-of-the-art performance among models with a similar size on single-image, multi-image, and video benchmarks. Moreover, we propose a challenging long visual sequence evaluation named Distractor Resistance to assess the ability of models to maintain focus amidst distractions. Finally, with the proposed architecture, mPLUG-Owl3 demonstrates outstanding performance on ultra-long visual sequence inputs. We hope that mPLUG-Owl3 can contribute to the development of more efficient and powerful multimodal large language models.
♻ ☆ TraceFL: Achieving Interpretability in Federated Learning via Neuron Provenance
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost--FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML explainability approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for the global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction. It then selectively picks a slice of the most crucial neurons in the global model and maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-art ML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.
comment: 13 pages. TraceFL is the first interpretability technique in FL that can work on both image and text classification tasks. For source code please contact at waris@vt.edu
♻ ☆ RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios ECCV 2024
Simulation plays a crucial role in the development of autonomous vehicles (AVs) due to the potential risks associated with real-world testing. Although significant progress has been made in the visual aspects of simulators, generating complex behavior among agents remains a formidable challenge. It is not only imperative to ensure realism in the scenarios generated but also essential to incorporate preferences and conditions to facilitate controllable generation for AV training and evaluation. Traditional methods, mainly relying on memorizing the distribution of training datasets, often fall short in generating unseen scenarios. Inspired by the success of retrieval augmented generation in large language models, we present RealGen, a novel retrieval-based in-context learning framework for traffic scenario generation. RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way, which may originate from templates or tagged scenarios. This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios, compose various behaviors, and produce critical scenarios. Evaluations show that RealGen offers considerable flexibility and controllability, marking a new direction in the field of controllable traffic scenario generation. Check our project website for more information: https://realgen.github.io.
comment: Accepted by ECCV 2024, Oral
SSHPool: The Separated Subgraph-based Hierarchical Pooling
In this paper, we develop a novel local graph pooling method, namely the Separated Subgraph-based Hierarchical Pooling (SSHPool), for graph classification. We commence by assigning the nodes of a sample graph into different clusters, resulting in a family of separated subgraphs. We individually employ the local graph convolution units as the local structure to further compress each subgraph into a coarsened node, transforming the original graph into a coarsened graph. Since these subgraphs are separated by different clusters and the structural information cannot be propagated between them, the local convolution operation can significantly avoid the over-smoothing problem caused by message passing through edges in most existing Graph Neural Networks (GNNs). By hierarchically performing the proposed procedures on the resulting coarsened graph, the proposed SSHPool can effectively extract the hierarchical global features of the original graph structure, encapsulating rich intrinsic structural characteristics. Furthermore, we develop an end-to-end GNN framework associated with the SSHPool module for graph classification. Experimental results demonstrate the superior performance of the proposed model on real-world datasets.
♻ ☆ EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations
Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.
AKBR: Learning Adaptive Kernel-based Representations for Graph Classification
In this paper, we propose a new model to learn Adaptive Kernel-based Representations (AKBR) for graph classification. Unlike state-of-the-art R-convolution graph kernels that are defined by merely counting any pair of isomorphic substructures between graphs and cannot provide an end-to-end learning mechanism for the classifier, the proposed AKBR approach aims to define an end-to-end representation learning model to construct an adaptive kernel matrix for graphs. To this end, we commence by leveraging a novel feature-channel attention mechanism to capture the interdependencies between different substructure invariants of original graphs. The proposed AKBR model can thus effectively identify the structural importance of different substructures, and compute the R-convolution kernel between pairwise graphs associated with the more significant substructures specified by their structural attentions. Since each row of the resulting kernel matrix can be theoretically seen as the embedding vector of a sample graph, the proposed AKBR model is able to directly employ the resulting kernel matrix as the graph feature matrix and input it into the classifier for classification (i.e., the SoftMax layer), naturally providing an end-to-end learning architecture between the kernel computation as well as the classifier. Experimental results show that the proposed AKBR model outperforms existing state-of-the-art graph kernels and deep learning methods on standard graph benchmarks.
♻ ☆ On the Correspondence of Non-flat Assumption-based Argumentation and Logic Programming with Negation as Failure in the Head
The relation between (a fragment of) assumption-based argumentation (ABA) and logic programs (LPs) under stable model semantics is well-studied. However, for obtaining this relation, the ABA framework needs to be restricted to being flat, i.e., a fragment where the (defeasible) assumptions can never be entailed, only assumed to be true or false. Here, we remove this restriction and show a correspondence between non-flat ABA and LPs with negation as failure in their head. We then extend this result to so-called set-stable ABA semantics, originally defined for the fragment of non-flat ABA called bipolar ABA. We showcase how to define set-stable semantics for LPs with negation as failure in their head and show the correspondence to set-stable ABA semantics.
♻ ☆ Maintaining Adversarial Robustness in Continuous Learning
Adversarial robustness is essential for security and reliability of machine learning systems. However, adversarial robustness enhanced by defense algorithms is easily erased as the neural network's weights update to learn new tasks. To address this vulnerability, it is essential to improve the capability of neural networks in terms of robust continual learning. Specially, we propose a novel gradient projection technique that effectively stabilizes sample gradients from previous data by orthogonally projecting back-propagation gradients onto a crucial subspace before using them for weight updates. This technique can maintaining robustness by collaborating with a class of defense algorithms through sample gradient smoothing. The experimental results on four benchmarks including Split-CIFAR100 and Split-miniImageNet, demonstrate that the superiority of the proposed approach in mitigating rapidly degradation of robustness during continual learning even when facing strong adversarial attacks.
♻ ☆ FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks KDD 2024
Fairness-aware Graph Neural Networks (GNNs) often face a challenging trade-off, where prioritizing fairness may require compromising utility. In this work, we re-examine fairness through the lens of spectral graph theory, aiming to reconcile fairness and utility within the framework of spectral graph learning. We explore the correlation between sensitive features and spectrum in GNNs, using theoretical analysis to delineate the similarity between original sensitive features and those after convolution under different spectra. Our analysis reveals a reduction in the impact of similarity when the eigenvectors associated with the largest magnitude eigenvalue exhibit directional similarity. Based on these theoretical insights, we propose FUGNN, a novel spectral graph learning approach that harmonizes the conflict between fairness and utility. FUGNN ensures algorithmic fairness and utility by truncating the spectrum and optimizing eigenvector distribution during the encoding process. The fairness-aware eigenvector selection reduces the impact of convolution on sensitive features while concurrently minimizing the sacrifice of utility. FUGNN further optimizes the distribution of eigenvectors through a transformer architecture. By incorporating the optimized spectrum into the graph convolution network, FUGNN effectively learns node representations. Experiments on six real-world datasets demonstrate the superiority of FUGNN over baseline methods. The codes are available at https://github.com/yushuowiki/FUGNN.
comment: Accepted in SIGKDD 2024
♻ ☆ Prioritize Alignment in Dataset Distillation
Dataset Distillation aims to compress a large dataset into a significantly more compact, synthetic one without compromising the performance of the trained models. To achieve this, existing methods use the agent model to extract information from the target dataset and embed it into the distilled dataset. Consequently, the quality of extracted and embedded information determines the quality of the distilled dataset. In this work, we find that existing methods introduce misaligned information in both information extraction and embedding stages. To alleviate this, we propose Prioritize Alignment in Dataset Distillation (PAD), which aligns information from the following two perspectives. 1) We prune the target dataset according to the compressing ratio to filter the information that can be extracted by the agent model. 2) We use only deep layers of the agent model to perform the distillation to avoid excessively introducing low-level information. This simple strategy effectively filters out misaligned information and brings non-trivial improvement for mainstream matching-based distillation algorithms. Furthermore, built on trajectory matching, \textbf{PAD} achieves remarkable improvements on various benchmarks, achieving state-of-the-art performance.
comment: 18 pages, 9 figures
♻ ☆ A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus ACL 2024
Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.
comment: Accepted at ACL 2024 (Main)
♻ ☆ Continual Driving Policy Optimization with Closed-Loop Individualized Curricula ICRA 2024
The safety of autonomous vehicles (AV) has been a long-standing top concern, stemming from the absence of rare and safety-critical scenarios in the long-tail naturalistic driving distribution. To tackle this challenge, a surge of research in scenario-based autonomous driving has emerged, with a focus on generating high-risk driving scenarios and applying them to conduct safety-critical testing of AV models. However, limited work has been explored on the reuse of these extensive scenarios to iteratively improve AV models. Moreover, it remains intractable and challenging to filter through gigantic scenario libraries collected from other AV models with distinct behaviors, attempting to extract transferable information for current AV improvement. Therefore, we develop a continual driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC), which we factorize into a set of standardized sub-modules for flexible implementation choices: AV Evaluation, Scenario Selection, and AV Training. CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration. Subsequently, by re-sampling from historical scenarios based on these failure probabilities, CLIC tailors individualized curricula for downstream training, aligning them with the evaluated capability of AV. Accordingly, CLIC not only maximizes the utilization of the vast pre-collected scenario library for closed-loop driving policy optimization but also facilitates AV improvement by individualizing its training with more challenging cases out of those poorly organized scenarios. Experimental results clearly indicate that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios, while still maintaining proficiency in handling simpler cases.
comment: ICRA 2024
♻ ☆ Neural Quantile Optimization for Edge-Cloud Networking
We seek the best traffic allocation scheme for the edge-cloud computing network that satisfies constraints and minimizes the cost based on burstable billing. First, for a fixed network topology, we formulate a family of integer programming problems with random parameters describing the various traffic demands. Then, to overcome the difficulty caused by the discrete feature of the problem, we generalize the Gumbel-softmax reparameterization method to induce an unconstrained continuous optimization problem as a regularized continuation of the discrete problem. Finally, we introduce the Gumbel-softmax sampling network to solve the optimization problems via unsupervised learning. The network structure reflects the edge-cloud computing topology and is trained to minimize the expectation of the cost function for unconstrained continuous optimization problems. The trained network works as an efficient traffic allocation scheme sampler, remarkably outperforming the random strategy in feasibility and cost function value. Besides testing the quality of the output allocation scheme, we examine the generalization property of the network by increasing the time steps and the number of users. We also feed the solution to existing integer optimization solvers as initial conditions and verify the warm-starts can accelerate the short-time iteration process. The framework is general with solid performance, and the decoupled feature of the random neural networks is adequate for practical implementations.
♻ ☆ Who's asking? User personas and the mechanics of latent misalignment
Despite investments in improving model safety, studies show that misaligned capabilities remain latent in safety-tuned models. In this work, we shed light on the mechanics of this phenomenon. First, we show that even when model generations are safe, harmful content can persist in hidden representations and can be extracted by decoding from earlier layers. Then, we show that whether the model divulges such content depends significantly on its perception of who it is talking to, which we refer to as user persona. In fact, we find manipulating user persona to be even more effective for eliciting harmful content than direct attempts to control model refusal. We study both natural language prompting and activation steering as control methods and show that activation steering is significantly more effective at bypassing safety filters. We investigate why certain personas break model safeguards and find that they enable the model to form more charitable interpretations of otherwise dangerous queries. Finally, we show we can predict a persona's effect on refusal given only the geometry of its steering vector.
♻ ☆ Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models
The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these LLMs still have numerous inherent vulnerabilities, particularly when faced with jailbreak attacks. By investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and inform the development of more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analyzing-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% attack success rate (ASR) and 1.06 attack efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse. The code is publicly available at hhttps://github.com/theshi-1128/ABJ-Attack. Warning: This paper contains examples of LLMs that might be offensive or harmful.
♻ ☆ WRDScore: New Metric for Evaluation of Natural Language Generation Models
Evaluating natural language generation models, particularly for method name prediction, poses significant challenges. A robust metric must account for the versatility of method naming, considering both semantic and syntactic variations. Traditional overlap-based metrics, such as ROUGE, fail to capture these nuances. Existing embedding-based metrics often suffer from imbalanced precision and recall, lack normalized scores, or make unrealistic assumptions about sequences. To address these limitations, we leverage the theory of optimal transport and construct WRDScore, a novel metric that strikes a balance between simplicity and effectiveness. In the WRDScore framework, we define precision as the maximum degree to which the predicted sequence's tokens are included in the reference sequence, token by token. Recall is calculated as the total cost of the optimal transport plan that maps the reference sequence to the predicted one. Finally, WRDScore is computed as the harmonic mean of precision and recall, balancing these two complementary metrics. Our metric is lightweight, normalized, and precision-recall-oriented, avoiding unrealistic assumptions while aligning well with human judgments. Experiments on a human-curated dataset confirm the superiority of WRDScore over other available text metrics.
comment: Accepted to IEEE Xplore
♻ ☆ A Novel Computational and Modeling Foundation for Automatic Coherence Assessment
Coherence is an essential property of well-written texts, that refers to the way textual units relate to one another. In the era of generative AI, coherence assessment is essential for many NLP tasks; summarization, generation, long-form question-answering, and more. However, in NLP {coherence} is an ill-defined notion, not having a formal definition or evaluation metrics, that would allow for large-scale automatic and systematic coherence assessment. To bridge this gap, in this work we employ the formal linguistic definition of \citet{Reinhart:1980} of what makes a discourse coherent, consisting of three conditions -- {\em cohesion, consistency} and {\em relevance} -- and formalize these conditions as respective computational tasks. We hypothesize that (i) a model trained on all of these tasks will learn the features required for coherence detection, and that (ii) a joint model for all tasks will exceed the performance of models trained on each task individually. On two benchmarks for coherence scoring rated by humans, one containing 500 automatically-generated short stories and another containing 4k real-world texts, our experiments confirm that jointly training on the proposed tasks leads to better performance on each task compared with task-specific models, and to better performance on assessing coherence overall, compared with strong baselines. We conclude that the formal and computational setup of coherence as proposed here provides a solid foundation for advanced methods of large-scale automatic assessment of coherence.
♻ ☆ Generative AI for Immersive Communication: The Next Frontier in Internet-of-Senses Through 6G
Over the past two decades, the Internet-of-Things (IoT) has become a transformative concept, and as we approach 2030, a new paradigm known as the Internet of Senses (IoS) is emerging. Unlike conventional Virtual Reality (VR), IoS seeks to provide multi-sensory experiences, acknowledging that in our physical reality, our perception extends far beyond just sight and sound; it encompasses a range of senses. This article explores the existing technologies driving immersive multi-sensory media, delving into their capabilities and potential applications. This exploration includes a comparative analysis between conventional immersive media streaming and a proposed use case that leverages semantic communication empowered by generative Artificial Intelligence (AI). The focal point of this analysis is the substantial reduction in bandwidth consumption by 99.93% in the proposed scheme. Through this comparison, we aim to underscore the practical applications of generative AI for immersive media. Concurrently addressing major challenges in this field, such as temporal synchronization of multiple media, ensuring high throughput, minimizing the End-to-End (E2E) latency, and robustness to low bandwidth while outlining future trajectories.
♻ ☆ SUBLLM: A Novel Efficient Architecture with Token Sequence Subsampling for LLM
While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. Our code is available at https://github.com/XiaoMi/subllm.
comment: 9 pages, 3 figures, accepted by ECAI 2024
♻ ☆ Interpretable Graph Neural Networks for Tabular Data
Data in tabular format is frequently occurring in real-world applications. Graph Neural Networks (GNNs) have recently been extended to effectively handle such data, allowing feature interactions to be captured through representation learning. However, these approaches essentially produce black-box models, in the form of deep neural networks, precluding users from following the logic behind the model predictions. We propose an approach, called IGNNet (Interpretable Graph Neural Network for tabular data), which constrains the learning algorithm to produce an interpretable model, where the model shows how the predictions are exactly computed from the original input features. A large-scale empirical investigation is presented, showing that IGNNet is performing on par with state-of-the-art machine-learning algorithms that target tabular data, including XGBoost, Random Forests, and TabNet. At the same time, the results show that the explanations obtained from IGNNet are aligned with the true Shapley values of the features without incurring any additional computational overhead.
comment: Accepted at ECAI 2024
♻ ☆ Mixed-precision Neural Networks on RISC-V Cores: ISA extensions for Multi-Pumped Soft SIMD Operations
Recent advancements in quantization and mixed-precision approaches offers substantial opportunities to improve the speed and energy efficiency of Neural Networks (NN). Research has shown that individual parameters with varying low precision, can attain accuracies comparable to full-precision counterparts. However, modern embedded microprocessors provide very limited support for mixed-precision NNs regarding both Instruction Set Architecture (ISA) extensions and their hardware design for efficient execution of mixed-precision operations, i.e., introducing several performance bottlenecks due to numerous instructions for data packing and unpacking, arithmetic unit under-utilizations etc. In this work, we bring together, for the first time, ISA extensions tailored to mixed-precision hardware optimizations, targeting energy-efficient DNN inference on leading RISC-V CPU architectures. To this end, we introduce a hardware-software co-design framework that enables cooperative hardware design, mixed-precision quantization, ISA extensions and inference in cycle-accurate emulations. At hardware level, we firstly expand the ALU unit within our proof-of-concept micro-architecture to support configurable fine grained mixed-precision arithmetic operations. Subsequently, we implement multi-pumping to minimize execution latency, with an additional soft SIMD optimization applied for 2-bit operations. At the ISA level, three distinct MAC instructions are encoded extending the RISC-V ISA, and exposed up to the compiler level, each corresponding to a different mixed-precision operational mode. Our extensive experimental evaluation over widely used DNNs and datasets, such as CIFAR10 and ImageNet, demonstrates that our framework can achieve, on average, 15x energy reduction for less than 1% accuracy loss and outperforms the ISA-agnostic state-of-the-art RISC-V cores.
comment: Accepted for publication at the 43rd International Conference on Computer-Aided Design (ICCAD `24), Oct 27-31 2024, New Jersey, USA
♻ ☆ Autonomation, not Automation: Activities and Needs of Fact-checkers as a Basis for Designing Human-Centered AI Systems
To mitigate the negative effects of false information more effectively, the development of Artificial Intelligence (AI) systems assisting fact-checkers is needed. Nevertheless, the lack of focus on the needs of these stakeholders results in their limited acceptance and skepticism toward automating the whole fact-checking process. In this study, we conducted semi-structured in-depth interviews with Central European fact-checkers. Their activities and problems were analyzed using iterative content analysis. The most significant problems were validated with a survey of European fact-checkers, in which we collected 24 responses from 20 countries, i.e., 62\% of active European signatories of the International Fact-Checking Network (IFCN). Our contributions include an in-depth examination of the variability of fact-checking work in non-English speaking regions, which still remained largely uncovered. By aligning them with the knowledge from prior studies, we created conceptual models that help understand the fact-checking processes. Thanks to the interdisciplinary collaboration, we extend the fact-checking process in AI research by three additional stages. In addition, we mapped our findings on the fact-checkers' activities and needs to the relevant tasks for AI research. The new opportunities identified for AI researchers and developers have implications for the focus of AI research in this domain.
comment: 37 pages, 14 figures, 2 annexes
♻ ☆ S$^2$Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification
Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Selective structured state space model (Mamba), which is efficient for modeling long-range dependencies with linear complexity, has recently shown promising progress. However, its potential in hyperspectral image processing that requires handling numerous spectral bands has not yet been explored. In this paper, we innovatively propose S$^2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features, resulting in more efficient and accurate land cover analysis. In S$^2$Mamba, two selective structured state space models through different dimensions are designed for feature extraction, one for spatial, and the other for spectral, along with a spatial-spectral mixture gate for optimal fusion. More specifically, S$^2$Mamba first captures spatial contextual relations by interacting each pixel with its adjacent through a Patch Cross Scanning module and then explores semantic information from continuous spectral bands through a Bi-directional Spectral Scanning module. Considering the distinct expertise of the two attributes in homogenous and complicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group of learnable matrices, allowing for the adaptive incorporation of representations learned across different dimensions. Extensive experiments conducted on HSI classification benchmarks demonstrate the superiority and prospect of S$^2$Mamba. The code will be made available at: https://github.com/PURE-melo/S2Mamba.
comment: 12 pages, 7 figures
♻ ☆ There is No Silver Bullet: Benchmarking Methods in Predictive Combinatorial Optimization
Predictive combinatorial optimization, where the parameters of combinatorial optimization (CO) are unknown at the decision-making time, is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising. Tackling such a problem usually involves a prediction model and a CO solver. These two modules are integrated into the predictive CO pipeline following two design principles: ``Predict-then-Optimize (PtO)'', which learns predictions by supervised training and subsequently solves CO using predicted coefficients, while the other, named ``Predict-and-Optimize (PnO)'', directly optimizes towards the ultimate decision quality and claims to yield better decisions than traditional PtO approaches. However, there lacks a systematic benchmark of both approaches, including the specific design choices at the module level, as well as an evaluation dataset that covers representative real-world scenarios. To this end, we develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for combinatorial advertising that will be released. Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO. A comprehensive categorization of current approaches and integration of typical scenarios are provided under a unified benchmark. Therefore, this paper could serve as a comprehensive benchmark for future PnO approach development and also offer fast prototyping for application-focused development.
♻ ☆ Interpretable Pre-Trained Transformers for Heart Time-Series Data
Decoder-only transformers are the backbone of the popular generative pre-trained transformer (GPT) series of large language models. In this work, we employ this framework to the analysis of clinical heart time-series data, to create two pre-trained general purpose cardiac models, termed PPG-PT and ECG-PT. We place a special emphasis on making both such pre-trained models fully interpretable. This is achieved firstly through aggregate attention maps which show that, in order to make predictions, the model focuses on similar points in previous cardiac cycles and gradually broadens its attention in deeper layers. Next, we show that tokens with the same value, which occur at different distinct points in the electrocardiography (ECG) and photoplethysmography (PPG) cycle, form separate clusters in high dimensional space. The clusters form according to phase, as the tokens propagate through the transformer blocks. Finally, we highlight that individual attention heads respond to specific physiologically relevent features, such as the dicrotic notch in PPG and the P-wave in ECG. It is also demonstrated that these pre-trained models are straightforward to fine-tune for tasks such as classification of atrial fibrillation (AF), and beat detection in photoplethysmography. For the example of AF, the fine-tuning took 11 minutes of computer time, and achieved the respective leave-one-subject-out AUCs of 0.99 and 0.93 for ECG and PPG within the MIMIC Perform AF dataset. In addition, the fine-tuned beat detector achieved a state-of-the-art F1 score of 98%, as well as uniquely providing a beat confidence level which acts as a signal quality estimator. Importantly, the fine-tuned models for AF screening are also fully explainable, with attention shifting to regions in the context that are strongly indicative of atrial fibrillation.
comment: 14 pages, 5 figures
♻ ☆ EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Existing multi-modal sarcasm detection methods have been proven to overestimate performance, as they struggle to effectively capture the intricate sarcastic cues that arise from the interaction between an image and text. To address these issues, we propose InterCLIP-MEP, a novel framework for multi-modal sarcasm detection. Specifically, we introduce an Interactive CLIP (InterCLIP) as the backbone to extract text-image representations, enhancing them by embedding cross-modality information directly within each encoder, thereby improving the representations to capture text-image interactions better. Furthermore, an efficient training strategy is designed to adapt InterCLIP for our proposed Memory-Enhanced Predictor (MEP). MEP uses a dynamic, fixed-length dual-channel memory to store historical knowledge of valuable test samples during inference. It then leverages this memory as a non-parametric classifier to derive the final prediction, offering a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark, with an accuracy improvement of 1.08% and an F1 score improvement of 1.51% over the previous best method.
comment: 9 pages, 6 figures, 3 tables; Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP
♻ ☆ HyperMono: A Monotonicity-aware Approach to Hyper-Relational Knowledge Representation
In a hyper-relational knowledge graph (HKG), each fact is composed of a main triple associated with attribute-value qualifiers, which express additional factual knowledge. The hyper-relational knowledge graph completion (HKGC) task aims at inferring plausible missing links in a HKG. Most existing approaches to HKGC focus on enhancing the communication between qualifier pairs and main triples, while overlooking two important properties that emerge from the monotonicity of the hyper-relational graphs representation regime. Stage Reasoning allows for a two-step reasoning process, facilitating the integration of coarse-grained inference results derived solely from main triples and fine-grained inference results obtained from hyper-relational facts with qualifiers. In the initial stage, coarse-grained results provide an upper bound for correct predictions, which are subsequently refined in the fine-grained step. More generally, Qualifier Monotonicity implies that by attaching more qualifier pairs to a main triple, we may only narrow down the answer set, but never enlarge it. This paper proposes the HyperMono model for hyper-relational knowledge graph completion, which realizes stage reasoning and qualifier monotonicity. To implement qualifier monotonicity HyperMono resorts to cone embeddings. Experiments on three real-world datasets with three different scenario conditions demonstrate the strong performance of HyperMono when compared to the SoTA.
♻ ☆ Finch: Prompt-guided Key-Value Cache Compression ACL
Recent large language model applications, such as Retrieval-Augmented Generation and chatbots, have led to an increased need to process longer input contexts. However, this requirement is hampered by inherent limitations. Architecturally, models are constrained by a context window defined during training. Additionally, processing extensive texts requires substantial GPU memory. We propose a novel approach, Finch, to compress the input context by leveraging the pre-trained model weights of the self-attention. Given a prompt and a long text, Finch iteratively identifies the most relevant Key (K) and Value (V) pairs over chunks of the text conditioned on the prompt. Only such pairs are stored in the KV cache, which, within the space constrained by the context window, ultimately contains a compressed version of the long text. Our proposal enables models to consume large inputs even with high compression (up to 93x) while preserving semantic integrity without the need for fine-tuning.
comment: Accepted for publication at TACL - pre-MIT Press publication version
♻ ☆ Can virtual staining for high-throughput screening generalize?
The large volume and variety of imaging data from high-throughput screening (HTS) in the pharmaceutical industry present an excellent resource for training virtual staining models. However, the potential of models trained under one set of experimental conditions to generalize to other conditions remains underexplored. This study systematically investigates whether data from three cell types (lung, ovarian, and breast) and two phenotypes (toxic and non-toxic conditions) commonly found in HTS can effectively train virtual staining models to generalize across three typical HTS distribution shifts: unseen phenotypes, unseen cell types, and the combination of both. Utilizing a dataset of 772,416 paired bright-field, cytoplasm, nuclei, and DNA-damage stain images, we evaluate the generalization capabilities of models across pixel-based, instance-wise, and biological-feature-based levels. Our findings indicate that training virtual nuclei and cytoplasm models on non-toxic condition samples not only generalizes to toxic condition samples but leads to improved performance across all evaluation levels compared to training on toxic condition samples. Generalization to unseen cell types shows variability depending on the cell type; models trained on ovarian or lung cell samples often perform well under other conditions, while those trained on breast cell samples consistently show poor generalization. Generalization to unseen cell types and phenotypes shows good generalization across all levels of evaluation compared to addressing unseen cell types alone. This study represents the first large-scale, data-centric analysis of the generalization capability of virtual staining models trained on diverse HTS datasets, providing valuable strategies for experimental training data generation.
♻ ☆ Navigating Cultural Chasms: Exploring and Unlocking the Cultural POV of Text-To-Image Models
Text-To-Image (TTI) models, such as DALL-E and StableDiffusion, have demonstrated remarkable prompt-based image generation capabilities. Multilingual encoders may have a substantial impact on the cultural agency of these models, as language is a conduit of culture. In this study, we explore the cultural perception embedded in TTI models by characterizing culture across three hierarchical tiers: cultural dimensions, cultural domains, and cultural concepts. Based on this ontology, we derive prompt templates to unlock the cultural knowledge in TTI models, and propose a comprehensive suite of evaluation techniques, including intrinsic evaluations using the CLIP space, extrinsic evaluations with a Visual-Question-Answer (VQA) model and human assessments, to evaluate the cultural content of TTI-generated images. To bolster our research, we introduce the CulText2I dataset, derived from six diverse TTI models and spanning ten languages. Our experiments provide insights regarding Do, What, Which and How research questions about the nature of cultural encoding in TTI models, paving the way for cross-cultural applications of these models.
comment: Project page: https://venturamor.github.io/CulText2IWeb/
♻ ☆ CEval: A Benchmark for Evaluating Counterfactual Text Generation
Counterfactual text generation aims to minimally change a text, such that it is classified differently. Judging advancements in method development for counterfactual text generation is hindered by a non-uniform usage of data sets and metrics in related work. We propose CEval, a benchmark for comparing counterfactual text generation methods. CEval unifies counterfactual and text quality metrics, includes common counterfactual datasets with human annotations, standard baselines (MICE, GDBA, CREST) and the open-source language model LLAMA-2. Our experiments found no perfect method for generating counterfactual text. Methods that excel at counterfactual metrics often produce lower-quality text while LLMs with simple prompts generate high-quality text but struggle with counterfactual criteria. By making CEval available as an open-source Python library, we encourage the community to contribute more methods and maintain consistent evaluation in future work.
♻ ☆ Clinical information extraction for Low-resource languages with Few-shot learning using Pre-trained language models and Prompting
Automatic extraction of medical information from clinical documents poses several challenges: high costs of required clinical expertise, limited interpretability of model predictions, restricted computational resources and privacy regulations. Recent advances in domain-adaptation and prompting methods showed promising results with minimal training data using lightweight masked language models, which are suited for well-established interpretability methods. We are first to present a systematic evaluation of these methods in a low-resource setting, by performing multi-class section classification on German doctor's letters. We conduct extensive class-wise evaluations supported by Shapley values, to validate the quality of our small training data set and to ensure the interpretability of model predictions. We demonstrate that a lightweight, domain-adapted pretrained model, prompted with just 20 shots, outperforms a traditional classification model by 30.5% accuracy. Our results serve as a process-oriented guideline for clinical information extraction projects working with low-resource.
comment: Paper accepted for publication in the journal: Natural Language Engineering (Cambridge Core)
♻ ☆ Is Power-Seeking AI an Existential Risk?
This report examines what I see as the core argument for concern about existential risk from misaligned artificial intelligence. I proceed in two stages. First, I lay out a backdrop picture that informs such concern. On this picture, intelligent agency is an extremely powerful force, and creating agents much more intelligent than us is playing with fire -- especially given that if their objectives are problematic, such agents would plausibly have instrumental incentives to seek power over humans. Second, I formulate and evaluate a more specific six-premise argument that creating agents of this kind will lead to existential catastrophe by 2070. On this argument, by 2070: (1) it will become possible and financially feasible to build relevantly powerful and agentic AI systems; (2) there will be strong incentives to do so; (3) it will be much harder to build aligned (and relevantly powerful/agentic) AI systems than to build misaligned (and relevantly powerful/agentic) AI systems that are still superficially attractive to deploy; (4) some such misaligned systems will seek power over humans in high-impact ways; (5) this problem will scale to the full disempowerment of humanity; and (6) such disempowerment will constitute an existential catastrophe. I assign rough subjective credences to the premises in this argument, and I end up with an overall estimate of ~5% that an existential catastrophe of this kind will occur by 2070. (May 2022 update: since making this report public in April 2021, my estimate here has gone up, and is now at >10%.)
comment: 57 pages, 1 figure. Edited to fix link to audio version, add links to short version and reviews, and fix a typo in section 2.1.2
♻ ☆ YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention
Accurate prediction of drug molecule solubility is crucial for therapeutic effectiveness and safety. Traditional methods often miss complex molecular structures, leading to inaccuracies. We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks to enhance prediction precision. GCNs excel at capturing intricate molecular topologies by modeling the relationships between atoms and bonds. Transformers, with their self-attention mechanisms, effectively identify long-range dependencies within molecules, capturing global interactions. LSTMs process sequential data, preserving long-term dependencies and integrating temporal information within molecular sequences. This multifaceted approach leverages the strengths of each component, resulting in a model that comprehensively understands and predicts molecular properties. Trained on 9,943 compounds and tested on an anticancer dataset, the YZS-Model achieved an $R^2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models ($R^2$ of 0.52 and RMSE of 0.61). In an independent test, it demonstrated an RMSE of 1.05, improving accuracy by 45.9%. The integration of these deep learning techniques allows the YZS-Model to learn valuable features from complex data without predefined parameters, handle large datasets efficiently, and adapt to various molecular types. This comprehensive capability significantly improves predictive accuracy and model generalizability. Its precision in solubility predictions can expedite drug development by optimizing candidate selection, reducing costs, and enhancing efficiency. Our research underscores deep learning's transformative potential in pharmaceutical science, particularly for solubility prediction and drug design.
comment: 23 pages, 16 figures, 6 tables
♻ ☆ Dual-Space Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the two models so that more knowledge can be transferred. However, in the current white-box KD framework, the output distributions are from the respective output spaces of the two models, using their own prediction heads. We argue that the space discrepancy will lead to low similarity between the teacher model and the student model on both representation and distribution levels. Furthermore, this discrepancy also hinders the KD process between models with different vocabularies, which is common for current LLMs. To address these issues, we propose a dual-space knowledge distillation (DSKD) framework that unifies the output spaces of the two models for KD. On the basis of DSKD, we further develop a cross-model attention mechanism, which can automatically align the representations of the two models with different vocabularies. Thus, our framework is not only compatible with various distance functions for KD (e.g., KL divergence) like the current framework, but also supports KD between any two LLMs regardless of their vocabularies. Experiments on task-agnostic instruction-following benchmarks show that DSKD significantly outperforms the current white-box KD framework with various distance functions, and also surpasses existing KD methods for LLMs with different vocabularies.
comment: 17 pages, 11 figures, code available at: https://github.com/songmzhang/DSKD
♻ ☆ Recent Advances in Predictive Modeling with Electronic Health Records IJCAI 24
The development of electronic health records (EHR) systems has enabled the collection of a vast amount of digitized patient data. However, utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics. With the advancements in machine learning techniques, deep learning has demonstrated its superiority in various applications, including healthcare. This survey systematically reviews recent advances in deep learning-based predictive models using EHR data. Specifically, we begin by introducing the background of EHR data and providing a mathematical definition of the predictive modeling task. We then categorize and summarize predictive deep models from multiple perspectives. Furthermore, we present benchmarks and toolkits relevant to predictive modeling in healthcare. Finally, we conclude this survey by discussing open challenges and suggesting promising directions for future research.
comment: This paper has been accepted by IJCAI 24 Survey Track
♻ ☆ Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators ICLR 2024
Recently, channel-independent methods have achieved state-of-the-art performance in multivariate time series (MTS) forecasting. Despite reducing overfitting risks, these methods miss potential opportunities in utilizing channel dependence for accurate predictions. We argue that there exist locally stationary lead-lag relationships between variates, i.e., some lagged variates may follow the leading indicators within a short time period. Exploiting such channel dependence is beneficial since leading indicators offer advance information that can be used to reduce the forecasting difficulty of the lagged variates. In this paper, we propose a new method named LIFT that first efficiently estimates leading indicators and their leading steps at each time step and then judiciously allows the lagged variates to utilize the advance information from leading indicators. LIFT plays as a plugin that can be seamlessly collaborated with arbitrary time series forecasting methods. Extensive experiments on six real-world datasets demonstrate that LIFT improves the state-of-the-art methods by 5.5% in average forecasting performance. Our code is available at https://github.com/SJTU-Quant/LIFT.
comment: Accepted to ICLR 2024. Code is at https://github.com/SJTU-DMTai/LIFT
♻ ☆ Source-Aware Training Enables Knowledge Attribution in Language Models
Large language models (LLMs) learn a vast amount of knowledge during pretraining, but they are often oblivious to the source(s) of such knowledge. We investigate the problem of intrinsic source citation, where LLMs are required to cite the pretraining source supporting a generated response. Intrinsic source citation can enhance LLM transparency, interpretability, and verifiability. To give LLMs such ability, we explore source-aware training -- a recipe that involves (i) training the LLM to associate unique source document identifiers with the knowledge in each document, followed by (ii) an instruction-tuning stage to teach the LLM to cite a supporting pretraining source when prompted. Source-aware training borrows from existing pretraining/fine-tuning frameworks and requires minimal changes to the model architecture or implementation. Through experiments on synthetic data, we demonstrate that our training recipe can enable faithful attribution to the pretraining data without a substantial impact on the model's perplexity compared to standard pretraining. Our findings also highlight the importance of pretraining data augmentation in achieving attribution. Code and data available here: \url{https://github.com/mukhal/intrinsic-source-citation}
comment: COLM '24
♻ ☆ DPO: Differential reinforcement learning with application to optimal configuration search
Reinforcement learning (RL) with continuous state and action spaces remains one of the most challenging problems within the field. Most current learning methods focus on integral identities such as value functions to derive an optimal strategy for the learning agent. In this paper, we instead study the dual form of the original RL formulation to propose the first differential RL framework that can handle settings with limited training samples and short-length episodes. Our approach introduces Differential Policy Optimization (DPO), a pointwise and stage-wise iteration method that optimizes policies encoded by local-movement operators. We prove a pointwise convergence estimate for DPO and provide a regret bound comparable with the best current theoretical derivation. Such pointwise estimate ensures that the learned policy matches the optimal path uniformly across different steps. We then apply DPO to a class of practical RL problems with continuous state and action spaces, and which search for optimal configurations with Lagrangian rewards. DPO is easy to implement, scalable, and shows competitive results on benchmarking experiments against several popular RL methods.
♻ ☆ SFMViT: SlowFast Meet ViT in Chaotic World
The task of spatiotemporal action localization in chaotic scenes is a challenging task toward advanced video understanding. Paving the way with high-quality video feature extraction and enhancing the precision of detector-predicted anchors can effectively improve model performance. To this end, we propose a high-performance dual-stream spatiotemporal feature extraction network SFMViT with an anchor pruning strategy. The backbone of our SFMViT is composed of ViT and SlowFast with prior knowledge of spatiotemporal action localization, which fully utilizes ViT's excellent global feature extraction capabilities and SlowFast's spatiotemporal sequence modeling capabilities. Secondly, we introduce the confidence maximum heap to prune the anchors detected in each frame of the picture to filter out the effective anchors. These designs enable our SFMViT to achieve a mAP of 26.62% in the Chaotic World dataset, far exceeding existing models. Code is available at https://github.com/jfightyr/SlowFast-Meet-ViT.
♻ ☆ Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons
In this paper, we investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks. Through an analysis of LLMs' internal factual recall at each reasoning step via Knowledge Neurons, we reveal that LLMs fail to harness the critical factual associations under certain circumstances. Instead, they tend to opt for alternative, shortcut-like pathways to answer reasoning questions. By manually manipulating the recall process of parametric knowledge in LLMs, we demonstrate that enhancing this recall process directly improves reasoning performance whereas suppressing it leads to notable degradation. Furthermore, we assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks. Our findings indicate that CoT can intensify the recall of factual knowledge by encouraging LLMs to engage in orderly and reliable reasoning. Furthermore, we explored how contextual conflicts affect the retrieval of facts during the reasoning process to gain a comprehensive understanding of the factual recall behaviors of LLMs. Code and data will be available soon.
♻ ☆ Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics
This paper presents a novel neuro-fuzzy model, termed fuzzy recurrent stochastic configuration networks (F-RSCNs), for industrial data analytics. Unlike the original recurrent stochastic configuration network (RSCN), the proposed F-RSCN is constructed by multiple sub-reservoirs, and each sub-reservoir is associated with a Takagi-Sugeno-Kang (TSK) fuzzy rule. Through this hybrid framework, first, the interpretability of the model is enhanced by incorporating fuzzy reasoning to embed the prior knowledge into the network. Then, the parameters of the neuro-fuzzy model are determined by the recurrent stochastic configuration (RSC) algorithm. This scheme not only ensures the universal approximation property and fast learning speed of the built model but also overcomes uncertain problems, such as unknown dynamic orders, arbitrary structure determination, and the sensitivity of learning parameters in modelling nonlinear dynamics. Finally, an online update of the output weights is performed using the projection algorithm, and the convergence analysis of the learning parameters is given. By integrating TSK fuzzy inference systems into RSCNs, F-RSCNs have strong fuzzy inference capability and can achieve sound performance for both learning and generalization. Comprehensive experiments show that the proposed F-RSCNs outperform other classical neuro-fuzzy and non-fuzzy models, demonstrating great potential for modelling complex industrial systems.
♻ ☆ UICrit: Enhancing Automated Design Evaluation with a UICritique Dataset
Automated UI evaluation can be beneficial for the design process; for example, to compare different UI designs, or conduct automated heuristic evaluation. LLM-based UI evaluation, in particular, holds the promise of generalizability to a wide variety of UI types and evaluation tasks. However, current LLM-based techniques do not yet match the performance of human evaluators. We hypothesize that automatic evaluation can be improved by collecting a targeted UI feedback dataset and then using this dataset to enhance the performance of general-purpose LLMs. We present a targeted dataset of 3,059 design critiques and quality ratings for 983 mobile UIs, collected from seven experienced designers. We carried out an in-depth analysis to characterize the dataset's features. We then applied this dataset to achieve a 55% performance gain in LLM-generated UI feedback via various few-shot and visual prompting techniques. We also discuss future applications of this dataset, including training a reward model for generative UI techniques, and fine-tuning a tool-agnostic multi-modal LLM that automates UI evaluation.
comment: Accepted to ACM UIST 2024
♻ ☆ Spiking Neural Networks in Vertical Federated Learning: Performance Trade-offs
Federated machine learning enables model training across multiple clients while maintaining data privacy. Vertical Federated Learning (VFL) specifically deals with instances where the clients have different feature sets of the same samples. As federated learning models aim to improve efficiency and adaptability, innovative neural network architectures like Spiking Neural Networks (SNNs) are being leveraged to enable fast and accurate processing at the edge. SNNs, known for their efficiency over Artificial Neural Networks (ANNs), have not been analyzed for their applicability in VFL, thus far. In this paper, we investigate the benefits and trade-offs of using SNN models in a vertical federated learning setting. We implement two different federated learning architectures -- with model splitting and without model splitting -- that have different privacy and performance implications. We evaluate the setup using CIFAR-10 and CIFAR-100 benchmark datasets along with SNN implementations of VGG9 and ResNET classification models. Comparative evaluations demonstrate that the accuracy of SNN models is comparable to that of traditional ANNs for VFL applications, albeit significantly more energy efficient.
♻ ☆ DFML: Decentralized Federated Mutual Learning
In the realm of real-world devices, centralized servers in Federated Learning (FL) present challenges including communication bottlenecks and susceptibility to a single point of failure. Additionally, contemporary devices inherently exhibit model and data heterogeneity. Existing work lacks a Decentralized FL (DFL) framework capable of accommodating such heterogeneity without imposing architectural restrictions or assuming the availability of public data. To address these issues, we propose a Decentralized Federated Mutual Learning (DFML) framework that is serverless, supports nonrestrictive heterogeneous models, and avoids reliance on public data. DFML effectively handles model and data heterogeneity through mutual learning, which distills knowledge between clients, and cyclically varying the amount of supervision and distillation signals. Extensive experimental results demonstrate consistent effectiveness of DFML in both convergence speed and global accuracy, outperforming prevalent baselines under various conditions. For example, with the CIFAR-100 dataset and 50 clients, DFML achieves a substantial increase of +17.20% and +19.95% in global accuracy under Independent and Identically Distributed (IID) and non-IID data shifts, respectively.
♻ ☆ Sociodemographic Bias in Language Models: A Survey and Forward Path
Sociodemographic bias in language models (LMs) has the potential for harm when deployed in real-world settings. This paper presents a comprehensive survey of the past decade of research on sociodemographic bias in LMs, organized into a typology that facilitates examining the different aims: types of bias, quantifying bias, and debiasing techniques. We track the evolution of the latter two questions, then identify current trends and their limitations, as well as emerging techniques. To guide future research towards more effective and reliable solutions, and to help authors situate their work within this broad landscape, we conclude with a checklist of open questions.
comment: 23 pages, 3 figure
♻ ☆ Explainable AI Reloaded: Challenging the XAI Status Quo in the Era of Large Language Models
When the initial vision of Explainable (XAI) was articulated, the most popular framing was to open the (proverbial) "black-box" of AI so that we could understand the inner workings. With the advent of Large Language Models (LLMs), the very ability to open the black-box is increasingly limited especially when it comes to non-AI expert end-users. In this paper, we challenge the assumption of "opening" the black-box in the LLM era and argue for a shift in our XAI expectations. Highlighting the epistemic blind spots of an algorithm-centered XAI view, we argue that a human-centered perspective can be a path forward. We operationalize the argument by synthesizing XAI research along three dimensions: explainability outside the black-box, explainability around the edges of the black box, and explainability that leverages infrastructural seams. We conclude with takeaways that reflexively inform XAI as a domain.
comment: Accepted to ACM HTTF 2024
♻ ☆ Retrieval-enhanced Knowledge Editing in Language Models for Multi-Hop Question Answering CIKM 2024
Large Language Models (LLMs) have shown proficiency in question-answering tasks but often struggle to integrate real-time knowledge, leading to potentially outdated or inaccurate responses. This problem becomes even more challenging when dealing with multi-hop questions, since they require LLMs to update and integrate multiple knowledge pieces relevant to the questions. To tackle the problem, we propose the Retrieval-Augmented model Editing (RAE) framework for multi-hop question answering. RAE first retrieves edited facts and then refines the language model through in-context learning. Specifically, our retrieval approach, based on mutual information maximization, leverages the reasoning abilities of LLMs to identify chain facts that traditional similarity-based searches might miss. In addition, our framework includes a pruning strategy to eliminate redundant information from the retrieved facts, which enhances the editing accuracy and mitigates the hallucination problem. Our framework is supported by theoretical justification for its fact retrieval efficacy. Finally, comprehensive evaluation across various LLMs validates RAE's ability in providing accurate answers with updated knowledge. Our code is available at: https://github.com/sycny/RAE.
comment: Accepted by CIKM 2024
♻ ☆ Algorithmic Decision-Making under Agents with Persistent Improvement
This paper studies algorithmic decision-making under human's strategic behavior, where a decision maker uses an algorithm to make decisions about human agents, and the latter with information about the algorithm may exert effort strategically and improve to receive favorable decisions. Unlike prior works that assume agents benefit from their efforts immediately, we consider realistic scenarios where the impacts of these efforts are persistent and agents benefit from efforts by making improvements gradually. We first develop a dynamic model to characterize persistent improvements and based on this construct a Stackelberg game to model the interplay between agents and the decision-maker. We analytically characterize the equilibrium strategies and identify conditions under which agents have incentives to improve. With the dynamics, we then study how the decision-maker can design an optimal policy to incentivize the largest improvements inside the agent population. We also extend the model to settings where 1) agents may be dishonest and game the algorithm into making favorable but erroneous decisions; 2) honest efforts are forgettable and not sufficient to guarantee persistent improvements. With the extended models, we further examine conditions under which agents prefer honest efforts over dishonest behavior and the impacts of forgettable efforts.
♻ ☆ Non-linear Welfare-Aware Strategic Learning
This paper studies algorithmic decision-making in the presence of strategic individual behaviors, where an ML model is used to make decisions about human agents and the latter can adapt their behavior strategically to improve their future data. Existing results on strategic learning have largely focused on the linear setting where agents with linear labeling functions best respond to a (noisy) linear decision policy. Instead, this work focuses on general non-linear settings where agents respond to the decision policy with only "local information" of the policy. Moreover, we simultaneously consider the objectives of maximizing decision-maker welfare (model prediction accuracy), social welfare (agent improvement caused by strategic behaviors), and agent welfare (the extent that ML underestimates the agents). We first generalize the agent best response model in previous works to the non-linear setting, then reveal the compatibility of welfare objectives. We show the three welfare can attain the optimum simultaneously only under restrictive conditions which are challenging to achieve in non-linear settings. The theoretical results imply that existing works solely maximizing the welfare of a subset of parties inevitably diminish the welfare of the others. We thus claim the necessity of balancing the welfare of each party in non-linear settings and propose an irreducible optimization algorithm suitable for general strategic learning. Experiments on synthetic and real data validate the proposed algorithm.
♻ ☆ Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives
The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP), introducing unprecedented capabilities that are revolutionizing various domains. This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications. Our paper contributes to providing a holistic perspective on the technical foundations, practical applications, and emerging challenges within the evolving landscape of Generative AI and LLMs. We believe that understanding the generative capabilities of AI systems and the specific context of LLMs is crucial for researchers, practitioners, and policymakers to collaboratively shape the responsible and ethical integration of these technologies into various domains. Furthermore, we identify and address main research gaps, providing valuable insights to guide future research endeavors within the AI research community.
comment: This version is accepted for publication in the Journal of IEEE Transactions on Artificial Intelligence (TAI)
♻ ☆ Large Model Strategic Thinking, Small Model Efficiency: Transferring Theory of Mind in Large Language Models
As the performance of larger, newer Large Language Models continues to improve for strategic Theory of Mind (ToM) tasks, the demand for these state of the art models increases commensurately. However, their deployment is costly both in terms of processing power and time. In this paper, we investigate the feasibility of creating smaller, simulation-ready agents by way of fine-tuning. To do this, we present a large pre-trained model with 20 unique scenarios that combine a social context with a social dilemma, recording its answers, and using them for Q\&A fine-tuning on a smaller model of the same family. Our focus is on in-context game-theoretic decision-making, the same domain within which human interaction occurs and that requires both a theory of mind (or a semblance thereof) and an understanding of social dynamics. We find that the fine-tuned smaller language model exhibited significant performance closer to that of its larger relative, and that their improvements extended in areas and contexts beyond the ones provided in the training examples. On average for all games, through fine-tuning, the smaller model showed a \%46 improvement in aligning with the behavior of the larger model, with \%100 representing complete alignment. This suggests that our pipeline represents an efficient method to transmit some form of theory of mind to smaller models, creating improved and cheaply deployable algorithms in the process. Despite their simplicity and their associated shortcomings and limitations, our findings represent a stepping stone in the pursuit and training of specialized models for strategic and social decision making.
comment: 18 pages, 6 figures
♻ ☆ Never Lost in the Middle: Mastering Long-Context Question Answering with Position-Agnostic Decompositional Training ACL 2024
While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community.
comment: Accepted by ACL 2024 main conference
♻ ☆ KAN-RCBEVDepth: A multi-modal fusion algorithm in object detection for autonomous driving
Accurate 3D object detection in autonomous driving is critical yet challenging due to occlusions, varying object scales, and complex urban environments. This paper introduces the RCBEV-KAN algorithm, a pioneering method designed to enhance 3D object detection by fusing multimodal sensor data from cameras, LiDAR, and millimeter-wave radar. Our innovative Bird's Eye View (BEV)-based approach, utilizing a Transformer architecture, significantly boosts detection precision and efficiency by seamlessly integrating diverse data sources, improving spatial relationship handling, and optimizing computational processes. Experimental results show that the RCBEV-KAN model demonstrates superior performance across most detection categories, achieving higher Mean Distance AP (0.389 vs. 0.316, a 23% improvement), better ND Score (0.484 vs. 0.415, a 17% improvement), and faster Evaluation Time (71.28s, 8% faster). These results indicate that RCBEV-KAN is more accurate, reliable, and efficient, making it ideal for dynamic and challenging autonomous driving environments.
♻ ☆ Better Alignment with Instruction Back-and-Forth Translation
We propose a new method, instruction back-and-forth translation, to construct high-quality synthetic data grounded in world knowledge for aligning large language models (LLMs). Given documents from a web corpus, we generate and curate synthetic instructions using the backtranslation approach proposed by Li et al.(2023a), and rewrite the responses to improve their quality further based on the initial documents. Fine-tuning with the resulting (backtranslated instruction, rewritten response) pairs yields higher win rates on AlpacaEval than using other common instruction datasets such as Humpback, ShareGPT, Open Orca, Alpaca-GPT4 and Self-instruct. We also demonstrate that rewriting the responses with an LLM outperforms direct distillation, and the two generated text distributions exhibit significant distinction in embedding space. Further analysis shows that our backtranslated instructions are of higher quality than other sources of synthetic instructions, while our responses are more diverse and complex than those obtained from distillation. Overall we find that instruction back-and-forth translation combines the best of both worlds -- making use of the information diversity and quantity found on the web, while ensuring the quality of the responses which is necessary for effective alignment.
Graphics 10
☆ SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis
We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS) that generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps. This extension enhances the representation of scenes with multiple spectra, providing insights into the underlying materials and segmentation. We introduce an improved physically-based rendering approach for Gaussian splats, estimating reflectance and lights per spectra, thereby enhancing accuracy and realism. In a comprehensive quantitative and qualitative evaluation, we demonstrate the superior performance of our approach with respect to other recent learning-based spectral scene representation approaches (i.e., XNeRF and SpectralNeRF) as well as other non-spectral state-of-the-art learning-based approaches. Our work also demonstrates the potential of spectral scene understanding for precise scene editing techniques like style transfer, inpainting, and removal. Thereby, our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.
☆ Mesh Simplification For Unfolding
We present a computational approach for unfolding 3D shapes isometrically into the plane as a single patch without overlapping triangles. This is a hard, sometimes impossible, problem, which existing methods are forced to soften by allowing for map distortions or multiple patches. Instead, we propose a geometric relaxation of the problem: we modify the input shape until it admits an overlap-free unfolding. We achieve this by locally displacing vertices and collapsing edges, guided by the unfolding process. We validate our algorithm quantitatively and qualitatively on a large dataset of complex shapes and show its proficiency by fabricating real shapes from paper.
comment: 12 pages, 12 figures
☆ PBIR-NIE: Glossy Object Capture under Non-Distant Lighting
Glossy objects present a significant challenge for 3D reconstruction from multi-view input images under natural lighting. In this paper, we introduce PBIR-NIE, an inverse rendering framework designed to holistically capture the geometry, material attributes, and surrounding illumination of such objects. We propose a novel parallax-aware non-distant environment map as a lightweight and efficient lighting representation, accurately modeling the near-field background of the scene, which is commonly encountered in real-world capture setups. This feature allows our framework to accommodate complex parallax effects beyond the capabilities of standard infinite-distance environment maps. Our method optimizes an underlying signed distance field (SDF) through physics-based differentiable rendering, seamlessly connecting surface gradients between a triangle mesh and the SDF via neural implicit evolution (NIE). To address the intricacies of highly glossy BRDFs in differentiable rendering, we integrate the antithetic sampling algorithm to mitigate variance in the Monte Carlo gradient estimator. Consequently, our framework exhibits robust capabilities in handling glossy object reconstruction, showcasing superior quality in geometry, relighting, and material estimation.
☆ Potamoi: Accelerating Neural Rendering via a Unified Streaming Architecture
Neural Radiance Field (NeRF) has emerged as a promising alternative for photorealistic rendering. Despite recent algorithmic advancements, achieving real-time performance on today's resource-constrained devices remains challenging. In this paper, we identify the primary bottlenecks in current NeRF algorithms and introduce a unified algorithm-architecture co-design, Potamoi, designed to accommodate various NeRF algorithms. Specifically, we introduce a runtime system featuring a plug-and-play algorithm, SpaRW, which significantly reduces the per-frame computational workload and alleviates compute inefficiencies. Furthermore, our unified streaming pipeline coupled with customized hardware support effectively tames both SRAM and DRAM inefficiencies by minimizing repetitive DRAM access and completely eliminating SRAM bank conflicts. When evaluated against a baseline utilizing a dedicated DNN accelerator, our framework demonstrates a speed-up and energy reduction of 53.1$\times$ and 67.7$\times$, respectively, all while maintaining high visual quality with less than a 1.0 dB reduction in peak signal-to-noise ratio.
comment: arXiv admin note: substantial text overlap with arXiv:2404.11852
☆ HiRegEx: Interactive Visual Query and Exploration of Multivariate Hierarchical Data IEEE VIS 2024
When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data, particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for querying these targets (features and positions), and uses operators developed based on classical regular expressions for query construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study involving expert users in the analysis of a citation tree dataset.
comment: 11 pages, 8 figures, accepted at IEEE VIS 2024
☆ Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
comment: Project webpage: https://lseancs.github.io/generativephotomontage/
☆ Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
♻ ☆ A Practical Solver for Scalar Data Topological Simplification IEEE VIS 2024
This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field f and a set of "signal" persistence pairs to maintain, our approach produces an output field g that is close to f and which optimizes (i) the cancellation of "non-signal" pairs, while (ii) preserving the "signal" pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.
comment: 13 pages, 10 figures, IEEE VIS 2024
♻ ☆ Towards Practical Meshlet Compression
We propose a codec specifically designed for meshlet compression, optimized for rapid data-parallel GPU decompression within a mesh shader. Our compression strategy orders triangles in optimal generalized triangle strips (GTSs), which we generate by formulating the creation as a mixed integer linear program (MILP). Our method achieves index buffer compression rates of 16:1 compared to the vertex pipeline and crack-free vertex attribute quantization based on user preference. The 15.5 million triangles of our teaser image decompress and render in 0.59 ms on an AMD Radeon RX 7900 XTX.
comment: 8 pages
♻ ☆ GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns ECCV 2024
Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/ Dataset: https://doi.org/10.3929/ethz-b-000673889
comment: Accepted to ECCV 2024